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CHAPTER 1
INTRODUCTION A:D PRELIMINARIES

1.1- GENERAL INTRODUCTION

Many problems in mathematical physics and applied mathematics,
particularly those involving remote sensing, indirect measurement,
etc. have their mathematical formulation as an operatov equation of
the first kind,

Tx

[
X

phere T ! X pemes ¥ is a bounded linear operstor between Hilbert
‘spaces % aﬁd Y. THe above equation is, in general, "ill-possd’,
l.e., the existence of a unigue solution which depends acontinuously
on the data y 1s not guaranteed. In case there i no solutiorn in
the ususl sense, one seeks the ‘least-square solutiﬁn of minimal

norm®, which in general does not depend continuously on the dats

y. In fact, if R{T), the range of T, is not closed. then the map

s
- -

whichh asscoclistes each vy € R(T) + ®&(T)

Ny

. tu. the ireasi-square
solution «f minimal norm is not continuocus., In such =iiuation ~ne
has to reguiavize Tx = y, often with an inexact data y6 ‘with
by-voih < 3. The regularization which has been studied most

extansively is the s0 called Tikhonov regularizatisn, in which one

considers xg; the scluticn of the equation



(T*T + ol )xg = T*y6, &> 0,

for obtaining approximatioﬁs for V;, the least-square solution of
minimal norm. The crucial problem here 1is to choose the
regularization parameter « depending on & and y$® such that we
must have xg L x as & » O and obtain the ‘optimal’ estimate for
the error fBx - xgﬂ. It is known [39] that if x € R((T*T)V),

0 ¢ v =<1, then the optimal rate for ix - xgﬂ is c{62U/(2V+1)).

Morozov [31] and Arcangeli [1} had considered ‘discrepancy

principles’, namely,

5 - ooy = 8 - &y = b
BTXG y ©H o) and "Txa Y Of 7(1—’

respectively, for choosing the parameter o in Tikhonov
regularization. For Morozov’s method, the best possible rate for
ix - xgﬁ is d&ﬁ/z) ({14]) and for Arcangeli’s, the known rate
was  (672) which is attained for x € R(T*) ([18]). 1In an
attempt to obtain optimal rate, i.e., (ﬂ62v/(29+1)), schock [38]

considered the discrepancy principle

S _ &y = il 5 O
BTxa y Ol - P> O, Q
end proved that the rate is arbitrarily close to the optimal rate

for large values of Q. Later Nair [34], considered the above

discrepancy principle and improved the result of Schock ([38]. In



fact, the result in [34], shows that, the Arcangeli’s method does

give the best rate 0(52/3) for x € R(TXT).

In Chapter 2 we consider the discrepancy principle of Schock
[38] and prove that if X € R((T¥T)V), 172 s v s 1, then the
optimal rate c{52U/(ZU+1)) is achieved. Our result improves the
result of Nair [34] for ©0 ¢« v ¢ 1, and for v = 1 our result
coincides with the result in ([34]. In the final section of
Chapter 2 we consider Schock’s discrepancy principle for iterated

-

Tikhonow regurarization.

If Y = X anc the operator under considerstion is ‘positive
and self-adjoint’, then one can conrnsider a simpler regularization
method, namely, the Simplified regularization. 1In this case ws use

the notation A for the operator T, and consider the equation

Awv = g. In Simplified regularization of the equation

one takes the solution wg of the equation
(A + ol Jwd = gd
o
for obtaihing approximations for Qs the minimal norm solution of

the equation Aw = g. Here 95 is such that Ng~95H < &. For

choosing the regularization parameter o in Simplified



regularization Groetsch and Guacaneme [16] considered Arcangeli'’s
method and proved the convergence of wg to w. But in {16], no
attempt has been made for obtaining the estimate for the error

B - wga, In Section 3.1, we consider a generalized Arcangeli’s

method, namely,

!Aw2-95ﬂ=§;. P>O, g o0,
for obtaining the regularization parameter . ke obtain the
optimal rate o(ép/_(W1)) (see (39]) for the error W - wgﬂ,
whenever w € R(AY), 0 ( p £ 1. As a particular case we prove that
the Arcangeli’s method considered in [1&6] gives the rate cﬂéi/a),
and the best rate c{al/z) is obtained when v =1 by taking 3T

%, The result for the case when v = 1 has also been considered

by Guacaneme [19]. In Section 3.2, we consider the discrepancy

-4

principle, namely,

P+ Q1 )EP G, agdy = 82, p > O,

where ¢ > 1 is a constant and Q is the orthogonal projection
onto the closure of the range of AL Result of tﬁis section
includes & result of Guacaneme [21], which he proved when A is
compact and v = 1. In the final section of Chapter 3 we consider
the discrepancy principles considered in Sertinne 2 1 and 2 2 for

iterated simplified regularization.




In reality there are two occasions, where one has to consider
perturbed operators instead of the original operator. One, such
occasion arises from the modeling errvror and the other when one
considers numerical approximation. Many suthors (e.g.,[31], [36],
{37}, [43]) considered the equation Tx = y with a. perturbed

operator T, instead of T with
BT-Tyll < ¢, ., €en , C as h _ O.
In Chapter 4 we consider Tikhonov reguiarization ang Simplified
regularization with perturbed operators. Specifically ., we modify
the discrepancy principles of Chapter 2 and 3 so as tc 1nclude the

cace of perturbed operators.

In Chaptey 5 we consider projection method for the regularvized

equations
(T*T + aI)xg = T*y6 and (A + aI)wg = gb.
The projection method for the equation
(T*T + ol )xz = T*y&
is a special case of the method considered in Section 4.2 and

under certain conditions this method leads to a better eyror

estimate than the one obtained in Section 4.2. In order to




illustrate the theoretical results. some numerical experiments have
been performed, and the results are reported in the last section of

the thesis.

“Now we formally definz well-posed and 1ll-posed operator
equations and discuss the peculiar problems associated with the
solution of the ill-posed operator equations. Operator theoretic
foundation for the sequel is laid by considering some prelimivary
results from Functional Analysis, which facilitates in discussing

the concept of a generalized inverse and regularization methods.

WELL—POSED AND ILL—POSED PROBLEMS Let X &nd Y be Hilbert
spaces{over real or complex field) and T: X ——m Y be a linear
operator. We consider the problem of solving the operator eguation
(1.1) Tx = y.

A typical example of equation (1.1) is the Fredholm integral

equation of the first kind

(1.2) aJ‘bk(s.t)x(t)dt = y(s), a s$s sb

"

with non-degenerate kernel k(s,t). Here X Y = Lz[a,b].

An important fact concerning the equation (1.2) is that, the




—~

associated operator T:Lz[a,b) N Lz[a,b} defined by
(Tx)Xs) = J-bk(s,t)x(t)dt, a <s <b
a

is a ‘compact operator’ of infinite rank, and therefore T can not
‘have a continuous inverse (See, [26], Theorem 17.2 and 17.4). This
observation is very important in visw of its application, for this
amounts to large deviations 1n the solutions corresponding to
‘nearby® data. Therefore equation (1.2) is a typical exsmple of
the so called ‘ill-posed problems’. Many inverse problems in

phvsical sciences lead to the soclution of the eauation of the above

In the begining of this century. Hadamad [22] specified the
essential requirements for an equation to be well-posed. In our

setting, the equation (1.1) is said to be well-posed 1f
(1) (1.1) has a solution x, for all vy €Y

(ii) (1.1) can not have more than one solution,

~~

{(iii1) the unique solution «x, éi\jiiii%} depends continuously on

the data vy.

]

In operator theovetic language, (i), (1i), (iii) means that T is




" bijective and T71: Y — X is a continuous operator. The equation
(1.1) is said to be ill-posed if it is not well-posed. By the
remark in the previous paragraph, if T is a compact operator of

infinite rank, then the equation (1.1) is ill-posed.

We now mention a few examples of inverse problems in physical
sciences which lead to solution of an integral equation of the type

(1.2). Detailed discussions on these can be found in Groetch [15].

THE VIBPATING STRING. The Free wvibration of a nconhomogeneous
string of unit length and density distribution p(x)} » 0, O ¢ x < 1,

is modeled by the partial differential equation

~
[
(Y

s

K x Wy = Uxx;

¥

where U(x,t) is the position of the particle X’ at time t.
Assume that the end of the string are fixed and U(x,t) satisfies

the boundary conditions

U(O,t)=0, U(l,t)=0.
Assuming the solution U(x,t) is of the form
U(x,t) = y(xJir(t),

one observes that y( x) satisfies the ordinary differential




.equation

(1.4) y''+ o2p(x)y = O

with boundary conditions

y(¢) = ¢, y(1) = 0.

suppose the value of Y at certain frequency @ is known,

then by integrating equation (1.4) twice, first from zevro to s

and then from zero to one, we obtain

(1.5) ojly’(s;w)ds - v (0s0) + egf;!sp(x)y{x;m)dxds = O.
or
' i . _ ' (05w)

(1.6) o) (1-s)(siwids)ds = =202,

The inverse problem here is to determine the variable density

p of the string, satisfying (1.6) for all allowable frequencies u.

THERMAL ARCHAEOLOGY. Consider a uniform bar of length = which
is insulated on its lateral surface so that heat is constrained to
flow in only one direction. With certain normalizations and
scaling the temperature U(x,t) satisfies the partial differential

equation

Ug = Uxx, 0 ¢ x < #.




We assume that the ends of the bar are kept at temperature zero,
i.e,

U(o,t) = 0 and W w,t) = O.

If f(x)= U(x,0), O £ x s =%, is the initial temperature

distribution, then the temperature distribution at a later time,

say at time ¢t = 1, is given by

@
(1.7 g(x) = U(x,1) = Ziansinnx,
Nx=
where
n . -n2
(1.8) a, = (Z/ngf f(u) sinnu du.e™ N

The inverse problem associated with the above consideration is
to determine the initial temperature distribution f{x), knoewing a
later temperature g{(x). From (1.7) and (1.8), the problem, then is

to solVe the integral equation of the first kind,

jnk(x,u)f(u)du = g(x)}
0

wherea

k( X ,u) = (Z/u)ﬁf"”zsinnx.sinnu.
nN=

GEOLOGICAL PROSPECTING. Here the problem is to determine the

location, shape and constitution of subterranean bodies from

measurements at the earth’s surface. Consider a variable

*

10




M

distribution of mass along a parallel line below one unit of the
earth’s surface. Suppose that a horizontal line measurement is
made of the vertical component of the gravitational force due to
the mass. If the variable mass density x(t) is distributed along
the horizontal axis for O <t <1 and one measures the vertical
component of the force y(s), then a small mass element x(t)At at

position t gives rise to a vertical force Ay(s) at s, given by

Ay(s) = fx(t)ats({s~£)2 + 1))coss
=y Ix(CL)At/A((s-132+41)3/2
where 7y 1s the gravitational constant. Now the Frednolm integral
eaquation
, A -
1 [ ((s=132+41 573725t hat = yvis)
o

gives the relation between the vertical force y{(s) at s and the

density distribution x{(t).

N

SIMPLIFIED TOMOGRAPHY. Consider a two dimensional object

contained within a circle of radius R. The object is illuminated
with a radiation of intensity 1I,. As the vadiation beams passes
through the object it absorbs some radiation. Assumme that the
radiation absorption coefficient f(x,y), of the object wvaries from

pecint to point of the object. The absorption coeff@cient satisfies

11




the law

where I 1is the intensity of the radiation.

where vy =‘R2-x2.

a1 _ _
& = ~fI

y( %}
Iy = Igexp( -Jf(x,Y)dy)
~y{x)

tet p(x) = In(I/Iy}, i.€.,

By taking the above

"equation as the definition of the absorption coefficient, we have

y( %)
P(x) = Jf(x,y)dy.

-¥(x)
suppose that F  is circularly symmetric, i.e., f(x.,y) = f{(r) with_
Yy = £x2+y2, then
(1.9) p(x) = JR(Zr/lr&mz)f(T)dr.

X

The inverse problem is to find the absorption coefficient f
satisfying the equation (1.9).
BLACK BODY RADIATION. When a black body is heated, it emits
thermal radiation from its surface at various freauencies. The

distribution of thermal power, per unit ares of radiating surface,

over the various frequencies is known as the power spectrum of the

12




black body. The relation between the power radiation by & unit
area of surface at a given frequency v and absolute temperature

T of the surface is given by the relation

2hp2 1

P(v) = .
c? exp( hp/kT-1)

where ¢ 1is the speed of light, h 1is Planck’s constant and k is

Boltzmann's constant.

suppose that different patches of the surface of the black body
are at d;fferent temperatures. et a(T) represents the area of
the surface which is at temperature 7T, i.e, a{.) is the area-
temperature distribution of the radiating surface. Then the totail

radiated power at frequency v, W(p), is given by
o
(1.10) W) = (2hp3/c231( exp(hu/( kT-1) ) 1a( T )dT.

The inverse problem is to find the area-temperature
distribution af{.) that can account for an observed power spectrum

W(.), i.e, to solve the integral equation (1.10).

1.2. NOTATIONS AND SOME BASIC RESULTS FROM FUNCTIONAL ANALYSIS.

Throughout this thesis X and Y denote Hilbert spaces over

real or complex field and BL{(X,Y) denotes the space of all

13




bounded linear operators from X to Y. If ¥ = X. then we denote
BL{X,X) by BL(X). We will use the symbol <(-,:> to denote the
innerproduct and I8 to denote the corvesponding rorm for the
spaces under consideration. The results quoted in this section
with no references can be found in any text book on funct‘oﬁal

analysis, for example, [26] or [13}.

For a subspace $ of X, its closure is dencted by ¥, and its

annihilator is denoted by S*, i.e.,

1

If T € BL{X,Y), then its adjoint, denutzd v ¥, is sz brurded

linsay operator from Y %o x definsd '
(Tx,y> = <x, ¥y

for all x € X and y € Y. Denocting the range and null space of

T by R{(T) and MT) respectively. i.e.,
R(T) = {Tx : x ¢ X3}
and

N(T) = {x € X :Tx = 0},

we have the following.

B
in




Theorem 1.2.1. If T € BL(X,Y), then R{T)* = N(T*),

N(T)*= R(T*), R(T*)'= N(T) and N(T*)* =R(T). =

The spectrum and the spectral radius of an operator T € BL(X)

are denoted by ofT) and rT) respectively, i.e.,
ol T) = {ae€C : T - Al does nct have bounded inverse},
where I is the identity operator on X, and
Tl T) = sup {1xi : % € o(T)}.

it is known that

rl T < HTE,

and o(T) 1is a compact subset of the scalar field. If 1 is a
nonzero self-adjoint operator, i.e., 7T = T*, then ofT) is a non-

empty set of real numbers, and
{(1.11) ’ roT) = HTH.

1f T 1is a positive self-adjoint operator, i.e., T = T¥ and
(Tx,x> 20, x € X, then ofT) 1is a subset of ths set of
non-negative reals. If T € BL(X) is compact, i.e., closure of

{Tx : % € X, lxh £ 1) 1is compact, then o{(T) is a cocuntable set




with zero as the only possible limit point. In fact we have the

following result.

Theorem 1.2.2. Let T € BL(X) be a non-zeroc compact self-adjoint
operator. Then there is a finite or infinite sequence of non-zero
real number’s (Ap) with Ixg1 2 1A21 2 ... , and a corresponding
sequence (up) of orthonormal vectors in X such that for all

x € X,
Tx = ; An<X,updln,

where Ay— O whenever the sequence {(An) is infinite. Here

? :

An’s &arve elgenvaiues of T with corresponding eigenvectors up. B

I ~
If T € BL(X,Y) 1is a non zero compact operator, then T%7  is o
——
a positive, compact and self-adjoint operator on X. Then by %

S e, ConITina D

Theorem 1.2.2, and by the observation that o T7*7) @:nsiéts Dl e
non-negstive reals, there exist a sequence (s) of positive reals
with s3 2 s 2 ... and a corresponding sequence of orthonormal

vectors (vpy) 1in X satisfying.
T*Tx = ;sn<x,vn)vn, for all x e X

and T*Tvp = spvp, N =1, 2, .... Let Ay be the positive sqguare

root of sn, un = 1/\n and un = ppTvp. Then (up) is(a)
a-m\

le



-~
7
complete orthonormal sequence in Y and pnT*¥up = vp. Using 7/9>
\__/ .
Theorem 1.2.2, it can be seen (See, [12]) that (up)} is a complete
orthonormal set for R(7TJ = N(T*)* and (v,) is & complets

orthonormal set for R(T*) = N(T)'. The sequence {uy . vp , Mn)

is called a singular system for T.

In order to define functions cf operators on a Hilbert space,
we require the spectrz! thzorem for a self-adjoint operater which

T

is a generalization of Theorem 1.2.2.

Theore 1.2.3. cet I 2 Bl{X) be self-adicint and liet
a = infe(T), b = supe(7Ti. Then there exists a famiily <{(fy:as % sb}

of projection operatcrs on X such that
(i) Ap o dmplies (Ep,x,x)> £ (Epox,x> for all x =
{(ii) Eg = 0, Ep = I, where I is the identity operator on X

(iii) 7T = J.iidEl. &
a

The integral in {(iii) is understood in the Riemann-Stieitjes
sense. The family. {E£3}acla,b) is called fthe spectral famiiy of

the operator 1. if f is a8 continuous real walued function on

fa,b]l, then f(7V) ¢ 8i.{X) is defined by

17



f(T) = J'?(x)dEl.
a
Then

o F(T)) = {f(2) 2 € o T)}.

Now by (1.11) we have

(1.12) BFCTON = vl FCT)) = sup {JF(A)] : A € o(T)}.
For real/ valued functions f and g, we use the notation -
f(a) = o{g(a)) 85 a , O

to denote the relation

(Ql“h
~
RIR
~r

where M > O is a constant independent of «, and

fla) = Lo(a)) as « . O

to denote
f

~

Nt

&

1i = 0.
a

3

m
-0

1.3. GENERALIZED INVERSE.

If the operator equation (1.1) has no solution in the usuai

sense, i.e., if y does not belong to the range of T, then one

i8
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-

may broaden the notion of a solution in a meaningful sense. This

can be done using the concept of a least-square solution.

For T eBL(X,Y) and y €Y, we say that u € X 1is a lesast

square solution of the equation (1.31), Tx = ¥, if

BTu-ylk = inf{BTx-yl : x € X}.

It i1s to be remarked that if T is not one-one, then a least-—
square solution u, if it exists, is not unique, since u+v is also
a least-squars solution for every v € N(7). Thne Tolicwing Theorem

provides characterizations of least-square solutions.

Theorem 1.3.1. (Groetsch [12}, Theocrem 1.3.1). For T € SLIX,Y )

and ¥y €Y, the following are equivalent.

(i)  BTu-yB = inf{8Tx-y§ : x € X}

(ii) T*Tu = T*y

(iii) Tu = Py

where P :Yr—— Y is the orthogonal projection onto R(T). =

From (iii) it is clear that (1.1) has a least-square solution

if and only if Py € R(T), i.e., if and only if y- belongs to the

1¢




dense subspace R(T) + R(T)* of Y. Any of (i)-(iii) in Theorem
1.3.1 shows that the set of all least-square solutions is a closed
convex set, and therefore, by Theorem 1.1.4 in {11], there is a
unique least-square solution of smallest novrm. For y € R(T) +
R(T)*, the unique least-square solution of minimal norm of (1.1) is
called the generalized solution or pseudo solution of (1.1). It
can be easily seen that the generalized solution belongs to the
subspace N(T)* of X. For T € BL(X,Y)., the map T¥  which
associates each y e D(Tt) :=R(T) + R{T)', the generalized soclution
of (1.1) 1s called the generalized inverse of 7T. We note that if
y € R(T) and 7 is injective, ihwea iLhe sensrailized sclution of
{1.1) is the solution of (1.1). If T is bijective, then it

follows that Tt = 71,

Theorem 1.3.2. (Groetch {11}, [13]). tlLet I € BL(X,Y)., Then
TH:D(TT) —» X is a closed densely defined linsar cpevator, and T7

is bounded if and only if R(T) is closed. &

if =quation (1.1) is ill-posed then one would like to obtain
the generalized solution of {1.1). But Theorem 1.3.2 shows that
the problem of finding the generalized solution of (1.1) is also
"i1ll-posed, i.e., TY is discontinuous, if 2(TH is not a closed
subspace of Y. Recall that if 7T € BL{X,Y} is a compact operator
of infinite rank, then R(T) 1is not closed. This observation is
important since a wide class of operators of practical interest, as

we have seen 1in Section 1.2, are compact operators of infinite

20




rank. In application, the data y may not be available exactly.
So, one has to work with an approximation, say vy, of y. 1I1f 1%t
is discontinuous, then for y close to y, the generalized solution
T*y, even when it is defined, need not be close to T¥ . Therefore

some regularization procedures have to be =employed, to obtain

approximations for Tty, for y e D(TH).

1.4. THE REGULARIZATION PRINCIPLE AND THE TIKHONOV REGULARIZATION.

Here onwards we are concerned with the problem of finding (}3
the generalized solution of (1.1) where T € BL(X,Y) and
y € D(TT) = R(T) + R(T). For &> 0, let y € Y be an inexact
data such that fly-yi < &. By/regularization of the equation {1.1) 07/

with. ; in place of y, we mean a procedure of obtaining a family

(;a) of vectors in X such that each ;a- a > 0, is a solution ofsris:

" a well-posed equation satisfying‘ ;a - Tty as « 5 0 and & 0.

A regularization method which has been studied most extensively
is the so called Tikhonov regularization ( [43), [44] ) introduced in
the early sixties, where ;a is taken as the minimizer of the

functional
X +— Fx) = HTx - yI2 + «fix#2, x € X, a > O.

The fact that Xq is the unique solution of é;:b well-posed &

equation, namely,

21



e

(1.13) (T*T + ol )dxy = T¥y,

is included in the following well known result, the proof of which

is included for the sake of complet{é}. e\

t
Theorem 1.4.1. (See//k35”)// Let T € BL{X,Y) and vy € Y. For 4e&
each « > O there exists a unique X € X which minimizes the
function
(1.14) x — Fod x) = 0Tx=-¥l#2 + alixi2, x € X.
More over, the map y +—— Xg 1is continuous for each « > G, and
Xg = (T¥T+al ) 171*y.
Proof: First we prove that there exists a unique Xy which
minimizes the function (1.14). Consider the product space XxY
with the usual innerproduct defined by

AU,y do{xayo > = X5,X) + (¥y,¥2>s Xj, ¥Xp € X i ¥y, Yz € Y.

It is seen that, with respect to this innsrproduct, XxY is a

Hilbert space. For a > O, consider the function

Fo X = Xx¥, Folx) = (Jax,Tx), x e x.
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‘(..
Since T € BL{(X,Y), the graph of T,
&(T) = {{x,Tx) : x € X},
is a closed subspace of XxY, so that the range R(Fg) of F, is
closed in XxY. Thus by Theorem 1.3.2, the generalized inverse Fg
is a bounded linear operator from XxY into X. Let xg = FHO,¥).
Since Fa is one-one, it is clear from the definition of the
generalized inverse that X is the wunique element 1in X
satisfying
- BFL o) = (C,y)i = inf {WIFAx) - (O,y)H : x € X}
i.e.,
ITxo-y 12+ alxgB2 = inf {§Tx-y02+ afixhZ: x € X}.
oy Now since the function J 1Y — Xx¥ defined by I(y) = {0,v),
y € Y, is continuous, the function y r— xgi= F¥O,ry) is also
continuous.
-r
Now to prove that xg is given by xg = (T¥T + ol) 1T%y,
first we note that T*T is a positive self adjoint cperator and
hence -o ¢ ol T*T), if « > O. Thus for a > O, (T*T + «I) 1 exist
| and is a bounded linear operator on X. Let ug = (T*T + ol) 17%y,
a > O, then
BTCUgtv )=y B2 + aliugtviiZ = NTugy2 + allugh? + <(T*¥T+allv , V>,
s

m




for all v € X. Now since <(((T*T +ad)v , V> 2 0, for all v € X,

it follows that !
BTug-y B2 + allugh? < BTx-yB2 + oxB2, for all x ex.

This, together with the fact that x4 = F¥0,r) is the unique

element in X such that

BTxgvHB2 + allxoB2 = inf {ATx-y#2 + olfixh2 :x € X}

shows that xg = Uy = {(T¥T + Il )" T*y. &

If Y - X and T is a positive self-adjoint operator on X,
then one may consider (See///Bakushiniskii [ziéi— 3 simpler 425
i,
regularization method to solve equation (1.1), where the family of C:

vectors Qa, x » O , satisfying

(1.15) (T + ol g = ¥,

ac

is considered to obtain approximations for Ty, Note that fon{
positive self L_adjoint_ operator T, the ordinary Tikhonov ..
regularization applied to (1.1) results in a more complicated

equation (12 #;,qs);a = T; than (1.15). Moreover it is known

(seefschock [40]b'that the approximation cobtained by regularizationéﬂﬁj

N

L
procedure (1.15) has better convergence properties than the

approximation obtasined by Tikhonov regularization. ’'As in Groetsch
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A

and Guacaneme, [16], we call the above reglularization procedure
which gives the family of vectors ;a in (1.15%), the sSimplified

regularization of (1.1).

0ne of the prime concerns of regularization methods is the
convergence of ;q (:ua in the case of Simpplified regularization)
to Ty, as « , 0 and & , 0. It is knoun {[12], Theorem 2.3.5)
that, if R{7) is not closed, then there exist sequences (8p) A

and (ap): = (o 8n)) such that | 83 » 0 and an o, O as -n_-_:/m)

\\.

o~ ‘/""‘v . .
but the sequence (xan) is divergent as éﬂ - }.D Therafore it is

— - oA e
important Lo cheoze the regularization pavamateor #  dapanding on
the error level 8 and also possibly on vy, say o« = «8.¥), such
that L&) 5, 0 and /xg, T as 5 5, 0. We shall see later

(Section 2.1) that in the case of Tikhonov regularization, if we

] . . ~ . N
take « = & a priorily then x4, . T¥Y as § _, 0, ' Pragtical
considerations suggest that, it is desirable t¢ choose the

~—

regularization parameter a at the time of solving xg4. using &

so-called a posteriori method which deperds on y as well as &,

. Com Y . 4
{(Ses ., 37N, ;

1.5- THE CHOICE OF REGULARIZATION PARAMETER BY DISCREPANCY

PRINCIPLES."

-
For choosing the regularization parameter a DosteriorLI\, ‘»/
‘discrepancy principles’ have been used extensively in the

literature {(e.g.,.1(4]. [6]), (7). [10}, (32). [381). This idea was
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first enunciated by Morozov(3i]. The method is based on the
reasonable view that the quality of the results of a computation
must be comparable to the quality of the input data. To be more
precise the magnitude of the ervror must be ir agreement with the

accuracy of the assignment of the input data (See, Morozov ([31] or

Groetsch [12]). The practical difficulty here is that even an
asymptotic bound for the quantity E;“ - TYg usually requires
information on the data Y. Therefore one has to consider an

‘optimal order’® (optimal in the sense that, in general, the order
can not be improved ) of the quantity E;Q - T¥%H, based on the
available information of the data. Now tne cruciél problem is to
find the value of the regularization parameter « which gives the
optimal order of the quantity E;a—T*ygt
N . — , ‘ .
The subject matter of this thesis is to provide optimal error
bounds Tfor the existing discrepancy principles for Tikhionow
regularization and simplified regularization, and aiso to
generalize a3 discrepancy principle for simplified regularization
considered Ly Guacaneme [21]. Computational results are given in
the last section of the thesis which confirm the theoretical

results.

1.6 SUMMARY OF THE THESIS

In Chapter 2 we consider Tikhonov regularization for

approximately solving the ill-posed operator equation Tx = Y,
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where T ¢+ X — Y is a bounded linear orerator between Hilbert
spaces X and Y and y € R(T) + R(T), i.e., the problem of

minimizing the functional
X b lTx~Yﬂ2 + aﬂxlzs a > 0.

When only an approximation of the data y is known, say y&, with

Iy-¥y%8 s &, then the problem of choosing the regularization
parameter a depending on & and y3 is important. For this
purpose many discrepancy principles are known in the literature
{e.g., 14}, (10}, {z8]). in Section Z.2 we consider the

discrepancy principle

¥Txd - 8y = —q—. P 30, 9> 0,

considered by Schock {38] and later by Nair {34} and prove that
this @ discrepancy principle gives the optimal estimate
O(SZW(?'Wl)), 172 < v £, for the error ix - xie whenever

belongs to R((T*T)¥V), The result of this section improves the
vesult of Schock [38], and also it improves the result of Nair
[34], except for the case v = 1. Lf?rticular_case of the result,
as proved in [34], shows that the Arcangeli’s method does give the
optimal rdte c{52/3). In Section 2.3 we show that one can use the
discrepancy principle considered above for iterated Tikhonov

regularization also.

Xx)



Chapter 3 1is concerned with the problem of approximately
solving ill-posed operator equation Aw = g, where A : X — X is
a positive self-adjoint operator on a Hilbert space X and
g € R(A), the range of A. Here we consider the Simplified

regularization, where the solution wa of the equation
A + =
( al )Na g

is taker as an approximation for the minimal norm solution w of
the equation Aw = g. If the data g 1is kriown only approximately,

8 . - Sa ) . L 3 3 /S £
say g, with ig-g~i s &, then we considery the solubtion wa ok

the equation

(A + «I)wd = gdb
a

for obtaining approximations for w. In this case, for choosing
the parameter a, Groetsch and Guacaneme [16] considered the
discrepancy principle
)
Aw& - 6 =

H & - gt 7&
and proved tnat ”2 4w as & » O, but nc attempt has been made
for obtaining'estimate for the error jw - wgﬁﬂ In Section 3.1 we
consider a general class of discrepancy principle, namely,

653

laws - g8 = —g, p > 0, a> o0,
x
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which includes the one considered by Groetsch and Guacaneme [16],
and obtain the optimal estimate for the error lﬁ - wg&. In Section
3.2 we consider a generalized form of a discrepancy principle

considered by Guacaneme [21], namely,
Y4
) ((a v 1) 2P )08 098y = c82, p > O

where ¢ > 1 is a constant and Q 1is the orthogonal projection
onto R({T), the closure of the range of A Results of this
section includes a result of Guacaneme [21], which he proved when,&%
A is, in édditiou, counipact and W € R(A). In the iast cooiicn o
Chapter 3, we consider the discrepancy principles considered in

Sections 3.1 and 3.2 for iterated Simplified vegularization.

Chapter 4 45 devoted to the study of Tikhonov regularization
and Simplified vegularization in the presence of modeliling and data 7~
ervor, i.e.,L\Foth the operator and the data are known only

approximately. Knowing a family of operators Th, h > O, with 1\
BT-Trd s €y 2/ 5 C as h _ O,

we consider the solution xg h of the equation
&

(THTH + al 8 | = Thy$,

as an approximation for Y. the minimal norm soélution of the

2%




equation Tx = vy. In this case we consider the discrepancy

principle

P
5. 8y = (Oten)
'Thxa yOl —aqh——, P >0, g 0,
and obtain the optimal rate d(&eh)zu’l(zwl)) s 1/2 £ v 51 for
ix - xg h! under the assumption x € R((T*T V). In Sections 4.3

and 4.4 we consider a family of self-adioint operators Ay with
A-Apl £ ens €y 5, 0 as h _, O.

For cheosing the parameter in the case of Simplified regularization

of Aw = g, we consider the discrepancy principles

. [»] R
5§ _ .65 = (Step) !
and

where ¢ and d are properly chosen constants and 9Qp is the

orthogonal projection onto RCAR).

In Chapter 5 we considerlsfojection method for the regularized

a/
gquations

N

_ (T*T + aI)xs = T¥y® and (A + aI)wg = gb,
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For the first equation, the method is a special case of the
procedure considered in Section 4.2 and is a generalization and
modification of (the /Marti’s method. Also in this case theéf
regularized projection method improves the result of Section 4.2 g
under certain conditions. In order to illustrate the theoretical
results, some numerical experiments have been performed, and the

results are reported in the last section of the thesis.
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CHAPTER 2
PARAMETER CHOICE STRATEGY FOR TIKHONOV REGULARIZATION

In this Chapter we consider one of the impertant points to be
taken into account while using Tikhonov regularization method for
ili-posed operator equations, namely, choosing the regularization
parameter depending on the inexact data as well as the error level
iﬁ the data. In Section 2.1 we present some known results which
motivated our investigations in the later aastionsz, These results
are presented in suitable forms required for later references and
their proofs are included for the sake of completéé}) In Section

ewnins
2.2, a discrepancy principle suggested by Schock [38] is considered

for ordinary Tikhonov regularization. We show that the ‘optimsal’
rate is achieved under certain smoothness assumption on ‘the -
solution’. In the final section, @bov} discrepancy principle is H“

applied to the iterated Tikhonov regularization and it is compared

with a procedure adopted by Engl [4].

2.1- PRELIMINARIES

We are concerned with the problem of approximately solving the

operator equation

(2.1) Tx = vy, '
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where T € BL(X,Y), with non-closed range R(T), and y € (TY) :=
' R(T) + R(T)H. The 1idea is to look for approximations for the
generalized solution x := T% of (2.1) with the help of well-posed
equations. Here TV is the generalized inverse of 7T (see Section
1.3). We consider Tikhonov regularization fqr solving the equation
{(2.1). 1In préctice the data y may not be known exactly, instead
we may have an approximation, say y® of y within error level

§ > 0, i.e., y% D% = {u € Y : p-yk < 8. In Tikhonov
regularization, as we have seen in Section 1.4, one solves the

equation
(2.2) ‘ (T*T + aI)xg = T*y8, o O.

We vecall (Section 1.4) that (T*T + oI)" 1 axists for each
a > O, and is a bounded linear operator. Also we note that fTor

each. « > O,
(2.3) TOT*T + I )1 = (T7% + 1) 17.

Wwe have the following result which gives certain bounds for the

" é
error I - xaﬁ.

. Theovrem 2.i.1. (schock [41]). Let :xg is as in (2.2} with

vy% 08  and X ==xg. Then we have the following.

e

a) X L x as a ., O.




€ RO(T*T)), 0 ¢ p <1, then

x?

b) If
(1) Ex - xa! < ci1¥,

.. S _ U8 &
(ii) #x xan < ciav + 7’

where ¢y > ¢ is a positive constant.

In particular we have the following,

(ii1) if &« = of8) is such that o 8), 0 and 72_,0 as 5
then xg - x as & - 0.

/C2v41) :
c82 Levs for some constant ¢ » 0O, then

(iv) 1f «

]

e - XSH - C)(521)/(29*-1)).

Proof: To prove the convergence of xa to x, we let
!

Ra = of T*T + aI)“l. then x - Xq = Ra;. Thus it is enough to prove
that Ra; -0 as & _, 0. But nRan £1 for every « > 0, and for
any u € R{T*T) let u = T*Tv, s0 that IR il = QRG(T*?}VH < alivl.
Thus Ru , 0 as a0 for every u € R(T*7). Therefore by using
the fact that R(T*T) is.dense subset of the orthogonal compliment

hnd

of the null space of T and ﬂRau <1, it follows that Ra§ . O as

a o O.

Now using the definition of X o ~and the relatidn T*Tx = T¥y,

[
34 v
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we have

iIx — (T*T + I )" 17%vp

x
i

X

=
]

Q

Bl T*T + oI )~ 1%8

i

i

B T*T + oI ) 3(T*T )¥z

~

where x = (T*T)Yz for some z € X, since x € R({T*TI). Since

Q(I(T*T + oI )‘1(1’*‘]’ )Uzg < “Q(T*T + (XI)—I(T*T )D! =i,

by (1.12), we have

v I}

B T*T + I )" 3(T*YWzj 5 sup 22T ey

OAsiTE A T«

P e
Lhswl)¥

N

Now the rvesult (i) feoliowus from the fact that H VS L G T W
for 0 < »p £ 1 and (ii) Ffollows from 711} and

thes  following

inequality,

(2.4 fiIx - xgﬁ £ o8y - xaﬂ + ﬁx] - xﬁﬁ

¥ 4
wheya
(2.8 Bx = xOf = Y TRT ¢ ol YIV¥(y-y )y

s ¢ [+
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Ga(v*r + al )TI(T*T)1/ 244y 8¢
WL

< .
; x

Now (iii) follows from (ii), and (iv) follows from {(ii} by noting

that o = 72_ - 822D, - og2/(20+1)

s

if «o
The following Theorem shows that the rate

S 8 = v/(20+1)

(2.6) - x3 = (& )

in Theorem 2.1.1 (iv) is optimal in the sense that in gerevral it

cannot be improved.

Theorem 2.1.2. (Groetsch [12], Schock [3%] ). Let T « BL(X.Y)
be a compact linear operator. aAssume LNAT U # X € ML I 73,
0 (pvps<1, )= 052/(2v+1) for some constant ¢ > O, and Lihat,
for each y% € D5, we have Ix - x2§=:c(52”/(2V+1)). Then, range

of T*T is of finite dimension.

-

Proof: Let (uy,vp,upn) be a singular system for 7. Suoppose that
T*T does not have a finite rank. Then by the remayks that follow
Theorem 1.2.2, puy 5, © as n , o Let &, = pl2¥t1) ang w8 =

Yy + 8pup. For simplicity we replacs 8, by & and oSy} by «.

Then

x&—x:::X“-;(*X“S'x
[+ 4 o & [+ 4

e
3t




X + &T*T + oI )"17*y,

!}
x
i
x

?

Sunlv
=Xa X+E§9+—an.

Therefore

5 - 2 - 2 28 _% 5 2 2
lxq xH Bxa X< + (TTEEE)(XG X , vp) + (1+G# )< Bvpi<c,

52/( 20+1)

and hence using « = ¢ and & = pr(2V0t1), we obtain

-4p -2y
52W1uxf - xH2 2 8Vt1l(x -3 | vy + (1+c) 2Rvai2.
= i+c

Now by hypothesis, we have

, -2v/(2v+}1) 5 5
i e X 13 . . - § »
C =z Zaliwosup TS (x 7% vpd ¢+ (1+c) Jvnﬂ4,
so that
2 s 2v/(2p+1)
(1+4c) vl < 2811m°sup TS X Xy s Ve

-

s 2 lim sup ST NL ¢ §.

-

N
v/(2v+1,) and

However, by hypothesis we also have ﬂxo‘s)w;ﬁ = 0(62
hence (1 + c) 2#vpl s O, a contradiction. This completes the proof

of the Theorem. =

37




Remark 2.1.3. Theorem 2.1.2 1is proved in Groetsch {iz2] when
v = 1 and the proof for the case 0 ¢ p <1 is given in Schock [39].

The proof given above is a modification of the one given in [12].

In the above Theorem, if v = 1 then the condition

ca2/(2»»1)

@ = in Theorem 2.1.2 is redundant, because in this case

we have

a= of8) + ofIx - x91)

(Groetsch (12}, Theorem 3.2.3). 1In fact, the above velatiosn

together with the condition "; - xgﬂ==<(52/3) implles Lhau
« = 0(82/3).

As we mentioned in Section 1.4, in a posteriori parsmeter choice
strategies the regularization parameter a = &) {depending on y9o
and the error level 8) is determined during the course of
computation of xg. Well-known methods in this regard are the
discrepancy principles

& - & = 5 - 8y = .0
nTxa YR 8 and HTxa v 98 Ja

of Morozov [31] and Arcangeli’s [1] respectively. Groetsch [14] has

shown that Morvozov's method does not vyield a better vats than

o 8172y,
. . -~ * . 81/3 .

have shown that if x € R(T*), then the rate is ) instead of

o872y, ‘ .

In the case of Arcangeli’s method Groetsch and Schock [18]
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In an attempt to achieve the best rate (ﬂ&z/a), Schock [38]

considered a generalized form of Arcangeli’s method, namely,

5. uog = &
(2.7) sTXa b4 ] -a-q', P >0 , q ) O.
for choosing the regularization parameter . The folliowing

proposition shows the existence and the order of o (with respect

to & ) satisfying (2.7).

Proposition 2.1.4. {Schock [38]) For &) 0, there exiﬁ?\a uniques/

a:= o §) satisfying (2.7), and if y # O, then

)

o8) , 0 as & _, 0. Moreover o$8) = o(éq*l)s C ¢ &8s E_%E
Proof: We observe that
(2.8) BTx8 - vl = B TT* + oI )" 1ydy

and hence

. é

& . 6
s‘!Txa bad
< byoy.

For fixed 5. y5, let Ka) = azqii‘rxg - ybp2, Then from (2.9) it

foliows that

39




limod'(a) = 0 and lim ¢ a) = .

Therefore by Intermediate Value Theorem, there exist an « = of §)
satisfying (2.7). The uniqueness follows from the fact that the
derivative of ¢¢(a) 1is strictly positive; i.e., a) 1is strictly

increasing.

Now suppose ofS) does not converges to zero as & _, 0. Then
there exists a sequence (&,) such that & , 0 and ap = &)y

c >0 as n ; ©. Then by (2.7) we have

0 = lim an"mxgn - y& = cTHT(T*T + cI) 17%y - v
now 7]

and hence

TT*¥y = 7T*%y + cy

i.e., vy = 0, a contradiction. Thus «8) , 0 as &6 _ O.
Note that

ap

Sy - = 5 — & - b
y©l o ly©h llTxa y©f

W

N7 x Sy
[+ 4

= 1 5
3 BT( (!Xa)“

R

8
RTH Haxaﬂ
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= -
o
Therefore
‘ a+tl _ ETH+«( &)
< 2T 8)) P
EY”
Hence
L
«8) = (8% ).
This completes the proof. =

schock [38] proved that if x € R((T*T)I), © ¢ » 5 1.

[ 2 . . . :

: = . = -ording to (2.7
oTT SATICI35) and o «8) is chosen according o (2.7},
then

, 2v :
2vt1+(1/29)°

i -x81 = K8°)  with ot =

4

}
La}ter Nair [34] improved the above result of Schock by showing that

- - xT YV ¢ P = 2
if x € RO(T*TIV), O ¢ v <1, g+l 2riH({1-p)72q)

is chosen according to (2.7}, then

and o = o 8)

.10 X - x8) = s ; - 2p 5
(2 ) ix - x2l = o(8”) with s STTCCISpy/355
The above result (2.1C), in particular, gives the best rate
/3 - « . P _ 2 .
cKéz Y for x € RIT*T) for the choice of =T " 3 showing there
by that the Arcangeli’s method, i.e., for p = 1, g = 1,2, gives the
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optimal rate for v = 1. This result also includes the main Theorem

of Guacaneme [20] which he proved for p =2, q = 2 and v = 1.

In order to obtain the optimal rate (2.6), Engl (4] had

considered a variant of (2.7), namely,

i

Qdozo

(2.11) 8 T*Txg - T*y6 p2 , P>O , a> ¢,

~

. ~ * v P = 2
and proved that if =x € R((T*T)V), 0 ¢ vs1, a1 SoETe and
a = AL8) is chosen according to (2.11), then the optimal vrate in
(2.6) 1is achieved. It is to be recalled that Engl and his

collaborators stated in many papers {(e.g., [4

td

»L61,07) .08 ) that

-

the Arcangeli’s method can not have the optimal rate 0(6“"""5) and ){
- .

therefore the introducticn of a new discrepancy principle such as
(2.11). This remark was based on a wrong observaticn on a result in-
(18] . What in fact, proved in [18] was that the rate 62’3) is

not possible for Arcangeli’s method unless x = 0, and the rate

0(82/3)‘ is attained if T 1is of finite rank.

Next section 1is an attempt to show that Engl's modification

2v
(2.11) is not necessary to obtain the rate ol 82v*tly, We achies

this goal for 1/2 s v £ 1. Also for 0 < v ¢ 1, the result of the
forthcoming section 1is an improvement over the result (2.10) of

Nair [34].
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2.2 GENERALIZED ARCANGELI’S METHOD FOR TIKHONOV REGULARIZATION.

Here onwards we assume that y € R(T), so that ieast square
solution of (2.1) is its solution and the generalized solution of
(2.1) is the solution of minimal norm, i.e., the unique element
X € N(T)L such that Tx = Y. In order to choose the regularization
parameter a in (2.2) we consider the generalized eArcangeli’s
method (2.7). Now Theorem 2.1.1 (ii) shows thet, estimates for
o« 8) and 75537 in terms of powers of 8, will lead to the
estimates for tne ervor ix - xgn. Thus, in view o7 7vopositien
2.1.4, the aim is to obtain estimate for 72. Before tha! we show

the convergence of the method.

Theorem 2.2.1. If a= «8) is chosen according to (2.7 with
4q( q+l) . )
p < TS then
x8 x as & 2 0.
a
Proof: In view of Theorem 2.1.1 (a), (2.4) and (2.5) it is enough
. S
to prove that Ta = 0 as & 4, 0. But‘
7% = ¥ = WT(T*T + a1 )" 1r*yb - 9y

= Jo TT* +,aI ) 1ySy




(2.12)

S B TT* + oX)"2(y8 - y)B + Bk TT* + Q1) lyg

$ 86+ HTT* + aI)~17x8

where B TT* + oI )" i(yd - y)l £ 8 and y = TX. Thus we have

(2.13) lTxg - vy <8 + NaT(T*T + ol )~ 1x}.

Let T = U(T*T)1/2

be the polar decomposition of T where U is

the unitary operators on X. Then we have

FaT{T*T + oI )35 < HaU(T*T)I/2(T*T + oI )y 1%y

\

Therefore by (2.13)

al’2 .
< iu? o xFa AxHi
. -
1/2 (ara)t’?

£ « St fIx H

3P o TTvia

/72~
©

< ixH.

and Proposition 2.1.4 we have
- * ﬂTxg - Y6!
_P
s &+ caﬁtq*lj.
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Thus

Now by the assumption on (p, Q) we have 7% - 0 as &

-3

. completes the proof of the Theorem. =

0.

Thi=

In order to obtain the main result (Theorem 2.2.4) of this

Section, we require the following two Lemmas.
Lemma 2.2.2. If X € RC(T*TI), O < » s 1, then
B TT* + oX)"17xH = (o) with o = min{1, »+1/2}.

proof: Ltet T = U(T*T)1/2 be the polar decomposition of
o
U is igé unitary operator%, and let u € X be such that

X = (T¥T)W. Then we have

B TT* + oI )~1TXY = HaT(T*T + oI )-1%§

T

where




172

"

BaUCTHT )™ CCTHT + aX )75 757 jVuy

akv*l/2
S §U§ o m—- fufll

r+1/2
v+1/2 ()
< «a uf iJ?C TS
Now the result follows using the fact that X € 'R((T*T)l/z)
whenever p 2 1/2 and (1/a)u+1/2s 1 + Vo, »
Lemns 2.2.3. tet x € R((T*T)HPY), ¢ ¢ & £ 1. <Sumoecme That
W = min{i vH1/2) P < min {1/ -2 ' —3} ang wootmeg &) ia
f - » VR Q+1 > lqu no X =
chosen according to {(2.7). Then
8« (") with p=1 2l 1rime)a ),
Y 2(a+1 -
proof: From (2.12), by using Lemma 2.2.2 and Prooesition 2.1.4 we
have ,
p Fo_
) s s . q+1l
= - I N .
;q HTxa YOI s & cd
Hence

5! - P/2g (8p)1/2q

5
ca o«

P

b+ oq-p+aFT
< ( 829 " Pt 1,  29°Pta+l1/29

From this the lemma follows. =
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~
, .
L 8 X &

1 and let x eR{(T*TY), 0 < wvs<1l, o=minll,
1 = min{i/w, 2V+1+(1—w)/q}' if a := of &)
(2.7), then
Ix - x%8 ¢ c&°
o .

pb b
where 1 = ‘5‘*’1‘,9 ?’-frs'z

1~ e wr 2 1
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L AEY,

is chosaa

Theorem 2.2.4. R((T*TI), 0 ¢ v s 1, and p, @, u &ars
as in Lemme 2.2.2 and « = o 85) be chosen according to (2.7). Then
. S _ U8 - PR . = mi PV .
(i) Bx - x2f £8 ) with r = min (pu, T
In particular, if P o= 2 then
c+ 1 2vti+{i-w)/q’
R /"2 BN YV,
e 2 -~ - 6 = X . b '/-7 v ’ = .
(ii) Bx x ol L& ) with t ST (I=0)/8 g+
\/ '<
where o = min {1, v+ti/2}. (A 2 A
(W) 4oea
Proof: The procf of the first part is a conseuusnce of Theovsm
2.1.1 (ii1), using Lemma 2.2.3 and Proposition 2.i.4. Tha saoond
. ) . PV . . s . %) .
part follows by noting that g grr  if and oniy if o s
2
2l 1-a) /g
Covollary 2.2.5. Let p, q be positive resls satigfving aé‘f £

geoording to




>

Proof: With uyu as defined in Lemma 2.2.3, we note

Py
h =

ot

]
t
1]
=

if and oniy if P_ = 2

Q+1l 201+(1~-0)/q"

Also

2

s 1/ i i
O ¢ p 5172 implies SFTFI=0Y/S

2 1
and

2
20t1+(1-w)/q

172 ¢ v £ 1 1implies < 1.

Now the result follows from Theorem 2.2.4 (i). =m

Remark 2.2.6. We observe that if O (¢ v ¢ 1, ther Theorem 2.2.4

impy oves upen the result (2.10) of fair (3¢}, a:d thne gotlvsl rate
2

o{ 82V*1)  is attained for 1/2 < v s 1 by choosing Egﬁ' = E%Tf;

This result agrees with the result of Nair {[{34] for o= 1 and

o /3 . ) .

—5— = 2 giving the best rate (j&z’ ). For & general v, iLes

Q+1l 3

O ( 1 p 2

» £ 3, and T~ 5 wiith 9 2 172, Theorem 2.2.¢ gives whe rate

0{62 /3) which agrees with the result in Grvoetsch and schock [18]
.

for x € R(T*), i.e., x € R((T*T)l/z). In particulsar, this result

includes the Arcangeli’s method, i.e.. p = 1,9 = 1/2, and the result

of Guacaneme (20) which he proved for p =2, Q= 2 ana v = 1:

2.3- ITERATED TIKHONOV REGULARIZATION

In order to obtain approximations which give better rates than
the one given in (2.6), many authors (e.o., [8), ({91, [10])

considered the iterated version of Tikhonov regularization, in which

[

4€




the apbroximation xg’J is obtained by solving

(2.14) (T*T + aI)xg-i = T*yd 4+ o xg’i’l, i

i
—
-

»,
-
[

iteratively with xg»o = 0. This is motivated from the identity
(2.15) (T*T + o )x = T*y + ox.

We note that the case for J = 1 is the orvdinary Tiknhonow

regularization (2.2).

If x € R((T*TI), O ( » < j, then, analogous to the vasults in

Theorem 2.1.1, we have (See. (8], [(35])

(2.16) iIx - xg'Jl < clav
and _ ”

S U6 v, ;98
(2.17) fIx X3 I < cia 373’

where ¢j is a constant (independent of j). In particular 1if

a = c§vtl for some constant ¢, then

. 2p
(2.18) ix - x87n s c@@¥*l, 0 ¢ v <.

for some constant c; > 0.
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The following is a companion result to Thecorem 2.2.1.

Theorem 2.3.1. If « := 8) 1is chosen according to (2.7) with
4q( q+1) s o
p < T then for each j 1,2,...,

Proof: We note that
ix- x8:31 < fix- x0+Jdp + px0.J- x8, 3y,
a a ] o
here

0.3 x8. 3y = uz STHYFT ¢ wx )T w8y )y

i=)

SJV&

and

s

o THTET + X)) T,

e

fix~ xg'Jl = fIx -

P

£33
Wwe nots that

X = (T*T + aI) ¥y = T*T + aI) .
Therefore, by induction, it follows that
ix- xg'jﬂ = I o (T*T + «X ) %1.

Now the Theorem follows as in the proof of Theorem 2.1.1 (a)
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with RCx = J(T*T + d)7 . =
Next result is a companion result to Theorem 2.2.4.
Theorem 2.3.2. For a fixed positive integer j, let

x € RU(CT*T)IV), © ¢ b < J » P, G, U4, w are as in Theorem 2.2.4 and

a := «8) be chosen according to (2.7). Then

(i) Ax- xg’jl = £8") with m = min (g, %}.

In particular if 3 =

2y

733 nA - 6).5 = S i =
(11)  Bx - xge b = o(87) with s = Sy

]

and

PO -~ * v . ) P
. (1iii) If x € R((T*T)V), %/2 S v s Jj, then i1 PTS!

2p
x - x8,Jp = v+l
Ix = x990 0(82 ).

Proof: In view of (2.17), the proof of (i) and (ii) follows as in
Theorem 2.2.4. Proof of (iii) is a consequence of (ii) by noting

that @ =1 for v 21/2. =

. -~ x j P =
Remar k 2.3.3. We note that if x € R((T*T)J) and a1 3371

then, by Theorem 2.3.1 (iii), we have
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23
x - x8,J§ = I+1
Ix - x2:J8 dGZJI ).

In [5], Engl considered the ‘discrepancy principle’

&

(2.19) iT*Tx8 5 - T*y82 = 2, B> 0, ) o.
' [+ 4

for choosing the parameter «a in (2.1i5) and obtained ervor bounds
under certain conditions on p and q in terms of j. Later Engi
and Neubauer ({[7] improved the results in [5] and showed that if

x € R(_CTLT_)l)_ and —F;-(_l + 23) - 23 = q_z,‘z_j,a - 3 - i. then

2J
ix - x8:J1 = (82J*1).

Analogous to (2.1%9) if we consider the discrepancy principlie

-
. -

(2.20) lTxg’J' - yo1 = éz-, P>»0, a2 C,
«

for choosing « in (2.i%), then following the arguments in Sociion

2.2, we obtain

2y -
X - s Jij = k1 -
Kx "g Ji 0(552% ; | J/

X €82 X7y i j— j ' 3 " T
for x € R((T*T ) with j-1/2 < v/s\.). fmd v = 52T s

[ g »
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Note that while using the discrepancy principle (2.139) (resp.
kz.zo)) for choosing the regularization parameter o := o38,j), one
has to solve the linear equation (2.14) and the nonlinear equations
(2.19) (resp. (2.20)), J times. But if one considers the
discrepancy principle (2.7), then, one need to solve the linear

equation {2.2) and the nonlinear equation (2.7) only once.

. Comparison of the above results with  Theorem 2.3.2,
specifically the condition on v in terms of i, shows the advantage

of the discrepancy principle (2.7) over (2.19) or (2.20).
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CHAPTER 3
PARAMETER CHOICE STRATEGIES FOR SIMPLIFIED REGULARIZATION

In this Chapter we are concerned with a special case of the
operator equation (2.1) in which the operator T is a positive
self-adjoint operator, and simplified regularization is used instead

of the Tikhonov regularization.

For the purpose of relating the procedure of this Chapter with

that of Chapter 2, we use different notations for the operator and

ta. In Section 3.1 we consider a class of discrepancy principles

m:

forJdetermining the regularization parameter, in the line of the

one considered in Section 2.2. This procedure generalizes the
method adopted by Groetsch and Guacaneme [16] and Guacaneme [19]. A
modified form of the discrepancy principle of Guacaneme {21}_?@3
been considered in Section 3.2, which facilitates handling of lesser
smooth data. Iterated versions of both the above procedures have
been considered in Section 3.3 and(obtainé&'results analogous to
@t of Sections 3.1 and 3.2. x

A~oni
3.1- GENERALIZED ARCANGELIES METHOD FOR SIMPLIFIED REGULARIZATION.

Let & € BL{(X) be a positive self-adjoint operator and g € R(a).

For regularization of the equation
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.(3-1) AW = @

with an inexact data 95, we consider the simplified regularization

procedure, namely,

(3.2) (A +<ﬂ)w2= g%, a > 0.

With Bg-981 < & and A compact, Bakushinski [2] studied the above
procedure, and showed that a sufficient condition for convergernce of
wg to G, the minimal norm solution of (3.1), is 8§ = ola) (San

also Ivanov [23), Khudok ([24]1). In ([40] Schock considered the

simplified' regularization of (3.1) with positive self-adjoint

»n

operator (not necessarily compact) and proved that Wi w® 4 a
[v3

«a ., O and (wa) has better convergence properties than the

approximation obtained by Tikhonov regularization. It is also known

(schock [391) that if w € R(AP), 0 < v s 1, then
(3.3) W - w i = ola”),

and if o8) = c627("1) then

~ 1
(3.4) g - wlh = (8 (1)),
. . . . -~ N / +1 ).
This rate 1is optimal in the sense that o - wgﬁ = diév (v+14)
implies R(A) 1is finite dimensional (See [39]}). For choosing the

regularization parameter a in (3.2), Groetsch and Guacaneme [16]




considered the Arcangeli’s method, namely,

. A 6-— 6 = 6,
(3.5) ﬁwa g°k 7&
and proved that if a := o 8) 1is chosen according to (3.5) snd A
is in addition, a compact operator, then wg +w as & - 0. Bur o

attempt has been made for obtaining estimate for the error
w - wgﬂ. In this section we prove the convergence and aslso cbtain

error estimate under a general class of discrepancy principles,

.~
20

Q{{OZO

/

[0

which 1is wvalid for 0 ¢ p ( g+1. We do noct reguire Iy e b
compact. Also note that (3.%8) includes (3.5) by teking p = 1.

q = /2. .

The proof of the following Lemma is analogous to the proof_ef

Proposition 2.1.4.

Lemma 3.1.1. For each 8 > 0, there exist a unique o« = : &)

satisfying (3.6). Further «8) , 0 as & _,0. =

Here onwards we assume that g5 satisfies

2

(3.7) Ho-gbll < & < LE)
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Theorem 3.1.2. If « := 8) 1is chosen according to (3.6), with

95 satisfying (3.7), then

P
(1) &) = K &%7).

If in addition, p ¢ q+1, then

(i) ey

and

i
U
~r
3
I
0
+
[y
J
Ro)

)

(iii) wg_, as & ., O.

Proof: First we note that

ngdn - §:- = #gdy - aAwg - g1

R

o
< Béwan
= BA(Awg - ¢9)W/a

&

s Al ~3T
Lo

Therefore,

&g SC1al + a)
Ngon

28°( AN + «)

<
Hof




~so that

[-4
(3.8) «8) = o(870).
Note that
& L paub - ob
(3.9) ;3- llAwa gl
= HowSH
x

S5 -
< oz(llwa wal! + Hwaﬂ).

But
S - = Y.
wo T W, (A + o) (g%9)
so that
(3.10) wé - w i < g.
Alsoc
M N = BCA + ol ) 'awl < Bwb.
Therefore we obtain
8° & ~
;aso(;+ iwk)

= & + alwl.

Now using the estimate (3.8), we get
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_p ~ 1
< 87T (6 + alwl)¥

1-% w1 L
€& 3(8&+ ca' )9
for some constant ¢ > 0 and since p ¢ g+1, we have
é
.11 2 =
(3.11) 2= o8
q+1—p :
where m = =1 To prove the convergence we first nocte that

P

Bl - LR o< b - W+ B - WE.
& ¢ (¢4 44

Now , since

o~ 8
fwO - w 8 < =
o o« T o«
and
B - Wil = A+ ol ) N,

the result follows as in the proof of Theorem 2.1.1 (a) with
R = o(A + aI) . =
Theorem 3.1.3. Let w eR(AY), O ¢C v <1, g0, p < g+l and
@ = o(8) be chosen according to (3.6) with g% satisfying (3.7).
Then ‘
R -~ _ 6 =
(1) - wol of 8°),

— sy PV - P
where s = mlntQ+1, 1 57T}'
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.. ~ _ 8s = L7+l )
(ii) Iw - woil = (& ).
Proof: From (3.3) and (3.10) we have
HG—w%sﬂQ—wﬂ«th -w6[i
o a @ o

= ) + (8/a),

so that the result in (i) follows from Theorem 3.1.2. If 5$T = EéT
pr _ Q+*l-p
then T = "o so that
o) = fora) = &7/ ¢VH1))
proving (ii). a
Corollary 3.1.4. If w e RCAY), 0 ¢ p £1 and « = &) is
chosen according to (3.5) with gd satisfying (3.7}, then
~ - 5 - k
Bw ~ woll = o(87)
where k = min{2w/3, 1/3). =
Remark 3.1.5. If the smoothness of the solution w is known,
namely, W€ R(AY), 0 ¢ v =1, then by taking o= L our result

qQ+l v+l

60




8u/(w»l))_

provides the optimal rate ¢ AS a particular case, the

discrepancy pri‘nciple (3.5) gives the rate 0(51/3)

1/2

1
for o = oL and

AN
qQ+l 2°
result for the case v = 1 has also been obtained by Guacaneme [19].

the best rate ¢fé ) is achieved when v = 1 by taking The

In fact, the proof of the main result of Guacaneme ({19], Theorem
2.3) is not complete as he used the estimate dal-p/(Q+1 )')‘for €

[44

. X Y
which is not immediate from the estimate o« = dép/(Q+1') ([19]),

Lemma 2.1). , T""—/-
/
In the case of the general ill-posed problem (2.1) if & = U’?\//’z,
g = ¥, géb = & and x5 = T*¥W8, then w2 is the Tikhonov
x @ « :
regularized solutior of (2.1) and the discrepancy principle {3.6) iu -

the same as the one considered in Chaptey 2. namely,

&° AQWJA]

xS - yop = 2, > 0, q 2 0. 5 ,
bTxg - S P 9 Eilie Haar
¢

But the estimate in Theorem 3.1.3 does not help direciliy to deduce
the estimate in Theorem 2.2.4 (ii). If we use a different
définiticm of the noisce level, namely. fy-vB g &/¢  with

iT*H < ¢. then the discrepancy principle

&g = §i

ﬁT*TXS -y LW - .
f po! > a

4

7/

R

considered by Engl [4] and Erngl and Neubaier [/E{) is of the form

(3.6) with A = T*T, g = T¥y, gb = T%y& sndg wg = xg. The
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o
_estimate o = ((8FI) of Theorem 3.1.2 can be used to obtain the
optimal estimate of [4] and [7) as follows:

we observed that

- wd = Tl b
w, — wd (A + al) (g-g°)

= (T*T + oI ) 'T*(y-y5)

so that
. T 6
ﬂwa wa“ 0(7E~),
and hence from (3.9),
é; = &a + a)
«
S M P
= o 6%T).

Therefore if p ( 2(q+1) and 0 ¢ v s 1, then we have

~ - 6 - h
e -~ woll = o(87)

e ming PV 4__ P
where h m1n16+1, 1 STa+1 }.
. ./ N . .
So that the optimal estimate 0(82‘)(2””)) is achieved for

p - 2
{(gq+1) Z2p+1"
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In general the simplified regularization is recommended when the
operator T under consideration is positive self-adjoint operator,
vbecause 1in this case the method in Chapter 2 involves move

2

computation, as for such operators we have TT¥ = T° = 7T¥%7, L

3.2- A MODIFIED FORM OF GUACANEME’S METHOD

In this section we consider a parameter choice mtratagy, which
is a modification of the one considered by Guacanesre [21], for
simplified regularization of the opevator equation Aw oG, The
result of this section includes a result of Guacaneme (21). which

he oroved for compact positive self-adjoint operator & under the

assurption that the minimal-norn solution w belongs to =&,

Let aA, g, and 95 are as in Section 3.1 and iar @ be the
orthogonal projection onto R{A), the closure of the rvarnge of .
For a fixed positive real number p > 0. comsider thes funsction g

defined by
(3.12) K a) = PV (ared Y 2P g8 0gd, w0,

e choose the regularization parameter a = of38) in (3.2},

sccovding to the discrepancy principle

(3.12) K o) = c&,
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for a constant ¢ > 1. In fact, for compact A Guacaneme [21],

considered the discrepancy principle

oC(Aatal ) ‘agb,agd = &, ¢ > 1

*

and obtained the error estimate
(3.14) e - Wi = (872,
[0 4

under the assumption W€ R(A).

Lemma 3.2.1. The function ¢ in {(3.12) is continuous, surictly

increasing,

. , . P
i = = )
(lz moq)\(x) o] and %xlm(»q;(a) nagOl

Proof: Let (EA} be the spectral family of ithe operator %,

we have

o) = f( =) P d<Er0g8,095) .

Now the map

is strictly increasing for each A ) O, and satisfies

&4



fola.d) 4,0 as o 4 0
flo,d) 51 &8s a o

Therefore the resu.t follows wusing the Dominated Convergence

Thecrem, 8

Lemma 3.2.2. If 95 satisfies

| 5
(3.15) 15-981 s & « 19970

then tre squation (3.13) has a unique solution o = &) such trat

Wb , 0 as & , 0.

Procf: Jzing Lemma 2.2.1 and the Intermediate Value Theorem, the

_— e F V. - e —

equatlion (3.13) has & uniqQue $Solution a = oL 8). Now using the
arguments as in Proposition 2.1.4, it follows that «8) _ ©

as 8§ L, 0. =

Lemma 3.2.3. Suppose that g # O, 95 satisfies (3.15),

. 2 1/2 2 ’ : g :
cy = (=2777-107, c, = (¢ /+1) and x = oA8) is chosen according



Proof: For « > 0, p > 0, let By = o (p+ar) PP,
IB4# £ 1 and for each nonzero g € X, we have
1Boeob® = &P ((Atal ) EP g gy
Therefore,
1B8Q9l 2 1BLeodl -  IBQ(9-9)1
> c'?s - &
and
1Ba0l < 1BLQgdl + iBQ(g-98)li
s ChQS + &
‘his completes the proof. =

Theorem 3.2.4., Let

is chosen

Proof:

and

according to

ws

g # 0, g% satisfies (3.15) and «

(3.13).

~

W as

Then

& 0.

From {(3.2) and the fact that

Hw

- w =
[0 4

g = A;, it follows that

ok A + 1) *all

H

The-

<
P

‘o



w - wly < $
o o a

where Ry = oA + aI)"l, x> O. Therefore it ié enough to prove
(i) R8s » O as & , 0
and
.. Io)
(ii) 5 - 0 as & , O.

Now using Lemma 3.2.2 and arguments as in the proof of Thecrem 2.1.1

(a) it follows that Ra(g)ﬁ -0 as &6, 0. To prove (ii) let
Cq = A+ al) PV, > 0.
Then for all u € R(AP), with u = APv for some v ¢ X,

TCul = HeaPun

= 1A + ar ) PTAPSY

< oPivi,
for some v € X. Since HIC,H s 1 for all « > O and R(A") is
dense in N(A)Y, it follows that Cggyw o O as & ., O. Now by

Lemma 3.2.3,

0,8 < &P + 1) EPg, o)
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= aZ(pn)((A + ol )-Z(pﬂ)Az;’ W)

CHC il
So that

R,

1 ~n2
< Ezﬁcuwﬂ +0 a &6 ,0. n

Ltemma 3.2.5. Let g #0, g% satisfies (3.15) and

chosen according to (3.13). Then we have the following

(1) a=d.8“)

(ii) 2= &) if weRAY), 0 C(ps1 and b sp
p

(iii) §=o(57“3) if weR(AY)Y , O Cpv=<1and v < p.

a = of 8) be

Proof: By Lemma 3.2.2 and 3.2.3 for all sufficiently small 6 ) 0O,

we have

c 2 PV A + a1 ) P2

az(p+1>ugnz
HA + oI )P §°

> &PV
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1
- for some constant ¢ » O. Thus « = 0(6; ) proving (1). If

" € R(AY), O ¢ v <1, then, w = AVYx for some x € X,

so that
g = Aw = AV*YIx_.  Therefore by using Lemma 3.2.3 we have,
c,8 s SP(A v an )TEPNE
= PV A b 1 )P 2
2(p+1), 2042
< BxWsup z(?,.”
A0 (Ata)
2 2v+2 (A )22
-~ LI - PN T3 VD Liy 22
< xR,
Lt [
for w < p. The last inequality is a consequence of the relation
(2)2"’2 < (1+§)2p‘1, for A > 0, «a > 0O and v s p. Thus & =
o(alm) and hence
e and
5 v 5 1
_ DT °T
il 8 (apxr )
v
D¥Y
= o8 ),
\
proving (1ii). Now by (ii), for v < p, we have
v (p-V)Hv
! - %
Y _‘_2___51”7: ofd ) ,0 as &, 0.
-
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From this we obtain (iii). =

Theorem 3.2.6. Let ¢b satisfies (3.15), o 8) be chosen
according to (3.13) w € R(AY), 0 ¢ p 1. Then
~ daﬁ%)’ DSp
(i) Iw—w5l={ ,,3, .
x 0(5 )’ UZp
If 0 < v <1 and v ¢ p, then
v
{31y mm - w3 = L E7)
@
In particular taking p =1 in (3.12) we have
v/2
s o8 ), O0Cw <1
(iii) !la.'“waﬂ={ 0(61/2) ’ b= 1.
Proof: Let w € R(AY), 0 ¢ v £ 1. Then it is easy to see ([39])

that

( o a”), 0 ¢ p <1
ola) , p =i

Bw - w i
o 4
Also we observe that

A + oI ) N g-gd)

e - wsﬁ
a a
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" Therefore

A
RIO

o(a")+o(§ ), 0 (v <1
O(Q)*da » p =1

If v 5 p, then the result follows from Lemma 3.2.5 ((i), {(1i1)). 1If
v 2 p, then w € R(AP), so that the result in this case is obtained

by replacing v by p in Lemma 3.2.5 ((i), (ii)). =

Remark 3.2.7. (1) The result in Theorem 3.2.5 includezs the
result (3.1i14) of Guacaneme ([21), Theorem 3), which is proved wren

A is & compact positive self-adjoint operator and w e R{A}. Oy

proof does not require the compactness of A.

3 ~ . e - -
(2) 3f the smoothness of 1w is known a priorily, namely,

w € R(A”), then Theorem 3.2.6 (i) gives the optimal rate §j5yﬁd
by taking p = » 1in the discrepancy principle (3.13).
(3) By comparing the discrepancy principles (3.6 and-(3.13),%

A |
specifically the condition on &, namely, (3.7) and (3.15), one can )

see that in (3.7) the upper bound of § depends on the (unknown) v~
[

exact data 9, whereas in {(3.15) the upper bound is in terms of )
(known) inexact data g8. Thus (3.13) is advantageous, over (3.6}

in view of their applications.
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"3.3. ITERATED SIMPLIFIED REGULARIZATION

In 'iterated simplified regularization’, one considers w£’5

obtained by solving the equations

(3.16) (A + oI)wbsi = 0“8,1—1 + g9, w0 =0, i1 =1, ... i
o o o

N
7

iteratevely as approximations for the minimal norm soluticn w of

the equation (3.1).

e consider the discrepancy principles (3.46) and (2.13) for

choosing the parameter o := «8) in {(3.16).

Theovrem 3.3.1. If « := £ 8) 1is chosen according to (3.6), then

-~

w(sxs-}. o W as S - o, fer each j = 1’ 2; ..

Proof: We observe that

5
wdsJ = ZuH(A + oI ) g8,
[+ 4 ey

Let wJ = w0>J | then
[ 4 o

3
(3.17) S J - Wit = A+ ax) Y gS-g)i
=]
.8
< ) &.
and .




o

a‘-l(A + ol )-ig
1

"
b3
l
e

W - W
a
We note that

W-(A+al)lg= oA + ).

[}

Therefcre, by induction, it follows that
(3.18) w - wg = oA + 1) a.

where g = Aw. Now the result follows from the inequality

(3.19) fw - wlsJll < W - wil + Bwd - wS.Jy,
a a a x

by using (3.17), (3.18) and arguments in the proof of Theorem 2.1.1

(a) with Ra = aJ(A + aI)hJ. »

Theorem 3.3.2. Let w € R(AY), 0 ¢ p s j for some fixed J,

Q> 0, p (g +1 and a := «8) be chosen according to (3.6).

Then

(i) - wd iy = o(6%)

_ PY ._ P
where S = mln (m’l C_!‘T'T)

. . p _ 1

In partlcular if a-+—1 = m, then
.. ~ 8,0 =

(ii) b - wO Il = (8" 7).
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Proof: By (3.18), we have

B - wip = i(Aa + o) Tul

~

= load(A + od) Ja¥zp

)
]
>

where Z. Since

la'(A + oI) 2aYzp < la’(A + od) AYE 1zd,

by (1.12) we have

(3.20) Ba?(A + ol ) JaYzi <

— izl

v
= os (N a)

up —————— lizll
A0 (1+2/a)

= o).

The last step follows from the fact that (aa)¥ < (1 + )./ar)j for

O ¢ p< 3. Thus from (3.19), (3.17) and (3.20) we have

nﬁ - wdid§ < J s + ca’
o @

for some constant ¢ > 0, independent of J. Now the result
follows from (3.11) and the arguments used in the proof of Theorem

3.1.3. m '
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Theorem 3.3.3. Let g # 0, g% satisfies (3.15) and a := &)

is chosen according to (3.13). Then for each Jj = 1,2, ...,

wdsJ

w as & 0.
e - -

Proof: In view of (3.19), (3.17) and (3.18), the proof follows as

in Theorem 3.2.4 with R_ = A+ 1) . »

Proof of the following Theorem is analogous to the proof of

Theorem 3.2.6.

Theorem 3.3.4. Let 9% satisfies (3.15), «a := «8) be chosen

according to (3.13) and w € R(AY), 0 ¢ b < J. Then

0(6&), v <p

i w - 6:5 =
(1 o el ( of ), v 2op

and if O ¢ p ¢ j and v ¢ p, then

%4
(ii) 8w - wdsJf = L8707y,

In particular taking p = J in (3.13) we have

124
o), 0w

2 A__ 6" =
(111) Mw - wS:JlI ( 0(5m) , v = j '
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Remarks 3.3.5. (i) If we consider the discrepancy principle

(3-21) Bsz’j-gan‘:é’;yp)o » Q > O,
(s 4

and P < Q+] for choosing the parameter o in (3.16¢), then by

followirng the arguments in Section 3.1, we obtain that

),
where w € §(AV), C < vsJg and r = min {p+¥i. i}. Thus if
. . p__ 1 .
J*1 s v £ 5 and a3 =1 then

v
iw - wg-JII = o(ﬁm)

Comparison of assumptions in this result with that of Théo;em
3.3.2 (ii), shows the advantage of the discrepancy principle (3.6)
over (3.21). More over, in order to obtain o« 8,J) by (2.21), one
has toc solve the linear equation (3.16) and the nonlinear equation
of the foerm (3.21), j times. But if one considers the diascrepancy
principle (3.6), then, one need to solve the linear equation {3.2)

and the nonlinear equation (3.6), only once.

(2) Guacaneme [21] considered the iterated Simplified

regularization with the regularization parameter a determined by

76




‘the discrepancy principle

(3.22) S Aral ) E 008,098 = %8, ¢ > 1.
A generalization of the above procedure is

(3.23) EPI(atal ) TEP g8 agdy = 85, < > 1,

for a fixed p such that p+j > 0. Following the arguments as
Theorem 3.2.4, it can be seen that the condition required for p in
this case is 1t := ptJ-1 > 0. But, then (3.23) is reduced to the
form (3.13). This 1in particular shows that the discrepancy

principle (3.22) is included in the Torm {(3.i3) with g = j.
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CHAPTER 4
REGULARIZATION WITH APPROXIMATELY SPECIFIED OPERATORS

In this chapter we consider the problem of solving the operator

equation Tx = y approximately when the data ¥y, T are known only
approximately. More precisely, we consider the regularization of
Tx = y with the help of the approximate data y®, 71, where

ily-y%) < & and BT-Thl < €, €En » O as h _ O. The regularized

equations and modified forms of the discrepancy orinciples [(2.7),
(3.6) and (3.13) are introduced in Section 4.1. The results
corresponding to these discrepancy principles have been discussed in

Sections 4.2, 4.3 and 4.4.

4.1- INTRODUCTION

We are concerned with the problem of solving the operator

equation
(4.1) Tx = ¥
approximately when the data y, T are known only approximatelv. In

reality there are two occasions, where one has to consider an
approximately specified operator T, instead of T (e.g., [s],

. . LAY
(33}, [36], [37], [44])). One such occasion arises from the modfﬁlngyil

error and the other whenr one considers numerical approximation of 7.
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If y and T are not known exactly, but instead some
approximations y5 and T, are known, then a natural way to look

for approximations to x, the minimal norm sclution of (4.1), is to

solve

(4.2) (TRT, + o1)x8 = Thy®

instead of (2.2). Here {Th}h>o is a family of bounded linear
operators between Hilbert spaces X and Y. If ly~y53 £ 8§ and

BT-Ty8 < ¢, with e, 2 O such that g , 0 as h _ 0, then one
requires

(4.3) n'i—xg,ha_,o as o« , 0, 8,0 and h _ C.

But it can be shown that if R(T) 1is not closed and & ., ¢ &3

h - O, then for every ho > 0, 50 > 0, the set
(x5« #y-yB1 < 6, IT-THll < €43 O ¢ 8 28, 0 ¢ h < hob

is not bounded. Therefore it 1is important to <c¢hoose the
regularization parameter o in dependence of the error level S
and €, pProperly so as to satisfy (4.3). For this purpose we

consider a class of discrepancy principles

A . P
(4.4) l@TththS'l:g_&:’g‘h')—, o> Y., 9 OC ’\/
» o
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to compute a := o« 8,h). If T, =T and Vch = 0, then the abowve

discrepancy principle is reduced to (2.7) considered in Section 2.2.

Discrepancy principles with approximately specified operators

. have been considered in the literature (See [3¢), [45])). For

example Neubauer [36] considered the discrepancy principle
(4.5) T, Th + oI) %0y8,0y8) = (d,&+dye,)?,

where Thy = Qaln and Q is the orthogonal projection onto a
finite dimensional subspace W, of Y such that @, convergass to

I pointwise and T 1is a compact operator. Our procadure can alao

)

be put in this setting with some modifications in the proof. It can

be seen that the square of the left hand side of the equation {(4.4)

is a2<(ThT’:_+ d)“zyra,ya), so that the method (4.4) is simpler than

the procedure of (4.5) of Neubauer [36]. Moreover ths method (4.4

generalizes the procedure investigated in Section 2.2.

If X =Y and the operator T is a positive self-adjoint
operator on X, then as in Chapter 3, we use different notations for
the operator and the data and consider the sclution w9 N of the

equation

8§ = b

for obtaining approximations for w, the minimal norm solution of
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the equation Aw = g. Here (Ah)h>o is a family of self-adjoint
operators on X with WA-Al s ¢, €, , 0 as h, 0. In this case

we consider the discrepancy principles

and

P Ay, + al Y HP,68,0,68) = (cstde,)?, p > O,
where ¢ and d are properly chosen positive constants and Q, is
the orthogonal projection on to R(CA.), for obtaining convergence

and error sstimates.

4.2- ON THE APPLICATION OF GENERALIZED ARCANGELI’S METHOD FOR
TIKHONOV REGULARIZATION

tet T e BL(X,Y), y € R{T) and let X be the minimal ﬁorm
solution of the equation (4.1). Let H be a bounded subset of
positive reals such that zero is a limit point of H. Let {Th}heH
be a family of bounded linear operators between X and Y, such

that W7-T,% < 5,, h € H, where is a set of non—negative

{ Eh}heH
real numbers satisfying ¢, , 0 as h _, 0. For &) 0, let

DS be as in Section 2.1, i.e., D8 = {uey : Hu-yl < 8).

In the following, X o is the éolution of (4.2) with exact datsa

{(y,T) in place of (ya,Th) and xg h is the solution of (4.2) for

+
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y8e DY.

Hereafter we assume that there exists ¢5; > 0 such that g, < ¢

for all h € H. This is the case when {Th}he-i is a uniformly
bounded family. Let & be such that 0 ¢ & < 2B

Theorem 4.2.1. For a fixed pair p, q9q of positive reals, and
for each & ¢ (0,8], h eH, and ¥ e DS, there exists a unique

a = A S8,h) » 0 satisfying (4.4). Moreover,

(1) {8,n) : 0 ¢ 5§28, heH} is a bounded set of reais,
2, . p
(i1) o« 85,h) s ¢f 5+£h,)6ﬂ“ for some constant ¢ > O,
(111) oy (523 and €, 50 as h 40, imply
4y - x(‘zm!l.,o as & , 0, h _ O.
Proof: The existence and uniqueness of a = o 8,h) satisfying

{(4.4) follows as In Proposition 2.1.4.

If the set {«&,h) = 0 ¢ 8 < &, h € H! ~ is not bounded then

o

there exist sequences (§,) and (h,) with 0 ¢ & £ &, h, € H

such that

o, = o &,,h,) , » as n _, .
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Now since

qQ
an Byl q _ o
(4 -7) b 1"'M/an < %BT%X%’N- Yang = (Sn*ehn) ¥
where M 2 (ed+!Tu)2, we have

a _ 2(6,+e,)°(1+M/ )
% S B2 :

This leads to a contradiction. 7Jhus (i) is proved.
Again from (4.7), by using {i) we have

o g & Step)(atM)
i iyl

< ¢ 5"’6;-,)&\1

proving (ii).

If e O as h _, O, then it follows from (ii) thst «(8.5),4

as 8 , 0, h _, 0. It can be seen as in Neubauer ([36] that

~ ~ Q.»
(4.8) R - x5 B sc(ix - x p+ TE
(4.8) i xa’hl c( #ix aB m

Therefore to prove {(ii1i) it i1s enough to show that

Ste

(4.9) —_—b- 0 as & _,0, h 4O
Yo 5,7

and

(4.10) Ix - x Ml ,0 as 8,0, h 0.

a3




We note that

. -
A2ten) L grxd - yB) = 4 T,TE 4 al) N0
«(8,h) *sh

()

B ToTh + o) N(y8-y )8 + B(T,TE + of ) Yy

(4.11) S8+ NokT,Th + oI) 'yl

where

(4.12) o T,Th + aI) Yy = T,T5 + oX) HTT* - 7,007 + )y
+ oLTT )Yy

* -
. 1

x
T el 3 Y

+ o TTy + o) L LTH-TI(TT
+ LTTY + «I) 7.
Now using the relations

. * L\
“ThTh + GI) lThll £ ﬁa;

3T + ) vl < HE,

- . * -
Hu(ThT: + al) <1 and MTIT + 1) zyn s 37

it follows that

X

(4.13) B T,T5 + oI) Jyll < 2ixBe, + B TTY + od ) iy,
h' h h N
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Now by Lemma 2.2.1, we have
(4.14) B TTY + «I) TXH < co®

where o = min {1, p+1/2} for X € R((T*T)v), O ¢ v £1 so that

(4.13) implies

(4.15) (8%en) < max (1, 20%0 X o+e) + B TT™ + oX ) ITXH,
[+4

p
s ¢ ((Are) + (sre)TTD)

Therefore

P
(4.16) (Getn ™ = (rey "Ll

- 1 g .
$ c((8+e, )’ TP + (8+g,)? T AT ,

< . - . P
implies 2q-p+1 2 2q-p + STav Ty y 0,

P_ 49
q+l 29+1

so that éeéb,* 0 as & , 0, wproving (4.3) and (4.10) follows from

Now the assumption
(ii) and arguments used in the proof of Theorem 2.1.1 {(a). =
Theorem 4.2.2. Let x e RU(TTTI), 0 ¢ v s 1, w=min{1l, v1/2).

P C 1 2 - . s
If o1 < min {o v /q} and a := of8,h) is chosen according

to (4.4) for O ¢ § < 68,, h eH. Then

(i) %En < cy(&re, ¥

¢4




. ~ Y
(ii) Ix - xz'hl < ¢ 6+gy)

_ - P 1-w = mi py
where 7} 1 ml*—q )’ 4 min {}b a;‘r}-

if P = 2

In particular, T - ZeITiseY/s’

then

P
(iii) mx - xS B s cy(&rey)

Proof: In view of (4.8), Theorein 4.2.1 (ii) and Theorem 2.1.1(i),
the vesult in (ii) and (1ii) will follow, once {i) is proved. The

proof of (i) is a consequence of the relations in (4.14), (4.15),

-

Proof of the following Corollary is along the same lipes as the

proof of the Corollary 2.2.5.

P 1

Covollary 4.2.3 Let p, g be positive reals satisfying T s
~ *
and let x e RU(TTTH?), 0 ¢ v g1, ©=min {1, +1/2},
1 = min {g, 2 —}. If a := o8,h) is chosen according to

2rvel+(i-w)/q
(4.4), for 0 ¢ 558, h e H, then

ix - x8 < c(&+e,)"
ash

where

@ 4 < 1 UF%-

86




Remark 4.2.4. We note that if x € R((T'T)’), 1/2 < v < 1, then

Theorem 4.2.2, provides the order c‘(éweh)r) with

v = min {1- 2(:*1), Z:l} for agT-s 1. Also if x € RU(T'T)),
0 v<1 and 1y is any estimate for v such that v < p, and
v, 2 172 then by taking qgl = 2vf+1’ we obtsin the rate
2v
Q((G-«—eh)zm). In particular for q% = %, i.e., with vy = 1,
2v
the rate ((8+g,)3 ) is guaranteed. This case includes the

Arcangeli’s type discrepancy principle, i.e.,

In Chapter 5, we consider a special case of the operator Thj
f

namely- T = TP.,  whére {Pil,.ac. 1is a seauence of orthogonal
h ) 7 HEF oy

projections on X. This case, under certain conditions, leads t¢

improved accuracy.

4.3- CN THE APPLICATION OF GENERALIZED ARCANGELI’S METHOD FOR
SIMPLIFIED REGULARIZATION

tet A e BL(X), g € RCA) and let w be the minimal porm
solution of the operator squation

(4.17) Aw = g.

Let H be as in section 4.2 and ({(A.} .. be a family of self-
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adjoint operators on X satisfying

(4.18) EA-AhH < Ch, h € H,

where {¢g,} “ is a set of non-negative real numbers satisfying

Enh » @ as h _ O.

In case A, 1s not positive, then one may consider the operator

By, = A, + gl (See [45]}) and 2¢p, in place of AL and €h
respectively. Then B, 1s a positive self adjoint operator
satisfying #B, Al < 2g,. This is seen as follows. From (4.3i8) it
-~ is clear that iBy-all < 2g,. Now using the fact that A is
positive self adjoint operator, we have
CARX x> 2 C(AX x> = C(gpX, X0
2 ~{gpX X,
so that
(Bpx,x> = (ApX,Xx> + {gx, x>
2 ~{gpX XD + {gX XD
2 0.
Thus without loss of generality we may assums that {éh}ha_‘ is a

family of positive self-adjoint operators on X.
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For & > O, let F8& := {(u € X : Bu-gh < 8}. Let w, be the

solution of
(4.19) (At =g,

and wg . be the sclution of the equation

FRL]

(4.20) (Ah + ol }wg " = 96, 95 € Fs_

We assume that there exists ¢ > 0 such that g, < g for zil

neH. Let & be such that © ( 5 = ____ﬂga'
Theorem 4.3.1 et w € R(Av), ¢ (v £1 and wg h e defined
$
as in (4.20). Then
n;} — N& B < Q-é:—?—h + Czogp
oy h L)
where ¢, and ¢, are positive constants.
Proof: Using triangle inequality. we have
wo- wd i W - + W - W + Bw_ - wé
Hw wa.hﬂ < B waﬂ i o a,h" i o, h a.hﬂ
where w = w® .  Thus by the definition of w , W and the
X, h A, N x xX,h

fact that g = AQ, it follows that
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(4.21) w - w N < Eoplin
. [+ 4 a,h x

- Wb (]
(4,22) 'Ha,h wa’hn < T

The result follows from the above relations together with aestimate

(3.3), i.e., b - wl=qgc) =

From the above Theorem it is clear that if a := c(5+ehf T for

some constant ¢ > O, then

1%
(4.23) W= wd 1= o((Ste)T )

and this order is ‘optimal’ (See. (3.4)) in the sense that in

general it can not be improved.

t"x
A ‘-Qg

In order to obtain the convergence of wg " to w and o

obtain the order in (4.23) we suggest the discrepancy principle

P
(4.24) liAhwﬁh~‘95l=—'-(—&;§b-?-, P>0, q>0
’ @

and & € (0,5, .

Theorem 4.3.2. For a fixed pair p, q of positive reals and for

each & € (0,8, h eM and 95 € F5, there exist a unique

*

30




a = o §,h) satisfying (4.24). Moreover

(i) - {5,h) : 0 < 8§ <8, h eH} is a bounded set of reals,

" p

. T e 1-
(11) a(5,h) < C1(6+€h) and R%TE:T = cz(&feh) T
for some constants ¢; > 0 and ¢, > 0O,

(iii) p < g+l and ¢ ., 0 as h _, 0 imply

W - wg,hﬁ_,o as 5,0, h _,o.
Proof: The existence and uniqueness of o := o 8,h) satisfying
(4.24) follows as in Lemma 3.1.2. The boundedness of the set
{ 8,h) :_0 ¢ & s &,——h—€e-H}- and the estimate for o 8.¢,) foildw'
by using similar arguments as in Theorem 4.2.1 ((i) and (ii)). To
obtain estimate for ET?,;E% and the convergence of wd to W, we

aph
first note that

(+ep)® _
___;511__ = H,qhwg’h - g%

= o A, + o) 'gdl

< No(a, + o) @8-gdll + fal(A, + «I) ' = (& + oI) ‘ot

1
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+ dd A+ al) ‘gl
where

(A, + oI ) '(gd-9)h < 6,

BalA, + o) - (A + oI) gl = H A, + ol) (A-A(A + aI) gl
< epfiwil
and
Bl A + al) ‘gl < «lwl.
Thus

(5+eh)p (s+e.) +
L €n) ¥ cx& N

where ¢, and ¢, are positive constants. Therefore by (ii), we

have

- 2 ¢ g
%f_h = (S+ep) o().ﬁ"_gr)_)
x

Pl ol

1—g+l ]\»-.p--('.Q
< c(8*+ey)” T T+ cbre,) I XEIY

Now since 1- = 1 - éﬁ and p < qg+1, we have

olo
+

go
1

S+e 1=
'—a—n = 0((5+Eh) Ty,

Now the convergence of wd N to W follows as 1n Tnecorem 3.1.3
o,

(iii), orce we prove that




w - wd 1 < c,éifh + kA + ol ) el
ash (4 4
But this is clear from (4.21), (4,22) and the ineguality

(4.25) B = Wl B o<l - Wl + Hw - w
a,h . x x x

]

B+ kw - wd 1.
h ash a,h

H

This completes the proof. =

Theorem 4.3.3. Let w eR(AY), O (pvs1, a0, p< g+l

a = o &,h) be chosen according to (4.24) for O < & s &,
tThen for some constant ¢ » O, we have
(i) B - wd 1< c(8+eh)r

G,h

ro=omin {q+1’ . Q+il

In particular if P_ = —l—, then,

qQ+1l v+l
v
(ii) o - w8 s c(ste)” .
Proof: Proof of (i) follows from Theorems 4.3.1 and 4.3.2

and proof of (i1) is a consequence of (i) and the fact that

. . P _
—  1f and only if v il

PV )

in thi se
, and in this ca ari- oI

o]
+
-
0
iré
-
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4.4. ON THE APPLICATION OF MODIFIED GUACANEME'S METHOD FOR
SIMPLIFIED REGULARIZATION

In this section we study the anzlogoue of the parameter choice
strategy considered in Section 3.2 for simplified regularization
with approximately specified operator. specifically, for a fixed

real number p > O, we consider the discrepancy principle
(4.26)  a®P (A, + a1) XP0,68,0,68 = (cs+dey)® . ay O,

where < arnd & are concianis and Q) 1S the orthogonal projmuiicn

onto R{A,) for choosing the parameter ‘o’ 1in (4.20). Here also

g8 € FO and An, h € H are as in Section 4.3. If in addition 12

satisfies Mhsss 2 c5+dey, then as in Lemma 3.2.2 one can prove

that there»exigts a unique o = o 8,h) satisfying (4.26). The

foilowing result is used to prove cur main result of this section.
Lemma 4.4.1. Let o := o 8,h) be the solution of {(4.2¢&) wiwh

c > 1 and d > e = (2+p)iwll, where w is the minimal norm

sclution of {(4.17). Then

[(c=1)8 + (d-e)ed3s &P (A + a1 ) XPg, o

s [(c+1)6 + (d+e)QJ2.

Proof: We note that
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cxz(pﬂ)((ﬁ + C!I )'2(‘)"'1)9’ g) = uwl(h + aI )-(p"l)glz.

Also
(A + o1 ) PVg = (A, + al) P0,68 + (A, + aI Y P (g-gb)
+ (Ay + ) P(1-0,)9
+ A+ )P (a4 ar )P,
Therefore

1A+ 1) P g0 < 1P (A, + ax ) P 0,080
v B Na, + a1 ) P, (g-g8)y
+ P A, + ol) P10, )9l
b P(A + a1y P (Ap + ol 3""‘”}@%,\
and
i (A + o) P V0 2 1A, + ol )P, g8
P ay + ol )P0, g-gB)l
- 1P a, + o) P1-0,)00
- 1A+ ad) TP (A Q1) TP Y,

Now ,

i Ay, + al )P0 (g-gdit = [P a,
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+ aI)—Z(p’l)tha,th‘S))l"z,
= cé&tdg,
1A, + 1) P (g-98)0 < 6
and
BP (A, + al ) P 1-0,)90 s 1P A, + ol ) P10, AN
< 1 a, + ol Y P 1-Q, ) A-ay, wl
< WK I-Q ) A=A, )b
< BI-Q,BH A-A,
< B(A-Ap Wk
£ ehlal-

Therefore the Lemma will follow once we prove

8o FCa, h )l s (ptl ey, B,

where
fla,h) = [(A + oX) P () + o) FP g,

To prove this first we note that

fla,h) = (A + od) PVLCA, + o1 )P
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- (A + a)PPYA + ar )P

(A + aI) PVL(a, + oI XA, + al)P

- (A + o)A + a)PI(A + ax) P

(A + al) PV (A, + «I)P  -A(A + aI)PI(A + a1 )P

s olhy + o) TPVA, ¢ D) - (A aDPI(A + Q1) P

. i s, 2] - 1
= (Ap + ool ) P A, + aI)P - (& 4 aIXPI(A & ax )P

v (A + o) P a-aXa + al) e

+ oAy + o) PV(A, + ol

P - (A + «IPI(A + a1 )Py
= (Ap + «I) PL(A, + aI)P - (A + aI)PI(A + o1) P

+ (A + al) Pa-aXA + o) g,
Thus

B FCa, b))l s BUCa,h)E

+ 1PN A, + aX) P VA A XA + al) ol

where
UWa,h) = o (AL + aI) Pica, + aI)P - (A + a1)PI(A +aql )P g,
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Now since
1P Ay, + «1) P XA —aXA + «1) gl < el

we have
(4.27) B ' F(a, h)B < RUCa,h)H + e lwll.
We note that if p =1, then

BUCa,h ) € BoCA, + ol ) (A= AXA + oI ) gl

< gpliwll,
so that in this case
e F(a b s 2eplal.

Now consider the case when 0 ( p ¢ 1. 1In this case,

(4.28) Ula,h) = oA, + oI ) P Pl(A, + ar)P

- (A + )P XN PA + Py,

so that
WCa, DB < HoPlA, + ol ) Pl ™PI( A, + oI)P

- (A + ad)PI(Pla + oX1) PG
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(4.29) s B PLCA, + a1 )P~ (A + aI)PI(P(A + ot P55,

Now recall the formula ( [25] page 287),

. : wi
B = Slrmzoj'mxz[( XI+B)’1>< _ Kll)x 4.1 )n 5\128 x]dl

. 1
Sinnz .x Bx 1 B" 'x
+ s  gaa [Z - 7-1 + ...t ("1)‘1— z-:-rw-r*-] s X € X

where

9(1)'=((1’ 17 O‘.)‘f

i 1 (A

for any positive self adjoint operator B and for complex number

such that 0 < Rez ( n. Taking z = p,- 0 ¢ p ¢ 1, we have

Sinnz

P X [” e eyl X :
B"x = =[= + AY(AI+FB ) xda - ryqﬂl)
L P 0 1J Y
Using the above formula, taking

£ = oA+ a1) g,
and

Qq,p = (A, + al)? - (A + e1)P,

we obtain

Qg nE = ii,?gﬂojmtp[(ﬁsh F (tro)I) Y - (A ¢ (tro)I) Mot
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- sznxgojatp(Ah . (t+a)I)-1(A’Rh)(A + (t+a)I)"1§dt.
Thus

HQq,nEl = wornt"(ah + (trarT) (A8, (A + (t+a)T) TEHGt.

Now since

A, + (tra)I) 1 5 2o

e T 1
PR T T«
=T and H(A + (Lrc)I) "F £ =
we have
- 1-p Sin ® ¥ o
B’ POg pEll s o TP —J,,i‘-‘lcj (SFEyz Ot sAmanl gk
} [
. . Sinmy M aP . . . ™
(4.30) s "moi rTigyz 9 enliEl, G
. L
her = =
whevre B p

IL can be

N
P
QO
§
o2
©
ct

1

WD p ds
o] cripye 98 - F‘ofm
and
(®  ds - 7l
od sTP(1+s)  Sinnp’
so that ‘

® p
_ _ mp
OJ (1T+B)? df = Sinmp’

Therefore, from (4.3C), we have




(4.31) bt P(A, + aI)P - (A + oI)PER < pey, NED.

where

ER = 1A + 1) P90 = 1eP(a + a1 ) PVann < Ml

Thus from (4.27), (4.29) and (4.30), we have
I (A + «X) TP (A + ol ) Pl < (pt1)e, WL
This completes the proof. =

Theorem 4.4 .2. Let g% € F9, h e H and let a = of §,n) is
chosen according to (4.26) with ¢ and d are as in Lemma 4.4.1.

Then

~

é =
W W as 6 o h 0.
a,h Y - F -

Proot: Note that

Y S H o+ - - W
i wa,hu < fw Na" “wa w ,hn * uwa,h Naghd’
Thus from (4.21) and (4.22), we have
e - wd 1< max{1, MDE + go - w il
o, h a a

From this we obtain the result by using the argumsnts used in the

proof of Theorem 3.2.4. Y
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Lemma 4.4.3 tet g% € FS6, h e H and let « := «8,h) is the
unique solution of (4.26) with ¢ and d are as in Lemma 4.4.1.

Let w € R(AY), O ¢ v £1. Then we have the following
1
(1) o 8,h) = o (5+e,)PT)

v
o (&+e)PFT) , if 0 (v <1 and v < p.

GH - ZEy

[

(i1i)  ZESy = L(&+e)PT) , if 0w (1 and v Cp. m

Proof: Proof of the Lemma follows in the line c¢f the procof of
Lemma 3.2.5 with ((c+1)8§ + (d+e)ch)2 in place of czo"z and

((c-1)8 + (d-edep)® in place of ¢,8.

Theorem 4.4.4. Let 9% € FO, h € H and let « := o 8,h} Dbe

the unique solution of (4.26) with c and d are as 1in Lemma

4.4.1. Let w eR(AY), O < ps<1i. Then

1%
(o (8+e)PT ), » S o
(i) i - wd W=

‘ ' K(s+e)PTy » P EP

If 0<Cwpvp (1 and v ¢ p, then

~ v
(ii) o - ”2 = L (8+e, )P
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In particular if p =1 in (4.26) then

v
_ Jol(s+e)? ), o0 << 1
(iii) w - wg'hl = )
of (8+e,)7) | v =1

Proof: The proof of the Theorem follows from Theorem 4.3.1 and

Lemma 4.4.3 by using the arguments used in the proof of Theorem

3.2.6. [ ]
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CHAPTER 5
REGULARIZED PROJECTION METHOD AND NUMERICAL APPROXIMATION

\

In practical implimentation of regularization methods for
obtaining approximations for the minimal norm least-square solution
of the equation Tx = y, one uses finite dimensional subspaces
rather than the space X itself. This amounts to, for example,
the projection methods for solving the regularized equations

~A »

(T*T + aI)xg = T*y8 and (A + ol )wg = gb

In Section 5.1, first we consider the prcjection metnod for
Tikhonov regularization of the equation Tx = vy with & modified
form of the discrepancy princibile (9.4) tor chocsang - the
regularization parameter. We show that this procedure lazads to a
generalization and modification.of {E@ Marti’s method ([ZSJ; [ngnug
[30}). In this case the results include, and in c¢ertain cases
improve the conclusions of Engl and Neubauer {6] under weaker
conditions. Then projection method is applisd to Simplified
regularization with corresponding modified form ofFf the discrepancy
principles (4.24) and (4.26) considered in Chapter 4. In Section
5.2 we present the Algorithms to impliment the methods of 3ection
5.1. Finally ip Section 5.3 we present results of some numerical
experiments which confirm the Theovetical rasults presented in

1

Section 5.1.
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5.1- REGULARIZED PROJECTION METHOD

-

Let {ph}mo be a family of orthogonal projections on X. Our

aim in this Section is to obtain an approximate solution for the

equation
(5.1) Tx = vy, ¥ e€R(T)
in the finite dimensional space R(Py). For the results that

follow, we impose the conditions

n, := W I-P)XH o, O and v, = WT(I-POR , 0 as h , o
on P, and X, where x is the minimal norm solution of (5.1).
The _above . conditions _are satisfied if, for example, P

pointwise and if T is a compact operator.

Projection Method for Tikhonov Regularization:-

The projection method for the regularized equation
(T*T + I )xg = T*y6,
consists of solving the equation

(5.2) \ (P,T*TP, + al )xg L= PLT*yS, '

105




where y8 € D& = {u € Y: lu-yh < 8§). The unique solution xg nt of

the equation (5.2) can be interpreted as the unique element

satisfying

(T*T + aI)xg o u> = (T*y6 | w for all u e R(Py).

In fact equation (5.2) is a particular case of (4.2) obtained by

taking T, = TP,. Here after we use the notation T, Iinstead of

o
TP,. It is proved in Groetsch [12] (Lemma 4.2.3) that AN
(5.3) LR S |(1+(7:/a) HCL=Ppox i

) _ (% -1 % _ Lo

where X o (T T + «l) Ty and X o X o h-

Note that

so that

Ix-x® B < Bx=x B + Bx =x 0 + Hx -x® 4.
L a,h (X“ E e a,h o, h a,h

Now by (5.3) and the fact that

b 3 -1..%
Hxa h—xg hIl = W TpTh + o) 1Th(y-y‘s)ﬂ < 72

we have

- s . ) s
x-xS W < fx-x U+ |(1+(7§/a)u(1 Ppx il + 7
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< Mx-x _§ + |(1+( /N I-PL (X =X + W I-P)XE) + 72.
Therefore
Sy ~_ 8
(5.4) x-x$ Il < <2+7§)nx x i+ “*75)”»1 * e

From (4.11) and (4.12), we have
T8 =80 < 6 + Ho(T,TE + «I)(T-TT™T + al 37 7%y
ol THTE + aD) T TR -T 7T v ) vk

+ B TTY + oI) MTxH.

Note that
T TR = 1R (T =P T")
= 0
so that 2
xS =8l < & + B T,T% + al)7(T=T,X ™*T + ) ¥y
+ 1 TTY + )Ty,
where

Bl TTE + D) H(T=-T(T™T + o) ¥y < CT=T, X T5T + a1 )77y

< IT( I-Ph)xal‘i
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< ﬂT(I-Ph)(xa-,;)fi + HTCI-P,)XH
< UTCI1-P, X xa-;)l! + BT(I-P,)(I-P,)XH

I"l‘.‘z! el ore N

ﬂThxg,h"y5H <%+ 7éﬁn;-xaﬂ + nh) + HRq;H

* - . . ~ X
where Ra = o TT +od) 1 satisfies HRaxR < caw, with
. ~ x .
w = min {1, p+1/2}, whenever x € RI(T T)HY), v > O. For choosing
the regularization parameter o, we consider a modified form of the

discrepancy principle (4.4), namely,

¢« P
tﬁhX2};Y5H = Liﬂ?ﬁ~,
- 3 - : a

where (b} is a set of positive reals such that b, , 0 as

hers
h o O. Note that, since T, = TP, and xg ho€ R(P,), the above
equation can be written as

/

ng6 ~~y6" = M’
a,h a®

—~
n
o

~r

Here and below, as in Section 4.2, H 1is a bounded subset of rnon-
negative reals such that zero is a limit point of H. Imitating the

proof of Theorem 4.2.1 (1) and (ii), it can be seen that there

exists a unigque « = o 8,h) such that (5.5) is satisfied and that
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p

«S5,h) < c(<5+bh)m, 0 ¢ &5 &8, heH.

k 1y
Theorem 5.1.1. tet n = ofby) and g = by} for some
s =] . 4qQ) - :
positive reals Kk and A, If a+1 < min {2k, §3TT} and a is

chosen according to (5.5) then we have the following

; P 49 S 8 . .
(l) If a—;l—< -2-q—+—-1—, then It x xa’hﬂ_,o as b ,,,C, “3__,0»

(i1) If x e RU(TITI?), 0 ¢ v €1 and £ 2 &, then
- - v
nx~xg’hﬂ < ckﬂx~xau ton + (&+tb, 7 ),
= ol(m, *+ (&+b)"))

¢, = i { 3 . P 1 —_— ;: ' BN —_— '5
where o min {1, o+1/2) 1 2_(371‘7(1 {1-w)’/q) and
(=42

= i { .
T = min (=g 1}
Proof: We rsecall from Theorem 2.1.1 (i) and iemma 2.2.2 that for
x € RC(TXTI?), O ( v < 1,

—~ v ~ [
ﬂx—xan S Cca and IiRaxH s o,

i

Therefore using the assumption q'_f"f < % it follows from (4.15) that

o Pl
g.ﬁ‘.i%h_)__ < o &bh)m,
x




so thet for any s » ¢, we have

S p P
(&Zb) < (&bh)s', z«(&:bb) y1/2e

From t“his we have

v s+b,)> 5 _ &b ol
?t-;bs S—-—;—;hvl—: dl) and 7’&5%10((&0;‘) )a

P a1 e _ _ lzgeie
where Az i STa 1 1+( 1 (\))/q). Note that 4 21 m, SO
. =t 4q &
= +* ey = .
that by the assumption 77 < Sarl’ we have Ta of1) Now the

result in (i) follows from (5.4) by using the arguements used in

Theorem 2.2.1 and (i1) follows from (5.4). -

Remarks 5.1.2. We note that if » 2z 1/2, then, X _e-R(TT), w0

that B(I—Ph);u s ¢ AT(I-PI. Thus we may take K =z A. We
consider two speéial cases.

p

Case (i) X € R(T*), i.e., v =1/2 :~ Let = 1. Taking

q#l
\ 29+% . - .
K 23 = s in Theorem 5.1.1 (ii), we obtain the rate

-~ 1/2, \
HX*xgghﬁ = o (+by,) }.

For obtaing the same vesult Engl and Neubauer ([&] requires the

. . + . . B N . -
condition o= gai, which is stronger tiran ours. as in [6], from

Theorem 5.1.1 {(ii1), we also obtain the rate arbitvarily close to
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0(7h) for large values of q provided

4q

by yo' and & = &, = olby).

.. -~ * 3 - . _.__.,p = .2- i
Case (ii) x € ROT*T), i.e., v 1 i Let o4 z. Taking
2Qq+1 . s , . =
k 2 A &= Zg— Lthe rate in Theorem 5.1.1 (ii) becomes ({(&+Dy)7)
&Q
with s = min (2/3. k}. In this case, if & = & =< cb, ~ y&=7

141

Note that if g 2 172, then t 21, and if a 2 31/2 and &k » 2 =

then t > 1. In particular if k 2 2/3 then the rate . .

dq
A—’ 6 - ;
"x xash” 0\ ?h )

is arbitrarily close to cxyf) for large walues of g, where as the

vesult in [6] can give only up to ofr). Since T*T is self-
adioint, we have B(I«Ph);H = ol BT*T(1-pP,38). sc¢ that the condition

kK 22/3 is satisfied if the operator T has the property
1_
3q9°

such cases do occurf. For example, suppose that 7T is an injective

IT*T(I-P ) = o(IT(I-P)I) for then one can take k = 21 = % +

compact operator with R(7T) den?e in Y. Let {0} be the set of f
singulaer values of T satisfying o1 » 6, 2 ..., and {fugl and

{vi} be orthogonal basis of X and Y rvespectively such that Tu,

i

= oy, TH¥v = oy, for k =1,2,.... If h = i/n, n 1,2,.... Py




~is the orthogonal projection of X onto V., = span {u, ...,u,}

then it can be seen that IT*T(I-P,)B = IT(I-P)8* = o° .

Marti (see [28), [29], [30])., used an algerithm to compute

approximate solution for the equation (5.1). In this method , a
sequence of finite dimensional subspaces V; c Vv, ¢ ... of X with
Uv, =X
neN
is used to obtain an approximate solution x, of (5.1). More

orecisely, let for n € N

a, = inf{liTx-vyH = x € V,},

Ph, R = 1/n, be the orthogonal projection of X onto V,, and

by, » 0 be chosen such that

Then x, 1is defined by
Xn € Vp,
(5.6) BTx,~y#% s a2 + b?,

ix.l = infliixlh : x € V,, and satisfies {(5.6))




In [12, Section 4.3}, Groetsch has reformulated, Marti’s method

as solving

* b 3
ax, + ThTth = Thy,

for x, with the regularization parameter a is determined by

(5.7) BTx-y#° = a2 + bZ.

Thus the method (5.2), (5.5) is a generalization and modification of

Marti’s method.

- - - - - » » l
Projection Method for Simplified Regularization:-

Here we consider the case when the opefator under consideration
153 & positive self adjoint operator. More procisely we consider the

operator eqguation

(5.8) Aw = g, g € R(A),
where A is a positive self adjoint cperator on XK. As earlier,

iet  {Pplpe is & Tfamily of finite rank orthogonal projection on

X. 1In this case the preojection method for the equation

& = g8
(A + aI)Wa_‘_ 2 A

l\,

will take the form
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P
o

9 (P AP+ al )ug - P,gd,

where g8 € F6 = (u € x: Hu-glBl s 8}.

Note that
1) = 1)
ua,h p"wa,h’
where “2 N is the solution of Lhe'equation
(5.10) (PaP+ ol dwd = b

In fact the equation (5.10) is a particular case of (4.21) obtained

by taking AL = PP, Here after we use the notation A, instead<<
A
of  P.AP,. Let ba-aPll = olbyl, where  {bplipye 45 a fTamily of

positive reals such that by, , 0 az= h _, C.
The following Theorem is a companion vesuit of Theorem 4.3.1.

Theovram 5.1 .3. Let ud be defined as in (5.9) and w . be ths

minimal norm solution of the equation (5.8). I¥ w € R{A¥Y),

¢ { v s1i, then

wi-ud s ¢, 220 4 oot
a,h x

where ¢, and ¢, ave positive constants,

Proof: MNote that




. ey d g O & _,8
(5.11) Hw ua”} < Hw waﬂJ -Mwm,h ua'hl.
Now from (5.9) and (5.10), we have

5§ -8 = - &
o(llum,h wa,hH e,, - I)g®t

()

< fgd-op + (P, ~1)AwE

W

& + WP-IX AP AE

& + K o—P2)wk

(9

Since fle-aP. i = HA-Pall, we obtain

& _wb w
aUua " wu,hﬂ < 5 + bpiwih.

o lé

Thus from (5.11), we have
(& 1o Y o aan3Stbn
(5.12) fiw uu,hn < flw wa,hl + max{1, 8w} po

Now the result follows from Theorem 4.3.1, with A, =

Enh = db"\) ]

*

For choosing the regularization parameter o in

first consider the discrepancy principle

(P ~1)(98-g)1 + B P, -1)90

PAP, and

(5.9),

we




P
(5.13) Ppud —pgdl = &80 o5 0, a0,
’ [+ 4

which is a modified form of (4.24). 1Imiteting the proof of Thecrem

4.3.2 (i) and (ii), it can be seen that there exists a unique «qa :=

o 8,h) such that (5.13) is satisfied and that

p
(5.14) o« 6,h) s c(&b)TT, 0 (655 &, het.
Theorem 5.1.4. Let o = £6,h) be chosen accovding to {(5.13).
Then

(i) If p < g+l and b, , 0 as h _, 0, then

sC.wug’hn 50 as & ,0, h.,o0.

(ii2 tw-ud = o(8+b,)T)
- : pp _ P
where v = mln{Q+1, i q+1}.
In particuliay if P_ = —l—, then
Q+1 vl
v

Proof: Note that
5+b, )’ . .
( 5.18) .(._:_a%.ial. = “’)hAug,h—-phgﬁh




ok PA+al ) iP,g o8

lel PrA+al )P (g8-g )i + B Pratal )Pl

m

5 + Ha[(Ppa+tal )P, - (A+al ) t]gl

12)

+ B A+al )" igl
$ 8 + B Ppatal )M [P (A+al ) ~(PA+al )]
(A+aI )] gl + Mo A+al ) 1gi

< 8 + HaX(Apral )N Pp-1 ) A+al )1gh
+ flo{ A+al )" igh
Mote that

Bo®( Aptal )P -1 X A+al ) igh = Bo®( Aptal )M Py-1 )A( A+al )lul
s bpiwi
and

Bo{ A+al )71gl < cBwh.

Therefore from (5.158) it follows that

v

4P
g%%h_)__ £ ¢ 8tby) + cou,



~where <¢; and ¢, are positive constants. Now from (5.14) and

the fact that p < q+1, we have

P P
(ohe) o X (sb,)TD).

x
Therefore

5+b, _ Lo\l - & (8+b, )P 1/q

"—&—h~ (&Dh) Q——;ah—)

= d(&bh}i " 3 Y m))

i.e.,

5+b . R
(5.16) 1 = o((&+by) ).

Therefore é%Eh,* 0O as &6 , 0, h , 0. Also by Theorem 4.3.2 (iii);

we have iQ—Qg Jd - 0. Thus by (5.12), Ba*ug 50 as & 4, 0,

£

h>% 0. Now (ii) follows by applying the estimates in (5.14), (5.16)

to the estimate in Theorem 5.1.3. The proof of (iii) 1is a
1) __pv = 1-_.2 i i
consequence of (ii) and the fact that o1 ‘2% if and only if
P - i . ) P = 1%
T ST and in that case &% T 5T
Remark 5.1.5. As in Remark 3.1.5., the above method for

simplified regularization can be used for Tikhono regularization

3

also by taking A = T*7, g T*y and g% = T¥y8,  y-ydj < g where

p
c 2 \T¥§. In this case the estimate @ = 0((5+bh)m) of (5.14)

can be used to obtain the estimate
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_ ®
F).

1
Eon = (((8+by)

Therefore if p < 2(q+1) and % € R((T*T)I’), © < » £ 1, then we

-,

have

- m
ﬂx-—xg’hﬂ = o((&tb,)")

where m = min(ﬁ%, 1- x%q7}.

2v

This, 1in particular, gives the optimal estimate (x(6+bhf Ty for
P o 2

Y T 29T

"Next we use a modified form of the discrepancy principle (4.26),

namely .
(5.17) P (PP el Y PP 68 b g8y = (cotdby, ),
where c and d are positive constants, for choosing the

regularization parameter a in (5.9). Before proving the existence
and uniqueness of o satisfying (5.17) we prove the following

result.

Proposition 5.1.6. Let g # 0 and 95 € FS. Then there exists

86 » O, hg > O such that

W I-0,)Padl < cs+dby, s IP,aoH

for all & < 35, and h < hy, where ¢ > 1. d > !ﬁﬁ are constants
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_and Q, is the orthogonal projection onto R(P,AP,).

Proof: Since P, , I pointwise as h _, 0 and g¥b 2 9 as 8 L0
we have

tPoSh _, Hgll # © and cé+tdb, , 0 as & _,C, h , O
Therefore there exists §, > O and hg > O such that

c&tdb, < WIP,gSh, for all & < 8¢ and h < h,.
Also, since P, and Q, are orthogonal projections and ¢ = Aw,
HI-Q, P8 < B(I-0,)P (ab-gls + H(T1-0,)P, 08
< & + I 1-Q,)P,Awl

But l( I-Oh)P,.f\P’hI = 0, sc that

1(I-Q,)P, o = & + WI-0,)P (A ~ AP, )k

<8+ b@@&
for all S > 0O and n oY 0. This completes the proof of the
Proposition. =
Lemma 5.1.7. Let 8 > 0 and hg » O be as in Proposition

*

5.1.6. Then for & < 8, h < hy, there exists a unique « := o,h)

satisfying {(5.17).




~Proof: For fixed & < 6y, h < hy, let

K a) = PP aP+al ) EPP g6 p g6y .

Then as in Lemma 3.2.1,
oa) = I(M—“i)xp"”dmxphg‘s, Phad .

where {Ej}, is the spectral family of the operator P,AP,.

Now the map

o (9 NP
o b-——-)fp(cx,k) (—wx)
is strictly increasing fg{negth % > 0, and satisfies
fola,d) 4, 0 as a4, 0
and
fla,d) 41 &8s a o
Therefore by Dominated Ccnvergence Theorem we have
, S5u2
(5.18) o) , HEPHOH as o , O

where E, is the projection on to R(FAPL)" and

(5.19) oK) _, iP,adp.




. Now since

EProd = E,0Pred + Ef(1-0,)P,08

= Ef 1-0,)P,05.

Thus

s #(1-Q,)P,g%.
This together with Proposition 5.1.6, gives

HEP+a%l < cs+db, < EP,odH

for all 8§ £ 83, h £ hyg. Now the Lemma follows by Intermidiate

value Theorem by using (5.18) and (5.19). =
We note that

BA-PpAPLE < TA-APR + B(A-P,A i

< 2HA-AP B

< 2by,.
Therefore, if a 1= o 8,h) satisfies (5.17), then Lemma 4.4.1 and
Lemma 4.4.3 holds with 2b, in place of ¢,. Thus in view of

Theorem 5.1.3, we have the following result which is same as Theorem
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4.4.4 with ub . in place of wd

A, h a,h’

Theorem 5.1.8. Let g% € F6, h e H and let a := «&,h) be the
unique solution of (5.17) with ¢ > 1 and d > e = 2(2+p)iwi. Let

W e R(aY), O ¢ v 1. Then

P
ol (8+b,OPT v so
(i) fa-ud § =
. Oyh

d(&‘*bh)p%-, v Zp

If 0 <¢Cpvs<s1 and » ¢ p, then

124
(ii) bamul B = L (840, )P,

in particular if p =1 1in (5.17), then

v
o (8+b,)7 0<¢ v« i

(iii) w—-ud =
111 Ww—u = &
(ii1)  ga-ud )

lo((&bh)’, v=1. =

5.2- ALGORITHMS

In this Section we give algorithms for implimenting the methods
considered in Sections 5.1. Let (VY,) be & saguence of finite

dimensional subspaces of X and P dencte the orthogonal




projection on X with R(P,) = V,. We assume that dimV, = n, and
(5.20) P x-x8 _, O as n o4 0,
for all x e Xx. tet ({vy, ...,v,} be a basis of V,, n = 1,2,....

Algorithm 5.2.1. Ltet T € BL(X,Y) be a compact operator and let
T, = TP, where h = ;11- Now by assumption (5.20) and the fact that
T* is compact, we have PAT-T,8 = WT-TP. R = M I-P,)T*E L, 0 as
no_, o.

With the above notation (5.2) takes the form

(5.21) (PT¥TP, + oI )x8 = P T%y5,

From (5.21) it follows that

1 q
x6 = ;(p,,T*yS - PnT*Tang’h)

Ay h

Thus xg " is ¢of the form ihiv; for some scalars A,, ..., A,.
5 U .

"It can be seen that xg W 27‘1"’1 is the sclution of {(%.21) if and
s 1= - :

only if X = {3, ..., 3,)7 is the unique sclution of

{5.22) (M, + BN = W,




where

Mn=(<TVi,TVJ)), i,j=1, e nesy Ny,

Bn=((vj’vj>)| i!jzls LY
and

Wo = (8, Ty, Lo, o, T )T
Here and below (B,,...ﬁ5)T denotes the transpose of (B;,...,8,)-

Note that (5.22) is uniquely solvable because M, 1is a positive
definite matrix (i.e., xMx+ > O for all non-zero vector x ) and
B, 1s an invertible matrix. The parameter « in (5.22) is chesen

according to (5.5), which is same as

&b, )’
L_tf,z

- ~ X 6 - 5 = o
(5.23) i!Txc‘;h y 2l .

This is equivalent to solving the non linear equation

;
(5.24) fla) 1= o [~al(@) B a)-Hy Mad+<yS,y81-(8+b,)™ = 0

where M a) is the solution of (5.22). The parameter o« = of 5,b,)

satisfying (5.24) can be found as folliows,

Step 1 For some initial (good) approximation o > 0 find
Wag) esatisfying (5.22). Specifically we use cholesky

1]

decomposition to compute A(og).
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Step 2 (Newtons method) Using Noy) of Step 1 compute

@ = o ~ ?i%gg%

where

T
fla) = & ~ai(a) BAl @) - Nnkaod + <yd,y9 ] - (&bh)m

and

.
f'(a) = 220”7 [-ad( @) B, o) - W Wa) + <¥8,y8)]
T T » s
+ - BA(a) - 2o &9 B (@) - H,\,le\o'.)y]-

Repeat Step 1 with & in place of g« and Step 2 with gy

in place of Way) &nd so on. In the 2mth step, we obtain-

f

(5.25) “«"“«—*’r(“(“‘?&-

For sufficiently good initial approximation, the iterates in (5.25)

converges to o S,h), the zero of the function TF(«).

Algorithm 5.2.2. tet A e BL{(X)} be a compact pegitive self-~

. In this case

e ] Lo

adjoint operater and let A, = PAP, where h =

we consider the sauation (5.9), i.e,

2ey 0 4 b = B g
(8.2¢) PnAPnuu’h bl bg0.

As In algorithms £.2.1, it can be seen that ud €V Thus

oh ne
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5
Ua,h

is of the form i;qvi for some scalars u, ..., W,
1=1 ,

We

note that ug " = g;qvi is the solution (5.26) if and only if"
’ 1=1
i

u = (y, ..iy)’ is the solution of
(5.27) (A, + oBp = Y,
where
A, = (KAVy , v ),
an ((Vi Y VJ>)B
andg

Yo = (<Y6 y V12,

The parameter «

o
(5.28) npﬁgug . —p.ad = (&tby)
* «

in (5.27) is chosen according to (5.13), i.e.

This is eaquivalent to solving the non lineary equation

(5.29)

The parameter a = o85,b;) satisfying
follows.
Step 1 For some initial approximation

satisfying (5.27).

yoio
[ (8
wd

-, 8
gla):= o) B L a) - { &+b,,

(5.29)

% » O

¥ = 0.

can be found as
- _

find

o)



Step 2 Using Kao) of step 1 compute

g ap)
" T % " e
where
oa) = VD BED - (6+b,)7
and

.

T T
g’(a) = 2(qg+1 )ozzquﬁ a) B‘.ﬂ x) + ?.txzm‘p(a) B o)

As in Algorithm 5.2.1, in the 2mth step we have

. g(qm-l)
(5.30) %W = %y T g

For sufficiently good initial approximation, the iterates (5.30)

converges to o 8,h) the zero of the function o(a). Né‘ndfé'thati

the procedure in the above Algorithm is similar to the one given in

Engl and Neubauer [6) with A = T*T and g% = T*y$S,

. Algorithm 5.2.3. Let A be as in Algerithm 5.2.2. We choose
the regularization parameter according to the discrepancy principle
{(5.17), i.e.,

(£.31) L EP (A Q1) EP g8 | p g8y = (ctdby ).

Wwe consider only two values of p, namely, p = 1/2 and p = 1.

Case 1 Let »p 1/2. Then (5.31) takes the form ’

128




(5.32) o ((A + ol )-3P,,95 , Pgd = (ca*dbh)z.

In this case, choosing the parameter a satisfying (5.32) is

equivalent to solving the non linear equation

h(a) 1= qa@) B S - (cb+db,)? = 0

~~
mn
W
W

St

where L a) is the solution of the equation (5.27) and

M) == (;§a),...,g$a)) is the solution of

(5.34) (A, + B, )W a) = La)B,.

Now the parameter a := of §,b,) satisf}ing (5.33) can be found as
follows.

Step 1 For o > O find Wo,) satisfying (5. 27). We use

cholosky decomposition for computing ag).

D

Step 2 Using Way) compute, (ay) satisfying (5.34). Here also

we use cholosky decomposition.

Step 3 Using Rao) and {(a,) compute

“1’= % 52%%§§

where

Fa) = o’fa) Bka) ~ (csrdby)?
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and

h'(a) = 3670 @) BLa) + o qe) | Be) + X&) B ).

Repeat the process with o, to compute « a&and so on. In the 3mth

step we have

h
(5.35%) (xm=am_1*-ﬁ-y%%-‘;%.

For sufficiently good initial approximation, the iterate in (5.35)

converges to the zevro of h{a).
Case 2 Let p = 1. In this case (5.31) becomes
(5.36) Cila v i) P ed L Ped = (ctdb,) .

Now choosing the parameter x satisfying (5.3%6) is equivalent to

solving the equation

(5.37) k(o) = @B, Hal - (cotdb,)’ = 0

where fa) is the solution of the equation (5.34).

The parameter a = o 85,b,) _satisfying (5.37) can be found as

follows.

Step 1 For «, > O find Zk“b) satisfying (5.27).
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_ Step 2 Using cholosky decomposition and ({a,) of step 1, compute

ey satisfying (5.34).

Step 3 Using aa(,S compute

oy F % T k(gz
where
ko) = o'Ta) B &) ~ (cd+db,)?
and

k'(«) = 4 W) B,F @ + 2« W BT -

Now as in Case 1, in the 3mth step we have

. I : ' - _ k{ )
(5.38) o % T Oyt TRy

Here also, for sufficiently good initial approximation, the iterates

in (5.38) converges to the zero of k(a).

5.3 - NUMERICAL EXAMPLES

In order to illustrate the methods considered in Section 5.1, we
consider the space X = Y = L2[O,1] and consider the Fredholm

integral equations of the first Kkind

~1
(5.39) OJ k(s,t)x(t)dt = y(s)

?u%
N
hd




with k(s,t) defined by

S(l"t),

.40
(5.40) t(1-s),

k(s,t) = (

We apply the Algotithms in Section 5.2 by choosing VvV,

.

as the space

of linear splines in a uniform grid of n+1i points in [0,1].
specifically for fixed n we consider ty = i%l, i=1, 2, ...,
n+1 as the grid points. We take the basis function v, 1 = i,
...n+l1 of VvV, as follows:
ta-t if 0= ti<ct s¢t2
vi(t) = { t2 ]
0 if t2a st € tner = 1
fOT’ j= 29 9 n)
f O if O0st 5 t2
.t—tj—l .
c—ti-1 f ¢4 t gt
e if ti-1 g £t
VAL) = |
tiv—t .
TN if t3 <t < tys1
\ O if tis: £t st = 1
and
0 if 0st = tn
le(t) = e s
t-tn if tns t £ bt = 1
tnet—-tn
et P, be the orthogonal projection cnto V. We note that
for x e ¢c{0,1]
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WP x—xll, = dist(x,R(P,))
< Mnx-xH,
< Brx-Xiy

where %, 1is the (piecewise linear) interpolatory projection onto
Ve It is known [27] that B x-xlle ., O as n o, Therefore

using the fact that C[0,1] 1is dense in 120,11}, it follows that
iPx=xl, _, ©

for all x € L2[0,1].

The elements Tvy, 1 = 1, ..., n+l and the eﬁirieéAo%_the
matrix B, | needed in the Algorithms are. computed explicitly.
Finally the scalar product, (Tvy,Tvy  and <y5,ij>, i, J = 1,
..., nti are computed by trapezoidal rule. For the operator T
defined by (5.35) and (5.40), I = BT-TP.B = o{n?2) (see [17]). We
take yXs) = ¥(s) + & Oss < 1. The iterations in the algorithms

have been stoped as soon as 'q;uhﬂg £ 1077,

In the tables in Examples 5.3.1 and 5.3.2, e = ﬂ;~xa JL

-

8 = n;"xgyﬁ and the last column shows that we obtain the expected

convergence rvates.

Example 5.3.1 Here we use Algorithm 5.2.1.
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a) Let y(s) ='§l(s - 283 + s%). Then the exact solution is
x = THh(t) - t2) € R(T*¥), since x = T*1 (See [6]). 1In this
example we ta 2, @=1 and b, = 10272 ywhere h = 1/n.

According

O( n'110-1/4) .

Remar k 5.1.2

we should

The computational result are as follows.

obtain the rate

n « e e.n.10172

4 .080676E-02 7 .597033E-02 5.40385%E-01

8 .692923E-03 3.616450E-02 5.144848E-01

16 .386671E-03 1.131647E-02 3.219815E-01

32 .300157E-04 3.820369E-03 2.173979E-01

64 .122311E-05 1.702979E-03 1.93815%9E-01
b)Y  We take- Q, b, .are as in (a) 8 = n"21071/2Qyj.
According to Remark 5.1.2 we should obtain the rate (n-1i0~"/4) |

n o - §.n.101/%

4 .312341E-02 7 .690701E-02 5.470486E-01

8 .384762E-03 3.547685E-02 5.616070E-01

16 . 999828E~03 1.457269%9E-02 4 .146292E-C1

32 -363359E~04 6 .595434E~03 3.753128E-01

64 .437066E-04 3.866229E-03 4.400131E-01

c) Let vy(s) = 5%(33 - 583 + 3s% - 5%). Then x = Th(t) =
(¢ - 2t3 + t%) e R(T*T) (See [6]). Here we take p = 1, q = 1/2

(i.e., Arcangeli’'s method) and by, = 107n"2, In this case we
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B |

should get the rate 0(”'4/310“2/3%

) o e e.nv3 1043

4 $ .496383E-02 2.001868E-01 5.899955

8 i.428B025E-02 1 .290556E-01 3 .584369

16 3.934675E-03 £ .146955E-02 11.503240

32 1.367126E-03 2.608137E-02 12.298830

64 5.157226E~-04 1.0640Q97E-02 . 12.644100

oQ

d) Her Y, >, Q are a8 in (¢ and by = {l,z)zw Then by
Remark 6.1.2 we zhould obtain the vate gly,) = oln™@).

11 a ) e ne .

4 5.032420E-01 2.1739205€-01 3.478248

8 1.83589%E-02 1.422737E-01 2.105517

16 2.708180E-03 4 . &31227E-02 311.8559490

22 . & . 017325E-04 1.230339E-02 12 .59867C

64 1.462539E-04 23.222171E-03 M 13.1¢8010
e) We take Y, 0, q are as in {c). b, = '10"’n"2 and & =
10-In 2y ). According to Remark 5.1.2 we should get the rate

of n4/31072/3)

]

Py
(23]
W
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n o e e.nv<_ 1043
4 3 .764295E-02 2.006114E-01 5.912469
8 1.460831E-02 1.301518E-01 9.665779
16 4 .005746E-03 6 .221194E-02 11.642170
32 1.389137E-03 2.643386E-02 12.465050
64 5.236521E~-04 1.079201E-02 12.823570
f) Let vy, p, & and b, be as in (d) and 5 = nB3hyf. Again
by Remark 5.1.2 we should obtain the rate ofy,) = gkn2).
n o & 8. e
4 5.114884E-01 2.174024E-01 3.478438
8 1.880284E-02 1.433523E-01 9.174546
16 2.75%4756E-03 4 .690156E -02 12.OOé8QO;M
32 é.108578E-04 1.247299E-02 12.772350
64 ’ 1.484457E-04 3.263526E-03 13.36740
9) Let vy(s) = é«(s - s3). Then x = TH(t) = t € R({T*TI) for
all v« %— “(see [36]). Here we take p = 1, q = %—, Dy =
©10732n72 and v o= % Accovding to Theovem 4.2.2 (ii), we should
obtain the rate ¢ n ¥/%1071/12),




n x e e.nl’5_101/12

4 2.032875E-01 6.933492E-01 1.058348
8 2 .345335E-02 6.264760E-01 1.073378
16 5.452919E-03 5.571122E-01 1.071427
32 1.624781E-03 5.220351E~-01 1.126915
64 4.782124E-04 4.951615E-01 1.199804

h) Let y, p, aand b, be as in (g) and & = 107V2n=2y§.

n x e &.n1/5 101772
4 1 .989054E-01 6 .886654E-01 1.051199

8 2.911166E-02 6.317720E-01 1.082452

16 &.711536E-03 5.633281E-01 1.083382

322 © - 1.996030E-03 5.266258E-01 1.136825~
64 5.931330E-04 4 .994133E-01 1.210106

Now we illustrate the use of Algorithms §5.2.2 and £.2.3 by

considering the operator equation

\

T*Tx = T*y
where T: Lz[o‘ll —--91_2[0_.1] is given by

(Tx)Xs) = rk(s,t)x(t)dt,
0
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Note that, the Simplified regularization of the above equation is‘7

\

the Tikhonov regularization of the equation Tx = y. With this
observation we have the following Example. é:;¥
Example 5.3.2. In the following cases, (a)-(c¢) and (d), we take

y &as the corvesponding y in {a)-(c) and (e) of Example 5.3.1.
We use Algorithm 5.2.2 to compute the regularization parameter @

in (5.27).

a) We take p =2, 9 =1 and b, = 10n? so that in view of
Remark 5.1.5 we should obtain the rate of 7110712}, The

following table gives the numerical results.

— n_ . .- . o« ‘ ) ®.n.10172
4 5.022955E-02 7 .582424E-02 7 9.591092E-01
8 & .638567E-03 3.598772E-02 3.104252E-01
16 1.377367E-03 1.125443E-02 5 .694289E~"O\1
32 3.284572E-04 3.808466E-03 3.853897E-01
&4 8.114147E-05 1.702159£-03 3.444927E-01
b) We take p =2, qQ = 1, b, = 107n"2 and & = 10 1n2jlyl.

Again in view of Remark 5.1.5 we should obtain the rate

ol n11071/2)

138



n a e 'e.n.10%<
4 5.379350E-02 7 .481332E-02 9.463220E-01
8 7 .374059E-03 3.651361E-02 9.237294E-01
16 1.525748E-03 1.1543763-02 5.840729E-01
32 3.632755E-04 3.827736E-03 3.873397E-01
64 8.970418E-05 1.688976E-03 3.418248E-01
¢) In this case o, g are as in (a) and by = 1073n"> so that
we should obtain the rate (n=210-%4),.
n o ' e e.n<10¥%
4 &.206100E-02 1.907738E-01 17 .164800
8 7.833364E—Oé 3.601407E-02 34 .555320
16 1 .584625E-03 2.967627E-02 42.721780
73 3.754008E-04 7.853163E-03 - 45.221460 .
64 9.253419E-05 2.237586E-03 51.53944¢C
d) We take 2, a =1, by = 10342 and & = 107340 2yl
Here we should get the rate p(n21073/4),
n o e e .n%10%7%
4 & .377255E~02 1 .907804E-01 17 .165390
8 7 .932854E-03 9 .639260E-02 34 .691550
16 1.603083E~03 2 .98E455E-02 42.978430
32 3.796421E-04 7 .902579E~03 45 .506020
64 F.363182E-05 2.242575E-03 " 51.654350




Example 5.3.3. The kernel k(s,t) and y in (a)-(d) are as
that of corresponding part of Example 5.3.2. We choose the
vegularization parameter a« in (5.27) according to Algorithm 5.2.3.

In the tables below e = Hﬁ -y, i and & = Ia - ud hﬂ.

sh o,

4) Here we take p = 1/2, b, = 102n2 and d = 1.5. According to

Theorem 4.4.3 (i), we should get the rate (({(n10)23),

n o e e.(n.10)<3
4 . 7 .92314%9E-02 8.083386E~-02 $9.454386E-01
8 5.457997E-03 3.184877E~-02 §.913156E-01
16 1.638970E~-03 1.296893E-02 3.622236E-01
32 5.931827E~04 5.758975£-03 2 .694296E-01
64 2.271117E-04 3.032624E~03 2.252191E£-01
b) We take vy, p» b, are as in (a) and & = 1072n"2. Let

¢ = 1.5 and d = 0.5. By Theorem 5.1.5 (i), we should obtair the

rate o({n.10}72/3),

n_ o e &.(n.10)<?3
4 1.550871E-01 8.530082E-02 9.976848E~01
8 & .247536E-03 3.382691E°02 6 .280424E-01
1é .827964E-03 1.386662E-02 .086806E~01
32 .562740E-04 £.124841E-03 .865463E-01
64 2.505496E-04 3.186567E-03 .366518E-01
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4.158478E-04

€) In this case p =1, b, and ¢ are as in (a). According to
theory we should get the rate (n711071).
n e e e.v;'.lo
4 1.449626E-02 1.299059E-01 5.196238
8 4.181230E-03 6.421530E-02 5$.137224
16 1.739352E-03 3.215186E-02 5.144298
32 8.020217E-04 1.609211E-02 £.149476
64 3.859191E-04 8.075576E-03 5.168369
d) Let p=1, b, ¢, d be as in (b) and & = 1072n72. Here
also we should get the rate (n"1.1071).
n or e &.n.10
4 1.694081E-02 1.361748E-01 »~*—57446991‘
8 4 .616672E-03 6.787931E-02 5.430345
16 1.891412E-03 3.422990E-02 5.476784
32 8.667071E-04 1.720542E-02 5.505734
64 8 .650644E~03 5.536412
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