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Complementing genome sequence with deep transcriptome and proteome data could enable more accurate assembly and

annotation of newly sequenced genomes. Here, we provide a proof-of-concept of an integrated approach for analysis of

the genome and proteome of Anopheles stephensi, which is one of themost important vectors of themalaria parasite. To achieve

broad coverage of genes, we carried out transcriptome sequencing and deep proteomeprofiling ofmultiple anatomically dis-

tinct sites. Based on transcriptomic data alone, we identified and corrected 535 events of incomplete genome assembly involv-

ing 1196 scaffolds and 868 protein-coding gene models. This proteogenomic approach enabled us to add 365 genes that were

missed during genome annotation and identify 917 gene correction events through discovery of 151 novel exons, 297 protein

extensions, 231 exon extensions, 192novel protein start sites, 19 novel translational frames, 28 events of joiningof exons, and76

events of joining of adjacent genes as a single gene. Incorporation of proteomic evidence allowedus to change the designation
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of more than 87 predicted “noncoding RNAs” to conventional mRNAs coded by protein-coding genes. Importantly, exten-

sion of the newly corrected genome assemblies and gene models to 15 other newly assembled Anopheline genomes led to the

discovery of a large number of apparent discrepancies in assembly and annotation of these genomes. Our data provide a

framework for how future genome sequencing efforts should incorporate transcriptomic and proteomic analysis in combi-

nation with simultaneous manual curation to achieve near complete assembly and accurate annotation of genomes.

[Supplemental material is available for this article.]

Genome assembly and subsequent genome annotation are largely
driven by computational pipelines, which ultimately provide a set
of predicted protein-coding and noncoding genes. In recent years,
next-generation sequencing technologies have been used to
achieve high coverage of large genomes in a cost-effective fashion
(Schatz et al. 2010; Salzberg et al. 2012). However, there are inher-
ent challenges in genome assembly because of repetitive sequenc-
es, high GC content, and chimeric reads (Schatz et al. 2010).
Indeed, substantial differences in genome assemblies have been re-
ported when the same data sets were analyzed by different meth-
odologies (Earl et al. 2011; Salzberg et al. 2012) demonstrating a
critical need for developing protocols for accurate assembly of ge-
nomic sequences.

Genome annotation, especially identification of protein-cod-
ing genes, is of high priority once the genome is sequenced.
Annotation of protein-coding genes is currently based on gene
prediction algorithms (Renuse et al. 2011; Megy et al. 2012;
Jiang et al. 2014). The annotated genes remain as hypothetical se-
quences until validated through experiments. The experimental
data might include transcriptomic data, which can improve the
predicted gene models (Denoeud et al. 2008; Gerstein et al.
2010; Guo et al. 2014; Kelkar et al. 2014; Woo et al. 2014; Wu
et al. 2014; Yu et al. 2014; Linde et al. 2015). More recently, prote-
omic data frommass spectrometry experiments have been used for
validating protein-coding genes (Brunner et al. 2007; Gupta et al.
2008; Merrihew et al. 2008; Chaerkady et al. 2011; Kelkar et al.
2011; Bock et al. 2014; Castellana et al. 2014; Kim et al. 2014;
Trapp et al. 2014; Wilhelm et al. 2014). Though transcriptomic
and proteomic data have been successfully used in correction of
genome annotation errors in prokaryotes and lower eukaryotes,
the approach is yet to be used efficiently for complex eukaryotic
genomes (Armengaud 2009). Annotation of genes in eukaryotic
genome is more complex and error prone owing to the presence
of long introns, repetitive sequences, alternative splicing, noncod-
ing RNAs, and large genome size.

Transcriptomic and proteomic data have been used for im-
proving annotation of genes (Bock et al. 2014; Kelkar et al. 2014;
Woo et al. 2014; Wu et al. 2014). However, the potential applica-
tion of these data sets in the correction of incomplete genome as-
semblies has not been realized thus far, and only few studies have
demonstrated utility of RNA-seq data in improving incomplete
genome assemblies (Mortazavi et al. 2010; Xue et al. 2013).
Therefore, as a proof of concept, we used an integrated approach
to improve genome assembly and annotation of newly assembled
genomes of Anopheles stephensi and 15 other related genomes (Fig.
1).Anopheles stephensi is one of themajor vectors ofmalaria in Asia.
Genomes of two strains of Anopheles stephensi (Indian and SDA-
500 strains, with corresponding genome assemblies referred to as
AsteI2 and AsteS1, respectively) have recently been sequenced
and are available through VectorBase (Jiang et al. 2014; Neafsey
et al. 2015).A total of 12,350 genes are annotated in AsteI2, where-
as the AsteS1 assembly has 13,652 annotated genes.We carried out
transcriptomic and proteomic analysis of four and 15 organs of
Anopheles stephensi, respectively. We used a combination of com-

putational workflows and expert manual curation to identify
and correct errors in genome assembly and annotation of genes.
We also used this unique opportunity to test whether the novel
findings from the Anopheles stephensi genome could be used to im-
prove the accuracy of assembly and annotation of 15 genomes of
otherAnopheles species whose genomes have also been recently se-
quenced (Neafsey et al. 2015).

Results

Transcriptomic and proteomic landscape of Anopheles stephensi

We carried out transcriptomic and proteomic analyses of multiple
tissues from the Indian strain of An. stephensi to obtain compre-
hensive coverage (Fig. 2A). Because only limited RNA-seq data
were available for individual organs in VectorBase, we selected
four adult tissues for deep transcriptomic analysis. When we
mapped the RNA-seq data from these four tissues—Malpighian tu-
bules, fat body, midgut, and ovary—to the two available genome
assemblies for An. stephensi, we observed 3673 intergenic tran-
scripts in the case of AsteI2 and 1920 intergenic transcripts in
the case of AsteS1. Figure 2B represents one such example inwhich
one of the existing assemblies (AsteI2) did not have any predicted
gene at all. The other assembly (AsteS1) had a predicted gene, but
our transcriptomic data provided evidence for extension of the
predicted genemodel aswell as the presence of additional unanno-
tated exons. The novel transcripts along with the proteomic data
were used for improving the genome assembly and annotation er-
rors using a novel integrative proteogenomic analysis pipeline (Fig.
1). The relative utility of transcriptomic and proteomic data has
been described in greater detail in the Discussion. Supplemental
Table S5.11 provides the number of novel annotations or correc-
tions that resulted from proteomic evidence alone or from both
RNA-seq and proteomic evidence.

We also undertook tandemmass spectrometry–based proteo-
mic profiling of An. stephensi. To obtain broad coverage of An. ste-
phensi proteome, we extracted proteins from larvae, pupae, and 15
tissues fromadultmosquitoes and subjected them tomultiple frac-
tionation strategies (Fig. 2C). The peptide fractions were analyzed
on Fourier transform mass spectrometers, and both precursor and
fragment ions were measured in the Orbitrap in high resolution
mode. In all, analysis of 725 fractions by LC-MS/MS generated
more than 5 million tandem mass spectra that were searched
against predicted proteins from the AsteI2 assembly. About 2.4
million peptide spectrum matches were identified with a median
mass error of 350 parts per billion (Fig. 2D), corresponding to
92,628 peptides. False discovery rate (FDR) for such large data
sets does not scale as expected, and therefore protein level FDR
could be erroneous in such studies (Wilhelm et al. 2014; Savitski
et al. 2015). Therefore, in our study, we used 1% peptide level
FDR for each tissue separately and rejected the peptides that did
not qualify for this threshold. In addition, we confirmed MS/MS
spectra for a subset of peptides by analyzing synthetic peptides
as discussed in greater detail below (Validation of MS/MS spectra
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for novel peptides). A similar approach
was followed in two recent studies pub-
lished on the human proteome, which
involved such large data sets (Kim et al.
2014; Wilhelm et al. 2014).

The high-quality proteomic data al-
lowed us to identify 8303 genes, ofwhich
8041 were already annotated, thereby
providing experimental evidence for
predicted annotations. To compare the
annotations of AsteI2 and AsteS1 assem-
blies, we searched the proteomic data
against 13,251 predicted proteins from
the SDA-500 strain. Both peptide match-
es to annotated proteins (Fig. 2E) as well
as genome search-specific peptides for
each assembly (Fig. 2F) revealed that al-
though the large majority of peptide
matches were shared, there were several
that were unique to each assembly
(Supplemental Tables S1, S2).

Improving genome assembly through

an integrative analysis pipeline

The AsteI2 and AsteS1 genome assem-
blies are organized into 23,371 and
1100 discrete scaffolds, respectively. The
high number of scaffolds in AsteI2
reflects a decision to include short se-
quence fragments that contain repetitive
sequences (Jiang et al. 2014). Annotation
of protein-coding regions can be missed
by computational pipelines owing to
gaps in genomic regions. BAC-end se-
quences and PacBio reads were used for
better scaffolding and gap filling in the
AsteI2 genome assembly (Jiang et al.
2014). After quality filtering, only 46
such scaffold links were retained, which
connected 22 scaffolds. In contrast, we
used our RNA-seq data to identify and
improve incomplete genome assemblies.
We mapped and assembled our RNA-seq
data against the AsteI2 and AsteS1 ge-
nome assemblies. Transcripts uniquely
assembled against AsteS1 were mapped
against the AsteI2 using BLAST to identi-
fy incomplete genome assemblies in
AsteI2 and vice versa. Using another ap-
proach, we also aligned the RNA-seq
data to the reference genome with a
maximum of four mismatches using
TopHat2 (Kim et al. 2013). TopHat-
Fusion (Kim and Salzberg 2011), an
attribute of TopHat2, was implemented
with the “fusion-search” option to
identify transcripts spanning multiple
scaffolds in each genome assembly
(Supplemental Fig. S1). Thus, transcripts
were obtained based on the mapping of
reads across multiple scaffolds, which

Figure 1. Overview of pipeline used for correction of genome annotation and genome assembly using
transcriptomic and proteomic data. MS/MS spectra, which did not assign to the known protein data-
base, were further searched against six-frame translated genome, three-frame translated transcripts,
and Anopheles gambiae protein database. Further analysis of these peptides resulted in identification of
novel protein-coding genes and revised gene annotations, which were compared against 15 other
Anopheline species.

Accurate assembly and annotation of genomes
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permitted sequential alignment of these scaffolds and allowed us
to insert short scaffolds within genomic gaps.

In all, we identified 1084 transcripts that spanned across 1046
discrete scaffolds in the Indian strain (Supplemental Table S3). Of
all scaffolds, we observed an unusually high frequency of gaps in

scaffold00004 in the AsteI2 assembly and were able to introduce
44 short scaffolds in 28 genomic gaps using transcript data.
Figure 2G illustrates one such example in whichwe used transcript
evidence for inserting five genomic regions into gaps contained
within scaffold00004. Altogether, such events led to the revision

Figure 2. Schematic representation of the workflow and summary of proteomic data. (A) Adult tissues and developmental stages of the Indian strain of
An. stephensi that were dissected and processed for transcriptomic or proteomic analysis. (B) Revised annotation of An. stephensi genome based on RNA-seq
evidence. The numbers represent the junctional reads identified in each tissue, and the two transcript models shown are splice variants identified based on
RNA-seq data. (C) Broad overview ofmass spectrometry–based proteomic analysis of multiple tissues. (D) Medianmass error of the peptide spectral match-
es identified in the study. (E) Total number of peptides identified against AsteI2 and AsteS1 assembly. (F) Total number of genome search-specific peptides
identified against the two assemblies. (G) Insertion of five small scaffolds in genome gap regions of scaffold00004.
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of 794 known annotations in AsteI2, of which 54 were also sup-
ported by peptide evidence. In addition, seven novel protein-cod-
ing regions were identified that were previously missed because of
incomplete genome assembly. On the other hand, only 22 such
scaffolds could be linked using BAC-end sequences (Jiang et al.
2014). The additional improvements of scaffold assembly and
gap closing demonstrated in our study provide ameasure of advan-
tage of using RNA-seq data in addition to the DNA-based scaffold-
ing. Similar analysis of AsteS1 led to identification of 150
transcripts spanning across 166 discrete scaffolds. Supplemental
Figure S2 illustrates how insertion of scaffold KB665166 in a gap
within the scaffold KB664481 revised the annotation of the
ASTE007054 gene.

Identification of unannotated mitochondrial genes

To identify mitochondrial genes, we aligned the RNA-seq data
against the An. stephensi mitochondrial genome. We obtained

evidence of transcription for all 13 protein-coding mitochondri-
al genes in An. stephensi (Fig. 3A; Supplemental Table S4.1).
Surprisingly, we observed that the coding regions for three mi-
tochondrial genes in AsteI2 were interrupted, although they
were correctly annotated as single exon genes in the genome
of a related Anopheline genome, Anopheles gambiae. Upon exam-
ination, we observed that the RNA-seq data provided definitive
evidence that some nucleotides were missed in the correspond-
ing genomic loci, most likely owing to sequencing errors. After
accounting for these nucleotides, a continuous coding region
for all the three genes was easily established (Fig. 3B;
Supplemental Table S4.2). In fact, in a previous study, tran-
scripts for these 13 genes have already been predicted in An.
stephensi based on alignment of RNA-seq from An. stephensi
data against the mitochondrial genome of An. gambiae
(Hittinger et al. 2010). In order to detect proteins encoded
by the mitochondrial genes, we also searched MS/MS data
against three-frame translated transcripts and six-frame

Figure 3. Reannotation of the An. stephensi genome based on transcriptomic and proteomic evidence. (A) Alignment of RNA-seq data against the 15.4-
kb-long mitochondrial genome reveals transcript evidence (colored arrows) for 13 mitochondrial genes, of which seven were also identified at the protein
level (red lines). (B) Insertion of a nucleotide base in mitochondrial genome based on RNA-seq evidence. (C) Identification of a novel gene in the AsteI2 and
AsteS1 assemblies. (D) Alternate protein start site based on the presence of an upstream N-terminally acetylated peptide.
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translated mitochondrial genome and obtained peptide level ev-
idence for seven protein-coding mitochondrial genes.

Improving the accuracy of predictions from genome

annotation

To identify genes thatmight have escaped prediction by computa-
tional pipelines, we searched unmatchedmass spectra against cus-
tom databases containing a six-frame translation of the genome
and a three-frame translation of the transcriptome from the
Indian strain of An. stephensi (Fig. 1). In addition, we searched
MS/MS data against the protein database ofAn. gambiae to identify
peptides for which the corresponding genomic region might be
missing in An. stephensi. Using these databases, we identified
1429 potentially novel peptides through searches against translat-
ed transcripts of An. stephensi, 1434 novel peptides through An.
gambiae protein database and 5082 novel peptides through trans-
lated genome of An. stephensi. The mean Sequest andMascot score
for known peptides (peptides corresponding to annotated pro-
teins) were 3.5 and 55.3, respectively. On the other hand, the
mean Sequest and Mascot score for novel peptides (identified
through the proteogenomic searches) were 3.7 and 57.1, respec-
tively (Supplemental Information Fig. A). We manually evaluated
mass spectra of these peptides and investigated them further for
corresponding transcripts or orthologous sequences fromAn. gam-
biae. In 12 cases, orthologous proteins in An. gambiae were identi-
fied by multiple peptides, but the corresponding genomic regions
were missing in the AsteI2 assembly. By mapping these ortholo-
gous protein sequences against the genomic data itself, we were
able to identify the missing genomic regions corresponding to
these peptides.

In all, the novel peptides identified above resulted in the iden-
tification of 365 protein-coding genes, which were missed in both
genome assemblies (Supplemental Table S5.1). Evolutionary con-
servation analysis of these novel genes was performed across
Anopheline species, using OrthoDB (Kriventseva et al. 2015).
The level of conservation was similar for both the known and
novel protein coding regions of the genome (Supplemental
Information Fig. B). Figure 3C shows identification of one such
novel protein-coding gene, which showed the presence of
dUTPase domain. Although themajority of the novel protein-cod-
ing regionswere expressed inmultiple tissues, a subset of themwas
tissue-restricted, e.g., 62 unannotated regions were exclusively ex-
pressed in testes. Similarly, of the four novel genes identified
uniquely in chemosensory appendages, twowere putative odorant
receptors. Identification of missed features in current genome an-
notations also led to identification of 917 gene correction events in
An. stephensi involving 151 examples of novel exons, 231 exon ex-
tensions, 297 protein extensions, 192 alternate protein start sites
(including 77 cases confirmed by acetylated peptides and 115 cases
of N-terminal protein extension identified by nonacetylated pep-
tides), 76 events of joining of genes, 28 events of joining of exons,
and 19 cases of translation of a reading frame that was different
from the annotated frame (Supplemental Tables S5.2–S5.7). In
most of these cases, novel peptides resulted in revision of existing
annotations of both strains (Supplemental Fig. S3A). In 76 cases,
our analysis led to merging of two adjacent independent gene
models into a single gene (Supplemental Table S5.6). For example,
we identified a junctional peptide, which suggested that the genes
annotated as ASTEI00796 and ASTEI00797 in AsteI2 were in fact
derived from a single gene. This single gene model was also sup-
ported by transcript evidence (Supplemental Fig. S3B). In contrast,

Supplemental Figure S3C illustrates a case in which our
data indicate that an existing gene annotation in both strains
should be altered to indicate the existence of two separate genes
(Supplemental Table S5.7). These two genes exhibit differential ex-
pression at the transcript level, and one of them was identified on
the basis of an N-terminally acetylated peptide, again confirming
that the second transcript indeed encoded a different protein
(Supplemental Table S5.8). In some cases, peptides mapping to
known protein-coding regions provided evidence for alternate
frame of translation. In one such example, we identified multiple
peptides that mapped to a second exon of ASTEI05717 gene but in
a different frame of translation. This revised frame of translation
suggested the presence of chaperonin subunit 10 domain in the
gene (Supplemental Fig. S3D).

As most mature proteins are known to be acetylated in their
N termini, N-terminally acetylated peptides discovered by mass
spectrometry can assist in precise identification of protein start
sites (Kim et al. 2014). Using this strategy, we confirmed transla-
tional start sites of 1507 proteins and found 77 cases of alternate
start sites. One such example where an N-terminally acetylated
peptide indicated an upstream start site (ASTEI00264) is shown
in Figure 3D. In four cases, N-terminally acetylated peptides map-
ping to a downstream region of a gene indicated splitting of the
gene into two independent genes with independent translational
start sites. In each case, the peptides mapped to existing down-
stream exons in an alternate frame of translation, suggesting a
novel protein sequence for the split gene (Supplemental Fig.
S3C). This was further supported by RNA-seq data, which showed
differential expression for the two independent genes. In the
absence of such complementary experimental data sets and
integrative analysis, two distinct genes can be misannotated as a
single gene by gene prediction algorithms. Similar analysis with
previous genome assemblies and protein databases of An. stephensi
in VectorBase, i.e., AsteI1, resulted in identification of more
than 320 novel gene models. We performed RT-PCR and se-
quenced the amplicons for 50 such novel events (48 novel
genes and two gene model corrections). The cDNA sequences
were submitted to dbEST (http://www.ncbi.nlm.nih.gov/nucest?
LinkName=biosample_nucest&from_uid=1837904). Forty-nine of
these 50 novel events were incorporated in the revised assembly,
AsteI2 (Jiang et al. 2014).

Revising genome assemblies and annotations across

15 other Anopheles species

We took the unannotated/novel protein-coding regions from
AsteI2 and mapped them against 15 other Anopheline genomes us-
ing BLASTN to check whether the novel genes identified in An. ste-
phensiwere annotated in otherAnopheline genomes or weremissed
during their annotation (Supplemental Table S6). If the corre-
sponding genomic sequence was present, we looked for the pres-
ence of any annotated gene model within the region. In the
absence of any annotated gene, we proposed a novel protein-cod-
ing region and designated it as a “missed genome annotation.” In
other cases, we proposed revision of an existing gene model and
termed it a “revised genome annotation.” In the large majority
of cases, these claims were supported by transcript evidence from
the respective species. Absence of all or part of the corresponding
genomic region could possibly be due to inter-species differences
or incomplete genome sequence. We referred to such events as a
“genome gap region.” If the novel transcripts identified in An. ste-
phensi spanned ends of two scaffolds in a given species, it was
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considered a possible genome scaffold rearrangement event.
Figure 4A represents a heat map of such events across 16
Anopheline genomes. Figure 4B represents one such example in
which a novel gene identified in An. stephensi Indian strain was
mapped against the other Anopheline genomes and either led to
the identification of a novel gene, revision of an existing gene,
or joining of adjacent genes in respective genome assemblies. In
the case of An. maculatus, the annotation of this gene model was
missed because the corresponding genomic region spanned five
independent short scaffolds (Supplemental Fig. S4A). In all, using
this strategy, we identified 102 examples inAn.maculatus inwhich
genes could not be predicted because of incomplete assembly of
scaffolds in those regions of the genome. These observations are
in agreement with the fact that the genome of An. maculatus is
comprised of scaffolds that are greater in number and smaller in
size than scaffolds from other Anopheline genomes. In most cases,
the missed genome annotations identified across the 15 genomes
were supported by RNA-seq evidence from the same species
(Supplemental Fig. S4B). Overall, we revised annotations of more
than 5800 genomic loci across the 16 Anopheline genomes.

Intersection of genome, transcriptome, and proteome data

for annotation of noncoding RNAs

Identification of noncoding RNAs is based on computational pre-
dictions. Recently, some annotated “noncoding RNAs” in the hu-
man genome have been shown to be translated (Bánfai et al. 2012;
Chocu et al. 2014; Kim et al. 2014; Wilhelm et al. 2014). To deter-
mine the protein-coding potential of intergenic transcripts in An.
stephensi, we first analyzed themwith the protein coding potential
assessment tool (CPAT) (Wang et al. 2013). Of a total of 3423 tran-
scripts, corresponding to 3375 intergenic loci obtained from four
tissues, 3110 transcripts (corresponding to 3088 intergenic loci)
were predicted to be noncoding RNAs, which included 2436 single
exon and 674 multiexon transcripts (Supplemental Table S7). The
medianORF length of predicted noncoding RNAwas comparative-
ly smaller, i.e., 153 base pairs. On the other hand, the median ORF
length of protein coding annotated genes was 1240 base pairs
(Supplemental Information Fig. C). However, certain genes can
be misannotated as noncoding RNA and in reality get translated
in spite of having a short ORF. We used our in-depth proteomic

Figure 4. Comparison of annotations across 16 Anopheline genomes. (A) A schematic representation comparing 100 novel representative annotations
identified in An. stephensiwith 15 other Anopheline species. The 100 novel events identified in An. stephensiwere selected at random andmapped across the
15 Anopheline genomes to check for orthologous sequences in these species. (B) Comparison of one such gene (annotation shown in blue in An. stephensi)
provided evidence for revised genome annotation in An. quadriannulatus, An. Arabiensis, and An. albimanus.
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data to further evaluate the coding potential of these predicted
noncoding RNAs. In all, 1% (23 transcripts) of all predicted single
exon noncoding RNAs and 12% of all predicted multiexon non-
coding RNAs (77 transcripts belonging to 64 gene loci) were deter-
mined to be protein coding based on peptide evidence. These
transcripts would have been incorrectly annotated as noncoding
RNAs in the absence of proteomic data. Figure 5A represents amul-
tiexon transcript, which was predicted as noncoding RNA but had
a number of peptide hits. Further domain analysis of the translated
protein showed presence of ATPase domain, confirming it to be a
bona fide protein that would otherwise have been misannotated.
Most of such computationally predicted noncoding RNAs had
translational evidence from multiple tissues, whereas a subset
was expressed at the protein level only in specific tissues (Fig.
5B). The sequence coverage and spectral counts for peptides en-
coded by tissue-restricted and predicted noncoding RNAs were

lower than those that were ubiquitously expressed. Ubiquitously
expressed proteins, in general, were also more abundant. When
we carried out a similar analysis on known proteins, a similar trend
was observed between the tissue-restricted and ubiquitously ex-
pressed known proteins (Supplemental Information Fig. D).

Validation of MS/MS spectra for novel peptides

The novel peptides reported in this study were based on matching
of tandem mass spectra to translated transcriptome, genome, or
orthologous proteins. We manually evaluated the MS/MS spectral
quality of the novel peptides to remove false discoveries. In addi-
tion, to experimentally validate their fragmentation patterns, we
synthesized 175 novel peptides selected at random across the vari-
ous proteogenomic categories. These peptides were then analyzed
using the same instrument parameters on the mass spectrometer

that was used for proteomic analysis of
the tissues from An. stephensi. MS/MS frag-
mentation patterns of these synthetic pep-
tides were then manually compared with
the MS/MS spectra generated from the
proteomic analysis of the tissues (see
“Experimentally validated MS/MS spectra”
in Supplemental Information). Notably, all
175 peptide identifications were validated
upon comparison of the MS/MS fragmenta-
tion patterns to that of synthetic peptides.
A similar approach has been undertaken in
recent studies describing identification of
novel peptides (Kim et al. 2014; Wilhelm
et al. 2014; Yagoub et al. 2015).

Discussion

We describe a systematic approach for an in-
tegrated transcriptomic and proteomic data–
based reanalysis of genome assembly and
annotation using An. stephensi genome as a
proof of principle. We demonstrated both
the need and the utility for simultaneous
large-scale transcriptomic and proteomic
analysis as an integral part of whole-genome
sequencing projects by using recently gener-
ated whole-genome sequences of 16
Anopheline species. To the best of our knowl-
edge, this is the first such effort in which
transcriptomic and proteomic data were
used to identify and correct a large number
of incomplete genome assemblies in an in-
sect. A recent study on proteomics informed
by transcriptomics (PIT) demonstrated inte-
gration of transcriptomic and proteomic
data to identify known and novel ORFs in
the transcripts (Fan et al. 2015). The tool en-
ables searching of the proteomic data
against a known protein database and trans-
lated transcripts. However, the study does
not represent comprehensive annotation of
the genome by using in-depth transcrip-
tomic and proteomic data and is limited to
visualization of these experimental data
against the genome using a genome

Figure 5. Translational evidence for predicted noncoding RNAs. (A) Multiple peptides from various
tissues were identified that corresponded to a computationally predicted noncoding RNA. (B) Relative
expression of proteins encoded by computationally predicted noncoding RNAs that were detected
across tissues.
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browser. Also, it does not demonstrate the utility of RNA-seq data
in complementing genome assembly process. Peppy, a tool de-
signed for proteogenomic analysis, generates a peptide database
from a genome and matches these in silico generated peptides
against MS/MS spectra provided as input (Risk et al. 2013). In
this study, three novel peptides were identified by searching
against the human genome using proteomic data, but there was
no integration of RNA-seq data. Another proteogenomic integra-
tion tool, QUILTS (Quantitative Integrated Library of Translated
SNPs/Splicing), allows protein variant discovery using whole-ge-
nome, transcriptome, and proteomic data sets (Ruggles et al.
2016). The utility of this tool was demonstrated by the identifica-
tion of tumor-specific novel variant peptides and junctional pep-
tides. However, it lacks identification of diverse examples of
genome assembly and genome annotation events, which we
have demonstrated in our study. For example, identification of
novel exons, alternate start sites, exon extension, joining of genes,
and translational evidence for noncoding RNAs have not been
studied with this tool. None of the aforementioned studies
describe annotation of any genome by using in-depth transcrip-
tomic and proteomic data or demonstrate the utility of RNA-seq
data in complementing the genome assembly process. Further,
these tools are primarily tested on the well-annotated human ge-
nome, and hence, they do not define the limitations of existing ge-
nome annotation pipelines for newly sequenced genomes of
eukaryotic organisms.

As demonstrated by our methods, the use of transcriptomic
and proteomic data in the genome assembly and annotation could
complement the process of genome annotation. The overall cost of
our extensive proteomic analysis presented here was almost six
times higher than transcriptomic analysis alone. However, consid-
ering the time and cost involved in the annotation of a newly
sequenced genome, these costs are minimal. Although transcrip-
tomic data are more economical than proteomic analysis, a large
subset of additional information provided by proteomic data could
not have been inferred from transcript data alone. For instance, the
protein-coding potential of the computationally designated non-
coding RNAs could not be confirmed without proteomics data.
The noncoding status of this subset of genes would further reduce
the likelihood of them being considered for any further studies fo-
cusing on the protein-based functions. In addition, translational
evidence for intergenic transcripts with predicted protein-coding
potential indicated that these were likely novel protein-coding
genes. Proteomic data acquired frommultiple tissues and develop-
mental stages provided translational evidence for 365 novel genes
identified in this study, of which 45 were identified by proteomic
data alone. Supplemental Table S5.11 summarizes the number of
novel events confirmed by RNA-seq and proteomic data.
Similarly, identification of alternate translational start sites and
events of an alternate frame of translation was aided by proteomic
data that could not have been inferred from RNA-seq data.

We believe that demonstration of the utility of proteoge-
nomic approaches in the correction of incomplete genome assem-
blies in An. stephensi by this study will provide a platform for
genomic and bioinformatics researchers to develop newer tools
to carry out similar analysis across recently annotated eukaryotic
genomes. The pipeline adopted in this study for mapping tran-
scriptomic and proteomic data onto genome sequences is a cost-ef-
fective strategy that can provide a framework for developing more
automated workflows, including manual curation for genome an-
notation. Accurate genome annotation along with proteomic and
transcriptomic landscape will provide a better interpretation of a

sequenced genome and aid in further investigation related to the
biology of the sequenced organisms.

Methods

Mosquito rearing and sample collection

Anopheles stephensi mosquitoes were grown in the insectary of the
National Institute of Malaria Research, Field Station, Goa, under
ambient conditions (humidity 70 ± 5%, temperature 27 ± 2°C,
and a photoperiod:scotoperiod of 12:12 h). Adult mosquitoes
were grown on 10% glucose soaked in a cotton pad. Glucose fed,
2–4 d emerged adult An. stephensi females were dissected to obtain
antennae, proboscis, maxillary palps, brain, head, salivary glands,
thorax, midgut, Malpighian tubules, fat body, and ovaries.
Hemolymph was collected by applying a slight pressure on the
thorax of cold anesthetized female mosquitoes after cutting the
proboscis. Male adult mosquitoes were dissected for midgut and
male reproductive organs. All the organs were dissected in 0.65%
normal saline under wild stereomicroscope. In addition to dissect-
ed organs, third instar larvae and pupae were also collected and
preserved at −80°C until use. The tissues dissected for RNA-seq
analysis were stored in RNAlater until RNA extraction.

RNA isolation and RNA-seq analysis

Four tissues (midgut,Malpighian tubule, ovary, and fat body) of fe-
male An. stephensi mosquitoes, grown in the insectary of National
Institute of Malaria Research, Field Station, Goa, were homoge-
nized using a MINILYS benchtop homogenizer and Precelly Lysis
Kit (PEQLAB). Total RNA was extracted using miRNeasy kit
(Qiagen) according to the manufacturer’s protocol and RNA with
a RIN value ranging between 9 and 10 was used for library prepa-
ration. The RNA-seq librarieswere constructed for each tissue using
the Illumina TruSeq RNA Sample Preparation Kit v3 as described
previously with some minor modification (for details, see Supple-
mental Methods; Kelkar et al. 2014). The clusters generated from
the final library were sequenced on an Illumina HiScanSQ system
to obtain a total of about 223million paired-end reads of 101 bp in
length. Reads from the two technical replicates (from two different
lanes) of the same RNA-seq library were combined together to rep-
resent sequencing readouts for samples from each tissue. The reads
were aligned using the Bowtie 2 (Version 2.1.0) (Langmead and
Salzberg 2012) against the genome of Anopheles stephensi (Indian
strain), downloaded from “VectorBase” (http://www.vectorbase.
org/). The aligned reads were assembled using the TopHat
(Version 2.0.10) (Kim et al. 2013) and Cufflinks (Version 2.1.1)
(Trapnell et al. 2010; Roberts et al. 2011) pipeline. Details regard-
ing the data analysis pipeline and the parameters used are provided
in the Supplemental Methods.

Protein-coding potential analysis of transcripts

Protein-coding potential of intergenic transcripts were analyzed
using a coding potential assessment tool based on the probability
score (Wang et al. 2013). Default settings with the fly model as ref-
erence and coding potential cutoff of >0.39 was used. Transcripts
with a coding potential score less than 0.39 were considered to
be noncoding RNA.

Proteomic analysis

Various mosquito organs (salivary glands, brain, midgut, fat body,
Malpighian tubules, ovary, testes, andmale accessory glands) were
lysed by homogenization followed by sonication in lysis buffer.
The extracted proteins were processed using the Filter Aided
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Sample Preparation (FASP) method of sample preparation as de-
scribed earlier for LC-MS/MS analysis (Kim et al. 2014). In total,
we performed 725 LC-MS/MS runs for samples fractionated using
basic pH Reversed Phase Liquid Chromatography (bRPLC), SDS-
PAGE, offgel, and strong cation exchange (SCX) methods on the
latest hybrid Orbitrap mass spectrometers (for details, see
Supplemental Methods).

Mass spectrometry analysis

In this study, we performed a total of 725 LC-MS/MS analyses, of
which 120 bRPLC fractions (from salivary glands, midgut,
Malpighian tubules, fat body, and testes) were performed on a
LTQ-Orbitrap Elite (Thermo Scientific) mass spectrometer inter-
faced with Easy-nanoLC II nano flow liquid chromatography sys-
tem (Thermo Scientific), 12 fractions of brain bRPLC were
analyzed on a Q-Exactive hybrid Orbitrap, and the remaining
593 fractions (including bRPLC, in-gel, and offgel fractions) were
analyzed on a LTQ-Orbitrap Velos mass spectrometer interfaced
with Proxeon Easy nLC system (Thermo Scientific). Further details
regarding data acquisition settings are provided in the Supplemen-
tal Methods.

Database searches

The raw data obtained were processed using a unique workflow
consisting of multiple search nodes on Proteome Discoverer
(Version 1.4.1.14) software (Thermo Fisher Scientific). The data
were searched against An. stephensi protein databases (Astel2.1 –

Indian strain and AsteS1.0 – SDA500 strain) fromVectorBase using
Sequest and Mascot search algorithms. The searches were per-
formed sequentially against An. stephensi protein database, three-
frame translated RNA-seq-based transcript database, An. gambiae
protein database, and six-frame translated An. stephensi genome
databases, respectively (as shown in Fig. 1). The search parameters
are described in detail in the Supplemental Methods. A FDR cutoff
of 1% at the peptide level was used for identification. We carried
out combined Mascot and Sequest search for each tissue. We re-
tained all of the peptide assignments that were identified by
Mascot and Sequest along with the corresponding scores for
each PSM in separate columns. In all, 90% of PSMs were identified
by both search engines, ∼5% by Sequest alone and 5% by Mascot
alone. However, if a given scan ID or spectrumwas assigned to dif-
ferent peptides by Mascot and Sequest, they were discarded to
maintain a stringency. We achieved this using an in-house pro-
gram, which identified the individual spectral assignment based
on the combination of scan ID, fraction number, and file names.
Quantitation of the proteins identified across the tissues was
performed by counting the total number of PSMs for all the pep-
tides corresponding to a protein (for details, see Supplemental
Methods).

Proteogenomic analysis of An. stephensi

To enable identification of novel protein-coding regions in the An.
stephensi genome, we searched proteomic data against three-frame
translated RNA-seq transcripts, six-frame translated An. stephensi
genome, and An. gambiae protein databases using a unique search
workflow on Proteome Discoverer (Version 1.4.1.14) software
(Thermo Fisher Scientific). These peptidesweremanually analyzed
using the Proteogenomics workflow (as described in Fig. 1) to iden-
tify novel genes missed in the annotation pipeline along with
those missed due to gaps in the genome assembly. The peptides
identified in these searches also provided evidence for novel cod-
ing regions contributing to the revision of annotated gene models
due to the inherent limitations of the existing annotation pipeline

or due to the incomplete genome assembly, as described previous-
ly (Kelkar et al. 2014; Kim et al. 2014; Supplemental Methods).
Details of the identification and revision of genome sequencing
and assembly errors in An. stephensi are provided in the Supple-
mental Methods.

Validation of novel identifications through an LC-MS/MS analysis

of synthetic peptides

A total of 175 identified peptideswere selected at random fromvar-
ious categories of proteogenomics analysis and synthesized as four
pools of synthetic peptides (JPT Peptide Technologies). Two pools
contained 50 synthetic peptides each, which were derived from
identifications based on LTQ-Orbitrap Velos, and the other two
pools contained 35 and 40 peptides, respectively, thatwere derived
from identifications based on the LTQ-Orbitrap Elite mass spec-
trometer. Each pool was dried and diluted using 0.1% formic
acid. Peptides from each poolwere subjected to LC-MS/MS analysis
on the LTQ-Orbitrap Velos and LTQ-Orbitrap Elite mass spectrom-
eters. Fragmentation patterns of these 175 synthetic peptides were
thenmanually compared and validated with that of peptides iden-
tified in proteogenomic analysis (Supplemental Information).

Genome annotation and genome assembly improvements across

16 Anopheline species

Novel events thus identified in An. stephensiwere cross-checked in
the other 16 Anopheline species (An. stephensi SDA500, An. arabien-
sis, An. quadriannulatus, An. merus, An. melas, An. christyi, An. epiro-
ticus,An.maculatus (sp. B),An. funestus,An.minimus s.s. (sp. A),An.
culicifacies A, An. farauti, An. dirus s.s. (sp. A), An. atroparvus, An.
sinensis, and An. albimanus), recently sequenced by Broad
Institute and available on VectorBase (as described in Fig. 1).

RT-PCR analysis

Total RNA was isolated from midgut, ovary, salivary gland, testes,
and whole female mosquitoes. RT-PCR validation was carried out
for 48 novel genes and two gene correction events. Primers were
designed in the exonic regions of the alternate gene models, and
specific amplicons were purified and sequenced. Primer sequences
and associated details are provided in Supplemental Table S5.10.

Data access

The mass spectrometry–based proteomics data from this study
have been submitted to the ProteomeXchange Consortium (http
://proteomecentral.proteomexchange.org) via the PRIDE partner
repository under the data set identifier PXD001128. The RNA-
seq-based transcriptomic data from this study have been submit-
ted to the NCBI Sequence Read Archive (SRA; http://www.ncbi.
nlm.nih.gov/sra) and the Transcriptome Shotgun Assembly
(TSA; https://www.ncbi.nlm.nih.gov/genbank/tsa/) database un-
der accession numbers SRP043489 and GBVY00000000.1, respec-
tively. cDNA sequences of 50 novel genes identified against the
previous An. stephensi genome assembly annotations (ASTEI1)
from VectorBase have been submitted to dbEST (https://www.
ncbi.nlm.nih.gov/nucest) under the GenBank accession numbers
JZ152704.1–JZ152780.1.
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