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Abstract—When several objects are moved about using computer simulation, there is a chance that these
objects will collide with each other, which in turn may result in effecting further change in the movement.
The two main issues involved are those of detecting that a collision has occurred and then subsequently
depicting a response as an effect of collision, Typically the collision detection s a geometric interference
problem that depends on the spatial relationship of objects while collision response is a dynamics problem
which involves predicting behavior according to physical laws. In this paper we discuss collision detection
and response in general and survey several of the more important solutions proposed and currently in usc.

1. INTRODUCTION

In the recent past, some of the most natural and grace-
ful motion in computer animation has been achieved
by simulating the behaviour of objects using the laws
of Newtonian dynamics. When several objects are
moved under the influence of forces, they are likely to
interact with other objects. If no special attention is
paid to object interaction, these objects will move
through each other producing unrealistic and discon-
certing visual effects. Whenever two objects attempt
to inter-penetrate cach other, it 1s called as a collision.
One of the primary requirements of physically based
animation systems is to automatically detect the col-
lision. The other related issue is to automatically suggest
the motion of objects immediately following collision,
which is known as the collision response.

At the very core. collision detection is a spatial in-
terference problem that has been extensively studied
in the fields of computational geometry and robot-
ics[1]. In computational geometry the problem is
solved for a static environment, i.¢., given two objects
one has to determine whether the objects intersect. The
emphasis is on complex object shapes and exact in-
tersection computation. In robotics, on the other hand,
even though the problem is posed in terms of a dynamic
environment, e, given two objects and their paths
determine whether the objects will come into collision
during the motion along their paths, the problem can
be transformed into static interference detection by
using the swept volume technigue. In physically based
dynamic simulation, however, the problem is of a
somewhat different nature. Here the paths of the objects
are not known in advance. Rather these paths depend
very much on the interaction of these moving objects
with other objects in the environment. This interaction
can be primarily abstracted in the form of time varying
forces acting on each object, which depends on the
geometric configuration of the objects in the environ-
ment. A straightforward method of collision detection
involves the solution of a sequence of static problems
one per time step. Although in principle each problem
of the sequence can be solved separately, using the
algorithms from computational geometry or robotics,
these algorithms are not very efficient for use in dy-
namic simulation. Some of these alegorithms solve the

problem in more generality than necessary for com-
puter animation. Others do not easily produce the col-
lision points and normal directions that are necessary
if collision response 1s to be modelled[2]. Hence, al-
gorithms have been specially designed for collision de-
tection and response generation taking into account
the following facts:

1. In physically based motion simulation, the objects
do not penetrate each other but they do touch,
hence. it is the contact point that is important and
not the exact intersection.

2. Collision response is by and large perceived through
the knowledge of the real world experience and can
be approximated to the extent that it looks real.

A typical simulator control involving collision de-
tection and response loop does a siep and check (see
Fig. 1). If two bodies are found to interpenetrate, the
simulator backtracks to the point in time immediately
before the occurrence of the inter-penetration. The time
t, at which the two objects first come into contact is
found using regular root finding method like regula

falsa or bisection method[2]. Once a colliding config-

uration without inter-penetration is achieved, the con-
tact and normal at contact point are determined be-
tween all the contacting bodies. Finally using the pen-
alty method or an analytical method. correct contact
forces and impulses are determined. These forces and
impulses are then applied and a new time step is begun.

2. COLLISION DETECTION
Here we shall consider the collision detection prob-
lem with different types of objects. We shall start with
the simplest object, i.e., a particle and then discuss
techniques for more complex objects in increasing or-
der of shape complexity.

2.1. Collision detection for particles

This technique is the simplest of its kind, where a
particle with a point mass is checked for penetration
against a plane or a surface. To detect a collision with
a plane one simply needs to check the sign of the
expression (x — p)- 1 where 7 is the normal to the
plane, p is any point on the plane and x 1s the position
of the particle ( see Fig. 2).
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Fig. 1. Simulator control flow.

The particle-particle collision detection is done in
two steps. First the distance between the two particles
is checked. If the distance 1s less than the tolerance,
then it is checked whether two particles are approaching
each other along the line joining the two. If both these
conditions hold true, then the particles are declared to
be colliding.

2.2, Collision detection for polygons

Polygon-polygon collision detection is performed by
testing for the penetration of each vertex point of one
polvgon through the plane of the other and by checking
that no two edges intersect. However. in many cases
merely testing points versus polygons produce accept-
able results. Moore ef al[2] and Lafleur[7] use this
technique to detect collision between flexible surfaces.
Two cases are considered depending on whether the
surface polvgon is fixed or moving.

When the surface polvgon is fixed [in this case a
triangle with vertices ( Fy,. £, £-)], the parametric vec-
tor equation is given by

P+ (P —Pyu=FP+ (P — Put+(P— Fv

where P and P' are the beginning and ending position
of the point. 1 and v are the parametric variables for
the plane defined by the triangle and 1 is a time variable
for the simulation step. By solving this system for ¢,
it. v one determines whether the point has intersected
the triangle during the time step by checking the con-
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Fig. 2. Collision detection with plane.
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ditions 0 == 1l.u=0,v=0and u + v = | (see
Fig. 3).
When the surface polvgon is moving, the following

parametric vector equation Is setup:

P+ Vt=Py+ Vot + (P, — Fo) + (V) Pt

(P = Po)+ (05— Vv

Where P is the point with velocity ' per time step. 1,
Iy, 15 are the respective velocities of the points Py,
Py, P>. If we eliminate 1 and v from the three com-
ponent equations, we get a fifth order polynomial in
t, which can be solved numerically. Each value of ¢
thus arrived at is used to get values for 1 and v by back
substitution. and then the standard 0 = ¢ = | and « =
Oand v = 0and u + v = 1 tests are used to determine
whether a collision has occurred.

To minimize the computational costs. a hierarchical
method involving octree and bounding box tests have
been suggested [ 2 ]. These tests ensure that a more geo-
metrically precise collision detection test is invoked
only when the objects are close to each other and there
is a likelihood that they may collide. These enhance-
ments only test the necessary condition for interference
and are not sufficient.

2.3. Collision detection for convex polvhedra

Although we shall only discuss algorithms to detect
collision among convex polvhedra. it is presumed that
with some preprocessing the concave polyhedra can
be decomposed into a collection of convex ones before
applying any of these algorithm. The most naive al-
gorithm checks the face of each polyhedron against the
faces of other polyhedra and vice versa, which is com-
putationally O(N?).

If two polyhedra inter-penetrate, it is almost always
the case that either a vertex of one polvhedron is inside
the other or an edge of one polvhedron has intersected
a face of the other.

A single inter-penetration test between two objects
A and B is done in two phases. In the first phase, a test
1s performed to see whether object B is inter-penetrating
object 4. This in turn is done in three steps.

1. Test the presence of vertices of B inside of 4. Each
vertex of B is compared to every face of 4. If any
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Fig, 3. Path point and triangle intersection.
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vertex is on the inward side of all such faces. a col-
lision is detected. The algorithm is developed as the
3D analogue to Cyrus-Beck clipping.

2. Test for penetration of edges of B through the faces
of 4. Each edge of B is divided into a number of
smaller line segments by intersecting it with the in-
finite planes corresponding to every face of 4. The
mid-point of each resulting line segment is checked
for being inside 1 by the same method that was
used above just for the vertex. Again if any of these
mid-points lie inside 4 the algorithm declares that
a collision has taken place.

3. The last test checks for the infrequently occurring
case where two identical polvhedra are moving
through cach other with the faces perfectly aligned.
Here the centroid point of each face B is tested
against - by the method used for vertices. above.
If any of these centroids is inside .4 the algorithm
detects a collision.

In the second phase one reverses the order and com-
pares .4 against 5. If the algorithm survives both the
phases without detecting a collision. then the two poly-
hedra are declared not to penetrate. The algorithm is
computationally very expensive and can be speeded
up by a variety of tricks like bounding box and bound-
ing sphere.

Baraff] 1] takes advantage of the geometric coherence
between successive time steps to speed up collision de-
tection test. The algorithm makes use of the fact that
a pair of convex objects do not penetrate il and only
if a separating plane between them exists. By caching
the separating plane as a wilness in successive time
steps. the algorithm simplifies the decision problem of
inter-penetration. Ganter ef al.| 3] use space partition-
ing, which exploits the spatial coherence technique to
detect collision between polyvgonal faces. The method
effectively reduces the computation time due to the
fact that the overlap region between the objects at or
near impact is usually small compared to the total size
of the objects” bounding boxes. As a result most of the
faces in the total face set will not be contained within
the overlap region and thus will not require testing.

It should be noted that all these algorithms for col-
lision detection would fail if one object completely
passes through the other during a single time step. The
problem is analogous to aliasing in computer graphics,
which primarily arises due to inadequate sampling. The
correct solution to this problem is to generalize to 4D
space-time swept volume algorithms to detect collision.
Moore ¢ al.[2] take a more practical approach and
either ignores the problem altogether or restrict the
animation step size such that it is small compared to
the object’s size.

Baraff[4] uses a nonpenetration constraint to define
a characteristic function . The function ¥ intuitively
defines a distance between two objects near the point
of contact. The function ¢ is chosen for each contact
point such that it is twice differentiable. The same
function is later used to compute the response. Further
this scalar valued function is positive. zero, or negative
according to whether 4 and B are disjoint. in contact
or inter-penetrating (see Fig. 4).

2.4, Collision detection for surfaces

Herzen et al.[ 5] gives a method for collision detec-
tion for time dependent parametric surfaces that are
continuous and bounded in derivatives. The upper
bounds on the parametric derivatives make it possible
to guarantee the successful detection of collision and
near misses. The method is robust and works with
many types of surfaces including bicubic patches.

Baraff[1] uses the concept of extreme distance to
formulate the characteristic function for curved sur-
faces analogous to the one given above for polyhedral
objects. However it is easier to define the function ¢
for polyvhedral objects than for curved surfaces. The
extreme distance between 4 and B near the point of
contact is defined as follows. If 4 and B are disjoint,
then the extreme distance between A and B is just the
normal minimum distance. If 4 and B are in contact,
then the extreme distance is 0. If A and B have inter-
penetrated, then the extreme distance i1s maximum
distance between 4 and 8. The extremal points on A
and B are the two points P, and P, that realize the
extremal distance (sce Fig. 5).

Characteristic function Wity =n(t) Pa[t] = Pb“]’
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Fig. 4. Characteristic function ¢(¢) defining nonpenetration constraint.
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Fig. 5. The external distance and extremal points.

3. COLLISION RESPONSE

Here we shall primarily consider two different ap-
proaches to model collision response. Those using an-
alytical methods and those using non-analytical ( pen-
alty) methods. In analytical methods there are again
two approaches. One using the conservation of mo-
mentum principles proposed by Moore er al.[2] and
Hahn[6]. the other based on nonpenetration con-
straint proposed by Baraff[4]. We shall discuss each
method in turn.

3.1. Collision response using penaliy methods

The penalty method is equivalent to adding a spring
to the mechanical system at the point of contact. The
advantage of the penalty methods is that they are easy
to understand easy to use. They apply equally well to
rigid bodies and flexible bodies. However, the main
problem with these methods is that they do not fulfill
the constraints precisely. Further stiffer springs means
stiffer equations that require smaller time steps for ac-
curate numerical integration and hence prove more
expensive. Moore er al.[ 2] use this method to simulate
response between colliding objects. Thus, when a col-
lision 1s detected. a very stiff spring is temporarily in-
serted between the points of closest approach. The
spring law is usually &/d, or some other functional
form that goes to infinity as the separation « of the two
objects approaches 0. k is a spring constant controlling
the stiffness of the spring. Lafleur|7] use a slight variant
of this technique in cloth animation. They create a
very thin force field around the surface to avoid the
collision. The force field acts like a shield that prevents
the mass points from inter-penetrating.

my
t

Fig. 6. Reflecting the motion vector of particle.

}m
/

Fig. 7. Particle-particle collision geometry.

3.2. Collision response using analyvtical methods

We shall discuss collision response for different types
of object primitives similar to the ones discussed in
collision detection,

3.2.1. Collision response for particles. Whenever a
particle collides with a plane or a surface. it changes
its velocity. The new velocity is computed by setting
the momentum conservation equation (sce Fig. 6).
mv = mu, — mu,
Here the momentum vector v is allowed to re-
bound against a plane and is decomposed into a normal
component mv, and a tangential component #mv,. This
would be a collision without loss of energy. To get a
more realistic collision, the particle can be assigned an
elasticity parameter n and a friction parameter u. (0
< 9, 1 < | ). This new motion vector can then be com-
puted as

mv = (1 — w)ymy, — qpmuv,

To simulate particle-particle collision, consider the
configuration in Fig. 7.

Here 7, j, k represent a coordinate system with 1, j
defining the collision tangent plane. To get the new
velocities of the particle, one needs to solve six linear
equations in six unknowns. The first three equations
are given by conservation of lincar momentum

Uy + mal; = myvy + s,

where

® 171,, m, are the masses of the particle.

* v, U, are velocities of the particles before the colli-
sion.

e 1, vyare velocities of the particles after the collision.

The remaining three equations are obtained by assum-
ing the following collision behaviour
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(D, —D2) k=—eD; —T2) K

(D) —vy) i = (D, U])'k

() —v)-j=nt, —v)k

where ¢ is the coeflicient of restitution, and g and 5
are the coefficients of friction along two perpendicular
directions in the collision plane.

3.3. Collision response for polvhedra

Moore ¢t al.[2] have proposed a solution to the prob-
lem based on the conservation of linear and angular
momentum. Fifteen linear equations are set up and
solved for 15 unknowns. These unknowns are the three
components of the resultant linear, angular momentum
and the impulse vector. Out of these 15 equations, 12
equations are due to the momentum conservation
principle (see Fig. 8):

mt; = mu, + R
M-ty = Mt — R
Iw,=Iw + p, XR

1’:“': — 2 xR

oy
2
=)
5
Il

where

® p,, p; are vectors from the centre of mass of cach
object to the point of collision.

® 1, m> are the object masses.

e [, I, are inertia matrices of the objects.

® 1. U, are the linear velocities of objects before the
collision.

e U, U, are the linear velocities of objects after the
collision.

® w;, w> are the angular velocities of objects before
the collision.

® . u- are the angular velocities of objects after the
collision.

collision point

Fig. 8. Two rigid body collision.

® R is the impulse vector. by convention directed from
object 2 to 1.

The last three equations depend on the collision be-
haviour. i.e., elastic or nonelastic collision, with or
without friction, etc. The square linear system of 15
equations in 15 unknowns is solved by standard Gauss-
Jordan or LU decomposition method|[8].

If elastic collision is to be modelled. the last three
equations are given as:

R.i=0
R-j=0

(Ta+ Wy X py = Ty —wy X py) o k

= —e(ty +ws X ps— U —wy X p)ok

where e is the restitution coefficient. In case the collision
is non-elastic then ¢ = 0. If friction is to be modelled,
a coefficient of friction v is introduced to express the
maximum allowed ratio of impulse parallel versus
normal to the tangent plane. The computation is per-
formed in two steps.

First the objects are considered as infinitely rough
with no sliding and elasticity. In this case the last three
equations of the system of equations become:

Tt wy X pp— 0 —w Xp =0

After solving the linear system. the resulting value of
R is examined to ensure that the ratio v is not exceeded

IR~ KR _
R-k !

If the relation is satisfied, the linear system solution
gives the new velocities or else the second step must
be carried out.

In the second step, the objects are sliding at the point
of contact. A limited amount of friction can act against
sliding motion. The 3 new equations are

R-i=uaR-k
R-j=0R-k

(U + w2 X ps = U —wy X py) k=0

where
 R-K(R-K)
TV TRK(R k)|
R~ Kk(R-k)

=Y raman?

As already mentioned earlier[4], models collision
as a nonpenetration constraint and gives an analvtical
method to derive the forces of constraint. Depending
upon the relative velocity of approach at the point of
contact, the contact i1s termed as a colliding contact
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(hard collision) or a resting contact (soft collision).
To simulate response for the colliding bodies, the
quantity s(fy) - v, is checked for the sign, where v,
1s the relative velocity of two colliding bodies just before
the collision and /(1) is normal at the point of contact
(see[9] for calculation of normal). If () - v, < 0,
then bodies 4 and B are approaching one another in
n(1y) direction and contact impulse J is applied to pre-
vent inter-penetration. Assuming no friction i.e., J =
jii(ty) and using the empirical law for collision
(L) Uy = —efillp) Uy

one solves for j. This method differs from an earlier
method suggested by Moore ¢f al.[2] where v,,,, the
final velocities are all treated as unknowns. Doing so
results in a set of simultaneous equations to be solved.
In contrast the Baraff[4] methods regard j as the only
unknown quantity and solve a single linear equation
in one unknown.

If 1i( o) * vy = 0 then objects A and B are separating
and no contact force need be applied. In case 1(1)-
U,y = 0, objects 4 and B are in resting contact and it
1s necessary to apply the contact force in order to pre-
vent inter-penetration. In the absence of friction, the
contact force F'is written as F = f7 with / the unknown
contact force magnitude at time f,. Then for each con-
tact point a characteristic function (1) 1s defined that
characterises the geometric distance relation between
A and B. Given ¥(7) one can express the constraint
that 4 and B are not penetrating near the contact point
by (1) = 0. Further this constraint is converted into
a constraint force by taking the second derivative and
constraining the contact force by ¥(z) = 0

In addition to the geometrically motivated constraint
() = 0, there is an additional relationship between
{5(10) and / that must be satisfied. lf{:;rr[,) = 0, then
Y is an increasing function at time 7, and 4 and B are
separating at the contact point. In this case the contact
force is zero. However. if /(1) = 0 then 4 and B are
not separating and /' need not be zero. This comple-
mentary condition is written as f{(f,) = 0 1o express
the fact that either fory is zero. Further the restriction
that / be non-negative makes the configuration with
N contact points satisfy the system of equations

Uilte) = 0. fidilto) = 0. f=0(1<i=N)
where f; and ¢, are the contact force and constraint
function for the ith contact point. For the case of fric-
tionless contact, the above equation forms what is
known as a positive semidefinite (PSD) linear com-
plementary problem. It can also be looked as a PSD
quadratic programming problem. Baraff[1] advocates
its use over his carlier suggested heuristic solution
method. However, in the presence of friction, it is
known that the above equation is no longer necessarily
PSD. Finding the solution of a nonPSD linear com-
plementary problem or quadratic program is NP-hard,
Thus, heuristic solution methods may indeed be nec-
essary for practical simulations.

V.V, KAMAT

3.4. Collision response for articulated bodies

When objects are linked together by mechanical
joints, the structure can propagate impulses via the
joints (see Fig. 9).

Moore et al.[2] have proposed a method based on
the solution of a linear system of equations that com-
putes the response for articulated bodies with revolute
and sliding joints. The various rigid objects that make
up the structure are numbered from | to n. For the
sake of simplicity let us assume a tree like structure
with objects 1 and 2 in colliding contact and the rest
linked to one or both of them, either directly or through
some number of intermediaries.

For each ngid body we have:

v,—linear velocity.,

wy;—angular velocity,

I, —Inertia tensor matrix,

m,—mass.

¢;—centre of mass.

py—single joint connecting object { to j by vector

pointing from ¢, to the joint.

e R,—Attachment impulse, pointing from object j to
(R, = —R,ifR,=1(0,0,0), objects { and j are not
connected.)

* R—Collision impulse.

*® & & & 0 @

For a collision involving # rigid bodies with (n — 1)
joints, {.e.. if the objects are all part of one articulated
linkage, there are 9n unknowns. 6n unknowns corre-
spond to resulting linear and angular velocities of the
objects, 3 unknowns for collision impulse, and 3(n

Fig. 9. Articulated body collision.
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1) unknowns corresponding to attachment impulses.
Thus, the total size of the linear system to be solved is
9#. The sparsity of the matrix increases as # increases
so that if the sparse matrix methods are used the so-
lution should be of the order O(#)[2]. The momentum
conservation law when applied to objects | and 2 give
the following 4 vector equations.

v =mu + R+ 2 Ry,
r=1
H'l'|r1 = mt; — R+ Z R,
i=1
Lwy =ILw +p X R+ E pu X Ry,
i=1
2: P2 X R:’."
i=1

bhws = Lwy, — ps X R 4

The conditions on the collision impulse R gives rise
to 3 scalar equations:
R-i=0
R-j=10
(T2 + w2 X pp— 0 —wy X p)- k=0
For objects that are not directly colliding ( for objects

1= 3--m), the momentum conservation gives rise to
(1 — 2) vector equations:

A =
&

L v+ 2,

"
Iw,=1Iw + 2 p, X R,

=1

Each revolute joint connecting objects j and j gives one
more constraint vector equation:

v, +owy Xopy, =1+ ow Xy,

The method can be extended to articulated bodies with
loops and structures with sliding joints.

4. CONCLUSIONS

Collision detection and response is one of the most
difficult of behaviours to handle in a dvnamic simu-
lation. Traditionally. collision detection and response
were treated as two different problems. One reason for
this 1s that the underlving disciplines are not the same.
Typically, geometry and dynamics do not have much
in common. The object representation in each of these

disciplines is different. For example, the geometric
modelling systems try and represent the shape and the
associated shape operations on the object. where as
dynamic analysis systems represent the object with
mass, inertia. and the associated equations of motion,
However. in physically based systems. an attempt is
made to integrate these[10]. The early work used
computational geometry algorithms to solve the col-
lision detection problem and the law of conservation
principles to solve the response problem. As a result
the early systems were computationally prohibitive. As
an immediate remedy to the problem gross approxi-
mations were done to improve the performance. It is
important for one to realize that in physically based
systems, it is necessary to treat collision detection and
response as one problem and deal with it within a single
framework. At present, systems based on nonpenetra-
tion constraint take such an unified view but have some
problems in choosing the correct characteristic function
and the inability to give a good computational model
to represent friction.
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