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CHAPTM 1 

INTRODUCTION KiiiD PRELIMINARIES 

1.1- GENERAL INTRODUCTION 

Many problems in mathematical physics and applied mathematics, 

particularly those involving remote sensing, indirect measurement, 

etc. have their mathematical formulation as an operator equation of 

the first kind, 

Tx = y, 

- where T : X 	Y is a bounded linear operator between Hiibeit 

spaces 	and Y. The above equation is, in general, 'ill-posed', 

i.e., existence of-  a unique solution which depends continuous 

on the data y is not guaranteed. In case there ass no solution in 

the usual sense, one seeks the 'least-square solution of minimal 

norm', which in general does not depend continuously on the data 

Y. In fact, if R(T),-the range of T, is not closed, then the map 

which associates each y E R(T) R(Ti` to. the leasL-squaYe 

solution of minimal norm is not' continuous. In such situation one 

has to regularize Tx = y, often with an inexact data yt5  with 

IY-Y4 s 8. The regularization which has been studied most 

extensively is the so called Tikhonov regularization, in which one 

considers x; the solution of the equation 
a 



I1Tx 6  - y 6 I1 	op  
a a 	

, p ) 0, 	q ) 0 

(T*T + aI)x !  = T *y 6 , a ) 0, 

for obtaining approximations for x, the least-square solution of 

minimal norm. 	The crucial problem here is to choose the 

regularization parameter a depending on 6 and y 6  such that we 

must have x 6 	x as 6 	0 and obtain the 'optimal' estimate for a 

the error 	Ix - x 6 11. 	It is known [39] that if 	x E FR( (T X T ) 1' 

0 < o s 1, then the 

Morozov [31] and 

principles', namely, 

11; 	x 6H 	is 	01(621)/(211+1) ). optimal rate for 
a 

Arcangeli [1]- had considered 'discrepancy 

HTx 6  - y 6H = 6 and HTx 6  - y 6H - 6  a 	 a 

respectively, for choosing the parameter 	a 	in Tikhonov 

regularization. For Morozov's method, the best possible rate for 

Ix - x 6 P 	is 	0(6
1/2) ([14)) and for Arcangeli's, the known rate a 

- 

was 	01(6
1/3

) 	 which is attained for 	x E R(T*) ([18]). 	In an 

..2o/(2o+1) ), 	Schock [38] attempt to obtain optimal rate, i.e., oi o 

considered the discrepancy principle 

and proved that the rate is arbitrarily close to the optimal rate 

for large values of 	q. 	Later Nair [34), considered the above 

discrepancy principle and improved the result of Schock [38], 	In 



fact, the result in [34), shows that, the Arcangeli's method does 

give the best rate 0(62/3 ) for x E R(T * T). 

In Chapter 2 we consider the discrepancy principle of Schock 

[38] and prove that if 	x E R((T * 7) 11 ), 	1/2 5 v s 1, then the 

..21.)/(2v4-1) optimal rate 0(0 	 ) is achieved. Our result improves the 

result of Nair [34] for 	0 < v < 1, 	and for 	v = 1 	our result 

coincides with the result in [34]. 	In the final section of 

Chapter 2 we consider Schock's discrepancy principle for iterated 

r,-;guiarization. 

If Y = X ano the operator under consideration is 'positive 

and self-adjoint', then one can consider a simpler regularization 

method, namely, the Simplified regularization. In this case Ne use 

the notation A for the operator T, and consider the equation 

AN = g. In Simplified regularization of the equation 

Aw = g 

one takes the solution w 6  of the equation 
a 

(A + aI)w 6  = g 6  • a 

- 
for obtaining approximations for w, the minimal norm solution of 

the equation 	Aw = g. 	Here 	g6  is such that 	lig-g 611 s S. 	For 

choosing the regularization parameter 	a 	in Simplified 



regularization Groetsch and Guacaneme [16] considered Arcangeli's 
- 

method and proved the convergence of wa to w. But in [16], no 

attempt has been made for obtaining the estimate for the error 

OW - A. 	In Section 3.1, we consider a generalized Arcangeli's a 

method, namely, 

Awa - 9611 = a 	a 
p ) O. 	q > 0, 

for obtaining the regularization parameter = 	we obtain the 

optimal rate 0(6v/(vs' 1) ) (see [39)) for the error HW - w 6U, 

whenever w E R(A V ), 0 < V 5 1. As a particular case we prove that 

the Arcangeli's method considered in [16] gives the rate 0(61/3 ), 

and the best rate 0( 61/2 ) is obtained when v = 1 by taking —E 
c14-1 

2
1 = —. The result for the case when v = 1 has also been considered 

by Guacaneme [19]. In Section 3.2, we consider the discrepancy 

principle, namely, 

a2(P+1) <(A + aI) -2")+1)096 , 096> = ce, p > 0, 

where 	c 	) 1 	is 	a constant and 0 is the orthogonal 	projection 

onto 	the closure of 	the 	range of A. 	Result 	of 	this 	section 

includes a 	result of Guacaneme [21], which he proved when 	A 	is 

compact and 	v = 1. In the final section of Chapter 3 we consider 

the discrepancy Principles considered in Spr-t innc 	1 =nri q 2 fnr 

iterated Simplified regularization. 



In reality there are two occasions, where one has to consider 

perturbed operators instead of the original operator. One, such 

occasion arises from the modeling error and the other when one 

considers numerical approximation. Many authors (e_9.,(31), [36). 

[37j, [43)) considered the equation Tx = y with a• perturbed 

operator Th instead of T with 

HT-ThO s ch 	ch 	C as h 	0. 

In Chapter 4 we consider Tikhonov regularizatio and S5,mplified 

regularization with perturbed operators. Specifically, we modify 

the discrepancy principles of Chapter 2 and 3 so as to include the 

case of perturbed operators. 

In Chapter 5 we consider projection method for the regularized 

equations 

(T * T 	c(I)x !  = T*y 6  and (A + cd)w! = 

The projection method for the equation 

(T*T + ecI)x! = T*y6  

is a special case of the method considered in Section 4.2 and 

under certain conditions this method leads to a better error 

estimate than the one obtained in Section 4.2. 	In order to 



illustrate the theoretical results, some numerical experiments have 

been performed, and the results are reported in the last section of 

the thesis. 

Now we formally define well-posed and ill-posed operator 

equations and discuss the peculiar problems associated ,Nith the 

solution of the ill-posed operator equations. Operator theoretic 

foundation for the sequel is laid by considering some preliminary 

results from Functional Analysis, which facilitates in discussing 

the concept of a generalized inverse and regularization methods. 

WELL—POSED AND ILL—POSED PROBLEMS 
	

Let X ar!d Y be HilbeTt 

spaces(over real or complex field) and T: x --4 Y 	be a linear 

operator. We consider the problem of solving the operator equation 

(1.1) 	 Tx = y. 

A typical example of equation (1.1) is the Fredholm integral 

equation of the first kind 

(1.2) 	 rk(s,t)x(t)dt = y(s), a sssb 
a 

with non-degenerate kernel k(s,t). Here X = Y = L 2 [a,b). 

An important fact concerning the equation (1.2) is that, the 

6 



associated operator T:L 2 [a,b] 	L2 (a,b) defined by 

(Tx)(s) = 
a 

is a 	'compact operator' of infinite 

have a continuous inverse (See, 

observation is very important in 

fb k(s,t)x(t)dt, 	a 	s s s b 

rank, and therefore 	T 	can not 

[26], 	Theorem 	17.2 and 	17.4). 	This 

view 	of 	its application, 	for 	this 

amounts to 	large 	deviations 	in 	the solutions 	corresponding to 

`nearby' data. 	Therefore 	equation 	(1.2) 	is 	a 	typical 	example of 

the 	so called 	'ill-posed 	problems'. Many 	inverse 	problems in 

physical sciences lead to the solution of the equation of the above 

type, 

In the begining of this century, Hadamad [22j specified 'the 

essential requirements for an equation to be well-posed. In our 

setting, the equation (1.1) is said to be p4ell -posed if 

(i) (1.1) has a solution x, for all y € Y 

(ii) (1_1) can not have more than one solution, 

(iii) the unique solution x, if exists,, depends continuously on 

the data Y. 

In operator theoretic language, , (ii), (iii) means that 	T 	is 



bijective and T -1 : Y -.4 X is a continuous operator. The equation 

(1.1) is said to be ill -posed if it is not well-posed. By the 

remark in the previous paragraph, if I is a compact operator of 

infinite rank, then the equation (1.1) is ill-posed. 

We now mention a few examples of inverse problems in physical 

sciences which lead to solution of an integral equation of the type 

(1.2). Detailed discussions on these can be found in Groetch [15). 

THE VIBRATING STRING. 	The fre Vi6rAtie)n of a nonhome,geneous 

string of unit length and density distribution p(x) > 0, 0 < x < 1, 

is modeled by the partial differential equation 

(1.3) 
	

p( x )Utt = Uxx ; 

where U(x,t) is the position of the particle 	'x' 	at time t. 

Assume that the end of the string are fixed and U(x,t) satisfies 

the boundary conditions 

U(O,t) = 0, U(1,t) = 0. 

Assuming the solution U(x,t) is of the form 

U(x,t) = y(x)r(t), 

one observes that 	y(x) 	satisfies the ordinary differential 

+- 



•equation 

( 1 .4 ) 	 " + (o2  p( x )y = 0 

with boundary conditions 

y(0) = 0, y(1) = O. 

Suppose the value of y at certain frequency 	is known, 

then by integrating equation (1.4) twice, first from zero to 

and then from zero to one, we obtain 

(1.5) 	 ily'(s; 	
rs 

6))ds 	 ,1
1 

 y'(0;60 + 612 	I p(x)y(x;o)rixds = 0. 
0 	 0 OJ 

or 

(1.6) 	 or ( 1 - s )y ( s ; (4)3( s  )cis 	y ' ( 0 ; )  
° 

The inverse problem here is to determine the variable density 

of the string, satisfying (1.6) for all allowable frequencies W. 

THERMAL ARCHAEOLOGY. Consider a uniform bar of length n which 

is insulated on its lateral surface so that heat is constrained to 

flow in only one direction. With certain normalizations and 

scaling the temperature U(x,t) satisfies the partial differential 

equation 

Ut = Uxx, 0 < x < n. 



We assume that the ends of the bar are kept at temperature zero, 

i.e, 

U(0,t) = 0 and U(n,t) = 0. 

If f(x) = U(x,0), 0 s x s n, is the initial temperature 

distribution, then the temperature distribution at a later time, 

say at time t = 1, is given by 

g(x) = U(x,1)' = r a nsinnx, 
nr1 

a n  = (2/n)f f(u) sinnu du.e - n2 
 0 

The inverse problem associated with the above consideration is 

to determine the initial temperature distribution f(x), knowing a 

later temperature g(x). From (1.7) and (1.8), the problem, then . is 

to solve the integral equation of the first kind, 

k( x ,u )f ( u )du = g( x ) 
0 

where 

k(x,u) = (2/n)2T - n2sinnx.sinnu. 
n= 

GEOLOGICAL PROSPECTING. 	Here the problem is to determine the 

location, shape and constitution of subterranean bodies from 

measurements at the earth's surface. Consider a variable 

10 



. distribution of mass along a parallel line below one unit of the 

earth's surface. Suppose that a horizontal line measurement is 

made of the vertical component of the gravitational force due to 

the mass. If the variable mass density x(t) is distributed along 

the horizontal axis for 0 s t s 1 and one measures the vertical 

component of the force y(s), then a small mass eioent, x(t )At at 

Position t gives rise to a vertical force Ay(s) at s, given by 

Ay(s) = 7(x(t)At/((s-t) 2 	1))cos0 

x( t )At/( ( s - t ) 2 +1 ) 3 / 2  

where 7 is the gravitational constant. Now the Frednolm integral 

equation 

	

7 
e l 	

-t ) 2 +1 .) -3 / 2 x; t )cit. = 	s 

gives the relation between the vertical force y(s) at s and the 

density distribution x(t). 

	

SIMPLIFIED TOMOGRAPHY. 	Consider a two dimensional object 

contained within a circle of radius R. The object is illuminated 

with a radiation of intensity I. As the radiation beams passes 

through the object it absorbs some radiation. Assume that the 

radiation absorption coefficient f(x,y), of the object varies from 

point to point of the object. The absorption coefficient. satisfies 

11 



the law 

where I is the intensity of the radiation. By taking the above 

equation as the definition of the absorption coefficient, we have 

y( x ) 

I x  = I oexp( If(x,y)dy) 

-y x) 

where y = R2-x 2 . Let p(x) = In(I o/I x ), i.e, 

Y(x) 

p( x ) = 	ff( x ,y )dy . 

-Y( x ) 

Suppose that f is circularly symmetric, i.e., f(x;y) = f(r) with 

r = f773 , then 

(1 .9 ) 	 1:)( x ) = JR( 2r/ r 2_7)f( r )dr 

The inverse problem is to find the absorption coefficient f 

satisfying the equation (1.9). 

BLACK BODY RADIATION. 	When a black body is heated, it emits 

thermal radiation from its surface at various frequencies. The 

distribution of thermal power, per unit area of radiating surface, 

over the various frequencies is known as the power spectrum of the 
A- 

1.2 



black body. The relation between the power radiation by a unit 

area of surface at a given frequency v and absolute temperature 

T of the surface is given by the relation 

p(v) 	2hv2 	1  
c2 	exp( hv/kT-1 ) 

where c is the speed of light, h is Planck's constant and k is 

Boltzmann's constant. 

Suppose that different patches of the surface of the black body 

are at different temperatures. Let a(T) represents the area of 

the surface which is at temperature T, i.e, a(.) 15 the area-

temperature distribution of the radiating surface. Then the total 

radiated power at frequency p, W(v), is given by 

(1.10) W(v) = (2h0/c2 )frexp(hvAkT-.1)))' 1aMdT. 
0 

The inverse problem is to find the area-temperature 

distribution a(.) that can account for an observed power spectrum 

W(.), i.e, to solve the integral equation (1.10). 

1.2. NOTATIONS AND SOME BASIC RESULTS FROM FUNCTIONAL ANALYSIS. 

Throughout this thesis X and Y denote Hilbert spaces over 

real or complex field and BL(X,Y) denotes the space of all 

13 



bounded linear operators from X to Y. if v = X, then we denote 

BL(X,X) by BL(X), We will use the symbol <-,.> to denote the 

innerproduct and UN to denote the corresponding r.orr for the 

Al 	spaces under consideration. The results quoted in this socion 

with no references can be found in any text book on functional 

analysis, for example, [26] or [133. 

For a subspace S of X, its closure is denoted by S. and its 

annihilator is denoted by S'L , i.e., 

(u c X :<x,u> = 0 for all, 	E S. 

If T E BL(X,Y), then its adjoint, denot:;d 	 a bcurded 

linear operator from Y to X defined hY, 

<Tx,y 	= e.x.f*y> 

for all x E X and y E Y. Denoting the range and null space of 

T by R(T) and N(T) respectively, i.e., 

R(T) = (Tx 	x 	x) 

and 

N(T) = {X E X :Tx = 0). 

we have the following. 



Theorem 1.2.1. If T E BL(X,Y), then R(T) 1  = N(T * ), 

ht(T ) 1= R(T * ), R(T * )•L= N(T) and N(T* )"` = R(T). 

The spectrum and the spectral radius of an operator T E BL(X) 

are denoted by a(T) and r a(T) respectively, i.e., 

o(T) = (X E C 	T 	XI does not have bounded inverse), 

where I is the identity operator on X, and 

r a(T) = SUP ( !Xi 	X € OCT )). 

It is known that 

Q(T) s ilTli, 

and a(I) is a compact subset of the scalar field 	If I is a 

nonzero self-adjoint operator, i.e., T = T*, then o(T) is a non-

empty set of real numbers, and 

(1,11) 	 r a(T) = HT1i, 

If T is a positive self-adjoint operator, i.e., T = T* and 

(Tx,x> 	0, x e X. then a(T) is a subset of the set of 

non-negative reels. If T E BL(X) is compact, i.e., closure of 

(Tx 	x E X, Oxii 	1) is compact, then a(T) is a countable set 

15 



with zero as the only possible limit point. In fact we have the 

following result. 

Theorem 1.2.2. Let T E BL(X) be a non-zero compact self-adjoint 

operator. Then there is a finite or infinite sequence of non-zero 

real number's (an ) with all 2 0621 2 . 	, and a corresponding 

sequence (u n ) of orthonormal vectors in X such that for all 

x E X, 

Tx = f X n <x,u n >u n , 

where a n--4 0 whenever the sequence (a n ) is infinite. Here 

hn 
	are eigenvalues of T with correspondin eigenvec,ors u n . 

If T E BL(X,Y) is a non zero compact operator, then TvT is 
e".  

a positive, compact and self-adjoint operator on X, Then by 	.1;n 

Theorem 1.2.2, and by the observation that a(T*T) (Consists off 

non-negative reels, there exist a sequence (s n ) of positive reals 

with si z s2 z ... and a corresponding sequence of orthonormal 

vectors (v n ) in X satisfying. 

T*Tx = s n <x i v n >v n , for all x E X 

and 	T*Tv n  = s nv n,  n =1, 2, . 	. Let Xn  be the positive square 

root of s n , Fin = 1 /Xn and 
	

un 4  pnTvn. Then (u n ) iscT 

16 



- completg orthonormal sequence in Y and pn T *u n  = vn . Usinq 

Theorem 1.2.2, it can be seen (See, [12)) that (u n ) is a complete 

orthonormal set for R(T) = N(T * )4' and (v n ) is a complete 

orthonormal set for R(T*) = NM I'. The sequence fu n 	vn  , pn ) 

is called a singular system for T. 

In order to define functions of operators on a Hilbe ,- t space, 

we require the spectre, 1 theorem for a self-adjoint opera„te_r 

is a generalization of Theorem 1.2.2. 

Theorem 1.2.3. 	tiA" 
	

HL(X) be self-adjoint and let 

a = infa(T), 	suPc(7). Then there exists a family 	X 

of projection operators on X such that 

(i) ,‹ X2 	i.:7;pies 	<Exi x,x> s. <E)„x x) 	for all 	x 	X. 
"4, 

(ii) E a  = 0, Eb 	where I is the identity operator on X 

(iii) T = fl;:dEA. 	m 
a 

The integral in (iii) is understood in the Rieman-Stieities 

sense. 	The family, (Ex4E[61,b) 	is called (-he 	 ftmily of 

the operator 	if f is a continuous real valued function on 

[a,b) , then f(T) 	61..(X) is defined by 

17 



f( T ) = P:f) ( X )dE A . 
a 

Then 

C(f(T)) 	(f()) :) EOM). 

Now by (1.11) we have 

(1.12) 	 Ilf(T)“ = r a(f(T)) = sup { If(A)I = k c a(T)). 

For real valued functions f and g, we use the notation 

f( a) = 0(g(a)) as a 
.. 

0 

to denote the relation 

;1(41 M as a 0 ;  

where M > 0 is a constant independent of a, and 

f(a) = 0(g(a)) as a 

to denote 

lien 
f(a)  = 0. 

a --)0g( a) 

1.3. GENERALIZED INVERSE. 

If the operator equation (1.1) has no solution in the usual 

sense, i.e., if y does not belong to the range of T, then one 

18 



may broaden the notion of a solution in a meaningful sense. This 

can be done using the concept of a least-square solution. 

For T E BL(X,Y) and y E Y, we say that u E X is a least 

square solution of the equation (1.1), Tx = y, if 

lau- Y 1 = i nf(eTx-y 1 : x E X). 

It is to be remarked that if T is not one-one, then a least-

square solution u, if it exists, is not unique, since u+v is also 

a Laast-squaFe solution for ever y v e N(T). Mc foilowin? theorem 

provides characterizations of least-square solutions. 

Theorem 1.3.1. (Groetsch [12), Theorem 1.3.1). For i E BL(X,Y) 

and y e Y, the following are equivalent. 

(i) 	ITu-yfl = infOlTx-yR 	x E X) 

(i i) T *Tu = T*y 

(iii) Tu = Py 

where P 	Y is the orthogonal projection onto P777. is 

From (iii) it is clear that (1.1) has a least-square solution 

if and only if Py E R(T), i.e., if and only if y' belongs to the 

19 



dense subspace R(T) 	R(T )1  of Y. Any of (i)-(iii) in Theorem 

1.3.1 shows that the set of all least-Square solutions is a closed 

convex set, and therefore, by Theorem 1.1.4 in [11], there is a 

unique least-square solution of smallest norm. For y e R(T) + 

R(7) 1", the unique least-square solution of minimal norm of (1.1) is 

called the generalized solution or pseudo solution of (1.1). It 

can be easily seen that the generalized solution belongs to the 

subspace N(T) L  of X. For T e BL(X,Y), the map Tt which 

associates each y E D(Tt) :=R(T) 	R(T )l , the generalized solution 

of (1.1) is called the generalized inverse of T. We note that if 

y E R(T) 	and T 	is injeci.ive, tht•) the ;eneralized solution of 

(1.1) is the solution of (1.1). 	If 	T 	is bijective, then it 

follows that Tt = T -1 . 

Theorem 1.3.2. (Groetch [11], [13]). Let. r P BLfX,Y). Then 

Tt:D(Tt) 	X is a closed densely defined lineaT.  cpeator, and Tt 

is bounded if and only if R(T) is closed. 

If equation (1.1) is ill-posed then one would like to obtain 

the generalized solution of (1.1). But Theorem 1.3.2 shows that 

the problem of finding the generalized solution of (1.1) is also 

ill-posed, i.e., Tt is discontinuous, if R(T) is not a closed 

subspace of Y. Recall that if T E BL(X,Y) is a compact operator 

of infinite rank, then R(T) is not closed. This observation is 

important since a wide class of operators of practical interest, as 

we have seen in Section 1.2, are compact operatos of infinite 
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rank. In application, the data y may not be available exactly. 

So, one has to work with an approximation, say y, of y. If Tt 

is discontinuous, then for y close to y, the generalized solution 

Tty, even when it is defined, need not be close to Tty. Therefore 

some regularization procedures have to be employed, to obtain 

approximations for Tty, for y E D(Tt). 

1.4• THE REGULARIZATION PRINCIPLE AND THE TIKHONOV REGULARIZATION. 

Here onwards we are concerned with the problem of of finding 69-> 

the generalized solution of (1.1) where T e BL(X,Y) and 

Y E D(T t ) = R(T) + R(T) i . 	For 	& > 0, let y e Y be an inexact 

data such that fly- YR s 5. Bykegularization of the equation (1.1) a 

with y in place of y, we mean a procedure of obtaining a family 

(x a ) of vectors in X such that each x a , a > 0, is a solution ofr 

a well-posed equation satisfying x a  Tty as a ,4  0 and & 0. 

A regularization method which has been studied most extensively 

is the so called Tikhonov regularization ([43], [44]) introduced in 

the early sixties, where x a  is taken as the minimizer of the 

functional 

X 1.-- ►  Fa(x) = OTx - ;12  + apxH2 , x E X, a > O. 

The fact that 	xa 	is the unique solution of 
	

well-posed 	(A" 

equation, namely, 
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(1.13) 	 (T *T + aI); cr  = T *Y, 

is included in the following well known result, the proof of which 

is included for the sake of completion. 	 e \Av24 

Theorem 1.4.1. (See,///[351)/ Let T e BL(X;Y) and y E Y. 	For 4. 4-- 

each a > 0 there exists a f' unique x a E X which minimizes the 

function 

(1.14) 
	

X 1---9 Fa(X) = HTX -  )11 2 	aHXH 2 , x E X. 

More over, the map y F--4 x a  is continuous for each a > 0, and 

xa  = (T *T+al)-1 T*y. 

Proof: First we prove that there exists a unique 	X eY 
	 which 

minimizes the function (1.14). 	Consider the product space 	XxY 

with the usual innerproduct defined by 

<(x l ,y 1 ),(y. 2 ,y 2 ): = <x i ,x 2 > 	<yi ,y2>, 	x i , x 2  € X ; y1, y2  E Y . 

It is seen that, with respect to this innerproduct, XxY 	is a 

Hilbert space. For a > 0, consider the function 

Fa  :X --o XxY, F a(x) 	( icx,Tx), x E X. 
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Since T E BL(X,Y), the graph of T, 

G(T) = ((x,Tx) : x E X ) , 

is a closed subspace of XxY , so that the range R(Fa) of F a  is 

closed in XxY. Thus by Theorem 1.3.2, the generalized inverse qc 

 is a bounded linear operator from XxY into X. Let xa  = F(O,y). 

Since F a  is one-one, it is clear from the definition of the 

generalized inverse that 	xa 	is the unique element in 	X 

satisfying 

HF a(x a ) 	(0,y)H = inf (r a(x) 	(O,y)H 	x E X) 

i.e., 

iT xce_ y o2.1. a 9 ca l2 = inf (HTx- 11 2 + CCOX 112 X E X). 

Now since the function 	J :Y 	XxY defined by J(y) = (O,y), 

y E Y, is continuous, the function y 	xa:= FIc(0,y) 	is also 

continuous. 

Now to prove that x a  is given by x a  = (T*T + al )-1 T *y, 

first we note that T*T is a positive self adjoint operator and 

hence -a V a(T *T), if a ) O. Thus for a > 0, (T *T + ai rl exist 

(and is a bounded linear operator on X. Let u a = (T * T + aI ) -2 "T *y , 

a ) 0, then 

tiT(ua+v)-y112  + aiva+vH2  = HTua-A2  + anu a112  + <( T*T+ai iv , v> , 
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for all v E X. Now since <(T*T +any , v> z 0, for all v E X, 

it follows that 

ITua-y12  + alual2  s 8Tx-Y12  + alx12 , for all x EX. 

This, together with the fact that 	xa  = FI(0,y) 	is the unique 

element in X such that 

iTx u- y112  + allx a ll2  = inf 8Tx -y12  + aUxt12  :x E X) 

shows that x a  = (T*T 	aI)-1 T*y. 

If Y -, X and T is a positive self-adjoint operatoT on X, 

then one may consider (See/Bakushiniskii [2]) a simpler 49/7 

regularization method to solve equation (1.1), where the family of '-- 

vectors 	W. a > 0 , satisfying 

(1.15) 	 ( T + aI )wa  = y , 

is considered to obtain approximations for 	Tty. Note that for 4 

positive self Ladjoint operator T, the ordinary Tikhonov 

regularization applied to (1.1) results in a more complicated 

equation 	(T2  +„.ctI)-x a  = Ty 	than (1.15). 	Moreover it is known 
' \ 

(See4 	0 chock [4) that the approximation obtained by regularization ,dt 
"1,7 

approximation obtained by Tikhonov regularization. 'As in Groetsch 

4 

procedure (1.15) has better convergence 	properties than the 
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and Guacaneme, [16], we call the above regularization procedure 

which gives the family of vectors w a  in (1.15), the Simplified 

regularization of (1.1). 

One of the prime concerns of regularization methods is the 

convergence of x a  (w
a 

in the case of Simp;ified regularization) 

to Tty, as a _) 0 and 6 ♦ O. It is known ([12), Theorem 2.3.5) 

that, if 	R(T) 	is not closed, then there exist sequences 	) ti) 

and (an ): = (a(61)) such that 	6n 	0 and an 	0 as el, 	y 

but the sequence (x) is divergent as o n i  -.51 Therefore it is 
. 

Irnpc-rtanI 	cooee the regularizatien 	 7iepend!...ne or 

the error level 8 and also possibly on y. say a - 	 such 

that 	5.; ) 	0 and 8 	O. We shall see later 

(Section 2.1) that in the case of Tikhonov regularization, if we 

take 	a = 6 	a priority then 	xa 	Tty 	as 6 .4  O. 	Pralc,tical. 

considerations suggest that, it is desirable to choose the 

regularization parameter a at the time of solving x a , using a 

so-called :a posteriori method which depends on y as well as 6, 

1.5- THE CHOICE OF REGULARIZATION PARAMETER BY DISCREPANCY 
PRINCIPLES. 

For choosing the regularization parameter a posteriorE , , (-/ 

`discrepancy principles' have been used extensively in the 

literature (e.g.,,[4], [6] , [7], [10], [32], [3820. ,  This idea was 
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:first enunciated by Morozov[31). 	The method is based on the 

reasonable view that the quality of the results of a computation 

must be comparable to the quality of the input data. To be more 

precise the magnitude of the error must be in agreement with the 

accuracy of the assignment of the input data (See, Morozov [31) or 

Groetsch [12)). The practical difficulty here is that even an 

asymptotic bound for the quantity 	Hxa  - T*YD 	usually requires 

information on the data y. Therefore one has to consider an 

`optimal order' (optimal in the sense that, in general, the order 

can not be improved ) of the quantity Bx a  Ttyj, based on the 

available information of the data. Now the crucial problem is 'co 

find the value of the regularization parameter cx which gives the 

optimal order of the quantity Rx-Tty. 

The subject matter of this thesis is to provide optimal'error 

bounds for the existing discrepancy principles for Tikhonov 

regularization and simplified regularization, and also to 

generalize a discrepancy principle for simplified regularization 

considered by Guacaneme [21). Computational results are given in 

the lee... section of the thesis which confirm the theoretical 

results. 

1.6 SUMMARY OF THE THESIS 

In Chapter 2 we consider Tikhonov regularization for 

approximately solving the ill-posed operator equation 	Tx = y. 
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where T : X --)Y is a bounded linear operator between Hilbert 

spaces X and Y and y E R(T) + R(T) 1", i.e., the problem of 

minimizing the functional 

x 	11Tx-y1
2 

+ Axil
2
, a > 0. 

When only an approximation of the data y is known, say y 6 , with 

fy-y61 s 6, then the problem of choosing the regularization 

parameter a depending on 8 and y 6  is important. For this 

purpose many discrepancy principles are known in the literature 

(e.g., 
	[4] , 	[10], 	i;38] ). 	J.11 Sec.tion 	2.2 we consider 	the 

discrepancy principle 

ai = 	p TO, q > 0, 
a 

considered by Schock [38] and later by Nair [34] and prove that 

this . discrepancy 	principle 	gives 	the 	optimal 	estimate 

ogev/(2IP'.1) ), 	1/2 s v sl, 	for the error OX 	x
a
B whenever 	

- 
x 

belongs to R((T*T)v). 	The result of this section improves the 

result of Schock [38] , and also it improves the result of Nair 

[34], except for the case v = 1. Lparticular case of the result, 14  

as proved in (34], shows that the Arcangeli's method does give the 

optimal rate c(b?/3 ). In Section 2.3 we show that one can use the 

discrepancy principle considered above for iterated Tikhonov 

regularization also. 
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1-  

Chapter 3 is concerned with the problem of approximately 

solving ill-posed operator equation Aw = g, where A : X ---,X is 

a positive self-adjoint operator on a Hilbert space X and 

g E R(A), the range of A. 	Here we consider the Simplified 

regularization, where the solution w 	of the equation 
a 

( A + aI )w a  = 

is taken as an approximation for the minimal norm solution w of 

the equation Aw = g. If the data g is known only approximately, 

say 96 , with a9-9% 6, then we consider the 
a 

the equation 

(A + aI)w 6  = 96  
a 

for obtaining approximations for w. 	In this case, for choosing 

the parameter 	a, Groetsch and Guacaneme [16] considered -  the 

discrepancy principle 

nAw 6 _ g on . 

	

a - 	ya 

and proved that w 6  _4  w as 6 „4  C, but no,  attempt has been made 
a  

for obtainin.9festimate for the error HtJ - w 6 11, 	in Section 3.1 we 
a 

consider a general class of discrepancy principle, namely, 

s
q, 
P 

HAw6 - 	-- - 	p > 0, q > 0, 

	

a 	 a 
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which includes the one considered by Groetsch and Guacaneme (16), 

and obtain the optimal estimate for the error lw - wag. In Section 

3.2 we consider a generalized form of a discrepancy principle 

considered by Guacaneme (21), namely, 

ax 
	0 2 ( F 1 ) ((A + 

	

) ` 	Qg6  ,Q9-> = ce, p > 0 

where c > 1 is a constant and 0 is the orthogonal projection 

onto ffr17, the closure of the range of 	A. 	Results of this 

section include6 a result of Guacaneme [21), which he proved when ,,Q 

A is, in additioH, .-:,.fmpat and w E R(A). 	In tine last :::cc- ti;:n of 

Chapter 3, we consider the discrepancy principles considered in 

Sections 3.1 and 3.2 for iterated Simplified regularization. 

Chapter 4 4-a demoted to the study of Tikhonov regularization 

and Simplified regularization in the presence of model( ,o and data ' 

error, i.e.,tboth the operator and the data are known only 

‘.3-LAAd  approximately. Knowing a family of operators Th, h > 0, with 4 

?T-Thq 	Eh, Eh 	0 as 
	

0
. 

we consider the solution x 
,h 
 of.  the equation a 

(TATh + aI)x! ,h  = 4y6 , 

as an approximation for 	x, the minimal norm solution of the 
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equation 	Tx = y . 	In this case we consider the discrepancy 

principle 

IlThqc 	yoa 	Erl-trh  
9 

a 
p > 0 , q > 0 , 

and obtain the optimal rate 6(84-ch)21(2v+1) ) , 1/2 s v s 1 for 

1; - x 6 5h  1 under the assumption x E R((T*T) 0). In Sections 4.3 

and 4.4 we consider a family of self-adjoins operators Ah with 

BA-Ahll s eh, eh _0  0 as h .4  0. 

For choosing the parameter in the case of Simplified regularization 

of Airs = g, we consider the discrepancy principles 

hto.4 4! — 9611 	0:5+511 )P  
P > 0, q 

a"4  

and 

2(P+1)((Ah 	ca)-2(P+1)Qhg8.0h0> a 	 = (c6 + dch)2 , p > 0, 

where c and d are properly chosen constants and Oh is the 

orthogonal projection onto R(Ah). 

1-,In Chapter 5 we consider projection method for the regularized 

equations 

( T * T 	«I )x! = T*y 6  and (A + «I )w ot6  = 96 . 
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For 	the first equation, the method is a special case of the 

procedure considered in Section 4.2 and is a generalization and 

modification of Marti's method. Also in this case the 

regularized projection method improves the result of Section 4.2 

under certain conditions. In order to illustrate the theoretical 

results, some numerical experiments have been performed, and the 

results are reported in the last section of the thesis. 
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CHAPTER 2 

PAR/UTTER CHOICE STRATEGY FOR TIIGIONOV REGULARIZATION 

In this Chapter we consider one of the important points to be 

taken into account while using Tikhonov regularization method for 

ill-posed operator equations, namely, choosing the regularization 

parameter depending on the inexact data as well as the error level 

in the data. 	In Section 2.1 we present some known results which 

motivated our investigations in the later : 

	

These results 

are presented in suitable forms required for later references and 

their proofs are included for the sake of completi 	 Section 
etwo 

2.2, a discrepancy principle suggested by Schock [38] is considered 

for ordinary Tikhonov regularization. We show that the 'optimal' 

rate 	is achieved under certain smoothness assumption on 'the 

solution'. 	In the final section, qi-bov)s discrepancy principle is 	k4.  

applied to the iterated Tikhonov regularization and it is compared 

with a procedure adopted by Engl [4]. 

2.1- PRELIMINARIES 

We are concerned with the problem of approximately solving the 

operator equation 

(2.1) 	 Tx = y , 
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where T E BL(X,Y), with non-closed range R(T), and y e D(Tt) := 

R(T) 	R(T)i . 	The idea is to look for approximations for the 
^ 

generalized solution x := Tty of (2.1) with the help of well-posed 

equations. Here Tt is the generalized inverse of T (see Section 

1.3). We consider Tikhonov regularization fo r solving the equation 

(2.1). In practice the data y may not be known exactly, instead 

we may have an approximation, say y 6  of y within error level 

6 ) 0, i.e., y6e D6: = (u e Y 	 s 6). 	In Tikhonov 

regularization, as we have seen in Section 1.4, one solves the 

equation 

(2.2) 	 (T*T + aI)x! = T*y 6 , a > 0. 

We recall (Section 1.4) that (T*T 	aI)-1  exists for each 

a > 0, and is a bounded linear operator. Also we note that for 

each a 

(2.3) 	 T( T*T + aI )-1  = (TT*  + aI)-1  

We have the following result which gives certain bounds for the 

error Ix - x 6R. a 

Theorem 2.1.1. (Schock [41]). 	Let .x 6  is ;'3s in (2.2) with a 

yk D 6  and x
a 
 :=x0 . Then we have the following. 

a 

a) 	x
a

♦ x as a .4 0 . 

33 



b) 	If x E R((T*T)V ), 0< V S 1, then 

(i) ix - xaN s 

(ii) fx 	x6f s clay + 6  a 

where c1 > 0 is a positive constant. 

In particular we have the following, 

(iii) if a = a(6) is such that a(6)_, 0 and 

then 6  x
a 

.., Ci as 	6 	0. 

as 

-2/(2v+1) (iv) If a = CO ` 	for 'some constant c > 0, then 

11; - 	62v1(21,+1)). 

Proof: To prove the convergence of x
a to x, we let 

Ra 
= cle(T *T + aI) -1 , then 	xa = Rax. Thus it is enough to prove 

that R
a
x 	0 as 6 .4  0. But NR

a
f s 1 for every a > 0, and for 

any u E R(T*T) let u = T*Tv, so that fR otuN = NR( T*T )v f 5 afvf 

Thus R
a
u .4  0 as a 0 for every u E R(T*T). Therefore by using 

the fact that R(T*T) is dense subset of the orthogonal compliment 

of the null space of 
	

and ORa s 1, it follows that R a 	0 as 

CC 
	

0. 

Now using the definition of x
a 

and the relatidn T*T>c = T *y, 

V 
1°1 
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we have 

gx 	= lix - ( T * T + aI ) -1 T *yN 

= 	T * T +  

= Na( T*1-  +  

where x = ( T *1" Piz for some z E X, since x E R((f*-;" ) 1) ). Si nce 

tia( T * T + aI ) -1 ( T *T )oz N s Ha( T*T + 	)-1 (1-*-1 )1 	f1 

by ( I .12 ), we have 

cal)  Na( T *T + ai )- 1  ( T *-7  ) 1)-2 11 S SUP 
osxstill 	̀r  

= a°SLIP 	
- (  

OsAsNTH 

Now the result (I) follows from the fact that 
	

X.," ) 

for 	0 < 	 1 and (ii) follows from ( ) and tht.1 following 

inequality, 

( 2.4 ) 
	

X 	X 5 § 	f3X 	x
a

N + 	 Of 

where 

( 2.5 ) 
	

Nx
a 

- xOtt 	'1 1`T +  



(721 fi(T*T + aI )- i(i-*T)1/211Iy_y6s 

Now (iii) follows from (ii), and (iv) follows from (ii by noting 

4 	 _2 that 	ay = 	= n( 2p/(2v+ 1) ) if a = c /( 2v+1 ) . o-  

The following Theorem shows that the rate 

(2.6) Rx 	= 0( 621)/(2‘)+1)) 
a 

in Theorem 2.1.1 (iv) is optimal in the sense that. :471 gentyral it 

cannot be improved. 

Theorem 2.1.2. (Groetsch [12] , Schock [39] ). 	t. 	 X 

be a compact linear operator. assume tnat v 	x E Hk1 ) ) 

0 < v 5 1, 0(6) = c62/(2v+1) for some constant c > 0, snd that, 

for each y6  € 06 , we have II; - x 66  . 0( 6.2v/( 20-1 ) ). Then, Tange 

of T *T is of finite dimension. 

Proof: 	Let (u n ,v n ,pn ) be a singular system for 	S•2p,'.)se that 

T *T does not have a finite rank. Then by the rema7k that. follow 

Theorem 1.2.2, pn  _4  m as n .4 . co 	L e t 8n  = iii;( 2v+1 ) and 	YPi 

For simplicity we replac 	5n  by 6 and a(5n ) by a- 

Then 

y Onun 

x6 -x = x 
a 
- 	+ 	x 

a 	 a 	a  



= x
a 	

x + 6(T *T + aI )-1 T *u n  

61.1-„lvn.  = x
a 

x +  _y  
Pn +a 

Therefore 

Ix& - ;<i 2  = 	a - (H22 	(
1 + 0P n 

26119  )0( 
a 
-X , y r) ) + 

a  

..2/( 2v+1 ) and hence using a = co 	 and 6 = p;( 2P+ 1 ), we obtain 

-4v -2v 
62v+111 x 5  - ;',12 	k 6210. 1< x

a 	
, 

1+c 
( 1 4.0-2 11"142 .  

Now by hypothesis, we have 

6-2  v/( 2v+1 ) 0 1 2 
6 
lim 

0 	1+C 
sup 	 <x

a
-x 	vn > 	(1+c)-2 Uvr, 

so that 

6-2 vi( 2R+1 ) 
(1+c)-2 1v n l 1 2 

6 
lim 

0
sup 1-477, <x -xa  vn) 

2 
6
Lim sup 6

-21.1R 2L)+1 " 
x aq 

 .4  0 

However, by hypothesis we also have Wxa(
8)

_xi 0(6.0/(20-1 ) ) and 

hence (1 + c) -2 Nv n # s 0, a contradiction. This completes t he proof 

of the Theorem. 
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Remark 2.1.3. 	Theorem 2.1.2 is proved in Groetsch [12) when 

P = 1 and the proof for the case 0 < P S 1 is given in Schock [39). 

The proof given above is a modification of the one given in [12). 

In the above Theorem, if p = 1 then the condition 

.2/(21) a = co 	 in Theorem 2.1.2 is redundant, because in this case 

we have 

a o(0) + 001; - %SI) 

(Groetsch [12), Theorem 3.2.3). In fact, the above relaU,on 

together with the condition 	 011 = 0(62/3) implies Lisa a 

at  = 	452/3 ) 

As we mentioned in Section 1.4, in a posteriori paremetr choice 

strategies the regularization parameter a = a(6) (dependinc: on yo 

and the error level 6) is determined during the course of 

computation of 	x 8. 	Well-known methods in this regard are the 

discrepancy principles 

OTO - 	 = 6 and DTx 8  - y 80 = -- 
a 	 a 	• 

of Morozov [31) and Arcangeli's [1] respectively. Groetsch [14] has 

shown that Morozov's method does not yield a better rat than 

01(6
1/2

). In the case of Arcangeli's method Groetsch and Schock [18] 

have shown that, if x c R(T*), then the rate is de /3 ) instead of 

0( 61/2 
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In an attempt to achieve the best rate 0(62" ), Schock [38] 

considered a generalized form of Arcangeli's method, namely, 

(2.7) 	 ITO - 	 = 
- 

P > 0 , q > O. a 	a 

for choosing the regularization parameter 	a. 	The following 

proposition shows the existence and the order of a (with respect 

to S ) satisfying (2.7). 

Proposition 2.1.4. (Schock [38]) For 6 > 0, there exist a unique/ 

a:= a(6) satisfying (2.7), and if y * 0, then 

p  

a( 6) 	0 as 6 	0 . Moreover a< 	= 	6(4+1  ), 0 < & s UY n  

Proof: 	We observe that 

(2.8) 

and hence 

(2.9) 

rrx 6  yal = la( TT* + al rlyati 
a 

alY 6 11  
a+ NT117 	§Tx! - y81 

s BY 8II. 

For fixed 	6, Y 6 , let 	00(a) = a2c1 HTO 	y451.2. 	Then from (2.9) it a 

follows that 
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lim cp(a) = 0 and lim it(a) = 

	

a _00 	 a ..►co 

Therefore by Intermediate Value Theorem, there exist an a := d,8) 

satisfying (2.7). 	The uniqueness follows from the fact. that the 

derivative of 	4(a) is strictly positive; i.e., 41( a) 	is strictly 

increasing. 

Now suppose a( S) does not converges to zero as 8 	0. Then 

there exists a sequence (SO such that 6 r, 	0 and an  == at t\-- 1  

c > 0 as n 	m. Then by (2.7) we have 

q 	 n, 

	

0 = Urn an  liTx
cen 

- Y O = o g lIT(T * T 	cI riT*y 
n 

and hence 

TT*y = TT *y 	cy 

i.e., y = 0, a contradiction. Thus a( S) 	0 as 8 	0. 

Note that 

SP  
PY (5 11 - --ET = ^ y c5 -  NT X 6  - Y (5 O 

	

a 	 a 

s IfTx OH 
a 

11T(ax a(5 )11 
a 

1 
11TH kWh a 	a 
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a 

Therefore 

a( 6) (4+1 S  ITO+a(6) 6P 
117671-  

2( IT II+a( .5)  )6 
BYO 

Hence 

P  
a( 6) 	6q+1 

This completes the proof. ■ 

Schock [38] proved that ifx E R((T* T)v) 	0 t v 	1, 

2  

(4+1 	2014( 1/2c1 ) 

then 

and. 	a = a(5) is chosen according to (2.7), 

-x 60 = 	at  ) 	with 	t = 	
2v - 

a 	 2v+177.0-2.7:1-7" 

Latter Nair [34] improved the above result of Schock by showing that 

if x E R((T*T)v), 0 < v 1 1, 	p 
q+1 

is chosen according to (2.7), then 

2  
20-1+((1-10/2c0 and a 	a(S) 

(2.10) 6 - x 6 U = oke with s - 	v 
a 	 N1471. 7tti7 - 071c15 

The above result (2.10), in particular, gives the best rate 

= 0(62/3,)  
	 p 	2 for x € R(T*T) for the choice of col,.  - -sr showing there 

by that the Arcangeli's method, i.e., for p = 1, q ,= 1/2, gives the 
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optimal rate for v = 1. This result also includes the main Theorem 

of Guacaneme [20J which he proved for p = 2, q = 2 	and v = 1. 

In order to obtain the optimal rate (2.6), Engl [4) had 

considered a variant of (2.7), namely, 

(2.11) I T *Tx 6  - T*y 6  n2  = 	, p > 0, q > 0, a 	 a 

and proved that if ; € R((T*T)V ). 0 < V 5 1. 22v+1' and 

a = a(6) 	is chosen according to (2.11), then the optimal rate in 

(2.6) is achieved. 	It is to be recalled that Engl and his 

collaborators stated in many papers (e.g., [4],[6],[7),[] ) that 

,2/3 the Arcangeli's method can not have the optimal rate 0(6 	) and 	?c 

therefore the introduction of a new discrepancy principle such as 

(2.11). This remark was based on a wrong observation.on a resuI.t in 

[18]. What in fact, proved in [18] was that the rate 0(5 2/3 ) is 

not possible for Arcangeli's method unless x = 0, and the rate 

0(62/3 ) is attained if T is of finite rank. 

Next section is an attempt to show that Engl's modification 

2v 
(2.11) is not necessary to obtain the rate 	0( 821)+1 )- 

	We a(:hie‘ 

this goal for 1/2 A o A 1. Also for 0 < v < 1, the result of the 

forthcoming section is an improvement over the result (2.10) of 

Nair [34). 
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2.2- GENERALIZED ARCANGELI'S METHOD FOR TIKHONOV REGULARIZATION. 

Here onwards we assume that y e R(T), so that least square 

solution of (2.1) is its solution and the generalized solution of 

(2.1) is the solution of minimal norm, i.e., the unique element 

X E N(T)1' such that Tx = y. 	In order to choose the regularization 

parameter 	a in (2.2) we consider 	the generalized Arcangeli's 

method (2.7). 	Now Theorem 2.1.1 (ii) 	shows that, estimetes for 

77-37 
estimates for tne error 	llx - x 6 11. 	Thus, if, view 

a 

2.1.4, the aim is to obtain estimate for -,..- ia: Before 	 show 

the convergence of the method. 

	

Theorem 2.2.1. 	If a = a(8) is chosen according to (2.7) with 

4q( q+1 )  
2q+1 	

, 
P < 	 , tnen 

x _o  x as 8 4  O. 
a 

Proof: In view of Theorem 2.1.1 (a), (2.4) and (2,5) it is enough 

8 to prove that 	73 4  0 as 8 .4  O. But 

1iTx 6  - Y 6 11 = 11T( T * T + aI ) -1 T *y 8 	yOfl 
a 

a(S) 	and in terms of powers of 	8, will lead to the 

= 	TT*  + ,aI ) -1 yOU 
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s Ila(TT *  + an - 4Y°  - 	+ 11a(TT *  + a1) -1 Y1 

(2.12) 	 s 6 + Ha( TT *  + ai ) -1 T -x0 

where for(TT *  + aI)-1 (Y 6 	Y)U 5 (5 and y = Tx. Thus we have 

(2.13) ITO -. Y 451 s 	+ UaT( T * T + 	rliC a 

Let T = U(T*T )1/2  be the polar decomposition of 	where U is 

the unitary operators on X. Then we have 

acir( T *T + aI 	*), 	s flati( T * T ) 1 / 2 ( T*T + <x i ) 
ti 

aX 1/2 	 - s sup 	 Ix!! 
X > 0 X+a 

(X/a) 112  a1/2SUP 	 IIX H > 0  1+X/a 

1/2 a 	Hxli. 

Therefore by (2.13) and Proposition 2.1.4 we have 

SP  = ilT X 6  - Y 6 11 
a 	a 

s S 4 coltc. 
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Thus 

I  

	

771 _ 81 	4:51" )zl 

1 — P 	..2(q+1 ) 

	

s 8 	24  (8 + CO 	 ) 

1- ° 	° 0( 8 2 

p<2c4+1)  
81  44( cel) 

Now by the assumption on (p, q) we have 	̂ 	6 	0. 	This 

completes the proof of the Theorem. 

In order to obtain the main result (Theorem 2.2.4) of this 

Section, we require the following two Lemmas. 

Lemma 2.2.2. 	If x E R((T*T)v), 0 < u s 1, then 

Ra(TT *  + aI)-1 T;11 = o(ow) with w = min(1, v+1/2). 

proof= 	Let T = U(T*T )1/2  be the polar decomposition of T where 

. 
U is the unitary operators, and let u e X be such that 

x = (T*T)ou. Then we have 

lia(TT *  + aI ) -1 T;CH = HaT(T *T + aI)-1 ;(- 11 
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I. et 	X E R((T *T ) 0 ) 	0 

= HoOl(T*T )1/2(T*- I +  

a)..
v+1/2  

s sup   Uu 
A )0 A +  a 

(vco v+1/2 
s a

v+1/2
Nuil sup 

	

x >0 	X/a 

	

Now the result follows using the fact that 
	 rzu, T * 1. ) 1/2 )  

whenever v k 1/2 and (X/a) 0-1/2
s 1 + X/a. 

= min(1, 0.1/2), 	s min (1/w, q+1 . 

chosen according to (2.7). Then 

2 
1 +( i -- TaT7ET 

and  ict 

6 	pi 

	

73  = 0( ) with p 	1 - 
 2 crti )- 

proof: 	From (2.12), by using Lemma 2.2.2 and P -cocw.)s.i.tion 2.1..4 we 

have, 

S
PPu)  

	

--cr = 11Tx<5  - yap 	+ 
a 	a 

Hence 

= 	- p/2q f 1? 9 
—Er 1 

( 624 	p 	1 + c62q-p+q+1 ) 1/2q 

From this the lemma follows. 
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CAA 

C 	) 

Theorem 2_2.4. 	Let. 	e R((T *T)I) ), 0 ( v s 1, and 	p, q, j ;7:kr 

as in Lemma 2.2.2 and ch 	a(ô) be chosen according to (2,7). Then 

ix-  - x 6N = ciir") with r = min (p 
a 	 q+1" 

2  then In particular, if 
2.0-14-(1-60/q' 

( 	) 	1;{ 	011 = 	t) 
with 	t = (2.1, 5Tic-21)  

a 

where co = min {1, v+1/2). 

Proof: 	The proof of the first part is a consequE5,:nce. ,. 

2.1.1 ( 	), using Lmma 2.2.3 and Proposition 2,1 . . Th,? 

part follows by noting that P P 
q+l if and ordy if p 

- 

2 
2 	77)37q 

Corollary 2.2.5. 	Let p, q be positive reels .Eitisfyit7, 

1 and let x e R(( T *T ) 9"), 0 ( v s 1, co = mintl t_3+1/2), 

1 = min( 	 If 	a := a( .5) 	is chose ,-, .?, c.c:orciinu to 

(2.7), 

where 

then 

z 

x - 

P 

ON 	cot  

?Fr 

111T 
- 7K-41 FrIP 
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Proof: 	With p as defined in Lemma 2.2.3, we note that 	- p 
- q+1 

if and only if 

Also 

p _ 	2 
q+1 	2v+1+(1-6))/q 

2 	 0 < v s 1/2 implies 	 2. 1 
2v+1+(1-6)/q 

and 

1/2 < v 	 2 s 1 implies   s 1. 
2v+1+(1 - 6))/c1 

Now the result follows from Theorem 2.2.4 (i). m 

Remark 2.2.6. 	We observe that if 0 < i < 1, then TheDrem 2.2.4 

irr!p,-.,ves upon the result (2.10) of Ni 	 the C'P'T:,Ti rate 

2y 
(y52v*1) 

This result agrees with the result. of Nair [34] for 	v -,, i 	and 

p 	2 	 .2/3 
cli- 1 	5' 

giving 	general ving the best rate 0(6 	). 	For a enera _ 	v, 	i,e; 

P 	2 0 < P 1: , and --- - 
c1+1 	7 with q k 1/2, Theorem 2.2 	gives the rate 

0(621)13 )  
which agrees with the result in Groetach and Sch ,:)ck (18] 

for ;( E R(T * ), i.e., ;( E R((T*T) 1/2 ). In particular, this result 

includes the Arcangeli's method, i.e., p = 1,41 = 1/2, and the result 

of Guacaneme [20] which he proved for p = 2, q 2 an6 v = 1; 

2,3- ITERATED TIKHONOV REGULARIZATION 

In order to obtain approximations which give better rates than 

the one given in (2.6), many authors (e.g. , (8], (9), [10] ) 

considered the iterated version of Tikhonov regularization, in which 

is attained for 	1/2 s v s 1 	by choosin 2 
2v+1" 
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the approximation x 6 ' j  is obtained by solving 

(2.14) (T*T + aI ))05, i = T * y 6  + a 0. 1-1  
a 	 a 

i= 1, ..., j 

iteratively with )05, ° = 0. This is motivated from the identity a 

(2.15) 	 (T*T + aI )x = T *y + ax. 

We note that the case for 	j = 1 	is the ordinary Tikhonov 

regularization (2.2). 

If x E R((T *T) V ), 0 < v s j, then, analogous to the 7sults in 

Theorem 2.1.1, we have (See. [8] , [9] ) 

(2.16) 
	

fix - x 6 "1 11 	 y' clay'a  

and 

(2.17) 
	

fix -
a 	s cla

clay
'j 70; 

where ci is a constant (independent of j). In particular if 

2 
a  ,s2v+1 for some constant c, then 

(2.18) 
20 

ilx - x 6 ' i n s c &21)+1 , 	0 < V s j, a 

for some constant c i  > 0. 
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The following is a companion result to Theorem 2.2.1. 

Theorem 2.3.1. 	If a := 0(8) is chosen according to (2.7) with 

4q(q+1)  
P < 	 , then for each j = 1,2,..., 2q+1 

x 8, j 	as S i n.  a 

Proof: 	We note that 

s 	x° , 4 	 x6, 0, 

	

a 	 a 

here 

	

Nx,j- a 	= 117 a1-1(T * T 	al)-1 1-* ( 5- Y)0 a 

and 

IIX -  X°  "5 11 	Ilx - E 4‘- 
1 ( T *T + al )

-I
T*y . 

a 	 x.1 

We note that 

T * T 	aI ) T *y= a( T*T + aI ) -1 x 

Therefore, by induction, it follows that 

fix - x°.ill = iI ai( T *T + aI )-i-x 
a 

Now the Theorem follows as in the proof of Theorem 2.1.1 (a) 
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with R
a 

= aj(T *T + al) 

- 

. ■ 

Next result is a companion result to Theorem 2.2.4. 

Theorem 2.3.2. 	For a fixed positive integer j, let 

x c R((T *T)v), 	4 < v s j , p, q, p, co are as in Theorem 2.2.4 and 

a := a(s) be chosen according to (2.7). Then 

(i) xesji = en ) with m = min (p, 122-) -) a 	 o+1 ' 

In particular if 	
2 	

, then co-1 

- ,

p+1+( 1 - ,,,;)/q 

(ii ) 	- xe5, -5 6 = o(e) with s - 	2v  
a 	 2v+1+( 1 -w)/q 

2 (iii) If x e R((T *T) 0 ), 1/2 s v s j, then c
p
o---737 - and 

2v+1 

2v 

I; - x 6 j11= 0(6211+1 ). a 

Proof: 	In view of (2.17), the proof of (i) and (ii) follows, as in 

Theorem 2.2.4. Proof of (iii) is a consequence of (ii) by noting 

that 4.) = 1 for v 	1/2 . ■ 

Remark 2.3.3. We note that if x 

• 

e R(( r`T )i) and p  
q+1 

2 
23+1 

then, by Theorem 2.3.1 (iii), we have 
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2j 
RX - x6.4 0427Ff). 

a 

In [5], Engl considered the 'discrepancy principle' 

(2.19) - 613  
a 	T*y

6I2  - -, 	P > 0, q > O. 
a 

for choosing the parameter a in (2.15) and obtained error bounds 

under certain conditions on p and q in terms of j. Later Er;g1 

and Neubauer [7] improved the results in [5] and showed that. if 

-€NRc(TT4.5,), and 	 - 2j = q-1..2j 3 	aj 	theln 

2j 
11; 	x8, iR 	0er-1/4.1 ). a 

Analogous to (2.19) if we consider the discrpf.Inc .,,  principle 

(2.20) r 	8P = nq, 	P > 0, q > 0, a 	 a 

for choosing a in (2.15), then following the arguments in 

2.2, we obtain 

c. „- 

II; 	)05, j0 = a 

  

for x q((T*Tr) with j-1/2 1 o s j, and P  = 2  
ciFT wwr. 
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Note that while using the discrepancy principle (2.19) (resp. 

(2.20)) for choosing the regularization parameter u := a(45,j), one 

has to solve the linear equation (2.14) and the nonlinear equations 

(2.19) (resp. (2.20)), j times. But if one considers the 

discrepancy principle (2.7), then, one need to solve the linear 

equation (2.2) and the nonlinear equation (2.7) only once. 

Comparison of the above results with Theorem 2.3.2, 

specifically the condition on v in terms of j, shows the advantage 

of the discrepancy principle (2.7) over (2.19) or (2.20). 

53 



CHAPTER 3 

PARA1EFER CHOICE STRATEGIES FOR SIMPLIFIED REGULARIZATION 

In this Chapter we are concerned with a special case of the 

operator equation (2.1) in which the operator T is a positive 

self-adjoint operator, and simplified regularization is used instead 

of the Tikhonov regularization. 

For the purpose of relating the procedure of this Chapter with 

that of Chapter 2, we use different notations for the operator and 

I:1 Section 3.1 we consider a class of discrepancy principles 

for determining the regularization parameter, in the line of the 

one considered in Section 2.2. This procedure generalizes the 

method adopted by Groetsch and Guacaneme (16) and Guacaneme [19). A 

modified form of the discrepancy principle of Guacaneme [21) 'has 

been considered in Section 3.2, which facilitates handling of lesser 

smooth data. Iterated versions of both the above procedures have 

been considered in Section 3.3 and obtained results analogous to 

of Sections 3.1 and 3.2. 

3.1• GENERALIZED ARCANGELIES METHOD FOR SIMPLIFIED REGULARIZATION. 

Let A c 8L(X) be a positive self-adjoint operator and g e R(A). 

For regularization of the equation 



(3.1) 	 Aw = g 

with an inexact data gO, we consider the simplified regularization 

procedure, namely, 

( 3 . 2 ) ( A + ai )w 6  = g6 , a 	0 . 
a 

With 19- 9 611 5 & and A compact, Bakushinski [2) studied the above 

procedure, and showed that a sufficient condition for convergence of 

w 	to w, the minimal norm solution of 	(3.1), is 	= a(a) (SefF; a 

also Ivanov [23) , Khudok [24) ). 	In [40) Schock considered the 

simplified* regularization of (3.1) with positive self-adjoint 

operator (not necessarily compact) and proved that w
a
:= w° 	as 

a 	0 and 	( w a ) 	has better convergence properties than the 

approximation obtained by Tikhonov regularization. It is also known 

(Schock [39)) that if w 	R(AP), 0 ( V S I, then 

(3 .3) 
	

14-2) - w
aH = 	al) ), 

and if 0( 6) = c6
1/( )+1),  then 

( 3 . 4 ) - wsh = c(eil ( w'.1) ). 
a 

This rate is optimal in the sense that 	11J 	= 0(511'"") ) a 

implies R(A) is finite dimensional (See [39)  ). For choosing the 

regularization parameter a in (3.2), Groetsch and Guacaneme [16) 
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considered the Arcangeli's method, namely, 

(3.5) DAw6  - g6H = -4 
Ya' 

and proved that if a := aka) is chosen according to (3.5) ;6.nd 

is in addition, a compact operator, then w 6 	as 6 	0. But no a 

attempt has been made for obtaining estimate for the error 

flw - w 61. In this section we prove the convergence and also obtai a 

error estimate under a general class of discrepancy principles, 

6 ) IAW5  - 9ap = 	p ) 0, q > 0, 
a 	a 

which is valid for 0 < p < q4-1. 	We do not. require 	A 	to 

compact. Also note that (3.6) includes (3.5) by taking p = 1, 

q = t/2_.. 

The proof of the following Lemma is analogous to the proof cif 

Proposition 2.1.4. 

Lemma 3.1.1. 	For each 8 > 0, there exist a unique 

satisfying (3.6). Further 00(6) 	0 as 6 	O. • 

Here onwards we assume that go satisfies 

(3.7) 	 lig-g6H s 6 s Hgn  2 • 

411/4  6:\., 
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Theorem 3.1.2. 	If a := c(6) is chosen according to (3.6), with 

g 6  satisfying (3.7), then 

( ) 	ci( 6) 	67Pr). 

If in addition, p < q+1, then 

(ii) a(S) 
- o(Sm), 	m  _ q+1-p 

 q+1 ' 

and 

(iii) w 6 	W as 6 	0. 
a 

Proof: 	First we note that 

ugan — --4  = ng8n - ilAw 6  

	

a 	 a 

s Piv4 6 11 a 

= Aw! - OA/a 

s PAP —m- 
a 

Therefore, 

	

a 	s 

	

g+i 	SP(HAU + a)  

119 6 11 

26P( RAH + a) 
lisp 
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so that 

a(S) = o(er). 

optwo - g 6f -71 	a a 

= Ilas4 6 11 
a 

a( fw 6  - w 
a

N a  

w 6  - w
a  = (A + c1) -1(96—g) a  

	

11w 6 	w a s 1̀ . 

	

a 	a 	a 

Mw aI = 	A + aI ) -141 	11W11. 

(3.8) 

Note that 

(3.9) 

But 

,so that 

(3.10) 

Also 

Therefore we obtain 

■•• 
= 6 + «Owl . 

Now using the estimate (3.8), we get 

6 
a 
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w 6 11 = de), a 
Aw 

1 

S 81  A (8 + 

P 

6 q (45 	ca'")71 

for some constant c > 0 and since p < q+1, we have 

(3.11) 8 	sm 
= 0(  ) a  

where m - 
q+1 	 . To prove the convergence we first note that 

1w 6  - w N S Pw 6  - w
a

ll + !W et a 

Now, since 

two - wn s 
a 	

.‘2 
a 	 a 

and 

iw
a 

- C4I1 = fIa< 	+ aI 

the result follows as in the proof of Theorem 2.1.1 (a) with 

R
a 

= co(A + aI)-1 . ■ 

Theorem 3.1.3. 	Let w E R(A P ), 0 ( v s 1, q > 0, p ( q+:1 and 

a = a(8) be chosen according to (3.6) with 0 satisfying (3.7). 

Then 

(1) 

where s = min( " 1 - P  ) q+1' 	(4 4. 1 • 
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In particular if p _ 
---, then q+1 	v+1 

(ii) 	 1w 	w6R = 0051)/( 11+1  a 

Proof: 	From (3.3) and (3.10) we have 

flw - w 61 s flW - w0 + Uw - w 6 I1 a 	a a 	 a 

= 0( al) ) + 0( 6/a) , 

so that the result in (i) follows from Theorem 3.1.2. If 1  = -- 
(4+1 	Y+3 

then EH-1  - q+1-P  so that co- 	c44. 1 

0( al) ) = 0( S/a) = 	OW(  11+1  )) 

proving (ii). a 

Corollary 3.1.4. 	If w E R(A P), 0 < v 1 1 and a = a(6) 	is 

chosen according to (3.5) with g 6  satisfying (3.7), then 

	

11;; 	= 0( S k ) 

where k = min(2v/3, 1/3). m 

- 

	

Remark 3.1.5. 	If the smoothness of the solution w is known, 

P  namely, 	E R(AP), 0 < 	s 1, then by taking .471- 	17TE  our result 
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considered by Engl [4] and Engl and Neubauer [4 is of the form 

(3.6) with 	A = 	g = T*y, 	g6  = T*y6  and 	w6  = x5 . 	The 
a 	a 

iiT*T x 6  - "1 4')-'51 
a 

7/ 

provides the optimal rate 660A v'- i)). As a particular case, the 

discrepancy principle (3.5) gives the rate 0(61/3 ) for 	=– and 
the best rate 	61/2. ) is achieved when v = 1 by taking f. The 

(TIT 

result for the case v = 1 has also been obtained by Guacaneme [19]. 

In fact, the proof of the main result of Guacaneme ([19], Theorem 

2.3) is not complete as he used the estimate 0(6 1-p/(q+1) ) .FOT 
6 
a 

which is not immediate from the estimate a = 0( ev(q+')) ([193, 

Lemma 2.1). 

In the case of the general ill-posed problem (2.1) if A = 

g 21  y, 	-6 . y8 	and 	x 5 	T*w6 , then A" 	-7 -1kh:)nuv 

	

a 	a 	 a 

regularized solution of (2.1) and the discrepancy principle (,3.6) 

the same as the one considered in Chapter 2, namely, 

b'P  BTx 5  - y 6P = — 	p > 0, q k O. a 

But the estimate in Theorem 3.1.3 does not help di' rectly 	deduce 

the estimate in Theorem 2.2.4 (ii). 	If we use a different 

definition of the noise level, namely, 	tY-Y11 :5 6/c with 

PT*11 s c9 then the discrepancy principle 
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O 

estimate 	a = o( a"T) of Theorem 3.1.2 can be used to obtain the 

optimal estimate of [4) and [7) as follows: 

we observed that 

wa - wa = ( A + aI ) - 1(g-ga) a 

= ( T*T + al )-1T*( Y- Y 6 ) 

so that 

- w!H = 0(-), 

and hence from (3.9), 

—45P  = 	45-/a + a) 

Therefore if p < 2(q+1) and 0 < v s 1, then we have 

a = 0(5h ) 

PP 	p 
where h = mint iFT, 	-27(714 ,77 ) 

So that the optimal estimate 

p 2 
rTria-7 	2 Pi- I. 

d  ?a/( 21,4.1) is achieved for 

a 
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In general the simplified regularization is recommended when the 

operator T under consideration is positive self-adjoint operator, 

because in this case the method in Chapter 2 involves more 

computation, as for such operators we have TT *  = T2  = TAT. 

3.2. A MODIFIED FORM OF GUACANEME'S METHOD 

In this section we consider a parameter choice (';trategy, which 

is a modification of the one considered by Guacarce [21), for 

simplified regularization of the operator equation Aw zr s,. The 

result of this section includes a result of Guacaneme L, which 

ho n -rovP,d -Fe( compact positive self-adjoint operator A under the 

assumption that the minimal-noYA solution w belongs to 

Let A, 9,  and 96  are as in Section 3.1 and 	0 be the 

orthogonal projection onto R(A), the closure of the rar!Qe of A. 

For a fixed positive real number p > -0, consider V-ee fun,-,tion V 

defined by 

(3.12) 0( a) 	T. a2(P4.1) <( A+CCI ) -2(P4.1 )09 6 	 u 	a > O. 

We choose the regularization parameter 	a := 	 in (3,2), 

according to the discrepancy principle 

(3_13) 	 q(cz) = c62 , 
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for a constant c > 1. 	In fact, for compact 	A 	Guacaneme [21], 

considered the discrepancy principle 

«4 <( A -tal )- 4096 ,09 6> = ce, c > 1 

and obtained the error estimate 

(3.14) 
nt-2j 	woll 	0(61/2 ),  

a 

under the assumption 	w e R(A). 

Lemma 3.2.1. 	The -Function p in (3.12) is continuous, s -7_ri(Ay 

increasing, 

lim 0  c(a) = 0 a _.• and 	lim a)ic(a) = 1109 6 112  a _+ 

Proof: 	Let (Ex) be the spectral family of the operator 4. Then 

we have 

45(a) = 	±a )2<P+1)d<ExC)9 6 ,0g6>. 

Now the map 

a 2(p+i) a ►---r f p(a,X) := (.x4-7c ) 

is strictly increasing for each X > 0, and satisfies 



f p(a,X) _+ 0 	as a .4  0 

and 

fp( a, k) 	1 as a 	m. 

Therefore the result follows using the Dominated Convergence 

Theorem. 

Lemma 3.2.2. 	If g5  satisfies 

(3.15) 119-9611 s 5 < 1109 511  
c 1 /2 

then the equation (3.13) has a unique solution 	=a< 8) such tret 

a< o 	0 as 6 	0. 

Proof: 	Using Lemma 3.2.1 and the Intermediate Value Theorem. the 
•A..• 

equation 3.13) has a unique solution 	a : = 	), 	Now using the 

arguments as in Proposition 2.1.4, it follows that, c65) ,.., 0 

as 	8 __, 0. 	m 

	

Lemma 3.2.3. 	Suppose that g * 0, 0 satisfies (3.15), 

	

, 	0 2  = ( 0
1/2

+1 )
2 and 	a := C 8) 	is chosen according 

to (3.13). 	Then 

2 .  
C 	s 	< ( A+ 	) 9,9) C252,. 
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Proof: 
	

For 	a > 0, 	p > 0 , let 	S ot  = «5)+1 ( AfaI ) -( P+1) . 
	t hen 

HBO s 1 and for each nonzero g E X, we have 

Therefore, 

UB crO g 11 2  = "P+" <(04+ai ) -"P+1)  a 	 g,g>. 

11B aQ g N z liB aQ g 5 11 - 	► 1E3 ,4( g -  g ) fl 

C
1/2

5 - 5 

and 

ilB aQgil s 11B aL>g 6 11 + fiB a0(g-g')11 

S C
1/2

5 + S. 

his completes the proof. ■ 

Theorem 3.2.4. 	Let g # 0, g'5  satisfies (3.15) and 

is chosen according to (3.13). Then 

w ay 
	

as 5 O. 

Proof: 	From (3.2) and the fact that g = Aw, it follows that 

II 	- w a ll 	
Ha{ 	+ aI 

= R
a

w!! 

and 

66 



Biq
a 
- w6 B a 	a 

where Ra  = a(A + aI)-1 , a > 0. Therefore it is enough to prove 

(1) 	Ra( ,5)W .4  O as 6 .4  0 

and 

6 ( ii) 	; .4  0 as 6 .4  O. 

Now using Lemma 3.2.2 and arguments as in the proof of Theorem 2.1.1 

(a) it follows that R a(o)w .4  0 as 6 .4  0. To prove (ii) let 

C a  = ccP( A + aI ) -( P+1 ?A , 	a ) 0 . 

Then for all u E R(AP), with u = APv for some v c X, 

= PaP( 	+ aI ) -( P" )AP■i l li 

s 

for some v E X. 	Since 	OCall 1 1 for all 	a > 0 and R(A 9 ) is 

dense in 	N(A) L , it follows that. C a(6)14̂ .4. 0 	as 	6 .4  0. 	Now t-_) 

Lemma 3.2.3, 

c ie s a2(1341) <( A + a -2( p+1 	
g > 
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= a2q>" ) <( A + aI )-2(CK1) 	
— 

A W , W > 

^ = a
2 

 OCccW 2 

So that 

62 	1 
—7 s 	2 	0 as 6 .4  0.  ♦ 

cl 

Lemma 3.2.5. 	Let g * 0, g 6  satisfies (3.15) and a := 0(8) be 

chosen according to (3.13). Then we have the following 

(i ) 
	

a = 	er ) 

I= 	69") if w E FR( RP) , 0 < 	1 and v 	p 
a 

(iii) a  = 0(61717 ) if c",,, E R(AP) , 0 < v s 1 and v < p. 

Proof: 	By Lemma 3.2.2 and 3.2.3 for all sufficiently small 6 > 0, 

we have 

c282 
 

2 	a2(P+1)0( A + aI ) -2( PP+"g 12  

a
2( p+1)

11911
2 

m( A 4- az )p" ui 

p*1 Ca 
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• for some constant c > O. Thus a = 0(57T) proving (i). if 

w E R( A V ), 0 < v s 1, then, w = Avx for some x E X , so that 

- 
g = Aw = Av+lx. Therefore by using Lemma 3.2.3 we have, 

c 1 82  s a2")+1 )
<(A + aI)

-2(
P

+1)
A

21.)+2
x , x ) 

= a2( P+1 ) 11( A 4-  aI) -(P+1)A
1)+1

x11
2 

2 ( p+i 
a 	)X2V+2  

Rx If 2sup 
A >0 (X+a) 

11)(11
2 a211+2 sup 	

Xia)2P+2  

A >0 (1+Xla)2(pti) 

a
21)+2 

11)(11
2

, 

4-. 
for v s p. The last_ inequality is a consequence of the relation 

() 21)+2 	(1+112p+i, for 
	A > 0, a > 0 	and 	v s p. 	Thus 	8 = 

a l 	 a' 

da
P+1 

) and hence 

	

a 	
17.7 

( 
8 	Prr 

= 	 aP+1 ) 

proving (ii). Now by (ii), for v < p, we have 

(p-v)i)  

6 6- 174T = 
	
of V* pi-13 

1  -o 0 as 6 	0 
a 
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From this we obtain ( iii ). a 

	

Theorem 3.2.6. 	Let gO satisfies (3.15), a:= 	6) be chosen 

according to (3.13) w e R(AP), 0 < v s 1 . Then 

(:)( Ste ) g P s p 
(i) 	

1;:j 	w al5I 41-  0( 	) , v 	p 

If 0 < v < 1 and v < p, then 

, -774T Kw ce, 	). a 

In particular taking p = 1 in (3.12) we have 

v/2 
0( 	) , 	0 < v < 1 

(ii i) 	w - w 6 11 = 	1/2 a 	
0" 	) , 	

v = 1 . 

Proof: 	Let w E R( AP) , 0 < v s 1. Then it is easy to see ( [393) 

that 

{ 0( a l) ), 
BW 	 = 

0( a) , 

Also we observe that 

0 < v < 1 

v = 

11w
a 

- w 6 fi = fi( A + ca ) -1(g- g 6 )11 a 
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Therefore 

s 
a 

 

 

- w 	
0(e)4104t  ), 

611 	 6 a 	0( a) + 0( (3) 

0 < v < 1 
v = 1 

If v s p, then the result follows from Lemma 3.2.5 ((i), (ii)). If 

v 2 p, then w E R(AP), so that the result in this case is obtained 

by replacing p by p in Lemma 3.2.5 ((i), (ii)). m 

Remark 3.2.7. 	(1) The result in Theorem 3.2.6 includes the 

result (3.14) of Guacaneme ([21j, Theorem 3), which is proved when 

A is a compact positive self-adjoint operator and es C R( A ) Owr 

proof does not require the compactness of A. 

(2) If the smoothness of 	is known a priorily, namely, 

w E R(A 1'), then Theorem 3.2.6 (i) gives the optimal rate 

by taking p = p in the discrepancy principle (3.13). 

(3) By comparing the discrepancy principles (3.6) and (3.130 

specifically the condition on 6, namely, (3.7) and (3.15), one can 

see that in (3.7) the upper bound of 6 	depends on the (unknown) :N■ 

exact data g, whereas in (3.15) the upper bound is terms of 

(known) inexact data g 6 . Thus (3.13) is advantageous, over (3.6) 

in view of their applications. 
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(3.17) ftw (5, i 	wjli 	11 a"( A + ai 	g6-g )11 
a 	a 

al 1 

4-- 

'3.3. ITERATED SIMPLIFIED REGULARIZATION 

In 'iterated simplified regularization', one considers 	
a 

obtained by solving the equations 

(3.16) 	(A + aI)w 5,1  =
a 	

+ 98, tA8,0 = 0, -a  = 1, 	 , 

iteratevely as approximations for the minimal norm solution w of 

the equation (3.1). 

We consider the discrepancy principles (3.6) and (3.13) for 

choosing the parameter a := a(8) in (3.16). 

Theorem 3.3.1. 	If a := (XS) is chosen according to (3.6), then 

we , -) 	w as 8 0, for each j = 1, 2, 
a 

Proof= 	We observe that 

w 45, i = 	ai-1( A + al )- i08  
a 

Let wJ = w0, -; , then 
a 	a 

all 

s j 

and 
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i 

w - wi = w-  - 	ai-1 ( A + aI)-ig a 

We note that 

w - (A + aI ) -1g = a( A + al ) -1Ci. 

Therefore, by induction, it follows that 

(3.18) - wi = a k A + aI 	w. a 

where g = Aw. Now the result follows from the inequality 

(3.19) - w6 .-jil s Ow-  - wji + ilwi - 14 6 .4, a 	 a 	a 	a 

by using (3.17), (3.18) and arguments in the proof of Theorem 2.1.1 

(a) with 	Ra  = ai(A + aI)-j . ■ 

Theorem 3.3.2. 	Let w e R(A'), 0 < v s j for some fixed j, 

q > 0, p < q + 1 and a := a(8) be chosen according to (3.6). 

Then 

(i) 	 w - w6 .i = 	Ss  ) a 

where s = min ( 	 ) 

In particular if p _ 1 , then q+/ 	v+1 

- 	 = 0(SVIT ). 
a 

zr 1 
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Proof : 	By ( 3.18 ), we have 

IC) - w 1  = lai( A + al a 

= lai( A + al )-jAvzfl 

where w = A oz . Si nce 

[jai ( A + aI )-jAvz11 s H&j( A + al )-j APII Uzi!, 

by (1.12 ) we have 

ai XV  
( 3.20 ) 	ilai( A + aI ) -j Avzil s sup 

x>t) (x+a) j  

( A/a) v  a sup 
A>0 ( 1+ Xla ) 

= 0(a11 ). 

The last step follows from the fact that ( Xia) v  s ( 1 + X/a) j  for 

0 < o s j. Thus from (3.19), (3.17) and (3.20) we have 

ilw - w,iff 	
a 

j 	+ cat)  
a 

for some 	constant 	c > 0, independent of 
	

j. 	Now the result 

follows from ( 3.11 ) and the arguments used in the proof of Theorem 

3.1.3. 
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Theorem 3.3.3. 	Let g * 0, 9 45  satisfies (3.15) and a := a(6) 

is chosen according to (3.13). Then for each j = 1,2, ..., 

w as S O. 
a 	-) 

Proof: 	In view of (3.19), (3.17) and (3.18),.the proof follows as 

in Theorem 3.2.4 with R
a 

= aj(A + aI) j  

Proof of the following Theorem is analogous to the proof of 

Theorem 3.2.6. 

Theorem 3.3.4. 	Let 945  satisfies (3.15), a := a(S) be chosen 

according to (3.13) and w € R(A V ), 0 < v S j. Then 

(i) - 
wS„in = 

a 

1,5 p 

P 

and if 0 < p < j and v < p, then 

(ii) aw -= derr). 
a 

In particular taking p = j in (3.13) we have 

0( 67) , 	0 < v< j 
(iii) pw - w ,ip 

a 	 0(61-) 	v = 
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Remarks 3.3.5. 	(1) If we consider the discrepancy principle 

(3.21) 	 lAw6 .j - 	= 	, p > 0 , q > 0, 

	

a 	 a- 

and p < q+j for choosing the parameter 	a in (3.16), then by 

following the arguments in Section 3.1, we obtain that 

a = 0( 6) and 
61- 	(c+j-r) cxq+i) _ = 	6 	 ), a 

where w e R(Av), 0 < v s j and r = min (v+1. 	t 	Thus if 

	

1 	- j- 1 s 0 s j and FITT  - 	, then 

V 

PC4 	W
a 

 ' J fl = 	15P7T  ) • 

Comparison of assumptions in this result with that of Theorem 

3.3.2 (ii), shows the advantage of the discrepancy principle (3.6) 

over (3.21). More over, in order to obtain a(.5,j) by (3,21), one 

has to solve the linear equation (3.16) and the nonlinear equation 

of the form (3_21), j times. But if one considers the discrepancy 

principle (3.6), then, one need to solve the linear equation (3.2) 

and the nonlinear equation (3.6), only once. 

(2) 	Guacaneme 	[21] 	considered 	the 	iterated 	Simplified 

regularization with the regularization parameter a determined by 

76 



the discrepancy principle 

(3.22) 
	cc

20+-i)<( Ai- ct1) -2(1+3)Qg O ,Og O > = cj262 , c > 1. 

A generalization of the above procedure is 

(3.23) a2(p+..i 	-2(pP+3) )<( A+ai ) 	 = cS2 , c > 1 , 

for a fixed p such that p+j > 0. Following the arguments as 

Theorem 3.2.4, it can be seen that the condition required for p in 

this case is t := p+j-1 > 0. But, then (3.23) is reduced to the 

form (3.13). This in particular shows that the discrepancy 

principle (3.22) is included in the form (3.1 ) wits, p = j. 
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CHAPTER 4 

REGULARIZATION WITH APPROXIMATELY SPECIFIED OPERATORS 

In this chapter we consider the problem of solving the operator 

equation Tx = y approximately when the data y, T are known only 

approximately. More precisely, we consider the regularization of 

Tx = y with the help of the approximate data Y 6 , 	h where 

1y- Y611 s 6 and 	NT-T h l s eh , 	ch -4 0 
	

as 	h 	O. 	The regularized 

equations and modified forms of the discrepancy principles 2.7), 

(3.6) and (3.13) are introduced in Section 4.1. 	The results 

corresponding to these discrepancy principles have been discussed in 

Sections 4.2, 4.3 and 4.4. 

4.1- INTRODUCTION 

We are concerned with the problem of solving the operator 

equation 

(4.1) 	 Tx = y 

approximately when the data y, T are known only approximately. In 

reality there are two occasions, where one has to consider an 

approximately specified operator 	Th 	instead of 	I (e.g., [6], 

P. 
[33] , [36] , [37],[44]). One such occasion arises from the modelingvJ 

error and the other when one considers numerical approximation of T. 
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If 	y 	and 	T 	are not known exactly, but instead some 

approximations Y 8  and Th are known, then a natural way to look 

for approximations to x, the minimal norm solution of (4.2), is to 

solve 

(4.2) (T hT h  + aI)x 6  hy6 
 a,h 

instead of (2.2). 	Here 	
h )  h >o is a family of bounded linear 

operators between Hilbert spaces X and Y. 	If Ily-yOR s & and 

OT-T hN s Eh  with 	eh  2 0 such that eh 	0 	as 	h 	0, then one 

requires 

(4.3) 	 Ii x- 	
h 

xa 	0 as a 	0, 5 	0 and h 	O. 
a, 

But it can be shown that. if R(T) is not closed and ch 
	 7.3 

h 	0, then for every h 0  > 0, 60  > 0, the set 

{ )05  
a,h 

ly-y 8O s 6, T-T hil s ch ; 0 < 6 s 60 , 0< h 	ho } 

is not bounded. 	Therefore it is important to choose the 

regularization parameter a in dependence of the error level 	6 

and 
	

Eh properly so as to satisfy (4.3). 	For this purpose we 

consider a class of discrepancy principles 

(4.4) 	 111- 4x 6 	So - ( 6+ ch) P  
a,h 	

P > 0, q > 0 
a 

79 



to compute a := a(S,h). If Th = T and Ch = 0, then the above 

discrepancy principle is reduced to (2.7) considered in Section 2.2. 

. 
Discrepancy principles with approximately specified operators 

have been considered in the literature (See [36], [45] ). 	For 

example Neubauer [36) considered the discrepancy principle 

(4.5) 	 oc3<(Tcr 
ra 
+ uI ) -3Qmy 6 ,Qmy 6) = ( d :1 6-i-d 2ch  ) 2  

where 	Thy,  = QmT h  and Om 	is the orthogonal projection onto a 

finite dimensional subspace W m  of Y such that 0, converges to 

I pointwise and T is a compact operator. Our procedure can also 

be put in this setting with some modifications in the proof, It. ,1-,5n 

be seen that the square of the left hand side of the equation (4 

is a2<(ThT *h_+ ne1) -2Y 6 ,y 6>, so that the method (4.4) is simpler than 

the procedure of (4.5) of Neubauer [36]. Moreover the method (44) 

generalizes the procedure investigated in Section 2.2, 

If X = Y and the operator I is a positive self-adjoint 

operator on X, then as in Chapter 3, we use different notations for 

the operator and the data and consider the solution w 6  
a,h 

equation 

of the 

( 4 .6 ) (Ah + aI)w 6  = a, h 

for obtaining approximations for w, the minimal norm solution of 
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the equation Aw = g. 	Here (A h ) 	is a family of self-adjoint 

operators on X with 1A-A hn 4 eh , eh 	0 as 	0. In this case 

we consider the discrepancy principles 

9  ilA hw 6 	- 960 - 	, p > 0, 	q > 0 
a,h 	

( 8+) 
 a 

and 

a2(its.1) <( A h  + al ) -"
+2)

0 1.r.g 6 ,0 h9 6> = cS+deh ) 2 , p > 0, 

where c and d are properly chosen positive constants and Qh is 

the orthogonal projection on to 

and error estimates. 

R(Ah) ,  for obtaining convergence 

4.2- ON THE APPLICATION OF GENERALIZED ARCANGELI / S METHOD FOR 

TIKHONOV REGULARIZATION 

Let I E BL(X,Y), y E R(T) and let x be the minimal norm 

solution of the equation (4.1). 	Let H be a bounded subset of 

positive reels such that zero is a limit point of H. Let (T h ) 

be a family of bounded linear operators between X and Y, such 

that 	?_Thy 4 r 
-h, 	h E H, where 	ch)„,Eti is a set of non-negative 

real numbers satisfying c h 	0 as h 	O. For 6 > 0, let 

D6  be as in Section 2.1, i.e., D 6  = (uEY 	 4 6). 

In the following, x
a 

is the solution of (4.2) with exact data 

(y,T) in place of (y 6 ,T h) and x 6 ,h  is the solution of (4.2) for a 
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y 6E D . 

Hereafter we assume that there exists co  > 0 such that ch  s co  

for all h E -H. This is the case when (T e ) h0.1  is a uniformly 

bounded family. Let 5 0  be such that 0 < 60  s 2. 

	

Theorem 4.2.1. 	For a fixed pair p, q of positive reels, and 

for each 6 E (0,603, h e H, and y 6  E D 6 , there exists a unique 

a := a(6,h) > 0 satisfying (4.4). Moreover, 

(i) (01(5,h) : 0 < & s 60 , h E H) is a bounded set of reals, 

- 

(ii) 046,h) lc. (..5-1-c.J 	for some constant c > 0, 

P 	<  4q  
q+1 	2g+1 and c h  .4  0 as h „ 0, imply 

1,(X' - x 6  D , 0 as & 	0, h „ 0. 
(X.h 

Proof: 	The existence and uniqueness of a := a(6,h) satisfying 

(4.4) follows as in Proposition 2.1.4. 

If the set (a(6,h) : 0 < 6 s 60 , h E 	 is not bounded then 

there exist sequences (S e ) and (he ) with 0 < 8, s So , 	hr. E H 

such that 

an  := 	.5„ , h n  ) _+ co as 	n 	oo 
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(4.9) 

and 

(4.10) 

.4  0 as 6 	0, h 	0 

qx - xD 	0 as .5 	0, h 	O. 

8+E h 
/a( 45,h) 

Now since 

(4.7) 

where M k (C0+171)2 , 

411)11 
s 	q hnx 	Y 6ni = ( 	hn  ) CT; 9 Ta7., 

we have 

This leads to a contradiction. Thus (i) is proved. 

Again from (4.7), by using (i) we have 

_ 265-24q2t• M 	c( 5+ c  
h 	7  y . 

proving (ii). 

If eh -4. 0 
 

as h 	0, then it follows from (ii) that c45,h) -“i 

as 8 . 0, h _, O. It can be seen as in Neubauer [36) that 

(4.8) 	 1; - x 6 ,h  1 ‘ c(11; - x aII + k44.4 ) ya " 

Therefore to prove (iii) it is enough to show that 
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We note that 

( 1- € )P 	a = 	p,x a 	- 6u = ga( hT h 	al)-1Y 6 11 
cr(8,h) 

s lia(T hT *h  + al) -1(Y6- Y)fi + 11(T hT *h  + al)-1 Ye 

(4.11) 

where 

(4.12) ct< T hT 4ch  + 

8 + pa( T hT *h  + al ) -1Y6 

= a(T hT*h  + aI) -1(TT *  - T hT *h )(TT*  + 0) 1 y 

+ a(TT *  + 

= a( T hT *h  + aI ) -1(T 	T h )( T *T. + Na 1 

,* 
bib  t crT 	1 T ( 	 * 	" 1 

} 	
+ 	) y 

-1 + «CU + 	Tx. 

Now using the relations 

HT hT h 	
Thi 	

1 

( T *-1 + aI )-1T*y s N; , 

IIa(T hT *h 	ai)-1 11 s 1 and ti(TT *  + al 	
2ya' 

it follows that 

(4.13) 
— 

Ha< T hT h  + 	1YD S 211xlch  + tla(TT
* 	

al) ')/11. 
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Now by Lemma 2.2.1, we have 

( 4 .14 ) 
	

la( TT
* 

+ aI )
--1 

 TxN s caw  

where w = min (1, v+1/2) for x e R((T *T) P ), 0 < v s 1 so that 

(4.13) implies 

(4.15) 45+ Eh  max (1, 2IND )(8+ch ) + fla(rT * 	
al) Tx11, 

a 

p 

C 	it+r + 6+E077-7 ) 

Therefore 

(4.16) 
2crP ( 6+e )P  

( 	)2q  = ( 6+ ch 	--bq  ) a 	 a 

0( ( 454- ch)
2ct-p+1 	6+  eh 	 ) 

Now the assumption 	 implies 2q-p+1 k 2q-p + 	P  
q+1 	2q+

4q  
1 	 fri7T7  > 0, 

so that 	0 as 8^ -4 	proving (4.9) and (4.10) follbws from a 

(ii) and arguments used in the proof of Theorem 2.1.1_(a). m 

Theorem 4.2.2. Let x e R((T
*
T) ), 0 < v s 1, w = 	0+1/2). 

If(1+1 	
1 	2 s min ( 12 , 37.----.)/q ) and a := a(6,h) is chosen, according 

to (4.4) for 0 < S s 80 , h e H. Then 

(i) 
	_ha+  

7F-1 
	

C 8-t-  eh) 
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Ix - 	
,h 

	

x 6  I 	C2( 6+Ch) r  , a 

10A  P 	 , (1+---, where p = 1 - 2(04+1)  r = min (m, ur). 
In particular, if P 	2  

g+1 2
0+
1+U-wig , then 

A x - 	 y

A s c 3(64-ch ) cc 

Proof: 	In view of (4.8), Theorem 4.2.1 (ii) and Theorem 2.1.1(i), 

the result in (ii) and (iii) will follow, once (i) is proved. The 

proof of (i) is a consequence of the relations in (4.14), (4.15), 

(4.16) and Theorem 4.2.1 (ii). a 

Proof of the following Corollary is along the same lines as the 

proof of the Corollary 2.2.5. 

Corollary 4.2.3 	Let p, q be positive reals satisfying 

, and let x 	R((T
* 
 T)

0 
 ), 0 < v s 1, (,) = min (1, p+1/2), 

1 = min (;, 20+1+11 _w/g ). If a := a( .5,h) is chosen according to 

(4.4), for 0 ( 1S s 60 , h e H, then 

x6
,h 

11 	c( .5+eh )t  
a 

where 

r  1 

1 - 	 q+1.5 • 	irrr 

Wx - 

1. ■ 
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Remark 4.2.4. 	We note that if x e R((T*T) v ), 1/2 s v s 1, then 

Theorem 4.2.2, provides the order og(6+ch) r ) with 

r 	 PP 
= min (1- 20 1  -72-+1 r  ) ' q+1 	for 

P 
q+1 Also if x e R((T *T)v ), 

0 ( v S 1 and vi  is any estimate for v such that v s v i  and 

= vi  2 1/2 	then by taking 	q+
P
1 	2v+1

2 
 ' we obtain the rate 

2V  

( 6+ en)2111+1 	 In particular for 	 2 
q+1 	3' i.e., with 	yr  = 1)  

2v 
the rate 	( 8+ eh)3  ) 	is guaranteed. 	This case includes the 

Arcangeli's type discrepancy principle, i.e., 

for p = 1, q = 1/2. 

In Chapter 5, we consider a special case of the operator T h ,7 

name1y-,- 	TP10- where: 	 Is. a sequence of .orthporia 

projections on X. This case, under certain conditions, eads 

improved accuracy. 

4.3. CN THE APPLICATION OF GENERALIZED ARCANGELI / S METHOD FOR 

SIMPLIFIED REGULARIZATION 

Let A E BL(X), g e R(A) and let w be the minimal norm 

solution of the operator equation 

(4.17) 	 Aw = 

Let H be as in Section 4.2 and (A h ) wil  be a family of self- 
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adjoint operators on X satisfying 

(4.18) 	 UA-AhU s eh, h E H, 

where 	ch) hEH is a set of non-negative real numbers satisfying 

ch .., 0 as h 	O. 

In case Ah is not positive, then one may consider the operator 

Bh = Ah + Chi (See [45) ) and 	2ch 	in place of 	Ah 	and 
	

Et, 

respectively. 	Then 	Bh , is a positive self adjoint operator 

satisfying Wh-AI s 2ch . This is seen as follows. From (4.18) it 

-,- 	 is clear that 	Wh-AU s 2ch . 	Now using the fact that 

	

rn 	 is 

positive self adjoint operator, we have 

<AhX,X> k <Ax,x> - <chx,x> 

2 — <CO,X>, 

so that 

<B hx,x> = <A hx,x> + <E hX,X> 

— <ChX,X> + <ChX ,X> 

2 O. 

Thus without loss of generality we may assume that 	t= hcA-1 
is a 

family of pOsitive self-adjoint operators on X. 
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For 	8 > 0, let F 6  := (u € X  flu-A s 8). Let w 	be the a 

solution of 

(4.19) 	 (A + orl)w
a 
= g, 

and w6 	be the solution of the equation a,h 

(4.20) 	 (Ah  + ai)w(c5x,h  = 96 , 96  E 

We assume that there exists eo  > 0 such that eh  1 t ry  for 

h e H. Let 50  be such ..hat, 	< 50  

Theorem 4.3.1 	Let wcR(A v), 0 tvsl and vil 5 	be define 
a,h 

as in (4.20). Then 

W 	W 6  N C 	 c 2aP  
a,h 	I a  

where c i  and c2  are positive constants. 

proof: 	Using triangle inequality, wel have 

flw - w6  U 	RCo 	wa ft  + Pw
a 	

w 	+ Rw 	w 6  H a tt 	 ,h 	a,h 

where w  := w0 	Thus by the definition of w, w h and the 
a,h 	a,h 	 a 	a,  

fact that g = Aw, it follows that 
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(4.21) 

( 4 ,22 ) 

Ewa - w N a,h 	a 

W
S 	. 

a,h 	a,h 	a 

The result follows from the above relations together with estimate 

(3.3), i.e., flw - wan = 4( av). ■ 

From the above Theorem it is clear that if a := c(5ri- ch :. 	for 

some constant c > 0, then 

(4.23) ic; - w 8  I= 0(( 6+c )rl'-f ) a,h 

and this order is 'optimal' (See. (3.4)) in the sense that in 

general it can not be improved. 

In order to obtain the convergence of v 5 ,h   to 	and to 
a 

obtain the order in (4.23) we suggest the discrepancy principle 

( 4.24 ) 

and S E (0,80). 

1A hw! ,h  981  (La): p 0, q > 0 
a °  

Theorem 4.3.2. 	For a fixed pair p, q of positive reels and for 

each 8 E 	 h E H and g6  E F 6 , there exist a unique 
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a := a(6,h) satisfying (4.24). Moreover 

(i) (a(8,h) 	0 < 8 s 80 , h e H) is a bounded set of reels, 

(ii) a<8,h) s cl(6+eh) 	
6+e Iffr  and 	 = c2(6+eh )

1-  

for some constants c 1  > 0 and c2  > 0, 

(iii ) 	p < q+1 and Eh _o  0 as h 	0 imply 

nw 	wO 
h  _

a  0 as 6 -+ 0 	h 	O. 

Proof: 	The existence and uniqueness of a := a( 8,h) satisfying 

( 4 .24) follows as in Lemma 3.1.2 . The boundedness of the set 

{ o< (5,h) : _0-. < 6 s 60  ,--h-E 4-0- and the estimate for a( 8. Eh ) follow' 

by using similar arguments as in Theorem 4.2.1 ((i) and (ii)). To 

obtain estimate for and the convergence of w 6  to w, we 

first note that 

( 6+eh) P  _ 	 - g 
— ash a 

= Cla(A h  + al") -1 9 6 11 

s Ha( A n  + aI ) -1 ( 9 5-9 )11 + Ila[(A h  + 	 (.P4 + 	L9 1/ 
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where 

+ 	A + an -1 98 

ija( A h  + aI ) -1( 9 6- 9 )11 5 6, 

HarAh + ai 	( 	+aI ) -1 ] 9R = 	Ha( Ah + aI ) -1 ( A -Ah)( A +aI ) --1 911 

and 

Na( A + aI ) -1911 s aIlwh. 

Thus 

P  ( 8+ ch) 
 s c i( a+c h ) + c 2a 

a  

	

where c 1  and c 2  are positive constants . Therefore by ( 	), we 

have 

p 1 
6+ ) 1 —  71(  et+ e h 	4"  

a 	 a  

P 	 1 	
P 

C 1(  6+Eh) 	
1+ 	

+ C 2(  6+  Eh )

1_ 

 7 	7W5 ' 

Now since 1- c+ ____ - 1 - . r1. and p < q+1, we have 

1- P  (1+....Ett 	( 45+ eh  ) 	7-r) 
a 

Now the convergence of w 6  
ot, h 

( 	), once we prove that 

- 
to 	w 	follows as in Theorem 3.1 .3 
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Nw 	 Leh - w6 	s 	+ Uct( A + aI) a,h 	a 

But this is clear from (4.21), (4,22) and the inequality 

( 4.25 ) tiw - w 6  U s IIw - w
a tt 	a 	a,h 	a,h 

+ Ow - w 	II + Nw 	- w 6  a,h 	 a,h 

This completes the proof. ■ 

Theorem 4.3.3. 	Let w E R(AP), 0< v s 1, q> 0, p< q+1 and 

a := a( 6,h) be chosen according to (4.24) for 0 < 6 S 6 0 , h E H. 

Then for some constant c > 0, we have 

(1 ) RW 6-1- Ch) r  
Ct.h 

r = min (a-t1' 	q
P

1 - 1- -j. q+ 

In particular if 	p - 1  q+1 	v+1' then, 

i)(i 	HW - wO 	S c( (5-i- ch)771" . 
a,h 

Proof: 	Proof of (i) follows from Theorems 4.3.1 and 4.3.2 (ii), 

and proof of (ii) is a consequence of (i) and the fact that EE 
q+1 

. q+1 v+1 	■ 
1- 

q+ 1 if and only if 	t41-, and in this case pv _ 
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4.4- ON THE APPLICATION OF MODIFIED GUACANEME'S METHOD FOR 

SIMPLIFIED REGULARIZATION 

In this section we study the analogoue of the parameter choice 

strategy considered in Section 3.2 for simplified regularization 

with approximately specified operator. Specifically, for a fixed 

real number p > 0, we consider the discrepancy principle 

(4.26) 	a2")41) <(A h  -4- al ) -2()+1)Qhg6 ,0 hg6> s (c6+d€02  , a > 0, 

where 	and 
	

Oh is the orthogonal p;oj , Lic 

onto R(A h ) for choosing the parameter ece in (4.20). Here also 

gb E 0 and Ah, h e H are as in Section 4,3. If in addition - 6  

satisfies 	11005 N Z co+dch , 	then as in Lemma 3.2.2 one can prove 

that there exists a unique 	a:= a(6,h) satisfying (4.26). 	The 

following result is used to prove our main result of this section. 

Lemma 4.4./. Let a := a(6,h) be the solution of (4_26) 

c > 1 	and 	d > e = (2+p)UwII, 	where 	w 	is the mL imai norm 

solution of (4.37). Then 

I( 0-1 	+ ( d-e )ch] 24 a2( Pfi)<( A + aI ) -2( P+1)g g> 

4 {( 0+1 	+ the )c h) 2  

Proof: 	We note that 
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2(1)+1 
a 	)< ( 	+ aI ) -2(1)+1  , g > = PaP+1 ( A + aI ) -(1"+1)91 2 . 

Also 

( A + al ) - ( P"-"g 
=

(A
h+ ca,)-(1)+1)Qh96 	(Ah +aI  ) -

(p+i)„h, 
1-1  c 9-9 6 ) 

+ ( A h  + al ) -( C)+1)( I -O h  )g 

+ [ (A + aI )-(w. 1 ) 
( A h 	)-<P+0) 9.  

Therefore 

Ice'l( A + ea ) -( P"-"gn s ocric A h  + aI )-( P41 )0 h9 6 11 

+ NaP+1 (Ah 	aI ) -(P+1)Qh( 

+ HaP+1 ( 	+ aI ) -( C)÷1)( I -Q h  )911 

+ K orl  [( 	+ (xi ) -( P4 	(A h 	)-(P.1)) 91!, 

and 

tiaP+1 ( h + aI )-( P41 )91 a HaP+1( h + aI )-( PP"  hg (SH 

+ aI ) -( P+1)Q h( g-0 6 )11 

- " 1(Ah + aI ) -(P41)( 

- 112+1  [( A + aI ) -( P41)-- ( A h  + ai ) -( PP+1)) 

Now , 

uccP* 1 ( A, + aI) -( P+' )Q h( 9- 9 6 )u = (a" P+ 1)<( A h  
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liccP+1 (A h  + al)-( P41)0 h(g-g 6 )1 S 6 

and 

12+1 ( A h + Ca ) -(P+1  )( I-Qh)gi  S flaw.1( Ah + aI ) -(P+1 ( I-oh )Awli 

licri(A h  + ai) -( P41)(I-O h )(A-A h )wfl 

s Ali 11-Q h )( A-A h )c.4/1 

OI -Qh111( A-Ah)C45 

U(A-A h )wli 
■•■ 

s 

Therefore the Lemma will follow once we prove 

	

fict,P+1f( 	h )11 S ( p+1 )ch  11W n , 
where 

f(cA,h)= [(A + cc1) -(P+1).- (A h  + ca)-( P+1))g. 

To prove this first we note that 

	

f( Of h) 	( A h  + ca ) -( P4.1) (( A h 	ca )(P+ 1 ) 
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- ( A + ca P+1)] ( A + aI  )--(P+1)9 

= ( A h  + 	) -( P+13 [(Ah + aI )( Ah + aI )P 

- ( A + aI )( A + aI ) P) ( A + aI ) -( P+1)9 

= (
Ah + 

aI ) -( P+1) EA h( Ah + aI )P 	-A( A + aI ) P] ( A + aI ) -(P*1)9 

+ 	A h  + aI ) -(P+1) [( A h  + al )P  - ( A + aI ) P] ( A + aI ) -(P+1)9 

At, 	ai ) -(°+"Arl[( h 	aI )P 	( A + aI  ) P] ( 	+MT) .-(P+"ig 

+ ( 	+ aI ) -(P+1)( A h-A )( A + aI ) -19 

+ 	A h  + 	aI ) -(P+1) [( A h  + aI )P  - 
	+ ca )P)( A + 

aI  )-(P+1)g 

( Ah + ai ) -P [(Ah + aI ) 1)  - ( A + aI )P3( A + aI ) -(P*1)9 

+ ( A h  + al ) - (P4.1)( Ah-A)( A + aI  ) -19. 

Thus 

HaP+I f( a,h )11 s 11U( a,h )il 

+ UctP+1 ( A h  + al )-(P+1)( Atc- A )( A + aI ) -191I 

where 

U( a,h ) = aP+I( A‘h  + aI ) P R Ah + aI ) P 	( A + aI )P3( A +, aI ) --( P4.1)9 
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Now since 

iCCP+1 ( Ah + 	) -(P+1  Ah-A X A + aI ) -19 s 	H , 

we have 

(4.27) 	 HaP+1 f(a,h)11 s IlU(a,h)H + 

We note that if p = 1, then 

HU( a, h )11 5 11a2( Ah + aI ) .-1 ( 
	

- A )( A + aI ) -2911 

5 OW il 

so that in this case 

liccP+i f( a, h )11 	5 2 c h il«, 

Now consider the case when 0 < p < 1. In this case, 

(4 .28) 	 t1( a, h ) = ccP( Ah + aI ) P( a1  [( Ah  + aI ) P  

	

( A + aI  ) P1 X oe( A + 	P+1 

so that 

HU( a , h )11 5 liaP( Ah + Ca ) P iiiial-P [( Ah + aI )P 

( A + al ) P.1( aP( A + aI ) -4P+1)9 )11 
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( 4 .29 ) 	 Ah 	aI )P- ( A + aI ) P]( ait ( A + 	) -4/)+1)g )1] 

Now recall the formula ([25] page 287), 

) B z 	S nnz reo 
A 	--n-- 	[( AI+B 	x - 6)( X ) x + ...+( -1 )

n 
0( 

 X
X

E3 1
x 

J dx 
0 

where 

n-1 8 n-i x Si nnz r  X 	Bx 
--n-- [y 	. ..÷ (- 1) x E X 

Exx) . 	 j 0 	if 0 5 X 5 1 
1. 1 	i 17 	1 	X < 

for any positive self adjoint operator B and for complex number 

such that 0 < Rez < n. Taking z = p, 0 < p < 1, we have 

S nnz B p x = i 	x + 
0  f

p  AP( +B )_ i x d X - 	 X.) 
X 

Using the above formula, taking 

c(P( A + 	rPfl   

and 

Cla,h = (A h  + aI )P 	(A + ai )P , 

we obtain 

Sinnp  r();)  p 	 1- 	 - 1 
o i 	[( Ah 	( t+a)I 	 ( A + (t+a)I ) 
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a1 n 	P( A h 	(t+ a )7) -1  (A-A h )(A 
	

( t+a)I ) -1 0t 

Thus 

0Qa,ho  542 

	

0 
riltP(Ah + (t+a)I) -1 (A-A h )(P, 	(t.+a)I) 

Now since 

1 
t 

li(A h  + 	t+(x)I )
-1 	

s 	and 	II( 	+ 	t+a)I ) 
3. 

or+ 

we have 

1-0 	 i-p Sinnp 	tr" 
0 s a .Qa,   it 	 Htli 

( a+ t 

(4 .30 ) 
RP  s i nirf) 14) 	
+ e)4 c ' 7 	

rkliE11, 
1 
• 

where p = 
a 

IL can be seen that 

or
P is°  ds  

do = poi si-p(1+.) 

and 

 

Q r ds  

51-p( l + s 

  

so that 

Sinnp' 

ra) 
( 1-47,itry2 

np  
d P 	Sinnp' 

Therefore, from (4.30). we have 
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( 4.3 1 ) 	 Ial-P [( A h  + al ) P 	( A + aI ) P3 EH .s pe t, NEU . 

where 

MEI = 	+ aI)-(P41)911 = tlaP( 	+ aI )-(fr`"At.1 s 

Thus from (4.27), (4.29) and (4.30), we have 

HaP41 [( A + aI ) - <P41)- ( A t, + cd ) -( P+ 1 ') gu 	p+1 )ch 

This completes the proof. 

Theorem 4.4.2. 	Let. 0 E FO, 	h E H and let a = a(8,h) 	is 

chosen according to (4.26) with c and d are as in Lemma 4.4.1. 

Then 

W 6  
C( h 	W  

as 	8 _., 0, 	h 	O. 

Proof: Note that 

W 6  H 5 1114-' 	W H + 1114
a 
- w 	+ 014 	w$5.  

a a,h 	 a, h 	a, h 	a•, 

Thus from (4.21) and (4.22), we have 

h 	 a 
NS+ liw - w 	11 s max{ 1 , 	U 	+ 	W

a a  

From this we obtain the result by using the arguments used in the 

proof of Theorem 3.2.4. 
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Lemma 4.4.3 Let ga E FO, h E H and let a := a(6,h) is the 

unique solution of (4.26) with c and d are as in Lemma 4.4.1. 

Let w E R( Ai") , 0 < v s 1 . Then we have the following 

I 

(i) 	a(6,h)= 	( .5+ch)TFT) 

(ii ) 	 - 	( (5+c h ) 747 ) 	if 0 < v s 1 and v s p. 

6+c 
( 	) 	 — 	( 6+ch)P7r ) , i f 0 < v < 1 and v < p. ■ 

Proof: 	Proof of the Lemma follows in the line of the proof of 

Lemma 3.2.5 with 	((c+1)(5 + (d+e)c h )
2 	

in place of 	c zo
-2   and 

(( c-1 )6 + (d-e)c h ) 2  in place of c is?. 

	

Theorem 4.4.4. 	Let go E Fo, h E H and let a := 	6.,h) be  

the unique solution of (4.26) with c 	and 	d 	are as in Lemma 

4.4.1. Let w E 1:2( A i"), 0 < v S 1 . 	Then 

- 

( 	 - W 6 	1,  
a h 

fo( ( 8+c h ) 131-1-•)• 	), v s p 

v Z p 

   

If 0 < v < 1 and v < p, then 

( i i ) 	Nw - W 6  II = d ( 6+ E ) 741-  a, h 
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- wo 	= 
a,h 	 1 

0(( 45+ Ch)7 ) , 	 v = 1 

v 

I. 0( ( 45+ eh )7  ). 	0 < v < 1 

In particular if p = 1 in (4.26) then 

Proof: 	The proof of the Theorem follows from Theorem 4.3.1 and 

Lemma 4.4.3 by using the arguments used in the proof of Theorem 

3.2.6. 	■ 
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CHAPTER 5 

REGULARIZED PROJECTION METHOD AND NUMERICAL APPROXIMATION 

In practical implimentation of regularization methods for 

obtaining approximations for the minimal norm least-square solution 

of the equation 	Tx = y, one uses finite dimensional subspaces 

rather than the space X itself. This amounts to, for example, 

the projection methods for solving the regularized equations 

(T * T + aI)x 6  = T*y 6 	and 	A + ccI)w 6  = Q 6 . 
a 	 a 

In Section 5.1, first we consider the projection method for 

Tikhonov regularization of the equation Tx = y with a modified 

form of the discrepancy principle (4.4) for choosing the 

regularization parameter. We show that this procedure leads to a 

generalization and modification of the Marti's method ([28), [29], 

[30) ). In this case the results include, and in certain cases 

improve the conclusions of Engi and Neubauer [6] under weaker 

conditions. Then projection method is applied to Simplified 

regularization with corresponding modified form of the discrepancy 

principles (4.24) and (4.26) considered in Chapter 4. In Sect ion 

5.2 we present the Algorithms to impliment the methods of 'section 

5.1. 	Finally in Section 5.3 we present results of some numerical 

experiments which confirm the Theoretical results presented in 

Section 5.1. 
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5.1• REGULARIZED PROJECTION METHOD 

Let (P h ) 	be a family of orthogonal projections on X. Our 

aim in this Section is to obtain an approximate solution for the 

equation 

(5.1) 	 Tx = y, 	y E R(T) 

in the finite dimensional space 	R(Ph ). 	For the results that 

follow, we impose the conditions 

rlh 
 • 	H(I-Ph);11 	0 and 	ih  := HT( I-P h )H .4  0 as 	h 	cc:. 

on 	Ph and 	x, where 	x 	is the minimal norm solution of (5.1). 

The 	above_conditions are satisfied if, for example,  -4 

pointwise and if T is a compact operator. 

Projection Method for Tikhonov Regularization:- 

The projection method for the regularized equation 

(T*T 	aI)x! = T*y6 , 

consists of solving the equation 

(5.2) 	 PhT*TPh 	ea )>O5 ,h = PhT* Y 6 . a 
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where 	y6  E DO = {u c Y: 	 6). 	The unique solution x 6  , of 
a,h 

the equation (5.2) can be interpreted as the unique element 

satisfying 

	

<(T * T + aI)x 6 	, u> = <T * y 6  , u> 	for all u c R(P h ). a,h 

In fact equation (5.2) is a particular case of (4.2) obtained by 

taking Th = TP h . Here after we use the notation T h 
 instead of 

TP h . It is proved in Groetsch [12] (Lemma 4.2.3) that 

( 5 .3) 
	

lix
a,h

-x
a

ll 	1+( 	/a) II( 

where x
a 
= (T *T + aI)-1T *y and x 

a,h = x C)1c,h
. 

_ Note that 

so that 

	

fl s 	+ flx -xft + }Ix 	-x 6 	11. 
a,h 	 a 	a a,h 	a,h a,h 

Now by (5.3) and the 'fact that 

tlxa 
,h 

 -x 5  II = II( T *h T h  + aI ) -1 1* *h ( y-y 6 )11 
 a,h 	 YuE '  

we have 

11X-x 6
,h 

 U s 6-x
a
II + 1(1+(e/a)11(I-P h )x a + a 

x - x
,h 
=x-x

a
+x

a
-xa,h + x

a,h 
- x 6 

a 
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s ox-x ia u + 1( 1+( 12h/c)( n( I-P h )( x a-x )u + 	i-p ioxp) + 

Therefore 

(5.4 ) 	 Ifx-x°
a,h 

s (2+71 )tlx-x 	+ 1+ 71)r)
h 
 +  7-  

From (4.11) and (4.12), we have 

tiT hx aa ,h- yan s b + lic( T hTt., + aI ) -1 ( T-T h )( T * T + aI ) -1 T * yli 

Note that 

+ Ha( T T *h + Ca ) -1-r n( T * -T * h )( TT *  + czI ) -1 YR 

+ Oct( T 	+ aI ) -1 Tx- N 

T h( T * -T * 0 = TP4 T *- PhT * ) 

0 

so that 

ifT,x ct,h- Y 6H s b + 	T hTt + aI ) -1 ( T--T h )( T *T + al 

+ 	 + cd) TxR, 

where 

Ha( T hTt, + aI ) -1 ( T - Th)( T * T + 	 s 11( T--T h )( T * T + aI ) -1 T * Y0 

s IIT( I-Ph)xocH 
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D T(I-P h )(x cx-x)H + ffT(I -P h )X9 

s IIT(I-P h )(x a-x)11 + IfT (I -Ph )(1,-P h );11 

i h( nX — x an + Th ). 

Therefore- 

.5 	.5  

	

11T h x a h—y 	6  + h( tiX — X all + nh ) + ORx 

where R
a := a(TT

*
+aI)-1  T satisfies MRax0 s ca, with 

min (1, v+1/2), whenever 	E R((T * T)v), 	v > 0. 	Fo,  choosing 

the regularization parameter a, we consider a modif i ed form of the 

discyepancy principle (4.4), namely, 

IIT X 6  -yOlf 

a
q 

where (b h ) hEhi  is a set of positive reals such that b h 	0 as 

h 	0. 	Note that, since 	T h  = TPh anda,h € R(P h ), the above 

equation can be written as 

(5.5) 	riTx (5 	- (.5+bh)P  
a,h a 

Here and below, as in Section 4.2, H is a bounded subset of non-

negative reels such that zero is a limit point of H. Imitating the 

proof of Theorem 4.2.1 (i.) and (ii), it can be seen that there 

exists a unique a := a(.5,h) such that (5.5) is satisfied and that 
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a( 6,h) s c( 6+b h )7T , 0 < S s 60 , h e H. 

Theorem 5.1.1. 	Let 	
rin = o( b kh ) 
	

and 
	

0( b h  ) 	for some 

positive reels k and A. If qa
+ 
	

2q+1 1 
 s min (2k, ") and a is 

chosen according to (5.5) then we have the following 

(i) 	If 4q 
q+1 	2q+1' then 6-x6 R-0  0 as a,h -0 C I  5 	0 -0 

(ii) 	If x e P((T *T)°), 0 < v s 1 ands 1  then 
-6-4717 

R.).:-x 5 	I s c( tix-xll + ri + ( 6+b h „, .1  , 
a a,h 	 h 

= 0((r)h  + (5+b h ) t )) 

where w = min (1, ✓+1/2), 	/ = 1 - 	' 2(q+1)(1+(1-40/q) and 

r = min (—EL, /). 
c1+1 

Proof 
	

We recall from Theorem 2.1.1 (i) and Lemma 2.2_2 that for 

X € R((T*T)v), 0 < p s 1, 

Rx-x a If s cal) and 	IiR ax11 s a
4) 

•. 
Therefore using the assumption 

q+1  s 1  it follows from (4.15) that / 

PW 
erh) P  

a
q 	s c( •5+b h ), 
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so that for any s > 0, we have 

(d+bh)s  s;  054.bos- ALS:+4) ) 1/2Q 

From this we have 

C &+b i.ds  
P4) 

I (1+1 

(Oi-b  	6+b 
a

h4  - 0( 1 ) and 	7711r  - 	( es+bh)
../ 

ra 

,-: 
where 	.1 . 1 - 	,' 	(1+(l-w)/q). 	Note that 	1 z 1 	 so 2A g+1 ) 	 4q( c4+1 )' 

p 	4q 	 & that by the assumption 	---q+1 	2g4-1 < 	---, we have 	,-. a(1). 	Now the 
-jt 

result in (i) follows from (5.4) by using the arguements used in 

Theorem 2.2.1 and (ii) follows from (.5:4)-. - 

Remarks 5.1.2. 	We note that if v  k 1/2, then, 	x__R(1 ), so 

that 	fit. 1-P h )xK s c flT(I - P h )fl. 	Thus we may take 	k z A. 	We 

consider two special cases. 

Case (I) x E R(T * ), i.e., v = 1/2 :- Let 
	
- 1. Taking 

	

2q+1 	k zx 	4q 	in Theorem 5.1.1 (ii), we obtain the rate 

h
h = 401( ( .54ah )1/2) .  

For obtaing the same result Engl. and Neubauer [6] requires the 

condition c41  X = 	which is stronger than ours. 	As in [6] , from 

Theorem 5.1.1 (ii), we also obtain the rate arbitrarily close to 
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0(7 ) for large values of q provided 

4ck 
ZIT 

b h- l h 
and 	 ct(b h ). 

Case (ii) 	x E R(T*T), i.e., o = 1 :- 	 2 Let --- - —, Taking q+1 	3 

k Z X •= 2q+ 1 
bq 	the rate in Theorem 5.1.1 (ii) becomes 6 ( o+Dos 

641 

with 	s = min (2/3, k). 	In this case, if 	6 = 6h S cb h  ~777T 

then the rate is 

Hx-x° U = 
a , 

2q = 	in 2q+1 

NCA:u that if q 	1/2, then t 2 1, and if q z 1/2 and 	> ) := 

2q+1 then n bq 

4q  

Hx-x 6  g 	ci 7  Icwi) 
a, h 

is arbitrarily close to to(* for large values of q, where as the 

1:esult in [6) can give only up to 	lt,)- 
	 Since T*T 	is self- 

ad ioi nt , we have 	11( 	H = 0( HT * T( I-P h )H), so that the condition 

k z 2/3 is satisfied if the operator T has the property 

2 IIT *T(I - P h )H = 	HT(I-P h )02 ) for then one can take k = 	7 4 

Such cases do occur•f. For example, suppose that T is an injective 

compact operator with R(T) derle in Y. Let (o k ) be the set. of 

singular values of T satisfying of > 02  k and (u k ) and 

(v k ) be orthogonal basis of X and Y respectively Such that Tu k 

 = oku k , T*v k  = a kv k  for k = 1,2,.... If h = i/n, n = 1,2,.. s Ph 

t > 1. In particular if k z 2/3 then the rate._ - 



is the orthogonal projection of 	X 	onto 	V, := span (u 1 ,...,u„) 

then it can be seen that UT *T(I-P h )I = IT(I-P0f2  = on.2 1 . 

Marti (See [28) , [29) , (30) ), used an algorithm to compute 

approximate solution for the equation (5.1). 	In this method , a 

sequence of finite dimensional subspaces V 1  c V 2  c 	of X with 

U V, = X 

is used to obtain an approximate solution 

precisely, let for n E N 

neN 

x, 	of (5.1). 	More 

a n  = inf(liTx-yfl : x e V„), 

P h , h = 1/n, be the orthogonal projection of X onto 	, and 

b h  > 0 be chosen such that 

HP x 	xfl lira 	h 	— 0, 
n m 	b h 

lira b h  = 0, 
n 

Then x, is defined by 

X n  E V„ ,  

(5.6) 	 OTx„-y11 2  s an + 

nx,,H = inf(Uxfl : x 6 Vn  and satisfies (5.6)) 
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In (12, Section 4.3], Groetsch has reformulated, Marti's method 

as solving 

ax, + T hT hx n  = T hy, 

for x n with the regularization parameter a is determined by 

( 5 . 7 ) 
	

11TX n—  YH 2  = a 2n  + b h
2  

. 

Thus the method (5.2), (5.5) is a generalization and modification of 

Marti's method. 

Projection Method for Simplified Regularization:-
1 

 

Here we consider the case when t e Operator under consideration 

Is a positive self adjoint operator. More precisely we consider the 

operator equation 

Aw = g, 	g E R(A) 

where A is a positive self adjoint operator on X. As earlier, 

let (P h ) t.c,o, is a family of finite rank orthogonal projection on 

X. In this case the projection method for the equation 

(A + aI )w 
a . 

will take the form 

11 3 



 

(5.9 ) 	 P hAP h+ «I )u cc6 ,h = P ings, 

where g6  E F 6  = 	e X: Hu - gli S 6). 

-o^ Note that 

  

 

u 6  = P44 6 
 a,h 	a,h - 

where 	w6 	is the solution of the equation a,h 

(5.10) 	 ( POP h+ aI )14 (x6 ,h  = 06 . 

In fact the equation (5.10) is a particular case of (4.21) .)btained 

by taking 	Ah = PN4P h . Here after sae use the notation Ah instead`? 

    

of 	P hAP h . 	Let 	HA-AP hli = c(b h ). 	where 

positive reels such that b h  _4  0- as 

( b h) >o is a family of 

The following Theorem is a companion result of Theorem 4.3.1. 

Theorem 5.1.3. 	Let u 6  be defined as in (5.9) and w •fbe thr- 
a,h 

minimal norm solution of the equation (5.8) 	If w E R(Av), 

0 < p S 1, then 

6+b 
u 6  II 	+ C 2a" 

a, h 	 a 

where ci  and c2  are positive constants. 

Pr oof : 	Note that 
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-(5.11) 
r  

N s Nw-w 6  1 +/NJ& -u 6  1. 
a,h 	 a,h 	a,h a,h 

Now from (5.9) and (5.10), we have 

aflu 6  -w6  N = N( P h  - I )96 11 
a t t.) 	a,h 

Si nce NA -AP t4 = RA-Poil, we obtain 

allua - w 6 N ,s S + b h iai I . 
a,h a,h 

Thus from (5.11), we have 

(5.12) 
a 	

8+b 
flw-uo

,h 	 a 
s Ow-wo

,h 	 a I + max(1, ew )--b 

Now the result follows from Theorem 4.3.1, with Ah = PnAP, and 

E h  = 0( b t„). 

For choosing the regularization parameter 	a in (5.9), we 

first consider the discrepancy principle 
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(5.13 ) RP hAu! ,h-P hs 611 - (O+Es)Pp > 0, q > 0, 
a 

which is a modified form of (4.24). Imitating the proof of Theorem, 

4.3.2 (i) and (ii), it can be seen that there exists a unique a := 

a.(6,h) such that (5.13) is satisfied and that 

(5.14) 	 OK 6.h ) 	erf- bhi T , 0 < 6 	60 , 	h € 

Theorem 5.1.4 . 	Let a = a( 6,h ) be chosen according to (5.13). 

Then 

(i) 	If p < q+1 and b h  .4, 0 as h 	0, then 

Rw-u 5 	0 as 
a,h 

_4  0, 	_4, 0 . 

	

liw-u 5
,h  = 
	( s+bor ) a 

	

r  PP 	P where 	minkiTr. 	co-1 

In particular if then 
q÷1 	vt-1' 

( 	) 	Dw-u 5  
cz,h 

( 6-tb h  )17rr  

proof: 	Note that 

( ,s+b)P 	uo 	g6h ( 5 .15) 	 tit" tiR 	h—pt, 
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= 	PhA+al ) -1 Ph9 811 

s ea( P hA+al ) -1Pg ge'-g )i + la( PhA+al ) -iPt,91 

s 6 + Ila(( PhA+al Y lPh - (A+aI  ) -1 ) 91 

+ la( A+aT ) -1 9 

s 6 + Roc( PhA+aI 	[Ph( A+cci ) 	PhA+al )) 

( Ps+ca ) -1 ] ge + 	A+an-10 

s 5 + 9a2( Ah+ai ) -1 ( Ph-I )( A+ai 

+ la( A+aI ) -lgil 

Note that 

1a2( A h+ ) -1 ( Ph- I )( A+aI ) -1g1 = 1a2( A h+ai ) -1( P h--I )14( A+aI ) -1 ■:;R 

s b h ew h 

and 

la( 	) -1911 s AWN. 

Therefore from (5.15) it follows that 

(. 6412 ) . 
 c 6+b h ) + e 2a, 

a 

11,7 



where c i  and c2  are positive constants. Now from (5.14) and 

the fact that p < qsl, we have 

) 1: q 	 ( 6+ bh) r ). 
a 

Therefore 

P  45 	) P  1/q 
-15:21- 1 	(6+bh) 	75( 	

a
q h  ) a 

- P  1 
= 0((6+bh) 	15* cKet+i)), 

(5.16) 

Therefore PI-121 	0 
a 

1 - P  6+b --h - 0( (6+b h ) 	) . a 

as d 	0, h 4  0. Also by Theorem 4.3.2 (iii) 

we have 	lw-wo 1 .4  0. 	Thus by (5.12), ilw-u 6 	,4  0 as 	6 4  0, 
a,h 	 a,h 

h 4  O. Now (ii) follows by applying the estimates in (5.14), (5.16) 

to the estimate in Theorem 5.1.3. 	The proof of (iii) is a 

consequence of (ii) and the fact that 

1 	 _ P and in that case q+
p 
 1 	1' 	 q+

P 
 1 	1° 

q+ 1 
P 1--- 	if and only if 

q+1 

Remark 5.1.5. 	As in Remark 3.1.5, the above method for 

Simplified regularization can be used for Tikhono regularization 

also by taking A = T * T, g = T*y and g6  = T *y 6 , 	 where 

c z NT * 1. 	In this case the estimate 	a = 0((6+bh) 7T ) 	of (5.14) 

can be used to obtain the estimate 
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1- 	° (54-b 
( 6+ b h)" 

-Taj2  

Therefore if p < 2(q+1) and X E R((T*T)v), 0 < v s 1, then we 

have 

ICX - X
,h 
 = 0((8+bh) rn ) 

a 

where m = min(4, 1- 7;r ). 

This, in particular, gives the optimal estimate 	c“45+bpdln7:T ) 	for 

zP-IFT 

Next we use a modified form of the discrepancy principle (4.26), 

namely, 

(5_17) 
	

a2(P+3) <( P hAP h+aI )-2(1)4.1)P06 ,P h.g 6) = ( co+dh0 2 , 

where c and d are positive constants, for choosing the 

regularization parameter a in (5.9). Before proving the existence 

and uniqueness of a satisfying (5.17) we prove the following 

result_ 

Proposition 5.1.6. 	Let g * 0 and g6  E F. Then there exists 

So  > 0, ho  > 0 such that 

0( I - O h )Phg611 s co+dbh I liPh9 6 11 

- 
for all S s So  and h 1 ho , where c > 	d > ewlf are constants 
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. and O h  is the orthogonal projection onto PiTT77 0. 

Proof: 	Since Ph _.• I pointwise as h .., 0 and g 6  _, g as 6 _o ci 

we have 

UP08 11 	flgfl $ 0 and co+db h 	0 as 6 _., 0, h 	0 . 

Therefore there exists 60  > 0 and h o  > 0 such that 

c6+db h  s IIP0 611, for all 6 < 60  and h < h0 . 

Also, since Ph and Qh are orthogonal projections and g = Aw, 

ii(I - C> h )P hg 6 11 s 	I -C>4)P4 9 6"g); + II( I -Oh)Poi 

s 6 4- 1( I-Q h )P f.e4C:Ji 

But f( I-Q h )P hAP hl = 0, so that 

11(1-Q h )P hg 6 11 4- 6 + ff( I-Q h )P h( 	- AP h )Wg 

s 6 + bh liw It 

for all 	6 > 0 	and 	h > 0. 	This completes the proof of the 

Proposition. m 

Lemma 5.1.7. 	Let 60  > 0 and h0  a 0 he as in Proposition 

5.1.6. Then for & It; 60 , h s h0 , there exists a unique a := a(6,h) 

satisfying (5.17). 



PToof: 	For fixed (5 s (50 , h s ho , let 

p(a) = a2(P+1)6(P hAP +ai) -2(1"4"P 6  P 6  hg 	ng > 

Then as in Lemma 3.2.1, 

c(a) 	f (-a-a+X ) 2(P"#"d<E P t-,9 	P 6 	6 hg > . 

where (EA), , is the spectral family of the operator PHAP h . 

Now the map 

a F-4 f P(a ' X) = (2a+X)"") 

is strictly increasing for each x > 0, and satisfies 

f p(a,X) 	0 as a 	0 

f p(a,X) _s  1 as a 	op. 

Therefore by Dominated Convergence Theorem we have 

(5.18) 
	

9:1(a) 	IlE 0Pi.0 6 02  as a . 0 

where E o  is the projection on toIATTIPT)4' and 

fp( 

 

and 

(5.19) 	 a) -) ilF> hg 61 2  



Now since 

E 0P 1.06  = E 0Q hP hg6 	E 0( I-Q h )P 1.0 8  

= E o( i -o h )p hs3 8 . 

Thus 

IlEe hg'511 = 11E 0(I-Q h )PO 45 11 

s [1( I-O h )P hg 60. 

This together with Proposition 5.1.6, gives 

NE 0P hg 6 11 s c6+db h  s liPhg 6 11 

for all 	6 s 60 , h s h0 . 	Now the Lemma follows by Interfoidiate 

value Theorem by using (5.18) and (5.19). s 

We note that 

I►A-P hAP h li s UA-AP hil + fi(A-PWi)P h i 

s 2 HA-AP hn 

gbh. 

Therefore, if a := a(6,h) satisfies (5.17), then Lemma 4.4.1 and 

Lemma 4.4.3 holds with gb h  in place of 	eh . 	Thus in view of 

Theorem 5.1.3, we have the following result which is same as Theorem 

dr 
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4.4.4 with u 6  , in place of w6  
a„h 	 a,h •  

Theorem 5.1.8. 	Let g6  E F 6, h e H and let a := 40( 6,h) be the 

unique solution of (5.17) with c > 1 and d > e = 2(24.p)IZB. Let 

w e R(AP), 0 < p s 1. Then 

Ow- --u 6  I = 
Cf 9h 

s p 

p 

If 0 < u s 1 and p < p, then 

(ii ) 	Ci-u
,h  R = 0((64.b0PTT ). 

ct 

In particular if p = 1 in (5.17), then 

;Hi) w—u 6  n 
a,. 

p( 5-tt h  

10« 6+b h 

0 < v < 1 

1.: 	as 

5.2- ALGORITHMS 

In this Section we give algorithms for 3.mplimenting the methods 

considered in Sections 5.1. 	Let 	(Vn ) 	be a -equence of finite 

dimensional subspaces of 	X 	and 
	

Pn 
	denote the orthogonal 
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Thus x 6  
a,h 

is of the form 

It can be seen that x 6  = 
a,h 

only if 	- 
	 An )T 

projection on X with R(P n ) = V n . We assume that dimV n  = n, and 

(5.20) 	 P nx-xR 	0 as 	n 	0, 

for all x E X. Let (v i , ...,v n ) be a basis of V n , n = 

Algorithm 5.2.1. 

	

	Let T E BL(X,Y) be a compact operator and let 

1 
Th 	TP n  where h = —

n
. Now by assumption (5.20) and the fact that 

T *  is compact, we have 	NT-T hR = IT-TP4 = R(I-P n )T * R _3 0 as 

with the above notation (5.2) takes the form 

(5.21) 	 ( P nT * TP n  

From (5.21) it follows that 

h 
x 	= i(PnT *y 6 	PnT*TP.,x6 ,h) 
a 	 a 

--P  n ( t * y 6 	T * TP n  x 6 .5 E V 
asA 	1" 

2 X iv, 	for some scalars 	Ai , 	 XII • 
i.-- 1 

t XiVi is t he solution of (5.21) if and 
i-i 

is the unique solution of 

( 5.22 ) 	 (Mn + oi3 n ) .$4. 	W n  
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where 

Mn  = ( <Tv i  , Tv i >), 	j = 1, • 	n. 

B n  = ( <v i  , v i> ), 	1. i = 1, 	, n, 

W n  = ( <y 6  , Tv i > , 	, <y 6  , Tv n > )T. 

Here and below ( p l , ...fin ) T denotes the transpose of (i31 ,.,i3n ). 

Note that (5.22) is uniquely solvable because M n  is a positive 

definite matrix (i.e., xti nx-L > 0 for all non-zero vector and 

a n  is an invertible matrix. The parameter a in (5.22) is chosen 

according to (5.5), which is same as 

(5.23) ilTx6 - yau 	8+i),,)P 
a,h 

This is equivalent to solving the non linear equation 

(5.24) 	f( a) := a2° [-airiTe 	 (TY+ < y 6 , y 6> I -( 	64-b n  ) 25' = 0 

where i. a) is the solution of (5.22). The parameter a = o(6,b i ,) 

satisfying (5.24) can be found as follows. 

Step 1 	For some initial (good) approximation 	ao  > 0 	find 

satisfying (5.22). 	Specifically 	we 	use 	choleskY 

decomposition to compute Tra077. 

and 
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Step 2 (Newtons method) Using -TEO, of Step 1 compute 

14%2 a() - 
CCO 

where 

f(a) = a2° [-a;Trc7IB,ACo--)t - W nIT,r717c • <y6 ,y6>] - (6+bp-,)2°  

and 

f '°( a) = 2qa2q-1 [-a),( a) B og a) 	WnTirc7 + <y 8 ,y 6>] 

ci [—x 	B nv a) - 2a),( c177 B y,r( (Tr 	W ,T7777.3:) 

Repeat Step 1 with al  in place of at, and Step 2 obi  with 57-1;77 

in place of X(a0 ) and so on. In the 2mth step, we obtain 

(5.25) f( am ..1 )  
am = Cgo►-1 	 aro-1 ) • 

For sufficiently good initial approximation, the iterates in (5.25) 

converges to a(6,h), the zero of the function f(a). 

Algorithm 5.2.2. 	Let A E BL(X) be a compact positive self- 

adjoi nt operator and let A h  = PlIAPn  where h 
1 
77 -  

In this case 

we consider the equation (5.9), i.e, 

(5.26) PnAP u 6  + oru 6 	Png8 . n cr,h 	a,h 

As in Algorithms 5.2.1, it can be seen that u
! ,h  € V . 
	

Thus 
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U 6  a ,h is of the form 	piv i  for some scalars 	 We 
ii 

note that u 8  = tp iVi is the solution (5.26) if and only if 
a , h 

 
1=1 

p = 	 pr, ) 1'  is the solution of 

(5.27) 
	

An 	of3 n 	Y n 

where 

A n  = ( <Av i  , v i ) ), 	i = J = 1, 	n, 

B n  = ( <v i 	v i> ), 	1, 3 = 	, 	n, 

and 

	

Y n  = (<y 6  , v l i , 	., <Y 6  , vn> 

The parameter a in (5.27) is chosen according to (5.13), 

(5.28) 	 tiP nAua6 ,h  -Png'5 11 - (-243-. 

This is equivalent to solving the non linear equation 

5.29) 	 g( a): = a2cri.21X a ) TB.4.4 	- 8+bh 	0. 

The parameter a = ex( b h ) satisfying (5.29) can be found as 

follows. 

Step 1 
	

Fur some initial approximation 	ao  > 0 	find 	W-0(7.  

satisfying (5.27). 
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Step 2 	Using IA cco ) of step 1 compute 

9( ao) 
al ao - rn'o  

where 

9( a ) = a2Q+21.4 )7B44 a) - ( 45+ b h  ) 2°  

and 

9 '( a) = 2( q+ 1 )a2ct+i t4( a ) TB np( ) + 2a2q42p( a ) T8.4.4 a) 

As in Algorithm 5.2.1, in the 2mth step we have 

( 5.30 ) g( affri) 

am  = a`m-1 	 —75.13-1
•  

For sufficiently good initial approximation, the iterates ( 5.30 ) 

converges to 0( 45,h) the zero of the function g( a). We note that 

the procedure in the above Algorithm is similar to the one given in 

Engi and Neubauer [6) with A = T*T and g8  = T*y&. 

Algorithm 5.2.3. 	Let A be as in Algorithm 5.2.2. We choose 

the regular ization parameter according to the discrepancy principle 

(5.17 ), i .e . 

( 5.31 ) 	 cx 	 1) < ( A + a' ) -2(0+1)P ng 6  , P ng 8> = ( c8+db h  )2  . 

We consider only two values of p, namely, p = 1/2 and p = 1. 

Case 3 Let p = 1/2. Then ( 5 „31 ) takes the form 

fir 
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(5.32) 
	

a
3
<(A + aI)-31),06  , Png6> = Co+dbh)

2
. 

In this case, choosing the parameter 	a 	satisfying (5.32) is 

equivalent to solving the non linear equation 

( . 33 ) 	 h(a) := a3C(a) TB,,p( a) - (c6tdb h )2  = 0 

wnere 	p(a) is the solution of the equation (5.27) and 

si7c77 := (C(a),...,Cn(a)) is the solution of 

(5.34) 	 (An  + can )c(a) = TO8 n . 

Now the parameter a := a(.5,b n ) satisfying (5.33) can be found as 

follows. 

Step 1 	For 	ao  > 0 find 
	

satisfying (5. 27). We use 

cholosky decomposition for computing TZNEO. 

11/...•■•••••■• 

Step 2 	Using TWO compute, C(a0 ) satisfying (5.34). Here also 

we use cholosky decomposition. 

Step 3 	Using 	cco ) and c( ao ) compute 

 • 

etc> 	JIC  

where 

11( a) = a3C( a) TB niti( a) — c8+dbh)2  
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h . are = am-i 
ast-i 

(5.35) 

and 

W(a) = 3a C2TZ TB ng 	 C(a) 13 44 ) 	C(a) TB 4.1( (X) 

Repeat the process with al  to compute a2  and so on. In the 3mth 

step we have 

For sufficiently good initial approximation, the iterate in (5.35) 

converges to the zero of h(a). 

Case 2 	Let p = 1. In this case (5.31) becomes 

(5.36) 
	 4 <( A + 	-4 P ngv 	Png&> = (coi-db h )`. 

Now chobsing the parameter a satisfying (5.36) is equivalent to 

solving the equation 

(5.37) 
	

k( a ) = aC( cx) BZ57 	(ca+db h )2 =: 0 

where 	t(c77 	is the solution of the equation (5.34). 

The parameter 	a := a(.5,b,) 	satisfying 	(5.37) 	can be found as 

follows. 

Step 1 	For ao  > 0 find p(a0 ) satisfying (5.27). 
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Step 2 Using cholosky decomposition and p(ao) of step 1, compute 

erCi0 satisfying (5.34). 

Step 3 Using C(a0 ) compute 

k( a)  
= cco - 	ao  ) 

where 

k( a) = a4C( a) re nC( a) - cerfAb h ) 2  

and 

k,( cc) =
3

C(cc) B nC( a) + 2a
4 	
C( a)

T 
 enS( a) 

Now as in Case 1, in the 3mth step we have 

(5. .38 
	

am '  

Here also, for sufficiently good initial approximation, the iterates 

in (5.38) converges to the zero of k(a). 

5.3- NUMERICAL EXAMPLES 

In order to illustrate the methods considered in Section 5.1, we 

r consider the space 	X = Y = L 2  L0,1) 	and consider the Fredholm 

integral equations of the first. kind 

( 5 39 ) 	
0

k( s ,t )x( t )dt. = y( s ) 



V1(t) = ( t2 
0 

 
if t2 s t 	 = 

t2-t if 0 = tis t s t2 

with k(s,t) defined by 

(5.40) 
s(i -t), 

k(s,t) = 
t(1-s), 

s S t 

s > 

We apply the Algotithms in Section 5.2 by choosing V n  as the space 

of linear splines in a uniform grid of 	n+1 	points in [0,1). 

Specifically for fixed n we consider t i  = 	 = 1, 2, i1
n  

n+1 as the grid points. 	We take the basis function v i , i = 1, 

...,n+1 of V n  as follows: 

for 	j = 2, 	n, 

if ti s t s ti+i 

if ti+i S t s tn+2 = 1 

t ) = 

0 

t-ti-i 
ti-ts-i 

if 0 S t s t2 

if ti-1 s t S ti 

if 0 s t S tn 
Vn."(t) 

t . t- tn 
tn+l -tn 

If to S t s tn+1 = 1 

and 

Let P n  be the orthogonal projection onto Vn . We note that 

for x e C[0,1) 

13 2 



NP flx-x02  = dist(x,R(P0) 

Inrix-x12  

Inflx-xfico  

where n, is the (piecewise linear) interpolatory projection onto 

V. 	It is known [27) that 	 0 	as 	 Therefore n- 	 -4 	 w- 

using the fact that C[0,1) is dense in L 2 [0,1) , it follows that 

1112, ,x-xO2 	0 

for all 	x E L. 2 [0,1) 

The elements Tv i , 	i = 1, 	n+1 	and the entries of the 

matrix B r, 	needed in the Algorithms are computed explicitly. 

Finally the scalar product, 	(Tv i ,Tv i > 	and 	<y6,Tv i ), 	j = 1, 

n+1 are computed by trapezoidal rule. For the operator T 

defined by (5.39) and (5.40) . , in  = IT-TP,O = n -2 ) (see [17)). We 

take y 8(s) = y(s) + 6, 01 s s 1. The iterations in the algorithms 

have been stoped as soon as 106-0;,.. 2 1 10-7 . 

In the tables in Examples 5.3.1 and 5.3.2, e = Hx - x aph 

,h -  
O and the last column shows that we obtain the expected 

oc 

convergence rates. 

Example 5.3.1 	Here we use Algorithm 5.2.1. 

1 3 3 



6.312341E-02 

8.384762E-03 

1,999828E-03 

7,363359E-04 

3,437066E-04 

7.690701E-02 

3.947685E-02 

1.457269E-02 

6.595434E-03 

3.866229E-03 

5.470486E-01 

5.616070E•01 

4.146292E-01 

3.753128E-01 

4.400151E-01 

n  

4 

8 

16 

32 

64 

a --g-------  

a) Let y(s) = y2•4-(s - 2s 3  + s4 ). Then the exact solution is 

x = Tfy(t) = 	- t 2 ) E R(T * ), since x = T*1 (See [6] ). In this 

example we take p = 2, q = 1 and b h  = 10-1/2n-2  where h = 1/n. 

According to Remark 5.1.2 (i) we should obtain the rate 

n -110-1/4) .  The computational result are as follows. 

a 

4 	 5.080676E-02 

8 	 6.692923E-03 

16 	 1.386671E 403 

32 	 3.300157E-04 

64 	 8.122311E-05 

7.597033E-02 

3,616450E-02 

1.131647E-02 

3.820369E-03 

1.702979E-03 

5.403859E-01 

5.144848E-01 

3.219815E-01 

2.173979E-01 

1.938159E-01 

b) We take- y, PI q, b h  are as ( a ) a nd 	8 = n -210 -1/2 fly 

According to Remark 5.1.2 we should obtain th.c- rate 001 -1 10-1"). 

c) Let y(s) = --(3s - 5s 3  + 3ss 	s6). Then 
30 

= Tty( t) = 

(t 	2t. 3  + t 4 ) E R(T *T) (See [6]). Here we take p, = 1, q = 1/2 

(i.e., Arcangeli"s method) and 	bh  = 	 In this case we 
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should get the rate 01( n -4/310 -2/3 ), 

  

---e7-7473716277-  

5.899955 

9.584369 

11.503240 

12.298830 

12.644100 

	

4 	 9.496383E-02 	2.001868E-01 

	

8 	 1.428025E-02 	1.290556E-01 

	

16 	 3.934675E-03 	, 6.146955E-02 

	

32 	 1.367126E-03 	2.606137E-02 

	

64 	 5.157226E-04 	1.064097E-02 

644 

d) 	Here 	Y, 	p, 	q are as ( ) 	and bh = 	n 
2W1-  Then by 

Rcmark 5.1.2 we should obtain the rate 0(1h ) = 0(iC). 

e.n‘ 

4 

8 

16 

32 

64 

5.032420E-01 

1.835899E-02 

2.708180E-03 

6.017325E-04 

1.462539E-04 

2.173905E-01 

1.422737E-01 

4.631227E-02 

1.230339E-02 

3.478248 

i?.105517 

12.855940 

12,598670 

3.222171E-03 	13.198010 

e ) 	We take 	y , 	P , 	q are as in (c ), b h  --,. 10 -1 n -2 	and 	6 is 

10 -1 n-2 ifyll. 	According to Remar k 5.1 .2 we should get the rate 

of r,-4/310213). 
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e n 	10 

9.764295E-02 2.006114E-01 5.912469 

1.460831E-02 1.301518E-01 9.665779 

4.005746E-03 6.221194E-02 11.642170 

1.389137E-03 2.643386E-02 12.465050 

5.236521E - 04 1.079201E-02 12.823570 

f) Let y, 	p, q and b h  be as in (d) and 	6 = n-3 E1)1 . Again 

by Remark 5.1.2 we should obtain the rate 0( 7h) = 0( n -2 ). 

a 

4 	 5.114884E - 01 	2.174024E - 01 	 3.478438 

8 	 1.880284E - 02 	1.433523E - 01 	 9.174546 

16 	 2,754756E-03 	4.690156E-02 	12.006800' 

32 	 6.108578E-04 	1.247299E-02 	12.772350 

64 	 1.484457E-04 	3.263526E-03 	13.36740 

g) Let 	y(s) = -61'7(s - s 3 ). 	Then 	x = Tty(t) = t e R((T *T)P) 	for 

1 
all 	v < 1 
	

f 

	

5 	(See [36]). 	Here we take 	p = 1, 	q = 	, 	b 1. 

1 
10 -1/2 n -2  and 	v = u . 	According to Theorem 4.2.2 (ii), we should 

obtain the rate 4n -1 /610 -1/12 ). 

4 

8 

16 

32 

64 
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1.989054E-01 

2.911166E-02 

6.711536E-03 

1 :996'030E-03 

5.931330E-04 

6.886654E-01 

6.317720E-01 

5.633281E-01 

5.266258E-01 

4.994133E-01 

1.051199 

1.082452 

1.083382 

1.136825-- 

1.210106 

4 

16 

32 

64 

e n r7s7TurlY2 

	

4 	 2.032875E-01 

	

8 	 2.345335E-02 

	

16 	 5.452919E-03 

	

32 	 1.624781E-03 

64 	 4.782124E-04 

6.933492E-01 

6.264760E-01 

5.571122E-01 

5.220351E-01 

4.951615E-01 

1.058348 

1.073378 

1.071427 

1.126915 

1.199804 

h) Let y, p, q and b h  be as in (g) and S = 10 -1/2n-21yN. 

a 

Now we illustrate the use of Algorithms 5.2.2 and 5.2.3 by 

considering the operator equation 

T *Tx = T *y 

where T: L 2  0.1) L
2
[0,1] is given by 

(Tx)(s) = il k( s,t)x(t)dt. 
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Note that, the Simplified regularization of the above equation is 

the Tikhonov regularization of the equation Tx = y. With this 

observation we have the following Example. 

Example 5.3.2. 	In the following cases, (a)-(c) and (d), we take 

y as the corresponding y in (a)-(c) and (e) of Example 5.3.1. 

We use Algorithm 5.2.2 to compute the regularization parameter a 

in (5.27). 

a) 	We take p = 2, q = 1 and b h  = 10-1 n72  so that in view of 

Remark 5.1.5 	we should obtain the rate 	0( n-1 10-1/2 ). 	The 

following table gives the numerical results. 

n_ 	 e.n._0 

	

4 	 5.022955E-02 

	

8 	 6.638567E-03 

	

16 	 1.377367E-03 

	

32 	 3.284572E-04 

	

64 	 8.114147E-05 

7.582424E-02 

3.598772E-02 

1.125443E-02 

3.808466E-03 

1.702159E-03 

9.591092E-01 

9.104252E-01 

5.694289E-01 

3.853897E-01 

3.444927E-01 

b) 	We take 	p =2, 	q = 1 	b h  = 10 -1 n-2  and 	45 = 10 -1-r2 11Yil 

Again in view of Remark 5.1.5 we should obtain the rate 

0( n-110-1/2). 

138 



5.379350E-02 

7.374059E-03 

1.525748E-03 

3.632755E-04 

8.970418E-05 

7.481332E-02 

3.651361E-02 

1.1543763-02 

3.827736E-03 

1.688976E-03 

9.463220E-01 

9.237294E-01 

5.840729E-01 

3.873397E-01 

3.418248E-01 

n  

4 

8 

16 

32 

64 

c) In this case 	q are as in (a) and bh = 10-3/4n 	so that 

we should obtain the rate io(n -210 -3/4 ). 

a 	 e 	 e.nz1 0 3/ 

	

4 	 6.306100E-02 	1.907738E-01 

	

8 	 7.833364E-03 	9.601407E-02 

	

16 	 1.584625E-03 	2.967627E-02 

	

32 	 3.754008E-04 	7 . 853163E-03 

	

64 	 9.259419E-05 	2.237586E-03 

17.164800 

34.555320 

42.721780 

-45..221460 • 

51.539440 

d) We take p = 2, q = 1, 	bh = 10-314n -2  and 	8 = 10-3/4n-2 11Y11. 

Here we should get the rate 0( n -210-3/4 ). 

e n 1 

	

4 	 6.377255E-02 

	

8 	 7.932854E-03 

	

16 	 1.603083E-03 

	

32 	 3.796421E-04 

	

64 	 9.363182E-05 

1.907804E-01 

9.639260E-02 

2.985455E-02 

7.902579E-03 

2.242575E-03 

17.165390 

34.691550 

42.978430 

45.506020 

51.654350 



Example 5.3.3. The kernel 	k(s,t) and y in (a)-(d) are as 

that of corresponding part of Example 5.3.2. 	We choose the 

regularization parameter a in (5.27) according to Algorithm 5.2.3. 

In the tables below e = Nw - u
a,h 
 and 	= 	- u6  H. a, h 

a) Here we take p = 1/2, b h  = 10 -2n-2  and d = 1.5. According to 

Theorem 4.4.3 (i), we should get the rate 0i(n10) -2/3 ). 

-. 	 .10 

	

4 	 7.923149E-02 

	

8 	 5.457997E-03 

	

16 	 1.638970E-03 

5.931827E-04 

64 	 2.271117E-04 

8.083386E-02 

3.184877E-02 

1.296893E-02 

5.758975E-03 

3.032624E-03 

9.454386E-01 

5.913156E-01 

3.822236E-01 

2.694296E-01 

2.252191E-01 

b) We take y. 	p, b h 	are as in (a) and 8 = 10 -2n -2. Let 

c = 1.5 and d = 0.5. By Theorem 5.1.5 (i), we should obtain the 

rate c((n.10)). 

e .( n .10 ) 2/3  

	

4 	 1.550571E-01 

	

8 	 6.247536E-03 

	

16 	 1.827964E-03 

	

32 	 6.562740E-04 

	

64 	 2.505496E-04 

8.530082E-02 

3.382691E-02 

1.386662E-02 

6.124841E-03 

3.186567E-03 

9.976845E-01 

6.280424E-01 

4.086806E-01 

2.865463E-01 

2.366518E-01 
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.c) In this case p = 1, b h  and c are as in (a). According to 

theory we should get the rate 0( n -1 10-1 ). 

n a 
	 e.n.10 

4 	 1.449626E-02 	1.299059E-01 

	

8 	 4.181230E-03 	6.421530E-02 

	

16 	 1.739352E-03 	3.215186E-02 

	

32 	 8.020217E-04 	1.609211E-02 

	

64 	 3.859191E-04 	8.075576E-03 

5.196238 

5.137224 

5.144298 

5.149476 

5.168369 

d) Let 	p = 1, 	b h , c, 	d be as in (b) and 6 = 10 -2n -2 	Here 

also we should get the rate 0( ' 1 .10 -1 ). 

a 
	

6.n.10 

	

4 	 1.694081E-02 

	

8 	 4.616672E-03 

	

16 	 1.891412E-03 

	

32 	 8.667071E-04 

	

64 	 4.158478E-04 

1.361748E-01 

6.787931E-02 

3.422990E-02 

1.720542E-02 

8.650644E-03 

----5,446991 . 

 - 5.430345 

5.476784 

5.505734 

5.536412 

1.41 
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