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Abstract. Ralstonia solanacearum is a well-known phytopathogen causing bacterial wilt in a large number of agriculturally
important crops. The pathogenicity of R. solanacearum is expressed due to the presence of various virulence factors and effector
proteins. In this study, various virulence factors and type I1I effector proteins of R. solanacearum that are present in the strains Rs-09-
161 and Rs-10-244 were identified through bioinformatics approach and compared with other reference strains. R. solanacearum
strains, Rs-09-161 and Rs-10-244 belong to the phylotype I, biovar3, and are the only sequenced strains from India infecting
solanaceous vegetables. Similarity matrix obtained by comparing the sequences of virulence genes of Rs-09-161 and Rs-10-244
with other reference strains indicated that Rs-09-161 and Rs-10-244 share more than 99% similarity between them and are closely
related to GMI1000. The virulence factors in R. solanacearum appear to be highly conserved in the R. solanacearum species complex.
Rs-09-161 has 72 type I1I effectors whereas Rs-10-244 has 77. Comparison of the complete genes of type 111 effectors of Rs-09-161,
Rs-10-244 and GMI1000 revealed the presence of 60 common effectors within them. Further, Rs-09-161 has two unique effectors and
Rs-10-244 has four unique effectors. Phylogenetic trees of RipA, RipG, RipH and RipS effector sequences resulted in the grouping
of the isolates based on their phylotypes. Group 1 consists of strains that belong to phylotype I including Rs-09-161 and Rs-10-244.
Phylotype III strain CMR15 forms a group closely associated with phylotype I. The strains belonging to phylotypes II and IV have
separated to form two different groups.
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Introduction R. syzygii and the banana blood disease bacterium (BDB)

(Genin and Denny 2012).

Ralstonia solanacearum is a phytopathogen, which causes
bacterial wilt disease in many crop plants and is responsi-
ble for huge losses in agriculturally important crops (Genin
and Denny 2012). It has been ranked second in the list
of top 10 of the most studied bacterial plant pathogens
(Mansfield et al. 2012). Due to the extensive diversity that
exists among the strains, the organism is now referred as
R. solanacearum species complex (RSSC) and is divided
into four phylotypes (Fegan and Prior 2005). These phy-
lotypes represent their geographical origin: phylotype I
(Asia), phylotype IT (America), phylotype III (Africa) and
phylotype 1V (Indonesia). The phylotype IV also includes

R. solanacearum finds its way into the plant through
wounds in the roots and initiates wilting by impairing
transport of water in the xylem that ultimately leads
to the death of the infected plant (Genin and Denny
2012). Exopolysaccharide (EPS) produced by the bac-
terium is the primary virulence factor and impairs water
transport within its susceptible host (Schell 2000). In
addition to EPS, the type II secretory system (T2SS),
chemotaxis, swimming, twitching motility and type III
secretory system (TTSS) also contribute towards the
virulence of the bacterium (Saile et al. 1997). The T2SS
secretes various plant cell wall degrading enzymes
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(PCWDE) that include cellulolytic and pectinolytic
enzymes which promote the colonization of the bacterium
in the plant tissue. Chemotaxis and twitching motility also
act as important virulence factors and aid in locating and
attaching the bacterium to the host roots (Alvarez et al.
2010; Genin and Denny 2012).

The TTSS is an essential pathogenicity determinant and
is encoded by the hypersensitive response and pathogeni-
city (hrp) regulon in R. solanacearum (Boucher et al. 1987).
The hrp regulon is so named because it induces a hyper-
sensitive response (HR) in nonhost or resistant plants and
pathogenicity in the susceptible plants (Hueck 1998). A
defect in the T3SS results in the loss of the ability to
induce both; a hypersensitive response and pathogenicity
in plants (Alfano and Collmer 2004). Type I1I-dependent
protein secretion was first identified in the animal pathogen
Yersinia enterocolitica (Heesemann et al. 1984) and later
was found to be present in a variety of gram-negative phy-
topathogenic bacteria (Hueck 1998). The T3SS enables a
bacterium to translocate pathogenicity proteins called as
‘type III effectors (T3E)’ into the cytosol of eukaryotic
host cells. The effectors act as toxins and target the host
immune system. This translocation is brought about by
hrp dependant filamentous structure called as /rp pili (Van
Gijsegem et al. 2000, 2002). In situ immunogold labelling
experiments suggest that the Arp pili acts as a needle to
provide a protein transport channel for transport of effec-
tor proteins into the host cytosol. All the srp mutants that
lack the Ahrp pilus protein (HrpY) cannot secrete hrp sub-
strate proteins like hairpins and effectors (Van Gijsegem
et al. 2002).

The expression of R. solanacearum T3SS is induced in
the presence of poor nutritional conditions which mimics
that of intracellular spaces in plants (Genin ez al. 1992).
The T3SS is an emerging area of study among many molec-
ular biologists with plant and animal pathogens like Pseu-
domonas, Xanthomonas, Salmonella etc. Many T3Es are
validated and many are under process in R. solanacearum
through translocation studies using reporter-based sys-
tems like the Cya reporter and HA reporter systems
(Cunnac et al. 2004; Mukaihara and Tamura 2009; Mukai-
hara et al. 2010; Sole et al. 2012).

In India, R. solanacearum has been isolated from var-
ious agriculturally important crops like eggplant, chilli,
ginger, tomato, potato, capsicum etc. (Kumar et al. 2004;
Chandrashekara et al. 2012; Ramesh and Phadke 2012).
Even though the bacterial wilt is a severe issue and affects
various crops in India, there are only two strains (Rs-
09-161 and Rs-10-244) infecting solanaceous vegetables
sequenced from India. These strains belong to race 1,
biovar 3, phylotype I and based on endoglucanase (eg/)
gene sequence analysis the isolates belong to two dif-
ferent representative subgroups (Ramesh ez al. 2014a,b).
Both the strains are highly pathogenic on tomato and egg-
plant, cause 100% wilt within 15 days after inoculation
(R. Ramesh, G. Achari, S. Gaitonde and T. Asolkar

Bacterial wilt in solanaceous vegetables, unpublished
data).

In RSSC, 16 strains are sequenced from different phy-
lotypes (Salanoubat et al. 2002; Gabriel et al 2006;
Remenant ef al. 2010, 2011; Xu et al. 2011; Ramesh et al.
2014a). Data on T3E of phylotype I strains is majorly
contributed by studies on GMI1000 and no information
on Indian strains is available. This study aims to iden-
tify and analyse various virulence factors and T3Es of
R. solanacearum strains Rs-09-161 and Rs-10-244 using
bioinformatics approach.

Materials and methods
R. solanacearum strains

R. solanacearum strains Rs-09-161 and Rs-10-244 were
selected to analyse the virulence factors and T3Es in this
study. These are the whole genome sequenced strains and
belong to phylotype I from India (Ramesh ez al. 2014a)
and are being maintained in the culture collection of Plant
Pathology Lab, ICAR-CCARI, Goa. Annotation of var-
ious virulence genes of R. solanacearum Rs-09-161 and
Rs-10-244 was carried out using Eugene-P, with GM11000
(phylotype I) as standard reference strain. The general fea-
tures of all R. solanacearum strains used in this study are
provided in the table 1.

Analysis of virulence factors

Various virulence genes involved in the colonization and
wilting of the host were identified in the strains Rs-09-
161 and Rs-10-244 based on the annotation data. These
include the genes coding for EPS (epsA, epsB, epsC, epsD,
epsE, epsF, epsP and epsR), PCWDE (PehA, PehB, PehC,
Pme, Egland CbhA),chemotaxis (CheA and Che W), swim-
ming motility (F/iC and FigM) and twitching motility
(PilA and PilP). The coding sequences of these viru-
lence genes were compared with representative strains of
R. solanacearum from different phylotypes, namely GMI
1000 (phylotype I), CFBP2957 (phylotype IIA), Po82
(phylotype IIB), CMR 15 (phylotype PIII) and Psi07 (phy-
lotype IV). The nucleotide sequences for virulence factors
of Rs-09-161 and Rs-10-244 were retrieved from anno-
tated files and of the reference strains were extracted from
NCBI database (http://www.ncbi.nlm.nih.gov). Virulence
sequences were submitted to GenBank and accession num-
bers were obtained (for details see table 1 in electronic sup-
plementary material at http://www.ias.ac.in/jgenet/). The
sequences were aligned pairwise using Clustal W (Thomp-
son et al. 1994) and the evolutionary similarity matrix was
constructed using MEGA ver. 6 software with p-distance
method and bootstrap value of 1000 (Tamura et al. 2013).
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Table 1. R. solanacearum strains used in this study.

Remarks/purpose
in this study

Hypothetical
effectors

Total no. of
T3Es

Genome size

(Mb)

Geographical

origin

Accession

Isolated from

Phylotype

Strain
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5.65
5.66
5.811
NA
5.712
5.805
5.683
5.313
5.895
5.961
5.43
5.593
5.606
5.159
5.424

Eggplant
Chili
Tomato
Tomato
Tobacco
Bacterial Wilt Nursery
Tomato
Potato
Geranium
Banana
Potato
Tomato
Tomato
Banana
Clove

India
India
French Guyana
Japan
China
China
French West Indies
Netherlands
Kenya
Philippines
Mexico
Cameroon
Indonesia
Indonesia
Indonesia

1
ITA
11B
111

v

R. syzygii R24

CFBP2957
1PO1609

UWS551
BDB R229

Rs-09-161
Rs-10-244
GMI1000
RS1000
Molk2
Po82
CMR15
Psi07

Y45
FQY_4

Information was compiled based on the published literature and NCBI database.

Identification of T3E

The preliminary identification of T3E genes was car-
ried out by screening the presence of Arpll box element
(TTCGn16TTCG) in the region 500-bp upstream of the
start codon using PatScan where only one mismatch was
allowed. The presence of T3SS dependent export pattern
in the T3E genes was detected by analysis of 50 amino acid
N-terminal domain. The T3E was considered positive for
N-terminal domain if it fulfilled at least two of the three cri-
teria mentioned below: (i) serine + proline content should
be greater than 30% (i1) leucine content should be lesser
than 10% (ii1) acidic residues should be absent within the
first 12 amino acids.

Prediction of the start codon of the gene was carried
out by the multiple sequence alignment of the region
located downstream of the /rpll box element. The more
distal 5’ initiator codon conserved among different strain
sequences was considered as the start codon. The predicted
T3E genes were also analysed for frame-shift mutations
and pseudogenes. T3E genes that had open reading frames
disrupted by the insertion of IS element, altered structure
(< 50%) of the gene or evidence that the T3E gene product
isnot translocated by the T3SS were considered as pseudo-
genes (Peeters et al. 2013). The identification of candidate
T3Es in the genomes of Rs-09-161 and Rs-10-244 was car-
ried out using ‘Scan Your Genome’ (Peeters et al. 2013).

Analysis of the T3Es

The phylogenetic analysis based on the gene families of
T3Es of R solanacearum was studied. The gene fami-
lies analysed include RipA (AWR family), RipG (GALA
family), RipH (HLK family) and RipS (SKWP family).
The coding sequences of effectors belonging to each gene
family were arranged in concatenated manner and com-
pared with other strains. Reference strains used to study
the phylogenetic relation of T3E are indicated in table 1.
Phylogenetic analysis was performed in MEGA ver. 6.0
(Tamura et al. 2013) by using neighbour-joining (NJ) and
the algorithm of Jukes and Cantor (1969) with 1000 boot-
strap resamplings.

Results and discussion

With the availability of genomic data through whole
genome sequencing, it has become interesting to study R.
solanacearum at the genomic level. We therefore have stud-
ied virulence associated genes of Indian isolates Rs-09-161
and Rs-10-244 and compared them with the isolates avail-
able globally. This involves identifying the virulence factors
and T3Es present in Indian strains and analysing the
coding sequences of these genes for generating similarity
matrix and phylogenetic trees. The basic architecture of the
strains Rs-09-161 and Rs-10-244 and the sizes of the two
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replicons; the chromosome and the megaplasmid are simi-
lar to that of the previously sequenced strains (Salanoubat
et al. 2002; Remenant ez al. 2010). The details are provided
in table 2 of electronic supplementary material.

Analysis of virulence factors

The virulence genes in the test strains were identified
using GMI1000 (phylotype I) as standard reference strain.
The details of virulence genes of R. solanacearum strain
Rs-09-161 and Rs-10-244, their location in the genome and
the probable function are provided in table 1 in electronic
supplementary material. The nomenclature of virulence
genes is with the prefix RALSO161 and RALSO244 for
Rs-09-161 and Rs-10-244, respectively. A similarity matrix
obtained by comparing the sequences of virulence genes
of Rs-09-161 and Rs-10-244 with other reference strains
is given in table 3 in electronic supplementary material.
The sequences of Rs-09-161 and Rs-10-244 share more
than 99% similarity between them and are closely related
to GMI1000.

The main virulence factor of R. solanacearum, the EPS
is secreted by seven genes, namely epsA, epsB, epsC, epsD,
epsE, epsP and epsR. The gene epsD is absent in phylotype
I strains and all the EPS contributing genes are located on
the megaplasmid. The sequences of CMR15 (phylotype
III) and Psi07 (phylotype IV) share more than 90% simi-
larity with Rs-09-161 and Rs-10-244. Both Rs-09-161 and
Rs-10-244, have the presence of all six PCWDE genes. The
sequences of PCWDE genes of Rs-09-161 and Rs-10-244
share 99% similarity with that of GMI1000. PehB is the
only gene present on the chromosome and this observa-
tion is consistent with the reports of other R. solanacearum
strains. This shows that along with the major housekeeping
genes, some of the essential virulence associated genes are
also present on the chromosome (Genin and Denny 2012).

Motility associated genes in R. solanacearum help the
bacterium to locate and invade the host root for coloniza-
tion (Menget al. 2011). The genes identified for chemotaxis
(CheA and Che W) and swimming motility (F/iC and FlgM)
are located on the megaplasmid whereas twitching motil-
ity (Pil4 and PilP) are located on the chromosome. The
mutants of swimming motility are highly reduced in the
degree to cause virulence on tomato plants under natural
conditions (Tans-Kersten ef al. 2001) and of chemotaxis
are completely nonchemotactic (Yao and Allen 2006). The
swimming motility and chemotaxis associated genes F/iC,
PilP and CheW are found to be highly conserved among
all phylotypes and share more than 95% similarity (table 3
in electronic supplementary material). These are proba-
bly the regions which are not evolving or are conserved
across the phylotypes. Twitching motility is a trait asso-
ciated with the type IV pili and plays an important role
in autoaggregation and biofilm formation (Kang ez al

2002). The pilP gene of Rs-10-244 shares 100% similar-
ity with GMI11000 whereas Rs-09-161 is 99% similar. The
PilA4 gene shares 89% similarity within the two strains and
91% with GMI1000. PilA exhibits diversity in the sequence
among the other phylotypes of RSSC and is probably the
region which undergoes evolution and thus can be used for
designing primers for the strain-wise differentiation. Pi/4
has been used to study the genetic diversity in soil bac-
terium Myxococcus xanthus strains and has shown highest
polymorphism in comparison to that of other genes used
(Vos and Velicer 2006). Further, we observed that there
are no major differences between Indian strains and ref-
erence strain in the virulence gene sequences except pil4
gene.

Sequences of virulence associated genes in strains Rs-
09-161 and Rs-10-244 are found to be more close to
phylotypes III and IV strains. Similar results were also
observed by Ramesh ez al. (2014b), when eg/ and hrp gene
sequences from phylotype I strains were analysed.

Analysis of T3Es

We have identified 72 T3Es in Rs-09-161 and 77 T3Es in
Rs-10-244 (including one multiple copy T3E) based on
the identification criteria (table 2). The identified T3Es are
assigned the names with prefix Rip (Ralstonia injected pro-
tein) as per the newly proposed nomenclature by Peeters
et al. (2013) and the locus tag of the T3Es is represented
by the prefix 161_and 244_ for Rs-09-161 and Rs-10-244,
respectively. The T3E gene RipTPS is present in multiple
copies in both the strains. Rs-09-161 has the presence of
three candidate effectors (Rs_T3E_Hyp6, Rs_T3E_Hyp7
and Rs_T3E_Hypl5) and three pseudogenes (RipFl,
RipAX1 and Rs_T3E_Hyp8). Rs-10-244 has the pres-
ence of one candidate effectors (Rs_T3E_Hyp7) and
four pseudogenes (RipO1, RipAX2, Rs_T3E_Hyp8 and
Rs_T3E_Hypl5). Pseudogenes are nonfunctional genes
and its presence can be attributed to the fact that either
these genes are been mutated due to the presence of
transposable elements within the gene, leading to its dis-
ruption or due to errors in sequencing. Comparison of
the functional T3Es genes of R. solanacearum strains Rs-
09-161, Rs-10-244 and GMI1000 revealed 60 common
T3Es within the three strains. Rs-09-161 has two unique
T3Es (Rs_T3E_Hyp6 and Rs_T3E_Hypl5) and shares 63
common effectors with GMI1000 and 66 T3Es with Rs-
10-244. Rs-10-244 bears four unique T3Es (RipC2, RipE2,
RipP3 and RipBB) and shares 66 common effectors with
GMI1000 (figure 1). Majority of the R. solanacearum
strains have an average of 70-75 T3E, which is much larger
than many other bacterial plant pathogens like P. syringe
and Xanthomonas sp., where it is in the range of 30-40
(Zumaquero et al. 2010; Hajri et al 2011). Hence, it is
presumed that an ancestor of R. solanacearum probably
possessed a large number of effectors since the majority
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Figure 1. Venn diagram constructed using T3Es complete genes of R. solanacearum strain Rs-09-161(green), Rs-10-244 (blue) and
GMI1000 (pink). The merged regions display the T3Es shared between the strains. In Rs-09-161 and Rs-10-244, one effector is present

in multiple copies which is not indicated in the bar graph.

of the strains possess a high number of effectors. The only
exception to this is BDB, which has less number of effec-
tors (Genin and Denny 2012).

A majority of R. solanacearum T3Es have been vali-
dated through translocation studies (Cunnac et al. 2004;
Mukaihara et al. 2004; Mukaihara and Tamura 2009;
Mukaihara et al. 2010; Sole et al. 2012). Many of the
effectors share homology with those of other bacterial
plant pathogens like P. syringae, Xanthomonas sp. and

Acidovorax sp. Few of these effectors are present as
effector families and have three to eight effectors. These
include RipA (AWR family), RipG (GALA family), RipH
(HLK family) and the RipS (SKWP family) (Poueymiro
and Genin 2009; Mukaihara ez al 2010; Remigi et al.
2011; Sole et al. 2012; Peeters et al. 2013). These effec-
tors possess certain inherent characters about the sequence
such as specific internal repeats within them, which
characterizes them to constitute a family. The T3SS
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secretes T3Es in a highly specialized manner in the eukary-
otic hosts and is used by many plant and animal pathogenic
bacteria, as a tool to colonize in their respective hosts. The
various motifs or domains present on the T3Es interact
with the host cells and benefits the bacteria in colonization.
The T3Es are secreted into the cytosol of the host through
the Arp pili. Unique T3E of Indian strains (Rs-09-161
and Rs-10-244) were analysed for functional/conserved
motifs through homology search in NCBI revealed the
presence of various motifs. The T3E RipBB present in
Rs-10-244 exhibits presence of ankyrin repeats which
mediate protein—protein interactions in diverse families of
proteins. RipC2 shares homology with haloacid dehalo-
genase (HAD)-like hydrolases and RipP3 which is also
known as PopP3 displays YopJ serine/threonine acetyl-
transferase activity. The T3E Rs_T3E_Hypl5 present in
Rs-09161 displays presence of serine/threonine protein
kinase domain within it.

RipA (AWR family) effectors include five effectors
(RipAl to RipAS), and both the strains, Rs-09-161 and
Rs-10-244 have all the RipA effectors present in them.
Among the RipA effectors, RipAl is present only in phy-
lotype I strains, whereas RipA2 along with RipA4 and
RipAS5 is present in all the phylotypes of R. solanacearum
isolates studied till date. RipAS is also present in multiple
copies in some of the phylotype II strain (Molk2, IPO1609,
UWS551 and Po82). The RipA effectors consist of a con-
served region containing the alanine—tryptophan—arginine
tryad and can be virulent or avirulent depending on the
host with which R. solanacearum interacts and RipA2 was
found to be a major contributor to the virulence among
the AWR family (Sole et al. 2012).

RipG (GALA family) possesses eight T3Es (RipGl-—
RipG8) and seven (RipG1-RipG7) are present in both
Rs-09-161 and Rs-10-244. The RipG has the presence
of leucine rich repeats (LRR) and F-box domain with
them. The F-box protein forms a component of E3-
ubiquitin ligase complex and is found in eukaryotes. This
complex plays an important role in ubiquitination of
proteins which leads to the degradation or modification
of the activity of the targeted protein (Hua and Vier-
stra 2011). RipG8 is present only in CMR 15 (phylotype
IIT). More isolates from phylotype III needs to be stud-
ied to identify if the RipG is specific to phylotype III
strains.

RipH (HLK family) consists of four effectors (RipH1-
RipH4); Rs-09-161 and Rs-10-244 has the presence of
RipH1, RipH2 and RipH3 with an average size of ~600
amino acids. RipH4 is found to be present only among
phylotype IV strains. The RipH (HLK family) is named so
because of the presence of histidine-leucine-lysine triad
in a conserved C-terminal region. Phylogenetic analy-
sis of the RipH effectors indicates an ancestral strain of
R. solanacearum most likely had only three RipH effec-
tors and the fourth one has evolved later independently
(Chen et al. 2014).
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Figure 2. Phylogenetic tree constructed using NJ method based
on the coding sequences of effectors of RipA (AWR family) of
R. solanacearum isolates. The isolates are represented with their
names followed by the phylotypes in parenthesis. The tree was
generated by MEGA-6 (Tamura et al. 2013) software using the
NJ and the algorithm of Jukes and Cantor (1969) with 1000 boot-
strap resamplings. Numbers at each branch indicate bootstrap
value. The scale indicates the genetic distance.
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Figure 3. Phylogenetic tree constructed using NJ method based
on the coding sequences of effectors of RipG (GALA family) of
R. solanacearum isolates. The isolates are represented with their
names followed by the phylotypes in parenthesis. The tree was
generated by MEGA-6 (Tamura et al. 2013) software using the
NJ and the algorithm of Jukes and Cantor (1969) with 1000 boot-
strap resamplings. Numbers at each branch indicate bootstrap
value. The scale indicates the genetic distance.

RipS (SKWP family) has eight effectors (RipS1-RipS8);
RipS7 is absent in Rs-09-161 whereas RipS1 and RipS7
are absent in Rs-10-244. RipS7 is absent in all phylotype |
strains studied till date and is present in all phylotype IV
strains. RipS1 and RipS6 is absent in all phylotype IV iso-
lates. Phylotype II lacks RipS6 and RipS8. The structure
of RipS (SKWP family) effectors is found to be related
to heat/armadillo repeat domain. The RipS proteins exert
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Figure 4. Phylogenetic tree constructed using NJ method based
on the coding sequences of effectors of RipH (HLK family) of
R. solanacearum isolates. The isolates are represented with their
names followed by the phylotypes in parenthesis. The tree was
generated by MEGA-6 (Tamura et al. 2013) software using the
NJ and the algorithm of Jukes and Cantor (1969) with 1000 boot-
strap resamplings. Numbers at each branch indicate bootstrap
value. The scale indicates the genetic distance.
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Figure 5. Phylogenetic tree constructed using NJ method based
on the coding sequences of effectors of RipS (SKWP family) of
R. solanacearum isolates. The isolates are represented with their
names followed by the phylotypes in parenthesis. The tree was
generated by MEGA-6 (Tamura et al. 2013) software using the
NJ and the algorithm of Jukes and Cantor (1969) with 1000 boot-
strap resamplings. Numbers at each branch indicate bootstrap
value. The scale indicates the genetic distance.

their virulence on their host plant by interaction through
the SKWP domain (Mukaihara and Tamura 2009).

Phylogenetic analysis of T3Es

The phylogenetic trees constructed for RipA, RipG, RipH
and RipS effectors are depicted in figures 2-5. Effector
gene sequences appear to be conserved and thus have
revealed grouping of the isolates based on their phylo-
types. Group | consists of strains that belong to phylotype

Iincluding Rs-09-161 and Rs-10-244. Phylotype I1I strain
CMR15 forms a group closely associated with phylotype
I. The strains belonging to phylotype II (ITA and IIB)
and phylotype IV have separated to form two different
groups. This grouping is consistent with the four gene
families studied here. Similar results are also observed by
Remenant et al. (2011) and Peeters ez al. (2013), where iso-
lates from phylotype I and III have clustered together. It is
likely that the isolates from phylotype I and phylotype 111
did not undergo much evolution and hence form a major
group (Remenant et al. 2011).

In conclusion, in this study, analysis of virulence genes
and T3E genes of R. solanacearum strains Rs-09-161 and
Rs-10-244 indicated that a majority of the virulence asso-
ciated genes are present in both the strains. It was observed
that all the virulence genes of Rs-09-161 and Rs-10-244 are
highly conserved and share high level of similarity except
for pilA gene, which shares a minimum of 72% similarity.
Seventy-two T3E genes were identified in R. solanacearum
strain Rs-09-161 and 77 in Rs-10-244. Phylogenetic analy-
sis of T3E genes of RipA, RipG, RipH and RipS revealed
close association between phylotype 1 and phylotype III
strain of R. solanacearum.
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