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Abstract

Recent development of sensors has allowed the biomet-
ric community to explore the possibility of authentication
beyond visible spectrum. More importantly, multi-spectral
imaging in biometric has shown great potential to work ro-
bustly under unknown varying illumination conditions for
face recognition. While face biometrics in traditional set-
tings has also indicated the applicability of ocular region
for improving the performance, there are not many works
that have explored recent imaging methodologies. In this
paper, we present the study that explores the possibility of
recognizing ocular biometric feature using multi-spectral
imaging. While exploring the possibility of recognizing the
periocular region in different spectral bands, this work also
presents the performance variation of periocular region for
cross-spectral matching. We have captured a new ocular
image database in eight narrow spectral bands across Vis-
ible (VIS) and Near-Infra-Red (NIR) spectrum (530nm to
1000nm) using our custom built sensor. The data consists
of images from 52 subject with a sample size of 4160 spec-
tral band images captured in two different sessions. The ex-
tensive set of experimental evaluation results obtained on
the state-of-the-art methods indicates highest recognition
rate of 96.92% at Rank — 1, demonstrating the potential
of multi-spectral imaging for robust periocular recognition.

1. Introduction

Among the physiological biometric traits, ocular biomet-
ric has been significantly explored in the last few years,
due to it’s reasonable recognition accuracy and stable bio-
metric features [2]. Essentially, the significant progress
of iris recognition has made ocular biometric a popular
trait among the biometric community, which has resulted
in number of methodologies developed to explore the dis-
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criminative information present across the ocular region for
robust performance [11]. Further, related research have wit-
nessed number of contributions using various ocular regions
especially iris [5], retina [6] , sclera [13] and periocular re-
gion [11] as potential biometric traits in chronological order
of their existence [8]. The success of ocular biometrics has
resulted further in installation of number of ocular biomet-
ric systems which either uses one of the above mentioned
ocular regions for verification or identification of individu-
als [8].

Periocular region is defined as a small region surround-
ing the eye that contains the essential fine texture and geo-
metric information compared to other facial parts. Periocu-
lar has received a significant attention in the scenario where
other ocular regions cannot be captured in the non-idealistic
conditions. For instance, collecting iris sample is challeng-
ing when subjects blinks eye or under non ideal pose angle,
which commonly results in noisy sample data [3]. Unlike
iris, which depends on NIR imaging sensor, periocular re-
gion is basically segmented from the face images, with most
of the face biometric systems relies on face images captured
in visible spectrum, majority of work carried out in the di-
rection of periocular recognition are based on visible spec-
trum data [10]. Further, the recent work also indicates the
use of Visible(VIS), Near Infra Red(NIR), Short Wave In-
fra Red(SWIR), Mid Wave Infra Red (MWIR) and Long
Wave Infra Red (LWIR) spectrum for periocular matching
and cross spectral periocular comparison[12].

Most of the earlier works were carried out extensively
on visible spectrum data, with limited attempts using Near-
Infra-Red (NIR) spectrum, Short Wave Infra Red(SWIR),
Mid Wave Infra Red (MWIR) and Long Wave Infra Red
(LWIR) spectrum for periocular matching. To best of
our knowledge, the potential of multi-spectral imaging [1]
has not been explored extensively for periocular biomet-
rics. Multi-spectral imaging captures the set of spectral
band images across wide electromagnetic spectrum such
that the discriminative characteristic band information can
be obtained for robust performance. The idea of using
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Figure 1: Multi-spectral images captured for periocular biometric: (a) Original spectral images acquired from multi-spectral
sensor, (b) Segmented periocular region for individual spectral band

multi-spectral imaging approach is to explore the comple-
mentary image information in the form of reflectance and
emittance data by characterizing the spectral properties of
multi-spectral imaging sensor. The reasonable accuracy and
the success of multi-spectral imaging to extract the useful
spatio-spectral data have resulted into its use case in differ-
ent biometric trait recognition [14].

In this paper, we have introduced multi-spectral imaging
for robust periocular biometric authentication. More specif-
ically, we have acquired multi-spectral data for periocular
biometrics from 52 subjects collected in eight narrow spec-
tral bands spanning from Visible (VIS) to Near-Infra-Red
(NIR) wavelength range (Details are given in Section 2).
The data acquired in two different session corresponds to
the total of 4160 sample spectral band images. To ex-
plore the significance of multi-spectral imaging, we present
an extensive set of experimental results across individual
spectral bands for periocular matching using state-of-the-
art methods. Further, cross spectral comparison results are
also presented in this work to analyze the performance of
periocular matching under different spectrum. The experi-
mental results are presented in terms of recognition rate at
Rank — 1 and graphically using Cumulative Match Char-
acteristic (CMC). The major contribution of this paper are
as follows:

1. Presents a study exploring multi-spectral imaging for
robust periocular biometric recognition based on the
state-of-the-art feature extraction and classifier meth-
ods.

2. Introduces a newly captured multi-spectral image
database for periocular recognition, which consists of a
total of 4160 sample spectral band images from 52 sub-
jects captured in two different sessions. The acquired
data consists of eight spectral bands which includes
530nm, 590nm, 650nm, 710nm, 770nm, 890nm,
950nm and 1000mm band.

3. Presents an extensive set of experimental results in
terms of recognition rate at Rank—1 for multi-spectral

periocular recognition across individual bands inde-
pendently as well as for cross spectral band matching.

Rest of the paper is organized as follows: Section 2
present in detail, the description of multi-spectral image
database collected for periocular biometric. Section 3 ex-
plains in brief the state-of-the-art feature extraction and
classifiers used in the evaluation of this work. Section 4 de-
tails the experimental evaluation protocol and experimental
results on the collected multispectral database to explore pe-
riocular matching. Section 5 presents the conclusions from
this work.

2. Multi-spectral Periocular Database

In this section of the paper, we present the de-
tailed description of multi-spectral periocular database
employed in this work.  The database is collected
using in-house and custom built multi-spectral imag-
ing sensor, which can capture eight narrow spec-
tral band images in Visible (VIS) and Near-Infra-Red
(NIR) spectrum. The eight spectral band images cap-
tured using the multi-spectral imaging sensor consists of
530nm, 590nm, 650nm, 710nm, 770nm, 890nm, 950nm
and 1000nm bands. In total, the database consists of im-
ages from 52 subjects, collected in two different sessions. A
reasonable time difference of 3 to 4 weeks have been main-
tained between the two sessions. For each subject, we have
collected 5 sample images in eight spectral band, which
corresponds to 52 subjects x 2 sessions X 5 samples X
8 bands to obtain the total of 4160 sample images. Further,
each sample is acquired at a distance of roughly 1 — mts
from the face of subject in controlled illumination condi-
tions.

2.1. Periocular segmentation and Normalization

The multi-spectral image database acquired for periocu-
lar recognition is segmented using both the eye coordinates.
In order to obtain the coordinates of left and right eye, we
employed face landmark detection technique [17] in this
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Figure 2: Feature extraction and classification framework

work. Using the eye coordinates, we first performed image
normalization, which basically consists of image rotation
and translation correction before segmenting the periocular
region. The normalized image is cropped for periocular re-
gion, which is then resized to a common spatial resolution
of 120 x 240 dimension. Further, an histogram equaliza-
tion is performed to enhancement the features of periocular
images before using it for experimental evaluation.

3. Feature Extraction and Classifier

In this section of paper, we discuss in brief the fea-
ture extraction techniques and a feature classifier employed
for the experimental evaluation. Specifically, we have em-
ployed the state-of-the-art feature extraction methods such
as Histogram of Orientated Gradient (HOG)[4], GIST[9],
Log-Gabor transform [15] and Binarized Statistical Image
Features (BSIF)[7]. These feature extraction methods have
been widely used to extract the local and global features
in periocular biometrics. Further, to classify the features,
we have employed Collaborative Representation Classifier
(CRC) [16] to efficiently classify the discriminative features
in robust manner. A brief description of each of these meth-
ods are given in the following subsections.

3.1. Histogram of Oriented Gradient (HOG)

Histogram of Oriented Gradient (HOG)[4] is a local
feature descriptor technique, which depends on the mag-
nitude of gradient vectors. In principle, HOG computes
the magnitude of gradient vector by exploring the direc-
tion in which the most dominant edges are present. The
final histogram feature vector is obtained by placing the
magnitude data of each edge in nine bins with each bin
size corresponds to 20 degrees spanned from O to 180 de-
grees. Thus, for image size of 120 x 240 we obtained his-
togram feature vector of size 1 x 14616, which corresponds
to 405blocks x 4histogram x 9bins.

3.2. GIST

GIST [9] was proposed to explore local and global fea-
tures for recognizing the object in a given image. The
method employs set of Gabor filters having different scale
and orientation to extract the useful data of image in the
form of feature maps. For this set of experimental eval-
uation, we employed 4 different scales and 8 different
orientations to obtain 32 Gabor fiters, which corresponds
to 32 feature maps containing discriminative information
across the periocular regions. Further, each feature map is
divided into 16 feature maps of 4 x 4 grids and each 16
feature maps are averaged to obtain final histogram vector
of 1 x 512 dimension that are resulted from 16averaged
feature maps x 32 = 512.

3.3. LogGabor Transform

In the similar line with GIST, LogGabor is another ro-
bust feature descriptor that uses banks of Gabor filters of
different scale and orientation [15]. Logabor transform
combines all the feature matrix obtained across the bank
of filters by simply concatenating them to obtain the final
feature descriptor. To evaluate this technique, we again em-
ployed 32 Gabor filters consisting of 4 different scales and
8 different orientations. In this work, for image size of
120 x 240, we obtained 1 x 921600 feature dimension cor-
responds to (32F'ilter Banks) x (120 x 240), which we
further down sample by six times to reduce the computa-
tional expenses such that the final feature vector results into
1 x 153600 dimension.

3.4. Binarized Statistical Image Features (BSIF)

BSIF is another texture descriptor method based on
the set of predefined statistical filters learned from natural
images[7]. The employed set of filters are convolved with
image in holistic manner. Further, by simple binary to gray
image conversion operation is employed to combine the bi-
narized statistical filtered image. In this work, we have em-
ployed statistical filters of size 17 x 17 with bit length of
12. The final feature descriptor in the form of histogram
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Figure 3: CMC plot indicating the performance of state-of-the-art methods on individual spectral band (Results are best

viewed in color).

features vector of size 1 x 4096 is obtained for final evalu-
ation of the experiment.

3.5. Collaborative Representation Classifier (CRC)

In order to efficiently classify the histogram feature vec-
tors obtained independently from different feature descrip-
tors mentioned above, we employed a robust Collaborative
Representation Classifier (CRC)[16] technique in this work.
CRC in principle computes the maximum likelihood ratio
of probe sample image with other classes in a joint man-
ner. Further, the final feature classification is performed by
simply computing the maximum likelihood of probe sample
against the other classes from the gallery set.

Let the set of multi-spectral periocular image
is represented as Sy, € R™*"™, where, \ be the
wavelength corresponding to eight different bands
(530nm, 590nm, 650nm, 710nm, 770nm, 890nm, 950nm,
1000nm) and m x n indicates the image dimension. Let
the histogram feature vectors computed for S using above
different feature descriptor methods be R). To employ
CRC, the extracted feature vectors R, are learned in a
collaborative sub-space p, and the final comparison scores
are obtained using regularised Least Square Regression
coefficients on the learned spectral feature vectors against
the probe sample image, which is explained mathematically
as follows in Equation 1.

D = argming | P — pABII° + o || 8] )

where the P, is the feature vector of the probe sample

spectral band image, p, be the learned collaborative sub-
space corresponds to wavelength A, 3 is coefficient vector
and o indicates the regularization parameter. Further, the
distance matrix D obtained using Equation 1 is then used
as comparison score to obtain the performance matrix.

4. Experiments and Results

This section of paper, we present the experimental
evaluation protocol employed on multi-spectral periocular
database. The extensive set of experimental results are ob-
tained using state-of-the-art feature extraction algorithms
followed by robust Collaborative Representation classifier
(CRC). We present the results in terms of recognition rate
at Rank — 1 and Cumulative Match Characteristic (CMC)
plot to demonstrate the significance of multi-spectral imag-
ing for periocular biometrics.

4.1. Experimental protocol

To evaluate the multi-spectral periocular database (Sec-
tion 2) based on state-of-the-art methods, we present an
experimental evaluation protocol that consists of reference
set corresponding to sample spectral band images collected
from Session 1 and probe set corresponds to sample spectral
band images collected from Session 2. Based on this evalu-
ation protocol, we present two sets of experimental results.
Experiment 1 presents the intra-band periocular recogni-
tion and Experiment 2 presents the ¢nter-band periocular
recognition. The detailed analysis of each of these experi-
ments are given in the following sub-sections.
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Figure 4: CMC plots demonstrating the cross-spectral performance of algorithms when reference set belongs to
(a),(b),(c),(d),(e),(f),(g),(h) and probed against the rest of the bands operated independently. In this plot, results for 770nm
probe band is shown which is best performing band (Results are best viewed in color).

Table 1: Recognition rate at Rank — 1 for individual spec-
tral bands.

Algorithm Bands
530nm | 590nm | 650nm | 710nm | 770nm | 890nm | 950nm | 1000nm
HOG-CRC 59.23 55.77 77.69 71.92 76.54 71.54 | 68.08 60.77
GIST-CRC 72.69 71.92 88.08 85.00 83.08 81.54 | 71.92 75.38
LogGabor-CRC | 7231 7231 84.23 78.85 85.77 71.92 | 7192 71.54
BSIF-CRC 63.46 86.92 96.92 92.69 93.85 91.54 | 88.85 81.15

4.2. Experiment 1: Intra Band

Experiment 1 presents the intra band performance anal-
ysis of multi-spectral periocular database. The purpose
of this experiment is to explore the true significance of
each of the individual spectral bands for robust periocular
recognition. Specifically, the recognition rate is obtained
at Rank — 1 for individual eight spectral bands indepen-
dently based on the experimental protocol (Section 4.1) .
For instance, the individual band (say 530nm) from Session
1 is considered as reference set and corresponding spectral
band (say 530nm) from Session 2 is used as probe set for
the evaluation. Table 1 presents the Rank-1 recognition rate
of individual spectral band and Figure 3 illustrates the Cu-
mulative Match Characteristic (CMC) using state-of-the-art
methods. Based on the obtained experimental results, we
present following major observations:

e The highest Rank—1 recognition rate of 96.92% is ob-
tained for 650nm spectrum using BSIF-CRC method
and the lowest performance of 55.77% recognition rate

is obtained for 590nm spectrum using HOG-CRC al-
gorithm.

Of all the state-of-the-art methods employed in this
work for multi-spectral periocular recognition, BSIF-
CRC outperforms the other algorithms across most of
the spectral bands, indicating the potential of statistical
filter based techniques for robust performance. Fur-
ther, HOG-CRC found to be the least performing algo-
rithm across all spectral band compared to other em-
ployed methods in this experiment.

Among the individual spectral bands, 650nm, 710nm,
770nm presents the outstanding performance using
state-of-the-art methods and individual bands 530nm,
590nm performs poorly indicating the need for con-
tinued research.

4.3. Experiment 2: Inter Band

The Experiment 2 is based on the inter band perfor-
mance analysis using multi-spectral periocular images. The
goal of this experiment is to demonstrate the performance
of cross-spectral periocular recognition, in which reference
and probe set corresponds to two different spectrum bands.
To evaluate this experiment, we keep the reference set fixed
(say 530nm spectrum) from Session 1 and performance is
obtained against the rest of the spectrum bands (say 590nm,
650nm, 710nm, 770nm, 890nm, 950nm, and 1000nm)
from Session 2, when probed independently. Table 2 details



the recognition rate at Rank — 1 for inter-band experimen-
tal evaluation and Figure 4 demonstrated the Cumulative
Match Characteristics (CMC) for different reference spec-
trum (The graphical results shown in Figure 4 presents the
performance of best performing probe spectrum i.e.770nm
band). Based on the experimental results, we deduce our
observations as follows:

e BSIF-CRC algorithm demonstrates the outstanding
performance for cross spectral comparison, except for
the reference set belonging to 530nm and 590nm
spectrum, where most of the other state-of-the-art al-
gorithms also indicate a poor performance.

e The maximum recognition rate of 91.92% at Rank —1
is obtained using BSIF-CRC method for 710nm and
890nm probe spectrum bands, when 770nm spectrum
band is in the reference set.

e The lowest recognition rate of 8.46% at Rank — 1 is
obtained using BSIF-CRC method for 770nm probe
spectrum bands, when 530nm spectrum band is in the
reference set.

e Further, cross-spectral comparison indicates the poor
Rank — 1 recognition rate when reference set belongs
to 530nm and 590nm spectral bands.

e The cross-spectral comparison indicates reasonable
recognition rate at Rank — 1 when the reference and
probe spectrum are close to each other. For instance,
when 770nm spectrum is in the reference set, the clos-
est probe spectrum i.e. 710nm and 890nm obtained
higher recognition rate of 91.92% for BSIF-CRC al-
gorithm. However for the same reference set, 530nm
probe spectrum resulted in 29.62% recognition rate.
This indicates the fact that the increased difference be-
tween reference spectrum and probe spectrum results
in drop of the performance of algorithms.

In brief, multi-spectral imaging obtains reasonable
recognition accuracy at Rank — 1 for periocular biometric
using state-of-the-art methods. Further, inter-band ocular
matching is still challenging problem and needs research at-
tention.

5. Conclusion

Ocular biometric has emerged as popular physiological
trait due to its reasonable recognition accuracy compared to
other biometric traits. The limitations of other ocular re-
gions (such as iris, retina and sclera) to capture the data
under uncontrolled environmental conditions has led to the
emergence of periocular biometric as alternative trait for ro-
bust performance. Further, the recent trend to use multi-
spectral imaging for biometric authentication is on the rise

Table 2: Recognition rate at Rank — 1 for cross-spectral
experiment.

Reference Bands |  Algorithm Probe Bands
530nm | 590nm | 650nm | 710nm | 770nm | 890nm | 950nm | 1000nm
HOG-CRC - 5500 | 3654 | 2231 | 30.00 | 2462 | 2385 | 27.69
S30mm GIST-CRC - 5731 | 3000 | 2846 | 2846 | 2385 | 2077 | 2731
LogGabor-CRC | - 63.08 | 5654 | 3769 | 3077 | 2654 | 2192 | 3000
BSIF-CRC - 4231 | 2962 | 1231 | 846 | 885 | 1LI5 | 10.77
HOG-CRC | 49.62 - 5346 | 5077 | 48.46 | 40.77 | 3846 | 43.08
o0mm GIST-CRC | 5731 - 5731 | 4962 | 4000 | 3269 | 3000 | 3577
LogGabor-CRC | 67.69 - 6846 | 64.62 | 4154 | 4038 | 3538 | 40.38
BSIF-CRC 56.92 B 7154 | 4731 | 2346 | 2500 | 24.62 | 3423
HOG-CRC 3115 | 6423 E 8308 | 73.08 | 6885 | 63.08 | 60.00
GIST-CRC 1962 | 56.54 - 8423 | 7846 | 6846 | 61.54 | 5577
650nm LogGabor-CRC | 65.77 | 77.69 - 80.00 | 7154 | 6260 | 59.62 | 63.46
BSIF-CRC 4654 | 82.69 - 9L15 | 7885 | 6846 | 6731 | 6154
HOG-CRC 1808 | 4885 | 76.15 - 69.62 | 6000 | 5577 | 4423
10 GIST-CRC 1269 | 4654 | 85.00 - 7769 | 64.62 | 57.69 | 50.00
LogGabor-CRC | 5846 | 7154 | 81.92 - 7308 | 57.69 | 60.77 | 5038
BSIF-CRC 3154 | 7077 | 90.38 - 9LIS | 8077 | 7231 | 6269
HOG-CRC 2192 | 5846 | 7000 | 69.23 - 69.62 | 6654 | 6385
Tromm GIST-CRC 1615 | 4115 | 7962 | 8192 - 7000 | 69.62 | 6692
LogGabor-CRC | 5346 | 7260 | 77.69 | 77.69 - 7423 | 63.08 | 7577
BSIF-CRC 2062 | 5462 | 8500 | 91.92 - 91.92 | 7077 | 7808
HOG-CRC | 24.62 | 5154 | 6346 | 6615 | 7154 — [ 6038 [ 5885
490 GIST-CRC 1500 | 3769 | 6923 | 77.69 | 81.92 — 6615 | 7000
LogGabor-CRC | 4308 | 5260 | 6423 | 7077 | 73.08 [543 | 6769
BSIF-CRC 3000 | 49.62 | 7346 | 79.62 | 90.77 = 7269 | 8423
HOG-CRC 1260 | 5115 | 6154 | 6385 | 6385 | 6231 - 6231
o50mm GIST-CRC 1731 | 4038 | 6692 | 6885 | 7692 | 7346 | - 6538
LogGabor-CRC | 4731 | 6269 | 7038 | 7346 | 6538 | 6346 | - 68.46
BSIF-CRC 2000 | 4462 | 7577 | 8231 | 83.08 | 8231 - 8462
HOG-CRC 1846 | 4885 | 6385 | 5808 | 6260 | 5846 | 62.69 -
1000 GIST-CRC 2077 | 4385 | 5885 | 59.62 | 69.62 | 6885 | 7154 -
LogGabor-CRC | 4231 | 5346 | 6577 | 60.77 | 7500 | 6385 | 61.92 -
BSIF-CRC 1923 | 4346 | 6077 | 59.62 | 7577 | 7077 | 71.92 -

by leveraging the discriminative spectral information across
various band of electromagnetic spectrum. We introduce
in this paper, a multi-spectral imaging approach to explore
possibility of periocular matching. A multi-spectral peri-
ocular database of 52 Subject is collected in eight narrow
spectral bands corresponding to 530nm, 590nm, 650nm,
710nm, 770nm, 890nm, 950nm, 1000nm bands which
amounts to 4160 sample images in total. To demonstrate
the multi-spectral periocular matching, we have presented
two sets of experiments based on state-of-the-art feature ex-
traction and classifier method. The two sets of experiments
evaluated in this work correspond to intra-band and inter-
band performance to present the true significance of multi-
spectral imaging for robust periocular recognition. The re-
sults demonstrate the possible use of multi-spectral imaging
for periocular biometrics, with highest Rank — 1 recogni-
tion rate of 96.92% obtained using state-of-the-art method.
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