A Manual on Experiments in Physics (To be done with the IASc Kit)

R Srinivasan K R Priolkar T G Ramesh

1 July 2018

All rights reserved. No parts of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior permission of the publisher.

© Indian Academy of Sciences 2018

Published by Indian Academy of Sciences

Editorial & Production Team:

Geetha Sugumaran Jai Benjamin Shylaja K S Padmaja N Pushpavathi R Srimathi M

Typeset at:

TNQ Technologies Pvt. Ltd., Plot No: 4/600, 4/197, Dr. Vikram Sarabhai Instronic Estate, Kottivakkam, Thiruvanmiyur, Chennai 600 041, India.

Printed at:

Brilliant Printers Pvt. Ltd, Bengaluru 560 094, India Email:info@brilliantprinters.com

2

Preface

Physics education in India today, both at the graduate and post-graduate levels, lacks good training in experimental physics. The curriculum is biased more towards theory than experiment. Even the few experiments that are done in the laboratory use outdated equipment and techniques.

In the year 2000, the Indian Academy of Sciences, Bengaluru, entrusted to one of us (RS), the responsibility of developing good, low-cost experiments in physics, and of conducting Refresher Courses to train teachers in doing these experiments. Dr Priolkar of Goa University was a part of this effort right from the start. Dr Ramesh of the National Aerospace Laboratories, Bengaluru, joined this effort in 2010. The authors of this manual have developed more than fifty experiments covering different aspects of physics. Some of these experiments are at the BSc, and some at the MSc or post-MSc levels. The experiments have all been designed to verify a physical law, or measure a physical property. All the electronic circuits are analog circuits. Our claim is that the circuits work for the purpose for which they have been designed, namely, to carry out reproducible measurements to an accuracy of a few per cent.

In 2010, the Indian Academy of Sciences, Bengaluru, licensed Messrs Ajay Sensors and Instruments in Bengaluru to produce the equipment and circuits developed by us, and sell them at prices fixed by the Academy.

Ninety-five Refresher Courses of two weeks, duration, using 25 of these experiments, have been conducted all over India till the end of January 2018. Eight Refresher Courses in more advanced experiments have been conducted in Bengaluru from 2013. About 2500 teachers and students have been trained to do these experiments. More than 250 standard kits to do some basic experiments have been sold so far. More than 150 institutions, including some IITs, IISERs, Central and State Universities and autonomous institutions are using some of these experiments in their curriculum. Since 2007, this effort has been supported by the Indian Academy of Sciences, Bengaluru, the Indian National Academy of Sciences, New Delhi and the National Academy of Sciences of India, Allahabad.

The Science Education Panel of the Academies suggested that the manual for the experiments may be published as a book. The manual has been revised completely.

We believe that this manual, along with the equipment developed, will be useful for improving the laboratory practice in colleges. It is our hope that the manual will also stimulate teachers to develop new experiments.

R Srinivasan

K R Priolkar

T G Ramesh

Bengaluru

1 July 2018.

Contents

(In the following, the letter A, within brackets, at the end of the title, signifies experiments that can be done in B.Sc classes. Experiments marked B can be done in M.Sc. Experiments marked C require advanced infrastructure, and are being done in the IASc laboratory in Jalahalli, Bengaluru)

Chapter	Title	Pages
Chapter 1	1: Importance of Experiments in Physics	1
1.1	Importance of Experiments in Physics	3
1.2	Introduction to Error Analysis	6
Chapter 2	2: Some Commonly used Electronic Equipment	11
2.1	Regulated DC Power Supply	13
2.2	Temperature Indicator and Controller	14
2.3	Constant Current Source	15
2.4	DC Differential Amplifier	18
2.5	Signal Generator	19
2.6	Power Amplifier	20
2.7	Furnace	21
Chapter 3	8: Experiments in Mechanics	23
3.1	Introduction to Elastic Properties of Solids	25
3.2	Rigidity Modulus of Brass by Torsion Vibrations of a Wire (A)	27
3.3	Young's Modulus by Flexural Vibrations of a Bar (B)	31
3.4	Viscosity of Oil by Stokes Fall (A)	35
Chapter 4: Experiments in Heat		41
4.1	Calibration of a Si Diode and a Copper-Constantan Thermocouple	
	as Temperature Sensors (A)	43
4.2	The Neutral Temperature of Iron-Copper Thermocouple (A)	47
4.3	Stefan's Constant of Radiation (A)	50
4.4	Thermal and Electrical Conductivity of Copper to Determine	
	its Lorenz Number (A)	55
4.5	Thermal Conductivity of a Poor Conductor (A)	60
4.6	Thermal Diffusivity of Brass (B)	63
Chapter 5	: Experiments to Measure Resistance	73
5.1	Temperature Coefficient of Resistance of Copper (A)	75
5.2	Techniques for Measuring Resistivity of Thin Films and Pellets (B)	78
5.3	High Resistance by Leakage (A)	82
Chapter 6	: AC Experiments	87
6.1	Introduction to AC Circuits	89
6.2	Measurement of Self-Inductance of a Coil (A)	92
6.3	Measurement of Capacitance (A)	95
6.4	Series and Parallel Resonant Circuits (A)	98
6.5	Passive Filters (A)	101

6.6	Introduction to AC Wheatstone Bridge	107
6.7	AC Bridges Circuit	108
6.8	Maxwell, De Sauty, and Maxwell-Wien Bridges (A)	110
Chapt	er 7: Experiments on Dielectric Properties	115
7.1	Capacitance Measuring Circuit	117
7.2	Verification of the Law of Addition of Capacitances (A)	119
7.3	Dielectric Constant of Non-Polar Liquid and Dipole Moment of Acetone (A)	121
7.4	Dielectric Properties of Solids Measured with a LCR Meter (B)	129
7.5	Verification of Curie–Weiss Law for Electrical Susceptibility	
	of a Ferroelectric Material in the Paraelectric State (A)	137
Chapt	er 8: Experiments for Determination of Physical Constants k, e, and h	143
8.1	Determination of the Ratio k/e using a Transistor (A)	145
8.2	Determination of Planck's Constant, h, using Light Emitting Diodes (A)	147
8.3	Determining of e by Shot Noise (C)	149
Chapte	er 9: Experiments in Magnetism	157
9.1	Introduction to Magnetism	159
9.2	B-H Curve in a Hard Ferromagnetic Material, and in a Soft Ferrite (B)	165
Chapte	er 10: Experiment in Thermal Relaxation Time of a Serial Light Bulb	177
10.1	Measurement of Thermal Relaxation Time of a Serial Light Bulb (B)	179
Chapte	er 11: Experiments in Phase Sensitive Detection	189
11.1	Principles of Phase Sensitive Detection	191
11.2	Calibration of the Lock-In Amplifier (B)	196
11.3	Measurement of Mutual Inductance with a Lock-In Amplifier (B)	198
11.4	Measurement of low Resistance using a Lock-In Amplifier (B)	203
Chapte	er 12: Experiments in Optics	207
12.1	Diffraction Experiments (A)	209
12.2	Dispersive Power of a Prism (A)	216
12.3	Spectrum Analysis with a Diffraction Grating (A)	219
12.4	Resolving Power of a Prism and a Grating (B)	221
12.5	Introduction to Polarization of Light	227
12.6	Experiment for Production of Linear and Elliptically Polarized Light (B)	231
Chapte	r 13: Experiments in Spectroscopy	237
13.1	Luminescence (C)	239
Chapte	r 14: Experiments in Non-Linear Dynamics	251
14.1	Feigenbaum Circuit (B)	253
14.2	Chua's Circuit for Non-Linear Dynamics (B)	259
Chapte	r 15: Experiments in Materials Science	267
15.1	Energy Band Gap of Silicon using a Silicon Diode (B)	269
	vi	

15.2	Integral Method for Evaluating the Seebeck Coefficient of Constantan	
	as a Function of Temperature (B)	273
15.3	Differential Method to Measure Absolute Seebeck Coefficients of n and p Type	
	Bismuth Telluride (Bi_2Te_3) (B)	278
15.4	DC Hall Effect in Semiconductors using an Electromagnet (B)	281
15.5	Giant Magnetoresistance (B)	289
15.6	Direct Measurement of Piezoelectric Constant of PVDF Film (B)	294
15.7	Elastic and Piezoelectric Properties of PZT (B)	299
Chapte	er 16: Experiments in Phase Transitions	309
16.1	Introduction to Phase Transitions	311
16.2	Martensite to Austenite Phase Transition in Shape Memory Alloy Nitinol (B)	318
16.3	Paraelectric to Ferroelectric Transition in Modified Barium Titanate (B)	321
16.4	Tracking of the Ferromagnetic-Paramagnetic Transition in Nickel Through	225
	Electrical Resistivity (C)	325
16.5	Ferromagnetic to Paramagnetic Transition Studied using AC Susceptibility	
	Technique (B)	328
16.6	Metal-Insulator Transition in a Pellet of Strontium-Doped Lanthanum	
	Mangenite (C)	337
16.7	Superconducting Transition in YBCO (C)	339
16.8	Structural and Melting Transition in KNO3 using Differential Thermal	
	Analyzer (C)	347
Chapte	r 17: Experiments in Percolation	353
17.1	Percolation Threshold for Resistance in Composites (B)	355
17.2	Variable Range Hopping in a Composite (C)	360
Chapte	r 18: Appendix	365
18.1	Sensors	367
18.2	Evaporation and Sputtering Techniques for Thin Film Deposition	384
18.3	Low Temperature and Vacuum Techniques	390
18.4	Tensor Properties of Crystals	397
18.5	NBS Table for Thermo-EMF of Chromel-Alumel Thermocouple	401
18.6	Circuits and Mechanical Items and Address of the Company	402
18.7	Books for Study	403
	Acknowledgements	405

v