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Abstract. Management and mitigation of epidemic outbreaks is a
major challenge for health-care authorities and governments in general.
In this paper, we first give a formal definition of a strategy for dealing
with epidemics, especially in heterogeneous urban environments. Differ-
ent strategies target different demographic classes of a city, and hence
have different effects on the progression and impact of an epidemic.
One has to therefore choose among various competing strategies. We
show how the relative merits of these strategies can be compared against
various metrics.

We demonstrate our approach by developing a tool that has an agent
based discrete event simulator engine at its core. We believe that such
a tool can provide a valuable what-if analysis and decision support
infrastructure to urban health-care authorities for tackling epidemics.
We also present a running example on an influenza-like disease on syn-
thetic populations and demographics and compare different strategies for
outbreaks.

1 Introduction

Significant progress has been made over the last century in mathematical mod-
eling and analyses of epidemics, starting with the early work of Kermack and
McKendrick [12,14] where they introduced compartmental models of epidemic
and modeled epidemic progression through differential equations. Subsequent
work introduced stochastic differential equations and stochastic processes [3].
The recognition that populations are not homogeneous resulted in the use of
ideas from graph theory in the form of contact networks [13,15,18]. The advent
of social media and the study of large graphs and complex networks resulted in
a cross-breeding of ideas from both communities [1,20,21]. Ideas from physics
have been applied to epidemiology as well, with good success [17,22]. Human
mobility models have been incorporated to account for effects of traffic pattern
on the spread of epidemics across geographies [6].

In this paper, we address a common problem faced by decision making health-
care authorities during the outbreak of an epidemic in an urban setting. Large
cosmopolitan cities exhibit great socio-economic and cultural diversity. While
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there are slum areas that have higher population density, lower literacy rates and
incomes, there are also upmarket areas that fare better in the above parameters.
In addition, there are parameters associated with individuals, like age, nutrition
levels etc. that influence the progression of an epidemic.

An epidemic outbreak poses the following dilemma to urban health-care
authorities and policy makers: In what proportion should different demographics
be paid attention to, to minimize various effects of an epidemic outbreak?

This paper is a step towards formalization of the problem statement and
development of a decision support tool based on (agent based) modeling and
simulation for solving the problem. Our contribution is twofold: (i) A formal
definition of a strategy (ii) An agent based modeling and simulation approach for
comparison of various strategies in terms of economic and demographic impact.
To the best of our knowledge, this is the first attempt in this direction.

We now give a brief sketch of our approach. Details can be found in later
sections. We first partition the entire population into different classes. This clas-
sification can be based on criteria like geographic location or socio-economic
parameters. In our running example, we use a classification based on vulnera-
bility of individuals to the epidemic. Next, we identify a set of measures that
health-care authorities intend to take, to tackle the epidemic. We work with two
different types of measures: abstract measures defined in terms of susceptibility
lowering and concrete measures defined in terms of tangible steps like quarantine.
Finally, we formally define a strategy in terms of the proportion and schedule of
applying the measures on various demographic classes obtained previously.

Through agent based simulation, we can compare different strategies against
epidemic metrics like peak incidence, cumulative incidence, duration of the epi-
demic, economic impact and the cost associated with implementing a strategy.
We develop a tool for the simulation, as well as a comparison of these metrics.
The tools allows fixing of various demographic and disease related parameters.
In particular, if the costs of implementing a measure on different classes are
available, the tool outputs the total cost of a strategy as a byproduct. We show
cumulative infection plots and tabulate some other metrics for illustration.

We believe that such a tool would be useful to health-care policy makers
in analyzing what-if scenarios before operationalizing a strategy for tackling an
epidemic.

The rest of the paper is arranged as follows. In the next section, we briefly
establish the preliminaries and terminology required for the rest of the paper and
discuss relevant existing literature. In Sect. 3, we discuss our approach and the
tool–a description of our agent based model, strategies and costing models. In
Sect. 4, we demonstrate our approach through a synthetic scenario, and compare
different strategies. We conclude in Sect. 5 with a discussion of future directions.

2 Preliminaries and Previous Work

Compartmental models have been the mainstay of epidemic analysis for almost
a century [5]. These models partition the population into several compart-
ments; the number of compartments depends on the disease. A common model
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is the SEIR, that classifies every individual into either the “Susceptible”,
the “Exposed” (but not symptomatic or infectious), the “Infectious” or the
“Recovered” compartment. This models holds for several common diseases like
influenza, measles, Ebola virus disease etc. Indeed, we use this model for our
running example.

The transition dynamics of people from one compartment to another has
been modeled in different ways, including deterministic and stochastic differen-
tial equations. Deterministic models, while being simple, have the limitation that
they hold for large populations, with typically homogeneous mixing assumptions
among the population.

The paradigm of modeling individual agents and their behavior has been used
in recent times for analysis of epidemics. While being computationally expensive,
these models gained traction in epidemiology community recently because of the
higher degree of accuracy that they offer [4,8,9].

A lot of work has been done in studying sociological phenomena in the con-
text of epidemics. For example, Mao [16] and Durham and Casman [7] investigate
progressive decision making process and individual response to epidemics. Funk
et al. [11] model the spread of awareness during an outbreak of an epidemic
and discuss how this could result in a lowering of individual susceptibility, and
therefore, a smaller outbreak size. There is also work on surveillance systems
and mechanisms for targeting and monitoring various interventions during out-
breaks [19]. The outcome of surveillance can then be used to formulate strategies
to tackle the epidemics.

As mentioned earlier, there exist several tools based on various simulation
and analysis paradigms for studying epidemic progression [2,4,6]. However, what
is required is a tool that allows rapid evaluation and comparison of different
strategies by health-care authorities. This paper is a first step in that direction.

3 Our Approach

3.1 Agent Based Model

The Usual Scenario, When There Is No Epidemic: We give a qualitative
description of the agents and the environment. The parameters and actual values
set for the simulation are detailed in the next section. We simulate a town on
a square grid that has two areas: a “slum” area (Area 1) which is characterized
by high population density, lower education, and an upmarket area (Area 2)
with sparse population and higher education. Places consists of one or more grid
points and an individual is located on one grid point. There are residential areas,
workplaces, schools and market places in both areas. Individuals living in the
town are characterized by features that are relevant to our experiments–home
address, age, occupation, work place address etc., in addition to education level.
In addition to the designated work places in the upmarket area, some of the
slum dwellers also work in the residential areas in the upmarket area. The unit
of time that we use is one hour. Movement of individuals in the city is modeled
as movement from one grid point to another.
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Each individual goes about his/her routine as defined by his/her age and
occupation. Working hours are between 9AM and 5PM. Workplaces and schools
consist of several grid points. The movement of the employees/students within
the workplace/school is modeled as a random hops between the grid points within
the workplace. Office-goers visit the market place in the evening with higher
probability, while home-makers visit the market place with equal probability
throughout the active day. In any case, everybody returns to his/her respective
home at the end of the day (8:00 PM).

Outbreak of an Epidemic: The outbreak of the (influenza-like) epidemic
proceeds as follows. We begin with an initial number of infected individuals.
The epidemic comes to the notice of health-care authorities only after a certain
threshold number of people are infected. After a delay δ that is defined by the
strategy adopted by authorities, various measures (defined later) come into effect.

Regardless of their susceptibility, a healthy individual goes about his/her rou-
tine as usual. A healthy individual is exposed to infection if there is an infected
individual sharing the same grid point at the same time. The probability that a
healthy individual acquires the infection is given by [4]:

pi = 1 − exp(τ
∑

r∈R

Nrln(1 − rsiρ)) (1)

where τ is the duration of exposure, R is the set of infectivities of the infected
individual at that location, Nr is the number of infectious individual with infec-
tivity r, si susceptibility of individual i and ρ is the transmissibility.

After acquiring the infection, he stays asymptomatic and non-infectious for
a certain duration after which he becomes infectious. When infected, every indi-
vidual stays at home with some probability.

The probability that an individual recovers after it units of time after entering
the infectious stage is given by

pr = 1 − (1 − (1/rt))it

where rt is the average recovery time.

Health-Care Response: An alert is triggered to the health-care authorities
only after a certain fraction of the population gets infected. In our simulations,
we assume that it is triggered when (1/25)th of the population is infected. After
a delay, the authorities respond with a strategy (defined later). This delay could
be due to several reasons like lack of resources or systemic inertia.

3.2 The Strategy

Classification of the population can be done in several ways. A simple classifi-
cation could be simply based on the locality of the individual–all individuals of
Area 1 belong to one class, while those of Area 2 belong to another class.
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A more sophisticated classification is given below. In this paper, we report
simulation results for this classification. As mentioned earlier, we divide the
entire population of n people into three demographic classes and assign different
initial susceptibilities to each of these classes.

if a person A satisfies at least two of the following
conditions:

1. A.age <=10 years
2. A.age >=70 years
3. A.MaxEducation <= High School
4. A.residence = Area 1

then A.Class = 0

if A satisfies all of the following conditions:
1. 11 <= A.age <= 69
2. A.MaxEducation >= Graduation
3. A.residence = Area 2

then A.Class = 2

otherwise
A.Class = 1

Let |Ci| = ni, for i ∈ {0, 1, 2}. It is easy to see that the above routine
partitions the population into the three classes {Ci}. Thus, n0 + n1 + n2 = n.

We report experiments based on this classification method.
A measure is a step taken by the health care authorities that benefits an

individual (of a certain class) with some probability. In this work, we consider two
qualitatively different types of measures. The first is an abstract one, defined by
a lowering of susceptibility. How this lowering is brought about, is not described.
For example, for our simulations, we use the following abstract measures: for an
individual with natural susceptibility s, lowering to (i) 2s/3 (ii) s/3 and (iii) 0
(e.g., through vaccination).

The second type involves more concrete measures like closing schools, quar-
antine, minimizing transmission in health centers etc. While the latter type is
easy to visualize, the former serves as a comparison point, and also leaves scope
for including and combining other concrete measures. For example, for our sim-
ulations, we use the following concrete measures: (i) closing of schools and a
reduction of transmission in hospitals to two-third of the individual’s natural
susceptibility (ii) quarantine of an infected individual with some probability and
(iii) vaccination of an uninfected individual with some probability.

Definition 1. Given r demographic classes, and m “measures”, a strategy is
a r × m matrix S where Si,j = (pi,j , ti,j) where pi,j is the probability that an
individual of the demographic class Ci will benefit from measure j, and this
measure will be taken after a delay of ti,j units after epidemic alert is raised.

Essentially, a strategy defines in what proportion are different demographics
targeted by the health-care authorities. The delay ti,j accounts for the time
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needed to put various measures in place. While a strategy is intuitive in the
context of abstract measures, we point out that even for concrete measures,
the intuition holds. For example, it is more difficult (expensive) to bring down
susceptibility among individuals of class C0 even in hospitals. Similarly, it is also
more difficult to impose quarantine on such an individual. Thus, it makes sense
to associate the cost of such a measure with the probability of it being used on
an individual of a certain class.

In our model, a person who is subjected to a measure is eligible to be sub-
jected to subsequent measures. For example, in the case of abstract measures,
if the person’s susceptibility is lowered to 2s/3, it can further be lowered to s/3
and 0 later.

Definition 2. Associated with a strategy is a r × m expense matrix E where
each entry denotes the average expense of implementing the measure in an indi-
vidual of class Ci.

Thus, the total expense of a strategy is
∑r−1

i=0

∑m−1
j=0 ni,jEi,j , where ni,j is

the number of individuals of class Ci who were subjected to measure j. Our
partitioning of the population also allows to provide a rough estimate of the
economic impact of the epidemic. For that, we associate an average economic
value vi with each individual of a demographic class Ci. Thus if li individuals of
Ci get infected in a epidemic, we say that the economic impact of the epidemic
is

∑
i livi.

Thus, different strategies yield different progressions of the epidemic. It
results in different shapes of the epidemic curve, different economic impacts,
and finally, different expenses.

3.3 The Tool

The tool is implemented in python 2.7. The simulator reads a configuration file
that contains all necessary parameters to set up the environment, agents and
disease specific parameters. The source code, instruction manual and examples
are available at https://github.com/radh3110/EpiDemoSim-Project.

4 Simulation Results

To run the agent based simulation, we need to fix the properties of the disease,
demographic and geographic settings of the model, and behavioral properties of
the agents.

As mentioned earlier, we assume an influenza-like epidemic, and hence use
values reported in literature for [10]. These are shown in Table 1. We emphasize
that since populations are synthetic and so are some infection characteristics,
the simulations results presented do not relate to any specific real life epidemic
example. The examples are purely to demonstrate our approach and tool. Table 2
shows various parameters set in the agent model.

Recall that the classification scheme that we use in this paper results in three
classes C0, C1 and C2 of n0, n1 and n2 individuals respectively, with decreasing

https://github.com/radh3110/EpiDemoSim-Project
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Table 1. Epidemic parameters

Transmissibility (ρ in Eq. 1) 0.029

Infectivity range (R in Eq. 1) 0.1–0.9

Expected duration of latent period 26 h

Incubation period duration 30–72 h

Recovery time 60 h

Table 2. Model parameters

People in Area 1 4000

People in Area 2 2000

Initially Infected 50

Probability of going to the market between 9AM to 5PM 0.05

Probability of going to the market between 6PM to 8PM 0.2

Probability of going to a hospital when symptomatic 0.4

Education Levels 0 to 4

natural susceptibilities. For the current simulation, we have n0 = 4029, n1 =
1348 and n2 = 623. We assign a natural susceptibility of 0.8 to individuals of
C0, 0.5 to those of C1 and 0.3 to those of C2.

4.1 Measures

We begin by defining strategies that are agnostic to demographic classification.
Any measure among the three (see Table 3) is implemented across all communi-
ties after the same delay. The delay depends on the measure–100, 80 and 50 time
units for measures m0, m1 and m2 respectively. We will first describe abstract
strategies and then concrete strategies over which we report our simulations.

SΦ is the “strategy” when there is no intervention on the part of health-care
authorities. Therefore, susceptibility remain the same as their natural suscepti-
bility for all individuals of all demographic classes. On the other hand, Sm0 is the
strategy where we vaccinate every individual in the population. Finally, Sred is
the strategy when the authorities do not intervene, but the susceptibilities of all
individuals is one-third of the natural susceptibility associated to their respec-
tive class. This is to depict the situation when the general health-care, civic and
educational infrastructure is so good that the susceptibilities are lower to begin
with. Note that these strategies have the same interpretation in both abstract
and concrete settings.

The abstract strategies Sm2 and Sm1 are strategies where the attempt is to
lower individual susceptibilities to two-third and one-third respectively for all
individuals of all classes.
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The concrete strategy Sm2 is one where the susceptibilities of all people
when in hospitals falls to 2s/3 with probability 1 and schools close. The con-
crete strategy Sm1 is one where every symptomatic person is quarantined with
probability 1.

Table 3. Common strategies

m0 m1 m2 mΦ

SΦ (for all classes) 0 0 0 1

Sm2 (for all classes) 0 0 1, 50 0

Sm1 (for all classes) 0 1, 80 0 0

Sm0 (for all classes) 1, 100 0 0 0

Sred: No intervention, susceptibility 1/3 of respec-
tive natural susceptibilities of all classes.

Table 4 shows more complex strategies that target communities preferentially
(and also, an example cost matrix). For example, the strategy in Table 4(a)
targets community C0. We explain the first row of this table, and leave the rest
to the reader.

Table 4. Targeting specific demographics

(a) S1: Focus on C0.

m0 m1 m2

C0 2/5, 100 1/5, 80 1/5, 50

C1 1/5, 100 1/5, 80 2/5, 50

C2 1/5, 100 1/5, 80 2/5. 50

(b) S2: Focus on C1.

m0 m1 m2

C0 1/5, 100 1/5, 80 2/5, 50

C1 2/5, 100 1/5, 80 1/5, 50

C2 1/5, 100 1/5, 80 2/5, 50

(c) S3: Focus on C2

m0 m1 m2

C0 1/5, 100 1/5, 80 2/5, 50

C1 1/5, 100 1/5, 80 2/5, 50

C2 2/5, 100 1/5, 80 1/5, 50

(d) The cost matrix. These
numbers are synthetic and
chosen arbitrarily for purpose
of illustration.

m0 m1 m2

C0 49 36 25

C1 125 48 27

C2 81 16 1

The abstract strategy reduces the susceptibility of a person of community C0

to two-thirds with probability 1/5 after a delay of 50 time units, to one-thirds
with probability 1/5 after a delay of 80 time units and gets vaccinated with
probability 2/5 after a delay of 100 time units.

On the other hand, the corresponding concrete strategy reduces the suscep-
tibility of a person of community C0 to two-thirds with probability 1/5 after a
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delay of 50 time units, when in a hospital1. This concrete strategy also quaran-
tines a symptomatic person of C0 with probability 1/5 after a delay of 80 time
units and finally, vaccinates with a probability of 2/5 after a delay of 100 time
units.

In our simulations, we keep the probability of a measure being administered
on a person independent of the previous measures administered on him/her.
For example, the same person can get susceptibility lowered to s/3 and the
subsequently get vaccinated. This assumption need not be true in general and
can be relaxed. For example, in concrete strategies, it does not make sense for

Fig. 1. Epidemic curves for abstract measures

Fig. 2. Epidemic curves for concrete measures. Curves for SΦ and Sred are reproduced
here as well for easy comparison.

1 Additionally, we close down all schools in our simulations.
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the same person to be quarantined and later vaccinated, especially in SEIR
epidemics.

We also associate an economic impact of i + 1 if an individual of class Ci

gets sick. Figure 1 shows cumulative infection curves for abstract measures. It
can be seen that but for universal vaccination, targeted strategies perform better
than classification agnostic strategies. Table 5 shows various other auxiliary data
generated, including how many people of each class get infected.

Figure 2 shows cumulative infection curves for concrete measures and Table 6
the corresponding auxiliary data. While targeted strategies outperform classifi-
cation agnostic strategies here as well, the interesting observation here is that
quarantine (with some probability, after 80 time units) is a better measure than
vaccination (with some probability, after 100 time units).

It can also be seen that the infections are always less in the class targeted by
a strategy.

5 Conclusion and Future Work

In this paper we introduced a formal definition of strategy for handling epi-
demics, and report a tool that allows evaluation of different strategies. This tool,
we believe, will be very useful for performing what-if analyses during outbreaks.
However, for the most part, the simulations that we report are over synthetic
data. An immediate future goal is to incorporate real data into the model.

There are several features that can be added to the tool itself. One direction
is to increase the set of strategies and measures. Another direction would be
to allow a lot of configuration parameters to be specified by the user through
a simple interface. This would include strategy and measure specification in
addition specification of agent, environment and disease parameters.
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