

Webbia Journal of Plant Taxonomy and Geography

ISSN: 0083-7792 (Print) 2169-4060 (Online) Journal homepage: http://www.tandfonline.com/loi/tweb20

Torula goaensis, a new asexual ascomycetous fungus in Torulaceae

J. Pratibha & Ashish Prabhugaonkar

To cite this article: J. Pratibha & Ashish Prabhugaonkar (2017): Torula goaensis, a new asexual ascomycetous fungus in Torulaceae, Webbia, DOI: 10.1080/00837792.2017.1349237

To link to this article: http://dx.doi.org/10.1080/00837792.2017.1349237

	0	
E		
E	Т	
U		

Published online: 07 Aug 2017.

Submit your article to this journal 🕑

View related articles 🗹

View Crossmark data 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tweb20

Check for updates

Torula goaensis, a new asexual ascomycetous fungus in Torulaceae

J. Pratibha^{a,b} and Ashish Prabhugaonkar^b

^aDepartment of Botany, Goa University, Goa, India; ^bBotanical survey of India, Eastern Regional Centre, Shillong, India

ABSTRACT

A new species of asexual ascomycete, genus *Torula*, is described. *Torula goaensis* was found growing on decaying plant litter collected from Bondla, Goa, India and differs from previously known *Torula* species by having two unique types of conidia. Molecular phylogenetic analysis of internal transcribed spacers and large subunit regions shows its placement in the genus *Torula*, which is placed in the family Torulaceae in Pleosporales.

ARTICLE HISTORY Received 27 June 2017 Accepted 28 June 2017

KEYWORDS Anamorph; litter fungi; Torulaceae

Introduction

During a biodiversity survey of litter-degrading microfungi from the forests of Western Ghats in Goa, a novel anamorphic fungus with morphological characteristics similar to genus Torula Pers. and Pseudotorula Subram. (Subramanian 1958) was found on decaying twigs of an unidentified plant. The fungus differed from other species in genus Torula by having two types of conidia - namely phragmoconidia and scolecoconidia. Morphologically, the fungus was more similar to genus Pseudotorula, but this genus, typified by Pseudotorula heterospora Subramanian 1958, has no sequence data. The fungus showed cultural characters more similar to Torula and molecular phylogenetic analysis of internal transcribed spacers (ITS) and large subunit (LSU) regions confirmed its relation to the genus Torula, which is placed in the family Torulaceae in Pleosporales (Crane and Miller 2016); hence, a new species of genus Torula namely Torula goaensis is described and illustrated here.

Materials and Methods

Sampling

Freshly gathered litter samples from the Bondla forests of Goa were taken to the laboratory in polythene bags, incubated for 2–3 days and examined under a stereomicroscope. Fungal fruiting bodies were carefully picked up with a sterile needle, mounted in lactophenol and observed under a light microscope. The cultures were obtained by single spore isolation (Chomnunti et al. 2014). After confirming the purity and identity of the culture, molecular sequencing was done at the Rajiv Gandhi Centre for Biotechnology, Thiruvananthpuram, Kerala, India. Details of collection were added to Mycobank and Faces of Fungi (Jayasiri et al. 2015).

DNA isolation and polymerase chain reaction analysis

Fresh fungal mycelium (20 mg) was scraped from the growing culture incubated at 28°C for 7 days. DNA isolation and polymerase chain reaction analysis were carried out according to Prabhugaonkar and Bhat (2011). The 5.8S nuclear ribosomal gene with the two flanking ITS and 28S nrDNA sequence (LSU) genes were amplified and sequenced using the primer pairs ITS1F+ITS4 (White et al. 1990) and LROR+LR5 (Vilgalys and Hester 1990; Rehner and Samuels 1995), respectively. The sequence quality was checked using Sequence Scanner Software v1 (Applied Biosystems). Sequence alignment and required editing of the obtained sequences were carried out using Geneious Pro v5.1 (Drummond et al. 2010).

Sequence alignment and phylogenetic analysis

The sequences were blasted in GenBank with BLASTn. The ITS and LSU data sets were analysed. Based on the BLAST analysis, further related sequences were assembled. The combined data matrix was aligned using MAFFT v.7 (https://mafft.cbrc.jp/alignment/software) and manually adjusted using MEGA 6.06 to allow maximum alignment and maximum sequence similarity. A phylogenetic analysis was conducted using maximum likelihood in MEGA 6.06 (Kumar et al. 2008) with 1000 bootstrap replicates. Forty-five taxa are included in the phylogenetic analysis (Table 1, Tree 1). A data set of 10 families of Pleosporales was assembled. *Mytilinidion*

Table 1. Sequence data used in combined internal transcribed spacers (ITS) and large subunit (LSU) analyses. Newly deposited sequences are in bold.

Taxon	Accession no.	ITS	LSU
Astrosphaeriella bakeriana	MFLUCC11–0027	JN846716	JN846730
Astrosphaeriella stellata	MFLUCC10-0555	JN846719	JN846723
Astrosphaeriella stellate	MFLUCC10-0095	JN846709	JN846720
Leptosphaerulina chartarum	CBS 329.86	KJ796400	KJ796401
Leptosphaerulina australis	CBS 317.83	GU237829	GU301830
Lindgomyces ingoldianus	ATCC 200398	JF419898	AB521736
Lophiostoma versicolor	KH 110	AB918731	AB918732
Lophiostomama crostomum	KT 508	JN942961	AB619010
Pseudotetraploa curviappendiculata	KT 2558	AB524794	AB524610
Quadricrura bicornis	yone 153	AB524797	AB524613
Tetraplosphaeria nagasakiensis	KT 1682	AB524806	AB524630
Triplosphaeria cylindrica	KT 2550	AB524811	AB524636
Triplosphaeria maxima	KT 870	AB524812	AB524637
Triplosphaeria vezoensis	KT 1732	AB524814	AB524639
Mytilinidion mytilinellum	CBS:303.34	HM163570	FJ161184
Cucurbitaria berberidis	CBS 363.93	JF740191	GO387606
Berkleasmium sp.	BCC 17003	DO280263	DO280274
Aauasubmersa mircensis	MFLUCC11-0401	JX276954	JX276955
<i>Ouadricrura septentrionalis</i>	HC 4983	AB524799	AB524615
l enidosphaeria nicotiae	CBS 559.71	GO203760	DO384106
Lindaomyces aniculatus	KT1108	JF419892	JF419884
Quadricrura meridionalis	KT 2607	AB524798	AB524614
Pseudotetranloa iavanica	HC 4934	AB524795	AB524611
Westerdykella anaulata	IMI 090323	GO203758	60203720
Subplenodomus aniicola	CBS 285.72	JF740196	GU238040
Coniothvrium carteri	CBS 105.91	KF251209	KF251712
Coniothyrium multiporum	CBS 501.91	JF740186	GU238109
Arthonyrenia salicis	CBS 368 94	KF443410	AY538339
Roussoella percutanea	CBS 868 95	KF322118	KF366449
Roussoella percutanea	CBS 128203	KF322117	KF366448
Roussoella thailandica	MELUCC 11-0621	K 1474838	K 1474846
Roussoella siamensis	MELUCC 11-0149	K 1474837	K 1474845
Roussoella scabrispora	MFLUCC 11-0624	K 1474836	K 1474844
Roussoella nitidula	MFLUCC 11-0182	K 1474835	K 1474843
Roussoella neopustulans	MELUCC 11-0609	K 1474833	K 1474841
Roussoella acaciae	CBS:138873	KP004469	KP004497
Roussoella hysterioides	CBS 546 94	KF443405	KF443381
Neoroussoella hambusae	MFULCC 11-0124	K 1474827	K 1474839
Torula herbarum	CRS 111855	KE443409	KE443386
Torula herbarum	CBS 111055	KF443408	KF443300
Torula caliaans	MMI00054	10746356	COCCPT IN
Torula caligans	KNI IS	K 1021608	_
Torula caligans	C716	NJ921000	_
Torula borbarum	CE 10 CPS 220 60	JIN 104323 VE442406	
Torula nerodiulli	CD3 220.09	NF443400	NF443304
ioruia goaensis	MILC 12620	К1440969	K1440969

mytilinellum from Mytilinidiales was selected as the outgroup taxon. The most suitable substitution models for the respective data sets were selected by using MEGA6.06. A Tamura Nei model with γ distribution was used in the analysis. Gaps were treated as a pairwise deletion and trees were viewed with MEGA6.06. All newly generated sequences used in this study are deposited in GenBank.

Results

Phylogenetic analysis

The combined ITS and LSU data set contains 45 taxa with *Mytilinidion mytilinellum* CBS.303.34 selected as outgroup taxon. The evolutionary relation tree was constructed using the maximum likelihood method in Mega 6.06. The final tree (Fig. 1). represents the phylogenetic relationships of the new taxon with other genera in Torulaceae (Pleosporales). *Torula goaensis* forms a single clade clustering with the genus *Torula*.

Taxonomy

Torula goaensis Pratibha & Prabhugaonkar, **sp. nov**. Fig. 2

MycoBank MB819598, Faces of Fungi FoF 02876

Description

Colonies on natural substrate effuse, hairy, dark brown to black. Mycelium partly superficial, partly immersed in the host tissue, composed of brown, smooth, branched, $1.5-3 \mu m$ wide hyphae.Conidiophores mononematous, semi-macronematous, rarely branched, sub-hyaline to pale brown, verrucose, $31.5-42 \times 2-3.5 \mu m$, composed of two to four cells in linear series. Conidiogenous cells terminal or intercalary, polyblastic, cupulate, verrucose, $5.5-6.5 \mu m$ wide. Conidia two types: shorter phragmoconidia and longer scolecoconidia. Phragmoconidia catenate, simple or sometimes in branched chains, broadly fusiform, straight, bi- or tri-septate, brown, $14.5-21 \times 5.5-6.5 \mu m$. Scolecoconidia, wider than

Figure 1. Maximum likelihood tree inferred from internal transcribed spacers (ITS) and large subunit (LSU) showing the relationship of *Torula goaensis* with genus *Torula* in Torulaceae. Species described in the present paper is in red.

phragmoconidia, straight to flexuous, brown, 7- to 20-septate, constricted at septa, $42-105 \times 6-8.5 \ \mu m$.

Etymology

Place of isolation, i.e. Goa, India.

Type: India, Goa, Bondla, 2 July 2013, J. Pratibha, on decomposing litter of unidentified tree, (Holotype HCIO 52050), ex-type culture MTCC 12620, NFCC 4040.

Distribution

Known only from type locality.

Downloaded by [Australian Catholic University] at 07:12 10 August 2017

Figure 2. *Torula goaensis*. (a) Culture. (b,c) Crowded conidiogenous cells with conidia. (d-f) Conidiogenous cells on short conidiophores. (g) Scolecoconidia. (h,i) Phragmoconidia

Note

Fungus differs from other species in genus *Torula* by having two types of conidia. This placement is also supported by molecular phylogenetic data.

Discussion

Crous et al. (2015) revised the family Torulaceae with the genera *Dendryphion* and *Torula*; other genera were not included because of the lack of molecular phylogenetic data, though they were morphologically similar. Another genus *Neotorula* was added to the family by Su et al. (2016). The result of our phylogenetic analysis showed that *T. goaensis* is placed within genus *Torula* in family Torulaceae in Pleosporales (Crous et al. 2015). In a recent review, Crane and Miller (2016) clearly delimited *Torula* and allied genera such as *Bahusaganda*, *Bahusandhika*, *Simmonsiella* and *Pseudotorula* with a key to species in each genera. Genus *Pseudotorula* Subram. (Subramanian 1958) is morphologically more similar to *T. goaensis* but does not have sequence data. Our collection with details of cultural characters and phylogenetic placement is well placed in genus Torula and it will be interesting to observe phylogenetic placement of genus Pseudotorula. Torula goaensis differs from species of genus Pseudotorula, i.e. Pseudotorula heterospora and Pseudotorula sundara, by the size of the scolecoconidia. The scolecoconidia in P. heterospora are 125-450 µm long and in P. sundara are 135-230 µm long, whereas in P. goaensis the scolecoconidia are 42-105 µm long. Torula goaensis differs from Pseudotorula helica in having straight scolecoconidia and more septa. Scolecoconidia in P. helica are terminally coiled and are 45-septate, whereas in T. goensis scolecoconidia are straight and 7- to 20-septate. This supports the distinctiveness of the current species even though at a later date it was observed that genus Pseudotorula is a synonym of genus Torula on molecular phylogenetic bases.

Acknowledgements

Thanks to the University Grants Commission, New Delhi, for post-doctoral research grant support. PJ thanks Prof. M. K. Janarthanam, Department of Botany, Goa University for supporting this work. AP acknowledges Director, Botanical Survey of India and Dr A. A. Mao, Head, Botanical Survey of India, Eastern Regional Centre, Shillong, India for support.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the University Grants Commission [grant number PDFSS-ST-GOA-384].

References

- Chomnunti P, Hongsanan S, Aguirre-Hudson B, Tian Q, Peršoh D, Dhami MK, Hyde KD. 2014. The sooty moulds. Fungal Divers. 66:1–36.
- Crane JL, Miller AN. 2016. Studies in genera similar to Torula: Bahusaganda, Bahusandhika,Pseudotorula, and Simmonsiella gen. nov. IMA Fungus. 7(1):29–45. https:// doi.org/10.5598/imafungus.2016.07.01.03

- Crous PW, Carris LM, Giraldo A, Groenewald JZ, Hawksworth DL, Hernández-Restrepo M, Jaklitsch WM, Lebrun M, Schumacher RK, Stielow JB, et al. 2015. The Genera of Fungi - fixing the application of the type species of generic names – G 2: Allantophomopsis, Latorua, Macrodiplodiopsis, Macrohilum, Milospium, Protostegia, Pyricularia, Robillarda, Rotula, Septoriella, Torula, and Wojnowicia. IMA Fungus. 6(1):163–198.
- Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Heled J, Kearse M, Moir R, Stones-Havas S, Sturrock S, et al. 2010. Geneious v. 5.1. http://www.geneious.com/
- Jayasiri SC, Hyde KD, Abd-Elsalam KA, Abdel-Wahab MA, Ariyawansa HA, Bhat J, Buyck B, Dai YC, Ertz D, Hidayat I, et al. 2015. The faces of fungi database: fungal names linked with morphology, molecular and human attributes. Fungal Divers. 74:3–18. DOI:10.1007/s13225-015-0351-8.
- Kumar S, Nei M, Dudley J, Tamura K. 2008. MEGA: Abiologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics. 9:299–306.
- Prabhugaonkar A, Bhat DJ. 2011. New record of Megacapitula villosa and Paradictyoarthrinium diffractum from India. Mycosphere. 2:463–467.
- Rehner SA, Samuels, GJ. 1995. Molecular systematics of the Hypocreales: a teleomorph gene phylogeny and the status of their anamorphs. Can J Bot. 73(Suppl 1):816–823.
- Su HY, Hyde KD, Maharachchikumbura SSN, Ariyawansa HA, Luo ZL, Promputtha I, Tian Q, Lin CG, Shang QJ, Zhao YC, et al. 2016. The families Distoseptisporaceae fam.nov., Kirschsteiniotheliaceae, Sporidesmiaceae and Torulaceae, with new species from freshwater in Yunnan Province, China. Fungal Divers. 80:375–409. DOI:10.1007/s13225-016-0362-0.
- Subramanian CV. 1958. Hyphomycetes V. J Indian Bot Soc. 37:47–64.
- Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 172:4238–4246.
- White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR Protocols: a guide to methods and applications. New York (NY): Academic Press; p. 315–322.