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Chapter 1 General Introduction 

 

Tropical cyclones (TCs) are one of the most powerful and destructive phenomenon of 

the earth’s atmosphere. TCs develop over the warm oceans (more specifically above 

surface temperatures in excess of 26°C) and are characterized by a low-pressure area 

surrounded by strong rotating winds and heavy rainfall. Figure 1.1 displays a satellite 

derived image of TC Phailin over the Bay of Bengal (BoB) on the 11th April 2013,  

 

Figure 1.1: Satellite (MODIS/NASA) derived image of cyclone Phailin in the Bay of 
Bengal on 11 April 2013. 
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while the major features of a typical mature tropical cyclone are schematized in Figure 

1.2. The TC appears as a dense mass of cloudy spirals spreading over a 200-1000 km 

area and rolling up around a central point referred as the eye of the cyclone (Figure 1.1 

and 1.2). These cloudy spirals, characterized by ascending airflow, have a typical width 

of 5 to 40 km and alternate with clearer sky spirals where the airflow is subsident. The 

wind and cloud patterns have counter-clockwise (resp. clockwise) rotation in northern 

(resp. southern) hemisphere. The central point of the system, i.e. the TC eye, is a calm 

and cloud-free region with warm subsiding air (Figure 1.2). The main region of deep 

convection, of about 15 km height, occurs in the area surrounding the eye and is called 

the eyewall (Figure 1.2). This is the region where strongest winds and heaviest rainfall 

occur. Usually, the radius of the eye varies between 20 km to 50 km and the width of 

eyewall is about 10 to 50 km.  

 

 

Figure 1.2: Schematic vertical cross-section of a tropical cyclone showing its main 
features  (Gray and Emanuel, 2010).  
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1.1 Main characteristics of tropical cyclones (TCs) 

1.1.1 Thermodynamic properties  

 

 

Figure 1.3: Vertical cross-section of temperature anomalies for a tropical cyclone 
 (Hawkins and Imbembo, 1976).  
 
 

The latent heat released by the deep atmospheric convection acts to warm the air within 

the eyewall. This warm core extend up to the upper troposphere with maximum upper 

level temperature anomalies relative to the environment reaching up to ~10-15o C 

(Figure 1.3). This warm core reduces the density of the atmospheric column and results  
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in a very low surface pressure at the center. The pressure difference between the center 

and the surrounding regions generate intense winds blowing towards the TC eye and 

rolling up cyclonically around it under the effect of the Coriolis force.  

 

1.1.2. Wind structure 

General description. The flow in the core of a TC is approximately axisymmetric. The 

tangential wind speed increases rapidly away from the storm center, reaching a 

maximum value (~20 to 85 m.s-1) in the eyewall (distance knows as radius of maximum 

winds, ranging from 50 to 100km), and then decreases gradually away from the center 

of the storm (Figure 1.4). This tangential wind increases is maximum around 500m 

height. Wind spirals inwards cyclonically at the lower levels, rises in the deep 

convection center, and outflows anti-cyclonically in the upper troposphere (Figure 1.2). 

The convergence at the lower level and divergence at the upper level results in rising 

motion at the inner-core and descending motion away from the core region. The 

tangential winds rotating around the center and the circulation in radial-vertical 

direction are referred as primary and secondary circulations, respectively. The rotational 

primary circulation is the dominant motion of a TC and is much stronger than the 

overturning secondary circulation. TCs are generally classified based on the maximum 

wind speeds associated with their primary circulation. The primary circulation is 

approximated by gradient wind equation, which results from the balance of centripetal, 

Coriolis and pressure gradient forces. The secondary circulation is driven by the 

conversion of heat energy (released as latent heat) to mechanical energy and is 

approximated by the Carnot heat engine. 
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Parametric representation of wind fields. There are various methods that allow 

parameterizing the TC surface wind field as a function of its main characteristics. These 

parametric models reconstruct the TC wind radial structure from a few parameters. 

These reconstructions are useful not only for TC operational forecasting but also for 

forcing various ocean models such as wave models, storm surge models and general 

circulation models, as we will see in the next chapter of this thesis. Holland (1980) used 

a three-parameter model to approximate the radial wind structure, including the 

maximum wind, the radius of maximum winds, and a parameter to control the shape of 

the wind profile. Willougby et al. (2004) pointed out the systematic errors associated 

with Holland method relative to available observations, including an overestimation of 

the width of maximum winds, an underestimation of the winds close to the eye and too 

rapid decrease of the winds on either side of radius of maximum winds (Figure 1.4).  

Willoughby et al. (2006) proposed an alternate radially continuous wind profile based 

on a statistical fit to airborne observations of 500 TCs. This double exponential wind 

profile fits the observed wind profiles (Figure 1.4) better and allows overcoming the 

shortcomings of Holland method at the expense of a larger number of parameters: 

 

 

Here Vin is the tangential wind component within the eye, Vout is the tangential wind 

component outside the eye and Vwall is the transitional component over the region that 

lies between the two i.e. r ≤ R1 and r ≥ R2. Vmax and rm denote maximum wind and its 

radius. The X1, X2 and A parameters define the e-folding lengths and proportion of the 

two exponential functions. w is the parameter that allows a smooth connection between 
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the winds within and outside the eye.  This parametric method for reconstructing TCs 

wind profile will be used in chapter 2.  

 

Figure 1.4: A parametric wind profile of a tropical cyclone based on Willoughby et al. 
(2006; dark curve) and Holland et al. (1980; red curve) compared to observed TCs 
winds (shading) (Willoughby et al., 2006).  
 

 

1.1.3 Life cycle 

The averaged lifetime of a TC is about one week. Its development stages, from genesis 

to decay, are described below and illustrated by Figure 1.5 for the Orissa super cyclone 

in October 1999.  

 

Genesis. TC genesis occurs in areas of pre-existing synoptic-scale disturbances or cloud 

clusters with maximum surface winds reaching 15 m/s when the system has the 
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potential to intensify by utilizing the heat acquired at the surface. The TC genesis is 

defined as the transformation of this disorganised disturbance into an organised 

convection with a cyclonic wind circulation. This TC initial stage is known as tropical 

disturbance (winds >15 m.s-1). Only a very small percentage of such disturbances 

develop into TCs. There are several processes that can initiate the formation of a self-

sustained warm core vortex, including westward-propagating equatorial Rossby and 

mixed Rossby gravity waves, interaction of easterly waves with tropical disturbances 

(in the Atlantic ocean), merging of several weaker convective systems with cyclonic 

vorticities. The monsoon trough or inter-tropical convergence zones (ITCZ) are also 

identified as cyclogenesis regions, as they allow intense convection. These systems need 

favourable atmospheric conditions to intensify further.  

!

 Intensification. Given favourable environmental conditions, this initial tropical 

disturbance strengthens and evolves into a tropical storm. Convection becomes more 

organised and the storm intensifies. At this stage, energy gained by evaporation at the 

ocean surface caused by its own winds (> 18 m.s-1) becomes the primary driving 

mechanism of the storm intensification and favorable environmental conditions are no 

longer a necessary condition for the intensification of the cyclone. The tropical storm 

can then evolve into a TC with surface winds exceeding 33 m.s-1. The tropical surface 

pressure drops rapidly and wind starts spiralling around the centre. The cyclonic 

structure becomes more organised and symmetric, with circularly arranged clouds and a 

visible distinct eye (Figure 1.5). At this stage TC stops intensifying further, remains at 

its maximum intensity with lowest central pressure and maximum surface winds. TCs 

usually do not last long in this stage (approximately a day) and starts decaying 

thereafter. 
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Figure 1.5: Life cycle of Orissa super cyclone, October 1999 (Kalsi, Mausam, 2006).  

 

Trajectory. TCs generally move westward and poleward. The large-scale 

environmental circulation and Coriolis effect mainly control the trajectory of a TC. The 

westward movement is imparted by the tropospheric winds, which are westward in 

tropical regions. The Coriolis effect due to earth’s rotation induces a poleward drift. 

Because of the TC translation speed, TC wind speed are generally larger on the right 

side (same direction of TC winds and TC motion) as compared to the left side (opposite 

direction of TC winds and TC motion).  
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Decay. TCs start decaying when environmental conditions become unfavourable. There 

are many ways by which a TC can dissipate. If a TC hits the land, its oceanic source of 

energy disappears and the TC weakens (Figure 1.5). These TCs cause great destruction 

in the coastal areas due to heavy rains, winds and storm surges associated with them. If 

a TC moves over a region where environmental conditions are unfavorable, like a 

strong vertical wind shear (see section 1.2), it can rapidly destroy the TC circulation. 

 

1.1.4 TC Observations 

The extreme weather conditions during TCs and its relatively small size relative to the 

near-surface wind and pressure observational network pose major hurdles to build 

reliable a TCs database based on in-situ observations. Since 1970s, the satellites 

orbiting the earth have hence been used to detect and classify TCs. These satellite-based 

observations rapidly became the main source that feeds existing TC databases. The 

frequency of the orbiting satellite pass however resulted for long in a poor temporal 

resolution of the order of the day, and it was only in the late 1980s that TCs hourly 

observation became available globally thanks to geostationary satellites. Although 

radiometers such as QuikSCAT provide information on TCs surface winds, they do not 

provide a reliable measure of the most intense winds and have an observational 

frequency of the order of the day. The observations in the visible and infrared (from 

geostationary satellites) are hence preferred to determine TCs intensity. The technique 

of Dvorak (1975) is used to estimate the intensity of a cyclone from satellite images of 

its cloud structure. The errors in the estimated maximum surface winds are at least 10% 

(i.e. 5-10 m.s-1 for maximum winds of ~ 50 m.s-1). In addition to the existing microwave 

satellites and coastal radars, accurate in-situ observations about the structure and 

intensity of TCs are now available from airborne measurements derived from wind 
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sensors (GPS drop wind sensors) deployed inside the TC (Powell et al., 2003). Routine 

reconnaissance flights are however only undertaken in the Atlantic. Before the satellite 

era, TCs trajectories included in the databases were mainly based on ship observations 

at sea or in coastal areas (Vecchi and Knutson, 2008). These data, collected before the 

satellite era, are hence very fragmented since the TCs were only observed over a limited 

part of their trajectories. Many TCs before 1970s are absent from this database.  The 

variability of the TC activity at global scale can be studied from direct observational 

data over a period of ~ 40 years (1970- 2012). In this thesis, IBTrACS database 

(International Best Track Archive for Climate Stewardship) have been used that 

aggregate global TCs paths and intensities estimated every 6 hours by the various 

operational forecasts centers.  

 

 

Table 1.1: Tropical cyclone classification in different basins.   
 

 

TCs are classified differently in each basin based on their maximum sustained surface 

wind speeds or surface pressure drop at their centres. Table 1.1 lists the various TC 

classification scales. The objective of these scales was originally to provide simple and 
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representative information of potential damage to alert people living in the coastal areas. 

However, it is now widely recognized that the damage caused by a TC is not simply 

related to the maximum wind speed, but also to the size of the cyclone, its duration of 

exposure (hence the translational speed of TC), the extent of rainfall, as well as the sea 

state generated by the TC. The use of the scales listed in Table 1.1 are therefore 

questionable and call for the development of more relevant TC scales. It has for 

example been proposed to classify TCs based on the integral of the amount of energy 

lost through friction (Emanuel, 2005) or on the kinetic energy of the wind (Powell and 

Reinhold, 2007).  

 

1.1.5 Energetics 

The maximum intensity of a TC is defined in terms of maximum wind speed or 

minimum surface pressure. There are two widely discussed theories that explain the TC 

intensity and describe its energy cycle. 

 

Classical theory: Conditional instability of second kind (CISK): Prior to CISK 

theory, Miller (1958) proposed a theory to explain the minimum central pressure of a 

TC. In this theory, the vertical temperature profile of eye was estimated by using 

surface temperature and humidity and the central surface pressure drop giving the 

strength of a TC was then calculated using hydrostatic equation. Later, Charney and 

Eliassen (1964) developed the CISK theory for TC intensity, consistent with Miller 

(1958)’s one. The CISK model assumes that the initial pressure disturbance causing 

low-level convergence is required for the TC formation. The moist air rises in this low-

pressure area and develops deep cumulonimbus convection. The pressure is further 

reduced by the convective latent heat release at the upper levels, which strengthens the 
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initial instability. According to this theory, frictional convergence of the moist and 

warm air within the boundary layer causes vertical motion and release of latent heat in 

the vertical motion converted to mechanical energy drives the TC secondary circulation. 

In this theory, TC will intensify if the mechanical energy due to latent heat release 

exceeds the energy loss due to surface frictional dissipation.  

 

The Carnot cycle theory: Wind-induced surface heat exchange (WISHE). TC can 

grow even in a convectively neutral atmosphere because of air-sea coupling. Emanuel et 

al. (1994) hence proposed an alternate WISHE theory by considering the air-sea 

interaction process as the driving mechanism of TC intensification. Here, the instability 

is provided by the evaporation from the ocean surface, which increases with increasing 

wind speed and surface temperature. This theory of TC intensification has similarities 

with the Carnot cycle where the net heat gain is in balance with the work done by the 

system. Heat is provided to the TC through the wind-induced heat transfer from the 

ocean surface and removed through radiative cooling in the outflow region. Figure 1.6 

shows the idealized representation of Carnot cycle for TCs that can be explained in four 

parts.  

i. Isothermal expansion: From A to B air flows towards the low-pressure area 

approaching the eye of a TC at a nearly constant temperature. The air gains 

energy and entropy from the ocean through latent heat transfer due to 

evaporation of ocean surface water and also due to isothermal expansion. The 

rate at which heat is added to the system depends on the surface wind speed and 

temperature. 
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ii. Adiabatic expansion: As the air reaches eyewall, it starts ascending and flows 

outwards near the tropopause from point B to C (Figure 1.6). This ascent is very 

rapid and therefore nearly adiabatic. No entropy change occurs from B to C. 

iii. Isothermal compression: Air flows out at tropopause from C to D and losses 

heat/entropy isothermally due to infrared radiation to space. 

iv. Adiabatic compression: Finally adiabatic compression/warming takes place 

from point D to A and completes the Carnot cycle. 

The energy cycle is closed in this idealized theory but in reality this energy cycle is not 

completely closed because in the outflow region air interacts with the environmental 

flow. 

 

 

Figure 1.6: Carnot heat engine representation of tropical cyclone. Color fill is for 
entropy, which increases from blue to red (Emanuel, 2006).  
 

 



! 14!

 

Figure 1.7: Potential intensity for the months of September (peak of TC season in 
northern hemisphere) and February (peak of TC season in southern hemisphere). Here 
maximum winds are given in m/s averaged over 1-minute period. 
(http://wind.mit.edu/~emanuel/pcmin/climo.html)  
 
 

Potential Intensity. Using the Carnot cycle theory, Emanual (1986, 1995) estimated the 

maximum possible surface winds that a TC could attain and called it Potential intensity. 

TCs are driven by the contrast between warm tropical ocean and the cold tropopause. 

The maximum TC wind speed is given by 

   

where Ts is the sea surface temperature and T0 is the temperature near the tropopause 

(top of the TC). Ck and CD are transfer coefficients of momentum and enthalpy. k0* and 

k are the specific enthalpies of ocean surface and air near the surface. Those values are 
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estimated at the eyewall where winds are maximum. To calculate the maximum wind 

speed using this formulation, the Ck/CD ratio is generally assumed to be 1 due to lack of 

measured values. This theory relates the SST to the efficiency of energy conversion 

from ocean to the atmosphere; increased SSTs would result in stronger TCs. Large-scale 

SST plays an important role in establishing a favourable environment for TCs. High 

SSTs are associated with particular areas of low-level convergence and cyclonic 

vorticity and determine the potential intensity over large areas, as shown in Figure 1.7. 

High SSTs also favour strong latent heat fluxes at the air-sea interface through the 

Clausius-Clapeyrion relation. The maximum intensity that a TC can reach is hence an 

increasing function of SST. Most TCs never reach the potential intensity as TCs often 

make landfall or face unfavourable atmospheric and oceanic conditions before that. 

 

1.2  Influence of large-scale atmospheric environment on TCs 

1.2.1  Large-scale environmental parameters influencing the TC 

Although there is no theory describing the cyclogenesis, large-scale environmental 

conditions necessary for tropical cyclogenesis are known from empirical studies since 

several decades. Following Gray (1968), these conditions are the following:   

1. Warm ocean with temperature (> 26o C) in the upper 60 m of the ocean: SST 

plays a key role in controlling the air-sea heat exchange. Since the heat and moisture 

content of the surface air are closely related to the temperature of underlying water 

surface, warm SST is necessary for the development of mature TCs, and SSTs set the 

maximum intensity that can be reached by a TC given otherwise favourable 

atmospheric conditions (Merrill, 1988; DeMaria and Kaplan, 1994; Webster et al., 

2005; Kotal et al., 2008). The amplitude of the heat exchange, the primary energy 

source of the cyclone, is strongly associated with high winds and is particularly high in 
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a 200-km radius around the centre of the TC, latent heat fluxes reaching an amplitude of 

the order of 1000 W.m-2. The sensible heat flux is generally lower, around 100 W.m-2. 

These surface enthalpy fluxes have an essential role in intensifying and maintaining 

TCs (Emmanuel, 1999).  

2. Low vertical wind shear: Vertical wind shear between the low levels (850 mb) and 

the top of the troposphere (200 mb) is a crucial parameter affecting TCs formation, 

intensification and decay. In the presence of favourable conditions, TC induce a 

cyclonic flow, and the TC core structure remains vertically aligned in the absence of 

wind shear. The presence of wind shear distorts its shape and TC vortex becomes tilted 

in the vertical. These tilted vortex systems are not very efficient in acquiring heat and 

moisture from the ocean, which inhibits the TC development. A large wind shear also 

increases ventilation by bringing cold and dry air from the mid-troposphere into the TC. 

Ventilation removes the heat away from the TC and weakens the system. Empirical 

studies have shown that the wind shear zonal component wind shear is found to be more 

important than the meridional component for inhibiting TCs.   

3. High mid-tropospheric moisture: High moisture content between 300 mb to 500 

mb levels is also a favourable to TC generation and intensification, as it allows rapid air 

saturation and latent heat release through water condensation. The entrainment of dry 

air at mid-levels has hence been shown to weaken TCs (Dunion and Velden, 2004) and 

relatively humid environments are preferred for intensification. 

4. Relative vorticity at low-levels: The converging winds of a TC cannot rotate in the 

absence of absolute vorticity. In presence of positive absolute vorticity, the converging 

winds of a TC produce positive relative vorticity. Surface friction in presence of low-

level positive relative vorticity produces upward motion, increased cumulus convection 

and thus strengthens the TC intensity.  
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5. Away from the equator: In order to have the required vorticity ,the Coriolis 

parameter (f = 2� sin�, where � is the latitude and  � is the angular velocity of 

Earth) should exceed a certain value.  No cyclones form in the immediate vicinity of 

equator. 

6. Conditional instability: the atmospheric column should not be too stable, in order to 

allow moist convection. 

 

These conditions are necessary but not sufficient for cyclogenesis and do not help 

predicting the development of a TC. There is a broad consensus on these necessary 

conditions, with the exception of mid-tropospheric high humidity content (item 3) 

because the convection is possible even in a near-neutral atmospheric profile (Emanuel, 

1986). These conditions are generally met in Inter Tropical Convergence Zones (ITCZ). 

The rate of change in TC intensity is also affected by several other atmospheric 

parameters, in addition to above, such as potential intensity (MPI), equivalent potential 

temperature and upper-level air temperature (Merril, 1998; De Maria, 1996; De Maria et 

al., 2005; Emanuel et al., 2004; Emanuel, 2007; Frank and Ritchie, 1999, 2001; Kaplan 

and De Maria, 2003; Knaff et al., 2005). 

 

1.2.2 Cyclogenesis indices  

Given the list of favourable large-scale environment described above, Gray (1975; 

1979) proposed an empirical cyclogenesis index referred to as the Yearly Genesis 

Parameter (YGP). This first index was followed by the construction of two other well-

known cyclogenesis indices: the Modified Yearly Convective Genesis Potential Index 

developed by Royer et al. (1998) which is a variant of the YGP, and the Genesis 

Potential Index (GPI) developed by Emanuel and Nolan (2004). The advantage of these 
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indices is that they can inherently reveal the main large-scale factors influencing 

cyclogenesis on mean, seasonal (Menkes et al., 2012) or other timescales, such as El 

Niño/Southern Oscillation (ENSO) at interannual timescales  (e.g. Vincent et al., 2009) 

or during the Madden Julian Oscillation at intraseasonal timescales (Camargo et al., 

2009). The formulations of these indices are fitted empirically onto a global and 

seasonal scale. 

 

We will detail the GPI formulation in the following as this index is used in chapter 3 of 

this thesis. The GPI monthly index is constructed as in Camargo et al. (2007a, b) and 

Emanuel and Nolan (2004) :  

 

with η is the absolute vorticity at 850 hPa in s-1, H is the relative humidity at 600 hPa, 

Vpot is the potential intensity, Vshear is the magnitude of the vertical wind shear between 

850 and 200 hPa in ms-1. Consistently, with the previous subsection, this index 

increases with background vorticity, mid tropospheric humidity, potential intensity and 

decreases with vertical shear. 

 

1.2.3  Global TC climatology 

About 100 TCs form globally each year. The main regions of TCs formation are shown 

on Figure 1.8. TCs form over warm ocean water (SST > 27oC) usually between 5o-20o 

latitude bands. Besides ocean temperature, cyclogenesis in certain areas can be favoured 

by a combination of several variables. Cyclogenesis indices are used to qualitatively 

describe these areas as shown in Figure 1.8. There are six major tropical cyclogenesis 

areas in the world. The western North Pacific is the most active cyclone region (~31% 
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of the total number of TCs at global scale) followed by North Atlantic (~22%), Eastern 

North Pacific (~17%), Southern Indian Ocean (~13%) and Southern Pacific (~10%) 

(Figure 1.8). North Indian Ocean (NIO) is least active cyclone region (~6%) but most 

impacted and vulnerable basin: 14 of the 20 deadliest TCs in the world history have 

developed over the BoB (Longshore, 2008). Southern hemisphere TCs are relatively 

weaker than in the northern hemisphere. In the Western North Pacific and North 

Atlantic, TCs are more frequent, intense and have long life span, and their tracks can 

extend to very high latitude. There is a strong seasonality associated with the 

cyclogenesis. TCs generally occur in boreal summer (June-October) and austral summer 

(November-April) for northern and southern hemisphere respectively (Figure 1.9). NIO  

 

 

Figure 1.8: Mean cyclogenesis density per 5° box and per 20 years for the observations 
(left) and GPI index (right). The six red frames indicate the TCs region (NWP: Western 
North Pacific, NEP: Eastern North Pacific, SWP: Southern Pacific, NA: North Atlantic, 
SIO: Southern Indian Ocean, NIO: Northern Indian Ocean). 
 

 

TCs have distinct behaviour, which will be discussed later in section 1.4. The Southeast 

tropical Pacific and South tropical Atlantic basins are characterized by an absence of 
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cyclogenesis related to anticyclonic relative vorticity, high wind shear and very stable 

atmosphere. 

 

 

Figure 1.9: Seasonal variations of observed cyclogenesis (black), GPI and YGP indices 
in all regions framed on Fig. 1.8. 
 
 

1.2.4 TCs intensity forecasts 

Due to their tremendous societal impacts, accurate forecasts of TCs track and intensity 

are a very important pre-requisite for a proper risk management. The TC track is mainly 

governed by the environmental conditions rather than the TC’s own characteristics, and 

is hence more predictable than its intensity. TCs tracks forecasts have dramatically 

improved during the last decade for both short and long lead times, while intensity 

forecasts have only modestly improved for long lead time, the improvement rates being 

only one third of the tracks improvement rates (De Maria et al., 2014). The TCs 
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intensity forecast errors are indeed large, reaching ~10 kt at 12 hr lead time and ~20-25 

kt for 120 hr lead time (Figure 1.10; Cangialosi and Franklin, 2014; De Maria et al., 

2014). Dynamical and statistical models are used for storm intensity predictions, but 

both of these models have large errors in predicting rapidly-intensifying TCs.  

 

 

Figure 1.10: Time-series of mean absolute error in operation TC intensity forecast for 
Atlantic (from NHC; top) and Western Pacific (from JTWC; bottom) regions at 
different forecast lead-times. Dashed line indicates the linear trend (De Maria et al., 
2014). 
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Dynamical forecast. Dynamical TCs intensity forecasts utilizes three-dimensional 

global or regional Numerical Weather Prediction (NWP). Dynamical models used for 

intensity prediction include Hurricane Weather Research and Forecasting Model 

(HWRF), NCEP Global Forecast System (GFS), Geophysical Fluid Dynamics Model 

(GFDL) Hurricane Model, European Centre for Medium range Weather forecast 

(ECMWF) model and Japan Meteorological Agency (JMA) model (Bao et al., 2000; 

Bender et al., 2007; Bender and Ginis, 2000; Hong et al., 2000; Kurihara et al., 1998; 

Tallapragada et al., 2014; Zhu and Zhang, 2006). The coarse horizontal resolution 

(~100 km) of global atmospheric general circulation models cannot resolve the storm’s 

core structure and they are hence not very useful for intensity prediction. High-

resolution regional or nested models can represent the TC core structure well but 

intensity prediction is still limited by the ability to initialize these models from existing 

observations, and by the realism of the representation of key physical processes such as 

deep convection, microphysics, radiative transfer. Realistic coupled ocean-atmosphere 

regional models developed for Atlantic and Pacific basins have been mainly used for 

case studies on a few storms or coarse resolution climate studies. 

 

Statistical forecast. Statistical models are also routinely used for predicting TC tracks 

and intensity, along with dynamical models. These models are based on the statistical 

relationship of TC intensity change with the parameters known to affect the TC 

intensity such as the TCs characteristics at the initial time and large-scale atmospheric 

fields along its track, as described in section 1.2.2. The track is usually obtained from a 

separate dynamical model forecast, and large scale atmospheric fields along this track 

by weather forecasts. A part of the dataset is used in training or developing the 

statistical model, while the remaining independent dataset is used for testing during 



! 23!

hindcasts over the historical period. Intensity forecasts are generally provided from 12 

hours up to 5 days lead times, at 12 hours intervals. Separate statistical models are built 

for each forecast hour. Multiple linear regression (MLR) techniques are generally used 

in developing these statistical models. These models will be described in more details in 

chapters 4 and 5.  

 

Performance. Statistical model TCs intensity forecasts are competitive with dynamical 

models and often more skilful in predicting the TC intensity changes (Kucas, 2010). 

Their low computational cost and quick run-time is another added advantage for 

operational use. Operational statistical intensity forecast models generally predict TC 

intensity change for the next five days. Different operational MLR-based statistical 

prediction schemes have been developed for each basin: the statistical typhoon intensity 

prediction scheme (STIPS; Knaff et al., 2005) for the Northwest Pacific region, the 

southern hemisphere statistical typhoon intensity prediction scheme (SH-STIPS; Knaff 

and Sampson, 2009) for the southern hemisphere (gathering the Southwest Pacific and 

Southern Indian Ocean regions), and the statistical hurricane intensity prediction 

schemes (SHIPS; DeMaria et al., 1994, 1999, 2005) for the Atlantic basin. A logistic 

growth equation model (LGEM; DeMaria et al., 2009) with the same inputs as SHIPS is 

also being used for Atlantic and Northeast Pacific since 2006. A model based on STIPS 

(Kotal et al., 2008) has also been developed for the NIO. Very few studies attempted to 

compare the predictive skill of statistical-dynamical forecast models across different 

TC-prone regions. A recent study (DeMaria et al., 2014) provided such a comparison of 

the intensity error of various dynamical and statistical models as a function of the basin. 

(Figure 1.11). Their results indicate that these errors are generally larger in the 

Northwest Pacific and southern hemisphere TCs (~12kt at 24h lead-time and ~25kt at 
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120h lead-time) than for Atlantic and Northeast Pacific TCs (~10kt at 24h lead-time and 

~15kt at 120h lead-time). The reasons behind this basin-wise skill dependency are 

however currently unknown. They could have several distinct origins. First, these 

differences may be related to the different TCs intensity distribution in each of the 

basin: more intense TCs in the Northwest Pacific may for instance explain the larger 

errors in this basin. It may however well be that the differences in the predictors and in 

datasets used in each of regional statistical schemes could contribute to this basin-wise 

skill dependency. Finally, this dependency could also simply be explained by 

differences in intrinsic TC intensity predictability in each basin. 

 

 

Figure 1.11: Mean absolute errors in TC intensity forecast from various models as a 
function forecast lead time for (a) Atlantic (b) Eastern Pacific (c) Western Pacific 
averaged over 2009-2012 period and (d) Southern hemisphere averaged over 2010-2012 
period (De Maria et al., 2014). 
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1.3 Ocean response to TCs 

1.3.1 Importance of vertical mixing  

 

Mixing vs other processes. The strong cyclonic winds associated with TC affects the 

ocean by altering the surface wave activity, near surface currents and upper ocean heat 

content. Figure 1.12 summarizes the major upper-ocean processes under the passage of 

storm. Friction at the air-sea boundary layer supplies kinetic energy to the ocean that 

drives strong currents near the ocean surface. This resulting vertical shear causes 

vertical mixing, which brings deep and cold water into the mixed layer, and conversely 

warms deeper ocean layer. Energetically, this corresponds to a conversion of kinetic 

energy into potential energy (vertical mixing lifts the centre of mass of the water 

column). Vertical mixing is by far the main process that controls the surface cooling 

observed in the TC wake (Price et al., 1994; Jacob et al., 2000; Vincent et al., 2012a). In 

contrast, enhanced air-sea heat fluxes and the advection processes play a smaller role. In 

the following, I summarize the major processes controlling vertical mixing under TCs.

 

Figure 1.12: Schematic of physical processes contributing to SST cooling induced by 
TC winds. Qo and ∆h represents the surface heat flux and change in the mixed layer 
depth. Rmax is the radius of maximum winds (Shay, 2010).  
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Ekman pumping. When wind blows over the ocean surface, it forms an oceanic 

boundary layer called the Ekman layer, whose thickness increases with the increasing 

wind intensity. Under the effect of the Coriolis force, the average transport in this layer 

(a.k.a. the Ekman transport) is at righ angle to the wind forcing (to the right in the 

Northern hemisphere and to the left in the Southern hemisphere). Ekman transport flows 

in the perpendicular direction and toward the outside of the eyewall. As a result, there is 

a net upwelling (i.e. Ekman pumping) within the radius of maximum winds region and 

net downwelling outside (Fig. 1.12).  

 

Inertial currents. Since the timescale of change of TC wind field is comparable to the 

inertial period (2π/f, f being the coriolis parameter), TC wind forcing also excites near-

inertial oscillations in the ocean (Sanford et al., 2007). These inertial currents are free 

oscillations under the influence of the Coriolis force and gravity. These currents rotate 

clockwise in northern hemisphere and anti-clockwise in southern hemisphere. When the 

vertical shear due to these oscillations is large enough as compared to the stability of the 

water column, it results in vertical mixing. These oscillations generally start at the 

surface and then propagate downwards into the thermocline region (e.g. Cuypers et al. 

2013). The upper ocean currents are asymmetric in the TC wake, with larger magnitude 

on the right side of TC track in the northern hemisphere (Price, 1981). This asymmetry 

arises mainly due to two factors: (1) the translation speed and the rotational winds fields 

add together on the right side in the northern hemisphere and have opposite direction on 

the left side of the TC track and (2) the resonance between wind and inertial currents 

(Samson et al., 2009). Indeed, in the northern hemisphere, the TCs wind vector rotate 

clockwise on the right side of the track, in the same direction as the rotation of ocean 
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current vectors due to the inertial oscillation. On the other hand, they rotate anti-

clockwise on the left of the track, and hence in the opposite direction of ocean currents. 

As a result, the work of wind on ocean currents (i.e. the energy transfer from the 

atmosphere to the ocean) is maximized to the left (right) of the TC track in the Southern 

(Northern) hemisphere. This resonant coupling between inertial currents and the TC 

wind-field generates a larger vertical mixing and hence a larger cooling to the left 

(right) of the TC track in the Southern (Northern) hemisphere (Price, 1981; Dickey and 

Simpson, 1983). 

 

Thermal stratification. The surface cooling depends crucially on the thermal 

stratification of the ocean below the storm. Vertical mixing will hardly cool the surface 

if the thermocline is very deep.  On the other hand if there is a strong subsurface 

thermal stratification at shallow depth, it makes the entrainment of cold water into the 

mixed layer and hence the surface cooling larger. As a result, for given TC properties, 

the cold wake is more pronounced over a region of shallow mixed layer and sharp 

temperature stratification (Vincent et al., 2012a).  

 

1.3.2 Controls of the SST cooling  

Amplitude of observed cooling. The TC-induced vertical mixing results in a SST 

cooling during the TC passage, resulting in a cold wake left behind, as captured by both 

satellite and in situ measurements. Before the era of satellite microwave SST, the 

measurements (using ship measurements, bathythermograph and buoy arrays) of SST 

cooling were limited to few TC case studies (Cione et al., 2000; D’Asaro, 2003; Leipper, 

1967; Shay et al., 1992). Microwave Satellite measurements allowed to monitor a large 

number of surface oceanic response induced by TCs, allowing a more detailed 
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description of the SST cold wake (Chiang et al., 2011; Lin et al., 2005; Lloyd and 

Vecchi, 2011). Using these satellite data, Lloyd and Vecchi (2011) for instance 

documented the SST cooling under TCs, globally over the 1998-2007 period. The 

amplitude of the SST cooling ranges from 0°C to to 10o C (Chiang et al., 2011; Cione et 

al., 2000; Chinthalu et al., 2001; Gopalakrishna et al., 1993; Lin et al., 2003; Price, 

1981; Price et al., 2008; Rao, 1987; Sengupta et al., 2008; Shay et al., 1991; 

Subrahmanyam et al., 2005; Walker et al., 2005). The SST cooling (~2o-3o C) associated 

with TC Nargis (2008) in the BoB is illustrated on Figure 1.13.  

 

Figure 1.13: TMI/AMSR-E observed Sea Surface temperature on 2 May 2008. Black 
line is the track of TC Nargis and black dots indicate 6 hourly position of the eye on 2 
May. (McPhaden et al., 2009).  
 
 

Control by TC characteristics. TC characteristics such as the translation speed, 

intensity and cyclone size strongly affect the amplitude of TC-induced SST cooling 

(Schade and Emanuel, 1999). A slow-moving storm can produce larger SST cooling 

than a fast-moving storm (Price, 1981; Mei and Pasquero, 2013) as slow-moving TCs 

have more time to transfer momentum into the ocean, hence magnifying the vertical 

mixing (Mei et al., 2012). Dare and McBride (2011) quantified the amplitude of SST 
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cooling for slow and fast moving TCs globally. SST cooling of 1.1°C was found for 

TCs with low translation speed (< 8 km.h-1) and 0.75°C for faster moving TCs. Lloyd 

and Vecchi (2011) further showed that the cooling amplitude increases linearly with TC 

wind intensity up to Category 2 but that saturates for Cat-3 TCs and above.  Vincent et 

al. (2012a) attributed this peculiar behaviour to the influence of the TC translation speed 

that is not accounted for in the Saffir-Simpson scale. They hence developed a new 

dimensionless quantity, the Wind Power index (WPi), to account for the strength of TC 

forcing. This quantity WPi integrates many parameters that are known to influence the 

cold wake amplitude like size of a storm, maximum surface winds and TC translation 

speed in a single measure. The WPi develops on the power dissipated (PD) by friction 

at the ocean-atmosphere boundary (Emanuel, 2005), is an index that estimates the 

kinetic energy transferred by the TC winds to the ocean currents (Vincent et al., 2012b). 

The PD is calculated for every location of cyclone track as:  

  

and the WPi is calculated as follows: 

      

where ρ is the air density at the surface, CD the surface drag coefficient (dimensionless), 

|V| the local magnitude of TC surface wind, to the time when a storm’s influence is first 

felt at a given point and tc the present time.  is a constant used for 

normalization and is corresponding to a weak TC with a maximum wind speed of 15 

m.s-1 and with a translational speed of 7 m.s-1 (the wind speed of 15 m.s-1 is associated 

with a very weak classified cyclonic system i.e. Tropical Depression). to is taken to 3 

days before a cyclone reaches a considered ocean point, while tc is set as 3 days after the 

cyclone passage. WPi is a proxy of the kinetic energy available for upper-ocean mixing 
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underneath the storm. As surface cooling largely results from mixing caused by vertical 

shear of ocean currents (Price, 1981; Vincent et al., 2012a), WPi is hence a relevant 

variable to describe it. Vincent et al. (2012a) have shown that WPi is a better predictor 

of the SST cooling than more classical parameters such as the TC maximum wind speed. 

They show that the mean cooling underneath a TC increases with wind intensity only up 

to the category 2 TCs as illustrated by Lloyd and Vecchi (2011), whereas it increases 

nearly linearly with WPi beyond the category 2 cyclones up to the largest wind power 

(Figure 1.14). This index will be used in later chapters of the thesis.  

 

Figure 1.14: TMI/AMSR-E observed and NEMO ocean model simulated Sea Surface 
temperature cooling with respect to (a) 10-m averaged maximum wind speed and (b) 
Wind Power Index (WPi) for the TCs during 1998-2007 period. 95% confidence level, 
median, lower and upper quartiles for the SST are indicated by shading, triangles and 
vertical bars respectively (Vincent et al., 2012a).  
 
 

Control by ocean stratification. As explained earlier, the vertical mixing and resulting 

TC cold wake not only depends on the winds but also on the upper ocean stratification 
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(Cione and Uhlhorn, 2003; Jacob and Shay, 2003; Shay and Brewster, 2010). Recent 

studies have shown that pre-storm sub-surface oceanic conditions have significant 

impact on the amplitude of SST cooling (Lloyd and vecchi, 2011; Vincent et al., 2012b). 

Shallow mixed layer and highly stratified upper ocean temperature profile favor a 

strong SST cooling due to efficient mixing under TCs. Deeper mixed layer associated 

with mesoscale features like warm core rings also significantly reduce the SST cooling 

under the TCs which results in its intensification (Ali et al., 2007; Hong et al., 2000; 

Jacob and Shay, 2003; Shay et al., 2000). The upper ocean heat content (OHC), defined 

as heat content of the ocean from the surface down to the 26oC isotherm, is the most 

commonly used parameter in TCs air-sea interaction studies (Lin et al. 2008, Mainelli et 

al., 2008). Recently, Vincent et al. (2012a,b) showed that the control of the amplitude of 

the TC-induced cooling by the ocean stratification is better captured by the Cooling 

Inhibition index (CI). This index is based on the main physical mechanism responsible 

for surface cooling under TC i.e. the conversion of kinetic energy into potential energy 

through heat-conserving vertical mixing. Vincent et al. (2012b) showed that the 

amplitude of TC-induced SST cooling is proportional to the cube root of the potential 

energy change. Therefore CI is defined as the cube root of the necessary potential 

energy needed to induce a given (2°C) surface cooling through vertical mixing: 

 with      

where g is the acceleration of gravity, z the ocean depth,  the pre-cyclone density 

profile,  and hm respectively the homogeneous final density profile and mixing depth 

to achieve a 2°C surface cooling through vertical mixing. The CI can easily be 

computed from any available temperature and salinity profiles before the cyclone 

passage (by assuming that mixing results in a perfectly homogeneous temperature and 

CI = [ΔEp(−2°C)]
1/3 ΔEp ΔT( ) = ρ f − ρi (z)( )gzdzhm
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salinity profile down to hm). It captures the inhibition of mixing-generated surface 

cooling by the ocean background conditions. The cold wake amplitude as function of 

both WPi and CI is shown on Figure 1.15. Using a very simple statistical model, 

Vincent et al. (2012b) showed that cold wake amplitude hindcasts are more accurate 

with the CI than with the OHC metric. 

 

Figure 1.15: Average SST cooling as function of WPi and CI for global ocean with 40 
equally spaced bins of WPI and CI each (Vincent et al., 2012b).  

 

 

1.4 Air-sea coupling under TCs 

1.4.1 Observational results 

Theoretical considerations. The heat energy transfer from the ocean to atmosphere is a 

fundamental process driving the TC intensification. The SST cooling under the TC 

track reduces the surface evaporation due to the Clausius-Clapeyron relation. This in 

turn limits the upward enthalpy flux that feeds the TC. Thus, the SST cooling under TC 

can negatively feedback on the cyclone intensity. Thermodynamic arguments (Holland, 
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1997; Schade, 2000) suggest a large negative SST feedback on storm intensity, reducing 

the cyclone’s maximum potential intensity (MPI) by 21–45 hPa.°C-1. This sensitivity is 

much higher than that of storm intensity to the ambient (large-scale) SST estimated 

from thermodynamic theory (Emanuel 1988: 10 hPa °C-1). 

 

 

Figure 1.16: Intensification tendency for different amplitudes of SST cooling. Mean 
intensification tendency and 95% confidence limit are indicated by red circles and bars 
(Lloyd and Vecchi, 2011).  

 

 

Observations. There are several observation-based studies, which have attempted to 

assess the impact of air-sea coupling on TCs. The theoretical estimate of the impact of 

air-sea coupling on TC intensity (Emanuel, 1988) was found to be in agreement with the 

observational study of DeMaria and Kaplan (1994a). A large number of observational 

case studies indeed reported that TCs passing over cold and warm oceanic eddies 

generally experience a rapid change of their intensification rate (e.g. Shay et al., 2000; 
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Lin et al., 2005; Jaimes and Shay, 2009; Zheng et al., 2010; Walker et al. 2014). A 

statistical analysis based on in-situ observations of 23 TCs in the Atlantic further 

suggested that TCs inducing large SST cooling generally experience a weaker upward 

surface enthalpy flux fuelling the TC (up to 40% reduction for a ~1°C cooling), and are 

hence less likely to intensify (Cione and Ulhorn, 2003). Lloyd and Vecchi (2011) 

showed that the amplitude of the TC-induced cooling is statistically related to the TC 

intensification rate in their observational sample (Figure 1.16). Lloyd and Vecchi (2011) 

further interpreted the leveling-off of the TC-induced cooling with increasing TC 

intensity (from Cat-2) as an evidence of the negative ocean feedback onto TC 

intensification. They also illustrated the influence of the upper-ocean stratification on 

the TC intensity: weaker stratification for stronger TCs. Emanuel (1999) showed that a 

2.5°C cooling is sufficient to completely cut down the heat supply to the cyclone. The 

strength of the negative feedback on TCs intensity was also found to be related to TC 

translation speed (Figure 1.17, Lin et al., 2009; Mei et al., 2012). TCs with slow 

translation speed (<1.5 m/s) can weaken rapidly (Walker et al., 2014) as TCs slow 

translational speed contributes to increase the cold wake amplitude (Price, 1981; Price 

et al., 1994; Lin et al., 2009). Lin et al. (2014) also showed that fast travelling speed and 

warm sub-surface water caused rapid intensification of a strong TC. Zeng et al. (2007, 

2008) found that fast TC translational speed and strong vertical wind shear negatively 

feedback the TC intensification and lifetime peak intensity. Cione (2015) showed that, 

along oceanic factors, near surface air temperature and moisture are dominant factors in 

maintaining the TC. Recent studies have shown that upper ocean warming increases the 

average TC intensity (Mei et al., 2015) and strong TCs frequency (Wu and Zhao, 2012). 

A study by Jin et al. (2014) found a strong correlation between the El Niño/Southern 

Oscillation (ENSO) and TC activity in the Eastern North Pacific, which they related to a 
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modulation of subsurface oceanic conditions and hence TC-induced cooling. Finally, 

the inclusion of an upper ocean parameter in statistical intensity forecasting improves 

TCs intensity forecast, (DeMaria et al., 2005; Mainelli et al., 2008), reducing the errors 

by ~5% on average.  

 

Figure 1.17: TC translation speed vs TC intensification rate in North Atlantic. Dashed 
and solid lines are for all translational speed data and for translational speed less than 10 
m/s. Shading and bars indicate the corresponding standard errors (Mei et al., 2012).  

 

 

1.4.2 Results from dynamical models 

 

The first numerical assessment of the negative ocean feedback onto TC intensification 

were conducted using a very simple coupled models (Chang and Anthes, 1979; Sutyrin 

and Khain, 1979, 1984). Recent studies using three-dimensional atmosphere–ocean 

coupled models further demonstrated that forecasts of TC intensity in the North Atlantic 

and Pacific basins could be significantly improved when the TC-induced ocean 
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feedback was accounted for by imposing a limitation on the over-intensifying TCs (e.g. 

Bender and Ginis, 2000; Hong et al., 2000; Lin et al., 2005; Chen et al., 2010; Sandery 

et al., 2010; Kim et al., 2014; Ito et al., 2015; Wu et al., 2016). Other idealized 

modelling studies further confirmed that the TC-induced cooling limits TC 

intensification (Bender et al., 1993; Schade and Emmanuel, 1999; Zhu et al., 2004; Wu 

et al., 2007; Chen et al., 2010; Liu et al., 2011; Ma et al., 2013; Halliwell et al., 2015) 

but also demonstrated an impact of this ocean feedback on the TC size (Chen et al., 

2010; Ma et al., 2013) and TCs asymmetrical structures (Zhu et al., 2004; Chen et al., 

2010). An example of impact of SST cooling on TC intensification using idealized 

model experiments is provided on Figure 1.18 (Ma et al., 2013): the model including  

 

 

Figure 1.18: Time series of TC intensities in terms of  (a) minimum sea level pressure 
(hPa) and (b) maximum surface wind speed (m/s) for three model experiments: Coupled 
ocean-atmosphere model (CTRL), idealized cold core eddy inclusion in the coupled 
model (CLD24) and atmospheric model with fixed SST of 29oC(UNCP))(Ma et al., 
2013).  

 

 

the interaction between a TC and an warm-core eddy reproduces the intensification 

better. In contrast, most the aforementioned studies did not find TC tracks to be 

sensitive to the TC-induced cooling (Zhu et al., 2004; Chen et al., 2010; Liu et al., 
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2011). Finally, over the past decade, it has become increasingly clear that the oceanic 

component of these models needs to include three-dimensional processes to correctly 

simulate the TC-induced upper ocean response, especially for slow-moving TCs 

(Yablonsky and Ginis, 2009; Halliwell et al., 2011; Wu et al., 2016). The impact of air-

sea coupling on TC characteristics has been generally assessed from realistic or 

idealized case studies using short-term coupled model integrations. Only a couple of 

studies did investigate the ocean feedback onto TCs statistics by comparing long-term 

(~20 years) coupled model integrations in coupled and uncoupled modes for the 

Northwest Pacific (Ogata et al., 2015) and Southwest Pacific (Jullien et al., 2014). 

Ogata et al. (2015) suggested that air-sea coupling acts to shift the location of the most 

intense TCs equatorward, improving the climatological distribution. They attributed the 

decrease in the numbers of intense TCs in the subtropical region (north of 20°N) to the 

shallow mixed layers and thermocline there that promote intense TC-induced cooling, 

hence limiting TCs intensification. Jullien et al. (2014) also suggested a more realistic 

cyclogenesis pattern in the coupled simulation, with reduced cyclogenesis compared to 

the forced run in the Coral Sea, where mixed layers are particularly shallow. Jullien et al. 

(2014) further demonstrated that accounting for air-sea coupling generally results in a 

10% decrease in the number of TCs, with a stronger reduction for strongest TCs (Figure 

1.19). In these simulations, air-sea coupling reduces the enthalpy flux (up to 30 W.m-2 

for a 1°C), resulting in a 15 hPa.°C-1 reduction for strongest TCs. Because of the 

computational cost of performing long-term experiments, these study rely on relatively 

coarse atmospheric models that prevent simulating the strongest TCs (Cat-4 and more).  
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Figure 1.19: TC occurrence (number of TC days per year) as function of TC intensity 
(central pressure in hPa) for observation, coupled ocean-atmosphere model and forced 
atmospheric model (Jullien et al., 2014).  
 

 

1.4.3 Results from statistical models 

Feedback from the ocean is one of the under-represented mechanisms controlling the 

statistical TC intensity forecast (Marks and Shay, 1998). A better understanding of TC-

ocean interaction is therefore likely to improve the operational predictions of their 

intensity.  For statistical models, it is necessary to identify the mechanisms by which the 

ocean influences the intensity of a TC and to integrate relevant variables as additional 

predictors. Oceanic heat content (OHC) is the most commonly used index accounting 

for ocean subsurface information. It is computed as the integral of ocean temperature 

from surface to the depth 26oC isotherm (Leipper and Vogenau, 1972): 
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where ρ, Cp  and T are respectively density, specific heat capacity and the temperature 

of sea water and D26 is depth of 26oC isotherm. Statistical TC intensity forecast were 

modestly improved by inclusion of OHC as one of the predictors (De Maria et al., 2005; 

Lin et al., 2013; Mainelli et al., 2008). The OHC inclusion in SHIPS slightly improves 

(~5%) the intensity prediction in the Atlantic, but this improvement is much larger for 

intense TCs (Figure 1.20, Mainelli et al., 2008). Goni et al. (2009) advocated to include 

improved oceanic metrics of TC-ocean interactions other than OHC in forecast models. 

One such metric is the depth-averaged temperature from surface up to 100m of depth 

(T100; D’Asaro et al., 2007). T100 represents the typical mixed layer depth under a 

strong TC (Price, 2009). Other alternatives suggested in the literature are the Interacting 

tropical cyclone heat content (ITCHC, Buarque et al., 2009) defined as the heat content 

of the mixed layer and depth of upper 10m average temperature minus 2oC (denoted by 

h2 hereafter, Lloyd and Vecchi, 2011). As already mentioned before, Vincent et al. 

(2012ab) finally suggested another metric named as cooling inhibition index (CI),. Lin 

et al (2013) have modified the SST-based potential intensity index by incorporating the 

subsurface temperature information. Shay et al. (2010) have introduced equivalent OHC 

metric (OHCE), which better correlates with TC intensity change and is given by 

   

where Nmax and No are the maximum buoyancy frequency at the base of mixed layer 

and reference buoyancy frequency for a particular reference density. The inclusion of 

these improved ocean-atmosphere coupling metrics has the potential to improve 
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statistical TC intensity forecasts but none of these metrics have been tested and 

compared in statistical forecast models so far. 

 

Figure 1.20: Improvement in SHIPS model forecast by inclusion of OHC for six 
Atlantic TCs separately and collectively (Mainelli et al., 2008).  
 

1.5 The specific case of the North Indian Ocean TCs  

1.5.1 TCs activity over the Northern Indian Ocean 

TCs societal implications. Due to its unique geography and climatic conditions, the 

Indian subcontinent experiences a variety of weather systems like thunderstorms or 

monsoons depressions. But the most severe weather systems that affect the Indian 

coastline are undoubtedly TCs. The BoB is home to about 4 named TCs each year, 

which accounts for ~5% of the total annual TC numbers worldwide (Alam et al., 2003; 

Anwar, 1999; Neumann, 1993). There are fewer TCs (~1-2 per year) in the Arabian Sea 

(AS) than in the BoB and very few of them intensify to reach highTCs categories (Evan 
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and Camargo, 2011). These few TCs may not be the most intense but have catastrophic 

impacts. Of the top 20 deadliest TCs in the world history, 14 were generated in the BoB 

(Islam and Peterson, 2008; Longshore, 2008). The high population density distributed 

along low-lying coastal areas and poor disaster management strategies largely explain 

the very strong vulnerability of countries around the Bay (India, Sri Lanka, Bangladesh, 

Myanmar) to natural disasters. For instance, TC Nargis, which occurred in 2008, 

reached Category 4 strength and caused the worst natural disaster in Myanmar with 

more than 140,000 lives lost, one million homeless people, and over $10 billion in 

economic losses (Webster, 2008; McPhaden et al., 2009). It is therefore of utter 

practical importance to identify the key factors that control TC intensity in this region.  

 

Figure 1.21: (a) Seasonal evolution of the number of TCs north of the equator in the 
Indian Ocean over the 1978– 2007 period. (b) Number of TCs per year in 2o by 2o bins 
over the 1978–2007 period. The thick line delineates a region where 80% of TCs occur 
in the northern Indian Ocean. Data set used is IBTrACS (Neetu et al., 2012).  
 
 
Seasonal characteristics. In the BoB, TCs generally originate from the southern part of 

the bay and usually travel westward, northwestward, or northward before hitting the 
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east coast of India or Bangladesh, resulting in cyclone density confined towards the 

western and central part of the basin (Figure 1.21). In contrast to the single peak TC 

seasonal distribution in other basins, BoB TCs exhibits a very peculiar bimodal seasonal 

distribution (Girishkumar and Ravichandran, 2012; Li et al., 2013; Singh et al., 2000), 

with TCs primarily occurring before and after the monsoon (Figure 1.21). Li et al. 

(2013) examined the large-scale environmental parameters responsible for cyclogenesis 

and concluded that major factors responsible for TC activity are the increase in relative 

humidity in pre-monsoon period and the decrease in wind-shear in post-monsoon period. 

The absence of TC activity during the summer monsoon results from the combined 

unfavourable wind shear, absolute vorticity and potential intensity, which overcome the 

favourable increase in relative humidity (Li et al., 2013). According to Yanase et al. 

(2012), the reason for bimodal distribution of TCs in BoB is mainly attributable to 

vertical wind shear whereas Xing and Huang (2013) underline potential intensity 

followed by vertical wind shear. The difference in the TC frequency between the two 

seasons is related to the relative humidity difference between these seasons (Xing and 

Huang, 2013). The TCs in the AS generally originate close to the west coast of India or 

central AS and move towards north or northwest direction. TCs in the AS also have 

bimodal seasonal distribution with peak activity during pre and post-monsoon season. 

Changes in the large-scale environmental features like relative vorticity, low level 

winds and vertical wind shear together favour the TC development in both the seasons 

in the AS (Gray, 1968; Evan and Camargo, 2011). 

 

Interannual variations.  Besides this peculiar annual cycle, the BoB TCs also undergo 

significant interannual variations. The TCs characteristics over the northern Indian 

Ocean have been suggested to be influenced by two dominant modes of interannual 
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variability on the Indian Ocean climate, namely the Indian Ocean Dipole (IOD) and the 

El Niño Southern Oscillation (ENSO) through their atmospheric teleconnections over 

this region (Girishkumar and Ravichandran, 2012; Ng and Chan, 2012; Clifford et al., 

2013; Sumesh and Ramesh Kumar, 2013; Mahala et al., 2015). The ENSO-induced 

stratification meridional dipole in BoB may indeed contribute to the interannual 

modulations of pre-monsoon TC intensity (Balaguru et al., 2016) . The relationship 

between ENSO and BoB TCs may also be modulated by the Pacific decadal oscillation 

(PDO, Girishkumar et al., 2015). The IOD however potentially exerts a larger control 

than ENSO on the BoB TCs occurrence frequency, its peak being in phase with the 

post-monsoon season (Yuan and Cao, 2013). More (resp. less) frequent BoB TC genesis 

occurs in post-monsoon season during negative (resp. positive) IOD. The main 

contributor to the IOD-related TC frequency fluctuations appears to be relative humidity 

(Li et al., 2016).  

 

Long-term variations. Analysis of TC long-term trends over the BoB have been more 

limited. The intensity of major TCs has however been suggested to increase during the 

post-monsoon period (Elsner et al., 2008; Singh et al., 2001; Balaguru et al., 2014) due 

to warmer SSTs, enhanced upper ocean heat content and convective instability during 

the recent decades (Balaguru et al., 2014). The BoB warming may also be responsible 

for the increasing TC intensification rate during the pre-monsoon period (Wang et al., 

2013). The intensification of pre-monsoon TCs after 1997 in the AS has further been 

attributed to reduced vertical wind shear forced by increased anthopogenic aerosols 

(Evan et al., 2011) or to an earlier onset of Indian summer monsoon due to increased 

land-ocean thermal contrast (Wang et al., 2012). Most of the future projections do not 

show an increase in the northern Indian Ocean basin-wise TC frequency (Knutson et al., 
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2010). A recent study (Murakami et al., 2012) however projected an increase in the 

future TC frequency over the AS (~46%) and a decrease over the BoB (~31%).  

 

1.5.2. Specific oceanic features of the northern Indian Ocean and related impacts 

AS and BoB contrasts. The Northern Indian Ocean experiences intense forcing by the 

monsoonal winds, which are strong southwesterlies during boreal summer (June–

September; Figure 1.22) and relatively weaker northeasterlies during boreal winter 

(November – March). Although the AS and BoB are located in the same latitudinal belt, 

they exhibit very different characteristics (Prasad, 2004). Winds are stronger over the 

AS and blow parallel to the coast in the western AS (Figure 1.22), favouring a strong 

upwelling signal along the coasts of Oman and Somalia maximum in summer (e.g. 

Schott and McCreary, 2001). In contrast, the BoB winds are weaker and have a weaker 

alongshore component (Figure 1.22) which does not lead to any major coastal 

upwelling in BoB.  This keeps the summer SST warmer there as compared to the AS. 

The alternating monsoon winds drive seasonally reversing coastal currents along the 

eastern rim of BoB, popularly known as the East India Coastal Current (EICC), which 

flows poleward (equatorward) before (after) the summer monsoon (e.g., Shankar et al., 

1996; McCreary et al., 1996). Earlier studies have recognized the role of EICC in the 

exchange of water masses between BoB and AS (e.g., Shetye et al., 1996; Durand et al., 

2009). 
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Figure 1.22: Summer climatology of (a) rainfall and surface winds (b) sea surface 
salinity (SSS), SSS minus salinity at 50 m depth (in contour) and (c) seasonal rainfall 
and river runoff in BoB north of 15oN (Akhil et al., 2014).  
 

Contrasted freshwater forcing. In addition to those dynamical differences linked to 

the wind intensity, the AS and BoB also display striking difference in hydrological 

cycles. The Arabian Sea is an evaporation basin, while the BoB is in general a dilution 

basin (Shenoi et al., 2002). The BoB is also characterized by large seasonal freshwater 

influx, which occurs primarily during or right after the summer monsoon (Shenoi et al., 
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2002). This freshwater flux occurs from rivers as well as excess precipitation over 

evaporation, both of which, showing nearly equal contributions (e.g. Chaitanya et al., 

2014). The riverine flux into the BoB is mainly due to the Ganga-Brahmaputra river 

system in the head Bay and the Irrawaddy river on the eastern rim, with an average 

discharge of ~8.7 104 m3s-1 and ~3.4 104 m3s-1 respectively during July-September 

(Papa et al., 2012; Dai and Trenberth, 2002; Akhil et al., 2014; Chaitanya et al., 2014; 

Sengupta et al., 2006).  

 

Figure 1.23: Observed SSS (in psu, color) and BLT (in meter, gray contour, 5m 
contour interval) during (a) pre-monsoon (b) post-monsoon seasons. Black thick line 
gives the region where 80% of the of TCs occur in NIO (Neetu et al., 2012).  
 
 

Specific BoB SSS distribution. This seasonal freshwater influx leads to a very peculiar 

salinity distribution over the NIO (Rao and Sivakumar, 2003). The Arabian Sea is 

characterized by very salty surface waters (Figure 1.23), due to the excess of 

evaporation over precipitation (Rao and Sivakumar, 2003) and proximity to two high-

salinity seas, namely the Red Sea and the Persian Gulf. On the other hand, the huge 

river runoff and excess precipitation over evaporation during summer monsoon leads to 

a strong near-surface halocline in the BoB. The salinity is especially low salinity (< 28 

pss) in the northeastern BoB after the monsoon (Figure 1.23b), 3 psu fresher than during 

the pre-monsoon season (Figure 1.23a). The northern BoB freshwaters are advected 
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southward by the EICC in the post-monsoon season along the west coast of India into 

the southern BoB (Vinayachandran et al., 2005; Chaitanya et al. 2014; Akhil et al. 

2014) and eastern Arabian Sea. This results in a very strong near-surface halocline 

along the rim of the BoB during the post-monsoon season, which affects density 

stratification and the depth of wind-induced vertical mixing (Vinayachandran et al., 

2002). As a consequence, the mixed layer is usually shallow there and controlled by 

salinity stratification. This often results in the formation of a barrier layer (BL) (Lukas 

and Lindstrom, 1991; Sprintall and Tomczak, 1992), the salinity-stratified layer 

between the base of the mixed layer and the top of the thermocline (Figure 1.24). The 

BL that forms during summer monsoon in the northern bay exists throughout the post-

monsoon season but is much thinner during the pre-monsoon season (contours on 

Figure 1.23; Thadathil et al., 2007).  

 

Figure 1.24: Barrier layer depiction (ARGO observed barrier layer in the Arabian Sea) 
 (De Boyer Montégut et al. 2007a). 
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Climatic impacts. This presence of strong near-surface stratification and the associated 

BL in the BoB prevents the vertical exchanges of heat between the upper mixed layer 

and the thermocline. This in turn inhibits entrainment cooling of the mixed layer (de 

Boyer Montégut et al. 2007a), resulting BoB sea surface temperature (SST) above 

28.5°C, a necessary condition to maintain deep atmospheric convection and rainfall 

(Gadgil et al. 1984). Thus there is a positive feedback loop between strong vertical 

salinity stratification, high SST, and strong rainfall (Shenoi et al., 2002), which has the 

potential to impact the regional climate of the north Indian Ocean.  Further, this salinity 

stratification also influences the intra-seasonal variability (Vinayachandran et al., 2012) 

and biological productivity (Prasanna Kumar et al., 2002). It may likewise inhibit 

vertical mixing below BoB TCs and favour their intensification, as we will detail in the 

following section. 

 

1.5.3 Oceanic response to TCs in the BoB  

Effect of BoB stratification on TCs cold wake. Cold wakes of the order ~1-2.5oC 

have been reported for both BoB and AS TCs (Byju and Prasanna Kumar, 2011; Murty 

et al., 1983; Rao et al., 2010). As in other basins, vertical mixing is the dominant 

process controlling the SST cooling under TCs (Girishkumar et al., 2014). Several 

studies also suggested that the BoB seasonal stratification changes could modulate the 

amplitude of TC-induced surface cooling. Indeed, case studies based on XBT profiles, 

ship observations, moored buoy data or satellite observations suggest that SST cooling 

underneath TCs is larger during the pre-monsoon (~2–3oC) (Gopalakrishna et al., 1993; 

Rao, 1987; McPhaden et al., 2009; Sengupta et al., 2008) than during the post-monsoon 

(~0.5o–1oC) in the BoB (Figure 1.25, Chinthalu et al., 2001; Sengupta et al., 2008; 

Subrahmanyam et al., 2005; Smita et al., 2006). Oceanic observations for individual 
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case studies (Figure 1.25) suggested that the weaker observed surface cooling during the 

post-monsoon season results from the presence of the BL that prevents entrainment of 

cold water into the mixed layer (Sengupta et al., 2008; Vissa et al., 2013a). These 

findings led to speculate that freshwater from monsoon rain and river runoff may 

influence TC intensity in the BoB (Sengupta et al., 2008). Moderate (low) SST cooling 

under TCs were indeed observed in the areas of weak (strong) stratification (Vissa et al., 

2013a; 2013b).  

 

 

Figure 1.25: TRMM/TMI observed SST cooling under TCs during (a) pre-monsoon 
 (b) post-monsoon season in the BOB (Sengupta et al., 2008). 

 

 

Impact on TCs. Several idealized and realistic modelling case studies have also 

discussed the ocean response to a limited number of TCs in the BoB. The response of a 

1.5 layer reduced gravity ocean model to idealized TC forcing did simulate the 

rightward bias in the current response (Behera et al., 1998, Deo et al., 2006). The pre-
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storm vertical temperature gradient was also found to strongly modulate the TC oceanic 

response (Deo et al., 2006a, 2006b, 2012). The southward heat transport and reduced 

downward net heat flux associated to two consecutives TCs have also been shown to 

contribute to the OHC reduction within the BoB (Wang et al., 2012a, 2012b). Wang et 

al (2014) used the same OGCM to simulate the SST cooling under the two TC cases in 

the BoB and studied the individual ocean response to TCs forcing. Case studies of the 

ocean response to TCs in an OGCM suggest that turbulent mixing and upwelling were 

the main drivers of the heat content redistribution and temperature cooling over the 

upper ocean. The use of more realistic TC wind forcing in an OGCM also considerably 

improves the SST cooling simulated by OGCMs (Das et al., 2014). Conclusion from the 

above-mentioned studies largely rely on the analysis of the modelled oceanic response 

to a limited number of TCs. The conclusions drawn from these studies may hence not 

be representative of all BoB TCs. 

 

1.5.4 Influence of air-sea coupling on NIO TCs  

Observations. Only a few studies attempted to quantify the impact of air-coupling on 

TCs characteristics in the northern Indian Ocean from observations. Based on the 

analysis of satellite measurements of three TCs, (Subrahmanyam, 2005) suggested that 

BoB salinity stratification and AS thermal stratification could affect TC tracks. 

Observations further suggest that northern Indian Ocean barrier layer could 

considerably affect the TC intensification rate (Balaguru et al., 2012), with a ~50% 

increase in the TC intensification rate over regions where barrier layers were present. 

High SST and OHC combined with strong stratification also appears to strongly 

contribute to the intensification of strong TCs in the western BoB (Venkatesan et al., 

2014). As in other regions of the world, satellite analysis suggest that warm core eddies 
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could promote TC intensification in the BoB (Ali et al., 2007, Sadhuram et al., 2012). 

Despite these observational suggestions that air-sea coupling may strongly influence 

TCs characteristics in the BoB, there is to date no specific study quantifying this 

influence using dynamical models.  

  

1.5.5 TCs forecasts  

The India Meteorological Department (IMD) is the agency responsible for official TC 

track and intensity forecasts for the northern Indian Ocean. TC intensity forecasts are 

issued by analysing the numerical weather predictions from different international 

agencies and statistical models (Kotal et al., 2008) implemented at IMD (Mohapatra et 

al., 2013). A review of the intensity forecast for the TCs that occurred during 2005-2011 

period in northern Indian Ocean show that the average absolute intensity errors (with 

respect to persistence) were about 11, 14 and 20 knots for 24, 48 and 72 hours forecast 

lead times respectively (Figure 1.26), which amounts to predictive skill of 44%, 60% 

and 60% at these forecast lead hours. Errors are relatively larger for stronger category 

TCs (Figure 1.27), probably because the models inability to predicting rapidly 

intensifying TCs.  

 

Figure 1.26: Average lead time TC intensity forecast errors for TCs over AS, BoB and 
NIO (Mohapatra et al., 2013). 
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Figure 1.27: Average official intensity forecast errors for strong and weak TCs over a 
period of 2009-11 in NIO (Mohapatra et al., 2013). 
 

 

1.6 Aim and objectives of the thesis  

While several statistical (e.g. Mainelli et al., 2008) and coupled model-based (e.g. 

Jullien et al., 2014) studies have already addressed the influence of ocean-atmosphere 

coupling on TCs characteristics in the Atlantic and Pacific, this topic has not been much 

investigated in the northern IO. The tremendous human and socio-economical 

consequences of these extreme events as well as the specificity of the hydrography of 

the BoB, which leads to a very strong salinity stratification in the post-monsoon season, 

urge to an in-depth investigation of the influence of ocean-atmosphere coupling on TCs 

characteristics in this region, through the use of both statistical and dynamical 

modelling. 
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More precisely, this research focusses on the following three major objectives: 

 

• Identifying the specific impact of the haline stratification on oceanic TC-

induced response in the Bay using a forced ocean model: Only a few 

observationally based case studies have addressed interactions between tropical 

cyclones and the upper ocean in the Bay of Bengal (e.g. Sengupta et al., 2008, 

Vinayachadran and Mathew, 2003). Based on the case study of eight TCs, 

Sengupta et al. (2008) suggest that the weak observed surface cooling after the 

monsoon in the BoB is due to haline stratification. This small sample prevented 

a quantitative estimate of the respective influence of haline and thermal 

stratification and TCs winds intensity on the amplitude of the surface ocean 

response to TCs. This first objective of this PhD is hence to analyze a much 

larger sample derived from an ocean simulation forced by a realistic TCs wind 

forcing over the 1978-2007 period. This simulation hence provides a relatively 

large sample consisting of the simulated oceanic response to 135 TCs over a 30 

years period.  

 

• Quantifying and understanding the feedback of this TC-induced cooling on 

the IO TCs characteristics by using a regional high resolution coupled 

model: The investigation of the role of air-sea coupling on TCs using long 

three-dimensional coupled ocean-atmosphere model simulations has only be 

performed in the Atlantic and Pacific basins to date (e.g. Bender and Ginis, 

2000; Jullien et al., 2014; Ogata et al., 2015). The second objective of this PhD 

is hence to investigating the role of ocean-atmosphere interactions on TCs 
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characteristics in this basin. I will benefit from the recent development of a 25-

km resolution regional coupled ocean-atmosphere model for the IO, which is 

able to reasonably reproduce the cyclonic activity and its related ocean-

atmosphere interactions. To isolate the role of the oceanic feedback onto TCs 

characteristics, I will compare TCs statistics from two twenty year-long 

experiments (a reference coupled experiment and forced atmospheric 

experiment with no air-sea coupling) to provide a reliable statistical assessment 

of the air-sea coupling impact on IO TCs.  

 

• Quantifying the influence of air-sea coupling on TCs characteristics in the 

Bay of Bengal using statistical TC intensity forecast models: A commonly 

used metric of the TC sensitivity to the ocean subsurface structure is the TC heat 

potential, a measure of the heat content between the sea surface and the depth of 

the 26°C isotherm (e.g. Goni and Trinanes, 2003). The inclusion of this heat 

potential as an additional predictor in the widely used linear statistical prediction 

models of TCs intensity in Atlantic and Pacific oceans only resulted in a very 

modest skill improvement (DeMaria et al., 2005; Mainelli et al., 2008). This 

prompted several authors to propose better-suited metrics of air-sea interactions 

under TCs, such as the physically based cooling inhibition index proposed by 

Vincent et al. (2012b). While a linear statistical TC intensity forecast model has 

been developed for the Bay of Bengal (Kotal et al., 2008), the improvement 

brought by including subsurface oceanic information has not yet been quantified. 

Owing to the non-linear nature of the relationship between oceanic parameters 

and TC intensification rate, the last objectives of this PhD are hence to assess 

the additional skill yielded 1) by using non-linear statistical schemes (artificial 
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neural network or support vector machine) instead of the commonly used linear 

regression models and 2) by including physically-based oceanic subsurface 

information in the model predictors, with a particular focus on the northern IO. 
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Chapter 2 Sea Surface temperature response to tropical cyclones in 

  the Bay of Bengal 

 

2.1 Introduction 

Previous studies suggest that the seasonal stratification changes modulate the amplitude 

of TC-induced surface cooling in BoB. Indeed, SST cooling underneath TCs is larger 

during pre-monsoon (~2-3°C; Gopalakrishna et al., 1993; Rao, 1987; Sengupta et al., 

2008) than during post-monsoon season in the BoB (~0.5°C-1°C; Chinthalu el al., 2001; 

Sengupta et al., 2008; Subrahmanyam et al., 2005). From oceanic observations for 

individual case studies, Sengupta et al. (2008) suggested that the weaker observed 

surface cooling during the post-monsoon season results from the presence of the barrier 

layer (BL) that prevents entrainment of cold water into the mixed layer. These findings 

led the authors to speculate that freshwater from monsoon rain and river runoff may 

influence TCs intensity in the BoB. 

The aforementioned study relies on a restricted number of TCs (eight) and CTD data 

over a short period (October 2003), which prevented the authors to provide a 

quantitative estimate of the respective influences of the seasonal changes in haline and 

thermal stratification on the differences in TC-induced cooling amplitude between the 

two seasons. In the present study, we address this issue using a much larger sample. 

This is made possible by the use of Vincent at al. (2012a) global ocean simulation 

which includes TC wind forcing prescribed from an analytical vortex fitted to observed 

TC tracks and intensities over the 1978-2007 period. This simulation captures 

reasonably well the main characteristics of TC-induced surface cooling at the global 

scale (Vincent et al., 2012a). Our approach hence provides a relatively large sample 

consisting of the simulated oceanic response to 135 TCs over a 30-year period in the 
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BoB. While Vincent et al. (2012b) discusses the sensitivity of TC-induced cooling 

amplitude to the pre-cyclone stratification at global scale, it neither discusses regional 

aspects nor the potential salinity contribution to the upper-ocean stratification. The 

present study hence allows investigating TCs surface response in a region where salinity 

stratification is known to be particularly strong and has hence been suggested to 

influence to TC-induced cooling amplitude. 

The chapter is organized as follows. Section 2.2 briefly describes the observational 

datasets as well as numerical strategy. Section 2.3 validates the model climatology and 

cold wake characteristics for the pre-monsoon and post-monsoon seasons. We then 

analyze and relate differences in TC-induced cooling between the two seasons to the 

thermohaline stratification in Section 2.4 and further quantify the respective 

contribution of temperature and salinity stratification to the TC-induced cooling 

amplitude. The final section provides a summary of the results and a discussion of their 

implications. 

 

2.2 Data and methods 

2.2.1 Observed datasets 

The observed datasets used in the present study are listed in Table 2.1. We use the 

temperature and salinity of the North Indian Ocean Atlas (NIOA; Chatterjee et al., 

2012) to validate the model (discussed in section 2.2.2) climatological thermohaline 

structure in the BoB. This monthly climatology of 1° x 1° spatial resolution uses all the 

data accounted for in the World Ocean Atlas 2009 (Locarnini et al., 2010; Antonov et 

al., 2010), but adds a considerable amount of data from Indian sources, especially 

within the Indian Exclusive Economic Zone. This addition improves considerably the 

climatology in the BoB compared to the WOA, especially along its western boundary 
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(Chatterjee et al., 2012). We also validate the simulated mixed layer depth (MLD) and 

BL thickness (BLT) to the updated MLD climatology and BLT climatology of de Boyer 

Montégut et al. (2004, 2007b), which now includes ARGO profiles until September 

2008.  

The 0.25° x 0.25° spatial resolution daily SST derived from the blended Tropical 

Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Advanced 

Microwave Scanning Radiometer (AMSR-E) (downloaded from 

http://www.ssmi.com/sst/microwave_oi_sst_data_description.html) is used in the 

analysis. This dataset is used to describe the SST response to TCs over the period of 

1998-2007 in the observations and for the validation of model simulated SST response 

to TCs. Though TMI/AMSR-E is unable to retrieve SST under heavy rainfall conditions, 

it is still advantageous to use this data due to its insensitivity to atmospheric water vapor 

(Wentz et al., 2000). It provides the accurate SST observations below the clouds, a few 

days before and after the storm passage. The inner-core cooling (i.e. cooling underneath 

the eye) cannot be assessed confidently with TMI-AMSR-E, since data are most of the 

time missing within 400 km of the current TC position. This dataset provides a 

consistently good estimate of SST cooling under the tracks of TCs, generally data being 

available just one or two days after the cyclone passage. 

Observed TC location and maximun wind intensity are derived from the International 

Best Track Archive for Climate Stewardship (IBTrACS; Knapp et al., 2010). Here, we 

focus on global satellite coverage period 1978-2007, over which the location and 

estimated magnitude of wind speed is available at six hourly basis for more than three 

thousand TCs. worldwide (135 in the BoB). To define the pre-monsoon and the post-

monsoon seasons, we consider the months when at least five TCs occurred during the 

1978-2007 period. May-June will then be considered as the pre-monsoon season and 
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September-October-November-December as the post-monsoon season. It should 

however be noted we defined those periods based on cyclonic seasons rather than 

traditional monsoon (the months of June and September being usually encompassed 

within the monsoon period (Wang et al., 2009)). 

 

Table 2.1: Data used in the study. 

 

2.2.2 Model description and setup 

The model configuration and strategy to include TC forcing have been previously 

described in Vincent et al. (2012a). The following section provides a short summary of 

this modeling framework. 

 Global ½° ocean model configuration (known as ORCA05, Biastoch et al., 2008) built 

from the NEMO (Nucleus of European Model of the Ocean, version 3.2; Madec, 2008), 

with 46 vertical levels (higher resulotion in the upper layers; upper 100 m depth with 10 

vertical levels and 250 m resolution at deeper depths) is used in the present study. This 

configuration includes the latest version of mixed layer dynamics: a Turbulent Kinetic 

Energy (TKE) closure scheme (Blanke and Delecluse, 1993) improved by including the 

effect of Langmuir cells and incorporating surface wave breaking parameterization 

S.#No.# Parameter# Description#
1! SST! Blended TRMM/TMI and AMSR-E daily SST  

 
2! Temperature!

and!Salinity!
climatology!

North Indian Ocean Atlas (NIOA; Chatterjee et al., 
2012)!

3! Mixed Layer 
Depth and Barrier 
Layer Thickness 
climatology!

de Boyer Montégut et al. (2004, 2007b), !

4! Tropical!cyclone!
position!and!
intensity!

IBTrACS dataset (Knapp et al., 2010). !
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(Axell, 2002; Mellor and Blumberg, 2004). This scheme also uses energetically 

consistent time and space discretization (Burchard, 2002; Marsaleix et al., 2008). This 

configuration successfully reproduces Indo-Pacific ocean variability from intra-seasonal 

to decadal time scales (Penduff et al., 2010; Lengaigne et al., 2012, Keerthi et al., 2013; 

Nidheesh et al., 2013) as well as the local SST response to TC winds forcing (Vincent et 

al., 2012a).  

In this model, the MLD is defined as the depth where the vertical density increases by 

0.01 kg.m-3 as compared to water density at the surface. The various terms, which 

contribute to the heat budget of the mixed layer (ML), are calculated online in the 

model. In the model, the ML temperature evolution equation reads: 

    

  

 

 

where T is the model simulated temperature in the ML and h is the time varying MLD. 

Ocean currents in (x, y, z) directions are denoted by (u, v, w). Dl(T) and k are the lateral 

diffusion parameter and the vertical diffusivity coefficient respectively. Brackets denote 

the vertical average over the mixed layer h. The term (a) is the advection term and is 

denoted as ADV. The term (b) the lateral diffusion term and is neglected in the cold 

wake of TCs. The terms (c) and (d) are the entrainment/detrainment and the vertical 

diffusion flux at the mixed layer base respectively. The terms (c) and (d) are combined 

together and denoted as vertical processes term MIX. The term (e) denotes the heat flux 

stored in the mixed layer.  In this term, Qs represents the solar heat flux, Q*, the non-

solar heat fluxes, which include sensible, latent, radiative heat fluxes, and F(z=h), the 

fraction of solar irradiance that penetrates below the mixed layer. The term (e) is the 
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surface forcing term and is denoted as FOR. As in Vincent et al. (2012a), this heat 

budget calculation will be used to quantify the contribution of various processes to the 

TC-induced cooling amplitude.  To quantify the relative contribution of all processes to 

the cooling magnitude, each term of the ML heat budget is integrated starting 10 days 

prior to TC passage. 

The CORE II forcing dataset developed under “coordinated ocean-ice reference 

experiments (COREs)” program is used as surface boundary conditions for the model 

simulations (Griffies et al., 2009). This atmospheric datasets and formulations presented 

by Large and Yeager (2009) are based on NCEP/NCAR reanalysis for near surface 

wind, temperature, specific humidity and density, combined with a variety of satellite 

datasets for radiation, SST, sea-ice concentration and precipitation. Turbulent fluxes are 

computed from bulk formulae as a function of the prescribed near surface atmospheric 

state and the simulated ocean surface state (SST and surface currents). Data are 

provided at six-hourly (wind speed, humidity and atmospheric temperature), daily 

(short- and long-wave radiation) and monthly (precipitation) resolution, with 

interannual variability over the 1978–2007 period except for river runoff that remains 

climatological (Fekete et al., 1999). The sea surface salinity is restored to monthly 

climatology with a times-cale of 300 days (for a 50m-thick mixed layer) to avoid the 

model drift (Griffies et al., 2009). The large nudging timescale compared to the typical 

response time to a TC allows simulating a realistic climatological haline stratification, a 

key feature to study the TCs ocean response in the Bay, without significantly affecting 

the salinity stratification at the timescale of TCs (a few days). The model is initialised at 

rest with World Ocean Atlas 2005 temperature and salinity data (Locarnini et al., 2006; 

Antonov et al., 2006). It is then integrated for a 30-year period for spin-up using the 

COREII bulk formulae and interannual forcing dataset (1948-1977) (Large and Yeager, 
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2009; Griffies et al., 2009). The final state is then used to start the simulations described 

below (which are run over 1978-2007). 

The NCEP/NCAR reanalysis used as wind forcing in the original COREII dataset has a 

coarse horizontal resolution (~ 2°), insufficient to resolve the spatial scale of TCs that 

typically display radius of maximum wind of ~50km (Kikuchi et al., 2009). This dataset 

hence only contains weak TC-like vortices and cannot directly be used to investigate the 

model response to TCs, as shown by Vincent et al. (2012a). To include a more realistic 

TC wind forcing, a cyclone-free forcing is first prepared from the original interannual 

CORE forcing by filtering these weak TC wind signatures. These weak TC vortices are 

removed by applying a 11-day running mean (the maximum time of influence of a TC 

at a given point) to the original wind forcing components, within 600km around each 

cyclone track position. Then winds were linealy interpolated from filtered to unfiltered 

winds between 600km and 1200km (the maximum radius of influence for TCs winds) 

for smooth transition. Then realistic TC-wind signatures superimposed on the filtered 

forcing were used to force the model. The 6-hourly cyclone position and magnitude 

from IBTrACS database (Knapp et al., 2010) are linearly interpolated to the model 

timestep (i.e. every 36 minutes). This information is used to reconstruct the 10-m wind 

vector from an idealized TC wind vortex fitted to observations (Willoughby et al., 2006; 

see their Figure 2 for resulting analytical wind profile). This procedure results in a 

simulation where TC wind magnitude and structure is more realistic than in the COREII 

original forcing (see Figure 1 in Vincent et al., 2012a). A more detailed description of 

this forcing strategy can be found in Vincent et al. (2012a), together with a model 

validation at global scale. Vincent et al. (2012c) further showed that the ½° resolution is 

a good compromise between accuracy and numerical cost for a realistic global 

simulation of the ocean response to TCs: compared to a 1/12° grid, a ½° resolution 
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provides very similar results in terms of TC power dissipation, a good proxy for TC-

induced vertical mixing, while slightly underestimating the TC wind-driven upwelling.  

 

2.2.3  Methodology to monitor the ocean response 

To characterize the ocean response to TCs, the mean SST seasonal cycle is first 

subtracted from model and TMI-AMSR-E observations. This mean seasonal cycle is 

calculated over the 1998-2007 when comparing model results to observations (Figures 

2.6 and 2.7) and over 1978-2007 when model results are extended over the entire 

available period (Figure 2.8 onwards). TC track postions are then used to extract the 

ocean response to TCs. To characterize the cooling amplitude, average SST anomalies 

within a radius of 200 km around each TC track locations are used. This radius has been 

choosen corresponding to the area where SST has an influence on TC intensity (Cione 

and Uhlhorn, 2003; Schade, 2000).  

Following the approach of Vincent et al. (2012ab), the reference unperturbed pre-storm 

SST condition (SST0) is defined as the 1 week average SST before the storm passage 

(i.e. from -10 to -3 days) and the SST in the wake of the storm (SSTCW) is defined as the 

3-day average starting 1 day after the storm passage (i.e. from 1 to 3 days). The SST 

cooling amplitude in the cold wake (ΔTCW = SSTCW - SST0) describes the amplitude of 

SST response.  We will see in section 2.3 and specifically from Figure 2.6 that these 

choices for temporal averaging are justified by our observational and modelling results.  

As in Vincent et al. (2012b), we use two variables to examine the TC wind forcing 

magnitude and the impact of pre-storm subsurface oceanic conditions. WPi denotes the 

strength of the TC wind forcing and is discussed is section 1.3.2.  WPi represents the 

amount of kinetic energy available for mixing under the TC (Vincent et al., 2012b). As 

surface cooling largely results from mixing caused by vertical shear of oceanic currents 
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(Price, 1981; Vincent et al., 2012a), WPi is hence a pertinent variable to describe it. 

Vincent et al. (2012b) have shown that the mean cooling underneath a TC increases 

nearly linearly with WPi but demonstrated that the cooling magnitude also depends on 

ocean background conditions. In addition to this atmospheric variable, hence an oceanic 

variable, the CI, discussed in section 1.3.2, which characterizes the ocean background 

conditions control of the cooling amplitude, has been used. The CI is computed from 

both temperature and salinity profiles and therefore accounts for the intensity of the 

haline stratification, including BL effect in its calculation. 

Vincent et al. (2012b) earlier showed that SST variations under TCs in our simulation 

are largely a function of WPi and CI, with CI modulating the cooling amplitude by up 

to an order of magnitude for a given WPi. The dependence of the cooling amplitude on 

both WPi and CI for the specific case of the BoB is further illustrated on Figure 2.1a 

where the average cooling amplitude underneath TCs conditions in the Bay is binned as 

a function of WPi and CI. The average cooling increases as a function of WPi  and 

decreases as a function of CI. Large cooling (>2°C) only occurs in the BoB when 

powerful TCs (WPi>2.5) travel over favourable oceanic conditions (CI<20). As shown 

on Figure 2.1b, this dependence of the cooling amplitude on CI and WPi can be 

reasonably well approximated by a 2nd order polynomial least-square function. This 

least-square fit will be used in Section 2.4 to hindcast the simulated cooling in the BoB 

and assess the respective contribution of thermal and haline stratification to TC-induced 

cooling amplitude.  
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Figure 2.1: (Left panel) Average TC-induced cooling in the model in the BoB, as a 
function of the WPi (a proxy of the TC-energy input to the upper ocean) (9 bins of 0.3) 
and CI (a proxy of the inhibition of the cooling by the ocean stratification) (9 bins of 3) 
(Right panel) Best fit of the model cooling using degree 2 polynomial. 
 

 

2.3.  Model validation 

Figure 2.2 compares the model climatological sea surface salinity (SSS) with 

observational SSS for pre-monsoon and post-monsoon seasons in the Northern Indian 

Ocean. In observations, high salinities characterize the Arabian Sea, due to the excess of 

evaporation over precipitation (Rao and Sivakumar, 2002) and proximity to two high-

salinity seas, namely the Red Sea and the Persian Gulf. On the other hand, the BoB 

exhibits a large excess of precipitation over evaporation (Harenduprakash and Mitra, 

1988; Prasad, 1997). Low salinity water fills the entire bay throughout the year, with 

freshest water along the coast adjacent to the major river mouths (Ganga, Brahmaputra, 

and Irrawadi). This results in a very large meridional salinity gradient, with very low 

salinity in the northern and eastern BoB and higher salinity in the southwestern BoB. 

Huge river runoff and excess precipitation over evaporation during summer monsoon 

lead to a post-monsoon near-surface salinity minimum of less than 28 psu in the 
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Figure 2.2: Climatological SSS (in psu; color) and BLT (in meters, grey contours) for 
pre-monsoon (left panels) and post-monsoon (middle panels) seasons and their 
difference (right panels) derived from observed SSS climatology of Chatterjee et al. 
[2011] and BLT climatology of de Boyer-Montegut et al.[2004] (upper panels) and 
model (lower panels). The thick contour delineates the region where 80% of TCs occur 
in the northern Indian Ocean (i.e., where TCs density is larger than 0.4 TCs per year in 
2° by 2° bins). Dashed colored boxes on panel (c) highlight the regions of the BoB 
discussed in Table 2.2 (Red : North-East BoB, Green : East Indian Coast, Blue : 
Southwest BoB). The black dashed line indicate the temperature and salinity section at 
90°E shown on Figure 2.4. 
 

 

northern part of the Bay (Figure 2.2b), 3 psu fresher than during the pre-monsoon 

season (Figure 2.2a). These regional patterns and seasonal features are reasonably well 

reproduced by the model (Figure 2.2de). The freshening of the Northern Bay may 

however be underestimated away from the coast during the post-monsoon season by 

~1 psu (Figure 2.2cf, Table 2.2), although observational estimates in this region may not 

be reliable due to the scarcity of available observations. If real, this underestimation 

may arise from inaccurate runoffs and precipitation forcing or from the rather coarse ½° 

resolution of the model that may not allow exporting enough coastal freshwater offshore.  
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ΔSSS#(psu)#
ΔHSST82oC#
(m)#

ΔBLT#(m)# ΔCI#(J/m2)1/3#
Regions#

OBS# MOD# OBS# MOD# OBS# MOD# OBS# MOD#

North8East#BoB# ?2.2! ?1.3! 13.0! 15.6! 14.3! 11.9! 8.4! 9.0!

South8West#BoB# ?0.2! 0.0! ?6.6! ?1.8! 6.3! 2.4! ?1.4! ?0.9!

East#Indian#Coast# ?1.5! ?1.0! 4.0! 14.0! 9.8! 8.8! 3.6! 5.0!

 
Table 2.2: Average observed and modeled differences between post-monsoon and 
pre-monsoon seasons for SSS, HSST-2°C, BLT and CI in the regions displayed as 
colored dashed squares on Figures 3, 4 and 6: North-East  (85°E-95°E, 16°N-22°N), 
South-West (81°E-85°E, 9°N-14°N) and East Indian Coast (81°E-85°E, 14°N-20°N).  

 

 

These low SSS in the BoB during post-monsoon season are associated with the 

development of a BL along the northern rim of the Bay, especially in the eastern part of 

the basin and along the eastern coast of India (Figure 2.2ab; contour), in agreement with 

the observational analysis of Thadathil et al. (2007). These BL are almost absent during 

the pre-monsoon season, except in the eastern part of the Bay where TCs hardly occur 

(thick contour on Figure 2.2). The model is also able to represent this seasonal contrast 

albeit with an underestimation of the BL spatial extent in the central and southwestern 

part of the Bay during post-monsoon season (Figure 2.2def, Table 2.2). 

The near surface thermal stratification is diagnosed in the model and observations by 

calculating the depth at which ocean temperature is 2°C below the surface temperature 

(HSST-2°C), a measure first proposed by Lloyd and Vecchi (2011). The larger this depth 

the more difficult it is for a given TC to cool the ocean surface: it is thus an appropriate 

measure to validate the ocean thermal stratification in relation to TC response. Figure 

2.3 compares the model climatological HSST-2°C with observational estimates for pre-

monsoon and post-monsoon seasons in the Northern Indian Ocean, as well as the 

difference between the two seasons. Observations indicate that HSST-2°C is relatively 

homogeneous in the Bay during the pre-monsoon season (Figure 2.3a), but displays a 
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clear east/west contrast during the post-monsoon season (Figure 2.3b). The upper-ocean 

stratification deepens by 20 to 30m in the northeastern part of the Bay as well as by 

~10m along the eastern coast of India (Figure 2.3c; Table 2.2). In contrast, the upper-

ocean stratification shoals by ~5-10m in the southwestern part of the Bay. Seasonal 

HSST-2°C changes generally agree between model and observations (Figure 2.3c and 2.3f; 

Table 2.2). The model however underestimates the depth of the upper-ocean 

stratification in the BoB during both seasons (Figure 2.3de).  

 

Figure 2.3: Climatological depth at which the ocean temperature is 2°C below the 
surface temperature (in meters) for pre-monsoon (left panels) and post-monsoon 
(middle panels) seasons, and their difference (right panels) derived from de Boyer-
Montegut et al. (2004) climatology (upper panels) and the model (lower panels). The 
thick contour delineates the region where 80% of TCs occur in the northern Indian 
Ocean (i.e., where TCs density is larger than 0.4 TCs per year in 2° by 2° bins) while 
dashed colored boxes on panel (a) highlight the regions of the BoB discussed in Table 
2.2 (Red : North-East BoB, Green : East Indian Coast, Blue : Southwest BoB). The 
black dashed line indicate the temperature and salinity section at 90°E shown on 
Figure 2.4. 
 

Longitudinal sections in the Bay (Figure 2.4ab) and vertical profile of climatological 

salinity and temperature north of 15°N (Figure 2.4c) further allow contrasting the 

thermohaline structure during pre-monsoon and post-monsoon seasons. Compared to 

pre-monsoon season, post-monsoon season displays much larger salinity stratification in 

the northern part of the Bay in the upper 40 m (~0.1 psu.m-1 against ~0.03 psu.m-1 
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before the monsoon). While the SST during the pre-monsoon season is higher than 

29°C, the SST drops by ~1°C during the post-monsoon season, explaining the deeper 

MLD and upper-ocean thermal stratification discussed on Figure 2.2 and 2.3. Once 

again, the model simulates the contrast between these two seasons reasonably well, both 

in terms of temperature and salinity stratification (Figure 2.4def). 

 

#
 
Figure 2.4: Latitude-depth section (at 90°E) of observed climatological salinity (in 
psu; color) and temperature (in °C; contour) in BoB during (a) pre-monsoon and (b) 
post-monsoon seasons. (c) Observed temperature (red) and salinity (blue) profiles 
averaged in the BoB north of 15°N for pre-monsoon (plain line) and post-monsoon 
(dashed line) seasons. (d-f) Same for model outputs. 

 

 

Figure 2.5 shows the CI calculated from model and observations during pre-monsoon 

and post-monsoon seasons, as well as the difference between the two seasons. This 

measure also allows validating the relevant ocean stratification for the response to TCs 

(Vincent et al., 2012b), which (contrary to HSST-2°C) integrates the effect of salinity 

stratification. Observations indicate that the CI index is relatively homogeneous during 

the pre-monsoon season in the Bay (Figure 2.5a), but displays a very strong 

northeast/southwest contrast during the post-monsoon season (Figure 2.5b). The 
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northern and eastern part of the Bay as well as the eastern coast of India display the 

largest CI changes (Figure 2.5c, Table 2.2), corresponding to a ~20 to 30% CI increase 

(Figure 2.5). In contrast, the southwestern part of the Bay exhibits opposite seasonal 

changes, with a ~10% CI reduction off shore of Tamil Nadu and north of Sri Lanka.  

 

 

Figure 2.5: Climatological cooling inhibition index (CI; in (J.m-2)-1/3) for pre-monsoon 
(left column) and post-monsoon (middle column) seasons, and their difference (right 
column) using observations (upper panels) and the model (lower panels). The thick 
contour delineates the region where 80% of TCs occur in the northern Indian Ocean 
(i.e., where TCs density is larger than 0.4 TCs per year in 2° by 2° bins) while dashed 
colored boxes on panel (a) highlight the regions of the BoB discussed in Table 2.2 
(Red : North-East BoB, Green : East Indian Coast, Blue : Southwest BoB). The black 
dashed line indicate the temperature and salinity section at 90°E shown on Figure 2.4. 
 

 

Seasonal CI changes estimated from model outputs generally agree qualitatively with 

those inferred from the observed climatology (Figure 2.5c and f, Table 2.2). The 

physical meaning of this pattern follows: the deeper thermal stratification (Figures 2.3 

and 2.4) resulting from the cooler SST and strong near surface salinity gradient in the 

northern part of the Bay (Figures 2.2 and 2.4) result in a stronger oceanic inhibition of 

vertical mixing-driven cooling during the post-monsoon season, compared to the pre-
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monsoon season. A given TC is hence likely to induce a weaker cooling during the 

post-monsoon season, especially in the northeastern part of the Bay and along the 

eastern Indian coastline. The model underestimates the CI in the BoB during both 

seasons (Figure 2.5de) but displays similar seasonal change (Figure 2.5f and Table 2.2).  

 

 

Figure 2.6: Composite evolution of TC-induced SST cooling within 200 km of TC-
tracks in the BoB (in °C) during pre-monsoon (left) and post-monsoon (right) seasons 
for observations (black line) and the model over the 1998-2007 (thick orange line) and 
the model over the 1978-2007 periods (thin orange line). The upper and lower 
quartiles are shown as vertical bars (black for the observations and orange for the 
model). These quartiles are not shown for the model results over the 1978-2007 period 
for clarity. 

 

 

Figure 2.6 provides a first illustration of the potential impact of this seasonal change in 

stratification on TC-induced cooling. The composite TC-induced surface cooling 

amplitude derived from satellite observations over the 1998-2007 period is larger during 

pre-monsoon (~ 0.9°C; Figure 2.6a) than during post-monsoon (~ 0.4°C; Figure 2.6b) 

season in the BoB. Largest cooling usually occurs ~2-3 days after the cyclone passage 

and recedes within ~20 days. However, after the passage of storm the average SST 

remains 0.1-0.4°C colder than SSTs before the passage of storm. Lloyd and Vecchi 

(2011) earlier noticed this phenomenon. The model accurately reproduces both the 

amplitude and timing of the TC induced SST cooling, before and after the monsoon, 
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although with a slightly overestimated cooling (Figure 2.6). The above results agree 

well with previous observations underneath individual TCs in the BoB, with larger 

cooling during pre-monsoon season (Gopalakrishna et al., 1993; Rao 1987; Sengupta et 

al., 2008) than during post-monsoon season (Chinthalu et al., 2001; Sengupta et al., 

2008; Subrahmanyam et al., 2005). The mean wind power over the cyclone tracks does 

not differ much between the pre-monsoon and post-monsoon seasons (WPi: 1.62 

against 1.68; Figure 2.6). The distribution of WPi for both  

 

 

Figure 2.7: Probability density function in the BoB for pre-monsoon (black line) and 
post-monsoon seasons (orange line) of the TC-related distributions of (a) observed TC-
induced SST cooling (bin size: 0.2°C), (b) modeled TC-induced SST cooling (bin size: 
0.2°C), (c) WPi (bin size: 0.2) and (d) CI (bin size: 1) over the 1998-2007 period. The 
number of cases on panel (c) represents the number of cooling locations, sampled every 
six hours along the TCs tracks. The grey (resp. green) line on panel (d) indicate the pre 
monsoon (resp. post monsoon) CI calculated with a constant salinity profile (CIS0) of 
33.85 psu (averaged salinity in the BoB in post-monsoon season within the upper 200 
m). Vertical lines on each panel indicate the mean value for pre-monsoon (black lines) 
and post-monsoon season (orange lines). The grey (green) vertical lines on panel (d) 
indicate the mean value for pre-monsoon (post-monsoon) CIS0. 

 

 



! 73!

seasons is further displayed on Figure 2.7c: the two distributions are very much alike 

with mean values (vertical lines) having very similar values in the two cases. In contrast, 

the TC-induced cooling distributions are significantly different with a weaker mean 

during the post-monsoon seasons and most intense observed cooling (up to -2.5°C-3°C) 

occurring only during the pre-monsoon season for observations (Figure 2.7a). The 

modelled cooling exhibits a similar behaviour (Figure 2.7b), although the mean for the 

pre-monsoon season is overestimated by 10 to 20% as compared to observations. This 

overestimation is likely related to the underestimation of the climatological CI (see 

Figure 2.5). The weak differences in WPi (i.e. in TC mechanical energy transfer to the 

ocean) between the two seasons are a first indication that ocean stratification is the main 

responsible for differences in cooling amplitude. 

 

2.4 Processes controlling differences in pre-monsoon and post-

monsoon TC cooling  

In the previous section, we only used model results from the satellite period (1998-

2007) to allow a fair comparison with observations. The results discussed in the 

previous section remain true over the full 1978-2007 model simulation period: a weaker 

cooling is simulated during the post-monsoon compared to the pre-monsoon season 

over the 1978-2007 period, while the wind power remains very similar. In this section, 

we hence analyse the model response to 135 TCs in the BoB over the 1978-2007 period, 

in order to obtain a larger sample and a higher statistical significance.  

Figure 2.8 exhibits the probability density functions of TC-induced SST cooling as a 

function of WPi for the pre-monsoon and post-monsoon seasons. These two 

distributions are strikingly different: the slope of the median cooling amplitude against 

WPi is about three times smaller during the post-monsoon season than during the pre-
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monsoon season (0.28°C against 0.80°C). This result demonstrates that, for a given 

wind power input, the resulting cooling is on average 3 times smaller during the post-

monsoon season. Differences in oceanic stratification underneath TCs between the two 

seasons are further demonstrated by displaying histograms of the CI (Figure 2.7d). The 

 

 

Figure 2.8: Two-dimensional distribution of TC-induced SST cooling (in °C) versus 
WPi in the model over the entire period (1978-2007) for (a) pre-monsoon and (b) post-
monsoon seasons. The thick black line indicates the average of the cooling distribution 
for a given WPi, the white line is a linear fit of the black line, and the vertical black bars 
indicate the upper and lower quartile of the cooling distribution for a given WPi. The 
slope of the linear fit is also reported on each panel. The average cooling (in °C) as a 
function of WPi for different CI (in (J.m-2)-1/3) ranges (CI<18, 18<CI<24, 24<CI<30, 
CI>30) during (a) pre-monsoon and (b) post-monsoon seasons is indicated with colored 
lines. Results for the two upper CI ranges (24<CI<30 and CI>30) are not displayed 
during pre-monsoon season due to the lack of oceanic profiles with such CIs at this time 
of the year. Vertical color bars indicate the upper and lower quartiles of the cooling 
distribution for a given WPi, for each range of CI. The slope of the linear fit of each 
curve is reported on each panel. 

 

 

CI distribution is remarkably different between the two seasons, with stronger near-

surface haline stratification and deeper thermal stratification (i.e. stronger CI) during the 

post-monsoon season. The range of CI values under which TCs occur is also larger 

during post-monsoon than during pre-monsoon season. While CI values above 22 are 

hardly found underneath TCs before the monsoon, half of CI values exceed this 
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threshold during the months following the monsoon. The influence of oceanic 

stratification on TC-induced cooling amplitude is further demonstrated by the coloured 

curves on Figure 2.8 that display the average cooling as a function of WPi for four 

different ranges of CI (less than 18, between 18 and 24, between 24 and 30 and greater 

than 30). The influence of CI allows explaining the wide range of possible TC-induced 

cooling amplitudes for a given wind power input and hence the dispersion of TC-

induced cooling during the post-monsoon season seen on Figure 2.8b. When TCs transit 

over waters displaying large CI (greater than 30, i.e. strongly stratified) during the post-

monsoon season, the resulting cooling amplitudes are very weak (regression slope of 

0.04°C). In contrast, cooling amplitudes for TCs that transit over waters with lowest CI 

(less than 18; i.e. weakly stratified) are larger (~0.73°C) and match those simulated 

during pre-monsoon season (slope of 0.86°C) This demonstrates that oceanic 

stratification is a major factor controlling the amplitude of the SST response to a TC in 

the BoB. 

 

 

Figure 2.9: TC-induced mean cooling amplitude (TOT) and the contribution of heat 
fluxes (FOR), vertical mixing (MIX), and advection (ADV) to the total cooling 
amplitude as a function of the WPi for pre-monsoon (left panels) and post-monsoon 
seasons (right panels). Absolute values (resp. relative contribution) of each process to 
the total cooling are shown on the lower (resp. upper) panels.  
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An analysis of the physical processes responsible for the simulated TC-induced cooling 

(Figure 2.9) derived from the online tendency terms equation of the ML temperature 

described in section 2.2.2 provides further evidence on the role of upper-ocean 

stratification in the cooling amplitude difference between the two seasons. The TC-

cooling induced by heat flux (mainly latent) is indeed very similar between the two 

seasons and does not exceed -0.5°C for the strongest TC forcing (WPi>2.5, compare the 

orange curves in Figures 2.9a and b). Advective processes are of secondary importance 

and only slightly contribute to TC-induced cooling for the strongest WPi (i.e. strongest 

cyclones). In contrast, the amplitude of mixing-induced cooling strongly differs 

between the two seasons.  During pre-monsoon, mixing-induced cooling rapidly 

increases with WPi, explaining more than 60% of the TC-induced cooling for WPi 

larger than 1.5. In contrast, mixing-induced cooling is three to four times weaker during 

the post-monsoon season for a given wind power input and never exceeds the amplitude 

of the cooling induced by heat fluxes. This reduced cooling by vertical mixing is largely 

responsible for the reduced TC-induced cooling amplitude for the post-monsoon season 

compared to pre-monsoon season. This tendency terms analysis demonstrates that 

cooling by mixing is weaker during the post monsoon season. This is because the 

stronger upper-ocean stratification opposes a stronger resistance to mixing, hence 

resulting in a lesser entrainment of colder subsurface water. This is one more indication 

that changes in ocean stratification explains most differences in TC-induced cooling 

between the two seasons. 

The oceanic stratification depends on both temperature and salinity. Using the CI, it is 

possible to infer their respective contribution to the total stratification and relate them to 

TC-induced surface cooling differences between the two seasons. Figure 2.7d compares 

the distribution of the CI underneath TCs for the two seasons calculated with a constant 
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salinity profile of 33.85 psu (i.e. the CI recomputed using a fixed salinity of 33.85 psu: 

the average upper 200 m BoB value in post-monsoon season; hereafter CIS0; results are 

not very sensitive to the salinity value used to perform this calculation). This index 

therefore only accounts for thermal stratification effects. The overall CIS0 distribution is 

shifted toward lower values compared to CI (Figure 2.7d); i.e. salinity stratification 

inhibits vertical mixing in the BoB. This is an expected result as salinity strongly 

contributes to upper ocean static stability in the upper BoB (Figure 2.4). The impact of 

salinity on stratification is twice larger during the post-monsoon than during the pre-

monsoon season in the BoB (CI - CIS0 ~2 on average during pre-monsoon season and 

~5 during post-monsoon season). This simple diagnostic illustrates the key role of 

salinity in density stratification of the BoB, especially during the post-monsoon season. 

 

 

Figure 2.10: Post-monsoon minus pre-monsoon Cooling Inhibition index calculated 
with constant salinity profile CIS0 (left column), CI-CIS0 (middle column) and 
percentage of CI seasonal change due to salinity (CI-CIS0)/CI (right column) using 
observations (upper panels) and model outputs (lower panels). The middle column 
indicates the salinity propensity to inhibit cooling underneath TCs (i.e. the right column 
has yellow shading where salinity contributes to diminish TC-induced cooling during 
the post-monsoon season, relative to the pre-monsoon season). The right panels only 
display the salinity contribution for absolute CI seasonal changes larger than 2(J.m-2)-1/3. 
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Figure 2.10 further illustrates the regional distribution of salinity impact on the BoB 

stratification (i.e. differences between CI and CIS0). As displayed on Figure 2.10c, 

salinity seasonal changes mainly affect the CI distribution along the northern rim of the 

BoB, where strongest seasonal changes in haline stratification (Figure 2.2 and 2.4) and 

BLT (Figure 2.2) are observed. Salinity accounts for about half of the seasonal cooling 

inhibition changes in the northeastern part of the Bay along the coast of Myanmar and 

Bangladesh and for a large part of CI increase along the eastern coast of India, offshore 

the state of Andhra Pradesh. On the other hand, temperature changes explain all of CI 

seasonal changes in the southwestern part of the Bay. The model generally reproduces 

these features (Figure 2.10d-f), although it slightly underestimates the relative role of 

haline stratification in the CI changes along the eastern Indian coastline.  

While these results clearly demonstrate the important role played by salinity (ranging 

from less than 0% to more than 80% depending on the considered region), observational 

estimates and model results both indicate a strong contribution from the seasonal 

evolution of the thermal structure to the pre-monsoon and post-monsoon CI contrasts. 

The deepening of the upper thermocline related to the seasonal surface cooling in the 

northern and western part of the BoB (Figures 2.2 and 2.4) acts to increase the CI in 

these regions during post-monsoon season (Figure 2.10be) and contributes up to 80% of 

the seasonal stratification changes (Figure 2.10cf). Typically, because of the surface 

cooling taking place during the monsoon, vertical mixing has to penetrate deeper (down 

to ~50 m) during the post-monsoon season, as compared to the pre-monsoon season 

(down to ~35 m), in order to cool the mixed layer by 2°C (Figure 2.3). While salinity 

and temperature changes act in concert to increase CI after the monsoon along the 

northern rim of the BoB, they oppose each other in the southwestern part. The 
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freshening acts to increase CI while both the SST drop and the modest shoaling of the 

thermal stratification act to decrease CI in this latter region (Figure 2.10). 

 

 

Figure 2.11: Two-dimensional distribution of predicted SST cooling versus simulated 
SST cooling in the BoB over the period 1978-2007. Regression slope and correlation 
between the two datasets is also indicated. 

 

 

Our results clearly indicate that seasonal changes in the vertical haline and thermal 

structure are consistent with differences in TC-induced cooling amplitude between the 

pre-monsoon and post-monsoon seasons. A more quantitative estimate of their 

respective roles can further be obtained by using the least-square fit of the cooling 

amplitude as a function of WPi and CI discussed in Section 2.2.3 to hindcast the 

simulated cooling in the BoB. This approach performs very well, with a 0.84 correlation 

and a 0.98 regression between the amplitudes of the cooling simulated by the model and 

the cooling hindcasted using the least square fit (Figure 2.11). The probability density 

functions of the hindcasted SST cooling as a function of WPi (Figure 2.12a-b) also 

shows a very similar behavior to the SST cooling actually simulated by the model 

(Figure 2.8). The slope of the predicted cooling amplitude against WPi is indeed larger 

during the pre-monsoon season (-0.62°C, compared to -0.70°C for the simulated cooling, 
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Figure 2.8a) than during the post monsoon season (~ -0.28°C for both predicted and 

simulated cooling). The influence of salinity on the cooling amplitude can then be 

assessed from a cooling prediction using CIS0. The cooling slope as a function of WPi 

only increases by ~10% when neglecting haline stratification for pre-monsoon season 

(Figure 2.12a and 2.12c). This suggests a relatively modest role of salinity on the 

amplitude of TC-induced cooling in the pre-monsoon season. In contrast, using CIS0 for  

 

 

Figure 2.12: Two-dimensional distribution of predicted SST cooling with actual T,S 
profiles (top panels) and with constant salinity profile (lower panels) versus WPi during 
pre-monsoon (left column) and post-monsoon seasons (right column) in the BoB. For 
each panel, the thick black line indicates the median of the cooling distribution for a 
given WPi, the vertical bars indicate the upper and lower quartiles of the cooling 
distribution for a given WPi and the white line is linear fit of black line. The slope of 
the linear fit is reported on each panel. 
 

 



! 81!

the post-monsoon period results in a 50% increase of the slope from -0.28°C to -0.41°C, 

and hence in a ~50% increase of the hindcasted mean cooling amplitude (Figure 2.12b 

and 2.12d). In addition, the very weak predicted and simulated TC-induced cooling (-

0.3°C<SST<0.0°C) for moderate WPi (1<WPi<2) do not appear anymore when salinity 

is not accounted for. However, the change of slope due to haline stratification during the 

post-monsoon season (from -0.28°C to -0.41°C; Figure 12bd) only explains 40% of the 

change of slope between post-monsoon and pre-monsoon seasons (from -0.28°C to -

0.62°C; Figure 2.12ab). This indicates that changes in haline stratification are 

responsible on average for ~40% of the cooling reduction between pre-monsoon and the 

post-monsoon seasons, with changes in the thermal stratification explaining the 

remaining 60%. In other words, salinity effects reduce TC-induced cooling by 30% 

during the post-monsoon season. 

 

2.5  Summary and conclusions 

In this study, processes responsible for the smaller amplitude TC-induced surface 

cooling in the BoB during the post-monsoon compared to the pre-monsoon season have 

been investigated. Because detailed observations underneath TCs are scarce, we analyze 

a global ocean model simulation forced by realistic TC winds derived from an analytic 

shape adjusted to observed TC tracks and magnitude over the 1978-2007 period. Our 

approach samples the ocean response to 135 TCs in the BoB over this 30-year period. 

The model exhibits TC-induced SST cooling that is about 3 times larger during the pre-

monsoon than during post-monsoon season, in agreement with observations. 

As discussed by Vincent et al. (2012b), the amplitude of TC cooling is to a large extent 

explained by two parameters: the wind power input of the TC atmospheric forcing and 

the cooling inhibition from background oceanic conditions. TC wind power input does 
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not significantly change between the pre-monsoon and post-monsoon seasons, 

suggesting that seasonal changes in oceanic structure are responsible for larger TC-

induced cooling amplitude during pre-monsoon season. The heavy precipitation and 

river discharge during and following the monsoon, resulting in a very intense upper-

ocean freshening and the formation of a thick BL. Thermal structure also undergoes 

marked changes between pre-monsoon and post-monsoon seasons, with a cooler mixed 

layer over most of the BoB following the monsoon resulting in a deeper upper thermal 

stratification. These thermal and haline stratification changes reduce the entrainment of 

cooler thermocline waters into the mixed layer and consequently reduce TC-induced 

cooling during the post-monsoon season. Our analysis indeed reveals that stronger 

cooling inhibition by oceanic stratification is responsible for a cooling amplitude 

reduction by a factor of three during the post-monsoon season.  

We then assess the respective contributions of seasonal changes in thermal and haline 

stratification to the reduction of TC-induced cooling. To that end, we use a simple 

bivariate statistical model that allows accurately predicting the amplitude of TC-induced 

cooling from wind power (WPi) and CI indices. This allows demonstrating that the 

strong near-surface salinity stratification during the post-monsoon season is responsible 

for ~40% of cooling decrease, with SST changes explaining the remaining 60%. The 

respective contributions of thermal and haline stratification however strongly vary 

spatially within the Bay: haline stratification explains most of the TC-induced cooling 

inhibition off shore of the eastern coast of India (~80%), where salinity seasonal 

changes are strongest while thermal stratification explains all the TC-induced cooling 

inhibition in the southwestern part of the BoB. 
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Our modeling study confirms previous case studies. Observations indeed suggest that 

TC-induced surface cooling is larger during the pre-monsoon (Gopalakrishna et al., 

1993; Rao, 1987; Sengupta et al., 2008) than during the post-monsoon season in the 

BoB (Chinthalu el al., 2001; Sengupta et al., 2008; Subrahmanyam et al., 2005). 

Sengupta et al. (2008) suggest that weaker surface cooling during the post-monsoon 

season largely results from the presence of salinity and BL changes through individual 

case studies analysis. Our results, however, suggest that thermal changes are a major 

contributor to the difference in TC-induced cooling amplitude between the two seasons, 

although the effects of the changes in haline stratification also significantly contribute 

the seasonal TC-induced cooling changes, especially around the rim of the northern 

BoB. 

 

Figure 2.13: (a-b) Same as Figure 2.6ab but for the Arabian Sea. (c-d) Same as Figure 
2.8 (but without the binning into CI), for Arabian Sea. 

 

Satellite observations show that the amplitude of TC-induced surface cooling is also 

larger during the pre-monsoon (~1.2°C) than during post-monsoon (~0.6°C) season in 
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the Arabian Sea (Figure 2.13ab). Our model simulation (38 Arabian Sea TCs over the 

1978-2007 period) reproduces these pre-monsoon/post-monsoon TC-induced surface 

cooling contrasts in the Arabian Sea (Figure 2.13ab). Figure 2.13cd shows the 

probability density function of TC-induced cooling as a function of WPi for pre-

monsoon and post-monsoon seasons for the Arabian Sea. Unlike the BoB, there is a 

stronger wind power input before the monsoon than after (average WPi of ~2.4 against 

~1.6). The regression slope of the TC-induced cooling to WPi does not change much 

between the pre-monsoon and post-monsoon seasons in the Arabian Sea (0.90°C / 

0.74°C, against 0.80°C / 0.28°C in the BoB), and is similar to the 0.79°C slope during 

pre-monsoon season in the BoB. The stronger cooling during pre-monsoon season 

hence mostly results from changes in TC wind power input. Due to a less salinity-

stratified upper ocean (e.g., Shenoi et al., 2002), the CI is lower in the Arabian Sea than 

in the BoB (Figure 2.5) and haline stratification has a weaker influence (Figure 2.10). 

During the post-monsoon season, salinity stratification acts to decrease the CI in the 

central part of the Arabian Sea (Figures 2.10e-f) due to lower salinity at depth (not 

shown). This hence partly compensates the CI increase due to changes in the thermal 

structure, resulting in a relatively small influence of the oceanic stratification on the 

cooling in the Arabian Sea, compared to the BoB. 

 

This influence of salinity on TC-induced cooling calls for a better description and 

understanding of salinity variations within the Bay. Previous studies have already 

shown that the seasonal salinity evolution is largely determined by the fresh water 

sources/sinks and the redistribution of the resulting low/high-salinity water by ocean 

currents (e.g., Rao and Sivakumar, 2002; Vinayachandran et al., 2005; Sengupta et al., 

2006). However, the paucity of observations in coastal regions does not yet allow 
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providing a robust and precise estimate of the intensity and extent of the BoB 

freshening. In addition, little is known about the interannual variability of SSS in the 

BoB. Although a limited amount of repeated observations along shipping lanes suggest 

that salinity variability is high in the tropical Indian Ocean (Delcroix et al., 2005; Rao 

and Sivakumar, 2002), details of basin-wide spatio-temporal structure of salinity 

interannual variations in the BoB and their mechanisms are still lacking.  

 

This major influence of salinity also advocates for the use of an adequate oceanic index 

in statistical TCs intensity prediction schemes. As shown by Yu and McPhaden (2011), 

buoyancy content in the BoB upper layer has a higher correlation with salinity content 

than with heat content. A commonly used metric of TC sensitivity to the ocean is the 

Tropical Cyclone Heat Potential (TCHP), a measure of the heat content between the sea 

surface and the depth of the 26°C isotherm, computed from altimeter-derived vertical 

temperature profile estimates (Shay et al., 2000; Goni and Trinanes, 2003). This index is 

useful for identifying warm anticyclonic features, where hurricanes often undergo 

sudden intensification in the western Atlantic (e.g., Shay et al., 2000) and Northwestern 

Pacific (e.g., Lin et al., 2005). Using TCHP allows improving statistical intensity 

forecasts in these regions (DeMaria et al., 2005; Mainelli et al., 2008), where sea level 

variability is closely related to changes in the depth of the main thermocline, and 

salinity plays a lesser role. The present study advocates for the use of a different TC 

oceanic metric that accounts for the effect of salinity, as already suggested by Vincent et 

al. (2012b) and Yu et al. (2011). The CI proposed by Vincent et al. (2012b) is a relevant 

option, since it accounts for the effect of salinity stratification on TC-induced cooling 

inhibition. This metric can be derived from currently available operational 

oceanography products constrained by oceanic observations (e.g., Drévillon et al., 2008) 
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or directly from Argo data; and tested in cyclone intensity forecast schemes in place of 

the currently used TCHP, in particular in the BoB. 
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Chapter 3 Influence of air-sea coupling under Bay of Bengal tropical 

cyclones: A regional dynamical approach 

 

3.1 Introduction 

Tropical cyclones (TCs) tracks prediction has dramatically improved over the last 

decades, yet intensity forecasts improvements are limited (DeMaria et al., 2014). The 

internal dynamics, environmental forcing, and ocean features are generally identified as 

important elements affecting TCs intensity evolution (Wang and Wu, 2004). Various 

atmospheric large-scale atmospheric conditions inhibit TCs intensification: strong 

vertical wind shear that increases inner-core static stability due to the vortex tilting 

(DeMaria, 1996), ventilation of the warm core at upper levels (Frank and Ritchie, 2001) 

or the entrainment of dry air at mid-to-lower levels (Tang and Emanuel, 2010). As TCs 

primarily draw their energy from evaporation at the surface of the ocean (e.g. Riehl, 

1950; Emmanuel, 1986), the enthalpy fluxes at the air–sea interface also have an 

essential role in intensifying and maintaining TCs (e.g. Malkus and Riehl, 1960; 

Emmanuel, 1999). While the ocean provides the necessary thermal energy for TCs 

through moist surface enthalpy flux, the TC intensity is also sensitive the Sea Surface 

Temperature (SST) evolution under the storm eye (Schade, 2000). The kinetic energy 

dissipated by friction at the air-sea interface (Emanuel, 2003) results in a significant 

SST cooling under the TC, largely through vertical mixing (Price, 1981; Cione and 

Uhlhorn, 2003; Vincent et al., 2012a), which can limit the TC intensification. The 

fundamental role of the air-sea heat exchanges in the TCs intensification  paradigms 

hence emphasizes the need for quantifying and understanding of the  feedback of this 

TC-induced cooling on TCs characteristics. 
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A large number of observational case studies indeed reported that TCs passing over cold 

and warm oceanic eddies generally experience a rapid change of their intensification 

rate (Shay et al., 2000; Lin et al., 2005; Jaimes and Shay, 2009; Zheng et al., 2010; 

Walker et al., 2014). The statistical analysis of Cione and Ulhorn (2003) based on in-

situ observations of 23 TCs in the Atlantic further suggested that TCs inducing large 

SST cooling generally experience a weaker upward surface enthalpy flux (up to 40% 

reduction for a ~1°C change) and are hence less likely to intensify. They further show 

that the amplitude of the TC-induced cooling is statistically related to the TC 

intensification rate in their limited observational sample. The statistical analysis of 

Lloyd and Vecchi (2011) further revealed a levelling-off the TC-induced cooling with 

increasing TC intensity (from Cat-2) and they interpreted this behaviour as an evidence 

of the negative ocean feedback onto TC intensification. Mei et al. (2012) were also able 

to relate TCs intensity with TC translation speed and interpreted this behaviour as an 

indirect evidence of the impact of air-sea coupling on TCs intensification (slower 

cyclones cool the ocean more and are hence more likely to be influenced). Finally, the 

simple inclusion of an upper ocean parameter in statistical intensity forecasting 

improves TCs intensity forecast (DeMaria et al., 2005; Mainelli et al., 2008), reducing 

errors by ~5% on average.  

 

The first numerical assessment of the negative ocean feedback onto TC intensification 

were conducted using very simple coupled models (Chang and Anthes, 1979; Sutyrin 

and Khain, 1979, 1984). Recent studies using three-dimensional atmosphere–ocean 

coupled models further demonstrated that North Atlantic and Pacific TCs intensity 

forecasts were significantly improved when the TC-induced ocean feedback was 

accounted for (some cyclones were otherwise over-intensifying, Bender and Ginis, 
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2000; Hong et al., 2000; Lin et al., 2005; Sandery et al., 2010; Ito et al., 2015; Wu et al., 

2016). Other idealized modelling studies confirmed that the TC-induced cooling limit 

TCs intensification (Bender et al., 1993; Schade and Emmanuel, 1999; Zhu et al., 2004; 

Wu et al., 2007; Chen et al., 2010; Liu et al., 2011; Ma et al., 2013; Halliwell et al., 

2015) but could also impact the TC size (Chen et al., 2010; Ma et al., 2013) and 

asymmetrical structures (Zhu et al., 2004; Chen et al., 2010). Most the aforementioned 

studies did not find TCs tracks to be sensitive to the TC-induced cooling (Zhu et al., 

2004; Chen et al., 2010; Liu et al., 2011). Finally, it has become increasingly clear over 

the past decade that the oceanic component of these models needs to include three-

dimensional processes to correctly simulate the TC-induced upper ocean response, 

especially for slow-moving TCs (Yablonsky and Ginis, 2009; Halliwell et al., 2011; Wu 

et al., 2016). 

 

As discussed above, the impact of air-sea coupling on TC characteristics has been 

generally assessed from realistic or idealized case studies using short-term coupled 

model integrations. Only a couple of studies did investigate the oceanic feedback onto 

TCs statistics by comparing long-term (~20 years) coupled model integrations in 

coupled and uncoupled modes for the Northwest Pacific (Ogata et al., 2015) and 

Southwest Pacific (Jullien et al., 2014). Ogata et al. (2015) suggested that air-sea 

coupling acts to shift the location of the most intense TCs equatorward, improving the 

climatological distribution. They attributed the decrease in the numbers of intense TCs 

in the subtropical region (north of 20°N) to the shallow mixed layers and thermocline 

there that promote intense TC-induced cooling, hence limiting TCs intensification. 

Jullien et al. (2014) also suggested a more realistic cyclogenesis pattern in the coupled 

simulation, with reduced cyclogenesis compared to the forced run in the Coral Sea, 
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where mixed layers are particularly shallow. They further demonstrated that accounting 

for air-sea coupling processes generally results in a 10% decrease of TC counts, with a 

stronger reduction for strongest TCs. In these simulations, air-sea coupling reduces 

enthalpy flux (up to 30 W.m-2 for a 1°C), resulting in a 15 hPa.°C-1 reduction for 

strongest TCs. Because of the computational cost of performing long-term experiments, 

these study rely on relatively coarse atmospheric models (~35 to 60 km horizontal 

resolution) that prevented simulating strongest TCs (above Cat-3).  

 

All the short-term and long-term coupled modelling studies discussed above have been 

performed in either the Atlantic or Pacific. The Indian Ocean (IO) is however home to 

about 25% of the global TC activity. TCs in the northern IO mainly occur in the western 

and central part of the BoB and exhibit a bimodal seasonal distribution, preferentially 

occur during the pre- and post-monsoon (Li et al., 2013). Although northern IO just 

accounts for 5% of TCs worldwide, those TCs have catastrophic impacts, with 14 of the 

20 deadliest TCs in recent history having occurred in that region (Longshore, 2008). 

TCs in the southern IO occur over an elongated band centered around 15°S from 

November to April, with more frequent TCs occurrence over the Southwestern IO 

around the islands of Mauritius, La Reunion and Madagascar (Mavume et al., 2009). 

Few studies also reported an upper ocean cooling in response to TCs passage in both the 

northern (Subrahmanyam et al., 2005; Sengupta et al., 2008; McPhaden et al., 2009; 

Neetu et al., 2012; Girishkumar et al., 2014) and southern IO (Vialard et al., 2009). 

Even fewer observationally-based studies discussed the potential feedback of this 

oceanic response on IO TCs intensification, and only for the case of the BoB (Ali et al., 

2007; Lin et al., 2009; Yu and McPhaden, 2011). From two case studies, Ali et al. 

(2007) discussed how eddies influence TCs intensification over the Bay of Bengal. The 
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observational analysis of Lin et al. (2009) and Sadhuram et al. (2012) showed that a pre-

existing high oceanic heat content before the TC passage can act to reduce the TC-

induced cooling and the resulting negative TC intensity feedback, favouring the TC 

intensification. The specificity of upper ocean thermohaline structure in IO TCs-prone 

regions may result in a different sensitivity of TCs to ocean-atmosphere coupling 

compared to other basins. The BoB is indeed characterized by a strong haline 

stratification that may limit the amplitude of the TC-induced cooling and promote TC 

intensification (Sengupta et al., 2008; Neetu et al., 2012; Maneesha et al., 2015). In 

stark contrast, the cyclogenesis region in the southwestern IO is one of the rare oceanic 

regions where warm SSTs (above the threshold for TC formation) coexist with a 

shallow thermocline ridge, hence potentially favouring enhanced cooling below the 

storm and a strengthened negative oceanic feedback onto the storm intensification (Xie 

et al., 2002). There is to date no single study that quantifies the influence of air-sea 

coupling on TC characteristics in the IO using a coupled model run over a long period. 

 

In the BoB, the TC-induced oceanic cooling is three times larger during the pre-

monsoon than during the post-monsoon (Gopalakrishna et al., 1993; Neetu et al. 2012; 

Sengupta et al., 2008). This difference is essentially related to seasonal changes in 

oceanic stratification, rather than in TCs strength (Neetu et al., 2012). This seasonal 

stratification change is related to both temperature and salinity. The post-monsoon 

indeed both displays a stronger haline stratification (due to the large freshwater flux into 

the Bay during and shortly after the monsoon) and a deeper thermocline along the BoB 

rim (in response to coastal Kelvin waves originating from the equatorial region; 

McCreary et al., 1996; Durand et al., 2009) than the pre-monsoon,. As quantified by 

Neetu et al. (2012), 60% of of the TCs cold wake reduction during the post-monsoon is 



! 92!

due to thermal stratification changes, while haline stratification accounts for the 

remaining 40%. As speculated by Sengupta et al. (2008), it is possible that the basin-

scale dynamics, as well as freshwater from monsoon rain and river runoff, favours 

intense post-monsoon TCs in the BoB, by reducing TC-induced cooling and therefore 

the negative feedback on TCs amplitude during that season.  

 

Main objective of the chapter and structure. We will hence use a regional IO, 

mesoscale coupled ocean-atmosphere model (Samson et al., 2014) to assess the negative 

oceanic feedback on TCs amplitude in this basin. This model simulates realistic spatial 

and seasonal distributions of IO tropical cyclones, as well as their interannual variations. 

It however fails reproducing strongest observed cyclones (category 3 and more) as for 

similar studies in other oceanic basins (Jullien et al., 2014; Ogata et al., 2015). We will 

compare TC statistics from two twenty year-long experiments (a reference coupled 

experiment and forced atmospheric experiment, i.e. with no air-sea coupling) to provide 

a reliable statistical assessment of the air-sea coupling impact on IO TCs. This approach 

has already been successfully used to study the effect of air-sea coupling on the South 

Pacific TCs climatology (Jullien et al., 2014). The rest of the chapter is organised as 

follows. Section 3.2 describes the observed datasets and the modelling framework. In 

section 3.3, we assess the strong impact of air-sea coupling on IO TC characteristics. 

Section 3.4 will discuss the related mechanisms. Section 3.5 addresses more specifically 

how the strong increase in ocean stability due to monsoon freshwater inputs affects air-

sea coupling under BoB TCs. Section 3.6 discusses the robustness of results in the 

previous sections to the convective parameterization. The final section provides a 

summary and a discussion of the results.  
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3.2 Datasets and methods 

3.2.1. The NOW regional coupled model  

In this study, we use an IO configuration of the NOW (NEMO-OASIS3-WRF) regional 

coupled model. NOW couples the NEMO (Nucleus for European Modeling of the 

Ocean) ocean component (Madec et al., 2008) to the WRF (Weather Research and 

Forecasting Model) atmospheric component (Skamarock and Klemp, 2008) through the 

OASIS3 coupler (Valcke, 2013). This configuration has been extensively described and 

validated in Samson et al. (2014). A brief summary of this configuration is given in the 

following.  

 

The turbulent kinetic energy scheme (Blanke and Delecluse, 1993) is used for model 

vertical mixing parameterizations, and subgrid-scale parameterizations include a bi-

Laplacian viscosity and an iso-neutral Laplacian diffusivity (Lengaigne et al., 2003). 

Atmospheric model physics include the WRF single-moment six-class microphysics 

scheme (Hong and Lim, 2006), the Goddard shortwave radiation scheme (Chou and 

Suarez, 1999), the Rapid Radiation Transfer Model for longwave radiation (Mlawer et 

al., 1997), the Yonsei University planetary boundary layer (Noh et al., 2003) and the 

four-layer Noah land surface model (Chen et al., 1996).  It also includes the updated 

Kain-Fritsch (KF) atmospheric convective scheme (Kain, 2004), a mass-flux 

convergence scheme that allows shallow convection, includes a minimum entrainment 

rate to suppress widespread convection in marginally unstable, relatively dry 

environments, and has changes in the downdraft formulation. This scheme indeed 

provides the best simulations for TC intensity and track prediction in the northern IO 

(Srinivas et al., 2013b), with higher convective warming with stronger vertical motions 

relative to the other tested cumulus schemes. As discussed in Samson et al. (2014), the 
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KF scheme allows simulating strong TCs (up to 55m.s-1) compared to Betts-Miller-

Janjic (BMJ) moist convective adjustment scheme (Janjic, 1994) but leads to a large 

overestimation of the number of IO TCs. As seen in chapter 1, deep convection is an 

essential mechanism for TCs, and the results presented here may be sensitive to the 

convective scheme. The sensitivity of our results to the choice of convective scheme 

will thus be addressed in the discussion section by comparing results obtained using KF 

with those obtained using the BMJ convective scheme. The drag parameterization over 

the ocean is based on the work of Donelan et al. (2004).  

 

This model is applied to the Indian Ocean region [25.5°E-142.5°E, 34.5°S-26°N], with 

the oceanic and atmospheric component sharing the same 1/4o horizontal grid.  The 

ocean component has 46 vertical levels, with an enhanced 5 m resolution in the upper 

ocean. The atmospheric component has 28 sigma vertical levels, with a higher 

resolution of 30 m near the surface. Lateral boundary conditions of NEMO are supplied 

from a 1/4o resolution global ocean model forced by Drakkar forcing dataset (Brodeau 

et al., 2010). Those of WRF are taken from 6 hourly ERA-Interim reanalysis (Dee et al., 

2011). The initial condition on the 1st of January 1989 is provided from ERA-Interim 

reanalysis for the atmosphere and from the ¼° DRAKKAR simulation described above 

for the ocean. A 21 year coupled simulation is performed with this setup using 1989–

2009 lateral boundary conditions, and will be referred to as KF-CPL (for Kain-Fritsch 

coupled). The first year of this experiment is discarded, and this simulation is hence 

analysed over a 20-years period.  

 

Samson et al. (2014) demonstrated that this configuration is able to capture the main 

features of the Indian Ocean climate. At seasonal timescales, it reproduces the seasonal 
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rainfall distribution and the northward seasonal migration of monsoon rainfall over the 

Indian subcontinent. It also captures the observed interannual variability associated with 

the Indian Ocean Dipole and the El Niño Southern Oscillation. More importantly for 

our study, its relatively high horizontal resolution allows to explicitly simulate TCs, 

with realistic cyclogenesis, track density patterns and a realistic seasonal cycle, 

including the observed bimodal distribution in the northern IO. The seasonal evolution 

of the large-scale atmospheric parameters involved in the TCs genesis is also properly 

captured. The main discrepancy lies in the inability of this configuration to simulate 

strongest TCs, with maximum modelled TCs winds reaching ~55 m s-1, in contrast to 70 

m s-1 in observations.  

 

3.2.2 Sensitivity experiments 

Experiment design. To isolate the effect of air-sea coupling on TCs, a similar strategy 

to that of Jullien et al. (2014) is followed. We perform a twin uncoupled atmospheric 

simulation (referred to as KF-FOR) using the same WRF atmospheric configuration and 

SST fields from the KF-CPL simulation, from which TC-induced cold wakes have been 

suppressed.  Cold wake signals are removed by masking the coupled model SST along 

all the TCs tracks, within a 3° radius and from 1 day before to 30 days after the TC 

passage. Masked regions are then filled using bi-linear interpolation from neighbouring 

regions. As a result, these forced simulations do not account for any ocean feedback. 

Comparing TCs in the coupled and forced simulations will therefore allow us to infer 

the impact of air-sea coupling on TCs characteristics in the IO. An illustration of the 

strategy employed to remove the SST signature of TCs in the forced experiment is 

provided on Figure 3.1: as can be seen on that particular example, the cold wake is 

efficiently suppressed from the KF-FOR surface boundary condition. 
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Figure 3.1: Sea surface temperature (oC) snapshot for the (a) KF-CPL and (b) KF-FOR 
simulations. The SST boundary condition of the KF-FOR simulation is obtained after 
filtering the TC cold wake from the SST field shown in (a). The corresponding TC track 
from the KF-CPL simulation is denoted by black line on panel (a). 

 

 

Analysis of the two experiments. It must however be kept in mind that the small 

perturbations induced by the cold wake removal are sufficient to change the courses of 

TCs between the forced and coupled simulations, due to the chaotic nature of the 

atmosphere. Genesis time and trajectories of simulated TCs in the forced and coupled 

experiments will therefore be different and TCs in these two simulations cannot be 

compared individually. Comparing the statistics of the simulated TCs in the forced and 

coupled experiments will however allow us to infer the influence of air-sea coupling on 

IO TCs characteristics. A similar strategy was successfully used by Jullien et al. (2014) 

to assess the impact of air-sea feedback under South Pacific TCs. 

3.2.3  Tracking methodology and cyclogenesis indices 

TCs from both simulations are tracked using the same methodology as in Samson et al. 

(2014). The following criteria are used to distinguish tropical cyclones from intense 

mid-latitude systems at each time step:  
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• 10 m wind > 17.5 m.s-1 associated with a local sea level pressure minimum  

• 850 hPa vorticity > 3*10-4 s-1 

• 700–300 hPa mean temperature anomaly > 1°K 

TCs temperature anomalies are calculated with respect to their large-scale environment: 

the TC region is defined as 3 radii of maximum wind around the TC centre while the 

environmental temperature is averaged between 6 and 9 radii. Trajectories are then 

constructed by recursively detecting the closest neighbouring grid points that meet all 

above criteria. If no matching point is identified, all criteria are relaxed except vorticity. 

This relaxation technique allows following TCs over land and avoids counting the same 

TC twice. Tracks shorter than 1 day are eliminated. The vorticity and temperature 

thresholds are similar to those considered in previous studies (Jourdain et al., 2011; 

Jullien et al., 2014; Samson et al., 2014). In the rest of the chapter, we will refer to all 

storms verifying the above criteria as TCs. Each TC-prone basin uses a different TCs 

definition, rendering comparison between basins difficult. For instance, a TC is defined 

as a tropical system with sustained 10-m winds of at least 17 m.s-1 in the west 

Australian and the northern IO basins, while this threshold is 33 m.s-1 for the 

southwestern IO. For a fair comparison, we hence define TCs using a 17.m-s-1 on the 

sustained 10-m winds and follow the Saffir-Simpson scale to define TC categories as: 

tropical storm (Cat-0 TC for 17 m.s-1<Vmax<33 m.s-1), Category 1 TC (Cat-1 TC for 33 

m.s-1<Vmax<43 m.s-1), Category 2 TC (Cat-2 TC for 43 m.s-1<Vmax<50 m.s-1), Category 

3 TC (Cat-3 TC for 50 m.s-1<Vmax<59 m.s-1), Category 4 TC (Cat-4 TCs for 59 m.s-

1<Vmax<70 m.s-1) and Category 5 TC (Cat-5 TC for Vmax>70 m.s-1). 

 

Following Emmanuel and Nolan (2004), we use the Genesis Potential Index (GPI) to 

better understand the influence of large-large environmental parameters on the 
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cyclogenesis. The GPI monthly index is constructed as in Camargo et al. (2007) and 

Emanuel and Nolan (2004) as  

 

where ! is the absolute vorticity at 850 hPa in s-1, H is the relative humidity at 600 hPa, 

Vpot is the potential intensity calculated using a routine provided by K Emanuel (http:// 

wind.mit.edu/~emanuel/home.html) and Vshear is the magnitude of vertical wind shear 

between 850 and 200 hPa in m.s-1. 

 

3.2.4  Validation datasets 

The observed datasets used in the present study are listed in Table 3.1. Observed TCs 

locations and wind magnitudes are derived from IBTrACS dataset (Knapp et al., 2010), 

that merges TC tracks and intensities data from various operational meteorological 

forecast centres. The maximum sustained wind speed value denoting the strength of a 

TC is taken as 10 meters wind speed averaged over a period 10 minutes.  Observed SST 

response under TCs is characterized by using a blend of TRMM/TMI and AMSR-E 

SST data (http://www.ssmi.com/sst/microwave_oi_sst_data_description.html), which is 

available from 1998 onwards. It is advantageous to use this data due to its insensitivity 

to atmospheric water vapor (Wentz et al., 2000). It provides the accurate SST 

observations below the clouds, a few days before and after the storm passage. The 

atmospheric parameters that control the TCs intensification (vertical wind shear and 

mid-tropospheric humidity and maximum potential intensity) are extracted from the 

ERA-Interim atmospheric reanalysis (Dee et al., 2011).  
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S. 
No. 

Parameter Description 

1 SST Blended TRMM/TMI and AMSR-E daily SST  
2 Atmospheric 

parameters 
(Wind, shear, 
Relative 
Humidity, 
Maximum 
Potential 
Intensity) 

ERA-Interim atmospheric reanalysis (Dee et al., 2011).  

3 Tropical cyclone 
position and 
intensity 

IBTrACS dataset (Knapp et al., 2010).  

 
Table 3.1: Data used in the study. 
 

3.3 Influence of air-sea coupling in IO TCs climatology 

Figure 3.2 compares the spatial distribution of IO TCs for observations (Figure 3.2a), 

KF-CPL and KF-FOR simulations (Figure 3.2bc). In the northern Indian Ocean, 

cyclogenesis is maximum in the southern part of the Bay of Bengal and Arabian Sea 

(around 5°N), although cyclogenesis also occurs further north in the Bay (Figure 3.2a). 

In this basin, most observed TCs travel northward and/or westward (not shown). 

Maximum TCs density is consequently found northwestward of the maximum 

cyclogenesis between 5°N and 20°N in the western half of the BoB. While weakening 

over the Indian peninsula, some storms are able to re-intensify when reaching the 

Arabian Sea and pursue their trajectory further westward (not shown). Tropical storms 

form less frequently over the Arabian Sea, with three times less TCs as compared to the 

Bay of Bengal. In the southern IO, cyclogenesis occurs mostly between 5°S and 25°S 

with a maximum located in the central part of the basin (around 80°E), and a weaker, 

secondary maximum Northwest of Australia. Maximum TCs density exhibits a 

poleward-shifted distribution relative to cyclogenesis. In this region, TCs usually travel 

southwestward between 10°S to 15°S to then deviate and travel in a southeastward 
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direction between 20°S and 30°S, being advected by climatological tropospheric winds 

(not shown). The KF-CPL simulation successfully captures these spatial patterns for 

both the northern and southern IO (Figure 3.2b). The modelled cyclogenesis exhibits a 

poleward bias in the BoB and a slight equatorward bias in the southern hemisphere. The 

maximum simulated TCs density is shifted eastward in the southern IO and the model 

does not reproduce the gap in TCs density around 100°E, offshore the West Australian 

coast. The major bias in the KF-CPL simulation is however to produce three times more 

TCs than in observations (Figure 3.2d). Compared to other basins (Jullien et al., 2014; 

Ogata et al., 2015), air-sea coupling does not significantly impact the spatial patterns of 

cyclogenesis and TC tracks in the IO (Figure 3.2bc). The only apparent change is a 20° 

eastward shift of the maximum TC density region in the southern IO from 85°E to 65°E, 

which is not statistically significant (not shown). The most robust impact of the oceanic 

feedback is a considerable decrease (~20%) in the numbers of storm reaching the 17 

m.s-1 threshold (Figure 3.2d), in both hemispheres. 

 

 

Figure 3.2: Climatological distribution of normalised cyclogenesis (colour) and TC 
density (contour) for (a) observations, (b) KF-CPL and (c) KF-FOR simulations. The 
climatological annual number of NIO and SIO TCs are ondicated on each panel. (d) 
Histograms of the number of TCs-days in the IO basin for each dataset (whiskers 
indicate the 90% confidence interval based on a student t-test). 
 

In the southern IO, TCs preferentially occur in austral summer, i.e. from November to 

April, with very few cyclones forming during boreal winter (Figure 3.3a). This seasonal 
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cycle is reasonably well captured by the observed GPI (Figure 3.3a): in this region, high 

mid-tropospheric relative humidity, low vertical shear and high maximum potential 

intensity combine to favour cyclogenesis during austral summer in the southern IO 

(Figure 3.4b-e), when the Intertropical Convergence Zone is well established in the 

southern hemisphere (e.g. Menkes et al., 2012). The seasonal evolution of southern IO 

TCs statistics is generally well captured by KF-CPL, with a maximum TC activity 

(Figure 3.3b) and related large-scale favourable environmental conditions during austral 

summer (Figure 3.4a-e). The vorticity is however overestimated in the model (the MPI 

and wind shear also exhibit slight biases, being respectively slightly overestimated / 

underestimated). In the northern IO, the observed seasonal TC distribution exhibits a 

very peculiar bimodal distribution (Figure 3.3e): they indeed preferentially occur during 

the pre-monsoon (April–June) and post-monsoon (September–December), with much 

fewer TCs in June–July and almost no TCs in January-March. This bimodal distribution 

has been attributed to the combined effect of increased vertical wind shear, decreased 

maximum potential intensity and vorticity that overcome the increased relative humidity 

during the summer monsoon (Figures 3.4f–j), preventing the formation of tropical 

storms during that season (Tippett et al., 2011; Menkes et al., 2012; Li et al., 2013). The 

KF-CPL simulation captures this specific bimodal cyclogenesis distribution reasonably 

well (Figure 3.3f), although it overestimates the proportion of TCs occurring during the 

core of the summer monsoon (July-August). It must however be noticed that only Cat-0 

TCs (with Vmax<33 m.s-1) develop in KF-CPL (and observations) during this period 

(not shown). The seasonal evolution of the large-scale atmospheric drivers of the 

modelled TCs is also generally 
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Figure 3.3: Histogram of the percentage of TCs occurring each calendar month in the 
(left) southern and (right) northern IO for (a,e) observations, (b,f) KF-CPL and (c,g) 
KF-FOR simulations. The monthly climatological evolution of the corresponding GPI 
index (northern IO: 40°E-100°E; 0°-25°N and southern IO: 30°E-130°E; 0°-25°S) is 
overlaid. Percentage of TC number decrease in KF-CPL relative to KF-FOR for 
cyclonic and non-cyclonic season for (d) southern and (h) northern IO. On all panels, 
the whiskers display the 90% confidence interval based on a student t-test. 

 

 

well captured (Figures 3.4f–j). As in observations, the large increase of vertical shear 

during the monsoon results in a GPI minimum. This minimum is less marked than in 

observations, probably because of a more favourable vorticity, which is consistent with 

the overestimated number of TCs during the monsoon (Figure 3.3f). Another noticeable 
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mismatch is the tendency for the post-monsoon TC-prone season to occur one month 

earlier (September-October) than in observations (October-November). This bias can be 

tracked back to a similar bias in seasonal GPI (Figure 3.4f), most likely related to an 

earlier post-monsoon humidity decrease in the model (Figure 3.4h). The oceanic 

feedback reduces the number of TCs throughout the year (Figure 3.2d and Figure 3.3bf). 

Its impact is however largest during non-cyclonic seasons, i.e. when the large-scale 

environmental conditions are less favourable to TC development (Figure 3.3bc and 

3.3fg). TCs are indeed ~20% less numerous in coupled simulations during the TC-prone 

seasons of both hemisphere, but this decrease reaches 30 % during boreal winter in the 

southern hemisphere (Figure 3.3d) and 40% during the summer monsoon in the 

northern IO (Figure 3.3h). This results in a more marked reduction in TC numbers 

during the summer monsoon in the coupled model, more in line with observations 

(Figure 3.3efg).  

 

 

 

Figure 3.4: Seasonal evolution of the (a) Genesis Potential Index (GPI), (b) Maximum 
potential Intensity (MPI), (c) relative humidity at 600hPa, (d) vorticity at 850hPa and (e) 
vertical wind shear in the southern IO for observations, KF-FOR and KF-CPL. (f-j) 
Same for the northern IO. 
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Figure 3.5: Histogram of the percentage of Indian Ocean TC occurrence as a function 
of TC intensity, based on maximum TC wind for observations, KF-CPL and KF-FOR 
simulations. The inner frame indicates the percentage of intense TCs (category 2 or 
more). The whiskers display the 90% confidence interval, computed using a Student’s t-
test. 
 
 
 
Figure 3.5 summarizes the simulated and observed IO TCs intensity distribution. In 

observations, 9% of the storms exceed Cat-2 in the northern IO and 18% in the southern 

IO respectively (see inset in Figure 3.5), with maximum TCs wind that can exceed 70 

m.s-1. For both hemispheres, the KF-CPL experiment is able to simulate TCs with winds 

of up to 50 m.s-1 but never exceed Cat-2. This results in a general tendency for KF-CPL 

to considerably underestimate the percentage of intense TCs (Cat-2 and more), with 

only 2-3% of the storms exceeding Cat-2 TCs (see inset in Figure 3.5).  Symmetrically, 

KF-CPL overestimates the percentage of Cat-0 TCs by ~10% (Figure 3.5). As in Ogata 

et al. (2015) and Jullien et al. (2014), our rather coarse 25-km model resolution indeed 

does not allow to accurately simulate the sharp eyewall structure of tangential winds for 

strongest TCs. The radius of maximum wind speed are indeed overestimated in KF-

CPL (75 km) relative to observations (50 km; not shown), as expected from a ¼° 

resolution (Gentry and Lackmann, 2010). The oceanic feedback has a considerable 

impact on the TCs intensity distribution: there is a four-fold decrease of strong (Cat-2 



! 105!

and above) TCs in the KF-CPL simulation (2%) relative to KF-FOR (8%). As a 

consequence, the proportion of tropical storms (Cat-0) is 10% larger in the coupled than 

in the forced experiment. Ogata et al. (2015) found that the region of maximum intense 

TCs shifts equatorward in the northwest Pacific when air-sea coupling is accounted for. 

In contrast, we do not find any significant change in the distribution of strongest TCs, 

neither in the northern or southern IO (not shown). 

 

We also checked that the decrease in tropical cyclogenesis and the weaker TCs intensity 

in KF-CPL compared to KF-FOR cannot be attributed to changes in large-scale 

environmental parameters that remain virtually the same in the two simulations (Figure 

3.4). These changes in the TC characteristics can hence confidently be attributed to the 

direct local oceanic feedback onto storm formation rather in an indirect large-scale 

change in the atmosphere. The mechanisms of this TC intensity reduction in presence of 

air-sea coupling are further investigated in the next section. 

 

3.4 Mechanisms of air-sea coupling under TCs 

The oceanic feedback onto TC characteristics operates through the SST changes 

induced by TCs. TCs are known to cool the ocean surface along their track, mainly 

through vertical mixing and upwelling (e.g. Price et al., 1981; Jullien et al., 2012; 

Vincent et al., 2012ab). In this study, the cooling under TCs is computed in a similar 

way to Vincent et al., 2012ab. To characterize the ocean response to TCs, we first 

subtract the mean SST seasonal cycle. TC track positions are then used to extract the 

oceanic response to TCs. The average SST anomalies are computed within a fixed 200  



! 106!

 

Figure 3.6: (a) Composite evolution of TC-induced SST cooling within 200 km of all 
TC-tracks in the IO (in °C) for observations (black) and the KF-CPL experiment (green). 
Northern and southern IO mean TC-induced cooling as a function of 10-min averaged 
maximum wind speed for (b) observations and (c) KF-CPL. Whiskers indicate the 90% 
confidence level from a bootstrap. The slope of the linear fit is also indicated. 

 

 

km radius around each TC track position, from 10 days before to 30 days after the TC 

passage. This radius has been chosen because it corresponds to the area where SST has 

an influence on TC intensity (Cione and Uhlhorn, 2003; Schade, 2000). The observed 

and modelled composite evolution of TC-induced SST cooling is shown in Figure 3.6a. 

The model simulates the composite temporal evolution and amplitude of the TC-
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induced cooling acurately. For both model and observations, decrease in SST is evident 

a few days before the storm reaches a given point and largest cooling usually occurs 1 

day after the cyclone passage (Figure 3.6a). The decay timescale is much slower and it 

it takes about 30 days for the SST to recede. However, after the passage of storm the 

average SST remains 0.2°C colder than SSTs before the passage of storm. Lloyd and 

Vecchi (2011) and Vincent et al. (2012a) earlier noticed this phenomenon. The temporal 

evolutions of the composite SST cooling under TCs are very similar for the southern 

and northern IO for both model and observations (not shown). The amplitude of the 

cooling as a function of the TC maximum wind however differs between the two 

hemispheres (Figure 3.6bc). Although the observed cooling magnitude monotonically 

increases with wind intensity in both hemispheres, this increase is ~50% larger for the 

northern IO (-0.43°C per 10 m.s-1) than for the southern IO (-0.30°C per 10 m.s-1). 

There is hence a tendency for TCs to induce a larger oceanic cooling for a given TC 

wind intensity in the northern than in the southern IO. This behaviour is reasonably well 

captured by the model, despite an overestimated slope (0.72 and 0.51°C per 10.m.s-1 for 

the Northern and Southern hemisphere, respectively). 

 

Two different reasons may explain this larger cooling in the northern hemisphere. First, 

differences in TC translation speeds can affect the amplitude of the TC-induced cooling 

(Zedler, 2009; Mei et al., 2012): slower-moving TCs indeed result in a larger TC-

induced cooling for a given TC wind intensity, as they spend a longer time over any 

given oceanic point and hence input more momentum into the ocean, which eventually 

leads to enhanced vertical mixing. Figure 3.7a reveals that the translation speed 

distribution does not differ much between the two hemispheres (4.60 m.s-1 average over 

the northern IO compared to 4.77 m.s-1 average in the southern IO), suggesting that 
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differences in the TCs translation speed cannot explain the differences in the TC-

induced cooling amplitude between the two hemispheres. 

 

 

Figure 3.7: KF-CPL model normalized distribution of (a) TC translation speed and (b) 
cooling inhibition index (CI) under TCs for the NIO and SIO basins. (c) CI (color) and 
normalized TCs density (contour) climatological maps for extended cyclonic seasons 
(November to April for the Southern Hemisphere and April to December for the 
Northern Hemisphere). 
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The other plausible hypothesis relates to the differences in oceanic stratification 

between the two hemispheres. Those can indeed influence the amplitude of the TC-

induced SST signature, as already acknowledged in past literature (e.g. Lloyd and 

Vecchi, 2011; Vincent et al., 2012b; Neetu et al., 2012). Vincent et al. (2012b) indeed 

showed that at the global scale the upper-ocean pre-cyclone stratification modulates the 

TC-induced cooling amplitude by up to an order of maginude for a given wind input to 

the ocean. Following Vincent et al., 2012b, we characterize the TC-induced surface 

cooling inhibition by the ocean background state by the Cooling Inhibition Index (CI). 

This index is defined as the cube root of the potential energy change necessary to induce 

a 2°C surface cooling via vertical mixing. CI is a physically relevant measure of this 

inhibition since it integrates two important parameters for the cooling amplitude: the 

MLD before the cyclone passage, and the strength of the stratification underneath this 

mixed layer. As illustrated on Figure 3.7b, the CI distribution underneath TCs is 

different between the two hemispheres, with generally weaker upper ocean stratification 

in the northern IO (average CI of 23 (J/m2)-1/3) compared to the southern hemisphere 

(average CI of 29 (J/m2)-1/3). Figure 3.7c displays the IO CI spatial distribution during 

the cyclonic season of each hemisphere. In the northern IO, the western BoB and AS, 

over which most TCs travel, are characterized by relatively low CI, ranging from 20 to 

30 (J/m2)-1/3. In the southern IO, the core of the TC-prone region (between 10°S and 

25°S) is characterized by larger CI, exceeding 30 (J/m2)-1/3. In this region, southeasterly 

trade winds regime prevail although the year, resulting in downward Ekman pumping 

and a deep thermocline. Weaker CI are however found in the thermocline ridge region 

of southwestern tropical IO, characterized by a climatologically shallow thermocline in 

the 5°S–10°S latitudinal band (e.g. Xie et al., 2002; Vialard et al., 2009; Jayakumar et 

al., 2011; Praveen Kumar et al., 2014). This low CI region is due to a shallow 
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thermocline, which results from Ekman pumping associated with the confluence of the 

southeasterly trades and equatorial westerlies. It is however located at the very 

northwestern end of the south IO TC-prone region (Figure 3.7c) where only a small 

fraction of the southern IO TCs occur. Similarly, the eastern and southern BoB exhibits 

considerably larger CI because of deeper thermocline than in the Nortwestern BoB there, 

in response to donwnwelling coastal Kelvin waves excited by the remote influence of 

equatorial westerlies during the intermonsoon seasons (e.g. Rao et al., 2010). Here, 

again, BoB TCs spend most of their time further Northwest (Figure 3.2c, where the 

thermocline is shallower and CI is lower). 

 

Figure 3.8 provides a southern hemisphere composite of wind speed, SST and latent 

heat flux at the air-sea interface under a TC, for KF-CPL and KF-FOR. This composite 

is built by averaging composites performed for a given maximum wind (5 m.s-1 wide 

bins), so that differences reflect the impact of air-sea coupling and not the different TC 

wind distributions (i.e. stronger TCs in KF-FOR than in KF-CPL). TC wind composites 

exhibit very similar wind speeds in both simulations, indicating that our compositing 

strategy smoothes out TC intensity differences between the two simulations (Figure 

3.8abc). The 10-m wind speed composite features a clear cyclone eye with weaker 

winds and asymmetric eye wall for both simulations (Figure 3.8ab). Tangential winds 

are stronger on the storm’s left-hand side because TC translation speed adds up on the 

left-hand side and subtracts on the right-hand side. The SST beneath TCs are warmer on 

the lower quadrant and cooler on the upper quadrant in KF-FOR (Figure 3.8e), due to 
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the tendency of southern IO TCs to 

 

Figure 3.8: Southern IO composite of surface conditions under TCs: (left) wind speed, 
(middle) SST and (right) upward surface enthalpy flux for (top) KF-CPL experiment, 
(middle) KFFOR experiment and (bottom) KF-CPL minus KF-FOR. Storms are rotated 
so that the upper direction indicates the direction of propagation. The smallest circle 
represents the radius of maximum winds, the intermediate circle represents the 250 km 
radius and the biggest circle represent the 500 km radius. 

 

 

move poleward from warm tropical SSTs to cold subtropical SSTs. The SST beneath  

TCs is very different in KF-CPL, with an additional strong cooling towards the rear-left 

of the TC track (Figure 3.8d). The TC cold wake exhibits a clear asymmetrical structure 

(Figure 3.8d, 3.8f), with a one Radius of Maximum Wind shift to the left-hand side of 

the TC in agreement with observations (Shay and Brewster, 2010; Vincent et al., 2012a). 
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This asymmetry is the result of the wind-current resonance at near-inertial periods 

(Shay et al., 1989; Jullien et al., 2012; Vincent et al., 2012a). In the southern 

hemisphere the TC winds and the inertial currents rotate in the same direction, leading 

to increase in the energy transfer to the inertial currents (Price, 1981). The strong 

inertial oscillations and resulting vertical shear in the southern hemisphere are generated 

to the left of the TC tracks.  The radial structure of the enthalpy fluxes from the ocean to 

the atmosphere, that are largely dominated by latent heat fluxes, resembles that of the 

wind structure, with stronger latent heat release in regions of larger winds for both KF-

FOR and KF-CPL experiments. These fluxes are rather weak in the eye region, reach a 

maximum within the eye wall and then slowly reduce outside the eye wall (Figure 

3.8gh). Regarding the asymmetrical features, the enthalpy flux structure in KF-FOR is 

larger in the lower right quadrant (Figure 3.8h), most likely because of the tendency for 

the SST to be higher there compared to other quadrants (see Figure 3.8e). This is 

expected from the Clausius-Clapeyron relation, which results in upward latent heat 

fluxes that grow exponentially with SST when relative humidity and air-sea temperature 

differences are assumed to be constant: 

       (3.1) 

 where A and b are positive constants characteristic of the Clausius-Clapeyron relation 

and u10 is the 10-m wind speed. Despite the slightly larger wind speeds in the left 

quadrant (see Figure 3.8b), the radial structure of the enthalpy flux is dominated by its 

exponential dependence to SST, resulting in larger latent heat release in the lower right 

quadrant where SST are warmer. This feature is not as clear in KF-FOR, because of the 

strong TC-induced cooling in this quadrant. In addition to these spatial structure 

differences, the TC-induced oceanic cooling reduces the amplitude of this enthalpy flux 

(Figure 3.8i). As expected, this reduction is maximum under the maximum TC-induced 

L = A∗u10 ∗exp(β ∗SST )
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cooling, in the lower left quadrant of the TC (~120W.m-2 reduction, i.e ~20% of the 

maximum enthalpy flux). The average enthalpy reduction within 200 km of the TC 

center is ~40W.m-2, representing a 6% reduction of the total enthalpy flux fuelling the 

TC. This is consistent with previous literature analysing the TC-induced air-sea 

coupling processes in other TC-prone basins (Bender et al., 1993; Wu et al., 2004; Liu 

et al., 2011). 

 

 

Figure 3.9: Same as Figure 3.8 for the northern IO. 
 

 

Figure 3.9 provides a similar picture for northern hemisphere TCs. As for southern 

hemisphere TCs, northern IO TCs wind composites are very similar for the KF-CPL 



! 114!

and KF-FOR experiments (Figure 3.9a-c), implying that our compositing methods has 

removed the effect of different wind speed distributions and focusses on the effect of 

air-sea coupling. The KF-FOR SST beneath the TC (Figure 3.9d) is generally warmer in 

the northern than in the southern IO (Figure 3.8d; 29°C compared to 28°C) and is rather 

homogeneous spatially (BoB is uniformly warm during the cyclonic seasons). The 

slightly warmer SSTs at the rear of the TC are due to the poleward decrease of SST (TC 

form close to the equator and move poleward). KF-CPL exhibits a strong cooling at the 

rear of the TC on its right hand side, as the resonance between inertial oscillations and 

wind vector rotation occurs to the right of the track in the northern hemisphere (e.g., 

Price, 1981). As expected from Figure 3.6bc, the cooling is larger in the northern 

(Figure 3.9f) than in the southern IO (Figure 3.8f), reaching up to 1.4°C. As for the 

southern IO, KF-FOR enthalpy fluxes are generally larger on the lower left quadrant 

where SST is slightly warmer (Figure 3.9e and h). The maximum enthalpy flux 

reduction due to coupling with the ocean is approximately twice larger in the northern 

than in the southern IO (~230 W.m-2): this is probably a result of the combined effect of 

the larger TC-induced cooling and warmer SST in the Northern hemisphere. While this 

reduction is mainly localized at the rear of the TC in southern IO (Figure 3.8i), this 

reduction is also prominent right under the TC in the northern IO. This results in a 

considerably larger upward latent heat flux reduction within 200km of the TC centre 

(~63W.m-2, representing a 10% reduction of the total enthalpy flux fuelling the TC 

against 6% in the Southern IO).  

 

We further investigate the dependency of the TC-related heat flux, intensification rate 

and SST to the TC wind intensity. To that end, Figure 3.10 displays the amplitude of the 

heat flux, intensification rate and SST as a function of wind intensity for KF-FOR. As 
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expected from eqn. (3.1), the amplitude of the enthalpy flux fuelling the TC increases 

with TC intensity for both hemispheres (Figure 3.10a). For a given TC wind intensity, 

the enthalpy flux fuelling the TC is however systematically larger in the northern 

compared to the southern IO in KF-FOR experiment. It is for instance 850W.m-2 for 45-

50 m.s-1 TCs in the southern IO, but 1050W.m-2 in the northern IO. This difference can 

be attributed to the systematically ~1°C warmer SSTs in the northern IO (Figure 3.10c), 

which lead to higher enthalpy fluxes as indicated by eqn. (3.1). Consistently with those 

larger enthalpy fluxes, the intensification rate of intensifying TCs are generally larger in 

the northern than in the southern IO for the KF-For experiment, especially for 

maximum wind speeds above 35 m.s-1 (Figure 3.10b). It must however be noted that 

these differences may also partly be driven by the different large-scale environmental 

parameters that are also different in the two basins (Figure 3.4).  

 

 

 

Figure 3.10: Mean (a) inner-core (i.e. within 200 km of the TC centre) upward surface 
enthalpy flux, (b) time rate of maximum wind speed change and (c) inner-core (i.e. 
within 200 km of the TC centre) SST as a function of the wind speed in the KF-FOR 
experiment for intensifying TCs in the (blue) northern and (red) southern IO. This 
figure was performed by averaging with 5 ms-1 bins. 

 

 

Figure 3.11 further compares the impact of air-sea coupling on TCs intensification 

between the southern and northern IO. This is done by showing the KF-CPL minus KF-
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FOR enthalpy fluxes (Figure 3.11a) and intensification rates (Figure 3.11c) for 

intensifying TCs as a function of the TC wind intensity. For the southern IO, air-sea 

coupling reduces the enthalpy flux by ~10% for a given storm strength, from ~20 W.m-2 

for weak storms to 60W.m-2 for the strongest TCs. This translates into a reduction of the 

intensification rate mainly for storms of intermediate strength: this reduction is indeed 

maximum for 30 to 40m.s-1 TCs, where it reaches ~0.2 m.s-1 per 6h (i.e. a 10% 

reduction compared to the uncoupled simulation). This picture is quantitatively very 

different for the northern IO. In this region, air-sea coupling reduces the enthalpy flux 

from 30W.m-2 for weak storms to up to 210 W.m-2 for the strongest TCs. This reduction 

for strongest TCs in the northern IO is hence 3 to 4 times larger than for the southern IO. 

This translates into a considerably larger reduction of the intensification rate of 

strongest TCs that reaches 0.8 m.s-1 per 6h for the strongest storms (i.e a 50% reduction). 

This reduction is ~ 20-30% for storms of intermediate intensity (i.e. 35 to 45 m.s-1). The 

different background SST allows understanding the larger sensitivity of NIO TCs to air-

sea coupling. Based on eqn. (3.1), the air-sea coupling influence on the latent heat flux 

under TCs can be approximated as: 

  (3.2) 

where DLCPL-FOR is the KF-CPL minus KF-FOR upward latent heat flux for a given 

wind storm intensity u10 , SSTFOR is the ambient SST under the TC (i.e. the KF-FOR 

SST, which does not account for air-sea coupling) and DSSTCPL-FOR  is the TC-induced 

cooling under the storm track. From this equation, two factors can contribute to the 

larger impact of air-sea coupling on the heat flux. First, as displayed on Figure 3.6bc, 

DSSTCPL-FOR  is larger in the NIO than in the SIO for a given storm intensity, arguably 

because of the difference in the ocean stratification in these two basins. Second, the 

ambient SSTFOR  is also larger in the NIO than in the SIO (Figure 3.10b). These two 

ΔLCPL−FOR = A∗u10 ∗exp(β ∗SSTFOR )*(exp(β ∗ΔSSTCPL−FOR )−1)
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factors contribute to a larger upward latent heat flux reduction due to coupling in the 

Northern Hemisphere, and hence a larger impact on the cyclone growth rate. 

 

 

Figure 3.11: Mean KF-FOR minus KF-CPL (a) inner-core (i.e. within 200 km of the 
TC centre) upward surface enthalpy flux (b) inner-core (i.e. within 200 km of the TC 
centre) SST and (c) time rate of maximum wind speed change as a function of the wind 
speed for intensifying TCs in the (blue) northern and (red) southern IO.  

 

 

3.5. Specific case of pre- and post-monsoon TCs characteristics in the 

BoB 

In sections 3.3 and 3.4, we have investigated how air-sea coupling acts to reduce TC 

intensities in the IO, and investigated why this process is more efficient in the Northern 

than in the Southern IO. But previous studies (Sengupta et al., 2008) have also 

suggested that the change in oceanic stratification associated with the massive 

freshwater input in the BoB may affect the efficiency of the negative feedback on TCs 

due to coupling with the ocean. We will investigate this possibility in this section. 

 

To that end, we compare the characteristics of TCs before and after the June-July period 

where TCs are nearly absent in observations (Figure 3.12a). In observation, all strong 

TCs (category 2 and above) occur during April-May and October-November (Figure 

3.12b). Most of the simulated category 2 and above TCs occur in April-May during the 

pre-monsoon season and September to December period during the post-monsoon 
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(Figure 3.12b). In the following, April–May is considered as the pre-monsoon and 

September to December as the post-monsoon. Here, the pre-monsoon period is chosen 

differently than in chapter 1 (May-June as pre-monsoon), where we use forced ocean 

model to quantify the respective contribution of temperature and salinity stratification to 

the TC-induced cooling amplitude. This is because we now specifically focus on the 

BoB rather than the entire NIO and also because we focus on strongest TCs (category 2 

and above), for which the negative feedback associated with air-sea interaction is 

generally stronger. It should however be noted that we have defined those periods based 

on cyclonic seasons rather than traditional monsoon (the months of June and September 

being usually encompassed within the monsoon period: Wang et al., 2009).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.12. Monthly distribution of the (a) number of cyclone-days (in %) and (b) 
number of Cat-2 and above cyclone-days (in %) for observations and KF-CPL 
simulation with 90% significance level confidence intervals. 
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The pre and post-monsoon TCs intensity distributions are displayed on Figure 3.13 for 

observations, KF-CPL and KF-FOR simulations. A larger proportion of strong TCs 

(Category 2 and more) were observed during the pre-monsoon (see Figure 3.13a; 17% 

against 8%). Due to the limited sample size, this difference is however not significant at 

the 90% level (see the overlapping percentile of the bootstrap error bars of Figure 3.13a). 

Results from the coupled simulation are qualitatively similar to observations (Figure 

3.13b against Figure 3.13a), with more strong TCs during the pre- (8%) than during the 

post-monsoon (2%). The larger model TCs sample size (due to the overestimated 

annual-rate of TCs) makes this difference significant at the 90% level. As stated earlier, 

there is however an obvious caveat in the simulated TCs: compared to observations, the 

model is not able to simulate cyclones above the category 2, most likely because of the 

insufficient horizontal atmospheric resolution (1/4°). Despite this caveat, observations 

and the coupled simulation both suggest that a larger proportion of strong (Cat-2 and 

above) TCs during the pre- than during the post-monsoon. Previous studies have shown 

that a stronger upper ocean stratification reduces the surface cooling under TCs during 

the post-monsoon (Sengupta et al., 2008; Neetu et al. ,2012), leading to hypothesize that 

the reduced negative air-sea coupling feedback should translate into stronger tropical 

storms during the post-monsoon (Sengupta et al., 2008). In contrast, our observational 

and model analyses indicate that TCs are stronger during the pre-monsoon. Li et al. 

(2013) also reported more super cyclones (category 4 and above) during the pre-

monsoon, which they attributed to the stronger intraseasonal oscillations during the 

monsoon onset favouring TCs intensification. 

 

 



! 120!

 

Figure 3.13. Histogram of BoB TC intensity based on maximum winds (m/s) during 
pre and post monsoon in (a) observations (b) KFCPL and (c) KFFOR simulations. The 
inset indicates the percentage of pre and post monsoon intense TCs (Cat-2 and above). 
The whiskers display the 90% confidence interval. 
 
 
 
 
We explore the possible role of background atmospheric parameters in favouring 

stronger pre-monsoon TCs by comparing the coupled and forced simulations TCs 

intensity distributions during both cyclonic seasons (Figure 3.13b and Figure 3.13c). 

The forced and coupled simulations both exhibit stronger TCs during pre-monsoon, 
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indicating that air-sea coupling is not essential for explaining that feature. This suggests 

that the atmospheric background state is the main factor controlling the pre-

monsoon/post-monsoon TC intensity change. 

 

The pre/post monsoon changes in the most important atmospheric background 

parameters affecting TCs intensification (MPI, relative humidity and vertical wind 

shear) are further analysed on Figure 3.14. Large MPI and relative humidity and weak 

vertical wind shear are favourable conditions for stronger TCs. MPI (~ +10% in both 

observation and model) and vertical wind shear (~ -8% in observation, ~ -15% model) 

are both more favourable to stronger TCs during the pre-monsoon. On the other hand, 

relative humidity (~ -5% in observations and -10% in the model) is less favourable to 

stronger TCs during the pre-monsoon. Overall, increased MPI and weaker vertical wind 

shear tend to favour more intense cyclones during the pre-monsoon, with humidity 

changes contributing negatively. 

 

 

Figure 3.14. Pre-monsoon minus post-monsoon differences (%) of MPI, relative 
humidity at 600hPa and vertical wind shear within 200 km of all BoB TC-tracks for 
observations and the KFCPL simulation. 
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Figure 3.15ab displays the amplitude of TC-induced cooling in observations and KF-

CPL simulation during the pre- and post-monsoon. In agreement with previous results 

(Sengupta et al., 2008; Neetu et al., 2012), the observed BoB TC-induced cooling is two 

to three times larger before (up to -0.7°C; Figure 3.15a) than after the monsoon (up to -

0.3°C; Figure 3.15b). The  KF-CPL simulation captures the timing of and seasonal 

contrast in the SST response to TCs, with a weaker cooling during the post- (up to -

0.5°C) than during the pre-monsoon (up to -1.3°C). The simulated cooling under TCs is 

however overestimated during the pre-monsoon.  

 

 

Figure 3.15. Composite evolution of BoB TC-induced SST cooling (°C) within 200 km 
of all TC-tracks during the (a) pre-monsoon and (b) post-monsoon for observations 
(black) and KF-CPL experiment (green). Whiskers indicate the 90% confidence level 
from a bootstrap method. Histograms of the KF-CPL TC-induced SST cooling (°C) as a 
function of WPi (dimensionless, no units) during the (c) pre-monsoon and (d) post-
monsoon. The thick black line indicates the average cooling and the whiskers the upper 
and lower quartiles of the cooling distribution for a given WPi; the white line is a linear 
fit of the black line. The slope of this linear fit is indicated on each panel.   
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Figure 3.15cd exhibits the histograms of KF-CPL TC-induced SST cooling as a 

function of WPi for the pre- and post-monsoon. The amplitude of the cooling increases 

relatively linearly with WPi during both seasons. The regression slope of TC induced 

cooling against WPi is considerably weaker before (0.31°C) than after the monsoon 

(0.65°C). This indicates that, for a given wind power input, the resulting cooling is on 

average two to three times smaller after the monsoon. Similar results were obtained in 

an ocean model forced using observed TC tracks and wind speeds over the 1978–2007 

period (see Chapter 2, Figure 2.8). This implies that the difference in pre vs. post-

monsoon cooling intensity cannot be attributed to differences in the TC wind forcing 

but rather to changes in oceanic stratification. As discussed in section 1.3.2 and in 

chapter 2, the CI is a good metric of the influence of oceanic background conditions on 

the cooling amplitude. This index is shown in Figure 3.16 for observations and KF-CPL 

model. As shown by Neetu et al. (2012), the BoB stratification is relatively 

homogeneous during the pre-monsoon (Figure 3.16ad), but displays a very strong 

east/west contrast during the post-monsoon (Figure 3.16be). The eastern BoB (and east 

coast of India) indeed display CI of ~15% more than during the pre-monsoon (Figure 

3.16cf). This increase is related to the formation of thick barrier layers in these regions 

(contours), in response to the strong freshwater input into the Bay during and shortly 

after the monsoon. As shown by Neetu et al. (2012), this seasonal stratification change 

is related to both a stronger near-surface haline stratification and a deeper thermocline 

after the monsoon, both of which favour a reduced SST cooling under TCs. Overall, we 

have hence shown that the cooling under TCs is weaker during the post-monsoon in 

both observations and our model, due to a deeper thermocline and strong near surface 

salinity stratification during that season. In the absence of changes in background 
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atmospheric characteristics, the air-sea feedback on TCs should hence lead to weaker 

TCs during that season.  

 

 

Figure 3.16.  Climatological cooling inhibition (CI) index (shading; (J.m-2)-1/3) and 
barrier layer thickness (contour; m) during the (a and d) pre-monsoon and (b and e) 
post-monsoon, and (c and f) their difference in (top) observations and (bottom) the KF-
CPL simulation. 

 

 

This is confirmed by Figure 3.17, which indicates a much larger shift towards weaker 

cyclone categories in the coupled simulation before (~15%) than after (~ 3%) the 

monsoon; i.e. a stronger negative feedback of air-sea coupling before the monsoon. The 

effect of air-sea coupling is hence to reduce the intensity of pre-monsoon cyclones, as 

hypothesized by Sengupta et al. (2008). This effect is however offset by the stronger 

impact of changes in MPI and vertical shear, which both tend to induce stronger pre-

monsoon cyclones.  But overall, air–sea coupling effects are not negligible and should 

be accounted for: neglecting it would result in a ~15% overestimation of strong 

cyclones before the monsoon. 
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Figure 3.17. Histogram of KF-CPL and KF-FOR BoB TC occurrence (% of cyclone-
days) as a function of the TC intensity based on maximum winds during the (a) pre-
monsoon and (b) post-monsoon. The inset indicates the percentage of intense TCs (Cat-
2 and above). The whiskers display the 90% confidence interval.  

 

 

 

3.6 Sensitivity of the results to the atmospheric convective scheme 

Deep atmospheric convection is the central process that allows the growth of TCs. It is 

hence possible that our results could be sensitive to the convective parameterization. We 

performed an additional set of experiments with the Bett-Miller-Janjic (BMJ) cumulus 

parameterization instead of that of Kain-Fritsch (BMJ-CPL and BMJ-FOR). 

 

As KF-CPL, BMJ-CPL successfully captures the observed cyclogenesis and TCs 

density spatial patterns both for the northern and southern IO (Figure 3.18ab). However, 
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this simulation yields a far more realistic number of IO TCs (Figure 3.18d), in contrast 

to KF-CPL that produces three times more TCs as in observations (see Figure 3.2d). As 

in KF, air-sea coupling does not significantly impact the IO cyclogenesis and TC tracks 

spatial patterns (Figure 3.18bc). As in KF, the ocean feedback considerably decreases 

the number of TCs developing in both hemispheres in the IO (Figure 3.18d), with an 

even larger decrease in BMJ (~50%) than in KF experiments (~20%). 

 

 

Figure 3.18: Same as Figure 3.2 but for BMJ experiments. 

 

The seasonal evolution of TCs statistics in the IO is generally well captured by BMJ-

CPL, with a maximum TC activity during austral summer in the southern IO (Figure 

3.19b), a bimodal TCs distribution in the northern IO (Figure 3.19f), with TCs 

preferentially occurring the pre and post-monsoon. The observed absence of TCs during 

the core of the summer monsoon (July-August) is even better captured by BMJ-CPL 

(Figure 3.19f) than by KF-CPL (Figure 3.3f). Another noticeable improvement of BMJ-

CPL is the better seasonal phasing of TCs occurrence during the post-monsoon season 

(October-November; Figure 3.19ef). The seasonal evolution of the large-scale 

atmospheric parameters driving the TCs seasonal evolution are also well captured by 

BMJ-CPL for both hemispheres (not shown). Although of different magnitude, the 

impact of air-sea coupling on seasonal changes in TCs number in BMJ (Figure 3.19dh) 
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is very similar to that of KF (Figure 3.3dh), with a larger decrease during non-cyclonic 

seasons as compared to cyclonic seasons.  

 

 

Figure 3.19: Same as Figure 3.3 but for BMJ-CPL and BMJ-FOR. 
 

 

BMJ-CPL underestimates the proportion of strongest cyclones even more than KF-CPL. 

While KF-CPL is able to simulate TCs relatively intense tropical cyclones (up to Cat-3, 

the most intense simulated TC reaching a surface maximum wind speed of 56 m s-1), 

BMJ-CPL never experiences TCs above  Cat-1 (the most intense simulated TC reaching 
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a surface maximum wind speed of 40 m s-1). In addition, KF-CPL experiment generally 

simulates a smaller, more realistic radius of maximum wind speed (~75 km) compared 

to the BMJ-CPL experiment (~100 km; see Samson et al., 2014). Despite these biases, 

the oceanic feedback onto the TCs intensity distribution acts in a similar way: coupling 

shifts the TC intensity distribution towards weaker cyclones (Figure 3.20). BMJ-FOR is 

for example able to simulate Cat-2, while it is not the case in BMJ-CPL. As for KF, 

there is no significant change in the spatial distribution of strongest TCs neither in the 

northern or southern IO (not shown). 

 

 

 

 

 

 

 

 

Figure 3.20. Same as Figure 3.5 but for BMJ-CPL and BMJ-FOR. 

 

 

Compared to KF (Figure 3.6a), BMJ-CPL largely overestimates the amplitude of the 

maximum TC-induced cooling (Figure 3.21a; -0.6°C in observations vs -1°C in BMJ-

CPL). This is probably related to the overestimated TC size in BMJ, which results in a 

longer influence of strong TC-winds at a given oceanic point. The TC)-induced cooling 

is larger in the Northern than in the Southern IO for a given TC amplitude (Figure 
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3.21bc). This can be attributed to an ocean stratification that favours more intense SST 

cooling in the Northern IO, as for KF-CPL. 

 

 

Figure 3.21. Same as Figure 3.6 but for BMJ-CPL and BMJ-FOR. 
 

 

BMJ TC composites for both hemispheres give qualitatively similar results to those of 

Figure 3.8 and 3.9 for KF (not shown). BMJ-FOR also yields larger intensification rates 

for northern IO intensifying TCs than for the southern IO (Figure 3.22a), consistent 

with a warmer SST leading to larger upward enthalpy fluxes (not shown). TC-induced 
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cooling also acts to reduce the intensification rate in both hemispheres, by up to 0.4 m.s-

1.6h-1 in the 30 to 35 m.s-1 TC wind intensity (Figure 3.22b), (against only 0 to 0.2 m.s-

1.6h-1 for KF). The larger effect of coupling on northern than on southern IO strong TCs 

intensification rates however cannot be confirmed in BMJ simulations, due to the 

absence of strong TCs (Cat2 and more) in those simulations.  

 

 

 
 
Figure 3.22. Same as Figure 3.10b and 3.11c but for BMJ-CPL and BMJ-FOR. 
 

 

3.7 Summary and conclusions 

In this study, we analyse a long-term simulations (20 years) of a ¼° regional Indian 

Ocean coupled ocean-atmosphere model to assess the impact of the negative oceanic 

feedback on TCs. This model simulates the TCs spatial and seasonal distributions and 

the TC-induced cooling reasonably well in both hemispheres. It however overestimates 

the number of TCs and fails to reproduce the strongest observed cyclone categories 

(Cat-3 and more). We compare storms statistics from the coupled simulation with those 

from an uncoupled simulation forced by the same SST (from which the storms cold 

wakes have been smoothed out). This allows to assess the impact of air-sea coupling 

under TCs on their TC characteristics. 
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Our results reveal that the spatial distribution of cyclogenesis in the IO is not affected 

by air-sea coupling. This result may partly be related to the fact that large-scale 

environmental parameters controlling cyclogenesis such as vertical wind shear or 

relative humidity are not sensitive to ocean-atmosphere coupling in our modelling 

framework. However, our results demonstrate that air-sea coupling reduces the number 

of Tcs by ~30%. It also influences the TCs seasonal distribution: while the forced 

simulation considerably underestimate the bimodal character of TCs seasonal 

distribution in the NIO, this bimodality is better represented in the coupled run, as a 

consequence of a larger TC reduction during the summer monsoon (50%) than during 

the pre and post-monsoon (20%). In addition, air-sea coupling also shifts the TC 

distribution toward weaker TCs (7% of Cat 2 and above TCs in the forced simulation vs. 

2% in the coupled one). Because large-scale TC-prone atmospheric parameters do not 

change between the forced and coupled simulations, these changes can be confidently 

attributed to the local feedback of air-sea interactions below the storm. 

 

The inner-core upward enthalpy fluxes that fuel the TCs are reduced in the coupled 

simulation in response to storm induced ocean cooling. This reduction is larger in the 

Northern IO (up to ~200W.m-2 for the most intense simulated TCs corresponding to a 

20-30% reduction) than in the Southern IO (up to ~60W.m-2 for the most intense 

simulated TCs corresponding to a 10% reduction). This larger upward enthalpy flux 

reduction results in a larger reduction of the TCs intensification rate in the NIO. The 

northern IO intensifying strongest TCs growth rate is indeed twice larger in the coupled 

than in the forced simulation, against ~15% and only for moderate TCs in the Southern 
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IO. This constrast in the air-sea coupling impact on TCs can be attributed to the higher 

ambient SST and larger TC-induced cooling for a given storm intensity in the NIO. 

 

Previous studies (Sengupta et al., 2008; Neetu et al., 2012) have shown that the BoB 

TC-induced cooling is larger during the pre-monsoon season. It is reduced to about one-

third of its pre-monsoon value after the monsoon owing to changes in oceanic 

stratification.  Since the cooling is negatively related to the TC intensity, this is 

expected to induce stronger cyclones during the post-monsoon season. TCs however 

tend to be stronger during the pre-monsoon in both the model and observations. Our 

study suggests that this is because the seasonal change in atmospheric background 

dominates the contrasts in TC intensity distribution between the two seasons.  Reduced 

vertical wind shear and increased MPI both favour more intense cyclones during the 

pre-monsoon season. Air-sea coupling however acts in the opposite direction, and 

reduces the seasonal contrast in the TCs intensity distribution. Air-sea coupling hence 

needs to be accounted for to reproduce the observed density distribution, especially 

before the monsoon where its negative impact on TCs is largest. 

 

The robustness of these results are further assessed by studying another set of 20-years 

long twin experiments which uses a different parameterization of deep atmospheric 

convection. This new configuration also realistically simulate the spatial and seasonal 

distributions of TCs. Compared to the initial configuration, it yields a more realistic 

number of TCs but with weaker wind amplitude (up to 40m.s-1) and overestimated TC-

induced cooling (probably because of the overestimated radius of maximum winds). 

The impact of air-sea coupling is qualitatively similar in that new set of experiments. 

Air-sea coupling does not affect the TCs spatio-temporal distribution, but considerably 
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reduces the number of TCs, especially during the non-cyclonic season leading to a more 

realistic bimodal seasonal TCs distribution in the northern IO. This reduction is 

however considerably larger in this new configuration (~50%) than in the earlier one 

(~20%). Finally, the percentage of strongest simulated TCs also decreases when air-sea 

coupling is included, with similar mechanisms. The lack of intense TCs (Cat-2 and 

more) in this configuration however prevents assessing the inter-hemispheric 

differences in air-coupling impact on TCs. 
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Chapter 4 A global statistical approach of TCs intensity forecast  

 

4.1 Introduction 

There are six major tropical cyclogenesis areas in the world (Figure 4.1): the North 

Western Pacific (NWP) is the most active cyclone region (~31% of the total number of 

cyclones at the global scale) followed by the North Atlantic (ATL; ~22%), the North 

Eastern Pacific (NEP; ~17%), the Southern Indian Ocean (SIO; ~13%) and South 

Western Pacific (SWP; ~10%). The North Indian Ocean (NIO) is least active cyclone 

region (~6%) but is the basin where TCs cause largest casualties (Longshore 2008).  

 

 

Figure# 1:! Tropical! Cyclones! (TCs)! climatological! density! (per! 4ox4o! bin)! global!
map.! The! six! red! frames! indicate! the! TC?prone! regions! for! which! individual!
statistical!TCs!intensity!prediction!models!are!build!(NWP:!North!Western!Pacific,!
NEP:! North! Eastern! Pacific,! SWP:! Southwestern! Pacific,! ATL:! Atlantic,! SIO:!
Southern!Indian!Ocean,!NIO:!Northern!Indian!Ocean).!The!numbers!in!parenthesis!
indicate! the! total!number!of!TCs!considered! for!each! region!over! the!1979?2012!
period.!!
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Along with dynamical models, the so-called “statistical-dynamical models” are 

routinely used for predicting TC tracks and intensity. In a similar way to the early TCs 

intensity statistical forecast schemes (e.g. Neumann, 1972; Jarvinen and Neumann, 

1979; Merrill, 1980; Chu, 1994; Aberson, 1998), these statistical-dynamical models use 

linear statistical regression techniques to predict intensity changes from predictors 

derived from climatology and persistence of TCs characteristics such as their current 

intensity and their time-derivative but they also include large-scale environmental 

parameters along the cyclone track as additional predictors. The environmental 

parameters along the cyclone tracks are usually obtained from a dynamical model 

forecast, hence the “statistical-dynamical” name. Historically, different operational 

statistical-dynamical prediction schemes have been developed separately for each basin 

and are discussed in section 1.2.4.  

 

Several large-scale environmental parameters are commonly used as predictors in these 

statistical-dynamical schemes, as they are known to influence the TC intensification. 

These parameters include the MPI that a TC can reach, which increases with SST 

(Merrill, 1988; DeMaria and Kaplan, 1994b; Webster et al., 2005), the mid-tropospheric 

relative humidity that favours TC intensification through its influence on convective 

buoyancy through entrainment of sub-saturated air (Emmanuel et al., 2004) or the 

vertical wind shear that can inhibit TC intensification (Gray, 1968; DeMaria, 1996). 

Other environmental predictors in these statistical-dynamical models also include, 

amongst others, low-level vorticity and equivalent potential temperature as well as 

upper-level air temperature (Emanuel, 2007; Knaff et al., 2005; DeMaria et al., 2005). 

Because the current statistical-dynamical models have been developed individually for 

each basin, the selected large-scale environmental parameters used as predictors and the 
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database from which these variables are extracted generally differ from one basin to 

another. It is also important to mention that, in real-time application, these 

environmental predictors are affected by errors in the forecasted location (DeMaria, 

2010; Tien et al., 2013).  

 

Very few studies attempted to compare the predictive skill of statistical-dynamical 

forecast models across different TC-prone regions. A recent study (DeMaria et al., 

2014) provided a comparison of the intensity error of these models over the recent 

period as a function of the basin and offered an update to DeMaria et al. (2007). Their 

results indicate that these errors are generally larger for the NWP and southern 

hemisphere TCs (~12kt at 24h lead-time and ~25kt at 120h lead-time) than for ATL and 

NEP TCs (~10kt at 24h lead-time and ~15kt at 120h lead-time). But the reasons behind 

this basin-wise skill dependency are currently unknown. They could indeed be of 

several distinct origins. First, these differences may be related to the different TCs 

intensity distribution in each of the basin: more intense TCs in the NWP may for 

instance explain the larger errors in this basin. It may however well be that the 

differences in the predictors and in datasets used in each of regional statistical schemes 

could contribute to this basin-wise skill dependency. Finally, this dependency could 

also simply be explained by differences in intrinsic TC intensity predictability in each 

basin. 

 

Little is also known about the relative TC intensity statistical-dynamical hindcasts skill 

yielded by various predictors. Several studies (DeMaria and Kaplan, 1994a, 1999; 

Knaff et al., 2005; Knaff et al., 2009; DeMaria et al., 2014; Lee et al., 2015) 

acknowledged the key contribution arising from the storm climatology and persistence 
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predictors in most basin-wise prediction schemes, the inclusion of large-scale 

environmental parameters generally resulting in a modest skill improvement when 

compared to climatology and persistence-based models. Only a few studies provide a 

quantitative assessment of the respective influence of the various large-scale 

environmental predictors. A recent study discussing the case of the ATL basin (Lee et 

al., 2015) demonstrated that the initial TC intensity change is the most important 

predictor at short-time lead (<24h) but that MPI is the environmental parameter that 

yields most improvement at longer lead-times. In contrast, Sharma et al. (2013) show 

that the initial storm intensity is the most important parameter while the initial intensity 

time-derivative is not an important predictor for the NWP basin. Results for these two 

basins are however very difficult to compare, as the statistical model architecture, 

considered period and environmental datasets and predictors all differ. 

 

Aside the relative importance of predictors, very little is also known about the TC 

intensity statistical-dynamical hindcasts skill as a function of the TCs characteristics, 

including their intensity. This assessment may however be very useful as it would allow 

to better identify at which TCs stage these models are less efficient and hence where a 

dedicated effort needs to be undertaken to improve the skill of these models. 

 

Objectives and structure of the chapter. A thorough comparison of TC intensity 

statistical hindcasts, basin-wise skill and relative importance of predictors is hence still 

lacking. Therefore, the objective of this chapter is to identify the most important 

predictors in TC intensity statistical models at global-scale as well as to assess the 

sensitivity of the model skill to TCs strength. This endeavour requires a common 

framework for a meaningful comparison of the results between each basin. As detailed 
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in section 4.2, statistical-dynamical TC intensity hindcast schemes is developed for each 

basin using consistent predictors derived from a single atmospheric dataset over the 

same period. The basin-wise skill differences and the respective influences of the 

predictors on the model skill is discussed is section 4.3. The impact of environmental 

predictors calculated along the forecast track versus those calculated using climatology 

as well as stratify model performance by initial intensities are also discussed. A 

summary will finally be provided in Section 4.4. 

 

4.2 Basin-wise statistical intensity forecast models  

4.2.1 Datasets 

The!observed!datasets!used! in! the!present! study!are! listed! in!Table!4.1.!Tropical 

cyclones location and wind intensity are derived from IBTrACS dataset (Knapp et al., 

2010). IBTrACS combines the best track data from many agencies into one common 

format. We use the Joint Typhoon Warning Center (JTWC) data as our main database 

as it uses a consistent methodology for data preparation in every region (NWP, NEP, 

SWP, NIO and SIO basins), except in the ATL where JTWC does not operate. For this 

region, we use the National Hurricane Center (NHC) data. Both JTWC and NHC use 1-

min average for sustained wind speed. As acknowledged in the literature (e.g. DeMaria 

and Kaplan, 1994; Knaff et al., 2005), the statistical properties of storms over land are 

different from those over the ocean and specific empirical inland decay models are used 

for predicting the intensity change for TCs after landfall. Here, we only consider TC 

located over the ocean (i.e. TCs are excluded from the present analysis for all points 

over land). It is likely that the inclusion of a specific ad-hoc parameterisation of the land 

effects would reduce the intensity errors, as it has been shown to be the case for the 

Atlantic and east Pacific for shorter-range forecasts by DeMaria et al. (2005). One 
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caveat of these best track data is that their intensity is generally derived using satellite-

based methods, such as the Dvorak technique (Dvorak, 1984). The intensity archived in 

these datasets are estimated to the nearest 5 kt at 6-h intervals. For this reason, model 

formulation as well as any discussion of intensity in this chapter will be discussed knots 

rather than in meters per second.  

 

We extract synoptic atmospheric conditions along the cyclone best tracks from the 

European Centre for Medium-range Weather Forecasts (ECMWF) Interim Re-Analysis 

(ERA-Interim; Dee et al., 2011) dataset. We use 34 years (1979-2012 period) of 6-

hourly atmospheric ERA-I reanalysis fields at 0.75ox0.75o horizontal resolution. 

####
S.#No.# Parameter# Description#
1! Tropical!cyclone!

position!and!
intensity!

IBTrACS!dataset!(Knapp!et!al.,!2010).!!

2! Atmospheric!
parameters!

ERA?Interim!atmospheric!reanalysis!(Dee!et!al.,!
2011).!!

Table#4.1:!Data!used!in!the!study.#
!

4.2.2 Model development 

Table 4.2 lists the predictors used in our TCs intensity statistical hindcast schemes. 

These parameters are adapted from Knaff et al. (2005, 2009) and Sharma et al. (2013). 

Three variables account for the TC characteristics at the beginning of the forecast: the 

intensity (VMAX), the intensity squared (VMAX2) and the intensity change over the 

previous 12-hours also referred as persistence (PER). We have constructed a first set of 

basin-wise hindcast models that only uses those predictors (i.e. predictors 1-3 from 

Table 4.1: the initial intensity, its square, and the intensity change 12 hours prior to the 

start of the forecast), which we will refer to as the “baseline” models (Table 4.3). But 
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we have also constructed models that also take the effects of environmental parameters 

along the cyclone tracks into account, referred to Atm models (Table 4.3).  

 

S.#No.# Predictor# Description#
1! VMAX! Initial!intensity!
2! VMAX2! Initial!intensity!squared!
3! PER! Intensity!change!during!previous!12!hour!
4! MPI#! Maximum!potential!intensity!
5! MPI2#! Maximum!potential!intensity!squared!
6! SHRD*#! 200!to!850!hpa!Wind!shear!magnitude!
7! USHR*#! 200!to!850!hpa!Zonal!wind!shear!magnitude!
8! RHHI*#! 500!to!300!hpa!Average!relative!humidity!
9! T200*#! 200!hpa!Temperature!!
10! E925*#! 925!hpa!Equivalent!potential!temperature!
11! Z850**#! 850!hpa!Vorticity!!
12! VMXS% VMAX*SHRD%
13! VMXM% VMAX*MPI%

 
 
Table 4.2: List of the predictors used in the present study. The predicted variable is 
DELV, i.e. the intensity change since the forecast start, at 12, 24, … , 120 hours into the 
forecast. The variables marked with a * are estimated from an area-average within 200 
to 800 km of the cyclone track. The variables marked with a ** are estimated from an 
area-average within 1000 km of the cyclone track. The variables marked with a # are 
time-averaged from the initial to the forecast time. The variables in black (No 1 to 11) 
are used in the Atm reference model presented throughout the paper. The variables in 
italics (No 12 and 13; i.e. the cross-terms) are commonly used in statistical-dynamical 
forecasts but are discarded from the final list of predictors in the present study to allow 
a proper assessment of the relative importance of each of the predictors.  
 
 

Name# Predictors#used#

Atm! Regional!models!build!with!predictors!1?11!in!each!basin!
Atm+Cross!! Regional!models!build!with!predictors!1?13!(Table!4.2)!in!each!basin!
Baseline! Regional!models!build!with!predictors!1?3!in!each!basin!!
Atm?VarN! As!Atm,!without!predictor!N;!For!Vmax!and!MPI,!both!the!term!and!

its!square!are!removed!from!the!predictors!list!
Atm_Clim! As!Atm!model!but!atmospheric!predictors!(4?11)!are!calculated!from!

climatological!fields!
Glob! Single!global!model!build!with!predictors!1?11!

 
Table 4.3: List of different sensitivity experiments performed and related predictors 
used. The numbering of the predictors used refers to the parameters listed in Table 4.2. 
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Basin# MPI#Equation# Reference#

NWP! A+BeC(T?T0),!A=38.21!kt,!B=170.72!kt!
C=0.1909!oC?1,!T0=30.0!oC!

Knaff!et!al.,!Wea.%
Forecasting,!2005!

NEP! A+BT,!A=?79.17262!m!s?1,!
B=5.361814!m!s?1!oC?1!

DeMaria!et!al.,!Wea.%
Forecasting,!2005!

SWP,!SIO! A+BeC(T?T0),!A=?42.1!kt,!B=220.58!kt!
C=0.0792!oC?1,!T0=30.0!oC!

Knaff!et!al.,!Aust.%Met.%
Oceanogr.%J.,!2009!

NIO! A+BT,!A=?889.64!m!s?1,!B=35.714!m!
s?1!oC?1!

Kotal,!et!al.,!Meteorol.%
Appl.,!2009!

ATL! A+BeC(T?T0),!A=28.2!m!s?1,!B=55.8!m!
s?1!
C=0.1813!oC?1,!T0=30.0!oC!

DeMaria!et!al.,!Wea.%
Forecasting,!2005!

 
Table 4.4: Empirical formulation of the Maximum Potential Intensity (MPI) for each 
TC-prone basin and related references. 

 

The selected large-scale environmental parameters are commonly used in the statistical-

dynamical models and are derived from the parameters list proposed by Sharma et al. 

(2013) for the NWP region and by Knaff et al. (2009) for the southern hemisphere. 

They have been computed using the 6-hourly ERA-Interim dataset and averaged in time 

along the TC track from the initial time till the forecast hour. They include the 

maximum potential intensity (MPI), a theoretical upper bound for the cyclone intensity 

that increases with sea surface temperature (Merrill, 1987; Miller, 1958; DeMaria and 

Kaplan, 1994b; Emanuel, 1988; Emanuel and Nolan, 2004; Holland, 1997; Webster et 

al., 2005). We have used empirical formulae to estimate the MPI in each basin. MPI is 

parameterized using an exponential function of sea surface temperature in the NWP, 

SWP, SIO and ATL regions, and a linear relationship in the NEP and NIO basins 

(DeMaria et al., 2005; Knaff et al., 2005; Knaff et al., 2009; Kotal et al., 2009). These 

empirical relationships and the corresponding references are listed in Table 4.4. The 

MPI is computed using 6-hourly sea surface temperature fields from ERA-Interim 

dataset and its maximum value set to 185kt. MPI and MPI2 are both used as predictors 

in our model as it is the case in most other statistical-dynamical forecast models (see 



! 142!

Table 4.2). The 200-850 hPa wind shear magnitude (SHRD) and 200-850 hPa zonal 

wind shear magnitude (USHR) are used to account for the destructive effect of vertical 

shear on TCs. These variables (SHRD and USHR) are averaged over an annular region 

within 200 to 800 km from the center of the storm. Mid-tropospheric (i.e. average 300-

500 hPa) relative humidity, temperature at 200 hPa (T200), and low-level (925 hPa) 

equivalent potential temperature (E925), all averaged within 200-800 km of the TC, are 

also used as predictors (see Table 4.1). Low-level relative vorticity (at 850 hPa, Z850) is 

also used as a predictor, but area-averaged within 1000 km from the center of the storm 

following Knaff et al. (2005, 2009).  

 

Two more predictors VMAX multiplied by MPI (VMXM) and VMAX multiplied by 

SHRD (VMXS) are also been tested. In line with Sharma et al. (2013) but in contrast to 

Knaff et al. (2005, 2009), the storm translation speed and pressure of the initial steering 

motion of the wind are not included, as it resulted in marginal improvement of our 

forecasts (less than 1% skill improvement). We do not use any oceanic-derived metric 

as predictor in the model development because the short length over which oceanic 

datasets are available and/or reliable (daily ocean-reanalysis dataset are only available 

from 1993 onwards) would result in a considerable reduction of our training period. The 

primary aim of this work is indeed not to build an improved version of the existing 

statistical models, but rather to evaluate the importance of key predictors and regional 

skill variations, using a common framework. It must however be noticed that the 

inclusion of additional predictors does not affect the general conclusions derived from 

the present study. 
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Figure 4.2: (a) Normalized distribution of TC intensity for each basin. Vertical dashed 
lines indicate the mean of the upper tenth percentile of the distribution for each basin. 
Normalized distribution of (b) SHRD, (c) MPI and (d) RHHI at 12h lead-time for each 
basin. Vertical dashed lines indicate the mean of the distribution for each basin. 

 

 

The distributions of five of the main predictors used in the present study are shown on 

Figure 4.2 as a function of the TC-prone basin considered. The variables that account 

for the TC characteristics at the beginning of the forecast (VMAX and PER; Figure 
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4.2ab) share a rather similar distribution in each of the TC-prone basin. The NWP 

region is however the region showing the most intense TCs (with an averaged of 61 m.s-

1 for the highest tenth percentile in this basin; see dashed vertical lines on Figure 4.2a). 

In contrast, the NIO displays the weakest TCs. The four other basins (NEP, SWP, SIO 

and ATL) generally share similar TC intensity distribution (Figure 4.2a). In contrast to 

the TCs characteristics, the distribution of the environmental parameters can be far more 

different from one basin to another. For instance, the MPI distribution (Figure 4.2d) 

exhibits its largest values in basins where the warmest surface temperature are found 

(NIO and NWP where their averaged MPI value exceed 150 kt; see dashed vertical lines 

on Figure 4.2d). In contrast, MPI values are far weaker in the ATL basin, where its 

distribution hardly overlaps those in the NIO and NWP basin, with an averaged value 

lying around 60 kt. While these distributions are more similar for SHRD and RHHI 

environmental parameters (Figure 4.2c,e), they significantly differ from one basin to 

another, RHHI being for instance generally lower for the ATL basin and larger for the 

NWP, SWP and NIO basins. 

 

# VMAX# PER## MPI# SHRD# USHR# RHHI# T200# E925# Z850# VMAX2# MPI2#
VMAX## 1.00# 0.14! ?0.20! 0.03! 0.21! ?0.23! 0.23! ?0.09! 0.08! 0.96# ?0.23!
PER# ! 1.00# 0.12! ?0.19! ?0.11! 0.19! 0.00! 0.18! 0.02! 0.13! 0.13!
MPI## ! ! 1.00# ?0.32! 80.53# 0.50# 0.44! 0.72# 0.09! ?0.12! 0.99#
SHRD## ! ! ! 1.00# 0.45! ?0.18! ?0.05! ?0.42! 0.02! 0.00! ?0.29!
USHR## ! ! ! ! 1.00# ?0.48! ?0.17! 80.50# ?0.09! 0.17! 80.52#
RHHI# ! ! ! ! ! 1.00# 0.21! 0.52# 0.14! ?0.17! 0.52#
T200## ! ! ! ! ! ! 1.00# 0.46! 0.15! 0.24! 0.42!
E925# ! ! ! ! ! ! ! 1.00# 0.04! ?0.04! 0.70#
Z850# ! ! ! ! ! ! ! ! 1.00# 0.10! 0.16!
VMAX2# ! ! ! ! ! ! ! ! ! 1.00# ?0.15!
MPI2# ! ! ! ! ! ! ! ! ! ! 1.00#

#

Table 4.5: Correlation table between predictors at 60h at global scale. Performing these 
correlations per basin provides similar qualitative results. 
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A proper interpretation of the regression coefficients arising from these statistical 

models and a proper assessment of the relative importance of each predictor require 

investigating the correlations existing between the different predictors. Table 4.5 

displays such a cross-correlation matrix for all predictors taken at 60h (considering 

another lead do not change qualitatively the results discussed). VMAX and PER are 

generally only weakly correlated with other predictors, indicating that these parameters 

are relatively independent (except for VMAX and VMAX2 which are obviously 

correlated). Amongst the environmental predictors, it appears that MPI, USHR, RHHI, 

E925 and MPI2 are generally correlated with each other, with correlations exceeding 

+/- 0.5. In contrast, SHRD, T200 and Z850 appear to be more independent. This result 

implies that the interpretation of the regression coefficients and relative importance of 

correlated predictors has to be taken with cautious. 

  

In our statistical scheme, the dependent variable or the predictand is the change in 

intensity (DELV) between the start of the forecast and the considered lead-time (for 

lead times up to 120 hours, at 12 hours intervals). The predictors are the TCs initial 

characteristics (predictors 1-3 in Table 4.2) and large-scale environmental parameters 

(predictors 4-11 in Table 4.2) described in the previous section. We then construct a 

statistical model using a multiple linear regression (MLR) technique for each TC-prone 

basin. A MLR model is built separately for each of the forecast lead-time, 12, 24, …, 

120 hr. 80% of the TCs are used for building the model (training dataset) and the 

remaining 20% are used for testing the model performance. The training and testing 

datasets are chosen randomly but for entire TCs tracks (i.e. all the values along a TC 

track are either included in the training or in the testing dataset). This careful selection 

allows to avoid overfitting that could result from using data from the same TC in both 
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the training and testing datasets. For more reliable results, and to better approximate the 

generalization performance of the hindcast, each regional model fit was estimated 50 

times for each forecast lead-time, using 50 different randomly-selected training and 

testing sets. The reported values were averaged over the 50 realizations. The confidence 

intervals on the value derived from this average are estimated using a bootstrap 

technique. To do so, we randomly select 50 values from the 50 realizations of each 

regional model. Overlapping selection is allowed, meaning that result from one 

realization can be selected more than once. We then re-calculate the average from these 

selected 50 values. By repeating this process 1,000 times, we obtain 1,000 estimated 

mean values. The upper and lower uncertainty on the mean is then considered to be the 

5% and 95% percentile of the probability distribution function of the averaged value. 

This procedure is applied separately for each TC basin (NWP, NEP, SWP, NIO, SIP 

and ATL), using the same predictors and datasets (except for ATL and NEP TCs 

characteristics for which NHC TC characteristics are used in place of JTWC), allowing 

a fair comparison of results across TC-prone basins.  

 

We choose commonly used metrics to evaluate the model performance in order to 

compare our model skill with previously published results. These metrics include the 

mean absolute error (MAE; Lee et al., 2015; Knaff et al., 2005; Knaff et al., 2009; 

Sharma et al., 2013) and the percentage of skill improvement compared to a given 

reference model (DeMaria et al., 2007). The MAE is defined as the mean of absolute 

values of the difference between predicted and observed TC intensity at each forecast 

hour. Consistently with DeMaria et al. (2007), the skill improvement is computed as 

follows,: 

Skill (%) = 100 * (MAEref – MAEModel) / MAEref,   
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where MAEref is the MAE derived from a reference model and MAEModel is the MAE 

from the model being evaluated. In this chapter, we will use different choice for the 

reference model. For example, we can use a reference model that neglects a given 

environmental predictor to assess its importance (Atm-VarN sensitivity experiments 

summarized in Table 4.3 and detailed later in the chapter). We can also use “persistence” 

as a baseline model (where persistence is the simplest model of all, that simply assumes 

that DELV won’t change from its value at the forecast time).  

 

 

Figure 4.3: (a) MAE as a function of lead-time, averaged over all basins for persistence 
(black line), Atm model (blue line) and Atm+Cross model (red line). (b) Percentage of 
Atm+Cross improvement relative to Atm at 24h, 60h and 108h lead-times, for each 
basin and globally. Atm+Cross model is similar to Atm model, except that the two cross 
terms (VMXS and VMXM) are included in the predictors list. Error bars give the 95% 
confidence interval estimated from a bootstrap technique detailed in section 4.2.2. 
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In addition to the parameters used in our scheme, Knaff et al. (2005) also used two cross 

terms, namely VMXS and VMXM (also listed in Table 4.2). These terms make the 

assessment of the respective importance of the predictors involved in the cross-terms 

more complicated. To investigate whether they can be ignored, a sensitivity experiment 

was conducted to ascertain the importance of these terms. This model (referred to as 

Atm+Cross, see Table 4.3) is similar to our reference Atm model except that the two 

cross terms (VMXS and VMXM) are included in the predictors list. The statistics 

shown on Figure 4.3 (MAE and skill improvement of Atm+Cross relative to Atm, 

computed as in Eqn. (1)) and in the following analyses are calculated on the testing 

dataset of each experiment. As it will be illustrated later in Figure 4.5, performing the 

same diagnostics separately on the testing or training datasets generally leads to similar 

results. In agreement with past literature, Figure 4.3a first illustrates that the MAE 

generally increase with forecast lead-time: this increase is largest for forecast lead times 

between 12hr to 96hr and reduces beyond 96hr. When averaging results globally, the 

MAE of Atm experiments ranges from 5kt at 12h to 22kt at 120h (Figure 4.3a, blue 

curve). As expected, the Atm models are systematically more skilful than persistence 

(Figure 4.3a, black curve). The inclusion of cross-terms leads to a modest improvement 

of the model performance as measured by the MAE (Figure 4.3a): this improvement is 

indeed marginal for long lead-times and slightly larger for shorter lead times (~1kt 

improvement between 24h to 48h). The percentage of skill improvement of Atm+Cross 

as compared to Atm is further provided on Figure 4.3b at three lead-time (24h, 60h and 

120h) for each TC-prone basin and globally. It indicates that including these cross terms 

results in a 5% skill improvement at 24h, 2% at 60h and 1% 120h globally. The relative 

influence of these terms however varies from one basin to another, being slightly larger 
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in the southern hemisphere and in the NEP and smaller in the NIO and NWP. Despite 

their non-negligible skill gain, we decided not to include VMXS and VMXM as 

predictors in our model as these cross terms prevent a simple quantitative assessment of 

the relative importance of the predictors involved in these cross-terms.  

 

4.2.3 Model Performance 

The Atm models skill is first evaluated by comparing basin-wise MAE of this model 

with similar results reported in the literature for the NWP (Knaff et al., 2005; their 

Table 6) and the combined results for the SWP and SIO (Knaff et al., 2009; their Table 

5) for the training dataset and for the ATL on the testing dataset (Lee et al., 2015; their 

Figure 5). Such error estimates are not available for NEP and NIO in the peer-reviewed 

literature. As displayed on Figure 4.4, model skill generally compares favourably with 

previously published results. For the NWP region, this model is slightly less skilful than 

the STIPS model initially developed by Knaff et al. (2005), especially for lead-times > 

48h, for which our MAE is larger by ~1-2kt (Figure 4.4a). The model performs slightly 

better for the SIO and SWP regions as compared to the SH-STIPS model proposed by 

Knaff and Sampson (2009), with a MAE reduction up to ~2-3kt for long lead-time 

(Figure 4.4b). Finally, our model performs very similarly to the recent model proposed 

by Lee et al. (2015) for the ATL region, our MAE being slightly weaker by 1-2kt for 

mid-range lead-times (Figure 4.4c). The modest differences between the skill of the 

model proposed in the present study and the skill from the models detailed in the past 

literature demonstrate that our model includes the most important predictors for an 

accurate TC prediction in each basin, giving us confidence in the robustness of the 

results discussed in the next section. These modest differences could arise from 

different sources: the choice of predictors, the source of the atmospheric data and TC 
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database as well as the different training/testing periods. The sensitivity to the choice of 

the period is further discussed below. 

 

Figure 4.4: MAE as a function of lead-time for persistence (black line), Atm model 
(blue line) and previously published results (red line) in (a) the NWP for the training 
dataset (compared to Knaff et al. 2005; their Table 6), (b) in the southern hemisphere 
(SWP+SIO) for the training dataset (compared to Knaff et al. 2009; their Table 5) and 
(c) the ATL for the testing dataset (compared to Lee et al. 2015; their Figure 5). 

 



! 151!

Statistical-dynamical models presented by Knaff et al. (2005, 2009) are built on a rather 

short period (~7 years) as compared to our Atm experiment that is built from a dataset 

spanning 34 years. These may partly explain the skill differences seen on Figure 4.4ab. 

To investigate this further, Figure 4.5 compares the performance of statistical hindcast 

scheme built based on a 34 years long period (27 years for training and 7 years for 

testing; right panels on Figure 4.5) to that obtained when using a 7 years period (~5.5 

years for training and ~1.5 years for testing; left panels on Figure 4.5). Using a 7 years 

dataset results in far weaker training errors than testing errors, especially in the southern 

hemisphere and ATL basin (~5kt for SWP+SIO basin, and ~3kt for ATL at long lead-

time and only ~1kt for WP). In contrast, models built over a longer 34 years period 

exhibit far weaker skill differences between the training and testing datasets (less than 

1kt in all the basins). These differences can be attributed to the tendency of models 

trained with relatively small datasets to overfit the data, which leads to accurate training 

skill but degraded testing skill. When using a 7 years dataset, the training performance 

indeed diverge more from the testing performance for basins with a lower TCs density 

(e.g. SIO+SWP and ATL) relative to the most active TC-prone basin (NWP), for which 

the larger number of cyclone yields a larger training sample. As Knaff et al. (2005, 

2009) provided the MAE from their training dataset of ~5 years long, a fair comparison 

with our scheme would be to compare these results with our training results for the 

shorter training period (blue curves on the left panels of Figure 4.5). Doing so, although 

still slightly less accurate, our results comes closer to Knaff et al. (2005) for the NWP 

basin and outperforms the results of Knaff et al. (2009) for the southern hemisphere 

even more than on Figure 4.4b. 
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Figure 4.5: (Left panels) MAE as a function of lead-time of the training dataset (blue 
line) and testing dataset (red line) for the Atm model built from a 7 year period in the 
(a) NWP, (b) SWP+SIO and (c) ATL. MAEs from already published results are also 
shown as dashed lines. (Right panels) Same as left panels but for a model build over a 
34 years period. Thick lines indicate MAE resulting from averaging results from 1000 
simulations with different randomly selected training/testing datasets while shading 
indicate the 5% lower and 95% higher bound of the ensemble distribution. 
 

 

The data length also considerably influences the stability of the skill: using a smaller 

dataset systematically leads to a larger spread of the model performance between the 50 

models built based on random selections of the training/testing datasets (shadings of the 

left panels of Figure 4.5) relative to bigger datasets (shadings of the left panels of Figure 

4.5). For the southern hemisphere, the MAE on the testing dataset at 120 h forecast 
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lead-time ranges between ~19kt and ~26kt when the model is built on a 7 years period 

while it ranges between ~19kt and ~23kt when the model is built for 34 years. These 

results illustrate the strong sensitivity of the model skill to the period used to build the 

model, demonstrating that building a model with larger datasets using a cross validation 

method will systematically result in more reliable and robust estimate of the skill. In the 

following sections, we will hence calculate the metrics used in the present study (MAE 

and skill improvement) for the entire 34 years on the testing average of the 50 

randomly-selected realisations of the model.  Since best track locations are used in these 

evaluations, the results are not influenced by track errors that occur with real-time 

applications of these models (DeMaria, 2010, Tien et al., 2013).  

 

4.3 Results 

4.3.1 Basin-wise performance   

As discussed in the introduction, DeMaria et al. (2014; their Figure 4) provides a recent 

basin-wise evaluation of the statistical-dynamical models performances. They show that 

models developed for NWP and the southern hemisphere (~12kt at 24h lead-time and 

~25kt at 120h lead-time) generally exhibit larger MAE than those developed for the 

ATL and NEP basins (~10kt at 24h lead-time and ~15kt at 120h lead-time). These 

differences may however be partly due to the different training/testing periods, 

predictors and atmospheric datasets used to derive the large-scale environmental 

parameters. Our common framework allows addressing the basin-wise skill differences 

more thoroughly. In contrast to DeMaria et al. (2014), Figure 4.6a indicates that the 

MAE derived our common modelling framework only modestly differs from a basin to  
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Figure 4.6: MAE as a function of lead-time for (a) Atm model and (b) persistence for 
each basin (i.e. NWP, NEP, SWP, ATL, SIO, NIO). (c) Percentage of skill 
improvement of these models relative to persistence as a function of lead-time for each 
basin. See section 2.2 for a definition of persistence metric and the skill metrics shown 
on panel c. Error bars on panels a and c give the 95% confidence interval estimated 
from a bootstrap technique detailed in section 4.2.2. 
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another: they systematically range between 8 and 11kt at 24h and between 20 and 24kt 

at 120h. The MAE are however slightly larger for the NEP region at short time-lead and 

for the NWP region at long time-lead. In contrast, they are weaker for the NIO and SIO 

regions at short time-lead and for SWP at long time-lead. While results from DeMaria et 

al. (2014) indicate that errors are generally far larger for southern hemisphere TCs than 

for ATL and NEP TCs, it is not the case in our analysis, implying that the differences 

discussed in DeMaria et al. (2014) are hence likely attributable to the differences in the 

modelling framework (the LGEM model used for ATL and EP regions includes the 

same inputs as SHIPS but utilizes a more sophisticated prediction equation; see 

DeMaria et al., 2009) rather than to the inherent predictability of TCs in these basins. In 

contrast, the larger MAE in the NWP region as compared to ATL basin, also noticeable 

in DeMaria et al. (2014), cannot be explained by differences in the model architecture 

and are hence likely to arise from the specific TCs characteristics in this basin (e.g., the 

fact that this basin hosts generally stronger TCs) or to the inherent predictability in this 

region.  

 

Comparing the basin-wise models performances based on the percentage of 

improvement compared to simple persistence (Figure 4.6c) provide a different picture 

from the comparison based on the MAE (Figure 4.6a). Based on this metric, four basins 

(NWP, SWP, SIO and NEP) exhibit similarly high percentages of improvement relative 

to persistence, ranging from ~20 to 40% depending on the lead-time considered. In 

contrast, the skill improvement compared to persistence is considerably weaker in the 

ATL and to a lesser extent in the NIO basin, where it ranges ranging between 10 and 

25%. While the ATL model exhibit one of the weakest MAE, it also exhibits one of the 

weakest relative improvement compared to persistence (along with NIO). This apparent 
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discrepancy can be explained by the performance of the persistence model in each basin. 

Figure 4.6b indeed shows that MAE from persistence is actually weaker for both the 

ATL and NIO basins, illustrating that TCs in these basins show smaller intensity 

changes as compared to the other basins. Similarly, while the NWP model exhibits one 

of the strongest MAE, it also shows one of the largest relative improvements compared 

to persistence (along with SWP). NWP persistence model shows one largest MAE 

(Figure 4.6b) and can hence explain the larger MAE for the NWP model (Figure 4.6c), 

despite the fact that the model developed for this basin shows one of the largest 

improvements relative to persistence amongst all basins (Figure 4.6a). The larger MAE 

derived from the persistence model in the NWP is likely to arise from the fact that this 

exhibits the most intense TCs (see Figure 4.2a) and hence the larger errors. Similarly, 

the weaker MAE derived from the persistence model in the NIO is likely to arise from 

the fact that this exhibits the weakest TCs (see Figure 4.2a). This interpretation does not 

however hold for the ATL basin where TCs intensity distribution is similar to that in the 

NEP and SIO basins (see Figure 4.2a) but its persistence skill is larger than in these 

basins. It implies that, for similar TCs intensity, TCs in this basin appears to exhibit 

more steady intensity variations compared to other basins.  

 

We further investigate differences in the basin-wise models architecture by comparing 

the coefficients of the multiple linear regression at 60h lead for each basin for some key 

predictors in Figure 4.7. This figure first reveals that these regression coefficients are 

generally significant (see error bars on Figure 4.7) and exhibit consistent signs and 

order of magnitude across basins, suggesting qualitatively similar influences of each 

predictor. For instance, PER regression coefficients are systematically positive, 

illustrating that an intensifying TC is likely to further intensify in the near future. 
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Similarly, regression coefficients for RHHI are systematically positive, demonstrating 

the favourable impact of large mid-tropospheric humidity on TC intensification. In 

contrast, regression coefficients for SHRD are systematically negative, highlighting that 

 

 

Figure 4.7: (a) Regression coefficients for the key predictors used in the Atm model at 
60h for each basin. Error bars give the 95% confidence interval estimated from a 
bootstrap technique detailed in section 4.2.2. These regression coefficients have been 
multiplied by 100, 1.5, -0.5, 100, -1 and 2 for VMAX2, PER, MPI, MPI2, SHRD and 
RHHI respectively for a better readability. 
 

 

 a strong vertical shear is detrimental to TC intensification in all basins. Results related 

to MPI are more difficult to interpret as they involve two predictors (MPI and MPI2) 

that are strongly correlated (see Table 4.5). Regression coefficients are generally 

negative for MPI, and positive for MPI2, except for SIO where these two signs reversed. 

This change of sign could result from the strong correlation existing between these two 
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parameters (MPI and MPI2; see Table 4.5) that could result in coefficient estimates that 

may drastically change from one basin to another. Because VMAX and VMAX2 are 

also strongly correlated, their regression coefficients are also more difficult to interpret. 

Despite this overall consistency of the regression coefficients amongst the basins, the 

exact values of these coefficients are shown to significantly vary from one basin to 

another. While SHRD and PER regression values are rather close to each other in most 

basins, it is not the case for instance for RHHI whose regression coefficients can vary 

by an order of magnitude from one basin to another. As shown on Figure 4.2d, the 

rather different distribution of this parameter amongst the basins could explain the 

basin-wise differences in the regression coefficients, i.e. the influence of a given 

environmental parameter may differ depending the range of this parameter variation in 

each basin.  

 

Figure 4.7 clearly indicates that the linear regression coefficients can vary from a basin 

to another, suggesting that it is better to construct TC intensity statistical hindcast 

schemes regionally than globally. To quantify this, we constructed a hindcast scheme 

that was trained collectively on all the basins (Glob model; see Table 4.3). The 

performance of the regional models relative to that of a global model is shown on 

Figure 4.8. As expected from the basin-wise disparity for some of the regression 

coefficients, regional models generally outperform the global model. However, when 

comparing these skills at global scale, the improvement arising from a regional training 

compared to a global one is rather modest, reaching respectively 2%, 3% and 1% at 24h, 

60h and 108h (Figure 4.8), suggesting that it may be possible to build an efficient 

statistical model for TCs intensity forecast at global-scale. These relative improvements 

however strongly vary from one basin to another: some regions such as SIO and SWP 
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exhibit very similar skills when trained regionally or globally while the improvement 

gained from a regional training is larger for the ATL and NIO basins (up to 5%). As 

expected, the regression coefficients for each predictor derived from the global model 

generally falls within the range of those derived for the regional ones (Figure 4.7). 

 

 

Figure 4.8: Percentage of model skill improvement relative to persistence for basin-
wise trained Atm models (light colors; see Table 4.3) and the globally-trained Glob 
model (plain colors; see Table 4.3) at 24h, 60h and 108h, as a function of the basin. 
Error bars give the 95% confidence interval estimated from a bootstrap technique 
detailed in section 4.2.2. 

 

 

4.3.2 Relative importance of predictors  

Following this basin-wise performance assessment, our next objective is to compare the 

respective contribution of each predictor to the overall skill of these models. We first 

assess the contribution of the TC characteristics at the beginning of the hindcast, since 

they strongly contribute to the model skill (e.g. DeMaria and Kaplan 1994a, 1999; 

Knaff et al. 2005, 2009; Lee et al. 2015). In Figure 4.9, we compare the skill of the 

“Atm” models with all environmental predictors to that of “baseline” models (Table 

4.3) built by only accounting for the TC initial characteristics (predictors 1, 2 and 3 

from Table 4.2). This Figure reveals that TCs characteristics (i.e., the baseline models) 
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Figure 4.9: (a) MAE as a function of lead-time, averaged over all basins, for 
persistence (black curve), Atm model (blue curve) and baseline model (red curve). (b) 
Percentage of skill improvement of baseline (plain colors) and Atm models (light 
colors) relative to persistence at 24h, 60h and 108h lead for each basin and globally. 
Only the TC initial characteristics (predictors 1 to 3 in Table 4.2) are used as predictors 
in the baseline model (cf table 4.3). Error bars give the 95% confidence interval 
estimated from a bootstrap technique detailed in section 4.2.2. 

 

 

explain a large fraction of the MAE decrease when compared to persistence (Figure 

4.9a): the average MAE at 60 h averaged over all basins decreases by 6 kt (25 kt to 19 
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kt) from persistence to baseline model and by only further 2.5kt (to 16.5 kt) for the Atm 

model. When averaged over all basins, the relative improvements compared to 

persistence range from 19% for 24hr lead to 27% for 108-h lead time for the baseline 

model, while they reach 24% for 24-h lead time to 36% for 108-h lead time for the Atm 

model (Figure 4.9b). The inclusion of the large-scale environmental parameters in the 

predictors hence results in an additional skill improvement relative to the baseline 

model ranging from ~5% at 24hr to ~9% at 108hr.  That is, accounting for 

environmental parameters accounts for 20 to 40% of the Atm model performance. The 

improvement brought by the inclusion of environmental parameters is qualitatively 

similar from one basin to another (Figure 4.9b). As a summary, Figure 4.9 generally 

illustrates that the TC initial characteristics account for a large fraction of the TCs 

hindcasts skill of the statistical-dynamical linear models in all TC basins, in agreement 

to previously published literature. 

 

Figure 4.10: Percentage of skill improvement of Atm relative to Atm-VarN (see table 
4.3) at 60h for each basin and globally. This is a measure of the respective contributions 
of the SHRD, MPI, PHHI, T200, USHR, E925 and Z850 predictors to the overall skill. 
Error bars give the 95% confidence interval estimated from a bootstrap technique 
detailed in section 4.2.2. 
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To further quantify the relative contribution of each large-scale environmental 

parameter listed in Table 4.2 (predictors 4 to 11), a series of experiments excluding each 

of these environmental parameters is carried out (Atm-VarN experiments in Table 4.3). 

The contribution of each large-scale environmental parameter is assessed by calculating 

the percentage of skill improvement of the Atm model relative to Atm-VarN, using Eq. 

(1). For VMAX and MPI parameters, both the term and its square are removed from the 

predictors list when carrying out the Atm-MPI and Atm-VMAX experiments. Figure 

4.10 displays this result for a particular lead-time (60 h) in each of the basins but results 

are qualitatively similar at all forecast lead times (not shown). When averaged over all 

basins, SHRD is the most important environmental parameter, yielding to a ~4% skill 

improvement. The most important parameters are then MPI (~2.5%) followed by Z850, 

USHR, RHHI and T200 (~1%). Finally, E925 contributes very weakly to the skill 

improvement at global-scale (~0.25%). When looking at these contributions basin-wise, 

the skill improvement is also generally dominated by a subset of environmental 

parameters. As it is the case at global scale, SHRD is generally the most important 

environmental parameter in all TC-prone basins, except in the NEP and NWP where the 

improvement brought by MPI is larger. Its contribution is particularly large in the 

Indian Ocean basin (NIO and SIO) where it yields to ~8% of skill improvement versus 

2 to 4% improvement in other basins. While the MPI contribution is the second largest 

when assessed at global scale, its contribution considerably vary from one basin to 

another: it is relatively large in the NWP, NEP and NIO (~3 to 4% improvement) but far 

weaker in SWP, SIO (less than 1%) and ATL (less than 2%). Finally, some parameters 

yields to negligible improvements in most basins but are skilful for some specific basin: 

it is for instance the case for RHHI which does not contribute much in most basins, 

while this parameter is amongst the two most important (with SHRD) for the SWP 
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basin. This probably translates some differences in the relative importance of processes 

that control the TC intensity between various basins as well as the basin-wide 

climatology and variability of these quantities. 

 

4.3.3 Real-time vs climatological environmental parameters  

The environmental parameters used as predictors in the present and previously 

published TC intensity statistical-dynamical hindcast models are systematically 

calculated based on data at the lead-time of the forecast (and at previous lead-times, 

since there is an average from the forecast time to the lead time). These daily data hence 

include seasonal variations but also perturbations at other timescales, ranging from 

synoptic features to large-scale interannual anomalies associated with climate modes 

such as the El Niño Southern Oscillation. In this section, we evaluate the relative 

contribution of the mean climatological seasonal cycle and non-seasonal variability to 

the performance of the model. To reach that goal, we perform additional regional 

experiments in which the climatological environmental parameters are used in place of 

the actual environmental parameters at the time of the hindcast (Atm_Clim experiment; 

see Table 4.3). In the case of Atm_Clim experiments, the parameters have been 

computed along the TCs track from a 6-hourly ERA-Interim climatological dataset. As 

for the Atm model, these parameters are then averaged in time along the TC track from 

the initial time till the forecast hour. Comparing Atm_Clim with Atm experiments 

hence allows assessing the added value of considering the environmental parameters 

actual values instead of considering those derived from a climatological environment 

for each basin. Figure 4.11a illustrates the model using a climatological seasonal cycle 

for environmental predictors (Atm_Clim) yields a very similar skill compared that using 

actual values (Atm): the globally-averaged MAE is nearly identical for lead-times 
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greater than 84 h, where errors tend to saturate, and only slightly reduced for shorter 

lead-times. Figure 4.9b allows a basin-wise quantification of that feature. At global 

scale, using real-time  

 

 

 

Figure 4.11: (a) MAE as a function of lead-time, averaged over all basins, for 
persistence (black curve), Atm model (blue curve) and Atm_Clim model (red curve). 
(b) Percentage of skill improvement of Atm relative to Atm_Clim at 24h, 60h and 108h 
lead-times for each basin and globally. In Atm_Clim, the environmental parameters are 
calculated from their climatology, rather than on their actual value at the forecast time 
(cf. Table 4.3). Error bars give the 95% confidence interval estimated from a bootstrap 
technique detailed in section 4.2.2. 
 

predictors do not improve the model skill at long lead-time but modestly improve it at 

short to mid-range lead-time (1 to 3%). The added value of using daily parameters in 
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place of climatological parameters varies from one basin to another: it does not improve 

the skill for NWP and NEP and marginally for the ATL basin (~2%). In contrast, the 

use of daily parameters leads to a larger improvement for the southern hemisphere TCs, 

especially in the SIO basin where this improvement reaches ~8% for medium to long 

lead-time. The good performance of the Atm_Clim hindcast scheme suggests that TCs 

intensity change are far more constrained by the seasonal variations of environmental 

predictors rather than by their non-seasonal component related to synoptic signals and 

large-scale climate modes, especially for the northern hemisphere. 

 

4.3.4 Skill as a function of TC intensity  

We finally evaluate the model skill as a function of the TCs intensity. For this purpose, 

the predictands are divided into two subsets based on the TCs intensity. The TCs up to 

category 2 (<96 kt) are considered as “weak” (~60% of the dataset) and those under 

category 3-5 (≥96 kt) are considered as “strong” (~40% of the dataset). Rather 

surprisingly, Figure 4.12 indicates that the model skill strongly depends on the TC 

intensity, with considerably weaker skill for weak relative to strong TCs. The global 

skill improvement relative to persistence indeed reaches ~35% to 45% for strongest TCs 

(Figure 4.12a) but only ~10% to 20% for weak TCs (Figure 4.12b). That is, the TC 

hindcast model is about three to four times more skilful for strong than for weak TCs. 

This result holds for all basins but is particularly striking for ATL where the model skill 

is marginal for weak TCs. We further checked that results related to the basin-wise 

performance of the model (Figure 4.6), the importance of TC initial characteristics 

(Figure 4.9), the relative environmental parameters (Figure 4.10) and the good 

performance of Atm_Clim compared to Atm (Figure 4.11) obtained for the entire TCs 

database holds true for the strongest TCs (not shown). 
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Figure# 4.12:! Percentage!of!Atm!model! skill! improvement! relative! to!persistence!
for!(a)!strong!and!(b)!weak!TCs#at!24h,!60h!and!108h,!as!a!function!of!the!basin.!
Here,! TCs! up! to! category! 2! (<! 96! kt)! are! considered! as! “weak”! and! those! under!
category! 3?5! (≥! 96! kt)! are! considered! as! “strong”.! Error! bars! give! the! 95%!
confidence!interval!estimated!from!a!bootstrap!technique!detailed!in!section!4.2.2.!
 

 

4.4 Summary and conclusions 

The prediction of tropical cyclone intensity is still a challenging problem. Along with 

dynamical models, TC intensity prediction relies on statistical-dynamical linear models 

that use linear statistical regression techniques to predict intensity changes from 

predictors derived from initial TCs characteristics and from large-scale environmental 
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parameters along the TC track. Given the tremendous consequences of TCs worldwide, 

it is a must to better assess the performance of these regional models. However, it is 

difficult to compare these models across TC basins, as these models have generally 

been developed independently, using different predictors, atmospheric datasets and 

training periods. In this chapter, we develop statistical-dynamical linear hindcast models 

for each TC-prone basin using the same set of predictors, atmospheric dataset and 

extended training/validation period (1979-2012). It is to our knowledge the first time 

that TC intensity statistical-dynamical linear hindcast models are built consistently for 

all TC-prone basins. This common framework allows us to confidently compare basin-

wise variations of the models skill, most skilful predictors and sensitivity of the skill to 

the TC strength. The models in this study display similar skills to those previously 

published, giving confidence in the conclusions drawn from this analysis. We have 

shown that the long period that we consider in the present study ensures a better 

robustness of the results. Re-conducting analyses in this chapter over 1990-2012, during 

which intensity records (e.g. Kossin et al., 2013) and tracks (Velden et al., 2006; Knapp 

and Kossin, 2007) are more reliable, does not change the overall conclusions of the 

present study (not shown). 

 

Our results first reveal that the mean absolute errors derived from these regional models 

is rather similar amongst the different TC-prone basins. However, the relative skill 

improvement brought by using this multi-linear statistical framework as compared to 

simple persistence is larger for northwest and northeast Pacific, the southwest Pacific 

and the southern Indian Ocean compared to the Atlantic and Northern Indian Ocean 

basins. Because the models developed in this study share the same environmental 

parameters, source of atmospheric data and are built over the same period, we also show 
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that this relative skill difference can confidently be attributed to weaker errors for 

simple persistence in the Atlantic and Northern Indian Ocean basins, i.e. that these 

basins exhibit more steady intensity variations compared to others. We further show that 

that the regression coefficients for each predictor of these models generally exhibit 

consistent signs and order of magnitude across basins, suggesting qualitatively similar 

influences of each predictor. Comparing results from models trained for each TC-prone 

regions to those from a model trained over the entire globe demonstrates that the 

improvement arising from a regional training compared to a global one is rather modest, 

reaching respectively 2%, 3% and 1% at 24h, 60h and 108h, suggesting that it may be 

possible to build an efficient statistical model for TCs intensity forecast at global-scale.  

 

Several studies already mentioned that, amongst all predictors, the storm characteristics 

at the beginning of the forecast (intensity and its time-derivative) are dominant 

contributors to these models performance. Our results confirm those findings and 

quantifies them more precisely: TC initial characteristics contributes to ~ 60 to 80% to 

the model skill improvement relative to persistence in all TC-prone basins, with large-

scale environmental predictors accounting for the rest (~20 to 40 %). At global scale, 

we find that the most important environmental predictor is the vertical shear, followed 

by the maximum potential intensity. In contrast, the other environmental parameters 

contribute to the skill improvement to a lesser extent. Despite the key role played by 

vertical shear in most TC-prone basins, the relative contribution of each environmental 

parameter however varies considerably from a basin to another. We find that the 

vertical shear has a very large impact in the Indian Ocean, contributing to ~8% of the 

skill increase relative to persistence. Our result for the northwest Pacific broadly agrees 

with the STIPS model result that also showed that the vertical shear and the maximum 
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potential intensity are the most important predictors (Knaff et al., 2005). Lee et al. 

(2015) do not use the 850hPa vorticity as a predictor in their model, which is the second 

most important predictor in our model for the Atlantic. However, in the absence of this 

parameter in their model, vertical shear and a form of maximum potential intensity are 

the two most important atmospheric predictors, which are first and third most important 

parameters in our analysis for this basin. A more quantitative comparison with earlier 

studies is however not possible due to various differences arising from the choice of 

predictors, data source and period.  

 

One of the key results of the present study could lead to a considerable simplification of 

the implementation of current statistical forecast of TCs intensity. Our results indeed 

reveal that a model built from environmental parameters calculated from the 

climatological evolution along the TC-track yields nearly the same predictive skill as a 

model built from real-time values. The improvement of using daily environmental 

parameters is marginal for the northern hemisphere TCs (less than 2%), while larger for 

the southern hemisphere TCs (up to 9% in the SIO). This result echoes Lee et al. (2015) 

who demonstrated that its statistical hindcast model has a comparable skill when using 

environmental predictors derived from monthly rather than daily environmental data for 

the case of the Atlantic. In agreement with our results, this suggests that subseasonal 

variations of environmental parameters only marginally contribute the skill 

improvement of the model. Our results further demonstrate that the same conclusion 

holds for interannual anomalies, such as those associated with large-scale climate 

modes such as the El Niño Southern Oscillation. This result is potentially interesting for 

statistical operational forecasting of TC intensity. For implementation purposes, it is 

indeed far simpler to use atmospheric predictors calculated from their seasonal 
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climatology than to retrieve the real-time forecasted values of those predictors along the 

forecasted TC track. This strategy may however not be adapted to the southern 

hemisphere, where our results suggest the largest skill gains when accounting for real-

time environmental parameter variations. 

 

Finally, our analysis also demonstrates that these forecasting schemes are skilful to 

predict intensity changes for strongest TCs (Cat 3 to 5), while it is hardly the case for 

weaker TCs: the skill improvement relative to persistence is indeed three to four times 

weaker for weak than for the strong TCs. It is plausible that the strength of the control 

of a given environmental parameter is varying as a function of the TC intensity, a non-

linear behaviour that our linear scheme is not able to capture. It will be interesting to 

investigate whether non-linear statistical prediction schemes are able to improve the 

hindcasts for weaker cyclones. The use of non-linear schemes such as Artificial Neural 

Networks (Fine, 1999) or Support Vector Machines (Cortes and Vapnik, 1995) may be 

beneficial to further improve the performance of these statistical TCs intensity models. 

 

In real-time applications of these methods it is important to note that both uncertainties 

in TC location and intensity and the use of a forecast track will result in additional 

sources of errors.  Nonetheless, results of this study will still be valid.  
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Chapter 5 Assessment of air-sea coupling on statistical prediction of 
TCs intensity  

 
 
 
5.1 Introduction  

As illustrated in Chapter 3, the ocean feedbacks negatively on the TC intensity, because 

the cold wake under the TC track reduces the upward enthalpy flux that feeds the 

cyclone. Recent modelling studies have shown that the upper ocean stratification ahead 

of the TC strongly modulates the TC-induced cooling amplitude and hence potentially 

its intensification rate (e.g. Jullien et al., 2014; Ogata et al., 2015; Chapter 3 of this 

thesis). Very few studies have however attempted to quantify the improvement yielded 

by including oceanic metrics in TC intensity statistical forecast models. TC heat 

potential (referred as to OHC in the following) is the commonly-used oceanic metric to 

account for air-sea interactions under TCs in these statistical models. OHC is the heat 

content between the sea surface and the depth of the 26°C isotherm (e.g. Goni and 

Trinanes, 2003; described in section 1.4.3), and is generally estimated by combing an 

ocean climatology, oceanic re-analysis and satellite data (Mainelli et al., 2008). 

Including OHC as an additional input parameter to the SHIPS statistical model in the 

Atlantic over the 2002-2003 period however resulted in very modest improvement at 

initial to mid forecast leads and no improvement at longer forecast leads (DeMaria et al., 

2005). Mainelli et al. (2008) however showed that the inclusion of OHC in SHIPS over 

the 2003-2005 period resulted in a 5% skill improvement of Category 5 TCs (with up to 

20% for individual category 5 TCs, especially at long forecast leads; Mainelli et al., 

2008). Mainelli et al. (2008) also reported that OHC behaves non-linearly with respect 

to TCs intensification rate, only yielding a significant improvement when its value 

exceeds a certain threshold. These results however relied on a very limited sample, as 
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only five Category 5 TCs occured over the short analysed period (three cyclonic 

seasons). Finally, Lin et al. (2013) and Goni et al. (2009) respectively further 

demonstrated that including OHC in SHIPS over 2004-2007 in the Atlantic and in 

STIPS for 63 TCs in North western Pacific yielded up to ~3% improvement at long 

forecast lead-times.  

 

These contrasted results may arise from the choice of the OHC metric, used by DeMaria 

et al. (2005), Goni et al. (2009), Lin et al. (2013) and Mainelli et al. (2008). In a review 

paper, Goni et al. (2009) underlined the need to quantify the skill improvement brought 

by oceanic metrics of air-sea interactions under TCs. As suggested by Cione and 

Uhlhorn (2003), the upper-ocean heat content is at least an order of magnitude larger 

than the energy extracted by the storm, suggesting that the OHC may not be the most 

appropriate parameter to account for the upper-ocean effect on TC intensity. Recent 

studies hence proposed alternative metrics to quantify the effect of the oceanic 

background state on TCs intensification. Price (2009) proposed a metric based on the 

vertically-averaged temperature over the upper 100m (T100), the typical mixing depth 

of a strong TC. This metric may indeed be more relevant than the OHC, as it better 

reflects the way TCs interact with the ocean. Lloyd and Vecchi (2011) further proposed 

a metric that reflects the near-surface stratification: the depth at which ocean 

temperature is 2°C below the surface temperature (h2). Finally, Vincent et al. (2012b) 

proposed another physically-based metric, i.e. the cooling inhibition index (CI), a proxy 

of the potential energy change associated with vertical mixing of the water column. An 

added advantage of CI over the other proposed metrics is to account for the effect of 

salinity stratification, which is likely to play a strong role in the Bay of Bengal, as 

demonstrated in Chapter 2.  
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Vincent et al. (2012b) compared the ability of these metrics to estimate the cold wake 

amplitude based on a large TCs sample (more than 3,000 TCs over the last 30 years) 

simulated by an ocean model. While OHC is the most popular index of oceanic control 

of air-sea interactions below TCs, Vincent et al. (2012b) showed that it does not 

perform well for predicting the TC-induced cooling, as well as other metrics based on a 

fixed threshold and/or absolute temperature such as T100. In contrast, they show that 

metrics that account for the mixed layer depth and the steepness of the thermal 

stratification at its base (e.g., CI, h2, SST-T100) perform much better at estimating the 

cold wake amplitude. The SST effect on the cyclone can be split into two distinct 

contributions: the ambient SSTs ahead of the storm (cyclones form and intensify above 

surface temperatures of 26°C or more) and the SST cooling induced by the storm under 

the eyewall. Previous studies suggest that the cooling under the storm has the largest 

impact on its short-term intensity evolution (Schade, 2000). In addition, satellite 

observations accurately capture the ambient SST ahead of the storm, while they do not 

provide reliable estimates of inner-core SST due to intense rainfall under TCs (Brennan 

et al., 2009). To be useful in terms of forecasting, metrics of the oceanic influence on 

TCs should therefore be able to quantify the amplitude of the storm-induced cooling, 

since it is through this cooling that air-sea interactions impact the storm intensity. 

Including a metric of the amplitude of the TC-induced cooling (i.e. based on steepness 

of the ocean stratification) in TC intensity statistical forecast schemes is thus likely to 

yield a larger skill improvement than a metric based on absolute temperature, as this 

information is already included in commonly used atmospheric parameters such as the 

maximum potential intensity. Based on this reasoning, Vincent et al. (2012b) hence 

proposed that such metrics, which properly captures the ocean propensity to modulate 
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TC-induced surface cooling (and hence the storm growth rate), should be tested in TC 

intensity forecast schemes.  

 

The objective of the present chapter is to test the added value of such metrics, relative to 

the commonly-used OHC. Most TC intensity statistical forecast uses linear schemes to 

the forecast, i.e. they assume a linear relationship between the predictor and the surface 

cooling and/or TC intensity. Potential nonlinearities are thus usually dealt with using an 

ad-hoc scaling of the OHC, e.g. using the square root of OHC as a predictor (13 

predictor version of STIPS model, https://www.godae.org/; Sharma et al., 2013). Here, 

our aim is to test several oceanic metrics of air-sea interactions below TCs, which may 

not have the same non-linear influence on the TC intensification. It would be difficult 

and time-consuming to test all possible scaling for each parameter in a linear statistical 

scheme. Another option is to use statistical schemes that are designed to capture the 

non-linear relationships between variables, without applying any ad-hoc scaling on the 

input parameters. Artificial Neural Networks (ANN; Bishop, 1995; Ripley, 1996; Fine, 

1999) and Support Vector Machines (SVM; Cortes and Vapnik, 1995; Vapnik, 1999; 

Vapnik, 2000) are such popular statistical non-linear modelling tools for non-parametric 

predictions purpose in many fields and more specifically for oceanographic, climatic 

and impact studies (e.g. Ali et al., 2004, 2007, 2012; Hennon, 2005; Tolman et al., 

2005; Chen et al., 2005, 2006; Swain et al., 2006; Lee, 2009; Elshorbagy and 

Parasuraman, 2008; Liu et al., 2010; Chaudhary and Middey, 2011; Roy and 

Kovordányi, 2012 for ANN and Mahjoobi and Mosabbeb, 2009; Elbisy, 2015; Wei, 

2012; Aguilar-Martinez and Hsieh, 2009 for SVM). Regarding TCs, both ANN (Chen, 

2005) and SVM (Lin et al., 2009; Wei, 2012) have for instance been used to predict 

rainfall under TCs. For this specific application, Lin et al. (2009) argued that SVM-
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based models are more skilful than ANN-based models in predicting TC-induced 

rainfall. ANNs have also been used to predict TC-induced storm surges (Lee, 2009), 

tropical cyclogenesis (Hennon et al., 2005) and TC tracks prediction (Ali et al., 2007; 

Roy and Kovordányi, 2012). 

 

A couple of studies have already used non-linear statistical tools to forecast TC intensity 

in the northwest Pacific using either SVM (Lin et al., 2013) or ANN (Sharma et al., 

2013). Lin et al. (2013) showed that their non-linear SVM scheme improved the TC 

intensity forecast by about 5-10% relative to the operational forecast based on linear 

modelling, especially the long-lead times. Using the same parameters as in the linear 

STIPS model (Knaff et al., 2005), Sharma et al. (2013) showed that their non-linear 

ANN scheme yielded a 3-11% skill improvement, with larger improvement for long-

lead times. They further found that OHC was the fourth most skillful predictor of their 

non-linear scheme, after the squared initial TC intensity, MPI and initial intensity times 

MPI. Chaudhari et al. (2015) is the only study that attempted to use non-linear statistical 

tools to predict the TC intensity in the northern IO. They developed an ANN-based 

approach for short lead-times only (6, 12 and 24 hours). The parameters for their short-

range model were significantly different from the ones used in mid to long range 

statistical-dynamical forecasts (12-120 hours forecast period), being mainly based on 

cloud properties (e.g. cloud cover, cloud top temperature) along with TCs initial 

intensity and central pressure drop. They show that this model improves the TC 

intensity prediction over the 2002-2010 period, relative to IMD operational forecasts at 

12 and 24 hours lead-time. 
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The general objective of this chapter is to quantify the TC intensity prediction skill 

improvement yielded by including oceanic subsurface metrics that account for the 

cooling under TCs. For this purpose, the linear scheme used in the previous chapter 

(MLR) as well as two non-linear schemes (ANN and SVM) will be used. This will 

allow assessing the added value of accounting for the oceanic stratification in TC 

intensity forecasts and whether a non-linear scheme is needed for that purpose. Section 

5.2 provides a description of the architecture of each of The ANN and SVM schemes. 

Section 5.3 compares the performance of these non-linear models to that of the linear 

model discussed in chapter 4. Section 5.4 discusses the skill improvement yielded when 

including different oceanic parameters in each of those forecast schemes. The final 

section provides a summary of the results. 

 
 
5.2 Development of non-linear statistical models for TC intensity 
 forecast 
 
5.2.1 SVM and ANN general principles 

ANN and SVM both are supervised learning tools that require training in order to link a 

given set of input parameters to an output. Neural networks are biologically-inspired 

distributed parallel processors, which can approximate any continuous function when a 

sufficient number of hidden nodes are used  (Barron, 1993; Hornik et al., 1989). These 

supervised networks are particularly suited for predicting and forecasting, because of 

their ability to model nonlinear and non-gaussian processes like those encountered in 

the context of extreme events. ANNs consist of number processing neurons, linked by 

synaptic connections and arranged in layers. The network is fed through the input layer 

and inputs are delivered to the first hidden layer, after applying synaptic weights and 

biases. In the hidden neurons, the weighted sum of inputs is transformed by a nonlinear 
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activation function, usually the logistic function or a hyperbolic tangent. The same 

process is repeated in each of the following hidden layers, until the outcomes reach the 

output nodes. The weights and biases contain all the information about the network. The 

objective is therefore to train the network (on the basis of a “training dataset”) to obtain 

a combination of weights and biases that minimize the error between the neural network 

output and the observed output. The most commonly used criterion is to minimize the 

mean squares error between the simulated output and the observed output.  

 

The ANN models I use in this chapter are made up of three neural layers: the input, 

output, and a middle ‘hidden’ layer. The input layer contains of as many neurons as 

there are inputs parameters (i.e. predictors) while the output layer consists of a single 

neuron that predicts the TC intensification rate at a given lead-time. To train the 

network, we used a back-propagation procedure (Reed et al., 1999) that adjusts the 

weights and biases to minimize the error function. This adjustment is performed in the 

steepest descent direction. One of the problems with this method is that the error 

function is nonlinear and usually has several local minimums, where the model solution 

can be trapped. Another problem of neural networks is overfitting, i.e. when the 

network performs almost perfectly on the training dataset, but is unable to generalize to 

new situations. To avoid overfitting, we use a technique called early stopping. For this, 

ANN requires three disjoint datasets for training, validation and testing. The training 

subset is used to obtain the weights and biases of the network. The validation subset is 

used to stop the training when the error on the validation set begins to rise (i.e. when the 

network starts overfitting the training data). The testing subset is not used to build the 

ANN model, but only to assess the performance of the trained model on a completely 

independent dataset. 
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SVM basically is a kernel-based supervised learning method that stems from Statistical 

Learning Theory (Vapnik, 2000). SVMs were initially developed for classification 

purposes in the early1990s, and then extended for regression by Vapnik (1995). The 

concept of SVM is to design a function, which correctly classifies all of the objects of 

the training dataset. Two major differences between SVMs and ANNs are the 

optimization algorithm and the minimizing norms. For a given training dataset, SVM 

maps the input vector onto a higher dimensional space, where the training dataset 

become linearly separable. It uses an appropriate kernel function in the optimization 

process. One of the main advantages of SVM is hence to transform the problem into a 

linear optimization problem without the multiple minima issue. While the architecture 

and weights of ANNs are respectively determined by a trial and error procedure and an 

iterative process (the back-propagation procedure), which are both very time consuming, 

the SVMs architecture and weights are the solution of a quadratic optimization problem, 

which has both a unique minima and can rapidly be solved using a standard algorithm. 

It also uses a more robust error norm based on the principle of structural risk 

minimization, where error rates and model complexity are minimized simultaneously, 

while only the error rate is minimized once the model architecture has been designed for 

ANNs. This yields a better generalization ability of SVMs. Finally, The SVM model 

however has several “hyperparameters”, which need to be determined by the user. 

 

The SVM schemes I will use in this chapter use the same inputs as the ANN and MLR 

(i.e. the set of predictors used to forecast the TC intensity change at a given lead time). 

SVM only requires two disjoint sets of data for training and testing. The training dataset 
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is used for the development of the model while the testing dataset allows assessing the 

model performance on an independent dataset.   

 

5.2.2 Development of SVM and ANN schemes for TC intensity  forecasts 
 
The non-linear models developed in this chapter use the same predictors (listed in Table 

4.2) and datasets as those used for the multi-linear model discussed in Chapter 4 and 

referred to as ‘Atm’ experiment. We have also included the latitude, longitude, 

translation speed and the pressure level of the mean wind flow that matches the initial 

storm wind steering motion as additional input parameters. We did include these extra 

predictors, which are used in some linear statistical models (e.g. Knaff et al., 2009, 

2010; Lee et al., 2015), as the present chapter focuses on building the most skilful 

model for TC intensity prediction and not on analysing of the respective contribution of 

the major parameters as was the case in the previous chapter. The only difference in 

input parameters between the linear and non-linear schemes is that the two squared 

terms VMAX2 and MPI2 are not included in the non-linear schemes, since these 

schemes are supposed to naturally capture non-linear dependencies between predictors 

and the predictand. All models are evaluated using the same MAE and skill (in %) 

metrics as those in the previous chapter (with confidence intervals computed in the 

same manner).  

 

 In section 5.4, the added value of adding oceanic predictors to the above statistical 

schemes will be discussed. These predictors are meant to account for the influence of 

oceanic stratification on the cooling below the TC, and on the evolution of its intensity. 

As mentioned in the introduction, the focus is on the following parameters: 
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1. The TC heat potential (OHC) calculated as the heat content between the ocean 

 surface and the 26oC isotherm 

2. The mixing depth corresponding to 2oC surface cooling produced by a heat-

conserving vertical mixing (HMIX) 

3. The Cooling inhibition index (CI) calculated as the cubic root of the change in 

potential energy necessary to cause the mixing to the depth HMIX 

4. The SST minus the average temperature of the upper 100m of oceanic layer 

(dT100) 

5. The depth of the isotherm corresponding to the mixed layer temperature minus 

2oC (H2) 

Details about the calculation of these variables can be found in Vincent et al. (2012b). 

These variables are computed from the Global Ocean Reanalysis and Simulation 

(GLORYS) dataset (Ferry et al., 2012; Jourdain et al., 2013, 2014). This dataset is 

derived from an eddy-permitting (1/4o) version of the NEMO ocean model (Madec, 

2008), in which in-situ and satellite altimetry measurements are assimilated. Its 

temperature and salinity structure is in good agreement with observations, especially in 

the upper hundred meters, where the interaction with TCs takes place (Ferry et al., 

2012). This dataset is available from 1993 onward, and data over the 1993-2012 period 

is used in the present chapter. 

 

As mentioned above, the ANN scheme requires the input dataset to be separated into 

three parts. In the following, 80% of the TCs (60% for training and 20% for validation) 

are used to build the model and the remaining 20% are used for testing the model 

performance. As explained in chapter 4, the training and testing datasets are chosen 

randomly but for entire TC tracks. To minimize the problem of being trapped in a local 
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Figure 5.1: Globally-averaged MAE (see section 4.2.2) (kt) for training (blue) and 
testing (red) datasets at 60 hr forecast lead as function of (a) number of ANN neurons 
and (b) value of the SVM optimization parameter. MAE was estimated as an average of 
50 independent runs. Error bars give the 95% confidence interval estimated from a 
bootstrap technique detailed in section 4.2.2. On the basis of this figure, the ANN used 
in the rest of this chapter uses five neurons in the hidden layer and SVM uses an 
optimisation parameter of 10. 
 
 
 
minimum and avoid overfitting, each experiment was repeated 50 times with different 

initial weights, training, validation and testing sets. The ANN parameter values were 

averaged over the 50 independent runs. To determine the optimum number of neurons 

to be used in the ANN hidden layer, the MAE was computed for a hidden layer 
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including 1 to 10 neurons. Generally speaking, the more neurons in the hidden layer, the 

better the network performance on the training dataset. A large number of neurons 

however increases the risk of over-fitting, which leads to poorer predictions. This is 

illustrated by Figure 5.1a, which displays the average training and testing MAE over the 

50 runs for the dataset, as a function of the number of hidden neurons. While the 

training dataset MAE monotonically decreases with the increasing number of neurons, 

it reaches a plateau or even slightly increases beyond about five to seven neurons for the 

testing dataset. The ANN architecture from structural learning is therefore chosen to be 

five nodes in the hidden layer.  

 

In contrast to ANN, the SVM scheme only requires the input dataset to be separated 

into two parts. In that case, 80% and 20% of the TCs are used as training and testing 

datasets. As ANN, SVM models were constructed separately for each TC-prone basin 

using 50 randomly selected datasets and the reported performance was averaged over 

these 50 runs. In the following, the kernel function was chosen to be a radial basis 

function because of its advantages over other kernel functions, including a limited 

number of hyperparameters (three) to be set into the SVM regression formulation. SVM 

performance depends on the choice of these three hyperparameters. To illustrate this 

aspect, Figure 5.1b shows the sensitivity of the SVM predictive skill for different values 

of the most sensitive hyperparameter, i.e. the one controlling the width of the kernel 

function for values ranging from 0 and 100. While the MAE monotonically decreases 

with an increase of this hyperparameter for the training dataset, it only decreases up to 

10 for the testing dataset. Further increasing the value of this parameter results in a 

marginal MAE increase for testing, which deviate from the MAE for training, indicating 

that there is overfitting in this range. This parameter was therefore fixed to 10. The 
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SVM predictive skills are much less sensitive to the choice of the two other 

hyperparameters (not shown). 

 
 
5.3  Performance of non-linear statistical TC models 
 
5.3.1. Regionally vs globally trained models 

To decide whether to use globally or regionally-trained models in this chapter, the 

performance of these models is compared using the same predictors (i.e. TC 

characteristics plus large-scale atmospheric parameters listed above), as it was done in 

Figure 4.8 for MLR. Figure 5.2 illustrates the improvement of regional models relative 

to global models for each of the three considered schemes. As already mentioned in 

Chapter 4, regionally-trained MLR models slightly outperform globally-trained MLR 

models, when averaged over all the basins (up to 3%; Figure 5.2a). This improvement is 

seen in all northern hemisphere TC-prone basins, but not for southern hemisphere TCs. 

This improvement is particularly large for the NIO at long leads (20%) but this result 

may not be very reliable given the small dataset used to validate the MLR regional 

model at these extended range.  
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Figure 5.2: Percentage of skill improvement of regionally-trained over globally-trained 
models using (a) MLR, (b) ANN and (c) SVM schemes at 24h, 60h and 108h lead-
times, for each basin and globally-averaged. See section 4.2.2 for a definition of the 
skill metric. Error bars give the 95% confidence interval estimated from a bootstrap 
technique detailed in section 4.2.2.
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This superior performance of regionally-trained models does not hold for non-linear 

schemes. It is only ~1% at global scale for ANN (Figure 5.2b), with strong regional 

contrast: while this improvement is still obvious for NWP, NEP and ATL basins (2 to 

5%), the globally-trained model overcome the regionally-trained models for southern 

hemisphere TCs (1 to 6%) and even more in the NIO basin (5 to 20%). For SVM, the 

globally-trained model overcomes the regionally-trained ones at global scale (up to 3%, 

Figure 5.2c). Regionally, skills are similar for the two types of models for the NWP, 

NEP and ATL, while the improvement of a globally-trained model is obvious for SWP 

(~10%), SIO (5%) and NIO basin (~5 to 15%). Non-linear models (and more 

specifically SVM) are thus able to benefit from the larger global training database to 

improve the skill relative to regionally-trained models. This justifies the use of globally-

trained rather than regionally-trained non-linear models in the following. Conducting all 

the analyses below using regionally-trained models however does not change the overall 

conclusions of this Chapter, except for the inclusion of oceanic parameters for which 

results are more stable and the improvement is larger when using globally-trained 

models (not shown).  

 

5.3.2.  Performance of linear vs. non-linear models 

In Chapter 4, we have seen that regionally-trained MLR models outperform persistence 

by a similar amount in most basins (see Figure 4.6c; 20 to 40% of skill improvement), 

except in the ATL and NIO, where the skill gain is weaker (10 to 25%). Figure 5.3 

provide a similar basin-wise skill assessment as in Figure 4.6c but for globally-trained 

MLR, ANN and SVM models. Comparing Figure 5.3a with Figure 4.6c demonstrates 

that the conclusions derived from regionally-trained MLR models hold for globally-

trained MLR models: the relative skill improvement  
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Figure 5.3: Basin-wise percentage of skill improvement of globally-trained (a) MLR, 
(b) ANN and (c) SVM models relative to persistence as a function of lead-time. See 
section 4.2.2 for a definition of the skill metric. Error bars give the 95% confidence 
interval estimated from a bootstrap technique detailed in section 4.2.2. 
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compared to persistence is generally similar in four basins (NWP, SWP, SIO and NEP) 

where there is a ~20 to 40% (depending on the lead-time) improvement relative to 

persistence. In contrast, the skill improvement relative to persistence is considerably 

weaker in the ATL and NIO basins, where it ranges between 10 and 25%. A careful 

comparison of these two panels however reveals some differences between regionally- 

and globally-trained MLR models. First, consistently with Figure 5.2a, this skill 

improvement is generally slightly larger especially for mid range time-lead in all basins 

for regionally-trained compared to globally trained models (2 to 5%). Second, the 

improvement for NIO at long lead-time is considerably larger for regionally-trained 

models (10% to 20% improvement) as also evidenced in Figure 5.2a. Turning to non-

linear schemes (Figure 5.3bc), it appears that the ranking of the skill improvement as a 

function of the basin remains very similar to the one obtained for linear models, with a 

similar skill improvement in most basins (Figure 5.3bc; 25 to 45% of skill 

improvement), except in the ATL and NIO, where the skill gain is weaker (10 to 35% 

depending on the scheme and lead-time). Non-linear schemes also generally outperform 

linear schemes in all basins. This aspect is further detailed in the next paragraph. 

 

The added value of using non-linear models is further evaluated by computing the 

relative skill improvement of ANN and SVM models relative to the MLR model for 

each basin (light colour bars on Figure 5.4). As can be seen on Figure 5.4, using ANN 

or SVM improves the skill relative to the MLR at all lead-times and in all basins. 

Comparing light colour bars on Figure 5.4a and 5.4b also indicates that this 

improvement is systematically larger for SVM than for ANN. When averaged over all 

the basins, the skill improvement over MLR is about 5-10% for ANN (light colour bars 

on Figure 5.4a) and about 12-17% for SVM (light colour bars on Figure 5.4b). The 
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additional skill yielded by nonlinear schemes is similar in each basin (light colour bars 

on Figure 5.4bc), except for the NIO where the additional skill is much larger at long-

leads (18% for ANN and 29% for SVM), a result that has again to be taken cautiously 

given the small TC sample that is used to compare these extended-range skills in the 

NIO, where TCs lasting more than 4 days are rare. 

 

 

Figure 5.4: Percentage of (a) ANN and (b) SVM skill improvement relative to MLR 
for baseline models (i.e. only TC initial characteristics, plain bars) and full models (i.e. 
also environmental parameters along the TC track, light colour bars) at 24h, 60h and 
108h lead-times, for each basin and globally-averaged. Error bars give the 95% 
confidence interval estimated from a bootstrap technique. 
 



! 189!

5.3.3.  Relative importance of input parameters 

Now it is tested whether the major conclusions drawn from MLR models in Chapter 4 

hold for non-linear models. First, are TC initial characteristics major contributors to the 

skill in non-linear models as they were for MLR? To explore this, ANN and SVM 

hindcasts with TC initial characteristics as only input parameters were performed. As 

for MLR models, TC initial characteristics contribute to about 60 to 80% of the skill 

improvement relative to persistence for non-linear schemes (not shown). It is however 

interesting to analyse which input parameters contribute most to the skill improvement 

of non-linear models relative to linear ones (see light colour bars on Figure 5.4 and 

related discussion above). Plain bars on Figure 5.4 compare the skill improvement of 

non-linear baseline (i.e. only TC characteristics as predictors) models relative to the 

linear baseline models. Comparing plain colour and light colour bars on Figure 5.4a 

reveals that the overall skill improvement brought by ANN equally arises from both 

from a better handling of TC characteristics and environmental parameters (~5% of 

globally-averaged improvement when accounting only for TC initial characteristics and 

~10% improvement when accounting for both TC initial characteristics and 

environmental parameters). In contrast, comparing plain and light bars on Figure 5.4b 

reveals that the overall SVM models skill improvement predominantly arises from a 

better handling of TC characteristics (~10% improvement), with a weaker contribution 

of environmental parameters (~3 to 5% additional improvement).  

 

Another important result obtained with MLR models was that a model built from 

climatological environmental parameters along the TC-track yields nearly the same 

predictive skill as a model built  
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Figure 5.5: Percentage of (a) MLR, (b) ANN and (c) SVM models skill improvement 
yielded by using real-time rather than climatological environmental atmospheric 
parameters, at 24h, 60h and 108h lead-times, for each basin and globally-averaged. 
Error bars give the 95% confidence interval estimated from a bootstrap technique.  

 

 

from real-time values (Figure 5.5a). Along the same lines, experiments trained with 

climatologically-derived atmospheric predictors were performed for both ANN and 

SVM. Figure 5.5 illustrates that, in non-linear models, the use of real-time predictors 

systematically improves the skill relative to climatological (Figure 5.5bc). The globally-

averaged skill improvement ranges between 4% and 7% for ANN (Figure 5.5b) and 
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between 5 and 8% for SVM (Figure 5.5c), against less than 3% for MLR (with even 

some negative values at long-lead times). This suggests that ANN and SVM are able to 

better capture the influence of the non-seasonal variations of atmospheric parameters 

onto TCs intensification rate. This result holds for each individual basin, with a larger 

improvement in the southern hemisphere for both non-linear schemes (Figure 5.5bc) 

and the northern IO for SVM (Figure 5.5c). The basin-wise dependency of the 

improvement brought by real-time environmental parameters is quite similar to that of 

MLR, but it is generally larger (Figure 5.5bc vs. 5.5a). 

 

5.3.4.  Skill as a function of TC intensity 

I have shown that MLR hindcasts are 3 to 4 times more skilful for strongest TCs (Cat 3 

to 5) relative to weaker TCs (up to Cat 2). Figure 5.6 hence compares the skill of the 

linear and non-linear models as a function of TCs intensity. As for MLR (Figure 5.6a), 

non-linear models are systematically more skilful for predicting intensity changes of 

strongest TCs relative to weaker ones (Figure 5.6bc). There are however noticeable 

differences between the three schemes. Relative to MLR (Figure 5.6a), ANN marginally 

improves the skill for both strong TCs and weak TCs (2-5% improvement in both cases), 

resulting in a ANN model that is still 3 times more skilful for strongest as compared to 

weak TCs (Figure 5.6b). In the case of SVM scheme, the skill improvement over MLR 

is significant for strong TCs (~10%) but even larger for weak TCs (~20%), resulting in 

a near-doubling of the forecast skill for these TCs categories. This results in a SVM 

skill improvement relative to persistence reaching 50% to 60% for strong TCs and 30% 

to 40% for weak TCs (Figure 5.6c). The skill improvement between weak and strong 

TCs is hence reduced in the case of the SVM scheme as compared to both MLR and 

ANN schemes (Figure 5.6).  
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Figure 5.6: Percentage of skill improvement relative to persistence for weak (i.e. < 96 
kt: cat 2 and below, plain bars) and strong (i.e. > 96 kt: Cat. 3 or more, light colour bars) 
TCs for (a) MLR, (b) ANN and (c) SVM models at 24h, 60h and 108h, as a function of 
the basin and globally-averaged. Error bars give the 95% confidence interval estimated 
from a bootstrap technique. 

 

 

5.4 Accounting for air-sea coupling in TCs intensity forecast 

The ocean feedbacks on TCs intensification rate by reducing SST and evaporation 

under their track. In this section we assess the impact of accounting for this variable 

cooling in global TCs intensity statistical forecasts. 
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5.4.1.  Sensitivity of the results to the data length  

The aim of this section is to quantify the skill improvement brought by including 

suitable oceanic predictors (metrics of the control of the cooling under the TC by the 

oceanic stratification) in these statistical schemes. Unlike the atmospheric dataset, 

which is derived from an atmospheric reanalysis (ERAI) that provides data starting in 

1979, the oceanic reanalysis used to calculate the oceanic parameters provides data from 

1993 only. The results discussed above, which use only TC characteristics and large-

scale environmental predictors and do not include oceanic parameters, use a rather long 

period (1979-2012, i.e. 34 years). The limited time-span over which oceanic variables 

are available (1993-2012) implies that the influence of oceanic predictors can only be 

tested with models built over a shorter 20 years period. This reduced dataset size may 

impact the models performance. In this subsection, first the skill of global models built 

from a 34 years database is compared against those built from a 20 years database. The 

inclusion of oceanic variables will be discussed in the next section.  

 

As shown on Figure 5.7, reducing the data length to 20 years degrades the skill of the 

all models: 2% to 3% for MLR, 3% to 5% for ANN and 5% to 7% for SVM globally. 

This skill degradation is particularly large for the NIO (5%-10% for MLR, 5%-15% for 

ANN, 8%-18% for SVM) and the NEP (3%-10% for MLR, 8%-12% for ANN, 10%-

17% for SVM) and SWP (5%-10% for ANN and SVM both) while it is negligible for 

the NWP most likely because this region accounts for a large percentage of global TCs 

(and a 20 years period may hence contain a sufficient number of NWP cyclones to 

properly train the model for that region). 
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Figure 5.7: Percentage of skill improvement brought by training the model over a 34 
years rather than a 20 years period for (a) MLR, (b) ANN and (c) SVM models at 24h, 
60h and 108h lead-times, for each basin and globally-averaged. Error bars give the 95% 
confidence interval estimated from a bootstrap technique.  
 
 
5.4.2 Inclusion of oceanic predictors  

The oceanic parameters listed in section 5.2 are included sequentially in the globally-

trained statistical models. The skill improvement brought by the inclusion of a 

particular oceanic parameter (relative to a forecast that does not account for ocean 

subsurface information) is then presented on Figure 5.8. Figure 5.8 first indicates that 

non-linear methods generally yield a larger global skill improvement (up to 2%) 
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compared to the linear method (up to 0.7%), which may be explained by the non-linear 

nature of the relationship between the TC intensification rate and the oceanic 

stratification. The recently proposed CI metric (Vincent et al. 2012b) generally yields 

the most systematic and consistent improvement when using non-linear schemes. In 

particular, it systematically outperforms the results obtained with OHC that does not 

bring any improvement or even degrades the results in  

 

Figure 5.8: Percentage of skill improvement brought by including different oceanic 
predictors (OHC, HMIX, CI, dT100 and H2: see section 5.2) over the 1993-2012 period 
in (a) MLR, (b) ANN and (c) SVM models at 24h, 60h and 108h lead-times globally-
averaged. Error bars give the 95% confidence interval estimated from a bootstrap 
technique.  
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non-linear schemes (Figure 5.8bc). The contribution from the other tested oceanic 

metrics (HMIX, dT100, H2) is more variable, depending on the lead-time and non-

linear scheme. For instance, while dT100 improves the skill at 60h lead-time, it 

degrades it at shorter and longer forecast ranges. Similarly, while Hmix and H2 

generally improve the ANN model skill, results are less compelling when using an 

SVM scheme. Since CI is the metric that brings a consistent TC intensity forecast 

improvement for both non-linear schemes, I therefore focus on this metric in the 

following, as being representative of the impact of air-sea coupling. When averaged at 

global scale, the improvement due to the inclusion of this metric is however modest, 

ranging from less than 0.5% at short lead-time to 2% at long lead-time (Figure 5.8bc). 

 

However, Figure 5.9 clearly illustrates that the improvement due to the inclusion of CI 

strongly depends on the basin. Including CI yields a large improvement in the NIO (up 

to 5% for ANN and 3% for SVM) and the NEP (up to 4% for ANN and ~7% for SVM) 

followed by the NWP (~1-2% in both ANN and SVM) (Figure 5.9bc). Other basins 

show either a small improvement or even degradation due to CI inclusion. Though the 

CI inclusion does not improve the model skill at global scale when using MLR scheme, 

basin-wise results are however consistent with the non-linear schemes, with a larger 

improvement in NIO (~3-4%) and NEP (~2%) than in other basins (Figure 5.9a). 
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Figure 5.9: Percentage of skill improvement brought by adding CI to the environmental 
parameters set in (a) MLR (b) ANN and (c) SVM models at 24h, 60h and 108h lead-
times, for each basin and globally-averaged. Error bars give the 95% confidence 
interval estimated from a bootstrap technique. 
 

To put these results in a broader context, finally the skill yielded by CI is compared 

with that of the three most skilful atmospheric predictors: SHRD, MPI and RHHI. 

SHRD is undoubtedly the most skillful large-scale environmental predictor for all 

schemes, with a ~4%, 8% and 4% improvement, respectively, when using MLR, ANN 

and SVM schemes (Figure 5.10). However, the next most important environmental 

parameter is CI (~2%) for the ANN scheme. For the SVM scheme, CI is of similar 

importance to MPI or RHHI (Figure 5.10). 
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Figure 5.10: Globally-averaged percentage of skill improvement brought by including 
CI and the three most skillful large-scale atmospheric predictors (SHRD, MPI, RHHI) 
in (a) MLR, (b) ANN and (c) SVM models at 24h, 60h and 108h lead-times. Error bars 
give the 95% confidence interval estimated from a bootstrap technique.  
 
 
5.4 Summary and conclusions 

The goal of this chapter was two-fold: (1) to assess the added value of using non-linear 

statistical models over the commonly used linear ones, and (2) to assess the added value 

of including physically-based metrics of sub-surface oceanic stratification in predicting 

the TC intensity globally. The first objective is a must before tackling the second one 

due to probable non-linearities in the relation between the TC intensity growth rate and 

oceanic subsurface stratification.  
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The results first indicate that globally-trained non-linear models have a very similar 

performance to those trained regionally (Figure 5.2). Non-linear models yield more skill 

than the widely-used MLR models in all TC-prone basins. The additional skill relative 

to MLR is as large as ~10% for ANN and ~15% for SVM. My results hence clearly 

demonstrate that accounting for the non-linear relationship between input parameters 

and the TC intensity change greatly improves the skill (and that SVM is particularly 

efficient at capturing this non-linearity). This result echoes the two studies that 

compared the performance of linear and non-linear schemes in the northwest Pacific 

using either SVM (Lin et al., 2013) or ANN (Sharma et al., 2013). Lin et al. (2013) 

found an improvement of 5-10% when comparing their non-linear SVM scheme to 

operational MLR forecasts. Our results for the Northwest Pacific indicate an even larger 

improvement (12 to 23%; see Figure 5.4b), but, contrary to our study, they did not use 

the same set of input parameters as the operational forecast, which makes the two 

studies difficult to compare. Our ANN results for the Northwest Pacific can however be 

compared with those of Sharma et al. (2013) who used the same parameters as the linear 

STIPS model (Knaff et al., 2005) and showed that their non-linear ANN scheme 

improved forecasts by 3-11% at all lead-times. This is quite consistent with the present 

study. 

 

As for linear models, a large fraction (~60%-80%) of non-linear models skill arises 

from initial TC characteristics. Accounting for non-linearities between the TC intensity 

change and TC initial characteristics/ environmental parameters equally contribute to 

the additional ANN skill relative to MLR. The larger SVM model skill improvement 

relative to MLR is dominated by the inclusion of non-linear dependencies to the TC 
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initial characteristics (~11%) rather than to atmospheric parameters (4%). Using a 

climatological seasonal cycle of environmental predictors (rather than real-time data) 

yields a global skill degradation of about 4%-7% for ANN and about 5%-8% for SVM, 

i.e. clearly larger than for the MLR model (~1%-3%). Non-linear models are hence able 

to extract much more information from real-time environmental parameters than linear 

ones, for which the technically simpler accounting for climatological atmospheric 

background characteristics along the TCs tracks suffices. 

 

As already discussed in Chapter 4, the MLR model performs poorly to predict intensity 

changes of category 2 and below TCs, while they are 2 to 4 times more skilful for the 

strongest TCs (Cat3 and more). This is also true of ANN, which also yields little skill 

for TCs of category 2 and less. In contrast, the SVM model considerably improves the 

skill for weak TCs relative to using MLR (2 to 3 times more skilful) while this 

improvement is weaker for stronger TCs. This results in a skill difference between weak 

and strong TCs that is considerably smaller for SVM than for MLR and ANN. The good 

SVM performance for predicting weaker TCs (cat. 2 and less) intensification makes it 

the most suitable tool for TC intensity prediction. 

 

Adding oceanic predictors to MLR TC intensity forecasts only yields a marginal skill 

improvement. The improvement is considerably larger for non-linear schemes. CI is the 

oceanic predictor that brings the largest and most consistent improvement (~1%-2% 

globally for both MLR and ANN), while the commonly-used OHC in operational 

forecasts does not improve the non-linear models skill. This demonstrates the advantage 

of using a physically-based oceanic metric for improving TCs intensity prediction. In 

addition, my results demonstrate that the improvement brought by this oceanic metric 
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varies considerably depending on the basin. While oceanic predictors yield a negligible 

skill improvement in the southern hemisphere, the improvement is far larger in the NIO 

(3%-5%) and NEP basins (2%-7%) for both non-linear schemes. Finally, I show that 

including a suitable representation of the oceanic stratification yields as much additional 

skill as maximum potential intensity (MPI), which is the second most important large-

scale atmospheric parameter.  

 

Overall, my results demonstrate that using non-linear schemes with a relevant oceanic 

parameter considerably improves the forecast skill in all basins relative to the widely-

used linear models using TC heat potential (OHC). It must however be noted that the 

skill improvement arising from the use of non-linear models (10 to 15% globally) is far 

larger than the one arising from the inclusion of a suitable oceanic metric (up to 2% 

globally). This Chapter hence clearly demonstrates that operational TCs forecast centres 

should replace their commonly-used linear statistical prediction schemes with non-

linear statistical prediction schemes, with the SVM scheme displaying at this stage the 

largest promise for skill improvement. Although the inclusion of a suitable oceanic 

metric only modestly improves the non-linear model skill, this inclusion generally 

requires the model to be trained over a shorter period (1993-onward vs. 1979-onward) 

as oceanic stratification is generally more reliable over the satellite era (1993 onwards) 

in oceanic reanalyses. This reduction of the dataset length results in a degradation of the 

performance of non-linear models (~5%), which generally overcomes the improvement 

brought by including oceanic parameters (up to 2%). At this stage, it may hence be 

more efficient to use non-linear models trained over a long period using only TCs 

characteristics and environmental atmospheric parameters as input, rather than using use 

non-linear models trained over a shorter period and including an additional oceanic 



! 202!

parameter. While we expect a skill degradation for operational application due to use of 

forecasted rather than reanalysed fields of environmental parameters along the TC track, 

the TCs intensity skill improvement expected from the present results are sufficiently 

large to motivate a trial in operational mode. 
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Chapter 6 Thesis Summary and Perspectives  

 

TCs are one of the deadliest natural hazards in coastal areas, causing huge lives and 

property losses. India has more than 64 millions people living in coastal regions 

(Neumann et al., 2015). As a result, the Indian sub-continent is one of the most heavily 

TCs-affected regions in the world. The BoB is home to about four named TCs each year, 

which only accounts for ~5% of TCs globally (Alam et al, 2003). BoB TCs may be 

neither the most intense nor the most numerous, but they have catastrophic impacts. Of 

the top twenty deadliest TCs in the world history, fourteen were generated in the BoB 

(Longshore, 2008). The high population density distributed along low-lying coastal 

areas and the poor disaster management strategies largely explain this very strong 

vulnerability of the countries surrounding the BoB to natural disasters. The Nargis TC 

in May 2008 is a dramatic example: it reached Category 4 and caused the worst natural 

disaster in Myanmar history, with more than 140,000 lives lost, one million homeless 

people and over $10 billion of economic losses (Webster et al., 2008). However, while 

TC tracks forecasts have considerably improved over the last 20 years, TCs intensity 

forecast are still far from reliable (DeMaria et al., 2014). It is therefore of utter practical 

importance to identify the key factors that control TCs intensity, in particular in the 

BoB. Air-sea interactions under TCs have been identified as one of the key processes 

affecting TC intensity evolution, aside internal dynamics and large-scale atmospheric 

environmental forcing (e.g. Wang and Wu, 2004). TCs cool the ocean below them 

through vertical mixing (e.g. V12a). The cooling below TCs reduces their 

intensification rate by reducing upward enthalpy fluxes that fuel its growth (e.g. Cione 

and Ulhorn, 2003). The cooling below the TC not only depends on its properties 

(intensity, propagation speed, radius) but also on the subsurface oceanic stratification. 
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This thesis hence aims at investigating the influence of ocean-atmosphere coupling on 

TCs characteristics, with a specific focus on the Bay of Bengal through the use of both 

statistical and dynamical modelling. How should oceanic predictors that account for the 

oceanic cooling feedback on the TC intensity be included in statistical TC intensity 

forecasts? 

 

6.1 Summary  

NIO TCs generally develop before (pre-monsoon) and after (post-monsoon) the summer 

monsoon and are more frequent in the BoB than in the Arabian Sea. Several TC case 

studies suggest that the surface cooling under BoB cyclones is larger during the pre-

monsoon (about 2-3o C) than during the post-monsoon. Aside its very warm waters, the 

BoB is rather unique amongst other TCs-prone regions, due to the large quantity of 

fresh water it receives through rainfall and river discharge during the summer monsoon. 

This results in a strong near-surface salinity stratification after the monsoon, which 

inhibits vertical mixing, the main source of surface cooling under TCs. This weak 

cooling could hence favour the development of intense TCs in the BoB after the 

monsoon. While several statistical and dynamical studies have already addressed the 

influence of ocean-atmosphere coupling on TCs characteristics in the Atlantic and 

Pacific, this topic has not been much investigated in the NIO. The tremendous human 

and socio-economical consequences of these extreme events as well as the specificity of 

the hydrography of the Bay, with very strong salinity stratification during the post-

monsoon, plead for an in-depth investigation of the influence of ocean-atmosphere 

coupling on TCs characteristics in this region.  
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The first objective of this thesis was to investigate the processes responsible for the 

smaller amplitude TC-induced surface cooling in the BoB before than after the 

monsoon. A case study of eight TCs suggested that the weak observed surface cooling 

after the monsoon in the BoB is due to haline stratification (Sengupta et al., 2008). This 

small sample however prevented a quantitative estimate of the respective influences of 

haline and thermal stratification and TCs winds intensity on the amplitude of the surface 

ocean response to TCs. To address this question using a much larger sample, 

observations as well as ½° global ocean model simulation forced by realistic TC winds 

derived from an analytic shape adjusted to observed TC tracks and magnitude over the 

1978-2007 period were used. This approach samples the ocean response to 135 BoB 

TCs over this 30-year period. It is demonstrated that this simulation accurately captures 

the seasonal cycle of salinity, temperature, and barrier layer in this region, with fresher 

waters, deeper upper-ocean stratification, and thicker barrier layers after the monsoon. 

As a result, this simulation also reproduces the three times larger TC-induced cooling 

before than after the monsoon. The results demonstrate that this difference in TC-

induced cooling amplitude is essentially related to seasonal changes in oceanic 

stratification rather than to differences in TC wind energy input. After the monsoon, the 

enhanced haline and deeper thermal stratification combine to inhibit vertical mixing 

underneath TCs, and the resulting cooling. On average, the thermal stratification 

changes account for ~60% of the TCs-induced cooling reduction during the post-

monsoon, while haline stratification accounts for the remaining ~40%. The respective 

contributions of thermal and haline stratification however vary strongly within the BoB: 

haline stratification explains most of the TC-induced cooling inhibition in the northern 

BoB (offshore of Bangladesh-Myanmar-east coast of India), where seasonal changes in 

salinity are the strongest, while thermal stratification explains most of the cooling 
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inhibition in the southwestern BoB. This major influence of salinity in the northern BoB 

advocates for an improved representation of upper-ocean salinity and temperature 

effects in statistical and dynamical TCs forecasts, which could ultimately lead to 

significant improvements of TC intensity forecasts in dynamical models.  

 

The second objective of the thesis was to quantify and understand the feedback of this 

TC-induced cooling on IO TC characteristics, an assessment that has been performed in 

other basins but not yet in the IO. To attain that goal, a long-term simulation (20 years) 

with a ¼° regional IO coupled ocean-atmosphere model (NEMO ocean model coupled 

to WRF atmospheric model) has been used. This simulation simulates the IO spatial and 

seasonal TCs distributions and the TC-induced cooling reasonably well. It however 

overestimates the number of TCs and fails to reproduce the strongest observed cyclones 

(Cat-3 and more). To isolate the impact of the oceanic feedback onto TCs 

characteristics, TCs statistics from this reference coupled simulation was compared to a 

uncoupled atmospheric experiment forced by the SST of the coupled experiment (from 

which cyclone colds wakes have been filtered out). This experiment effectively 

suppresses air-sea interactions, a strategy that allows a reliable statistical assessment of 

the air-sea coupling impact on IO TCs. The results reveal that the IO cyclogenesis 

spatial distribution is not affected by air-sea coupling, but that coupling reduces the 

number of TCs by ~30% in both hemispheres. It also influences the TCs seasonal 

distribution with a much better resolved bimodal character of northern IO TCs seasonal 

distribution in the coupled run. Air-sea coupling also reduces the percentage of intense 

TCs (Category 2 and more) in the two basins, from 7% in the forced simulation to 2% 

in the coupled one. This impact of air-sea coupling on strongest TCs can be traced back 

to a 15% reduction of inner-core upward enthalpy fluxes in the coupled simulation, as a 
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direct response to the TC-induced ocean cooling. The results also demonstrate that BoB 

TCs tend to be stronger before the monsoon in the model and observations, because of a 

more favourable atmospheric environment (less vertical shear, warmer SST). The effect 

of air-sea coupling is weaker, but far from negligible, and contributes to diminish the 

contrast between pre- and post-monsoon BoB TCs amplitude distribution. Overall, 

results from this chapter demonstrated the key role of air-sea interactions on TCs 

intensification in the northern IO. 

 

Along with dynamical models, TC intensity prediction relies on statistical-dynamical 

linear models that use linear statistical regression techniques that relate TCs intensity 

changes to predictors combining the TCs initial characteristics and large-scale 

environmental parameters along its track. In operational centres, most of those models 

are developed for a single or two TC basins. Before testing the influence of oceanic 

parameters on TCs intensity forecasts, the characteristics of linear statistical models 

developed for TCs intensity prediction at global-scale was assessed. To that end, multi-

linear regression (MLR) models were developed separately for each TC-prone basin, 

but based on the same set of predictors and datasets, in order to allow comparing skill 

for the northern IO to that in other basins. First, it is demonstrated that these models 

display comparable skill to previously-described similar operational schemes in 

hindcast mode. The skill improvement relative to persistence is similar in most basins 

(20%-40%), except in the north Atlantic and northern Indian Ocean where it is weaker 

(10%-20%). A large fraction (60 to 80%) of this skill improvement arises from 

accounting for initial (i.e. at the beginning of the hindcast) TC characteristics in all 

basins. The atmospheric environmental parameters that yield most skill globally are 

vertical wind shear followed by maximum potential intensity, but with individual 
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contributions that strongly depend on the basin. It is also demonstrated that statistical 

TC intensity forecasts perform poorly to predict intensity changes of weak TCs in all 

basins, and are 2 to 4 times more skilful for strongest TCs (Category 3 and more). This 

suggests that these linear models do not properly capture the processes controlling TCs 

intensification during their initial stages. Finally, the results reveal that hindcast models 

built from climatological environmental predictors perform almost as well as those 

using real-time values. For example, in the northern IO, using real-time predictors only 

modestly improves the skill at short to mid-range lead-time (~3%). This result is 

important, as it has the potential to considerably simplify the implementation of 

operational forecasts using such linear statistical models.  

 

The third and the last objective of this thesis was to quantify of the skill improvement 

brought by including oceanic subsurface metrics into the statistical intensity hindcast 

schemes. The relationship between these oceanic metrics and the TC intensification rate 

being likely non-linear, I also developed and tested non-linear statistical TC intensity 

prediction schemes based on two different approaches (artificial neural network -ANN- 

and support vector machine –SVM-). I first show that, while regionally-trained linear 

models generally slightly overcome the skill of a globally-trained linear model, it is not 

the case for non-linear models. For instance, a globally-trained non-linear model 

performs considerably better (~10%) than a regionally-trained model for northern IO 

TCs, probably because the small TC sample does not allow a proper training in that 

basin. Both non-linear approaches also considerably improve the prediction skill 

relative to the linear model in all TC-prone basins, with a larger improvement for SVM 

(~13% vs. ~7% for ANN). Non-linear models are better able than linear ones to capture 

the influence of atmospheric parameters non-seasonal variations on TCs intensification 
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rate, with real-time predictors systematically improving the prediction skill (~4-7% for 

ANN and ~5-8% for SVM). Then the skill improvement brought by various oceanic 

metrics that account for air-sea interactions under TCs was evaluated. Non-linear 

schemes yield a much larger TC intensity hindcast improvement than linear schemes 

when including oceanic metrics, most likely because of the non-linear relation between 

the TC intensification and these oceanic parameters. The analysis also indicates that the 

widely-used OHC parameter (i.e. the heat content between the 26°C isotherm and the 

surface) yields a negligible skill improvement. Recently proposed physically-based 

oceanic metrics perform far better than the TC heat potential, with the cooling inhibition 

index bringing the largest ~2% global improvement. It is also demonstrated that the 

improvement yielded by oceanic parameters is strongly basin-dependent. Oceanic 

subsurface information helps most in the northeast Pacific and northern IO (up to 6%). 

Oceanic metrics yield as much skill as maximum potential intensity, which is the 

second most important large-scale atmospheric parameter. Overall, using non-linear 

schemes with a relevant oceanic parameter considerably improves the forecast skill in 

all basins relative to the widely-used linear models using OHC. These results could 

hence greatly benefit the agencies responsible for operational TCs forecast, especially in 

the northern IO. 

 

Overall, this thesis has allowed several steps forward in understanding the ocean 

response to TCs and air-sea coupling feedback to TCs, with a particular focus on the 

north IO. The main achievements of this thesis are: 

• A quantification of the impact of the BoB salinity stratification on TCs-induced 

cooling 
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• A quantification of the impact of air-sea coupling on TC characteristics in the 

Indian Ocean 

• The setup of a consistent statistical scheme for global TCs intensity forecasts 

• The improvement of state-of-the-art TCs intensity statistical schemes by using a 

non-linear scheme and including oceanic parameters 

 

6.2 Limitations and perspectives 

6.2.1 Oceanic response to TCs 

Chapter 2 of this thesis demonstrates that the post-monsoon BoB haline stratification 

induces an average 40% reduction of TC-induced cooling, and potentially much more 

locally in the northern and eastern rim of the Bay. The rather coarse ocean resolution 

model used in the chapter 2 simulates rather accurately the contrasted TC-induced 

cooling amplitude between pre- and post-monsoon, suggesting that the 1/2° resolution is 

sufficient to capture the TC-induced mixing, a dominant process in the cold wake 

formation. Refined resolution in the BoB within our global model (Biastoch et al., 

2008) or the use of high-resolution regional models (Diansky et al., 2006; Benshila et al., 

2014) may however be required to better represent the TC-induced Ekman suction that 

shoals the thermocline near the eye, increasing the cooling efficiency of vertical mixing 

(Yablonsky and Ginis, 2009; Jullien et al., 2012). Although presumably of secondary 

importance (Jacob and Koblinsky, 2007; Jourdain et al., 2013), a realistic 

parametrization of the TCs-related precipitation may as well improve the TC-induced 

ocean response, by accounting for their stabilizing effect on the water column. As 

shown by Jourdain et al. (2013), this stabilizing effect may reduce the cooling amplitude 

by 5 to 10% in the Bay, hence reducing the model TC-induced cooling overestimation 

(Figure 2.6).  
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A significant increase in the horizontal and vertical resolutions of the model together 

with an improved representation of river discharge and precipitation patterns within the 

Bay (Papa et al., 2010) may also allow a better representation of the mixed layer and the 

offshore export of coastal freshwaters. The model underestimation of the freshening in 

the northern BoB during the post-monsoon season indeed probably results in an 

underestimation of the salinity influence on the TC-induced surface cooling. Estimates 

derived from the observed climatology however suggest that at least 50% of the 

reduction in TC-induced cooling amplitude may be related to thermal changes (Figure 

2.10). The exact quantification of the influence of salinity may require a more 

exhaustive and in-depth analysis of oceanic controls on TC-induced cooling within the 

Bay using observations. The Argo program (Gould et al., 2004) provides a unique 

opportunity to investigate this issue: started in 2002, this program has reached its 

targeted density in late 2006. The availability of both temperature and salinity profiles 

in the upper ocean with reasonable temporal and spatial coverage may allow 

quantifying the respective contributions of salinity and temperature stratification on TC-

induced cooling inhibition from in-situ observations over the recent period.  

 

Figure 6.1: Spatial distribution of the difference between average standard CI 
underneath TCs tracks (in (J.m-2)-1/3) minus CIS0 calculated over the 1978-2007 period. 
Both quantities are estimated from the weekly average stratification model outputs, 
within 200km and between 10 days and 3 days before each cyclone eye passage 
location. This plot indicates where salinity stratification inhibits (blue shades) or 
enhances (red shades) TC-induced cooling. 
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Chapter 2 brings further evidence of the haline stratification impact on TC-induced 

surface cooling. Neglecting haline stratification indeed results in a 50% overestimation 

of the TC-induced cooling during the post-monsoon season in the BoB. Figure 6.1 

shows the spatial distribution of the long-term average impact of salinity stratification 

on the pre-cyclone cooling inhibition. Figure 6.1 hence provides a global view of 

regions where salinity stratification may significantly influence the TC-induced SST 

cooling. Since TCs mostly develop in deep atmospheric convection regions, the 

associated climatological rainfall results in a stable haline stratification that inhibits TC-

induced cooling, explaining the dominance of negative values in Figure 6.1. While the 

BoB, studied in this work, is associated with a rather strong influence of haline 

stratification on TC-induced cooling, there is also a moderate influence of haline 

stratification in the western Pacific and South Indian Ocean TC basins. But there is a 

very clear influence of haline stratification on TC-induced cooling in the low-salinity 

region due to the discharge from the Amazon and Orinoco rivers whose waters are 

advected northwestward by the North Brazilian and Guyana Currents (Muller-Karger et 

al., 1995; Hellweger and Gordon, 2002). Given that TC that transit over this area can hit 

densely populated regions of Mexico and Southeastern United States (Weinkle et al., 

2012), this region probably deserves a dedicated study.  

 

Vertical mixing and upwelling generated by TCs in the BoB also trigger a very intense 

biological response in the western part of the Bay, giving rise to phytoplankton blooms 

by bringing nutrients such as nitrate and phosphate in the upper layers (Nayak et al., 

2001; Madhu et al., 2002 ; Vinayachadran and Mathew, 2003; Reddy et al., 2008 ; 

Nagamani et al., 2011), the offshore extent and the intensity of the bloom strongly 

varying from one storm to another (Vinayachadran and Mathew, 2003). Maneesha et al. 
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(2011) further suggested that the impact of TCs is also noticed up to the fishery 

productions, with a 40% increase of the fish catches during the 2007 post-monsoon 

relative to 2006, in response to cyclone Sidr that considerably increased phytoplankton 

biomass and hence food availability. The phytoplankton bloom reported in these studies 

may have a considerable importance, as the BoB is a region of very low productivity 

compared to the Arabian Sea. However, the restricted number of TCs investigated by 

these authors prevents them from providing a quantitative estimate of the respective 

influence of haline and thermal stratification and TCs winds intensity on the amplitude 

of the TC-induced bloom. It could be interesting to repeat the numerical strategy 

proposed in Chapter 2 but using a regional model that couples a physical model such as 

NEMO to a biogeochemical component such as PISCES  (Aumont and Bopp, 2006). 

Such a simulation should allow assessing the surface chlorophyll response to TCs 

forcing in this region and to quantify the importance of changes in subsurface oceanic 

stratification on the diversity of surface chlorophyll response observed in the wake of 

TCs. These TCs-related phytoplankton bloom may also have a considerable importance 

on the productivity in the BoB, a region of relatively low productivity compared to the 

Arabian Sea. This simulation can further be used to quantify the impact of TCs on the 

seasonal productivity in the Bay.  

 

6.2.2 Influence of air-sea coupling on BoB TCs 

Results from our 1/4o regional coupled model discussed in Chapter 3 indicate that the 

impact of air-sea coupling is largest for the strongest simulated TCs developing in the 

BoB. Because of the very warm SST in the BoB, the TC-induced ocean cooling 

translates into a stronger reduction of inner-core upward enthalpy fluxes (~200W.m-2 

for Category 2 TCs) due to Clausius-Clapeyron, and hence a large impact on the TC 
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intensification rate. As for other modelling studies on air-sea coupling impact on TCs 

statistics (Jullien et al., 2014; Ogata et al., 2015), the rather coarse resolution of our 

model (1/4°) does not allow to simulate the strongest TCs (Category 3 and above) that 

have the most devastating impact.  

 

The ability of a model to simulate a realistic TC intensity distribution (including the 

strongest observed TCs) relies on the model horizontal resolution, and also on the 

choice of the convective parmeterization used. Convective rainfall in atmospheric 

models is simulated  through implicit convective parameterization scheme and explicit 

microphysics scheme. A realistic simulation of TCs rainfall and related winds is 

complex for mesoscale atmospheric models with a grid resolution of a few tens of 

kilometres, as the one used in the present study, as it depends on a precise balance 

between implicit and explicit convective schemes that work simultaneously. As 

suggested by Samson et al. (2014), a rather coarse resolution model can simulate strong 

TCs intensity but for wrong reasons. That the Kain-Fritsch convective scheme allows 

simulating stronger TCs compared to the Bett-Miller-Janjic scheme is a resultant of the 

fact that this paramerization is over reactive to the environmental forcing in a 

destabilized atmospheric column. This could explain the overestimation of the number 

of tropical convective disturbances, as the case with KF-CPL simulation. Thus the 

better performance of the KF scheme in simulating the strong TCs as compared to BMJ 

is likely due to its overactive nature rather than the convective parameterization being 

better.  

 

Whatever the convective parameterization, our 25km model resolution is not sufficient 

enough to realistically simulate the strongest TCs. At this resolution, the sharp eyewall 
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tangential winds structure is too smooth and the strongest eyewall updrafts and 

compensating subsidences, which contribute to the hydrostatic reduction of pressure 

within the eye, are underestimated (Gentry and Lackmann, 2010). Numerous studies 

using similar horizontal resolution in their atmospheric models reported similar findings 

(e.g. Zhao et al., 2009; Murakami et al., 2012). Increasing resolution leads to improved 

simulation of intense TCs (e.g. Murakami et al., 2012; Manganello et al., 2012). This is 

evident from the study of Manganello et al. (2012) that the 10-km resolution ECMWF 

Integrated Forecast System simulates more realistically the global TC frequency and TC 

intensity distribution. To obtain more realistic extreme TC distribution, recent studies 

hence suggest that an atmospheric model with finer resolution of ~10km is needed to 

assess the impact of air-sea coupling on strongest TCs (Jung et al., 2012; Manganello et 

al., 2012; Satoh et al., 2012; Murakami et al., 2015). 

 

A 10 km-resolution version of the current IO regional coupled model would currently 

be computationally too expensive to allow performing long experiments. Increasing the 

model resolution hence also requires reducing the model domain to obtain a reasonable 

computational cost. As a next step, it is planned to develop a 10km resolution regional 

air-sea coupled model using the same oceanic and atmospheric components focused 

over the BoB. This would allow simulating the most intense TCs observed over the 

BoB, where they are known to have catastrophic impacts. With this higher-resolution 

coupled model, it is then planned to apply a similar strategy as in our coupled model 

study to analyse the impact of air-sea coupling on strongest TCs in the BoB. This 

configuration can also be used to perform ensemble of coupled and forced sensitivity 

experiments for selected case studies to better understand the coupled mechanisms at 

stake in the TCs intensification in this region. Cases corresponding to strong cyclones 
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with landfall other India can be selected in order to investigate their predictability, and 

how air-sea coupling influences them. At 1/10° resolution, the ocean component will 

also resolve the intense mesoscale eddy variability in the BoB, which will allow to 

specifically address the impact of warm oceanic eddies on TC intensification and its 

evolution by adding/removing warm subsurface anomalies in the pre-storm ocean initial 

conditions. Another perspective will also be to address the specific impact of salinity 

stratification by shutting down the impact of salinity in the ocean mixing 

parametrisation. 

 

6.2.3 Towards improved operational statistical models for TCs intensity prediction 

Chapter 5 demonstrated that using non-linear schemes with a relevant oceanic 

parameter considerably improves the forecast skill relative to the widely-used linear 

models using TC heat potential in all basins. It must however be noted that the skill 

improvement arising from the use of non-linear models (10 to 15% globally) is far 

larger than the one arising from the inclusion of a suitable oceanic metric (up to 2% 

globally). Chapter 5 hence clearly demonstrates that operational TCs forecast centres 

should replace their commonly-used linear statistical prediction schemes with non-

linear statistical prediction schemes. Our preliminary results suggest that the SVM non-

linear scheme yields the largest skill improvement. Although the inclusion of a suitable 

oceanic metric generally modestly improve non-linear models skill, this inclusion 

requires the models to be trained over a shorter period, as oceanic reanalyses are 

generally more reliable over the satellite era (1993 onwards) thanks to sea-level 

assimilation and more reliable satellite-derived wind stress forcing. This reduction of 

the dataset length results in a ~5% degradation of the non-linear models performance, 

which generally overcome the ~2% improvement yielded by including oceanic 
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parameters. At this stage, it may hence be more efficient to use non-linear models 

trained over a long period using only TCs characteristics and environmental 

atmospheric parameters as input, rather than using use non-linear models trained over a 

shorter period and including an additional oceanic parameter. In principle, however, our 

results demonstrate the potential added value from using oceanic predictors. Research to 

take advantage of the longer training period of atmospheric parameters, but to add 

oceanic parameters during a second training over a shorter period may hence provide a 

way for further improvements. 

 

While our results strongly suggest that using the SVM scheme discussed in Chapter 5 

has the potential to improve operational statistical forecasts skill, but further significant 

improvements to the current model version can still be obtained. First, a very crude 

tuning of the optimization parameters of the SVM scheme was performed and exploring 

the full parameter space should allow to further improve the model performance. 

Second, since the initial TC characteristic parameters explain a major part of the model 

skill, additional TC characteristic predictors proposed in the literature (DeMaria et al., 

2005; Lee et al., 2015) could also be tested, including initial maximum winds times 

previous 12 hr intensity change and rate of change of maximum winds in the previous 

12 hr etc. I should also test the added value of including other large-scale atmospheric 

predictors recently proposed in the literature (Lee et al. 2015) but not considered in our 

model architecture, such as the divergence at 200hPa. Once these steps completed, a 

thorough assessment of the model skill in real forecast mode should be performed by 

testing the model using predictors derived from forecasted TC tracks and large-scale 

environmental parameters predicted from atmospheric forecast models. These skills 

should hence be compared to the skill of the current operational system used in the 



! 218!

different basins. As a final step, this new scheme should be implemented operationally 

in the centres responsible for the TCs prediction, especially to the Indian Meteorological 

Department for the Northern Indian Ocean. 
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