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Chapter 1

Introduction

Leonardo Pisa popularly known as Fibonacci was famous for his book on Liber Abaci

published around 1202. In this book, he states a recurrence relation which starts with

0 and 1 and the subsequent terms are obtained by adding the preceding two terms.

Thus, we have

0, 1, 1, 2, 3, 5, · · · (1.1)

Equation (1.1) was later named as the Fibonacci sequence. This name was given by

the French mathematician Edouard Lucas in 1876. These numbers can be mathe-

matically expressed in terms of the recurrence relation ([7], [31] and [29]) by

Fn+1 = Fn + Fn−1,∀n ≥ 1, with F0 = 0 and F1 = 1, (1.2)

where Fn is the nth Fibonacci number.

Edouard Lucas used the same recurrence relation of Fibonacci sequence with dif-

ferent seed values to generate a new sequence which is now called Lucas sequence.

Lucas sequence is given by the recurrence relation

Ln+1 = Ln + Ln−1,∀n ≥ 1, with L0 = 2 and L1 = 1, (1.3)

1



where Ln is the nth Lucas number. Identities similar to the identities of Fibonacci

sequence can be also obtained for the equation (1.3) (see [31], [29]).

Fibonacci is the family surname in Italian and it means "son of the simpleton

(Bonaccio)". He was born around the year 1170. Fibonacci studied Indo-Arabic

numeration system and computation techniques from his school teacher. Although

the Fibonacci sequence was described earlier in Indian mathematics, Fibonacci was

the first person to introduce it to the world through his book on Liber Abaci. He

also included arithmetic, elementary Algebra, Indo-numeration system, elementary

algorithms and some examples of business problems. However today he is known

to the world mostly for the Fibonacci sequence. People appreciated his work in

Indo-Arabic system. Leonardo Fibonacci used this sequence to win a competition

sponsored by Emperor Frederick II in 1225. The contest question was: Start with a

pair of rabbits. Every month, every pair of rabbits who are over a month old gives

birth to a new pair of rabbits. After ’n’ months, how many pairs of rabbits are there?

He found that solution for this problem was the Fibonacci sequence.

Kepler studied the Fibonacci sequence independently and also its properties [31].

One of the recurrence property he discovered is about the ratios of the consecutive

terms of the Fibonacci sequence, that is

1
1

= 1, 2
1

= 2, 3
2

= 1.5, 5
3

= 1.666..., 8
5

= 1.6, 13
8

= 1.625, 21
13

= 1.61538 · · · He showed

that this ratio approaches a number 1.618 (approx.) which is denoted by φ and is

commonly known as the Golden ratio, named after the Greek sculptor Phidias, who

used it in his artwork. This ratio has many applications. The rectangle in which

the sides are in the ratio φ : 1, is considered to be most pleasing to the human

eye. There are many more applications in which this golden ratio appears. Like

Fibonacci numbers, Tribonacci numbers also play an important role in problems of

combinatorics ([16]) and also in the evaluation of determinants of circulant matrices

([6]).
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It is this sequence which created interest within us to explore its extensions and

learn various extended identities as (1.2) has wide varieties of interesting mathemat-

ical properties and various applications ranging from Nature to Technology.

The thesis is designed as follows:

Chapter 1 is Introduction and Chapter 2 deals with an overview of literature

work.

In Chapter 3 we have introduced B-Tribonacci and B-Tri Lucas sequences, in-

complete B-Tribonacci and B-Tri Lucas sequences. We also study various identities

related to these sequences.

Chapter 4 deals with the qth order linear recurrence relation as an extension

of the ideas introduced in Chapter 3. Here q ≥ 2 and q ∈ N. In this chapter B-q

bonacci, B-q Lucas, incomplete B-q bonacci and incomplete B-q Lucas sequences are

introduced.

In Chapter 5, the generalized bivariate B-Tribonacci, B-Tri Lucas, B-q bonacci,

B-q Lucas, incomplete B-Tribonacci, incomplete B-Tri Lucas, incomplete B-q bonacci

and incomplete B-q Lucas polynomials are introduced. The results discussed in Chap-

ter 3 and Chapter 4 are extended to these polynomials. In this chapter, the identities

involving partial derivatives of these polynomials are included.

In Chapter 6, the Fibonacci functional equation is extended to the generalized

linear Tribonacci functional equation and proven that its solution is associated with

generalized Tribonacci sequence. Its stability in the class of functions f : R → X,

where X is a real (or complex) Banach space is obtained. These results are further

extended to the generalized linear q-bonacci functional equation.

At the end a brief summary of the work done is included. Few Python program-

ming codes which are used to verify the identities are given in Appendix. This is

followed by a list of publications. The thesis ends with a bibliography.
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Chapter 2

Literature review

Let (an) be a real-valued sequence and ci,i = 1, 2, · · · , n denote any real constants.

The kth order linear homogeneous recurrence relation with constant coefficients given

by

an = c1an−1 + c2an−2 + c3an−3 + · · ·+ ckan−k, n, k ∈ N and k ≤ n, (2.1)

occur in various branches of Science and Social Science. There are numerous tech-

niques of solving this equation. One technique which is stated in [32] and which we

shall use in this thesis is listed below:

Consider the characteristic equation corresponding to (2.1),

λn − c1λ
n−1 − c2λ

n−2 − c3λ
n−3 − · · · − ckλ

n−k = 0 and let αi, i = 1, 2, · · · , n be the

distinct roots of this characteristic equation. Then the solution of (2.1) is given by

an =
n∑

i=1

Ciα
n
i , where Ci, i = 1, 2, · · · , n, are any constants. (2.2)

For example, if k = 2, c1 = 1, c2 = 1, a0 = 0 and a1 = 1, then (2.1) reduces to the

Fibonacci sequence defined by (1.2).

Another concept which we shall use in this thesis is of Generating function.
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Generating functions are powerful tools used for solving linear recursion relations and

identities relating to them. The function g(x) = a0 + a1x + a2x
2 + · · · + anx

n + · · ·
generates the terms of the recurrence relation defined by (2.1) and hence it is called

the generating function of the sequence an. Thus we have the following definition.

Definition 2.0.1. Let (an) be a sequence of real (or complex) numbers. If there exists

a function g : X → R such that

g(x) =
∞∑
i=0

ai xi (2.3)

then g(x) is called the generating function of the sequence (an).

In 1718, the French mathematician Abraham De Moivre (1667-1754) used the

generating function to generate the terms of the Fibonacci sequence (1.2) [31]. He

proved that the function f(x) = 1
1−x(1+x)

generates the terms of the Fibonacci

sequence. The generating function of Lucas sequence is given by g(x) = 2−x
1−x(1+x)

.

Since (1.2) is a linear homogeneous recurrence relation of second degree, it can be

solved using the characteristic equation

λ2 − λ− 1 = 0 (2.4)

If the distinct roots of (2.4) are φ1 and φ2, then the nth term of (1.2) is given by

Fn =
φn

1

φ1 − φ2

+
φn

2

φ2 − φ1

(2.5)

Note that φ1 = 1+
√

5
2

and φ2 = 1−√5
2

. Hence (2.5) reduces to

Fn =
1√
5
(
1 +

√
5

2
)n +

1√
5
(
1−√5

2
)n (2.6)
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Similarly, we have

Ln =
(2φ1 − a)φn

1

φ1 − φ2

+
(2φ2 − a)φn

2

φ2 − φ1

= φn
1 + φn

2 . (2.7)

In 1843, the French mathematician Jacques-Phillipe-Marie Binet [31] discovered this

formula which is one of the techniques of finding the nth term of (1.2). It is called

the Binet’s formula.

Some of the identities obtained in the thesis are in terms of falling factorial power

nk (read as n to the k falling) [3]. We define it below. For n ∈ N ∪ {0},

nk =





n(n− 1) · · · (n− (k − 1)), if k ∈ N, k ≤ n;

0, if k > n;

1, if k = 0;

1
(n+1)(n+2)···(n−k)

, if k is a negative integer.

(2.8)

The factorial of negative integers k is defined by [3]:

(−k)! = (−k)(−k + 1)(−k + 2) · · · (−1). (2.9)

For negative integer n and integer k ([19], [32]),

nk =





k!(−1)n−k (−k−1)n−k

(n−k)!
, if k ≤ n;

(−1)k(−n + k − 1)k, if k ≥ 0;

0, otherwise.

(2.10)

We now state the identity related to nth term of (1.2) and (1.3) respectively.

Fn =

bn−1
2
c∑

r=0

(n− 1− r)r

r!
, ∀n ≥ 1, (2.11)
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Ln =

bn
2
c∑

r=0

n

n− r

(n− r)r

r!
, ∀n ≥ 1. (2.12)

2.1 Identities of Fibonacci sequence

In this section, we state some of the interesting properties of Fibonacci sequence.

(1) If 1 is added to the sum of n+1 terms of Fibonacci sequence with initial term

F0, the resultant sum is (n + 2)th term. i.e.

1 +
∑n

i=0 Fi = Fn+2.

(2) The sum of the first n terms with odd suffices with initial value F1, is the (2n)th

term which is the term with even suffix. i.e.

∑n
i=1 F2i−1 = F2n.

On the other hand, if 1 is added to the sum of the first n+1 terms with even

suffices with initial term F0, the sum is (2n + 1)th term. i.e.

1 +
∑n

i=0 F2i = F2n+1.

(4) The sum of the squares of the first (n+1) terms with initial term F0 of (1.2), is

the product of nth term and (n + 1)th term of (1.2), i.e.

∑n
i=0 F 2

i = FnFn+1.

(5) Sum of the squares of nth term and (n + 1)th term is (2n + 1)th term. i.e.

F 2
n + F 2

n+1 = F2n+1.

7



(6) The difference of the product of (n + 1)th term and (n − 1)th term, and the

square of nth term of the Fibonacci sequence is (−1)n. i.e.

Fn+1Fn−1 − F 2
n = (−1)n.

Remark: The above identities can be proved using the generating function,

Binet’s formula or by Mathematical induction on n.

Rewriting (1.2) as Fn−1 = Fn+1 − Fn and using F0 = 0 and F1 = 1, we can

obtain the following sequence.

F0 = 0, F1 = 1, F−1 = 1, F−2 = −1, F−3 = 2, F−4 = −3,· · · .

Note that F−n = (−1)n+1Fn.

In [31], some of the identities of Fibonacci sequence stated above are proven for

Lucas sequence.

Following identities show the relation between Fibonacci and Lucas sequences.

(1) The sum of (n + 1)th and (n − 1)th Fibonacci numbers is the nth Lucas

number. i.e

Ln = Fn+1 + Fn−1.

(2) If (n−2)th Fibonacci number is subtracted from (n+2)th Fibonacci number

then the resultant value is the nth Lucas number. i.e.

Ln = Fn+2 − Fn−2.

(3) The product of Fn+1 and Ln is F2n+1 − 1, if n is odd and F2n+1 + 1, if n is

even, i.e.

Fn+1Ln =





F2n+1 − 1, n is odd;

F2n+1 + 1, n is even.
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2.2 Generalized Fibonacci sequence

In [31], the generalized Fibonacci sequence Gn with initial conditions G1 = a and

G2 = b is defined by

Gn+1 = Gn + Gn−1 (2.13)

The terms generated by this sequence are

G1 = a,G2 = b,G3 = a+ b,G4 = a+2b,G5 = 2a+3b etc. It is interesting to see that

the coefficients of the terms are the terms of classical Fibonacci sequence (1.2).

Thus, we have

Gn+1 = Fn−1 a + Fn b, ∀ n ≥ 1. (2.14)

(2.14) can be proved using induction on n, see [31]. With a=1 and b=1, the sequence

(2.14) reduces to Gn+1 = Fn−1 +Fn which is Fibonacci sequence (1.2) and if a=2 and

b=1, it reduces to Lucas sequence (1.3).

We state below some of the properties of (2.14).

(1) Sum of the first n terms:

n∑
r=1

Gr = aFn + bFn+1 − b, ∀n ≥ 1. (2.15)

(2) Binet’s Formula:

Gn = c
φn−2

1

φ1 − φ2

+ d
φn−2

2

φ2 − φ1

, (2.16)

where c = a + b φ1 and d = a + b φ2.

In [8], the authors consider the set of all sequences (An) satisfying the following

equation

An+2 = aAn+1 + bAn (2.17)

with initial terms, A0 and A1 and later list various cases of this sequence by giving the

choices for a, b, A0 and A1 including the generalized Fibonacci and Lucas sequences

9



which are defined below respectively by:

Fn+2 = aFn+1 + bFn, with F0 = 0 and F1 = 1, (2.18)

Ln+2 = aLn+1 + bLn, with L0 = 2 and L1 = a, (2.19)

where a and b are fixed real constants. The authors in this paper have studied various

properties of generalized Fibonacci sequence and Lucas sequence using the Difference

operator.

First few terms of the sequence (2.18) are F0 = 0, F1 = 1, F2 = a, F3 = a2 + b,

F4 = a3 + 2ab, F5 = a4 + 3a2b + b2, F6 = a5 + 4a3b + 3ab2.

For 0 ≤ n ≤ 4, terms of the sequence (2.19) are L0 = 2, L1 = a, L2 = a2 + 2b,

L3 = a3 + 3ab, L4 = a4 + 4a2b + 2b2.

The terms of (2.18) can also be obtained by adding the anti-diagonal terms of the

following Pascal type triangle.

1

a b

a2 2ab b2

a3 3a2b 3ab2 b3

· · ·

Rewriting equation (2.18), we get

Fn−1 =
1

b
(Fn+1 − a Fn), with F0 = 0 and F1 = 1. (2.20)

For −2 ≤ n ≤ 0, we obtain the terms F−1 = 1
b
, F−2 = −a

b2
, F−3 = a2+b

b3
.

10



We list below some of the properties of (2.18) that fascinated us ([8] and [25]).

(1) The nth number Fn is given by

Fn =





φn
1

φ1−φ2
+

φn
2

φ2−φ1
, a2 + 4b 6= 0;

nφn−1 , a2 + 4b = 0, φ1 = φ2 = φ,

(2.21)

where φ1 = a+
√

a2+4b
2

and φ2 = a−√a2+4b
2

, for all a, b ∈ R \ {0}, are roots of the

equation λ2 − a λ− b = 0.

(2) The generating function for Fibonacci sequence (2.18) is given by

G(x) =
1

1− x(a + bx)
. (2.22)

(3) The nth number Fn is also given by

Fn =

bn−1
2
c∑

r=0

(n− 1− r)r

r!
an−1−2r br, ∀n ≥ 1. (2.23)

With a = k and b = 1, the result can be seen in [25].

(4) For all n ≥ 0,
n∑

r=0

Fr =
bFn + Fn+1 − 1

a + b− 1
, (2.24)

provided a + b 6= 1.

Another form of the extended Fibonacci sequence defined in [25] and [21], the

k-Fibonacci sequence can be obtained from (2.18) by substituting a = k and b = 1.

Various identities related to this sequence are included in this paper.

11



In Matrix form, the Fibonacci sequence (see [8]) is represented by




Fn

Fn+1


 =




0 1

b a







Fn−1

Fn


.

Let A=




0 1

b a


 =




F0 F1

bF1 F2


 , then An =




b Fn−1 Fn

b Fn Fn+1


 .

Following identities can be proved by using the above matrix representation.

(5) (Honsberger identity)

For any m,n ∈ Z,

Fn+m−1 = bFn−1Fm−1 + FnFm. (2.25)

With m = n identity (2.25) reduces to

(a) F2n−1 = b F 2
n−1 + F 2

n .

With m = n + 1 identity (2.25) reduces to

(b) F2n = bFn−1Fn + FnFn+1.

Also using (2.18) and (5b), we can obtain, F2n = aF 2
n + 2b Fn−1Fn.

(6) (General bilinear identity)

For all m1,m2, n1, n2 ∈ Z with m1 + n2 = m2 + n1,

∣∣∣∣∣∣∣
Fm1 Fn1

Fm2 Fn2

∣∣∣∣∣∣∣
= (−b)s

∣∣∣∣∣∣∣
Fm1−s Fn1−s

Fm2−s Fn2−s

∣∣∣∣∣∣∣
. (2.26)

(7) ( d’Ocagne identity)

For all m,n ∈ Z, ∣∣∣∣∣∣∣
Fm Fn

Fm+1 Fn+1

∣∣∣∣∣∣∣
= (−b)nFm−n. (2.27)
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(8) (Catalan identity)

For all n, r ∈ Z,

∣∣∣∣∣∣∣
Fn Fn+r

Fn−r Fn

∣∣∣∣∣∣∣
= −(−b)nFr F−r = (−b)n−rF 2

r . (2.28)

putting r = 1, in (2.28) we get the following identity.

(9) (Cassini identity)

∣∣∣∣∣∣∣
Fn Fn−1

Fn+1 Fn

∣∣∣∣∣∣∣
= (−b)n−1,∀n ∈ Z. (2.29)

2.3 Incomplete Fibonacci and Lucas sequences

Filipponi introduced the incomplete Fibonacci numbers F l
n, incomplete Lucas num-

bers Ll
n as well as studied their various identities in [22]. Various identities related

to the incomplete k-Fibonacci and k-Lucas numbers are studied in [12]. The author

defines the incomplete k-Fibonacci and k-Lucas numbers respectively by

F l
k,n =

l∑
i=0

(n− 1− i)i

i!
kn−1−2i, 0 ≤ l ≤ bn− 1

2
c, ∀n ≥ 1, (2.30)

Ll
k,n =

l∑
i=0

n

n− i

(n− i)i

i!
kn−2i, 0 ≤ l ≤ bn

2
c, ∀n ≥ 1, (2.31)

where k is a positive real number.

He also studied various identities of these sequences.

We list below the properties of (2.30) and (2.31), (see [12]).

(1) For all n ≥ 2,

F l+1
k,n+2 = k F l+1

k,n+1 + F l
k,n, 0 ≤ l ≤ bn− 2

2
c. (2.32)
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Using (2.30), equation (2.32) can be rewritten as

F l
k,n+2 = k F l

k,n+1 + F l
k,n −

(n− 1− l)l

l!
kn−1−2l. (2.33)

(2) For all s ≥ 0,

s∑
i=0

si

i!
F l+i

k,n+i ki = F l+s
k,n+s, 0 ≤ l ≤ ⌊n− s− 1

2

⌋
. (2.34)

(3) For all s ≥ 1,

s−1∑
i=0

F l
k,n+ik

s−1−i = F l+1
k,n+s+1 − ksF l+1

k,n+1. (2.35)

(4) For all n ≥ 2,

Ll+1
k,n+2 = k Ll+1

k,n+1 + Ll
k,n, 0 ≤ l ≤ ⌊n− 2

2

⌋
. (2.36)

Using (2.31), equation (2.36) can be rewritten as

Ll
k,n+2 = k Ll

k,n+1 + Ll
k,n −

(n− 1− l)l

l!
kn−1−2l. (2.37)

(5) For all n ≥ 1, s ≥ 0,

s∑
i=0

si

i!
Ll+i

k,n+i ki = Ll+s
k,n+s, 0 ≤ l ≤ ⌊n− s− 1

2

⌋
. (2.38)

(6) For all s ≥ 1,

s−1∑
i=0

Ll
k,n+i ks−1−i = Ll+1

k,n+s+1 − ksLl+1
k,n+1. (2.39)

(7) For all n ≥ 2,

Ll
k,n = F l−1

k,n−1 + F l
k,n+1, 0 ≤ l ≤ ⌊n

2

⌋
. (2.40)
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2.4 Fibonacci polynomials

Fibonacci polynomials are the natural extensions of Fibonacci sequence. In [25] and

[31], these polynomials are studied in one variable, where as Hongquan Yu and Chuan-

guang Liang derives identities involving partial derivatives of bivariate Fibonacci and

Lucas polynomials in [11]. In [25], Fibonacci polynomials are defined by

Fn+1(x) =





1, when n = 0,

x, when n = 1,

xFn(x) + Fn−1(x), when n ≥ 2,

(2.41)

with F0(x) = 0, where Fn(x) is the nth Fibonacci polynomial.

In [15], Lucas polynomials in x are defined by

Ln+1(x) = xLn(x) + Ln−1(x), ∀n ≥ 1, (2.42)

with L0(x) = 2 and L1(x) = x, where Ln(x) is the nth Lucas polynomial.

In [11], the bivariate Fibonacci and Lucas polynomials are respectively defined by

Fn+1(x, y) = xFn(x, y) + yFn−1(x, y), ∀n ≥ 1, (2.43)

with F0(x, y) = 0 and F1(x, y) = 1, where Fn(x, y) is the nth Fibonacci polynomial.

Ln+1(x, y) = xLn(x, y) + yLn−1(x, y), ∀n ≥ 1, (2.44)

with L0(x, y) = 2 and L1(x, y) = x, where Ln(x, y) is the nth Lucas polynomial.

Various properties related to the polynomials (2.43) and (2.44) are obtained in [31].

For simplicity, let Fn denote Fn(x, y) and Ln denote Ln(x, y).
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The nth term of (2.43) and (2.44) respectively as defined in [11] are given below

Fn =

[n−1
2

]∑
i=0

(n− 1− i)i

i!
xn−2i−1 yr, ∀n ≥ 1. (2.45)

Ln =

[
n
2

]
∑
i=0

( n

(n− i)

(n− i)i

i!

)
xn−2i yi, ∀n ≥ 1. (2.46)

Identities relating Fibonacci and Lucas polynomials (2.43) and (2.44) are

(1) Ln = Fn+1 + yFn−1.

(2) Ln = 2Fn+1 − xFn.

Following identities involving partial derivatives of Fn and Ln discussed in [11].

Let F
(k,j)
n = ∂k+j

∂xk∂yj

(
Fn

)
and L

(k,j)
n = ∂k+j

∂xk∂yj

(
Ln

)
, k, j ≥ 0.

we list the identities below:

(1) L
(k,j)
n = yF

(k,j)
n−1 + jF

(k,j−1)
n−1 + F

(k,j)
n+1 .

(2) F
(k,j)
n = xF

(k,j)
n−1 + yF

(k,j)
n−2 + kF

(k−1,j)
n−1 + jF

(k,j−1)
n−2 .

(3) L
(k,j)
n = xL

(k,j)
n−1 + yL

(k,j)
n−2 + kL

(k−1,j)
n−1 + jL

(k,j−1)
n−2 .

(4) nF
(k,j)
n = L

(k+1,j)
n .

(5) nF
(k,j)
n−1 = L

(k,j+1)
n .

2.5 Incomplete Fibonacci and Lucas polynomials

The incomplete h(x)-Fibonacci and h(x)-Lucas polynomials and their identities are

introduced in [14], whereas in [13], the incomplete Tribonacci polynomials and their

identities are studied.
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Definition 2.5.1. The incomplete h(x)-Fibonacci polynomials is defined by

F l
h,n(x) =

l∑
i=0

(n− 1− i)i

i!
hn−1−2i(x), 0 ≤ l ≤ ⌊n− 1

2

⌋
. (2.47)

Definition 2.5.2. The incomplete h(x)-Lucas polynomials is defined by

Ll
h,n(x) =

l∑
i=0

n

n− i

(n− i)i

i!
hn−2i(x), 0 ≤ l ≤ ⌊n

2

⌋
. (2.48)

Identities similar to incomplete k-Fibonacci and k-Lucas sequences are obtained

for the polynomials F l
h,n(x) and Ll

h,n(x) in [14].

In [13], the Tribonacci numbers are defined by

tn+2 = tn+1 + tn + tn−1, ∀n ≥ 1, (2.49)

with t0 = 0, t1 = 1 and t2 = 1.

In [13], Jose L.R. introduces the incomplete Tribonacci numbers and incomplete

Tribonacci polynomials. These are respectively defined by

tln =
l∑

i=0

i∑
j=0

ij

j!

(n− i− j − 1)i

i!
, 0 ≤ l ≤ ⌊n− 1

2

⌋
. (2.50)

T l
n(x) =

l∑
i=0

i∑
j=0

ij

j!

(n− i− j − 1)i

i!
x2n−2−3(i+j), 0 ≤ l ≤ ⌊n− 1

2

⌋
. (2.51)

Various identities relating to (2.50) and (2.51) are discussed in [13].
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2.6 Functional equations

A functional equation is an equation whose solutions are the functions [24]. Stability

problems of functional equations have been extensively studied. (see [9], ([23]), ([26])

and references therein). The importance of the topic lies in the fact that stability of

functional equation is associated with notions of Controlled Chaos [30] and Shadowing

[33]. In [26], the author discusses the stability problem in Banach space for Fibonacci

functional equation defined by f(x) = f(x−1)+f(x−2), whereas in [27], he discusses

the stability of the generalized functional equation defined by

f(x) = pf(x− 1)− qf(x− 2),∀p, q ∈ R, (2.52)

in Banach space. In [20], the problem is discussed in Modular Functional space. In

[4], k-Fibonacci functional equation is discussed whereas in [18] and [10] solution and

stability of Tribonacci functional equation f(x) = f(x − 1) + f(x − 2) + f(x − 3)

in non-Archimedean Banach spaces and 2-normed spaces have been discussed re-

spectively. Stability of Tribonacci and k-Tribonacci functional equations in Modular

spaces are discussed in [17]. In [28], authors investigate the solution of generalized

linear Tribonacci functional equation in terms of Fibonacci numbers.
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Chapter 3

B-Tribonacci and B-Tri Lucas sequences

This Chapter include the content of published paper P1.



Chapter 3

B-Tribonacci and B-Tri Lucas

Sequences

3.1 Introduction

In this Chapter, we introduce a new extension of generalized Fibonacci sequence

defined by the recurrence relation (2.18), namely, Fn+1 = aFn + bFn−1, with F0 = 0

and F1 = 1. We consider the coefficient on the right hand side, namely a and b to be

the terms of the binomial expansion of (a + b)1. We rename this sequence as

B-Fibonacci sequence.

Through out this Chapter, we denote a and b to be non-zero real numbers.

We define B-Fibonacci sequence in terms of new notation as follows.

Definition 3.1.1. Let n ∈ N ∪ {0}. The B-Fibonacci sequence is defined by

(fB)n+1 = a (fB)n + b (fB)n−1, ∀ n ≥ 1, (3.1)

with (fB)0 = 0 and (fB)1 = 1,

where (fB)n is the nth term.
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Rewriting equation (3.1),we get

(fB)n−1 =
1

b

(
(fB)n+1 − a (fB)n

)
, (3.2)

with (fB)0 = 0 and (fB)1 = 1.

Using this representation, we obtain the terms of (fB)n with negative integer suffix.

Thus, (3.1) is true for all n ∈ Z and we have,

(fB)n+1 = a (fB)n + b (fB)n−1,∀n ∈ Z, (3.3)

with (fB)0 = 0 and (fB)1 = 1,

where (fB)n is the nth term of the sequence defined by (3.3).

Note that equation (3.3) is equation (2.18) of Chapter 2 with the change in

notation and hence all the identities stated there holds. The change in notation from

F to (fB) is made with expected further extensions.

The above idea is extended to Tribonacci sequence such that the nth term is

obtained by adding the preceding (n−1)th, (n−2)th, (n−3)th terms having coefficient

a2, 2ab and b2 respectively. These coefficients are the terms of the binomial expansion

of (a+ b)2. It is well known that the binomial coefficients carry a lot of combinatorial

information in them. As Binomial expansion is an important tool in Combinatorics

related fields, it is natural to expect some applications of such sequences.

In Section 2 of this Chapter, we study B-Tribonacci sequence and its various

identities. In Section 3, we introduce B-Tri Lucas sequence and extend the identities

of the B-Tribonacci sequence to B-Tri Lucas sequence. The last section deals with

the incomplete B-Tribonacci sequence and incomplete B-Tri Lucas sequence. We also

study their identities.
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3.2 B-Tribonacci sequence

The Tribonacci sequence is an extension of the Fibonacci sequence where each term

is the sum of the three preceding terms. This sequence has been extended in many

ways. Here we extend the idea of introducing the sequence (3.3) to define a new

sequence. We call it B-Tribonacci sequence and denote it by (tB)n.

Definition 3.2.1. Let n ∈ N ∪ {0}. The B-Tribonacci sequence is defined by

(tB)n+2 = a2(tB)n+1 + 2ab(tB)n + b2 (tB)n−1, n ≥ 1, (3.4)

with (tB)0 = 0, (tB)1 = 0 and (tB)2 = 1,

where the coefficients on the right hand side are the terms of the binomial expansion

of (a + b)2 and (tB)n is the nth term.

The first six terms of (3.4) are (tB)0 = 0, (tB)1 = 0, (tB)2 = 1, (tB)3 = a2,

(tB)4 = a4 + 2ab and (tB)5 = a6 + 4a3b + b2.

Rewriting equation (3.4), we get

(tB)n−1 =
1

b2

[
(tB)n+2 − a2 (tB)n+1 − 2ab (tB)n

]
, (3.5)

with (tB)0 = 0, (tB)1 = 0 and (tB)2 = 1.

For −3 ≤ n ≤ 0, we have the terms of (3.5) as follows:

(tB)−1 = 1
b2

, (tB)−2 = −2a
b3

, (tB)−3 = 3a2

b4
, (tB)−4 = −4a3

b5
+ 1

b4
= 1

b6
(−4a3b + b2).

Thus, Definition 3.2.1 can be extended as follows:

Definition 3.2.2. The B-Tribonacci sequence is defined by

(tB)n+2 = a2(tB)n+1 + 2ab(tB)n + b2 (tB)n−1, ∀ n ∈ Z, (3.6)

with (tB)0 = 0, (tB)1 = 0 and (tB)2 = 1,
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where (tB)n is the nth term of (3.6).

We have following identities for the B-Tribonacci sequence.

The nth term of Fibonacci type sequences can be obtained directly using Binet

formula. We have similar type formula for B-Tribonacci sequence.

Theorem 3.2.3. If φ1, φ2 and φ3 are roots of the characteristic equation

λ3 − a2λ2 − 2abλ− b2 = 0 (3.7)

corresponding to (3.6), then the nth term of B-Tribonacci sequence (3.6) is given by

(tB)n =





φn
1

(φ1−φ2)(φ1−φ3)
+

φn
2

(φ2−φ1)(φ2−φ3)
+

φn
3

(φ3−φ1)(φ3−φ2)
, φi

′s are all distinct,

φn
1

(φ2−φ1)2
− φn

2

(φ2−φ1)2
+

nφn−1
2

(φ2−φ1)
, φi

′s are such that φ1 6= φ2 = φ3.

(3.8)

Proof. If φ1, φ2 and φ3 are distinct roots of the characteristic equation (3.7), then the

solution of (3.6) is given by

(tB)n = C1φ
n
1 + C2φ

n
2 + C3φ

n
3 , where Ci, i = 1, 2, 3 are real constants. (3.9)

If any two roots of the characteristic equation (3.7) are equal, say, φ2 = φ3, then its

solution is given by

(tB)n = C1φ
n
1 + (C2 + n C3)φ

n
2 , where Ci, i = 1, 2, 3 are real constants. (3.10)

Equations (3.9) and (3.10), satisfying the conditions (tB)0 = 0, (tB)1 = 0 and

(tB)2 = 1, leads to (3.8).

Equation (3.8) is a Binet type formula for the B-Tribonacci sequence (3.6).
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Remark: The case of all three roots of the characteristic equation being equal, is

ruled out due to the choice of coefficients.

Theorem 3.2.4. The nth term of B-Tribonacci sequence (3.4) is given by

(tB)n =

⌊
2n−4

3

⌋
∑
r=0

(2n− 4− 2r)r

r!
a2n−4−3r br, ∀n ≥ 2. (3.11)

Proof. By induction on n.

For n = 2, R.H.S. of (3.11) =
∑0

r=0
(−2r)r

r!
a−3r br = 1 = (tB)2 = L.H.S., hence the

result is true for n = 2.

Now let the result be true for n 6 m and consider n = m + 1.

Let k ≥ 1. We divide the proof into three cases, m = 3k, 3k + 1, 3k + 2.

Case (i) m = 3k,

Consider, a2(tB)3k + 2ab(tB)3k−1 + b2(tB)3k−2

=
∑2k−2

r=0
(6k−4−2r)r

r!
a6k−2−3r br + 2

∑2k−2
r=0

(6k−6−2r)r

r!
a6k−5−3r br+1

+
∑2k−3

r=0
(6k−8−2r)r

r!
a6k−8−3r br+2

= (6k−4)0

0!
a6k−2b0 +

(
(6k−6)1

1!
+ 2

)
a6k−5 b1

+
∑2k−1

r=2

(
(6k−4−2r)r

r!
+ 2 (6k−4−2r)r−1

(r−1)!
+ (6k−4−2r)r−2

(r−2)!

)
a6k−2−3r br

= (6k−4)0

0!
a6k−2b0 + (6k−4)1

1!
a6k−5 b1

+
∑2k−1

r=2

(
(6k−3−2r)r

r!
+ (6k−3−2r)r−1

(r−1)!

)
a6k−2−3r br

= (6k−4)0

0!
a6k−2b0 + (6k−4)1

1!
a6k−5 b1 +

∑2k−1
r=2

(6k−2−2r)r

r!
a6k−2−3r br

=
∑2k−1

r=0
(6k−2−2r)r

r!
a6k−2−3r br
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= (tB)3k+1.

Similarly, we can prove the result for m = 3k + 1 and m = 3k + 2.

This completes the proof.

Using similar procedure we can prove the following Corollary.

Corollary 3.2.5. The nth term of B-Tribonacci sequence (3.5) is given by

(tB)n =

⌊
2n−4

3

⌋
∑

r=n−1

(2n− 4− 2r)r

r!
a2n−4−3r br, ∀n ≤ −1. (3.12)

Theorem 3.2.6. Sum of the first n + 1 terms of B-Tribonacci sequence (3.4) is

n∑
r=0

(tB)r =
(tB)n+1 + (b2 + 2ab)(tB)n + b2(tB)n−1 − 1

(a + b)2 − 1
, ∀n ≥ 0, (3.13)

provided a + b 6= 1,−1.

Proof. Note that for n = 0,
∑0

r=0(
tB)r = 0.

Also, since (tB)−1 = 1
b2

, R.H.S. of (3.13) = 0. Hence the result holds for n = 0.

For n ≥ 1, we prove the result by induction on n.

Let n = 1, R.H.S.= (tB)2+(b2+2ab)(tB)1+b2(tB)0−1
(a+b)2−1

= 0 = L.H.S., as (tB)2 = 1.

Therefore, the result holds for n = 1. Assume that the result is true for n ≤ m.

Let n = m + 1.

m+1∑
r=0

(tB)r =
m∑

r=0

(tB)r + (tB)m+1

=
(tB)m+1 + (b2 + 2ab)(tB)m + b2(tB)m−1 − 1

(a + b)2 − 1
+ (tB)m+1

=
(b2 + 2ab)(tB)m + b2(tB)m−1 − 1 + (a2 + 2ab + b2)(tB)m+1

(a + b)2 − 1
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=
(tB)m+2 + (b2 + 2ab)(tB)m+1 + b2(tB)m − 1

(a + b)2 − 1

Hence the result is true for n = m + 1.

By mathematical induction, result follows.

Similarly, we can prove the following Corollary.

Corollary 3.2.7. Sum of the n terms of (tB)−r, for 1 ≤ r ≤ n is

n∑
r=1

(tB)−r = −(tB)−n + (b2 + 2ab)(tB)−(n+1) + b2(tB)−(n+2) − 1

(a + b)2 − 1
, (3.14)

∀n ≥ 1, provided a + b 6= 1,−1.

Rewriting (3.14), we have

−n∑
r=−1

(tB)r = −(tB)−n + (b2 + 2ab)(tB)−(n+1) + b2(tB)−(n+2) − 1

(a + b)2 − 1
, (3.15)

provided a + b 6= 1,−1.

Combining (3.13) and (3.15), we have
∑n

r=−n(tB)r = 1
(a+b)2−1

[(
(tB)n+1 − (tB)−n

)

+(b2 + 2ab)
(
(tB)n − (tB)−(n+1)

)
+ b2

(
(tB)n−1 − (tB)−(n+2)

)]
(3.16)

provided a + b 6= 1,−1.

Equation (3.16) gives the sum of the terms of (3.6) from r = −n to r = n.

We now state the excluded cases in the above result.

(a) Let a, b ∈ R. If a + b = 1, substituting a = 1− b in (3.4) and then simplifying,

we obtain the rth term of B-Tribonacci sequence (3.4), given by

(tB)r =
r−2∑
p=0

(−2b)p +

⌊
r−3
2

⌋
∑
p=0

2r−4−3p∑
s=r−1−p

(−1)s (2r − 4− 2p)s+p

p!s!
bs+p,
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where
∑l

p=0 () = 0, if l < 0.

Hence we have,
∑n+1

r=2 (tB)r

=
∑n+1

r=2

∑r−2
p=0(−2b)p+

∑n+1
r=2

∑⌊
r−3
2

⌋
p=0

∑2r−4−3p
s=r−1−p (−1)s (2r−4−2p)s+p

p!s!
bs+p

= 1
1+2b

(n +2b 1−(−2b)n

1+2b
)+

∑n+1
r=2

∑⌊
r−3
2

⌋
p=0

∑2r−4−3p
s=r−1−p (−1)s (2r−4−2p)s+p

p!s!
bs+p,

provided b 6= −1
2
.

If b = −1
2
, then a = 3

2
and equation (3.4) reduces to

(tB)n+2 =
9

4
(tB)n+1 − 3

2
(tB)n +

1

4
(tB)n−1.

The roots of the characteristic equation λ3 − 9
4

λ2 + 3
2

λ− 1
4

= 0 corresponding

to (3.17) are φ1 = 1
4
, φ2 = 1 = φ3 and Binet type formula gives the rth term,

(tB)r =
φr

1

(φ2 − φ1)2
− φr

2

(φ2 − φ1)2
+

rφr−1
2

φ2 − φ1

.

Hence,
∑n+1

r=0 (tB)r =
∑n+1

r=0
φr

1

(φ2−φ1)2
− φr

2

(φ2−φ1)2
+

rφr−1
2

φ2−φ1

= (4
3
)2

[
4
3

(
1− (1

4
)n+2

)− (n + 2)
]
+ 2

3
(n + 1)(n + 2).

(b) If a + b = −1, then the nth term of B-Tribonacci sequence (3.4) is given by

(tB)n =
n−2∑
r=0

(2b)r +

⌊
n−3

2

⌋
∑
r=0

(−1)r

2n−4−3r∑
s=n−1−r

(2n− 4− 2r)s+r

r!s!
bs+r,

where
∑l

r=0 () = 0, if l < 0.

This case can also be discussed as above.

A similar type of cases can be studied for equation (3.5).

For a = 3
4
and b = 1

4
such that a + b = 1, we have the following graph for the
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sequence (3.4) defined by

(tB)n+2 = (
3

4
)2(tB)n+1 + 2(

3

4
)(

1

4
)(tB)n + (

1

4
)2 (tB)n−1. (3.17)
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Figure 3-1: Graph showing terms of (3.17)

An interesting property of B-Tribonacci sequence is that like B-Fibonacci se-

quence, the ratio of successive B-Tribonacci sequence converges to one of the roots,

say, φ1 of the characteristics equation corresponding to the recurrence relation (3.5).

Similarly, a ratio of preceding terms converges to 1
φ1

which is also the root of charac-

teristic equation corresponding to the recurrence relation (3.5). We have the following

theorem.

Theorem 3.2.8. Let the roots φ1, φ2 and φ3 of (3.6) be distinct φ1 6= 0 and

|φ1| > |φ2| > |φ3|, then

(i)

lim
n→∞

(tB)n

(tB)n−1

= φ1. (3.18)

(ii)

lim
n→∞

(tB)n−1

(tB)n

=
1

φ1

. (3.19)
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Proof. By using Binet type formula (3.8).

lim
n→∞

(tB)n

(tB)n−1

= lim
n→∞

φn
1 (φ2 − φ3)− φn

2 (φ1 − φ3) + φn
3 (φ1 − φ2)

φn−1
1 (φ2 − φ3)− φn−1

2 (φ1 − φ3) + φn−1
3 (φ1 − φ2)

.

Since |φ1| > |φ2| > |φ3|, |φ2|
|φ1| < 1 and |φ3|

|φ1| < 1.

Hence limn→∞( |φ2|
|φ1|)

n = 0 and limn→∞( |φ3|
|φ1|)

n = 0.

Therefore we have,

lim
n→∞

(tB)n

(tB)n−1

= lim
n→∞

(φ2 − φ3)−
(

φ2

φ1

)n
(φ1 − φ3) +

(
φ3

φ1

)n
(φ1 − φ2)

φ−1
1 (φ2 − φ3)− (φ2

φ1
)n

(
φ1−φ3

φ2

)
+ (φ3

φ1
)n

(
φ1−φ2

φ3

)

=
(φ2 − φ3)

φ−1
1 (φ2 − φ3)

= φ1.

Again using Binet type formula, we can prove the equation (3.19).

Theorem 3.2.9. The terms of the equation (3.6) can be generated from the series

∞∑
n=−∞

zn(a + bz)2n.

Proof.
∑∞

n=−∞ zn(a + bz)2n =
∑−1

n=−∞ zn(a + bz)2n +
∑∞

n=0 zn(a + bz)2n

=
∑−1

n=−∞ zn
∑∞

k=0
(2n)k

k!
akb2n−kz2n−k +

∑∞
n=0 zn

∑2n
k=0

(2n)k

k!
a2n−kbkzk

= · · ·+z−1 (−2)1

1!
a1b−3z−3+z−1 (−3)0

0!
a0b−2z−2+z0(a+bz)0+z1(a+bz)2+z2(a+bz)4+· · ·

= · · · − 2ab−3z−4 + b−2z−3 + 0 z−2 + 0 z−1 + 1 z0 + a2z + (a4 + 2ab)z2 + · · ·

= · · ·+(tB)−2z
−4 +(tB)−1z

−3 +(tB)0 z−2 +(tB)1 z−1 +(tB)2 z0 +(tB)3 z+(tB)4 z2 +

· · · .

=
∑∞

n=−∞(tB)n+2 zn.

Hence the theorem is proved.
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Corollary 3.2.10. (1) The generating function for B-Tribonacci sequence (3.4) is

given by

(tG)1(z) =
1

1− z(a + bz)2)
, (3.20)

provided |z(a + bz)2| < 1.

(2) The generating function for B-Tribonacci sequence (3.5) is given by

(tG)2(z) =
1

b2

( 1

1− 1
b2

(z3 + b2 − (az + b)2)

)
, (3.21)

provided | 1
b2

(z3 + b2 − (az + b)2)| < 1.

The B-Tribonacci sequence (3.6) can be represented in Matrix form as follows:




(tB)n

(tB)n+1

(tB)n+2




=




0 1 0

0 0 1

b2 2ab a2







(tB)n−1

(tB)n

(tB)n+1




.

Let A =




0 1 0

0 0 1

b2 2ab a2




, then

An =




b2(tB)n−1 b2(tB)n−2 + 2ab(tB)n−1 (tB)n

b2(tB)n b2(tB)n−1 + 2ab(tB)n (tB)n+1

b2(tB)n+1 b2(tB)n + 2ab(tB)n+1 (tB)n+2




. (3.22)

Using (3.6), equation (3.22) can also be written as

An =




b2(tB)n−1 (tB)n+1 − a2(tB)n (tB)n

b2(tB)n (tB)n+2 − a2(tB)n+1 (tB)n+1

b2(tB)n+1 (tB)n+3 − a2(tB)n+2 (tB)n+2




. (3.23)
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Note that A0 = I, is an identity matrix of order 3x3. Following result can be

deduced from (3.22).

Theorem 3.2.11. (Honsberger type identity)

For any m,n ∈ Z,

(tB)n+m−1 = b2(tB)n−1(
tB)m−1 + (tB)m(b2(tB)n−2 + 2ab(tB)n−1) + (tB)n(tB)m+1.

(3.24)

Proof. Equation (3.22) implies

An+m =




b2(tB)n+m−1 b2(tB)n+m−2 + 2ab(tB)n+m−1 (tB)n+m

b2(tB)n+m b2(tB)n+m−1 + 2ab(tB)n+m (tB)n+m+1

b2(tB)n+m+1 b2(tB)n+m + 2ab(tB)n+m+1 (tB)n+m+2.




(3.25)

Let M11 denote the element of first row and first column of the matrix. Then, equating

the element M11 of the matrix obtained by multiplying the matrices An and Am with

the element M11 of the matrix defined by (3.25), we get the required result.

Following Corollary follows immediately.

Corollary 3.2.12. For any n ∈ Z,

(1) (tB)2n−1 = b2(tB)2
n−1 + 2 (tB)n(tB)n+1 − a2(tB)2

n.

(2) (tB)2n = (tB)2
n+1 + 2ab(tB)2

n + 2b2(tB)n(tB)n−1.

Proof.

(1) Substituting m = n in (3.24) and using (3.6), we get (1).

(2) Substituting m = n + 1 in (3.24) and using (3.6), we get (2).
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Theorem 3.2.13. (General Trilinear identity)

For all mi, ni, ri, s ∈ Z, 1 ≤ i ≤ 3,

∣∣∣∣∣∣∣∣∣∣

(tB)m1 (tB)n1 (tB)r1

(tB)m2 (tB)n2 (tB)r2

(tB)m3 (tB)n3 (tB)r3

∣∣∣∣∣∣∣∣∣∣

= [(−b)2]s

∣∣∣∣∣∣∣∣∣∣

(tB)m1−s (tB)n1−s (tB)r1−s

(tB)m2−s (tB)n2−s (tB)r2−s

(tB)m3−s (tB)n3−s (tB)r3−s

∣∣∣∣∣∣∣∣∣∣

, (3.26)

provided ni + rk = nk + ri, mi + nj = mj + ni,mj + rk = mk + rj, for distinct i, j, k

such that i, j, k = 1, 2, 3.

Proof. Let α1 = φ2 − φ3, α2 = φ1 − φ3, α3 = φ1 − φ2, where φi, i = 1, 2, 3 are

distinct roots of λ3 − a2λ2 − 2abλ− b2 = 0. Therefore (3.8) implies

(tB)n =
α1φ

n
1 − α2φ

n
2 + α3φ

n
3

α1α2α3

=

∑3
i=1(−1)i+1αiφ

n
i∏3

i=1 αi

.

Consider,

R.H.S. = [(−b)2]s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P3
i=1(−1)i+1αiφ

m1−S
iQ3

i=1 αi

P3
i=1(−1)i+1αiφ

n1−s
iQ3

i=1 αi

P3
i=1(−1)i+1αiφ

r1−S
iQ3

i=1 αi

P3
i=1(−1)i+1αiφ

m2−S
iQ3

i=1 αi

P3
i=1(−1)i+1αiφ

n2−S
iQ3

i=1 αi

P3
i=1(−1)i+1αiφ

r2−S
iQ3

i=1 αi

P3
i=1(−1)i+1αiφ

m3−S
iQ3

i=1 αi

P3
i=1(−1)i+1αiφ

n3−S
iQ3

i=1 αi

P3
i=1(−1)i+1αiφ

r3−S
iQ3

i=1 αi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= [(−b)2]s

(
Q3

i=1 αi)3

[
(α1φ

m1−s
1 − α2φ

m1−s
2 + α3φ

m1−s
3 )

(
(α1φ

n2−s
1 − α2φ

n2−s
2 + α3φ

n2−s
3 )(α1φ

r3−s
1 − α2φ

r3−s
2 + α3φ

r3−s
3 )

−(α1φ
r2−s
1 − α2φ

r2−s
2 + α3φ

r2−s
3 )(α1φ

n3−s
1 − α2φ

n3−s
2 + α3φ

n3−s
3 )

)

−(α1φ
n1−s
1 − α2φ

n1−s
2 + α3φ

n1−s
3 )
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(
(α1φ

m2−s
1 − α2φ

m2−s
2 + α3φ

m2−s
3 )(α1φ

r3−s
1 − α2φ

r3−s
2 + α3φ

r3−s
3 )

−(α1φ
r2−s
1 − α2φ

r2−s
2 + α3φ

r2−s
3 )(α1φ

m3−s
1 − α2φ

m3−s
2 + α3φ

m3−s
3 )

)

+(α1φ
r1−s
1 − α2φ

r1−s
2 + α3φ

r1−s
3 )

(
(α1φ

m2−s
1 − α2φ

m2−s
2 + α3φ

m2−s
3 )(α1φ

n3−s
1 − α2φ

n3−s
2 + α3φ

n3−s
3 )

−(α1φ
n2−s
1 −α2φ

n2−s
2 +α3φ

r2−s
3 )(α1φ

m3−s
1 −α2φ

m3−s
2 +α3φ

m3−s
3 )

)]

= [(−b)2]s

(
Q3

i=1 αi)3

[
(α1φ

m1−s
1 − α2φ

m1−s
2 + α3φ

m1−s
3 )

(
− α1α2

(
φ1φ2

)−s
(φn2

1 φr3
2 + φr3

1 φn2
2 − φr2

1 φn3
2 − φn3

1 φr2
2 )

+α1α3

(
φ1φ3

)−s
(φn2

1 φr3
3 + φr3

1 φn2
3 − φr2

1 φn3
3 − φn3

1 φr2
3 )

−α2α3

(
φ2φ3

)−s
(φn2

2 φr3
3 + φr3

2 φn2
3 − φr2

2 φn3
3 − φn3

2 φr2
3 )

)

−(α1φ
n1−s
1 − α2φ

n1−s
2 + α3φ

n1−s
3 )

(
−α1α2

(
φ1φ2

)−s
(φm2

1 φr3
2 +φr3

1 φm2
2 −φr2

1 φm3
2 −φm3

1 φr2
2 )

+α1α3

(
φ1φ3

)−s
(φm2

1 φr3
3 +φr3

1 φm2
3 −φr2

1 φm3
3 −φm3

1 φr2
3 )

−α2α3

(
φ2φ3

)−s
(φm2

2 φr3
3 +φr3

2 φm2
3 −φr2

2 φm3
3 −φm3

2 φr2
3 )

)
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+(α1φ
r1−s
1 − α2φ

r1−s
2 + α3φ

r1−s
3 )

(
−α1α2

(
φ1φ2

)−s
(φm2

1 φn3
2 +φn3

1 φm2
2 −φn2

1 φm3
2 −φm3

1 φn2
2 )

+α1α3

(
φ1φ3

)−s
(φm2

1 φn3
3 +φn3

1 φm2
3 −φn2

1 φm3
3 −φm3

1 φn2
3 )

−α2α3

(
φ2φ3

)−s
(φm2

2 φn3
3 +φn3

2 φm2
3 −φn2

2 φm3
3 −φm3

2 φn2
3 )

) ]
,

since ni + rk = nk + ri,mi + nj = mj + ni,mj + rk = mk + rj, for distinct i, j, k

such that i, j, k = 1, 2, 3,

= [(−b)2]s

(
Q3

i=1 αi)3

[(
− α1α2α3

(
φ1φ2φ3

)−s
φm1

3 (φn2
1 φr3

2 + φr3
1 φn2

2 − φr2
1 φn3

2 − φn3
1 φr2

2 )

−α1α3α2φ
m1
2

(
φ1φ3φ2

)−s
(φn2

1 φr3
3 + φr3

1 φn2
3 − φr2

1 φn3
3 − φn3

1 φr2
3 )

−α2α3α1φ
m1
1

(
φ2φ3φ1

)−s
(φn2

2 φr3
3 + φr3

2 φn2
3 − φr2

2 φn3
3 − φn3

2 φr2
3 )

)

−
(
− α1α2α3φ

n1
3

(
φ1φ2φ3

)−s
(φm2

1 φr3
2 + φr3

1 φm2
2 − φr2

1 φm3
2 − φm3

1 φr2
2 )

−α1α3α2φ
n1
2

(
φ1φ3φ2

)−s
(φm2

1 φr3
3 + φr3

1 φm2
3 − φr2

1 φm3
3 − φm3

1 φr2
3 )

−α2α3α1φ
n1
1

(
φ2φ3φ1

)−s
(φm2

2 φr3
3 + φr3

2 φm2
3 − φr2

2 φm3
3 − φm3

2 φr2
3 )

)

(
− α1α2α3φ

r1
3

(
φ1φ2φ3

)−s
(φm2

1 φn3
2 + φn3

1 φm2
2 − φn2

1 φm3
2 − φm3

1 φn2
2 )

−α1α3α2φ
r1
2

(
φ1φ3φ2

)−s
(φm2

1 φn3
3 + φn3

1 φm2
3 − φn2

1 φm3
3 − φm3

1 φn2
3 )
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−α2α3α1φ
r1
1

(
φ2φ3φ1

)−s
(φm2

2 φn3
3 + φn3

2 φm2
3 − φn2

2 φm3
3 − φm3

2 φn2
3 )

)]
,

since ni + rk = nk + ri,mi + nj = mj + ni,mj + rk = mk + rj, for distinct i, j, k

such that i, j, k = 1, 2, 3 and φ1φ2φ3 = b2,

= [(−b)2]s

(
Q3

i=1 αi)3

[
− α1α2α3

(
b2

)−s
(
φm1

3 (φn2
1 φr3

2 + φr3
1 φn2

2 − φr2
1 φn3

2 − φn3
1 φr2

2 )

+φm1
2 (φn2

1 φr3
3 + φr3

1 φn2
3 − φr2

1 φn3
3 − φn3

1 φr2
3 )

+φm1
1 (φn2

2 φr3
3 + φr3

2 φn2
3 − φr2

2 φn3
3 − φn3

2 φr2
3 )

)

−α1α2α3

(
b2

)−s
(
φn1

3 (φm2
1 φr3

2 + φr3
1 φm2

2 − φr2
1 φm3

2 − φm3
1 φr2

2 )

+φn1
2 (φm2

1 φr3
3 + φr3

1 φm2
3 − φr2

1 φm3
3 − φm3

1 φr2
3 )

+φn1
1 (φm2

2 φr3
3 + φr3

2 φm2
3 − φr2

2 φm3
3 − φm3

2 φr2
3 )

)

−α1α2α3

(
b2

)−s
(
φr1

3 (φm2
1 φn3

2 + φn3
1 φm2

2 − φn2
1 φm3

2 − φm3
1 φn2

2 )

+φr1
2 (φm2

1 φn3
3 + φn3

1 φm2
3 − φn2

1 φm3
3 − φm3

1 φn2
3 )

+φr1
1 (φm2

2 φn3
3 + φn3

2 φm2
3 − φn2

2 φm3
3 − φm3

2 φn2
3 )

)]

= 1
(
Q3

i=1 αi)3
(−α1α2α3)

[
φm1

3 (φn2
1 φr3

2 + φr3
1 φn2

2 − φr2
1 φn3

2 − φn3
1 φr2

2 )

+φm1
2 (φn2

1 φr3
3 + φr3

1 φn2
3 − φr2

1 φn3
3 − φn3

1 φr2
3 )
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+φm1
1 (φn2

2 φr3
3 + φr3

2 φn2
3 − φr2

2 φn3
3 − φn3

2 φr2
3 )

+φn1
3 (φm2

1 φr3
2 + φr3

1 φm2
2 − φr2

1 φm3
2 − φm3

1 φr2
2 )

+φn1
2 (φm2

1 φr3
3 + φr3

1 φm2
3 − φr2

1 φm3
3 − φm3

1 φr2
3 )

+φn1
1 (φm2

2 φr3
3 + φr3

2 φm2
3 − φr2

2 φm3
3 − φm3

2 φr2
3 )

+φr1
3 (φm2

1 φn3
2 + φn3

1 φm2
2 − φn2

1 φm3
2 − φm3

1 φn2
2 )

+φr1
2 (φm2

1 φn3
3 + φn3

1 φm2
3 − φn2

1 φm3
3 − φm3

1 φn2
3 )

+φr1
1 (φm2

2 φn3
3 + φn3

2 φm2
3 − φn2

2 φm3
3 − φm3

2 φn2
3 )

]

L.H.S. =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P3
i=1(−1)i+1αiφ

m1
iQ3

i=1 αi

P3
i=1(−1)i+1αiφ

n1
iQ3

i=1 αi

P3
i=1(−1)i+1αiφ

r1
iQ3

i=1 αi

P3
i=1(−1)i+1αiφ

m2
iQ3

i=1 αi

P3
i=1(−1)i+1αiφ

n2
iQ3

i=1 αi

P3
i=1(−1)i+1αiφ

r2
iQ3

i=1 αi

P3
i=1(−1)i+1αiφ

m3
iQ3

i=1 αi

P3
i=1(−1)i+1αiφ

n3
iQ3

i=1 αi

P3
i=1(−1)i+1αiφ

r3
iQ3

i=1 αi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (
∏3

i=1 αi)
−3

[
(α1φ

m1
1 − α2φ

m1
2 + α3φ

m1
3 )

(
(α1φ

n2
1 − α2φ

n2
2 + α3φ

n2
3 )(α1φ

r3
1 − α2φ

r3
2 + α3φ

r3
3 )

−(α1φ
r2
1 − α2φ

r2
2 + α3φ

r2
3 )(α1φ

n3
1 − α2φ

n3
2 + α3φ

n3
3 )

)

−(α1φ
n1
1 − α2φ

n1
2 + α3φ

n1
3 )
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(
(α1φ

m2
1 − α2φ

m2
2 + α3φ

m2
3 )(α1φ

r3
1 − α2φ

r3
2 + α3φ

r3
3 )

−(α1φ
r2
1 − α2φ

r2
2 + α3φ

r2
3 )(α1φ

m3
1 − α2φ

m3
2 + α3φ

m3
3 )

)

+(α1φ
r1
1 − α2φ

r1
2 + α3φ

r1
3 )

(
(α1φ

m2
1 − α2φ

m2
2 + α3φ

m2
3 )(α1φ

n3
1 − α2φ

n3
2 + α3φ

n3
3 )

−(α1φ
n2
1 − α2φ

n2
2 + α3φ

n2
3 )(α1φ

m3
1 − α2φ

m3
2 + α3φ

m3
3 )

)]

= (
∏3

i=1 αi)
−3

[
(α1φ

m1
1 − α2φ

m1
2 + α3φ

m1
3 )

(
− α1α2(φ

n2
1 φr3

2 + φr3
1 φn2

2 − φr2
1 φn3

2 − φn3
1 φr2

2 )

+α1α3(φ
n2
1 φr3

3 + φr3
1 φn2

3 − φr2
1 φn3

3 − φn3
1 φr2

3 )

−α2α3(φ
n2
2 φr3

3 + φr3
2 φn2

3 − φr2
2 φn3

3 − φn3
2 φr2

3 )
)

−(α1φ
n1
1 − α2φ

n1
2 + α3φ

n1
3 )

(
− α1α2(φ

m2
1 φr3

2 + φr3
1 φm2

2 − φr2
1 φm3

2 − φm3
1 φr2

2 )

+α1α3(φ
m2
1 φr3

3 + φr3
1 φm2

3 − φr2
1 φm3

3 − φm3
1 φr2

3 )

−α2α3(φ
m2
2 φr3

3 + φr3
2 φm2

3 − φr2
2 φm3

3 − φm3
2 φr2

3 )
)

+(α1φ
r1
1 − α2φ

r1
2 + α3φ

r1
3 )

(
− α1α2(φ

m2
1 φn3

2 + φn3
1 φm2

2 − φn2
1 φm3

2 − φm3
1 φn2

2 )

+α1α3(φ
m2
1 φn3

3 + φn3
1 φm2

3 − φn2
1 φm3

3 − φm3
1 φn2

3 )
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−α2α3(φ
m2
2 φn3

3 + φn3
2 φm2

3 − φn2
2 φm3

3 − φm3
2 φn2

3 )
) ]

= (
∏3

i=1 αi)
−3

[(
− α1α2α3φ

m1
3 (φn2

1 φr3
2 + φr3

1 φn2
2 − φr2

1 φn3
2 − φn3

1 φr2
2 )

−α1α3α2φ
m1
2 (φn2

1 φr3
3 + φr3

1 φn2
3 − φr2

1 φn3
3 − φn3

1 φr2
3 )

−α2α3α1φ
m1
1 (φn2

2 φr3
3 + φr3

2 φn2
3 − φr2

2 φn3
3 − φn3

2 φr2
3 )

)

−
(
− α1α2α3φ

n1
3 (φm2

1 φr3
2 + φr3

1 φm2
2 − φr2

1 φm3
2 − φm3

1 φr2
2 )

−α1α3α2φ
n1
2 (φm2

1 φr3
3 + φr3

1 φm2
3 − φr2

1 φm3
3 − φm3

1 φr2
3 )

−α2α3α1φ
n1
1 (φm2

2 φr3
3 + φr3

2 φm2
3 − φr2

2 φm3
3 − φm3

2 φr2
3 )

)

(
− α1α2α3φ

r1
3 (φm2

1 φn3
2 + φn3

1 φm2
2 − φn2

1 φm3
2 − φm3

1 φn2
2 )

−α1α3α2φ
r1
2 (φm2

1 φn3
3 + φn3

1 φm2
3 − φn2

1 φm3
3 − φm3

1 φn2
3 )

−α2α3α1φ
r1
1 (φm2

2 φn3
3 + φn3

2 φm2
3 − φn2

2 φm3
3 − φm3

2 φn2
3 )

)]

= (
∏3

i=1 αi)
−3

[
− α1α2α3

(
φm1

3 (φn2
1 φr3

2 + φr3
1 φn2

2 − φr2
1 φn3

2 − φn3
1 φr2

2 )

+φm1
2 (φn2

1 φr3
3 + φr3

1 φn2
3 − φr2

1 φn3
3 − φn3

1 φr2
3 )

+φm1
1 (φn2

2 φr3
3 + φr3

2 φn2
3 − φr2

2 φn3
3 − φn3

2 φr2
3 )

)
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−
(
φn1

3 (φm2
1 φr3

2 + φr3
1 φm2

2 − φr2
1 φm3

2 − φm3
1 φr2

2 )

+φn1
2 (φm2

1 φr3
3 + φr3

1 φm2
3 − φr2

1 φm3
3 − φm3

1 φr2
3 )

+φn1
1 (φm2

2 φr3
3 + φr3

2 φm2
3 − φr2

2 φm3
3 − φm3

2 φr2
3 )

)

(
φr1

3 (φm2
1 φn3

2 + φn3
1 φm2

2 − φn2
1 φm3

2 − φm3
1 φn2

2 )

+φr1
2 (φm2

1 φn3
3 + φn3

1 φm2
3 − φn2

1 φm3
3 − φm3

1 φn2
3 )

+φr1
1 (φm2

2 φn3
3 + φn3

2 φm2
3 − φn2

2 φm3
3 − φm3

2 φn2
3 )

)]

= (
∏3

i=1 αi)
−3(−α1α2α3)

[
φm1

3 (φn2
1 φr3

2 + φr3
1 φn2

2 − φr2
1 φn3

2 − φn3
1 φr2

2 )

+φm1
2 (φn2

1 φr3
3 + φr3

1 φn2
3 − φr2

1 φn3
3 − φn3

1 φr2
3 )

+φm1
1 (φn2

2 φr3
3 + φr3

2 φn2
3 − φr2

2 φn3
3 − φn3

2 φr2
3 )

+φn1
3 (φm2

1 φr3
2 + φr3

1 φm2
2 − φr2

1 φm3
2 − φm3

1 φr2
2 )

+φn1
2 (φm2

1 φr3
3 + φr3

1 φm2
3 − φr2

1 φm3
3 − φm3

1 φr2
3 )

+φn1
1 (φm2

2 φr3
3 + φr3

2 φm2
3 − φr2

2 φm3
3 − φm3

2 φr2
3 )

+φr1
3 (φm2

1 φn3
2 + φn3

1 φm2
2 − φn2

1 φm3
2 − φm3

1 φn2
2 )

+φr1
2 (φm2

1 φn3
3 + φn3

1 φm2
3 − φn2

1 φm3
3 − φm3

1 φn2
3 )
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+φr1
1 (φm2

2 φn3
3 + φn3

2 φm2
3 − φn2

2 φm3
3 − φm3

2 φn2
3 )

]
.

∴ L.H.S = R.H.S.

Hence the theorem is proved.

Following identities can be deduced from Theorem 3.2.13.

Theorem 3.2.14. (d’Ocagne type identity)

For any m,n, r ∈ Z,

∣∣∣∣∣∣∣∣∣∣

(tB)m (tB)n (tB)r

(tB)m+1 (tB)n+1 (tB)r+1

(tB)m+2 (tB)n+2 (tB)r+2

∣∣∣∣∣∣∣∣∣∣

(3.27)

= [(−b)2]r
(
(tB)m−r(

tB)n−r+1 − (tB)m−r+1(
tB)n−r

)
.

Proof. Substitute mi = m + i − 1, ni = n + i − 1, ri = r + i − 1, for i = 1, 2, 3 and

taking s = r in (3.26), we get

∣∣∣∣∣∣∣∣∣∣

(tB)m (tB)n (tB)r

(tB)m+1 (tB)n+1 (tB)r+1

(tB)m+2 (tB)n+2 (tB)r+2

∣∣∣∣∣∣∣∣∣∣

= [(−b)2]r

∣∣∣∣∣∣∣∣∣∣

(tB)m−r (tB)n−r (tB)0

(tB)m+1−r (tB)n+1−r (tB)1

(tB)m+2−r (tB)n+2−r (tB)2

∣∣∣∣∣∣∣∣∣∣

= [(−b)2]r
(
(tB)m−r(

tB)n−r+1 − (tB)m−r+1(
tB)n−r

)
.

Theorem 3.2.15. (Catalan type identity)

For all n, r ∈ Z,

∣∣∣∣∣∣∣∣∣∣

(tB)n (tB)n+r (tB)n+2r

(tB)n−r (tB)n (tB)n+r

(tB)n−2r (tB)n−r (tB)n

∣∣∣∣∣∣∣∣∣∣

(3.28)
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= [(−b)2]n
(
(tB)2

r(
tB)−2r + (tB)2

−r(
tB)2r

)
.

Proof. Substitute mi = n + (1− i)r, ni = n + (2− i)r, ri = n + (3− i)r, for i = 1, 2, 3

and s = n in (3.26), we get

∣∣∣∣∣∣∣∣∣∣

(tB)n (tB)n+r (tB)n+2r

(tB)n−r (tB)n (tB)n+r

(tB)n−2r (tB)n−r (tB)n

∣∣∣∣∣∣∣∣∣∣

= [(−b)2]n

∣∣∣∣∣∣∣∣∣∣

(tB)0 (tB)r (tB)2r

(tB)−r (tB)0 (tB)r

(tB)−2r (tB)−r (tB)0

∣∣∣∣∣∣∣∣∣∣

= [(−b)2]n
(
(tB)2

r(
tB)−2r + (tB)2

−r(
tB)2r

)
, since (tB)0 = 0.

Theorem 3.2.16. (Cassini type identity)

For all n ∈ Z,

∣∣∣∣∣∣∣∣∣∣

(tB)n (tB)n+1 (tB)n+2

(tB)n−1 (tB)n (tB)n+1

(tB)n−2 (tB)n−1 (tB)n

∣∣∣∣∣∣∣∣∣∣

= [(−b)2]n−2. (3.29)

Proof. Substitute r = 1 in (3.28). Using the fact that (tB)−1 = 1
b2

, (tB)1 = 0 and

(tB)2 = 1, we get the required result.

Theorem 3.2.17. (Extended form of Cassini type identity)

For any n, r ∈ Z,

∣∣∣∣∣∣∣∣∣∣

(tB)n (tB)n−1 (tB)n−2

(tB)n+1 (tB)n (tB)n−1

(tB)n+r (tB)n+r−1 (tB)n+r−2

∣∣∣∣∣∣∣∣∣∣

= [(−b)2]n−2(tB)r. (3.30)

Proof. Substitute mi = n + i− 1, ni = n + i− 2, ri = n + i− 3, 1 ≤ i ≤ 2,

m3 = n + r, n3 = n + r − 1, r3 = n + r − 2 and s = n in (3.26). Using the condition

that (tB)0 = 0 = (tB)1 and (tB)−1 = 1
b2

, we get the required result.
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We now state two results based on the relation between the nth terms (tB)n and

(tB)−n of (3.4) and (3.5) respectively.

Theorem 3.2.18. The nth terms (tB)n and (tB)−n satisfy the following relations.

(1)

(tB)2
n − (tB)n−1(

tB)n+1 = b2n−2(tB)−(n−1). (3.31)

(2)

(tB)n(tB)n+1 − (tB)n+2(
tB)n−1 = b2n−2

(
(tB)−(n−2) − a2(tB)−(n−1)

)
. (3.32)

Proof. (1) Let α1 = φ2−φ3, α2 = φ1−φ3 and α3 = φ1−φ2, where φi, i = 1, 2, 3, are

all distinct. Then using Binet type formula (3.8), we get

(tB)2
n − (tB)n−1(

tB)n+1 = 1
(α1α2α3)2

(
α1φ

n
1 − α2φ

n
2 + α3φ

n
3

)2

- 1
(α1α2α3)2

(
α1φ

n−1
1 − α2φ

n−1
2 + α3φ

n−1
3

)(
α1φ

n+1
1 − α2φ

n+1
2 + α3φ

n+1
3

)

= 1
(α1α2α3)2

(
α1α2(φ1φ2)

n−1(φ1− φ2)
2− α1α3(φ1φ3)

n−1(φ1− φ3)
2 + α2α3(φ2φ3)

n−1(φ2− φ3)
2
)

= 1
(α1α2α3)2

(
α1α2(φ1φ2)

n−1(α3)
2 − α1α3(φ1φ3)

n−1(α2)
2 + α2α3(φ2φ3)

n−1(α1)
2
)

= 1
(α1α2α3)

(
α3(b

2φ−1
3 )n−1 − α2(b

2φ−1
2 )n−1 + α1(b

2φ−1
1 )n−1

)

= b2n−2(tB)−(n−1).

Hence the proof.
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(2) Replace n in (3.31) by n− 1 and then multiply through out by b2 to get,

b2(tB)2
n−1 − b2(tB)n−2(

tB)n = b2n−2(tB)−(n−2)

Also, multiplying (3.31) by −a2, we get

−a2(tB)2
n + a2(tB)n−1(

tB)n+1 = −b2n−2 a2(tB)−(n−1)

Adding the above two equations and using (3.4), we get the required result.

Analogous to Pythagorean triples of B-Fibonacci sequence [1], we have them for

B-Tribonacci sequence.

Theorem 3.2.19. If (tB)n is the nth term of B-Tribonacci sequence (3.6), then

[
b2(tB)n−1

(
2 (tB)n+2 − b2(tB)n−1

)]2

+
[
2(tB)n+2

(
(tB)n+2 − b2(tB)n−1

)]2

=
[
b4(tB)2

n−1 + 2 (tB)n+2((
tB)n+2 − b2(tB)n−1)

]2

. (3.33)

Proof. Since (tB)n+2 = a2 (tB)n+1 + 2ab (tB)n + b2 (tB)n−1,

b4 (tB)2
n−1 =

[
(tB)n+2 −

(
a2 (tB)n+1 + 2ab (tB)n

)]2

Hence, squaring both sides, we get

b4 (tB)2
n−1 + 2 (tB)n+2

(
a2 (tB)n+1 + 2ab (tB)n

)

= (tB)2
n+2 +

(
a2 (tB)n+1 + 2ab (tB)n

)2

Again squaring both sides,
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[
b4 (tB)2

n−1 + 2 (tB)n+2

(
a2 (tB)n+1 + 2ab (tB)n

)]2

= (tB)4
n+2 +

(
a2 (tB)n+1 + 2ab (tB)n

)4

+ 2 (tB)2
n+2

(
a2 (tB)n+1 + 2ab (tB)n

)2

=
[
(tB)2

n+2−
(
a2 (tB)n+1+2ab (tB)n

)2]2

+4 (tB)2
n+2

(
a2 (tB)n+1+2ab (tB)n

)2

=
[(

(tB)n+2−
(
a2 (tB)n+1+2ab (tB)n

))(
(tB)n+2+

(
a2 (tB)n+1+2ab (tB)n

))]2

+
[
2 (tB)n+2

(
a2 (tB)n+1 + 2ab (tB)n

)]2

Thus,
[
b4 (tB)2

n−1 + 2 (tB)n+2

(
(tB)n+2 − b2 (tB)n−1

)]2

=
[
b2 (tB)n−1

(
2 (tB)n+2−b2 (tB)n−1

)]2

+
[
2 (tB)n+2

(
(tB)n+2−b2 (tB)n−1

)]2

.

3.3 B-Tri Lucas sequence

In this section, we discuss B-Tri Lucas sequence and obtain the various identities re-

lated to it. We also prove the relation between the nth term of B-Tribonacci sequence

and B-Tri Lucas sequence.

We first define the new sequence.

Definition 3.3.1. Let n ∈ N ∪ {0}. The B-Tri Lucas sequence is defined by

(tL)n+2 = a2 (tL)n+1 + 2ab (tL)n + b2(tL)n−1, ∀n ≥ 1, (3.34)

with (tL)0 = 0, (tL)1 = 2 and (tL)2 = a2,
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where (tL)n is the nth term.

For 0 ≤ n ≤ 5, the terms of (3.34) are (tL)0 = 0, (tL)1 = 2, (tL)2 = a2,

(tL)3 = a4 + 4ab, (tL)4 = a6 + 6a3b + 2b2 and (tL)5 = a8 + 8a3b + 11a2b2.

Equation (3.34) can be expressed as

(tL)n−1 =
1

b2

[
(tL)n+2 − a2 (tL)n+1 − 2ab (tL)n

]
, (3.35)

with (tL)0 = 0, (tL)1 = 2 and (tL)2 = a2.

For −4 ≤ n ≤ 0, we have terms of (3.35) as follows:

(tL)−1 = −a2

b2
, (tL)−2 = 2

b3
(a3 + b), (tL)−3 = −a

b4
(3a3 + 4b), (tL)−4 = a2

b5
(4a3 + 5b),

(tL)−5 = 1
b6

(−5a6 − 4a3b + 2b2).

Thus, we define B-Tri Lucas sequence for all integers n.

Definition 3.3.2. The B-Tri Lucas sequence is defined by

(tL)n+2 = a2 (tL)n+1 + 2ab (tL)n + b2(tL)n−1, ∀n ∈ Z, (3.36)

with (tL)0 = 0, (tL)1 = 2 and (tL)2 = a2,

where (tL)n is the nth term.

We have the following identities of B-Tri Lucas sequence.

Theorem 3.3.3.

(tL)n =
(2φ1 − a2)

(φ1 − φ2)(φ1 − φ3)
φn

1 +
(2φ2 − a2)

(φ2 − φ1)(φ2 − φ3)
φn

2 +
(2φ3 − a2)

(φ3 − φ1)(φ3 − φ2)
φn

3 ,

(3.37)

where φi, i = 1, 2, 3 are the distinct roots of the characteristic equation corresponding

to (3.36) given by

λ3 − a2λ2 − 2abλ− b2 = 0. (3.38)
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Equation (3.37) is a Binet type Formula for (3.36).

Proof. If φ1, φ2 and φ3 are distinct roots of the characteristic equation (3.38), then

solution of (3.36) is given by

(tL)n = C1φ
n
1 + C2φ

n
2 + C3φ

n
3 (3.39)

Using the conditions (tL)0 = 0, (tL)1 = 2 and (tL)2 = a2, we get (3.37).

Remark 3.3.4. The case of repeated roots is excluded here.

The next two theorems give the relationship between (3.6) and (3.36).

Theorem 3.3.5. The nth term (tL)n of (3.36) is given by

(tL)n = 2(tB)n+1 − a2(tB)n,∀n ∈ Z. (3.40)

Proof. Equation (3.37) implies

(tL)n =
(2φ1 − a2)

(φ1 − φ2)(φ1 − φ3)
φn

1 +
(2φ2 − a2)

(φ2 − φ1)(φ2 − φ3)
φn

2 +
(2φ3 − a2)

(φ3 − φ1)(φ3 − φ2)
φn

3 ,

where φi, i = 1, 2, 3 are the distinct roots of λ3 − a2λ2 − 2abλ− b2 = 0.

Therefore,

(tL)n = 2
( φn+1

1

(φ1 − φ2)(φ1 − φ3)
+

φn+1
2

(φ2 − φ1)(φ2 − φ3)
+

φn+1
3

(φ3 − φ1)(φ3 − φ2)

)

−a2
( φn

1

(φ1 − φ2)(φ1 − φ3)
+

φn
2

(φ2 − φ1)(φ2 − φ3)
+

φn
3

(φ3 − φ1)(φ3 − φ2)

)

= 2(tB)n+1 − a2(tB)n, from (3.8).

Hence the theorem is proved.
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Corollary 3.3.6. The nth term of (3.36) is given by

(tL)n = (tB)n+1 + 2ab(tB)n−1 + b2(tB)n−2, ∀n ∈ Z. (3.41)

Proof. From (3.40), we have

(tL)n = 2(tB)n+1 − a2(tB)n

= (tB)n+1 + a2(tB)n + 2ab (tB)n−1 + b2(tB)n−2 − a2(tB)n, using (3.6).

= (tB)n+1 + 2ab(tB)n−1 + b2(tB)n−2.

Hence the Corollary is proved.

Theorem 3.3.7. The nth term of (3.34) is given by

(tL)n =

⌊
2n−2

3

⌋
∑
r=0

( (2n− 2)

(2n− 2− 2r)

(2n− 2− 2r)r

r!
−r(r−1)

(2n− 4− 2r)r−2

r!

)
a2n−2−3r br,

(3.42)

∀n ≥ 2.

Proof. Equations (3.11) and (3.40) implies,

(tL)n = 2(tB)n+1 − a2(tB)n

= 2
∑⌊

2n−2
3

⌋
r=0

(2n−2−2r)r

r!
a2n−2−3r br − a2

∑⌊
2n−4

3

⌋
r=0

(2n−4−2r)r

r!
a2n−4−3r br

=
∑⌊

2n−2
3

⌋
r=0

(
2 (2n−2−2r)r

r!
− (2n−4−2r)r

r!

)
a2n−2−3r br

=
∑⌊

2n−2
3

⌋
r=0

(2n−4−2r)r−2

r!

(
2 (2n− 2− 2r)(2n− 3− 2r)− (2n− 2− 3r)(2n− 3− 3r)

)
a2n−2−3r br

=
∑⌊

2n−2
3

⌋
r=0

(2n−4−2r)r−2

r!

(
2 (2n−2−2r)(2n−3−2r)−(2n−2−2r−r)(2n−3−2r−r)

)
a2n−2−3r br
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=
∑⌊

2n−2
3

⌋
r=0

(2n−4−2r)r−2

r!

(
(2n− 2− 2r)(2n− 3− 2r) + 2r(2n− 3− 2r)− r + r2)

)
a2n−2−3r br

=
∑⌊

2n−2
3

⌋
r=0

(2n−4−2r)r−2

r!

(
(2n−3−2r)(2n−2−2r+2r)−r(r−1)

)
a2n−2−3r br

=
∑⌊

2n−2
3

⌋
r=0

(
(2n−2)(2n−3−2r)r−1

r!
− r(r − 1) (2n−4−2r)r−2

r!

)
a2n−2−3r br

=
∑⌊

2n−2
3

⌋
r=0

(
(2n−2)(2n−3−2r)r−1

r!
− r(r − 1) (2n−4−2r)r−2

r!

)
a2n−2−3r br

=
∑⌊

2n−2
3

⌋
r=0

(
(2n−2)

(2n−2−2r)
(2n−2−2r)r

r!
− r(r − 1) (2n−4−2r)r−2

r!

)
a2n−2−3r br.

Similarly, we can prove the following Corollary.

Corollary 3.3.8. Let n ∈ Z−, the set of negative integers. The nth term of (3.35) is

given by

(tL)n =

⌊
2n−2

3

⌋
∑

r=n−1

( (2n− 2)

(2n− 2− 2r)

(2n− 2− 2r)r

r!
−r(r−1)

(2n− 4− 2r)r−2

r!

)
a2n−2−3r br,

(3.43)

∀n ≤ −1.

Equation (3.43) can be rewritten as

(tL)n =

⌊
2n−2

3

⌋
∑

r=n−1

((2n− 2)

r

(2n− 3− 2r)r−1

(r − 1)!
− (2n− 4− 2r)r−2

(r − 2)!

)
a2n−2−3r br.

For n = −1,

(tL)−1 =

⌊
−4
3

⌋
∑
r=−2

(−4

r

(−5− 2r)r−1

(r − 1)!
− (−6− 2r)r−2

(r − 2)!

)
a−4−3r br

=
(−4

−2

(−1)−3

(−3)!
− (−2)−4

(−4)!

)
a2 b−2
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=
(−4

−2

(−3)!(−1)−1+3 (3−1)−1+3

(−1+3)!

(−3)!
−

(−4)!(−1)−2+4 (4−1)−2+4

(−2+4)!

(−4)!

)
a2 b−2, form (2.10).

=
(
2

22

2!
− 32

2!

)
a2 b−2

= (2− 3)a2 b−2

= −a2 b−2.

Similarly, other terms of (tL)n, n ≤ −1 can be calculated.

Following theorem give the sum of terms of B-Tri Lucas sequence. This theorem

can be proved by a similar procedure to the one used in Section 2 of this Chapter.

We give here alternative proof using Binet type formula (3.37).

Theorem 3.3.9. The sum of the first n + 1 terms of (3.34) is

n∑
r=0

(tL)r =
(tL)n+1 + (b2 + 2ab)(tL)n + b2(tL)n−1 + (tL)2 − (tL)1

(a + b)2 − 1
, (3.44)

provided a + b 6= 1,−1 and n ≥ 0.

Proof. Consider,
∑n

r=0 (tL)r

= 2
∑n

r=0(
tB)r+1 − a2

∑n
r=0(

tB)r, from (3.37)

= 2
∑n+1

r=0 (tB)r − a2
∑n

r=0(
tB)r

= 2
(tB)n+2 + (b2 + 2ab)(tB)n+1 + b2(tB)n − 1

(a + b)2 − 1

−a2 (tB)n+1 + (b2 + 2ab)(tB)n + b2(tB)n−1 − 1

(a + b)2 − 1

=
1

(a + b)2 − 1

[(
2(tB)n+2 − a2(tB)n+1

)
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+(b2 + 2ab)
(
2(tB)n+1 − a2(tB)n

)
+ b2

(
(tB)n − a2(tB)n−1

)− 2 + a2
]

=
(tL)n+1 + (b2 + 2ab)(tL)n + b2(tL)n−1 + (tL)2 − (tL)1

(a + b)2 − 1
.

Similarly, we can prove the following Corollary.

Corollary 3.3.10. The sum of the first n + 1 terms of (3.35) is

−n∑
r=−1

(tL)r = −(tL)−n + (b2 + 2ab)(tL)−(n+1) + b2(tL)−(n+2) + (tL)2 − (tL)1

(a + b)2 − 1
, (3.45)

provided a + b 6= 1,−1 and n ≥ 1.

Combining (3.44) and (3.45), we have
∑n

r=−n(tL)r = 1
(a+b)2−1

[
((tL)n+1 − (tL)−n)

+(b2 + 2ab)((tL)n − (tL)−(n+1)) + b2((tL)n−1 − (tL)−(n+2))
]
, (3.46)

provided a + b 6= 1,−1.

The next theorem is based on the ratio of successive and preceding terms of B-Tri

Lucas sequence.

Theorem 3.3.11. Let the roots φ1, φ2 and φ3 of (3.38) be distinct, φ1 6= 0 and

|φ1| > |φ2| > |φ3|, then

(i)

lim
n→∞

(tL)n

(tL)n−1

= φ1

(
2− a2

)
, (3.47)

(ii)

lim
n→∞

(tL)n−1

(tL)n

=
1

φ1

(
2− a2

)
. (3.48)
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Proof.

lim
n→∞

(tL)n

(tL)n−1

= 2 lim
n→∞

(tB)n+1

(tB)n

− a2 lim
n→∞

(tB)n

(tB)n−1

, from (3.40)

= φ1

(
2− a2

)
, using equation (3.18).

Similarly, using (3.19) we can prove (3.48).

Following theorem gives the generating function of B-Tri Lucas sequence (3.6).

Theorem 3.3.12. The terms of the B-Tri Lucas sequence (3.36) can be generated

from the series

(2− a2z)
∞∑

r=−∞
zr(a + bz)2r. (3.49)

Proof of Theorem 3.3.12 is similar to that of Theorem 3.2.9.

We now establish some of the identities of B-Tri Lucas sequence as presented in

Section 2 for the B-Tribonacci sequence.

Theorem 3.3.13. (Honsberger type identity)

For any m,n ∈ Z,

(tL)n+m−1 = b2(tB)n−1(
tL)m−1 +

(
b2(tB)n−2 + 2ab(tB)n−1

)
(tL)m + (tB)n(tL)m+1.

(3.50)

Proof. Equation (3.24) implies

(tB)n+m−1 = b2(tB)n−1(
tB)m−1 +

(
b2(tB)n−2 + 2ab(tB)n−1

)
(tB)m + (tB)n(tB)m+1

Therefore,

(tB)n+m = b2(tB)n−1(
tB)m + (b2(tB)n−2 + 2ab(tB)n−1)(

tB)m+1 + (tB)n(tB)m+2

From (3.40), we have
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(tL)n+m−1 = 2 (tB)n+m − a2(tB)n+m−1

= b2(tB)n−1

(
2(tB)m − a2(tB)m−1

)

+(b2(tB)n−2+2ab(tB)n−1)
(
2(tB)m+1−a2(tB)m

)
+(tB)n

(
2(tB)m+2−a2(tB)m+1

)

Therefore, using again (3.40) we have

(tL)n+m−1 = b2(tB)n−1(
tL)m−1 +

(
b2(tB)n−2 + 2ab(tB)n−1

)
(tL)m + (tB)n(tL)m+1.

Hence the theorem is proved.

Theorem 3.3.14. (General Trilinear identity)

For all mi, ni, ri, s ∈ Z, 1 ≤ i ≤ 3,

∣∣∣∣∣∣∣∣∣∣

(tL)m1 (tL)n1 (tL)r1

(tL)m2 (tL)n2 (tL)r2

(tL)m3 (tL)n3 (tL)r3

∣∣∣∣∣∣∣∣∣∣

= [(−b)2]s

∣∣∣∣∣∣∣∣∣∣

(tL)m1−s (tL)n1−s (tL)r1−s

(tL)m2−s (tL)n2−s (tL)r2−s

(tL)m3−s (tL)n3−s (tL)r3−s

∣∣∣∣∣∣∣∣∣∣

. (3.51)

Proof. Let α1 = φ2 − φ3, α2 = φ1 − φ3, α3 = φ1 − φ2 and β1 = α1(2φ1 − a2),

β2 = α2(2φ2 − a2) and β3 = α3(2φ3 − a2), where φi, i = 1, 2, 3 are distinct roots of

λ3 − a2λ2 − 2abλ− b2 = 0.

Therefore (3.37) implies,

(tL)n =
β1φ

n
1 − β2φ

n
2 + β3φ

n
3

α1α2α3

=

∑3
i=1(−1)i+1βiφ

n
i∏3

i=1 αi

.

Using the procedure similar to the one used to prove Theorem 3.2.13, we get the

required result.

Following identities can be deduced from general Trilinear identity for B-Tri Lucas

sequence.
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Theorem 3.3.15. (d’Ocagne type identity)

For any m,n, r ∈ Z, then

∣∣∣∣∣∣∣∣∣∣

(tL)m (tL)n (tL)r

(tL)m+1 (tL)n+1 (tL)r+1

(tL)m+2 (tL)n+2 (tL)r+2

∣∣∣∣∣∣∣∣∣∣

= [(−b)2]r
(
a2

(
(tL)m−r(

tL)n−r+1 − (tL)n−r(
tL)m−r+1)

−2
(
(tL)m−r(

tL)n−r+2 − (tL)n−r(
tL)m−r+2

))
. (3.52)

Proof. Substitute mi = m + i − 1, ni = n + i − 1, ri = r + i − 1, for i = 1, 2, 3

and taking s = r in (3.51). Using the procedure similar to the one used for proving

Theorem 3.2.14 and the condition that (tL)0 = 0, (tL)1 = 2, (tL)2 = a2, we get the

required result.

Theorem 3.3.16. (Catalan type identity)

For any n, r ∈ Z,

∣∣∣∣∣∣∣∣∣∣

(tL)n (tL)n+r (tL)n+2r

(tL)n−r (tL)n (tL)n+r

(tL)n−2r (tL)n−r (tL)n

∣∣∣∣∣∣∣∣∣∣

= [(−b)2]n
(
(tL)2

r(
tL)−2r + (tL)2

−r(
tL)2r

)
. (3.53)

Proof. Take mi = n + (1− i)r, ni = n + (2− i)r, ri = n + (3− i)r, for i = 1, 2, 3 and

s = n in identity (3.51). This implies

∣∣∣∣∣∣∣∣∣∣

(tL)n (tL)n+r (tL)n+2r

(tL)n−r (tL)n (tL)n+r

(tL)n−2r (tL)n−r (tL)n

∣∣∣∣∣∣∣∣∣∣

= [(−b2)]n

∣∣∣∣∣∣∣∣∣∣

(tL)n−n (tL)n+r−n (tL)n+2r−n

(tL)n−r−n (tL)n−n (tL)n+r−n

(tL)n−2r−n (tL)n−r−n (tL)n−n

∣∣∣∣∣∣∣∣∣∣
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= [(−b)2]n

∣∣∣∣∣∣∣∣∣∣

(tL)0 (tL)r (tL)2r

(tL)−r (tL)0 (tL)r

(tL)−2r (tL)−r (tL)0

∣∣∣∣∣∣∣∣∣∣

= [(−b)2]n
(
(tL)2

−r(
tL)2r + (tL)2

r(
tL)−2r

)
, since (tL)0 = 0.

Theorem 3.3.17. ( Cassini type identity )

For all n ∈ Z,

∣∣∣∣∣∣∣∣∣∣

(tL)n (tL)n+1 (tL)n+2

(tL)n−1 (tL)n (tL)n+1

(tL)n−2 (tL)n−1 (tL)n

∣∣∣∣∣∣∣∣∣∣

= [(−b)2]n−2
(
(tL)4 + 2ab(tL)2 + 3b2(tL)1

)
. (3.54)

Proof. Substitute r = 1 in (3.53) and using the condition that (tL)−2 = 2
b3

(a3 + b),

(tL)−1 = −a2

b2
, (tL)1 = 2, (tL)2 = a2, we get the required result.

Theorem 3.3.18. (Extended form of Cassini type identity)

For any n, r ∈ Z, ∣∣∣∣∣∣∣∣∣∣

(tL)n (tL)n−1 (tL)n−2

(tL)n+1 (tL)n (tL)n−1

(tL)n+r (tL)n+r−1 (tL)n+r−2

∣∣∣∣∣∣∣∣∣∣

(3.55)

= [(−b)2]n−2
(
a4(tL)r + 4b(a3 + b)(tL)r−1 + 2a2b2(tL)r−2)

)
.

Proof. The result follows by Substituting mi = n+ i−1, ni = n+ i−2, ri = n+ i−3,

1 ≤ i ≤ 2, m3 = n + r, n3 = n + r − 1, ri = n + r − 2 and s = n in (3.51).

3.4 Incomplete B-Tribonacci and B-Tri Lucas sequences

In this section, we study incomplete B-Tribonacci, incomplete B-Tri Lucas sequences

and various properties related to them. We first define the extension of incomplete
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Fibonacci sequence and incomplete Lucas sequence defined in [12] and call them

incomplete B-Tribonacci sequence and incomplete B-Tri Lucas sequence respectively.

Definition 3.4.1. Let n ∈ N. The incomplete B-Tribonacci sequence is defined by

(tB)l
n =

l∑
r=0

(2n− 4− 2r)r

r!
a2n−4−3r br, ∀ 0 ≤ l ≤ b2n− 4

3
c and n ≥ 2. (3.56)

For l = 0, 1, 2 and b2n−4
3
c, (tB)l

n are listed below:

(tB)0
n = a2n−4, ∀ n ≥ 2.

(tB)1
n = a2n−4 + (2n− 6)a2n−7 b, ∀ n ≥ 4.

(tB)2
n = a2n−4 + (2n− 6)a2n−7 b + (2n−8)(2n−9)

2
a2n−10 b2, ∀ n ≥ 5.

(tB)
b 2n−4

3
c

n = (tB)n.

Following table give the terms of incomplete B-Tribonacci sequence.

l 0 1 2 3
n
2 1
3 a2

4 a4 a4 + 2ab
5 a6 a6 + 4a3b a6 + 4a3b + b2

6 a8 a8 + 6a5b a8 + 6a5b + 6a2b2

7 a10 a10 + 8a7b a10 + 8a7b + 15a4b2 a10 + 8a5b + 15a4b2 + 4ab3

8 a12 a12 + 10a9b a12 + 10a9b + 28a6b2 a12 + 10a9b + 28a6b2 + 20a3b3

Table 3.1: Terms of incomplete B-Tribonacci sequence

The next three theorems give the results on the recurrence properties of incomplete

B-Tribonacci sequence (3.56).

Theorem 3.4.2. The recurrence relation of the incomplete B-Tribonacci

sequence (tB)l
n is given by

(tB)l+2
n+3 = a2(tB)l+2

n+2 + 2ab (tB)l+1
n+1 + b2(tB)l

n, 0 ≤ l ≤ ⌊2n− 6

3

⌋
and n ≥ 3. (3.57)
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Proof. R.H.S of (3.57)= a2(tB)l+2
n+2 + 2ab (tB)l+1

n+1 + b2(tB)l
n

=
∑l+2

r=0
(2n−2r)r

r!
a2n+2−3rbr + 2

∑l+1
r=0

(2n−2−2r)r

r!
a2n−1−3rbr+1

+
∑l

r=0
(2n−4−2r)r

r!
a2n−4−3rbr+2

= a2n+2 + (2n− 2 + 2)a2n−1b +
∑l+2

r=2
(2n−2r)r

r!
a2n+2−3rbr

+2
∑l+2

r=2
(2n−2r)r−1

(r−1)!
a2n+2−3rbr +

∑l+2
r=2

(2n−2r)r−2

(r−2)!
a2n+2−3rbr

= a2n+2 + (2n)a2n−1b

+
∑l+2

r=2

[
(2n−2r)r

r!
+ 2 (2n−2r)r−1

(r−1)!
+ (2n−2r)r−2

(r−2)!

]
a2n+2−3rbr

=
∑l+2

r=0
(2n+2−2r)r

r!
a2n+2−3rbr

= (tB)l+2
n+3 = L.H.S.

Hence the theorem is proved.

Theorem 3.4.3. For all s ≥ 1,

2s∑
i=0

(2s)i

i!
(tB)l+i

n+i ai b2s−i = (tB)l+2s
n+3s, 0 ≤ l ≤ ⌊2n− 4− 2s

3

⌋
. (3.58)

Proof. We prove it by mathematical induction on s.

Let s = 1. Then L.H.S. of (3.58) =
∑2

i=0
2i

i!
(tB)l+i

n+i aib2−i = (tB)l+2
n+3 = R.H.S.

Thus, the theorem is true for s = 1.

Assume that the result is true for all s ≤ m.

L.H.S. of (3.58) =
∑2m+2

i=0
(2m+2)i

i!
(tB)l+i

n+i ai b2m+2−i
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=
∑2m+2

i=0

(
(2m−2)i−2

(i−2)!
(tB)l+i

n+i ai b2m+2−i + 2 (2m−1)i−1

(i−1)!
(tB)l+i

n+i ai b2m+2−i

+ (2m)i

i!
(tB)l+i

n+i ai b2m+2−i
)

=
∑2m

i=0

(
(2m)i

i!
(tB)l+i+2

n+i+2 ai+2 b2m−i + 2 (2m)i

i!
(tB)l+i+1

n+i+1 ai+1 b2m−i+1

+ (2m)i

i!
(tB)l+i

n+i ai b2m−i+2
)

= a2(tB)l+2m+2
n+3m+2 + 2ab(tB)l+2m+1

n+3m+1 + b2(tB)l+2m
n+3m

= (tB)l+2m+2
n+3m+3 = R.H.S.

Hence the result is true for s = m + 1. Thus by mathematical induction, the

theorem is proved.

Theorem 3.4.4. For 0 ≤ l ≤ ⌊
2n−2

3

⌋
and s ≥ 1,

s−1∑
i=0

(
2 a2s−1−2i b (tB)l+1

n+1+i + a2s−2−2i b2(tB)l
n+i

)
= (tB)l+2

n+2+s − a2s(tB)l+2
n+2. (3.59)

Proof. By induction on s.

Note that (3.59) clearly holds for s = 1.

Now let the result be true for s ≤ m. we prove it for s = m + 1.

Consider,
∑m

i=0

(
2a2m+1−2i b (tB)l+1

n+1+i + a2m−2i b2(tB)l
n+i

)

=
∑m−1

i=0

(
2a2m+1−2ib (tB)l+1

n+1+i + a2m−2ib2(tB)l
n+i

)

+
(
2ab (tB)l+1

n+1+m + b2(tB)l
n+m

)

= a2
( ∑m−1

i=0

(
2 a2m−1−2ib (tB)l+1

n+1+i + a2m−2−2ib2(tB)l
n+i

))
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+
(
2ab (tB)l+1

n+1+m + b2(tB)l
n+m

)

= a2
(
(tB)l+2

n+2+m − a2m(tB)l+2
n+2

)
+2ab (tB)l+1

n+1+m + b2 (tB)l
n+m

= a2(tB)l+2
n+2+m − a2m+2(tB)l+2

n+2 + 2ab (tB)l+1
n+1+m + b2(tB)l

n+m

= (tB)l+2
n+3+m − a2m+2(tB)l+2

n+2, from (3.57).

Hence by mathematical induction, the theorem is proved.

Definition 3.4.5. The incomplete B-Tri Lucas sequence is defined by

(tL)l
n

=
l∑

r=0

( (2n− 2)

(2n− 2− 2r)

(2n− 2− 2r)r

r!
− r(r − 1)

(2n− 4− 2r)r−2

r!

)
a2n−2−3r br,

∀ 0 ≤ l ≤ b2n− 2

3
c and n ≥ 2. (3.60)

Some special cases of (3.60) are listed below:

(tL)0
n = a2n−2, ∀ n ≥ 2.

(tL)1
n = a2n−2 + (2n− 2)a2n−5 b, ∀ n ≥ 3.

(tL)2
n = a2n−2 + (2n− 2)a2n−5 b + [(2n−2)(2n−7)−2]

2
a2n−8 b2, ∀ n ≥ 4.

(tL)
b 2n−2

3
c

n = (tL)n.

The following table gives the terms of B-Tri Lucas sequence.

We now establish the relation between incomplete B-Tribonacci sequence and

incomplete B-Tri Lucas sequence. These results are used to prove the recurrence

relation for B-Tri Lucas sequence.
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l 0 1 2 3
n
2 a2

3 a4 a4 + 4ab
4 a6 a6 + 6a3b a6 + 6a3b + 2b2

5 a8 a8 + 8a5b a8 + 8a3b + 11a2b2

6 a10 a10 + 10a7b a10 + 10a7b + 24a4b2 a10 + 10a7b + 24a4b2 + 8ab3

7 a12 a12 + 12a9b a12 + 12a9b + 41a6b2 a12 + 12a9b + 41a6b2 + 36a3b3

Table 3.2: Terms of incomplete B-Tri Lucas sequence

Theorem 3.4.6. For 2 ≤ l ≤ ⌊
2n−2

3

⌋
,

(tL)l
n = (tB)l

n+1 + 2ab (tB)l−1
n−1 + b2 (tB)l−2

n−2. (3.61)

Proof. From (3.56), the R.H.S. of (3.61)

=
∑l

r=0
(2n−2−2r)r

r!
a2n−2−3rbr + 2ab

∑l−1
r=0

(2n−6−2r)r

r!
a2n−6−3rbr

+b2
∑l−2

r=0
(2n−8−2r)r

r!
a2n−8−3rbr

=
∑l

r=0
(2n−2−2r)r

r!
a2n−2−3rbr + 2

∑l
r=1

(2n−4−2r)r−1

(r−1)!
a2n−2−3rbr

+
∑l

r=2
(2n−4−2r)r−2

(r−2)!
a2n−2−3rbr

=
∑l

r=0

[
(2n−2−2r)r

r!
+2

( (2n−4−2r)r−1

(r−1)!
+ (2n−4−2r)r−2

(r−2)!

)− (2n−4−2r)r−2

(r−2)!

]
a2n−2−3rbr

=
∑l

r=0

[
(2n−2−2r)r

r!
+ 2

(
(2n−3−2r)r−1

(r−1)!

)− (2n−4−2r)r−2

(r−2)!

]
a2n−2−3rbr

=
∑l

r=0

[
(2n−2−2r)r

r!
(1 + 2 r

2n−2−2r
)− (2n−4−2r)r−2

(r−2)!

]
a2n−2−3rbr

=
∑l

r=0

[
2n−2

2n−2−2r
( (2n−2−2r)r

r!
)− (2n−4−2r)r−2

(r−2)!

]
a2n−2−3rbr
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=
∑l

r=0

[
2n−2

2n−2−2r
( (2n−2−2r)r

r!
)− r(r − 1) (2n−4−2r)r−2

r!

]
a2n−2−3rbr

= (tL)l
n.

We have the following Corollary.

Corollary 3.4.7. For 0 ≤ l ≤ b2n−2
3
c,

(tL)l
n = 2 (tB)l

n+1 − a2 (tB)l
n. (3.62)

Proof. For l = 0, 2 (tB)0
n+1 − a2 (tB)0

n = 2 a2n−2 − a2n−2 = (tL)0
n.

Also, if l = 1, then

2 (tB)1
n+1 − a2 (tB)1

n

= 2 a2n−2 + (2n− 4)a2n−5b− a2(a2n−4 + (2n− 6)a2n−7b)

= (tL)1
n.

Hence (3.62) is true for l = 0, 1.

For l ≥ 2, the result follows from equations (3.57) and (3.61).

Theorem 3.4.8. The recurrence relation of the incomplete B-Tri Lucas sequence

(tL)l
n is given by

(tL)l+2
n+3 = a2(tL)l+2

n+2 + 2ab(tL)l+1
n+1 + b2(tL)l

n, 0 ≤ l ≤ ⌊2n− 4

3

⌋
. (3.63)

Proof. From (3.61) we have,

(tL)l+2
n+3 = (tB)l+2

n+4 + 2ab (tB)l+1
n+2 + b2 (tB)l

n+1

= a2(tB)l+2
n+3 + 2ab (tB)l+1

n+2 + b2(tB)l
n+1

+2ab
(
a2 (tB)l+1

n+1 + 2ab (tB)l
n + b2 (tB)l−1

n−1

)

+a2(tB)l
n + 2ab(tB)l−1

n−1 + b2(tB)l−2
n−2
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= a2 (tL)l+2
n+2 + 2ab (tL)l+1

n+1 + b2 (tL)l
n, from (3.61).

Theorem 3.4.9. For s ≥ 1,

2s∑
i=0

(2s)i

i!
(tL)l+i

n+i aib2s−i = (tL)l+2s
n+3s, 0 ≤ l ≤ b2n− 2− 2s

3
c. (3.64)

Proof. Consider, L.H.S. of (3.64),

∑2s
i=0

(2s)i

i!
(tL)l+i

n+i aib2s−i

=
∑2s

i=0
(2s)i

i!

(
2 (tB)l+i

n+1+i − a2(tB)l+i
n+i

)
aib2s−i

= 2
∑2s

i=0
(2s)i

i!
(tB)l+i

n+1+i aib2s−i − a2
∑2s

i=0
(2s)i

i!
(tB)l+i

n+ia
ib2s−i

= 2 (tB)l+2s
n+1+3s − a2(tB)l+3s

n+2s, from (3.58).

= (tL)l+2s
n+3s.

Theorem 3.4.10. For n ≥ b3l+6
2
c,

s−1∑
i=0

(
2 a2s−1−2i(tL)l+1

n+1+i + a2s−2−2i(tL)l
n+i

)
= (tL)l+2

n+2+s − a2s(tL)l+2
n+2. (3.65)

Proof. Consider, L.H.S. of (3.65)

∑s−1
i=0

(
2 a2s−1−2i(tL)l+1

n+1+i + a2s−2−2i(tL)l
n+i

)

=
∑s−1

i=0 2 a2s−1−2i
(
2(tB)l+1

n+2+i − a2(tB)l+1
n+1+i

)

+
∑s−1

i=0 a2s−2−2i
(
2(tB)l

n+1+i − a2(tB)l
n+i

)
, from (3.62).
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= 2
∑s−1

i=0

(
2 a2s−1−2i(tB)l+1

n+2+i + a2s−2−2i(tB)l
n+1+i

)

−a2
∑s−1

i=0

(
2 a2s−1−2i(tB)l+1

n+1+i + a2s−2−2i(tB)l
n+i

)

= 2
(
(tB)l+2

n+3+s − a2s(tB)l+2
n+3

)
− a2

(
(tB)l+2

n+2+s − a2s(tB)l+2
n+2

)
, from (3.59).

= 2 (tB)l+2
n+3+s − a2(tB)l+2

n+2+s − a2s
(
2(tB)l+2

n+3 − a2(tB)l+2
n+2

)

= (tL)l+2
n+2+s − a2s(tL)l+2

n+2.

Hence the theorem is proved.
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Chapter 4

B-q bonacci and B-q Lucas Sequences

This Chapter include the content of published paper (P4).



Chapter 4

B-q bonacci and B-q Lucas Sequences

4.1 Introduction

The extension of Fibonacci recurrence relation to mth order linear recurrence relation

is studied in [5]. The author has obtained two properties. In this Chapter we intend

to extend the work done in Chapter 3 to qth order linear recurrence relation, where

q ≥ 2 and q ∈ N. In this recurrence relation, the nth term is the sum of the preceding q

terms with coefficients (q−1)r

r!
aq−1−rbr, r = 1, 2, · · · q. These coefficients are the terms

of binomial expansion of (a + b)q−1, where a and b are fixed real numbers and q ≥ 2

and q ∈ N. We call these class of sequences, the B-q bonacci sequences.

In Section 2, we define B-q bonacci sequence and study its various identities which

are the extension of the identities of B- Tribonacci sequence discussed in Chapter 3.

B-q Lucas sequence and its identities similar to the identities of B-q bonacci sequence

are discussed in Section 3. In Section 4, the incomplete B-q bonacci sequence and

incomplete B-q Lucas sequence, and their identities are discussed.

4.2 B-q bonacci sequence

We define an extension of (3.4), (3.5) and (3.6). Let q ≥ 2 and q ∈ N.
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Definition 4.2.1. Let n ∈ N⋃{0}. The B-q bonacci sequence is defined by,

(qB)n+q−1 =

q−1∑
r=0

(q − 1)r

r!
aq−1−r br (qB)n+q−2−r, ∀ n ≥ 1, (4.1)

with (qB)i = 0, i = 0, 1, 2, 3, · · · , q − 2 and (qB)q−1 = 1,

where (qB)n is nth term.

For n = 1, 2, 3, 4, we list below the terms of (4.1).

(qB)q = aq−1, (qB)q+1 = a2(q−1) + (q − 1)aq−2 b,

(qB)q+2 = a3(q−1) + (2(q−1))1

1!
a2q−3 b + (q−1)2

2!
aq−3b2,

(qB)q+3 = a4(q−1) + (3(q−1))1

1!
a3q−4 b + (2(q−1))2

2!
a2q−4 b2 + (q−1)3

3!
aq−4 b3,

(qB)q+4 = a5(q−1)+ (4(q−1))1

1!
a4q−5 b+ (3(q−1))2

2!
a3q−5 b2+ (2(q−1))3

3!
a2q−5 b3+ (q−1)4

4!
aq−5 b4.

We rearrange terms of (4.1) as follows to obtain terms for the negative integer

values of n.

(qB)n−1 =
1

bq−1

[
(qB)n+q−1 −

q−2∑
r=0

(q − 1)r

r!
aq−1−r br (qB)n+q−2−r

]
, (4.2)

with (qB)i = 0, i = 0, 1, 2, 3, · · · q − 2 and (qB)q−1 = 1.

For n = −2,−1, 0, the terms of (4.2) are, (qB)−3 = ( q(q−1)
2

) a2

bq+1 ,

(qB)−2 = −(q − 1) a
bq and (qB)−1 = 1

bq−1 .

We now define the B-q bonacci sequence for all n ∈ Z.

Definition 4.2.2. Let n ∈ Z. The B-q bonacci sequence is defined by

(qB)n+q−1 =

q−1∑
r=0

(q − 1)r

r!
aq−1−r br (qB)n+q−2−r, (4.3)

with (qB)i = 0, i = 0, 1, 2, 3, · · · , q − 2 and (qB)q−1 = 1,

where (qB)n is nth term.
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We have following theorems related to the B-q bonacci sequence.

Similar to the Binet type formula, a sum of the terms and generating a formula

for the B-Tribonacci sequence, we have them also for B-q bonacci sequence.

Theorem 4.2.3. (Binet type formula) The nth term of (4.3) is given by

(qB)n =

∑q
k=1(−1)k+1

∏
1≤i<j≤q,i,j 6=k (φi − φj)φ

n
k∏

1≤i<j≤q (φi − φj)
, (4.4)

where φp, p = 1, 2, · · · , q are q distinct roots of the characteristic equation

λq −∑q−1
r=0

(q−1)r

r!
a(q−1)−r brλr = 0 corresponding to (4.3).

Proof. Since the roots φp, p = 1, 2, · · · , q are q distinct roots of the characteristic

equation λq −∑q−1
r=0

(q−1)r

r!
a(q−1)−r brλr = 0 corresponding to (4.3), solution of (4.3)

is given by

(qB)n =

q∑
r=0

Crφ
n
r . (4.5)

Using the conditions (qB)i = 0, i = 0, 1, 2, 3, · · · q − 2 and (qB)q−1 = 1, we get

equation (4.4).

Remark 4.2.4. The case of repeated roots is excluded.

Theorem 4.2.5. The nth term of (4.1) is given by

(qB)n =

⌊
(q−1)(n−(q−1))

q

⌋
∑
r=0

(
(q − 1)(n− (q − 1)− r)

)r

r!
a(q−1)(n−(q−1)−r)−r br, (4.6)

∀ n ≥ q − 1 and q ≥ 2.

Proof. We prove the theorem by induction on n.

For n = q − 1, (qB)q−1 =
∑0

r=0
(−(q−1)r)r

r!
a−qr br = 1.

Therefore, the theorem is true for n = q − 1.

Now let us assume that the theorem is true for n ≤ m.

We shall prove (4.6) for n = m+1, by dividing the proof into q cases depending upon
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the form of m, where m = qk, qk + 1, · · · , qk + q − 1 and k ≥ 1.

Case (i) m = qk

To prove, (qB)qk+1

=

⌊ (q−1)

(
(qk+1)−(q−1)

)
q

⌋
∑
r=0

(
(q − 1)(qk + 1− (q − 1)− r)

)r

r!
a

(
(q−1)(qk+1−(q−1)−r)

)
−r br.

That is to prove,

(qB)qk+1 =

(q−1)k−(q−2)∑
r=0

(
(q − 1)(qk + 1− (q − 1)− r)

)r

r!
a

(
(q−1)(qk+1−(q−1)

)
−qr br.

Since the result is true for n ≤ m = qk, we have

(qB)qk+1 =
∑q−1

s=0
(q−1)s

s!
a(q−1)−s bs (qB)qk−s

=
∑q−1

s=0
(q−1)s

s!

∑⌊ (q−1)

(
(qk−s)−(q−1)

)
q

⌋
r=0

(
(q−1)

(
(qk−s)−(q−1)−r)

))r

r!
a(q−1)

(
(qk+1−s)−(q−1)−r)

)
−r−s br+s

=
∑q−1

s=0
(q−1)s

s!

∑⌊
(q−1)k−(q−2)− (q−1)s

q

⌋
r=0

(
(q−1)

(
qk−(q−1)−(r+s)

))r

r!
a(q−1)

(
qk+1−(q−1)

)
−q(r+s) br+s

=
∑q−1

s=0
(q−1)s

s!

∑⌊
(q−1)k−(q−2)+ s

q

⌋
m=s

(
(q−1)

(
qk−(q−1)−m

))m−s

(m−s)!
a

(
(q−1)(qk+1−(q−1))

)
−qm bm.

Since 0 ≤ s ≤ (q − 1), we have

(qB)qk+1 =
∑(q−1)k−(q−2)

m=0

(
(q−1)(qk+1−(q−1)−m)

)m

m!
a

(
(q−1)(qk+1−(q−1))

)
−qm bm.

The proof for the other cases can be given using similar procedure.

Hence the theorem is proved.

Similarly, we can prove the following Corollary which gives the nth term of (4.2).
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Corollary 4.2.6. The nth term of (4.2) is given by

(qB)n =

⌊
(q−1)(n−(q−1))

q

⌋
∑

r=n−(q−2)

(
(q − 1)(n− (q − 1)− r)

)r

r!
a(q−1)(n−(q−1)−r)−r br, (4.7)

∀ n ≤ −1 and q ≥ 2.

Theorem 4.2.7. (i) For n ≥ q − 1, we have

n∑
r=0

(qB)r =
(qB)n+1 +

∑q−2
i=0

( ∑q−1
r=1+i

(q−1)r
r!

aq−1−r br
)

(qB)n−i − 1

(a + b)q−1 − 1
, (4.8)

provided





a + b 6= 1, if q is even;

a + b 6= ±1, if q is odd.

(ii) For n ≥ 1, we have

−n∑
r=−1

(qB)r = −(qB)−n +
∑q−2

i=0

( ∑q−1
r=1+i

(q−1)r
r!

aq−1−r br
)

(qB)−(n+1+i) − 1

(a + b)q−1 − 1
, (4.9)

provided





a + b 6= 1, if q is even;

a + b 6= ±1, if q is odd.

Proof. (i) For n = q − 1, R.H.S. of (4.8)

=
(qB)q+

Pq−2
i=0

Pq−1
r=1+i

(q−1)r
r!

aq−1−r br (qB)q−1−i −1

(a+b)q−1−1

=
aq−1+

Pq−1
r=1

(q−1)r
r!

aq−1−r br−1

(a+b)q−1−1

=
Pq−1

r=0
(q−1)r

r!
aq−1−r br−1

(a+b)q−1−1

= 1

=
∑q−1

r=0(
qB)r= L.H.S.

Therefore, the theorem holds for n = q − 1.

Assume that the result is true for n ≤ m.
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Consider,
∑m+1

r=0 (qB)r =
∑m

r=0(
qB)r + (qB)m+1

=
(qB)m+1+

Pq−2
i=0

(Pq−1
r=1+i

(q−1)r
r!

aq−1−r br
)

(qB)m−i−1

(a+b)q−1−1
+ (qB)m+1

=
(qB)m+1+

Pq−2
i=0

(Pq−1
r=1+i

(q−1)r
r!

aq−1−r br
)

(qB)m−i−1+
(
(a+b)q−1−1

)
(qB)m+1

(a+b)q−1−1

=
Pq−2

i=0

(Pq−1
r=1+i

(q−1)r
r!

aq−1−r br
)

(qB)m−i−1+(a+b)q−1(qB)m+1

(a+b)q−1−1

=
Pq−2

i=0

(Pq−1
r=1+i

(q−1)r
r!

aq−1−r br
)

(qB)m−i−1+
Pq−1

i=0
(q−1)i

i!
aq−1−i bi(qB)m+1

(a+b)q−1−1

=
(qB)m+2+

Pq−2
i=0

Pq−1
r=1+i

(
(q−1)r

r!
aq−1−r br

)
(qB)m+1−i−1

(a+b)q−1−1
.

Hence the result is true.

Using similar procedure we can prove (4.9).

Combining (4.8) and (4.9) we have

∑n
r=−n(qB)r

=

(
(qB)n+1 − (qB)−n

)
+

∑q−2
i=0

∑q−1
r=1+i

( (q−1)r
r!

aq−1−r br
) (

(qB)n−i − (qB)−(n+1+i)

)

(a + b)q−1 − 1
,

provided





a + b 6= 1, if q is even;

a + b 6= ±1, if q is odd,

For q = 4, a = 3
4
and b = 1

4
, we have the following graph for the sequence

(qB)n+3 = (
3

4
)3(qB)n+2 + 3(

3

4
)2(

1

4
)(qB)n+1 + 3(

3

4
)(

1

4
)2(qB)n + (

1

4
)3 (qB)n−1. (4.10)
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Figure 4-1: Graph showing terms of (4.10).

The next theorem is based on the ratio of successive B-q bonacci sequence and

the ratio of preceding terms.

Theorem 4.2.8. Let φi, i = 1, 2, · · · , q be the distinct roots of (4.4) such that φ1 6= 0

and |φ1| > |φ2| > · · · > |φq|, then

(i)

lim
n→∞

(qB)n

(qB)n−1

= φ1. (4.11)

(ii)

lim
n→∞

(qB)n−1

(qB)n

=
1

φ1

. (4.12)

Proof. Equation (4.9) implies

(qB)n =
Pq

k=1(−1)k+1
Q

1≤i<j≤q,i,j 6=k (φi−φj)φ
n
kQ

1≤i<j≤q (φi−φj)

=
Q

2≤i<j≤q(φi−φj) φn
1 +
Pq

k=2(−1)k+1
Q

1≤i<j≤q,i,j 6=k (φi−φj)φ
n
kQ

1≤i<j≤q (φi−φj)

Therefore, limn→∞
(qB)n

(qB)n−1

= limn→∞
Q

2≤i<j≤q (φi−φj) φn
1 +
Pq

k=2(−1)k+1
Q

1≤i<j≤q,i,j 6=k (φi−φj) φn
kQ

2≤i<j≤q (φi−φj) φn−1
1 +

Pq
k=2(−1)k+1

Q
1≤i<j≤q,i,j 6=k (φi−φj) φn−1

k
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Since φ1 6= 0, dividing numerator and denominator by φn
1 , we get

limn→∞
(qB)n

(qB)n−1

= limn→∞
Q

1≤i<j≤q,i,j 6=k (φi−φj)+
Pq

k=2(−1)k+1
Q

1≤i<j≤q,i,j 6=k (φi−φj) (
φk
φ1

)n

Q
1≤i<j≤q,i,j 6=k (φi−φj) φ−1

1 +
Pq

k=2(−1)k+1
Q

1≤i<j≤q,i,j 6=k (φi−φj)φ
−1
k (

φk
φ1

)n

= limn→∞
Q

1≤i<j≤q,i,j 6=k (φi−φj)Q
1≤i<j≤q,i,j 6=k (φi−φj) φ−1

1

, since |φ1| > |φi|, i = 2, 3, · · · , q

= φ1.

Similarly, we can prove the equation (4.12).

Theorem 4.2.9. The terms of the equation (4.3) can be generated from the series

∞∑
n=−∞

zn(a + bz)(q−1)n

Proof.
∑∞

n=−∞ zn(a + bz)(q−1)n

=
∑−1

n=−∞ zn
∑∞

k=0

(
(q−1)n

)k

k!
ak b(q−1)n−kz(q−1)n−k

+
∑∞

n=0 zn
∑(q−1)n

k=0

(
(q−1)n

)k

k!
ak b(q−1)n−kz(q−1)n−k

=
∑−1

n=−∞
∑∞

k=0

(
(q−1)n

)k

k!
ak b(q−1)n−kznq−k

+
∑∞

n=0

∑(q−1)n
k=0

(
(q−1)n

)k

k!
ak b(q−1)n−kznq−k

= · · ·+ ∑∞
k=0

(
−2(q−1)

)k

k!
ak b−2(q−1)−kz−2q−k +

∑∞
k=0

(
−(q−1)

)k

k!
ak b−(q−1)−kz−q−k

+1 +
∑(q−1)

k=0

(
(q−1)

)k

k!
ak b(q−1)−kzq−k +

∑2(q−1)
k=0

(
2(q−1)

)k

k!
ak b2(q−1)−kz2q−k + · · ·

= · · ·+
(
(q−1)

)1

1!
a1 bq−2z−q−1 + b−(q−1)z−q + · · ·

+1+aq−1 z +
(
a2(q−1) +(q−1) aq−2b

)
z2 +

(
a3(q−1) +2(q−1) a2q−3b+ b2

)
z3 + · · ·
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= · · ·+ (qB)−2 a1 bq−2z−q−1 + (qB)−1z
−q + · · ·

+(qB)q−1z
0 + (qB)q z + (qB)q+1z

2 + (qB)q+2z
3 + · · · .

=
∑∞

n=−∞(qB)n zn−(q−1).

In Matrix Form (4.1) is represented as




(qB)n

(qB)n+1

(qB)n+2

· · ·
(qB)n+q−2

(qB)n+q−1




=




0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 0

· · ·
0 0 0 0 · · · 1

bq−1 (q−1)1

1!
abq−2 (q−1)2

2!
a2bq−3 (q−1)3

3!
a3bq−4 · · · aq−1







(qB)n−1

(qB)n

(qB)n+1

· · ·
(qB)n+q−3

(qB)n+q−2




.

Let A=




0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 0

· · ·
0 0 0 0 · · · 1

bq−1 (q−1)1

1!
abq−2 (q−1)2

2!
a2bq−3 (q−1)3

3!
a3bq−4 · · · aq−1




=




bq−1(qB)0 · · · ∑q−1
r=q−j

(q−1)r

r!
a(q−1)−r br(qB)q−r−j · · · (qB)1

· · ·
bq−1(qB)i−1 · · · ∑q−1

r=q−j
(q−1)r

r!
a(q−1)−r br(qB)q−1−r−j+i · · · (qB)i

· · ·
bq−1(qB)q−1 · · · ∑q−1

r=q−j
(q−1)r

r!
a(q−1)−r br(qB)q−1−r−j · · · (qB)q




,

1 ≤ i, j ≤ q. Then
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An =




bq−1(qB)n−1 · · ·
∑q−1

r=q−j
(q−1)r

r!
a(q−1)−r br(qB)n+q−1−r−j · · · (qB)n

· · ·
bq−1(qB)n+(i−2)

∑q−1
r=q−j

(q−1)r

r!
a(q−1)−r br(qB)n+q−2−r−j+i · · · (qB)n+(i−1)

· · ·
bq−1(qB)n+q−2 · · ·

∑q−1
r=q−j

(q−1)r

r!
a(q−1)−r br(qB)n+2q−2−r−j · · · (qB)n+q−1




.

(4.13)

We have following results, the particular case (i.e. for q = 3) of which is discussed

in Chapter 3.

Theorem 4.2.10. (Honsberger type identity)

For any m,n ∈ Z,

(qB)n+m−1 =

q−1∑
r=0

( r∑
s=0

(q − 1)s

s!
bq−1−s as(qB)n−1+s−r

)
(qB)m−1+r. (4.14)

Proof. Let M11 be the element of the matrix in the first row and first column. Re-

placing n with n + m in (4.13), we obtain the matrix An+m. Also multiplying An and

Am, we obtain the another form of the matrix An+m. The required result can be now

obtained by equating the M11 of these two forms of the matrix An+m.

Corollary 4.2.11. For n ∈ Z,

(i) (qB)2n−1 =
∑q−1

r=0

( ∑r
s=0

(q−1)s

s!
bq−1−s as(qB)n−1+s−r

)
(qB)n−1+r.

(ii) (qB)2n =
∑q−1

r=0

( ∑r
s=0

(q−1)s

s!
bq−1−s as(qB)n−1+s−r

)
(qB)n+r.

Proof. Substituting m = n in (4.14), we obtain identity (i). Taking m = n + 1 in

(4.14), we obtain identity (ii).
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Theorem 4.2.12. (General q-linear identity)

For any aipj ∈ Z, 1 ≤ ip, j, p ≤ q with distinct ip and the following (qC2)
2 equations

ai11 + ai22 = ai21 + ai12, · · · , ai11 + aiqq = aiq1 + ai1q, ai22 + ai33 = ai32 + ai23, · · · ,

ai22 + aiqq = aiq2 + ai2q, · · · , aiq−1(q−1) + aiqq = aiq(q−1) + aiq−1q, we have

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(qB)a11 · · · (qB)a1j
· · · (qB)a1q

· · ·
(qB)ai1

· · · (qB)aij
· · · (qB)aiq

· · ·
(qB)aq1 · · · (qB)aqj

· · · (qB)aqq

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= [(−b)q−1]m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(qB)a11−m · · · (qB)a1j−m · · · (qB)a1q−m

· · ·
(qB)ai1−m · · · (qB)aij−m · · · (qB)aiq−m

· · ·
(qB)aq1−m · · · (qB)aqj−m · · · (qB)aqq−m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= [(−b)q−1]m
∑
σεSq

∏q

i=1
sign(σ)(qB)ai σ(i)−m

, ∀m ∈ Z, (4.15)

ranging over the symmetric group Sq, where

sign(σ)=





+1, if σ is an even permutation,

−1 if σ is an odd permutation.

Proof. Use (4.4) and the procedure similar to the one used in Theorem 3.2.13.

The following identities can be deduced from general q linear identity.
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Theorem 4.2.13. (d’Ocagne type identity)

For any mk ∈ Z, k = 1, 2, ..., q and 1 ≤ i, j ≤ q,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(qB)m1 · · · (qB)mj
· · · (qB)mq

· · ·
(qB)m1+i−1 · · · (qB)mj+i−1 · · · (qB)mq+i−1

· · ·
(qB)m1+(q−1) · · · (qB)mj+(q−1) · · · (qB)mq+(q−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= [(−b)q−1]mq
∑
σεSq

∏q

j=1
sign(σ)(qB)mj−mq+σ(j)−1. (4.16)

Proof. Substitute aij = mj + i − 1, 1 ≤ i, j ≤ q, m = mq in general q-linear identity

and evaluating the resulting determinant, we get the result.

Theorem 4.2.14. (Catalan type identity)

For any n, r ∈ Z,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(qB)n · · · (qB)n+(j−1)r · · · (qB)n+(q−1)r

· · ·
(qB)n+(1−i)r · · · (qB)n+(j−i)r · · · (qB)n+(q−i)r

· · ·
(qB)n+(1−q)r · · · (qB)n+(j−q)r · · · (qB)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= [(−b)q−1]n
∑
σεSq

∏q

i=1
sgn(σ)(qB)(i−σ(i))r. (4.17)

Proof. Substitute aij = n + (j − i)r, 1 ≤ i, j ≤ q, m = n in general q-linear identity

(4.15) and evaluating the resulting determinant, we get the result (4.17).

Remark: When q is odd, it is seen that the contribution of anti-diagonal elements

to the determinant value is zero. Hence the R.H.S. of the above identity takes the

simpler form [(−b)q−1]n
∑q−1

j=1(
qB)q−j

jr (qB)j
−(q−j)r.
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Theorem 4.2.15. (Cassini type identity)

For any n ∈ Z, 1 ≤ i ≤ q,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(qB)n · · · (qB)n+j−1 · · · (qB)n+(q−1)

· · ·
(qB)n+(1−i) · · · (qB)n+(j−i) · · · (qB)n+(q−i)

· · ·
(qB)n+(1−q) · · · (qB)n+(j−q) · · · (qB)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= [(−b)q−1]n−(q−1). (4.18)

Proof. Substitute r = 1 in (4.17), the required result can be obtained.

Theorem 4.2.16. (Extended form of Cassini type identity)

For all n ∈ Z and 0 ≤ j ≤ q − 2,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(qB)n · · · (qB)n+j · · · (qB)n+r

· · ·
(qB)n−j · · · (qB)n · · · (qB)n+r−j

· · ·
(qB)n−(q−2) · · · (qB)n+j−(q−2) · · · (qB)n+r−(q−2)

(qB)n−(q−1) · · · (qB)n+j−(q−1) · · · (qB)n+r−(q−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= [(−b)q−1]n−(q−1)(qB)r.

(4.19)

Proof. Substitute aij = n + j − i, aiq = n + r − i, ∀ 1 ≤ i ≤ q and 1 ≤ j ≤ q − 1 in

general q-linear identity (4.15) and evaluating the resulting determinant, we get the

result.

Similar to the Pythagorean result of B-Tribonacci sequence, we have it for B-q

bonacci sequence.
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Theorem 4.2.17. For all n ∈ Z,

[
bq−1(qB)n−1

(
2 (qB)n+q−1−bq−1(qB)n−1

)]2

+
[
2(qB)n+q−1

(
(qB)n+q−1−bq−1(qB)n−1

)]2

=
[
b2(q−1)(qB)2

n−1 + 2 (qB)n+q−1

(
(qB)n+q−1 − bq−1(qB)n−1

)]2

. (4.20)

Proof. Consider (qB)n+q−1 =
∑q−1

r=0
(q−1)r

r!
aq−1−r br (qB)n+q−2−r

Therefore, (qB)n+q−1 −
∑q−2

r=0
(q−1)r

r!
aq−1−r br (qB)n+q−2−r = bq−1 (qB)n−1

This implies (qB)n+q−1 −
(
(qB)n+q−1 − bq−1 (qB)n−1

)
= bq−1 (qB)n−1

Squaring both sides,

b2(q−1) (qB)2
n−1 + 2 (qB)n+q−1

(
(qB)n+q−1 − bq−1 (qB)n−1

)

= (qB)2
n+q−1 +

(
(qB)n+q−1 − bq−1 (qB)n−1

)2

Again squaring again both sides,

[
b2(q−1) (qB)2

n−1 + 2 (qB)n+q−1

(
(qB)n+q−1 − bq−1(qB)n−1

)]2

= (qB)4
n+q−1 +

(
(qB)n+q−1 − bq−1 (qB)n−1

)4

+2(qB)2
n+q−1

(
(qB)n+q−1 − bq−1 (qB)n−1

)2

Thus,
[
b2(q−1) (qB)2

n−1 + 2 (qB)n+q−1

(
(qB)n+q−1 − bq−1(qB)n−1

)]2

=
[
(qB)2

n+q−1 −
(
(qB)n+q−1 − bq−1(qB)n−1

)2
]2

+4
(

qB)2
n+q−1

(
(qB)n+q−1 − bq−1 (qB)n−1

))2

Therefore,
[
b2(q−1) (qB)2

n−1 + 2 (qB)n+q−1

(
(qB)n+q−1 − bq−1(qB)n−1

)]2

75



=
[
bq−1 qB)n−1

(
2(qB)n+q−1 − bq−1 (qB)n−1

)]2

+
[
2 (qB)n+q−1

(
(qB)n+q−1 − bq−1 (qB)n−1

)]2

.

Hence the theorem is proved.

4.3 B-q Lucas sequence

In this section, we introduce B-q Lucas sequence and obtain some identities of this

sequence.

Definition 4.3.1. Let n ∈ N ∪ {0}. The B-q Lucas sequence is defined by

(qL)n+q−1 =

q−1∑
r=0

(q − 1)r

r!
aq−1−r br (qL)n+q−2−r, ∀n ≥ 1, (4.21)

with (qL)i = 0, i = 0, 1, 2, 3, · · · q − 3 (q ≥ 3), (qL)q−2 = 2 and (qL)q−1 = aq−1,

where (qL)n is nth term of B-q Lucas sequence (4.21).

Terms of (4.21) for q − 2 ≤ n ≤ q + 1 are:

(qL)q−2 = 2, (qL)q−1 = aq−1, (qL)q = a2(q−1) + 2(q − 1)aq−2 b,

(qL)q+1 = a3(q−1) + 3(q − 1) a2q−3 b + (q − 1)(q − 2) aq−3b2.

Rearranging the terms of (4.21) as follows, we obtain the terms (qL)n, where n is

a negative integer.

(qL)n−1 =
1

bq−1

[
(qL)n+q−1 −

q−2∑
r=0

(q − 1)r

r!
aq−1−r br (qL)n+q−2−r

]
, (4.22)

with (qL)i = 0, i = 0, 1, 2, 3, · · · , q − 3(q ≥ 3), (qL)q−2 = 2 and (qL)q−1 = aq−1.

Few terms of (4.22) are given below.

(qL)−1 = −aq−1

bq−1 , (qL)−2 = 2
bq−1 + (q − 1) aq

bq , (qL)−3 = −2(q−1)a
bq + q2

2!
aq+1

bq+1 .
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Now we define B-q Lucas sequence for all n ∈ Z.

Definition 4.3.2. The B-q Lucas sequence is defined by

(qL)n+q−1 =

q−1∑
r=0

(q − 1)r

r!
aq−1−r br (qL)n+q−2−r,∀n ∈ Z, (4.23)

with (qL)i = 0, i = 0, 1, 2, 3, · · · q − 3(q ≥ 3), (qL)q−2 = 2 and (qL)q−1 = aq−1,

where (qL)n is nth term.

We have Binet type formula for (4.23).

Theorem 4.3.3. The nth term of (4.23) is given by

(qL)n =

∑q
k=1(−1)k+1

∏
1≤i<j≤q,i,j 6=k (2φi − aq−1)(φi − φj)φ

n
k∏

1≤i<j≤q(φi − φj)
(4.24)

where φp, p = 1, 2, · · · , q are q distinct roots of the characteristic equation

λq −∑q−1
r=0

(q−1)r

r!
a(q−1)−rbrλr = 0 corresponding to (4.23).

Proof. Proof is similar to that of Binet type formula (4.4).

The following theorem gives the relationship between (4.3) and (4.23).

Theorem 4.3.4. The nth term (qL)n of (4.23) is given by

(qL)n = 2(qB)n+1 − aq−1(qB)n, ∀ integer n. (4.25)

Proof. Equation (4.24) implies

(qL)n = 2

∑q
k=1(−1)k+1

∏
1≤i<j≤q,i,j 6=k (φi − φj)φ

n+1
k∏

1≤i<j≤q(φi − φj)

−aq−1

∑q
k=1(−1)k+1

∏
1≤i<j≤q,i,j 6=k (2φi − aq−1)(φi − φj)φ

n
k∏

1≤i<j≤q(φi − φj)

= 2(qB)n+1 − aq−1(qB)n, using Binet type formula (4.4).
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Corollary 4.3.5. The nth term (qL)n of (4.23) is given by

(qL)n = (qB)n+1 +

q−1∑
r=1

(q − 1)r

r!
aq−1−r br (qB)n+q−1−r,∀n ∈ Z. (4.26)

Proof. The proof of the theorem follows from equations (4.3) and (4.25).

We have the following identities of B-q Lucas sequence similar to the identities

of B-q bonacci sequence.

Theorem 4.3.6. The nth term of B-q Lucas sequence (4.21) is given by

(qL)n =

p∑
r=0

[ (q − 1)
(
n− (q − 2)

)

(q − 1)
(
n− (q − 2)− r

)
(
(q − 1)

(
n− (q − 2)− r

))r

r!

]
a(q−1)

(
n−(q−2)

)
−qrbr

−
p∑

r=2

[ q−1∑
s=1

(s− 1)

(
(q − 1)

(
n− (q − 1)− r

)
+ s− 2

)r−2

(r − 2)!

]
a(q−1)

(
n−(q−2)

)
−qrbr,

(4.27)

∀n > q − 2 and p =
⌊ (q−1)(n−(q−2))

q

⌋
.

Proof. Let n > q − 2. We divide the proof in to q cases by taking n = qk − r, where

r = 0, 1, 2, · · · q − 1, and use equations (4.6) and (4.25).

Let n = qk and consider,

(qL)n = 2(qB)n+1 − aq−1(qB)n.

= 2
∑⌊ (q−1)

(
qk+1−(q−1)

)
q

⌋
r=0

(q−1)(qk+1−(q−1)−r)r

r!
a(q−1)(qk+1−(q−1)−r)−r br

−aq−1
∑⌊ (q−1)

(
qk−(q−1)

)
q

⌋
r=0

(q−1)(qk−(q−1)−r)r

r!
a(q−1)(qk−(q−1)−r)−r br

=
∑(q−1)

(
k−(q−2)

)
r=0 2 (q−1)(qk+1−(q−1)−r)r

r!
a(q−1)(qk+1−(q−1)−r)−r br

−aq−1
∑(q−1)

(
k−(q−2)

)
r=0

(q−1)(qk−(q−1)−r)r

r!
a(q−1)(qk−(q−1)−r)−r br
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=
∑(q−1)

(
k−(q−2)

)
r=0

(
2 (q−1)(qk+1−(q−1)−r)r

r!
− (q−1)(qk−(q−1)−r)r

r!

)
a(q−1)(qk−(q−1)−r)−r br

=
∑(q−1)

(
k−(q−2)

)
r=0

(
(q−1)(qk+1−(q−1)−r)r

r!
+ (q−1)(qk+1−(q−1)−r)r

r!

− (q−1)(qk−(q−1)−r)r

r!

)
a(q−1)(qk−(q−1)−r)−rbr

=
∑(q−1)

(
k−(q−2)

)
r=0

[
(q−1)

(
qk−(q−2)

)

(q−1)
(

qk−(q−2)−r
)
(

(q−1)
(

qk−(q−2)−r
))r

r!

]
a(q−1)

(
qk−(q−2)

)
−qrbr

−∑(q−1)
(

k−(q−2)
)

r=2

[ ∑q−1
s=1(s− 1)

(
(q−1)

(
qk−(q−1)−r

)
+s−2

)r−2

(r−2)!

]
a(q−1)

(
qk−(q−2)

)
−qrbr.

Hence the theorem is proved.

Following theorem gives the nth term of (4.22).

Corollary 4.3.7. The nth term of (4.22) is given by

(qL)n =

p∑

r=n−(q−2)

[[ (q − 1)
(
n− (q − 2)

)

(q − 1)
(
n− (q − 2)− r

)
(
(q − 1)

(
n− (q − 2)− r

))r

r!

]

−
[ q−1∑

s=1

(s− 1)

(
(q − 1)

(
n− (q − 1)− r

)
+ s− 2

)r−2

(r − 2)!

]]
a(q−1)

(
n−(q−2)

)
−qrbr, (4.28)

∀n ≤ −1 and p =
⌊

(q−1)(n−(q−2))
q

⌋
.

Theorem 4.3.8. (i) For n ≥ 0, we have

n∑
r=0

(qL)r =
(qL)n+1 +

( ∑q−2
i=0

∑q−1
r=1+i

(q−1)r
r!

aq−1−r br
)

(qL)n−i + (qL)q−1 − (qL)q−2

(a + b)q−1 − 1
,

(4.29)

provided





a + b 6= 1, if q is even;

a + b 6= ±1, if q is odd.
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(ii) For n ≥ 1, we have

−n∑
r=−1

(qL)r = −(qL)−n +
( ∑q−2

i=0

∑q−1
r=1+i

(q−1)r
r!

aq−1−r br
)

(qL)−(n+1+i) + (qL)q−1 − (qL)q−2

(a + b)q−1 − 1
,

(4.30)

provided





a + b 6= 1, if q is even;

a + b 6= ±1, if q is odd.

Proof. (i). We use equations(4.25) and (4.8) to prove (4.29).

Consider,
∑n

r=0(
qL)r = 2

∑n
r=0(

qB)r+1 − aq−1
∑n

r=0(
qB)r

= 2
(a+b)q−1−1

(
(qB)n+2 +

( ∑q−2
i=0

∑q−1
r=1+i

(q−1)r
r!

aq−1−r br
)

(qB)n+1−i − 1
)

− aq−1

(a+b)q−1−1

(
(qB)n+1 +

( ∑q−2
i=0

∑q−1
r=1+i

(q−1)r
r!

aq−1−r br
)

(qB)n−i − 1
)

= 1
(a+b)q−1−1

((
2(qB)n+2 − aq−1(qB)n+1

)

+
( ∑q−2

i=0

∑q−1
r=1+i

(q−1)r
r!

aq−1−r br
)(

2(qB)n+1−i−aq−1(qB)n−i

)−2+aq−1
)

= 1
(a+b)q−1−1

(
(qL)n+1+

( ∑q−2
i=0

∑q−1
r=1+i

(q−1)r
r!

aq−1−r br
)
(qL)n−i+(qL)q−1−(qL)q−2

)

Similarly, using equations (4.25) and (4.9) we can prove (4.30).

Combining (4.29) and (4.30) we have
∑n

r=−n(qL)r

=

(
(qL)n+1 − (qL)−n

)
+

∑q−2
i=0

∑q−1
r=1+i

(
(q−1)r

r!
aq−1−r br

) (
(qL)n−i − (qL)−(n+1+i)

)

(a + b)q−1 − 1
,

provided





a + b 6= 1, if q is even;

a + b 6= ±1, if q is odd.

80



The following theorems can be proved using the procedure similar to that used to

prove the related results of B-Tribonacci sequence in Chapter 3.

Theorem 4.3.9. (Honsberger type identity)

For any m,n ∈ Z,

(qL)n+m−1 =

q−1∑
r=0

( r∑
s=0

(q − 1)s

s!
bq−1−s as(qB)n−1+s−r

)
(qL)m−1+r. (4.31)

Proof. The proof follows from Honsberger type identity (4.14) for (qB)n and equation

(4.25).

Theorem 4.3.10. (General q-linear formula)

For any ainj ∈ Z, 1 ≤ in, j, n ≤ q with distinct in and the following (qC2)
2 equations

ai11 + ai22 = ai21 + ai12, · · · , ai11 + aiqq = aiq1 + ai1q ai22 + ai33 = ai32 + ai23, · · · ,

ai22 + aiqq = aiq2 + ai2q, · · · , aiq−1(q−1) + aiqq = aiq(q−1) + aiq−1q, we have,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(qL)a11 · · · (qL)a1j
· · · (qL)a1q

· · ·
(qL)ai1

· · · (qL)aij
· · · (qL)aiq

· · ·
(qL)aq1 · · · (qL)aqj

· · · (qL)aqq

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= [(−b)q−1]m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(qL)a11−m · · · (qL)a1j−m · · · (qL)a1q−m

· · ·
(qL)ai1−m · · · (qL)aij−m · · · (qL)aiq−m

· · ·
(qL)aq1−m · · · (qL)aqj−m · · · (qL)aqq−m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= [(−b)q−1]m
∑
σεSq

∏q

i=1
sign(σ)(qL)aiσ(i)−m

, (4.32)
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ranging over the symmetric group Sq, where

sign(σ)=





+1, if σ is an even permutation;

−1 if σ is an odd permutation.

Theorem 4.3.11. (d’Ocagne type identity)

For any mk ∈ Z, k = 1, 2, ..., q, 0 ≤ i ≤ q − 1 and 1 ≤ j ≤ q,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(qL)m1 · · · (qL)mj
· · · (qL)mq

(qL)m1+1 · · · (qL)mj+1 · · · (qL)mq+1

· · ·
(qL)m1+i · · · (qL)mj+i · · · (qL)mq+i

· · ·
(qL)m1+(q−1) · · · (qL)mj+(q−1) · · · (qL)mq+(q−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= [(−b)q−1]mq
∑
σεSq

∏q

i=1
sign(σ)(qL)mi−mq+σ(i)−1. (4.33)

Theorem 4.3.12. (Catalan type identity)

For any n, r ∈ Z,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(qL)n · · · (qL)n+(j−1)r · · · (qL)n+(q−1)r

· · ·
(qL)n+(1−i)r · · · (qL)n+(j−i)r · · · (qL)n+(q−i)r

· · ·
(qL)n+(1−q)r · · · (qL)n+(j−q)r · · · (qL)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= [(−b)q−1]n
∑
σεSq

∏q

i=1
sign(σ)(qL)(i−σ(i))r. (4.34)
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Theorem 4.3.13. (Cassini type identity)

For any n ∈ Z,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(qL)n · · · (qL)n+(j−1) · · · (qL)n+(q−1)

· · ·
(qL)n+(1−i) · · · (qL)n+(j−i) · · · (qL)n+(q−i)

· · ·
(qL)n+(1−q) · · · (qL)n+(j−q) · · · (qL)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= [(−b)q−1]n
∑
σεSq

∏q

i=1
sign(σ)(qL)(i−σ(i)). (4.35)

We have Pythagorean result for B-q Lucas sequence. This result can be proved

using the procedure similar to that used to prove Theorem 4.2.17. Hence omitted.

Theorem 4.3.14. For all n ∈ Z,

[bq−1(qL)n−1(2 (qL)n+q−1 − bq−1(qL)n−1)]
2 + [2(qL)n+q−1((

qL)n+q−1 − bq−1(qL)n−1)]
2

= [b2(q−1)(qL)2
n−1 + 2 (qL)n+q−1((

qL)n+q−1 − bq−1(qL)n−1)]
2. (4.36)

4.4 Incomplete B-q bonacci and B-q Lucas sequences

In this section, we extend the incomplete B-Tribonacci sequence and incomplete B-

Tri Lucas sequence to qth order and call them the incomplete B-q bonacci sequence

and incomplete B-q Lucas sequence respectively.

Definition 4.4.1. The incomplete B-q bonacci sequence is defined by

(qB)l
n =

l∑
r=0

(
(q − 1)(n− (q − 1)− r)

)r

r!
a(q−1)(n−(q−1)−r)−r br, (4.37)
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∀ 0 ≤ l ≤ b (q−1)(n−(q−1))
q

c and n ≥ q − 1.

We list below (qB)l
n, for l = 0, 1, 2 and b (q−1)(n−(q−1))

q
c.

(qB)0
n = a(q−1)

(
n−(q−1))

)
= 1, ∀ n ≥ q − 1.

(qB)1
n = a(q−1)

(
n−(q−1)

)
+

(
(q − 1)(n− q)

)
a(q−1)(n−q)−1 b,∀n ≥ q.

(qB)2
n = a(q−1)

(
n−(q−1)

)
+

(
(q − 1)(n− q)

)
a(q−1)(n−q)−1 b

+

(
(q−1)(n−(q+1))

)(
(q−1)(n−(q+2))

)
2

a(q−1)(n−(q+3)) b2,∀n ≥ q + 1.

(qB)
b (q−1)(n−(q−1))

q
c

n = (qB)n.

We prove below some recurrence properties of the sequence, (qB)l
n.

Theorem 4.4.2. The recurrence relation of the incomplete B-q bonacci sequence

(qB)l
n is given by

(qB)l+q−1
n+q =

q−1∑

k=0

(q − 1)k

k!
(qB)l+q−1−k

n+q−1−k aq−1−k bk, (4.38)

∀ 0 ≤ l ≤
⌊

(q−1)(n−q)
q

⌋
and n ≥ q − 1.

Proof. Consider,
∑q−1

k=0
(q−1)k

k!
(qB)l+q−1−k

n+q−1−k aq−1−k bk

=
∑q−1

k=0
(q−1)k

k!

∑l+q−1−k
r=0

(
(q−1)

(
(n+q−1−k)−(q−1)−r

))r

r!
a(q−1)

(
(n+q−1−k)−(q−1)−r

)
−r+q−1−k bk+r

=
∑q−1

k=0
(q−1)k

k!

∑l+q−1−k
r=0

(
(q−1)

(
n−(k+r)

))r

r!
a(q−1)

(
n+1−(k+r)

)
−(k+r) bk+r
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=
∑q−1

k=0
(q−1)k

k!

∑l+q−1
s=k

(
(q−1)(n−s)

)s−k

(s−k)!
a(q−1)(n+1−s)−s bs, taking k + r = s,

=
∑l+q−1

s=0

(
(q−1)(n+1−s)

)s

s!
a(q−1)(n+1−s)−s bs, since ns

s!
+ ns−1

(s−1)!
= (n+1)s

s!
,

=
∑l+q−1

s=0

(
(q−1)(n+q−(q−1)−s)

)s

s!
a(q−1)(n+q−(q−1)−s)−s bs

= (qB)l+q−1
n+q .

Theorem 4.4.3. For all s ≥ 1,

(qB)
l+(q−1)s
n+qs =

(q−1)s∑
i=0

((q − 1)s)i

i!
(qB)

l+(q−1)s−i
n+(q−1)s−i a(q−1)s−ibi. (4.39)

Proof.
∑(q−1)s

i=0
((q−1)s)i

i!
(qB)

l+(q−1)s−i
n+(q−1)s−i a(q−1)s−ibi

=
∑(q−1)s

i=0
((q−1)s)i

i!

∑l+(q−1)s−i
r=0

(
(q−1)

(
n+(q−1)s−i−(q−1)−r

))r

r!
a(q−1)

(
n+(q−1)s−i−(q−1)−r

)
−r+(q−1)s−i br+i

=
∑(q−1)s

i=0
((q−1)s)i

i!

∑l+(q−1)s−i
r=0

(
(q−1)

(
n+(q−1)(s−1)−(i+r)

))r

r!
a(q−1)

(
n+qs−(q−1)−(i+r)

)
−(i+r) bi+r

Taking i + r = m, we get

∑(q−1)s
i=0

((q−1)s)i

i!
(qB)

l+(q−1)s−i
n+(q−1)s−i a(q−1)s−ibi

=
∑(q−1)s

i=0
((q−1)s)i

i!
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∑l+(q−1)s
m=i

(
(q−1)

(
n+(q−1)(s−1)−m

)m−i

(m−i)!

)
a(q−1)

(
n+qs−(q−1)−m

)
−m bm

=
∑l+(q−1)s

m=0

(
(q−1)

(
n+(q−1)(s−1)+(q−1)s−m

))m

m!
a(q−1)

(
n+qs−(q−1)−m

)
−m bm

=
∑l+(q−1)s

m=0

(
(q−1)

(
n+qs−(q−1)−m

))m

m!
a(q−1)

(
n+qs−(q−1)−m

)
−m bm,

since ns

s!
+ ns−1

(s−1)!
= (n+1)s

s!

= (qB)
l+(q−1)s
n+qs .

Theorem 4.4.4. For 0 ≤ l ≤
⌊

(q−1)(n−q))
q

⌋
and s ≥ 1,

(qB)
l+(q−1)
n+(q−1)+s− a(q−1)s(qB)

l+(q−1)
n+(q−1) =

s−1∑
i=0

q−1∑
r=1

(q − 1)r

r!

(
a(q−1)(s−i)−r br(qB)

l+(q−1)−r
n+(q−1)+i−r

)
.

(4.40)

Proof. By mathematical induction on s.

Equation (4.38) implies, (4.40) holds for s = 1. Now let the result be true for s ≤ m.

Let s = m + 1 and consider,
∑m

i=0

∑q−1
r=1

(q−1)r

r!

(
a(q−1)(m+1−i)−r br (qB)

l+(q−1)−r
n+(q−1)+i−r

)

=
∑m−1

i=0

∑q−1
r=1

(q−1)r

r!

(
(a(q−1)(m+1−i)−r br (qB)

l+(q−1)−r
n+(q−1)+i−r

)

+
∑q−1

r=1
(q−1)r

r!

(
a(q−1)(m+1−m)−r br (qB)

l+(q−1)−r
n+(q−1)+m+1−r

)

= aq−1
∑m−1

i=0

∑q−1
r=1

(q−1)r

r!

(
a(q−1)(m−i)−r br (qB)

l+(q−1)−r
n+(q−1)+i−r

)

+
∑q−1

r=0
(q−1)r

r!

(
a(q−1)−r br (qB)

l+(q−1)−r
n+q+m−r

)
−

(
a(q−1) (qB)

l+(q−1)
n+q+m

)
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= aq−1 (qB)
l+(q−1)
n+(q−1)+m − a(q−1)(m+1)(qB)

l+(q−1)
n+(q−1)

+(qB)
l+(q−1)−r
n+q+m+1 − a(q−1) (qB)

l+(q−1)
n+q+m , by induction assumption.

= (qB)
l+(q−1)
n+(q−1)+m+1 − a(q−1)(m+1)(qB)l+q−1

n+q−1.

We define below the incomplete B-q Lucas sequence and study the various results

related to it.

Definition 4.4.5. The incomplete B-q Lucas sequence is defined by

(qL)l
n

=
l∑

r=0

[ (q − 1)
(
n− (q − 2)

)

(q − 1)
(
n− (q − 2)− r

)
(
(q − 1)

(
n− (q − 2)− r

))r

r!

]
a(q−1)

(
n−(q−2)

)
−qrbr

−
l∑

r=2

[ q−1∑
s=1

(s− 1)

(
(q − 1)

(
n− (q − 1)− r

)
+ s− 2

)r−2

(r − 2)!

]
a(q−1)

(
n−(q−2)

)
−qrbr, (4.41)

0 ≤ l ≤
⌊

(q−1)(n−(q−2))
q

⌋
and ∀n ≥ q − 1.

We state below the relation between nth terms (qB)l
n and (qL)l

n of (4.37) and (4.41)

respectively. The proof of the Theorem 4.4.6 can be obtained using the procedure

similar to the procedure used in Theorem 3.4.6.

Theorem 4.4.6. The relation between the nth terms (qL)l
n and (qB)l

n is given by

(qL)l
n = (qB)l

n+1 +

q−1∑
r=1

(q − 1)r

r!
aq−1−rbr(qB)l−r

n−r, (4.42)

q − 1 ≤ l ≤
⌊

(q−1)(n−(q−2))
q

⌋
, n ≥ 2(q − 1).

The following result can be obtained from (4.37) and (4.42).
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Corollary 4.4.7. For 0 ≤ l ≤
⌊

(q−1)(n−(q−2))
q

⌋
,

(qL)l
n = 2 (qB)l

n+1 − aq−1 (qB)l
n, (4.43)

n ≥ q − 1.

The next three theorems give the results on the recurrence properties of incomplete

B-q Lucas sequence (4.41).

Theorem 4.4.8. The recurrence relation of the incomplete B-q Lucas sequence (qL)l
n

is given by

(qL)l+q−1
n+q =

q−1∑
r=0

(q − 1)r

r!
(qL)l+q−1−r

n+q−1−r aq−1−rbr, (4.44)

∀ 0 ≤ l ≤
⌊

(q−1)(n−(q−2))
q

⌋
and n ≥ q − 2.

Proof. L.H.S of (4.44)=
∑q−1

r=0
(q−1)r

r!
(qL)l+q−1−r

n+q−1−ra
q−1−rbr,

=
∑q−1

r=0
(q−1)r

r!
2

(
(qB)l+q−1−r

n+q−r − aq−1 (qB)l+q−1−r
n+q−1−r

)
aq−1−rbr, from (4.43)

= 2
∑q−1

r=0
(q−1)r

r!
aq−1−rbr (qB)l+q−1−r

n+q−r − aq−1
∑q−1

r=0
(q−1)r

r!
aq−1−rbr(qB)l+q−1−r

n+q−1−r

= 2
∑q−1

r=0(
qB)l+q−1

n+q+1 − aq−1 (qB)l+q−1
n+q−1, from (4.38).

= (qL)l+q−1
n+q

Theorem 4.4.9. For all 0 ≤ l ≤
⌊

(q−1)
(

n−(q−2)−s
)

q

⌋
,

(qL)
l+(q−1)s
n+qs =

(q−1)s∑
i=0

((q − 1)s)i

i!
(qL)

l+(q−1)s−i
n+(q−1)s−i a(q−1)s−ibi. (4.45)

Proof. R.H.S. of (4.45) =
∑(q−1)s

i=0
((q−1)s)i

i!
(qL)

l+(q−1)s−i
n+(q−1)s−i a(q−1)s−ibi
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=
∑(q−1)s

i=0
((q−1)s)i

i!

(
2 (qB)

l+(q−1)s−i
n+(q−1)s+1−i − aq−1 (qB)

l+(q−1)s−i
n+(q−1)s−i

)
a(q−1)s−ibi

= 2
∑(q−1)s

i=0
((q−1)s)i

i!
(qB)

l+(q−1)s−i
n+(q−1)s+1−i a(q−1)s−ibi

−aq−1
∑(q−1)s

i=0
((q−1)s)i

i!
(qB)

l+(q−1)s−i
n+(q−1)s−i a(q−1)s−ibi

= 2 (qB)
l+(q−1)s
n+qs+1 − aq−1 (qB)

l+(q−1)s
n+qs , from (4.39).

= (qL)
l+(q−1)s
n+qs .

Theorem 4.4.10. For n ≥ b ql
q−1

+ q − 2c,

(qL)
l+(q−1)
n+(q−1)+s − a(q−1)s(qL)

l+(q−1)
n+(q−1) =

s−1∑
i=0

q−1∑
r=1

(q − 1)r

r!
a(q−1)(s−i)−rbr(qL)

l+(q−1)−r
n+(q−1)+i−r.

(4.46)

Proof. R.H.S. of (4.46) =
∑s−1

i=0

∑q−1
r=1

(q−1)r

r!
a(q−1)(s−i)−rbr(qL)

l+(q−1)−r
n+(q−1)+i−r

=
∑s−1

i=0

∑q−1
r=1

(q−1)r

r!
a(q−1)(s−i)−rbr

(
2(qB)

l+(q−1)−r
n+1+(q−1)+i−r

−aq−1(qB)
l+(q−1)−r
n+(q−1)+i−r

)
, from (4.43)

= 2
(
(qB)

l+(q−1)
n+1+(q−1)+s − a(q−1)s(qB)

l+(q−1)
n+1+(q−1)

)

−aq−1
(
(qB)

l+(q−1)
n+(q−1)+s − a(q−1)s(qB)

l+(q−1)
n+(q−1)

)

=
(
2(qB)

l+(q−1)
n+1+(q−1)+s − aq−1 (qB)

l+(q−1)
n+(q−1)+s

)
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−a(q−1)s
(
2 (qB)

l+(q−1)
n+1+(q−1) − a(q−1)(qB)

l+(q−1)
n+(q−1)

)

= (qL)
l+(q−1)
n+(q−1)+s − a(q−1)s(qL)

l+(q−1)
n+(q−1).

Hence the result is proved.
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Chapter 5

Generalized Bivariate B-q bonacci and B-q Lucas

Polynomials

This Chapter includes the content of published papers (P2), (P3) and (E1).



Chapter 5

Generalized Bivariate B-q bonacci

and B-q Lucas Polynomials

5.1 Introduction

It is known that one way of studying the extensions of Fibonacci sequence is the study

of polynomials associated with it. In this Chapter, we generalize and extend bivariate

Fibonacci polynomials defined by (2.43). The coefficients x and y of Fn and Fn−1

in (2.43) is generalized to non-zero polynomials h(x) and g(y) with real coefficients

respectively. Thus, we rewrite (2.43) and (2.44) respectively as

(fB)h,g,n+1(x, y) = h(x) (fB)h,g,n(x, y) + g(y) (fB)h,g,n−1(x, y), (5.1)

with (fB)h,g,0(x, y) = 0, (fB)h,g,1(x, y) = 1.

and
(fL)h,g,n+1(x, y) = h(x) (fL)h,g,n(x, y) + g(y) (fL)h,g,n−1(x, y), (5.2)

with (fL)h,g,0(x, y) = 2, (fL)h,g,1(x, y) = x.

We call (5.1) and (5.2), generalized bivariate B-Fibonacci polynomials and general-

ized bivariate B-Lucas polynomials respectively. With g(y) = 1, identities of (5.1)

and (5.2) can be seen in [14] and [2]. In this Chapter, we extend and generalized (5.1)
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and (5.2). This extension is such that the nth polynomial is constructed by adding

the preceding three terms having the coefficients as the terms of the binomial expan-

sion of
(
h(x) + g(y)

)2
. We call them, generalized bivariate B-Tribonacci polynomials

and generalized bivariate B-Tri Lucas polynomials respectively. We also extend and

generalized incomplete Fibonacci and Lucas polynomials defined by (2.47) and (2.48)

respectively. Further they are extended to qth order polynomials.

In Section 2, we introduce and obtain various identities relating generalized bi-

variate B-Tribonacci polynomials. Section 3 deals with B-Tri Lucas polynomials and

their identities. In Section 4 and Section 5, we introduce incomplete generalized bi-

variate B-Tribonacci polynomials and incomplete generalized bivariate B-Tri Lucas

polynomials respectively. Section 6 deals with a generalized bivariate B-q bonacci

polynomials. In Section 7, we study generalized bivariate B-q Lucas polynomials.

In Section 8 and Section 9, we study incomplete generalized bivariate B-q bonacci

polynomials and incomplete generalized bivariate B-q Lucas polynomials respectively.

We also study their various identities. Throughout this Chapter we take h(x) and

g(y) to be two non-zero polynomials in x and y with real coefficients respectively.

5.2 Generalized bivariate B-Tribonacci polynomials

We define now generalized bivariate B-Tribonacci polynomials.

Definition 5.2.1. The generalized bivariate B-Tribonacci polynomials are defined by

(tB)h,g,n+2(x, y)

= h2(x)(tB)h,g,n+1(x, y) + 2h(x)g(y)(tB)h,g,n(x, y) + g2(y)(tB)h,g,n−1(x, y),∀n ∈ N,

(5.3)

with (tB)h,g,0(x, y) = 0, (tB)h,g,1(x, y) = 0 and (tB)h,g,2(x, y) = 1,
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where the coefficients of the terms on right hand side of (5.3) are the terms of the

binomial expansion of (h(x) + g(y))2 and (tB)h,g,n(x, y) is the nth polynomial.

For 0 ≤ n ≤ 6, the terms of (5.3) are (tB)h,g,0(x, y) = 0, (tB)h,g,1(x, y) = 0,

(tB)h,g,2(x, y) = 1, (tB)h,g,3(x, y) = h2(x), (tB)h,g,4(x, y) = h4(x) + 2h(x)g(y),

(tB)h,g,5(x, y) = h6(x) + 4h3(x)g(y) + g2(y) and

(tB)h,g,6(x, y) = h8(x) + 6h5(x)g2(y) + 6h2(x)g2(y).

In particular, if g(y) = 1, then (5.3) with (tB)h,1,n(x, y) written as (tB)h,n(x),

reduces to (1.1) of (P3), namely

(tB)h,n+2(x) = h2(x)(tB)h,n+1(x) + 2h(x)(tB)h,n(x) + (tB)h,n−1(x), ∀n ∈ N, (5.4)

with (tB)h,0(x) = 0, (tB)h,1(x) = 0 and (tB)h,2(x) = 1.

For 0 ≤ n ≤ 6, the terms of (5.4) are (tB)h,0(x) = 0, (tB)h,1(x) = 0, (tB)h,2(x) = 1,

(tB)h,3(x) = h2(x), (tB)h,4(x) = h4(x) + 2h(x), (tB)h,5(x) = h6(x) + 4h3(x) + 1 and

(tB)h,6(x) = h8(x) + 6h5(x) + 6h2(x).

If h(x) = 1, then (5.4) reduce to B-Tribonacci sequence (3.4) with a = 1 and

b = 1, namely,

(tB)1,n+2 = (tB)1,n+1 + 2(tB)1,n + (tB)1,n−1,∀n ≥ 1, (5.5)

with (tB)1,0 = 0, (tB)1,1 = 0 and (tB)1,2 = 1.

First few terms of (5.5) are (tB)1,0 = 0, (tB)1,1 = 0, (tB)1,2 = 1, (tB)1,3 = 1,

(tB)1,4 = 3, (tB)1,5 = 6, (tB)1,6 = 13, (tB)1,7 = 28 and (tB)1,8 = 60.

For simplicity, we use (tB)h,g,n(x, y) = (tB)h,g,n, (tB)h,n(x) = (tB)h,n, h(x) = h and

g(y) = g.

The following table shows the coefficients of (tB)h,n defined by (5.4) arranged in

ascending order and also the terms of the sequence (tB)1,n defined by (5.5).
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n h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 (tB)1,n

0 0 0
1 0 0
2 1 1
3 0 0 1 1
4 0 2 0 0 1 3
5 1 0 0 4 0 0 1 6
6 0 0 6 0 0 6 0 0 1 13
7 0 4 0 0 15 0 0 8 0 0 1 28
8 1 0 0 20 0 0 28 0 0 10 0 0 1 60

Table 5.1: Coefficients of (tB)h,n and terms of (tB)1,n.

In Table 5.1, the sum of the nth row is the nth term of the sequence (tB)1,n. Also,

for n ≥ 2, sum of the elements in the anti-diagonal of corresponding (2n-3)x(2n-3)

matrix is 22(n−2).

We state below theorems on the nth term (tB)h,g,n defined by (5.3). These the-

orems can be proved using the procedure similar to that used to prove theorems in

Section 2 of Chapter 3 and hence omitted.

Theorem 5.2.2. The nth term of (5.3) is given by

(tB)h,g,n =
(α− β)γn − (α− γ)βn + (β − γ)αn

(α− β)(β − γ)(α− γ)
, (5.6)

where α, β and γ are the distinct roots of the characteristics equation

λ3 − h2λ2 − 2hgλ− g2 = 0 corresponding to (5.3).

Equation (5.6) is called the Binet type identity for (5.3).

Theorem 5.2.3. The nth term (tB)h,g,n of (5.3) is given by

(tB)h,g,n =

b 2n−4
3
c∑

r=0

(2n− 4− 2r)r

r!
h2n−4−3r gr, ∀n ≥ 2. (5.7)
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Theorem 5.2.4. The sum of the first n + 1 terms of (5.3) is

n∑
r=0

(tB)h,g,r =
(tB)h,g,n+1 +

(
g2 + 2hg

)
(tB)h,g,n + g2(tB)h,g,n−1 − 1

(h + g)2 − 1
, (5.8)

provided h + g 6= ±1.

Theorem 5.2.5. The generating function for (5.3) is given by

(tG(B))h,g(z) =
1

1− z(h + gz)2
. (5.9)

The next two theorems are related to the recurrence properties of (tB)h,g,n.

Theorem 5.2.6. For all s ≥ 1,

2s∑
i=0

(2s)i

i!
(tB)h,g,n+i hig2s−i = (tB)h,g,n+3s. (5.10)

Proof. We prove the theorem by mathematical induction on n. For s = 1,

L.H.S. of (5.10) =
∑2

i=0
(2)i

i!
(tB)h,g,n+i hig2−i

= g2(tB)h,g,n + 2hg (tB)h,g,n+1 + h2 (tB)h,g,n+2

= (tB)h,g,n+3 = R.H.S.

Therefore (5.10) is true for s = 1. Assume that the result holds for all s ≤ m.

Consider,
∑2m+2

i=0
(2m+2)i

i!
(tB)h,g,n+i hig2m+2−i

=
∑2m+2

i=0

(
(2m)i−2

(i−2)!
+ 2 (2m)i−1

(i−1)!
+ (2m)i

i!

)
(tB)h,g,n+i hig2m+2−i

=
∑2m

i=−2
(2m)i

i!
(tB)h,g,n+i+2 hi+2g2m−i
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+2
∑2m

i=−1
(2m)i

i!
(tB)h,g,n+i+1 hi+1g2m−i+1 +

∑2m
i=0

(2m)i

i!
(tB)h,g,n+i hig2m−i+2

=
∑2m

i=0
(2m)i

i!
hi g2m−i

(
h2 (tB)h,g,n+i+2 + 2hg (tB)h,g,n+i+1 + g2(tB)h,g,n+i

)

= h2(tB)h,g,n+3m+2 + 2hg(tB)h,g,n+3m+1 + g2(tB)h,g,n+3m

= (tB)h,g,n+3m+3.

Hence the result is true for s = m + 1.

Therefore, by mathematical induction on s, the result follows.

Theorem 5.2.7. For s ≥ 1,
∑s−1

i=0

(
2h2s−1−2i g (tB)h,g,n+1+i + h2s−2−2i g2(tB)h,g,n+i

)

= (tB)h,g,n+2+s − h2s(tB)h,g,n+2. (5.11)

Proof. By induction on s. If s = 1, then (5.11) reduces to

2hg (tB)h,g,n+1 + g2(tB)h,g,n = (tB)h,g,n+3 − h2 (tB)h,g,n+2,

which is true from (5.3). Hence (5.11) holds for s = 1.

Now let the result be true for s ≤ m. We prove it for s = m + 1.

Consider,
∑m

i=0

(
2h2m+1−2ig(tB)h,g,n+1+i + h2m−2ig2(tB)h,g,n+i

)
.

=
∑m−1

i=0

(
2h2m+1−2ig(tB)h,g,n+1+i + h2m−2ig2(tB)h,g,n+i

)

+
(
2hg(tB)h,g,n+m+1 + g2(tB)h,g,n+m

)

= h2
( ∑m−1

i=0

(
2h2m−1−2ig(tB)h,g,n+1+i + h2m−2−2ig2(tB)h,g,n+i

))
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+
(
2hg(tB)h,g,n+m+1 + g2(tB)h,g,n+m

)

= h2
(
(tB)h,g,n+m+2 − h2m(tB)h,g,n+2

)

+2hg(tB)h,g,n+m+1 + g2(tB)h,g,n+m

= h2(tB)h,g,n+m+2 − h2m+2(tB)h,g,n+2 + 2hg(tB)h,g,n+m+1 + g2(tB)h,g,n+m

= (tB)h,g,n+m+3 − h2m+2(tB)h,g,n+2, from (5.3).

Hence the theorem is proved.

Remark 5.2.8. If g(y) = 1, then all the identities listed above reduce to corresponding

identities of (5.4) which are published in (P3).

5.3 Generalized bivariate B-Tri Lucas polynomials

In this section, we define generalized bivariate B-Tri Lucas polynomials and study

their various identities. We also prove the relation between generalized bivariate

B-Tribonacci polynomials and generalized bivariate B-Tri Lucas polynomials.

Definition 5.3.1. The generalized bivariate B-Tri Lucas polynomials are defined by

(tL)h,g,n+2(x, y) = h2(x)(tL)h,g,n+1(x, y)

+2h(x)g(y)(tL)h,g,n(x, y) + g2(y)(tL)h,g,n−1(x, y), ∀n ∈ N, (5.12)

with (tL)h,g,0(x, y) = 0, (tL)h,g,1(x, y) = 2 and (tL)h,g,2(x, y) = h2(x),

where the coefficients of the terms on the right hand side are the terms of the binomial

expansion of
(
h(x) + g(y)

)2

and (tL)h,g,n(x, y) is the nth polynomial.
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For 0 ≤ n ≤ 5, the terms of (5.12) are (tL)h,g,0(x, y) = 0, (tL)h,g,1(x, y) = 2,

(tL)h,g,2(x, y) = h2(x), (tL)h,g,3(x, y) = h4(x) + 4h(x)g(y),

(tL)h,g,4(x, y) = h6(x) + 6h3(x)g(y) + 2g2(y) and

(tL)h,g,5(x, y) = h8(x) + 8h5(x)g(y) + 11h2(x)g2(y).

In particular if g(y) = 1, then (5.12) with (tL)h,1,n(x, y) written as (tL)h,n(x)

reduces to (3.1) of (P3), namely,

(tL)h,n+2(x) = h2(x)(tL)h,n+1 + 2h(x)(tL)h,n(x) + (tL)h,n−1(x),∀n ∈ N, (5.13)

with (tL)h,0(x) = 0, (tL)h,1(x) = 2 and (tL)h,2(x) = h2(x).

For 0 ≤ n ≤ 5, the terms of (5.13) are (tL)h,0(x) = 0, (tL)h,1(x) = 2,

(tL)h,2(x) = h2(x), (tL)h,3(x) = h4(x) + 4h(x), (tL)h,4(x) = h6(x) + 6h3(x) + 2 and

(tL)h,5(x) = h8(x) + 8h5(x) + 11h2(x).

If h(x) = 1, then (5.13) reduces to B-Tri Lucas sequence defined by

(tL)1,n+2 = (tL)1,n+1 + 2(tL)1,n + (tL)1,n−1, ∀n ∈ N, (5.14)

with (tL)1,0 = 0, (tL)1,1 = 2 and (tL)1,2 = 1.

First few terms of (5.14) are (tL)1,0 = 0, (tL)1,1 = 2, (tL)1,2 = 1, (tL)1,3 = 5,

(tL)1,4 = 9, (tL)1,5 = 20, (tL)1,6 = 43 and (tL)1,7 = 92.

For simplicity, we use (tL)h,g,n(x, y) = (tL)h,g,n, (tL)h,n(x) = (tL)h,n, h(x) = h and

g(y) = g.

Following table show coefficients of (tL)h,n arranged in ascending order of h and

also terms of sequence (tL)1,n.
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n h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 (tL)1,n

0 0 0
1 2 2
2 0 0 1 1
3 0 4 0 0 1 5
4 2 0 0 6 0 0 1 9
5 0 0 11 0 0 8 0 0 1 20
6 0 8 0 0 24 0 0 10 0 0 1 43
7 2 0 0 36 0 0 41 0 0 12 0 0 1 92

Table 5.2: Coefficients of (tL)h,n and terms of (tL)1,n.

In Table 5.2, the sum of the nth row is the nth term of (tL)1,n. Also, for n≥ 2, sum of

the elements in the anti-diagonal of corresponding (2n-1)x(2n-1) matrix is 7
(
22(n−2)

)
.

We state below theorems related to the nth term (tL)h,g,n, of B-Tri Lucas polyno-

mials. These theorems can be proved using the procedure similar to that of theorems

in Section 3 of Chapter 3 and hence omitted.

Theorem 5.3.2. The nth term (tL)h,g,n of (5.12) is given by

(tL)h,g,n =
(α− β)γn(2γ − h2)− (α− γ)βn(2β − h2) + (β − γ)αn(2α− h2)

(α− β)(β − γ)(α− γ)
, (5.15)

where α, β and γ are the distinct roots of the characteristics equation

λ3 − h2λ2 − 2hgλ− g2 = 0 corresponding to (5.12).

Equation (5.15) is called Binet type formula for (5.12).

Theorem 5.3.3. The nth term (tL)h,g,n of (5.12) is given by

(tL)h,g,n

=

⌊
2n−2

3

⌋
∑
r=0

( (2n− 2)

(2n− 2− 2r)

(2n− 2− 2r)r

r!
−r(r−1)

(2n− 4− 2r)r−2

r!

)
h2n−2−3rgr,∀n ≥ 2.

(5.16)
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Theorem 5.3.4. The sum of the first n + 1 terms of (tL)h,g,n is

n∑
r=0

(tL)h,g,r =
(tL)h,g,n+1 +

(
2hg + g2

)
(tL)h,g,n + g2(tL)h,g,n−1 + (tL)h,g,2 − (tL)h,g,1

(h + g)2 − 1
,

(5.17)

provided h + g 6= ±1.

Theorem 5.3.5. The generating function for (tL)h,g,n is given by

(tG(L))h,g(z) =
2− h2z

1− z
(
h + gz

)2 . (5.18)

We have the following theorems on recurrence properties of generalized bivariate

B-Tri Lucas polynomials.

Theorem 5.3.6.

(tL)h,g,n+1 = (tB)h,g,n+2 + 2hg (tB)h,g,n + g2(tB)h,g,n−1, ∀n ≥ 1. (5.19)

Proof. By induction on n. Since (tL)h,g,2 = h2, (tB)h,g,3 = h2, (tB)h,g,1 = 0 and

(tB)h,g,0 = 0, (5.19) holds for n = 1.

Now assume that it holds for n ≤ m− 1 and consider (5.12),

(tL)h,g,m+1 = h2 (tL)h,g,m + 2hg (tL)h,g,m−1 + g2(tL)h,g,m−2

= h2
(
(tB)h,g,m+1 + 2hg (tB)h,g,m−1 + g2(tB)h,g,m−2

)

+2hg
(
(tB)h,g,m + 2hg (tB)h,g,m−2 + g2(tB)h,g,m−3

)

+g2
(
(tB)h,g,m−1 + 2hg (tB)h,g,m−3 + g2(tB)h,g,m−4

)
, by assumption.

= (tB)h,g,m+2 + 2hg (tB)h,g,m + g2(tB)h,g,m−1.

Hence by mathematical induction the result is proved.
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Following Corollary can be deduced from (5.3) and (5.19).

Corollary 5.3.7.

(tL)h,g,n = 2 (tB)h,g,n+1 − h2 (tB)h,g,n, ∀n ≥ 0. (5.20)

Using the above Corollary, we can establish the following results.

Theorem 5.3.8.

(tL)h,g,n+3s =
2s∑

i=0

(2s)i

i!
(tL)h,g,n+i hig2s−i, s ≥ 1. (5.21)

Proof. Since (tL)h,g,n = 2 (tB)h,g,n+1 − h2(tB)h,g,n,

∑2s
i=0

(2s)i

i!
(tL)h,g,n+i hig2s−i

=
∑2s

i=0
(2s)i

i!

(
2 (tB)h,g,n+1+i − h2(tB)h,g,n+i

)
hig2s−i

= 2
∑2s

i=0
(2s)i

i!
(tB)h,g,n+1+i hig2s−i − h2

∑2s
i=0

(2s)i

i!
(tB)h,g,n+i hig2s−i

= 2 (tB)h,g,n+1+3s − h2 (tB)h,g,n+3s, from (5.10).

= (tL)h,g,n+3s.

Using (5.11), (5.20) and the procedure similar to that of Theorem 5.3.8, we get

the following result.

Theorem 5.3.9.

s−1∑
i=0

(
2 h2s−1−2i g (tL)h,g,n+1+i+h2s−2−2i g2 (tL)h,g,n+i

)
= (tL)h,g,n+2+s−h2s(tL)h,g,n+2.

(5.22)
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Following identities involving partial derivatives of the polynomials (tB)h,g,n and

(tL)h,g,n are extensions of some identities discussed in [11].

Let (tB)
(k,j)
h,g,n = ∂k+j

∂xk∂yj

(
(tB)h,g,n

)
, (tL)

(k,j)
h,g,n = ∂k+j

∂xk∂yj

(
(tL)h,g,n

)
, h(k,0) = dk

dxk (h(x))

and g(0,j) = dj

dyj (g(y)).

We have the following identities involving (tB)
(k,j)
h,g,n and (tL)

(k,j)
h,g,n.

Theorem 5.3.10. .

(1) (tL)
(k,j)
h,g,n = (tB)

(k,j)
h,g,n+1 +

∑2
r=1

2r

r!

∑k
s=0

∑j
i=0

ks

s!
ji

i!
(h2−r)(s,0)(gr)(0,i)(tB)

(k−s,j−i)
h,g,n−r .

(2) (tB)
(k,j)
h,g,n =

∑2
r=0

2r

r!

∑k
s=0

∑j
i=0

ks

s!
ji

i!
(h2−r)(s,0) (gr)(0,i)(tB)

(k−s,j−i)
h,g,n−1−r.

(3) (tL)
(k,j)
h,g,n =

∑2
r=0

2r

r!

∑k
s=0

∑j
i=0

ks

s!
ji

i!
(h2−r)(s,0) (gr)(0,i)(tL)

(k−s,j−i)
h,g,n−1−r.

(4) 2(n− 1)
∑k

s=0
ks

s!
(h)(1+s,0)(tB)

(k−s,j)
h,g,n+1

= 3
∑j

i=0
ji

i!
(g)(0,i)(tB)

(k+1,j−i)
h,g,n +

∑k
s=0

ks

s!
(h)(s,0) (tB)

(k+1−s,j)
h,g,n+1 .

(5) 2(n− 2)
∑j

i=0
ji

i!
(g)(0,1+i)(tB)

(k,j−i)
h,g,n

= 3
∑j

i=0
ji

i!
(g)(0,i)(tB)

(k,j+1−i)
h,g,n +

∑k
s=0

ks

s!
(h)(s,0) (tB)

(k−s,j+1)
h,g,n+1 .

(6)
∑j

i=0
ji

i!
(g)(0,1+i) (tB)

(k+1,j−i)
h,g,n =

∑k
s=0

ks

s!
(h)(1+s,0) (tB)

(k−s,j)
h,g,n+1.

Proof.

(1) Equation (5.19) implies

(tL)h,g,n = (tB)h,g,n+1 + 2hg (tB)h,g,n−1 + g2(tB)h,g,n−2

Differentiating both sides k times with respect to x and j times with respect

to y and using Leibnitz theorem for derivatives, we get

(tL)
(k,j)
h,g,n = (tB)

(k,j)
h,g,n+1 + 2

∑k
s=0

∑j
i=0

ks

s!
ji

i!
h(s,0)g(0,i)(tB)

(k−s,j−i)
h,g,n−1
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+
∑j

i=0
ji

i!
(g2)(0,i)(tB)

(k,j−i)
h,g,n−2

= (tB)
(k,j)
h,g,n+1 +

∑2
r=1

2r

r!

∑k
s=0

∑j
i=0

ks

s!
ji

i!
(h2−r)(s,0)(gr)(0,i)(tB)

(k−s,j−i)
h,g,n−r .

(2) Equation (5.3) implies

(tB)h,g,n = h2(tB)h,g,n−1 + 2hg(tB)h,g,n−2 + g2(tB)h,g,n−3.

Differentiating both sides k times with respect to x and j times with respect

to y and using Leibnitz theorem for derivatives, we get

(tB)
(k,j)
h,g,n =

∑k
s=0

ks

s!
(h2)(s,0)(tB)

(k−s,j)
h,g,n−1 + 2

∑k
s=0

∑j
i=0

ks

s!
ji

i!
h(s,0)g(0,i)(tB)

(k−s,j−i)
h,g,n−2

+
∑j

i=0
ji

i!
(g2)(0,i)(tB)

(k,j−i)
h,g,n−3

=
∑2

r=0
2r

r!

∑k
s=0

∑j
i=0

ks

s!
ji

i!
(h2−r)(s,0)(gr)(0,i)(tB)

(k−s,j−i)
h,g,n−1−r.

(3) Equation (5.12) implies

(tL)h,g,n = h2(tL)h,g,n−1 + 2hg(tL)h,g,n−2 + g2(tL)h,g,n−3.

Hence identity (3) can be proved by a method similar to that used in identity (2)

above.

(4) We first prove that 2(n − 1)h(1,0)(tB)h,g,n+1 = 3g (tB)
(1,0)
h,g,n + h (tB)

(1,0)
h,g,n+1, using

(5.7). For this purpose, we divide the proof in to three cases depending on n,

i.e. n = 3k, 3k + 1, 3k + 2.

Case 1 : Let n = 3k. Consider,

3g (tB)
(1,0)
h,g,n + h (tB)

(1,0)
h,g,n+1

=3g ∂
∂x

((tB)h,g,3k) + h ∂
∂x

((tB)h,g,3k+1)
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= 3g ∂
∂x

( ∑2k−2
r=0

(6k−4−2r)r

r!
h6k−4−3r gr

)
+ h ∂

∂x

( ∑2k−1
r=0

(6k−2−2r)r

r!
h6k−2−3r gr

)

= 3
( ∑2k−2

r=0
(6k−4−2r)r+1

r!
h6k−5−3r h(1,0) gr+1

)
+

( ∑2k−1
r=0

(6k−2−2r)r+1

r!
h6k−2−3r h(1,0) gr

)

= (6k − 2)h6k−2h(1,0) +
∑2k−1

r=1

(
3r (6k−2−2r)r

r!
+ (6k−2−2r)r+1

r!

)
h6k−2−3r h(1,0) gr

= (6k − 2)h6k−2h(1,0) +
∑2k−1

r=1
(6k−2−2r)r

r!

(
3r + (6k − 2− 3r)

)
h6k−2−3r h(1,0) gr

= (6k − 2)h6k−2h(1,0) +
∑2k−1

r=1
(6k−2−2r)r

r!
(6k − 2) h6k−2−3r h(1,0) gr

=
∑2k−1

r=0 (6k − 2) (6k−2−2r)r

r!
h6k−2−3r h(1,0) gr

= 2(3k − 1)h(1,0)(tB)h,g,3k+1.

Hence the result is true for n = 3k.

Similarly, the result can be proved for n = 3k + 1 and n = 3k + 2.

Thus, we have, 2(n− 1)h(1,0)(tB)h,g,n+1 = 3g (tB)
(1,0)
h,g,n + h (tB)

(1,0)
h,g,n+1.

Now differentiating both sides k times with respect to x and j times with respect

to y and using Leibnitz theorem for derivatives, we get the required result.

(5) We first show that

2(n− 2)g(0,1)(tB)h,g,n = 3g (tB)
(0,1)
h,g,n + h (tB)

(0,1)
h,g,n+1.

We consider 3 cases by taking n = 3k, 3k + 1, 3k + 2.

Case 1: Let n = 3k. Consider,

3g (tB)
(0,1)
h,g,n + h (tB)

(0,1)
h,g,n+1
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=3g ∂
∂y

((tB)h,g,3k) + h ∂
∂y

((tB)h,g,3k+1), from (5.7)

= 3g ∂
∂y

( ∑2k−2
r=0

(6k−4−2r)r

r!
h6k−4−3r gr

)
+ h ∂

∂y

( ∑2k−1
r=0

(6k−2−2r)r

r!
h6k−2−3r gr

)

= 3
( ∑2k−2

r=1
(6k−4−2r)r

(r−1)!
h6k−4−3r gr g(0,1)

)
+

( ∑2k−1
r=1

(6k−2−2r)r

(r−1)!
h6k−1−3r gr−1 g(0,1)

)

= 3
( ∑2k−2

r=1
(6k−4−2r)r

(r−1)!
h6k−5−3r gr−1 g(0,1)

)
+

( ∑2k−2
r=0

(6k−4−2r)r+1

r!
h6k−4−3r gr g(0,1)

)

= (6k − 4)h6k−4g(0,1) +
∑2k−2

r=1
(6k−4−2r)r

r!

(
3r + (6k − 4− 3r)

)
h6k−4−3r gr g(0,1)

= (6k − 4)h6k−4g(0,1) +
∑2k−2

r=1
(6k−4−2r)r

r!
(6k − 4) h6k−4−3r gr g(0,1)

=
∑2k−2

r=0 (6k − 4) (6k−4−2r)r

r!
h6k−4−3r gr g(0,1)

= 2(3k − 2)g(0,1)(tB)h,g,3k.

Hence the result is true for n = 3k.

Similarly, the result can be proved for n = 3k + 1 and n = 3k + 2.

Thus we have, 2(n− 2)(tB)h,g,n g(0,1) = 3g (tB)
(0,1)
h,g,n + h (tB)

(0,1)
h,g,n+1

Now differentiating above equation both sides k times with respect to x and j

times with respect to y and using Leibnitz theorem for derivatives, we get the required

result.

(6) We first show that g(0,1) (tB)
(1,0)
h,g,n = h(1,0)(tB)

(0,1)
h,g,n+1.

We divide the proof in 3 cases, n = 3k, 3k + 1, 3k + 2.

Putting n = 3k in (5.3) and differentiate it with respect to x, we get,

(tB)
(1,0)
h,g,3k = ∂

∂x

( ∑2k−2
r=0

(6k−4−2r)r

r!
h6k−4−3r gr

)
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=
∑2k−2

r=0
(6k−4−2r)r+1

r!
h6k−5−3r h(1,0) gr.

Therefore, g(0,1)(tB)
(1,0)
h,g,3k =

∑2k−2
r=0

(6k−4−2r)r+1

r!
h6k−5−3r h(1,0) grg(0,1).

Now consider,

(tB)
(0,1)
h,g,3k+1 = ∂

∂y
((tB)h,g,3k+1)

=
∑2k−1

r=0
(6k−2−2r)r

r!
h6k−2−3r rgr−1 g(0,1)

=
∑2k−1

r=1
(6k−2−2r)r

(r−1)!
h6k−2−3r gr−1 g(0,1)

=
∑2k−2

r=0
(6k−4−2r)r+1

r!
h6k−5−3r gr g(0,1)

Thus, h(1,0)(tB)
(0,1)
h,g,3k+1 =

∑2k−2
r=0

(6k−4−2r)r+1

r!
h6k−5−3rh(1,0) gr g(0,1).

Therefore, (tB)
(1,0)
h,g,n h(1,0) = (tB)

(0,1)
h,g,n+1 g(0,1).

Differentiating both sides k times with respect to x and j times with respect

to y and using Leibnitz theorem for derivatives, we get

∑j
i=0

ji

i!
g(0,1+i)(tB)

(k+1,j−i)
h,g,n =

∑k
s=0

ks

s!
h(1+s,0)(tB)

(k−s,j+1)
h,g,(n+1) .

With h(x) = x and g(y) = y, generalized bivariate B-Tribonacci polynomials and

generalized bivariate B-Tri Lucas polynomials respectively reduce to

(tB)n+2(x, y) = x2(tB)n+1(x, y) + 2xy(tB)n(x, y) + y2(tB)n−1(x, y),∀n ≥ 1, (5.23)

with (tB)0(x, y) = 0, (tB)1(x, y) = 0, (tB)2(x, y) = 1

106



and

(tL)n+2(x, y) = x2(tL)n+1(x, y) + 2xy(tL)n(x, y) + y2(tL)n−1(x, y), ∀n ≥ 1, (5.24)

with (tL)0(x, y) = 0, (tL)1(x, y) = 2 and (tL)2(x, y) = x2.

Following Corollary give the corresponding identities of (5.23) and (5.24).

Corollary 5.3.11. For all n ≥ 2,

(1) (tL)
(k,j)
n = (tB)

(k,j)
n+1 +

∑2
r=1

2r

r!

∑2−r
s=0

∑r
i=0

ks

s!
ji

i!
(x2−r)(s,0)(yr)(0,i)(tB)

(k−s,j−i)
n−r

(2) (tB)
(k,j)
n =

∑2
r=0

2r

r!

∑2−r
s=0

∑r
i=0

ks

s!
ji

i!
(x2−r)(s,0) (yr)(0,i)(tB)

(k−s,j−i)
n−1−r

(3) (tL)
(k,j)
n =

∑2
r=0

2r

r!

∑2−r
s=0

∑r
i=0

ks

s!
ji

i!
(x2−r)(s,0) (yr)(0,i)(tL)

(k−s,j−i)
n−1−r

(4) 2(n−1)(tB)
(k,j)
n+1 = 3

∑1
i=0

ji

i!
(y)(0,i)(tB)

(k+1,j−i)
n +

∑1
s=0

ks

s!
(x)(s,0) (tB)

(k+1−s,j)
n+1

(5) 2(n−2)(tB)
(k,j)
n = 3

∑1
i=0

ji

i!
(y)(0,i)(tB)

(k,j+1−i)
n +

∑1
s=0

ks

s!
(x)(s,0) (tB)

(k−s,j+1)
n+1

(6) (tB)
(k+1,j)
n = (tB)

(k,j+1)
n+1

Theorem 5.3.12. (Convolution property for (tB)h,g,n)

(tB)
(1,0)
h,g,n = h(1,0)

n∑
i=0

(
2h(tB)h,g,n+1−i + 2g(tB)h,g,n−i

)
(tB)h,g,i. (5.25)

Proof. Equation (5.9) implies

∞∑
n=0

(tB)h,g,nz
n−2 =

1

1− z(h + gz)2

Differentiating both sides with respect to x we get,

∑∞
n=0(

tB)
(1,0)
h,g,nz

n−2

= h(1,0)
(

2hz
1−z(h+gz)2

+ 2gz2

1−z(h+gz)2

)
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= h(1,0)
(
2hz

[ ∑∞
n=0(

tB)h,g,nz
n−2

]2
+2gz2

[ ∑∞
n=0(

tB)h,g,nz
n−2

]2
)

= h(1,0)
(
2h z−3

[ ∑∞
n=0(

tB)h,g,nz
n
]2

+ 2gz−2
[ ∑∞

n=0(
tB)h,g,nz

n
]2

)

Therefore,
∑∞

n=0(
tB)

(1,0)
h,g,nz

n+1

= h(1,0)
(
2h

∑∞
n=0

(∑n
i=0(

tB)h,g,i(
tB)h,g,n−i

)
zn

+2g
∑∞

n=0

( ∑n
i=0(

tB)h,g,i(
tB)h,g,n−i

)
zn+1

)

Comparing the coefficients of zn+1,

(tB)
(1,0)
h,g,n = h(1,0)

( ∑n
i=0

(
2h (tB)h,g,n+1−i + 2g(tB)h,g,n−i

)
(tB)h,g,i

)
.

Theorem 5.3.13. .(Convolution property for (tL)h,g,n)

(tL)
(1,0)
h,g,n = h(1,0)

[ n∑
i=0

(
2h (tL)h,g,n+1−i + 2g (tL)h,g,n−i

)
(tB)h,g,i − 2h (tB)h,g,n

]
.

(5.26)

Proof. Equation (5.20) implies

(tL)h,g,n = 2 (tB)h,g,n+1 − h2 (tB)h,g,n

Differentiating both sides with respect to x, we get

(tL)
(1,0)
h,g,n = 2 (tB)

(1,0)
h,g,n+1 − h2(tB)

(1,0)
h,g,n − 2hh(1,0) (tB)h,g,n

= 2h(1,0)
∑n+1

i=0

(
2h (tB)h,g,n+2−i + 2g (tB)h,g,n+1−i

)
(tB)h,g,i
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−h(1,0)
[
h2

∑n
i=0

(
2h (tB)h,g,n+1−i+2g (tB)h,g,n−i

)
(tB)h,g,i−2h(tB)h,g,n

]

= h(1,0)

[ ∑n
i=0

(
2h

(
2(tB)h,g,n+2−i − h2(tB)h,g,n+1−i

)

+2g
(
2 (tB)h,g,n+1−i − h2(tB)h,g,n−i

)
(tB)h,g,i

)
− 2h (tB)h,g,n

]

= h(1,0)
[ ∑n

i=0

(
2h (tL)h,g,n+1−i + 2g (tL)h,g,n−i

)
(tB)h,g,i − 2h (tB)h,g,n

]
.

5.4 Incomplete generalized bivariate B-Tribonacci

polynomials

In this section, we define the incomplete generalized bivariate B-Tribonacci polyno-

mials and obtain various identities related to these polynomials.

Definition 5.4.1. The incomplete generalized bivariate B-Tribonacci polynomials are

defined by

(tB)l
h,g,n(x, y) =

l∑
r=0

(2n− 4− 2r)r

r!
h2n−4−3r(x)gr(y), ∀ 0 ≤ l ≤ b2n− 4

3
c and n ≥ 2.

(5.27)

We list below terms of (5.27) for 2 ≤ n ≤ 5.

(tB)0
h,g,2(x, y) = 1, (tB)0

h,g,3(x, y) = h2(x), (tB)0
h,g,4(x, y) = h4(x),

(tB)1
h,g,4(x, y) = h4(x) + 2h(x)g(y), (tB)0

h,g,5(x, y) = h6(x),

(tB)1
h,g,5(x, y) = h6(x) + 4h3(x)g(y) and (tB)2

h,g,5(x, y) = h6(x) + 4h3(x)g(y) + g2(y).

Note that (tB)
b 2n−4

3
c

h,g,n (x, y) = (tB)h,g,n(x, y).
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For simplicity, we use (tB)l
h,g,n(x, y) = (tB)l

h,g,n, (tB)h,g,n(x, y) = (tB)h,g,n,

h(x) = h and g(y) = g.

Following table shows terms of incomplete generalized bivariate B-Tribonacci

polynomials.

n \ l 0 1 2 3

2 1
3 h2

4 h4 h4 + 2hg
5 h6 h6 + 4h3g h6 + 4h3g + g2

6 h8 h8 + 6h5g h8 + 6h5g + 6h2g2

7 h10 h10 + 8h7g h10 + 8h7g + 15h4g2 h10 + 8h7g + 15h4g2 + 4hg3

8 h12 h12 + 10h9g h12 + 10h9g + 28h6g2 h12 + 10h9g + 28h6g2 + 20h3g3

9 h14 h14 + 12h11g h14 + 12h11g + 45h8g2 h14 + 12h11g + 45h8g2 + 56h5g3

10 h16 h16 + 14h13g h16 + 14h13g + 66h10g2 h16 + 14h13g + 66h10g2 + 120h7g3

Table 5.3: Terms of (tB)l
h,g,n, for 0 ≤ l ≤ 3, 2 ≤ n ≤ 10.

With g(y) = 1, the identities of (5.27) can be seen in (P2).

Next, we prove the recurrence properties of polynomials (tB)l
h,g,n.

Theorem 5.4.2. The recurrence relation of the incomplete generalized bivariate B-

Tribonacci polynomials (tB)l
h,g,n is

(tB)l+2
h,g,n+3 = h2(tB)l+2

h,g,n+2 + 2hg(tB)l+1
h,g,n+1 + g2(tB)l

h,g,n, (5.28)

0 ≤ l ≤ b2n−6
3
c and n ≥ 3.

Proof. Consider, h2(tB)l+2
h,g,n+2 + 2hg(tB)l+1

h,g,n+1 + g2(tB)l
h,g,n

=
∑l+2

r=0
(2n−2r)r

r!
h2n+2−3rgr + 2

∑l+1
r=0

(2n−2−2r)r

r!
h2n−1−3rgr+1

+
∑l

r=0
(2n−4−2r)r

r!
h2n−4−3rgr+2
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= h2n+2 +
∑l+2

r=1

[
(2n−2r)r

r!
+ (2n−2r)r−1

(r−1)!

]
h2n+2−3rgr

+h2n−1 +
∑l+1

r=1

[
(2n−2−2r)r

r!
+ (2n−2−2r)r−1

(r−1)!

]
h2n−1−3rgr

= h2n+2 +
∑l+2

r=1
(2n+1−2r)r

r!
h2n+2−3rgr +

∑l+1
r=0

(2n−1−2r)r

r!
h2n−1−3rgr

= h2n+2 +
∑l+2

r=1

[
(2n+1−2r)r

r!
+ (2n+1−2r)r−1

(r−1)!

]
h2n+2−3rgr

=
∑l+2

r=0
(2n+2−2r)r

r!
h2n+2−3rgr

= (tB)l+2
n+3.

Remark 5.4.3. Using (5.27), equation (5.28) can be rewritten in terms of non-

homogeneous recurrence relation as

(tB)l
h,g,n+3 = h2(tB)l

h,g,n+2 + 2hg(tB)l
h,g,n+1 + g2(tB)l

h,g,n

−
[(2n− 4− 2l)l

l!
h2n−4−3lgl+2 +

(
2

(2n− 2− 2l)l

l!
+

(2n− 2− 2l)l−1

(l − 1)!

)
h2n−1−3lgl+1

]
.

(5.29)

Theorem 5.4.4. For s ≥ 1,

2s∑
i=0

(2s)i

i!
(tB)l+i

h,g,n+i hig2s−i = (tB)l+2s
h,g,n+3s, (5.30)

0 ≤ l ≤ b2n−2s−4
3

c.

Proof. We prove (5.30) by mathematical induction on s.

Let s = 1. Then L.H.S. of (5.30) =
∑2

i=0
2i

i!
(tB)l+i

h,g,n+i hig2−i = (tB)l+2
h,g,n+3 = R.H.S.

Thus, the theorem is true for s = 1. Assume that the result is true for all s ≤ m.

Consider,
∑2m+2

i=0
(2m+2)i

i!
(tB)l+i

h,g,n+ih
ig2m+2−i

111



=
∑2m+2

i=0

(
(2m−2)i−2

(i−2)!
(tB)l+i

h,g,n+ih
ig2m+2−i

+2 (2m−1)i−1

(i−1)!
(tB)l+i

h,g,n+ih
ig2m+2−i + (2m)i

i!
(tB)l+i

h,g,n+ih
ig2m+2−i

)

=
∑2m

i=0

(
(2m)i

i!
(tB)l+i+2

h,g,n+i+2h
i+2g2m−i

+2 (2m)i

i!
(tB)l+i+1

h,g,n+i+1h
i+1g2m−i+1 + (2m)i

i!
(tB)l+i

h,g,n+ih
ig2m−i+2

)

= h2(tB)l+2m+2
h,g,n+3m+2 + 2hg(tB)l+2m+1

h,g,n+3m+1 + g2(tB)l+2m
h,g,n+3m

= (tB)l+2m+2
h,g,n+3m+3.

Hence the result is true for s = m + 1.

Thus, by mathematical induction the theorem is proved.

Theorem 5.4.5. For n ≥ b3l+6
2
c and s ≥ 1,

s−1∑
i=0

(
2 h2s−1−2i g (tB)l+1

h,g,n+1+i+h2s−2−2i g2 (tB)lh,g,n+i

)
= (tB)l+2

h,g,n+2+s−h2s(tB)l+2
h,g,n+2.

(5.31)

Proof. By mathematical induction on s.

Note that (5.28) implies, (5.31) holds for s = 1. Now let the result be true for s ≤ m.

We prove it for s = m + 1. Consider,

∑m
i=0

(
2h2m+1−2i g (tB)l+1

h,g,n+1+i + h2m−2i g2(tB)l
h,g,n+i

)

=
∑m−1

i=0

(
2h2m+1−2ig (tB)l+1

h,g,n+1+i + h2m−2ig2(tB)l
h,g,n+i

)

+
(
2hg (tB)l+1

h,g,n+1+m + g2(tB)l
h,g,n+m

)

= h2
( ∑m−1

i=0

(
2 h2m−1−2ig (tB)l+1

h,g,n+1+i + h2m−2−2ig2(tB)l
h,g,n+i

))
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+
(
2 hg(tB)l+1

h,g,n+1+m + g2(tB)l
h,g,n+m

)

= h2
(
(tB)l+2

h,g,n+2+m − h2m(tB)l+2
h,g,n+2

)

+2hg (tB)l+1
h,g,n+1+m + g2 (tB)l

h,g,n+m, by induction assumption.

= h2(tB)l+2
h,g,n+2+m − h2m+2(tB)l+2

h,g,n+2 + 2hg (tB)l+1
h,g,n+1+m + g2(tB)l

h,g,n+m

= (tB)l+2
h,g,n+3+m − h2m+2(tB)l+2

h,g,n+2, from (5.28).

Hence the theorem is proved.

Lemma 5.4.6. For all n ≥ 2,

∑b 2n−4
3
c

r=0 r (2n−4−2r)r

r!
h2n−4−3r gr

=
2n− 4

3
(tB)h,g,n − h

3

n∑
i=0

(
2h(tB)h,g,n+1−i + 2g(tB)h,g,n−i

)
(tB)h,g,i. (5.32)

Proof. We use (5.7) to prove the result.

Consider, (tB)h,g,n =
∑b 2n−4

3
c

r=0
(2n−4−2r)r

r!
h2n−4−3r gr, ∀n ≥ 2.

Differentiating both sides with respect to x, we get

(tB)
(1,0)
h,g,n =

∑b 2n−4
3
c

r=0
(2n−4−3r) (2n−4−2r)r

r!
h2n−5−3r h(1,0) gr

Therefore, (tB)
(1,0)
h,g,n h = (2n− 4) h(1,0)

∑b 2n−4
3
c

r=0
(2n−4−2r)r

r!
h2n−4−3r gr

−3 h(1,0)
∑b 2n−4

3
c

r=0 r (2n−4−2r)r

r!
h2n−4−3rgr.

Using Convolution property of (tB)h,g,n, we get

(
h(1,0)

∑n
i=0

(
2h(tB)h,g,n+1−i + 2g(tB)h,g,n−i

)
(tB)h,g,i

)
h
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= (2n− 4) (tB)h,g,n h(1,0) − 3h(1,0)
∑b 2n−4

3
c

r=0 r (2n−4−2r)r

r!
h2n−4−3rgr.

Thus, h
∑n

i=0

(
2h(tB)h,g,n+1−i + 2g(tB)h,g,n−i

)
(tB)h,g,i

= (2n− 4) (tB)h,g,n − 3
∑b 2n−4

3
c

r=0 r (2n−4−2r)r

r!
h2n−4−3rgr.

Therefore,
∑b 2n−4

3
c

r=0 r (2n−4−2r)r

r!
h2n−4−3r gr

= 2n−4
3

(tB)h,g,n − h
3

∑n
i=0

(
2h(tB)h,g,n+1−i + 2g(tB)h,g,n−i

)
(tB)h,g,i.

Hence the lemma is proved.

Theorem 5.4.7. For all n ≥ 2,

∑b 2n−4
3
c

l=0 (tB)lh,g,n

=
(
b2n− 4

3
c−2n− 7

3

)
(tB)h,g,n+

h

3

n∑
i=0

(
2h(tB)h,g,n+1−i+2g(tB)h,g,n−i

)
(tB)h,g,i.

(5.33)

Proof.
∑⌊

2n−4
3

⌋
l=0 (tB)l

h,g,n = (tB)0
h,g,n + (tB)1

h,g,n + · · ·+ (tB)r
h,g,n + · · ·+ (tB)

b 2n−4
3
c

h,g,n

= (2n−4−2r)0

0!
h2n−4 +

[
(2n−4)0

0!
h2n−4 + (2n−4−2)1

1!
h2n−4−3g

]
+ · · ·

+
[

(2n−4)0

0!
h2n−4 + · · ·+ (2n−4−2r)r

r!
h2n−4−3rgr

]
+ · · ·

+
[

(2n−4)0

0!
h2n−4 + · · ·+ (2n−4−2r)r

r!
h2n−4−3rgr + · · ·

+
(2n−4−2b 2n−4

3
c)b

2n−4
3 c

(b 2n−4
3
c)! h2n−4−b 2n−4

3
cgb

2n−4
3
c
]

=
(
b2n−4

3
c+ 1

)
(2n−4)0

0!
h2n−4 +

(
b2n−4

3
c
)

(2n−4−2)1

1!
h2n−4−2g + · · ·

+
(
b2n−4

3
c+1−r

)
(2n−4−2r)r

r!
h2n−4−3rgr+· · ·+ (2n−4−2b 2n−4

3
c)b

2n−4
3 c

(b 2n−4
3
c)! h2n−4−b 2n−4

3
cgb

2n−4
3
c
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=
∑b 2n−4

3
c

r=0

(
b2n−4

3
c+ 1− r

)
(2n−4−2r)r

r!
h2n−4−3rgr

=
(
b2n−4

3
c+ 1

) ∑b 2n−4
3
c

r=0
(2n−4−2r)r

r!
h2n−4−3rgr −∑b 2n−4

3
c

r=0 r (2n−4−2r)r

r!
h2n−4−3rgr

=
(
b2n−4

3
c+ 1

)
(tB)h,g,n −

∑b 2n−4
3
c

r=0 r (2n−4−2r)r

r!
h2n−4−3rgr

=
(
b2n−4

3
c+ 1

)
(tB)h,g,n − 2n−4

3
(tB)h,g,n

+h
3

∑n
i=0

(
2h (tB)h,g,n+1−i + 2 g(tB)h,g,n−i

)
(tB)h,g,i, by Lemma 5.4.6.

=
(
b2n−4

3
c− 2n−7

3

)
(tB)h,g,n + h

3

∑n
i=0

(
2h (tB)h,g,n+1−i +2 (tB)h,g,n−i

)
(tB)h,g,i.

5.5 Incomplete generalized bivariate B-Tri Lucas

polynomials

In this section, we introduce the incomplete generalized bivariate B-Tri Lucas poly-

nomials and study some identities related to it. We also study its relation with the

incomplete generalized bivariate B-Tri bonacci polynomials.

Definition 5.5.1. The incomplete generalized bivariate B-Tri Lucas polynomials are

defined by

(tL)l
h,g,n(x, y)

=
l∑

r=0

( (2n− 2)

(2n− 2− 2r)

(2n− 2− 2r)r

r!
− (2n− 4− 2r)r−2

(r − 2)!

)
h2n−2−3r(x) gr(y), (5.34)

∀ 0 ≤ l ≤ ⌊2n− 2

3

⌋
and n ≥ 2.

Note that (tL)
b 2n−2

3
c

h,g,n (x, y) = (tL)h,g,n(x, y).
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For simplicity, we use (tL)

⌊
2n−2

3

⌋
h,g,n (x, y) = (tL)

⌊
2n−2

3

⌋
h,g,n , h(x) = h and g(y) = g.

Following table shows terms of incomplete generalized bivariate B-Tri Lucas

polynomials.

n \ l 0 1 2 3

2 h2

3 h4 h4 + 4hg
4 h6 h6 + 6h3g h6 + 6h3g + 2g2

5 h8 h8 + 8h5g h8 + 8h3g + 11h2g2

6 h10 h10 + 10h7g h10 + 10h7g + 24h4g2 h10 + 10h7g + 24h4g2 + 8hg3

7 h12 h12 + 12h9g h12 + 12h9g + 41h6g2 h12 + 12h9g + 41h6g2 + 36h3g3

Table 5.4: Terms of (tL)l
h,g,n, for 0 ≤ l ≤ 3 and 0 ≤ n ≤ 7.

Following theorems give the relation between incomplete generalized bivariate B-

Tribonacci and B-Tri Lucas polynomials.

Theorem 5.5.2.

(tL)l
h,g,n = (tB)l

h,g,n+1 + 2hg (tB)l−1
h,g,n−1 + g2 (tB)l−2

h,g,n−2, (5.35)

2 ≤ l ≤ b2n−2
3
c.

Proof. From (5.27), we have

(tB)l
h,g,n+1 + 2hg (tB)l−1

h,g,n−1 + g2 (tB)l−2
h,g,n−2

=
∑l

r=0
(2n−2−2r)r

r!
h2n−2−3rgr + 2hg

∑l−1
r=0

(2n−6−2r)r

r!
h2n−6−3rgr

+g2
∑l−2

r=0
(2n−8−2r)r

r!
h2n−8−3rgr
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=
∑l

r=0
(2n−2−2r)r

r!
h2n−2−3rgr + 2

∑l
r=1

(2n−4−2r)r−1

(r−1)!
h2n−2−3rgr

+
∑l

r=2
(2n−4−2r)r−2

(r−2)!
h2n−2−3rgr

=
∑l

r=0

[
(2n−2−2r)r

r!
+ 2

(
(2n−4−2r)r−1

(r−1)!
+ (2n−4−2r)r−2

(r−2)!

)− (2n−4−2r)r−2

(r−2)!

]
h2n−2−3rgr

=
∑l

r=0

[
(2n−2−2r)r

r!
+ 2

(
(2n−3−2r)r−1

(r−1)!

)− (2n−4−2r)r−2

(r−2)!

]
h2n−2−3rgr

=
∑l

r=0

[
(2n−2−2r)r

r!
(1 + 2 r

2n−2−2r
)− (2n−4−2r)r−2

(r−2)!

]
h2n−2−3rgr

=
∑l

r=0

[
2n−2

2n−2−2r
( (2n−2−2r)r

r!
)− (2n−4−2r)r−2

(r−2)!

]
h2n−2−3rgr

= (tL)l
h,g,,n.

Hence the theorem is proved.

Using (5.28) and (5.35), following Corollary can be proved.

Corollary 5.5.3.

(tL)l
h,g,n = 2 (tB)l

h,g,n+1 − h2 (tB)l
h,g,n, (5.36)

0 ≤ l ≤ ⌊
2n−2

3

⌋
.

Theorem 5.5.4. The recurrence relation of the incomplete generalized bivariate B-

Tri Lucas sequence (tL)l
h,g,n is given by

(tL)l+2
h,g,n+3 = h2(tL)l+2

h,g,n+2 + 2hg(tL)l+1
h,g,n+1 + g2(tL)l

h,g,n, (5.37)

0 ≤ l ≤ ⌊
2n−2

3

⌋
.

Proof. Equation (5.35) implies

(tL)l+2
h,g,n+3 = (tB)l+2

h,g,n+4 + 2hg(tB)l+1
h,g,n+2 + g2(tB)l

h,g,n+1
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= h2(tB)l+2
h,g,n+3 + 2hg(tB)l+1

h,g,n+2 + g2(tB)l
h,g,n+1

+2hg(h2(tB)l+1
h,g,n+1 + 2hg(tB)l

h,g,n + g2(tB)l−1
h,g,n−1)

+h2(tB)l
h,g,n + 2hg(tB)l−1

h,g,n−1 + g2(tB)l−2
h,g,n−2, from (5.28)

= h2(tL)l+2
h,g,n+2 + 2hg(tL)l+1

h,g,n+1 + g2(tL)l
h,g,n, from (5.35).

Theorem 5.5.5. For s ≥ 1,

(tL)l+2s
h,g,n+3s =

2s∑
i=0

(2s)i

i!
(tL)l+i

h,g,n+i hig2s−i, 0 ≤ l ≤ ⌊2n− 2− 2s

3

⌋
. (5.38)

Proof. Equation (5.36) implies,

∑2s
i=0

(2s)i

i!
(tL)l+i

h,g,n+i hig2s−i

=
∑2s

i=0
(2s)i

i!

(
2(tB)l+i

h,g,n+1+i − h2(tB)l+i
h,g,n+i

)
hig2s−i

= 2
∑2s

i=0
(2s)i

i!
(tB)l+i

h,g,n+1+ih
ig2s−i − h2

∑2s
i=0

(2s)i

i!
(tB)l+i

h,g,n+ih
ig2s−i, from (5.10).

= 2 (tB)l+2s
h,g,n+1+2s − h2(tB)l+2s

h,g,n+2s

= (tL)l+2s
h,g,n+2s.

Similarly, using (5.36) following theorem can be proved.

Theorem 5.5.6. For s ≥ 1,

(tL)l+2
n+2+s − h2s(tL)l+2

n+2 =
s−1∑
i=0

(
2 h2s−1−2i(tL)l+1

h,g,n+1+i + h2s−2−2i(tL)l
h,g,n+i

)
, (5.39)

0 ≤ l ≤ ⌊
2n−6

3

⌋
.
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Lemma 5.5.7. For all n ≥ 2,

∑b 2n−2
3
c

r=0 r
(

(2n−2)
(2n−2−2r)

(2n−2−2r)r

r!
− (2n−4−2r)r−2

(r−2)!

)
h2n−2−3r gr

=
(2n− 2)

3
(tL)h,g,n−h

3

[ n∑
i=0

(
2h (tL)h,g,n+1−i+2g (tL)h,g,n−i

)
(tB)h,g,i−2h (tB)h,g,n

]
.

(5.40)

Proof. Equation (5.21) implies

(tL)h,g,n =
∑⌊

2n−2
3

⌋
r=0

(
(2n−2)

(2n−2−2r)
(2n−2−2r)r

r!
− r(r − 1) (2n−4−2r)r−2

r!

)
h2n−2−3rgr.

Differentiating both sides with respect to x.

(tL)
(1,0)
h,g,n

=
∑b 2n−2

3
c

r=0 (2n− 2− 3r)
(

(2n−2)
(2n−2−2r)

(2n−2−2r)r

r!
− (2n−4−2r)r−2

(r−2)!

)
h2n−3−3r h(1,0) gr.

This implies, h(tL)
(1,0)
h,g,n = (2n− 2)h(1,0) (tL)h,g,n

−3h(1,0)
∑b 2n−2

3
c

r=0 r
(

(2n−2)
(2n−2−2r)

(2n−2−2r)r

r!
− (2n−4−2r)r−2

(r−2)!

)
h2n−2−3r gr.

Thus, h(1,0)
∑⌊

2n−2
3

⌋
r=0 r

(
(2n−2)

(2n−2−2r)
(2n−2−2r)r

r!
− (2n−4−2r)r−2

(r−2)!

)
h2n−2−3r gr

= (2n−2)
3

(tL)h,g,nh
(1,0) − h

3
(tL)

(1,0)
h,g,n.

Therefore,
∑b 2n−2

3
c

r=0 r
(

(2n−2)
(2n−2−2r)

(2n−2−2r)r

r!
− (2n−4−2r)r−2

(r−2)!

)
h2n−2−3r gr

= (2n−2)
3

(tL)h,g,n − h
3

[ ∑n
i=0

(
2h (tL)h,g,n+1−i + 2g (tL)h,g,n−i

)
(tB)h,g,i

−2h (tB)h,g,n

]
, from (5.26).
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Theorem 5.5.8. For all n ≥ 2,

∑⌊
2n−2

3

⌋
l=0 (tL)lh,g,n =

(
b2n−2

3
c − 2n−5

3

)
(tL)h,g,n

+
h

3

[ n∑
i=0

(
2h (tL)h,g,n+1−i + 2g (tL)h,g,n−i

)
(tB)h,g,i − 2h (tB)h,g,n

]
. (5.41)

Proof.
∑b 2n−2

3
c

l=0 (tL)l
h,g,n = (tL)0

h,g,n + (tL)1
h,g,n + · · ·+ (tL)r

h,g,n + · · ·+ (tL)
b 2n−2

3
c

h,g,n

=
(

(2n−2)
(2n−2)

(2n−2)0

0!

)
h2n−2 g0 +

[(
(2n−2)
(2n−2)

(2n−2)0

0!

)
h2n−2 g0 +

(
(2n−2)
(2n−4)

(2n−4)1

1!

)
h2n−5 g1

]

+
[(

(2n−2)
(2n−2)

(2n−2)0

0!

)
h2n−2 g0+

(
(2n−2)
(2n−4)

(2n−4)1

1!

)
h2n−5 g1+

(
(2n−2)
(2n−6)

(2n−6)2

2!
− (2n−8)0

0!

)
h2n−8 g2

]

+ · · ·

+
[(

(2n−2)
(2n−2)

(2n−2)0

0!

)
h2n−2 g0+

(
(2n−2)
(2n−4)

(2n−4)1

1!

)
h2n−5 g1+

(
(2n−2)
(2n−6)

(2n−6)2

2!
− (2n−8)0

0!

)
h2n−8 g2

+ · · ·+
(

(2n−2)
(2n−2−2r)

(2n−2−2r)r

r!
− (2n−4−2r)r−2

(r−2)!

)
h2n−2−3r gr

]
+ · · ·

+
[(

(2n−2)
(2n−2)

(2n−2)0

0!

)
h2n−2 g0+

(
(2n−2)
(2n−4)

(2n−4)1

1!

)
h2n−5 g1+

(
(2n−2)
(2n−6)

(2n−6)2

2!
− (2n−8)0

0!

)
h2n−8 g2

+ · · ·+
(

(2n−2)
(2n−2−2r)

(2n−2−2r)r

r!
− (2n−4−2r)r−2

(r−2)!

)
h2n−2−3r gr

+ · · ·+
(

(2n−2)

(2n−2−2b 2n−2
3
c)

(2n−2−2r)
b 2n−2

3 c

(b 2n−2
3
c)! − (2n−4−2b 2n−2

3
c)b

2n−2
3 c−2

(b 2n−2
3
c−2)!

)
h2n−2−3b 2n−2

3
c gb

2n−2
3
c
]

=
(
b2n−2

3
c+ 1

)(
(2n−2)
(2n−2)

(2n−2)0

0!

)
h2n−2 g0 + (b2n−2

3
c)

(
(2n−2)
(2n−4)

(2n−4)1

1!

)
h2n−5 g1 + · · ·

+
(
b2n−2

3
c+ 1− r

)(
(2n−2)

(2n−2−2r)
(2n−2−2r)r

r!
− (2n−4−2r)r−2

(r−2)!

)
h2n−2−3r gr + · · ·
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+
(

(2n−2)

(2n−2−2b 2n−2
3
c)

(2n−2−2r)
b 2n−2

3 c

(b 2n−2
3
c)! − (2n−4−2b 2n−2

3
c)b

2n−2
3 c−2

(b 2n−2
3
c−2)!

)
h2n−2−3b 2n−2

3
c gb

2n−2
3
c
]

=
∑b 2n−2

3
c

r=0

(
b2n−2

3
c+ 1− r

)(
(2n−2)

(2n−2−2r)
(2n−2−2r)r

r!
− (2n−4−2r)r−2

(r−2)!

)
h2n−2−3r gr

=
(
b2n−2

3
c+ 1

) ∑b 2n−2
3
c

r=0

(
(2n−2)

(2n−2−2r)
(2n−2−2r)r

r!
− (2n−4−2r)r−2

(r−2)!

)
h2n−2−3r gr

−∑b 2n−2
3
c

r=0 r
(

(2n−2)
(2n−2−2r)

(2n−2−2r)r

r!
− (2n−4−2r)r−2

(r−2)!

)
h2n−2−3r gr

=
(
b2n−2

3
c+ 1− (2n−2)

3

)
(tL)h,g,n

+h
3

[ ∑n
i=0

(
2h (tL)h,g,n+1−i+2g (tL)h,g,n−i

)
(tB)h,g,i−2h (tB)h,g,n

]
, from (5.40)

=
(
b2n−2

3
c − 2n−5

3

)
(tL)h,g,n

+h
3

[∑n
i=0

(
2h (tL)h,g,n+1−i + 2g (tL)h,g,n−i

)
(tB)h,g,i − 2h (tB)h,g,n

]
.

Let
(
(tB)l

h,g,n

)(k,j)
= ∂k+j

∂xk∂yj

(
(tB)l

h,g,n

)
and ((tL)l

h,g,n)(k,j) = ∂k+j

∂xk∂yj

(
(tL)l

h,g,n

)
.

We have the following identities involving
(
(tB)l

h,g,n

)(k,j) and
(
(tL)l

h,g,n

)(k,j)
.

Theorem 5.5.9. For n ≥ 2,

(1)
(
(tL)l

h,g,n

)(k,j)
=

(
(tB)l

h,g,n+1

)(k,j)

+
∑2

r=1
2r

r!

∑k
s=0

∑j
i=0

ks

s!
ji

i!
(h2−r)(s,0)(gr)(0,i)

(
(tB)l−r

h,g,n−r

)(k−s,j−i)
,

(2)
(
(tB)l

h,g,n

)(k,j)

=
∑2

r=0
2r

r!

∑k
s=0

∑j
i=0

ks

s!
ji

i!
(h2−r)(s,0) (gr)(0,i)

(
(tB)l−r

h,g,n−1−r

)(k−s,j−i)
,
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(3)
(
(tL)l

h,g,n

)(k,j)

=
∑2

r=0
2r

r!

∑k
s=0

∑j
i=0

ks

s!
ji

i!
(h2−r)(s,0) (gr)(0,i)

(
(tL)l−r

h,g,n−1−r

)(k−s,j−i)
.

(4)
∑k

s=0
ks

s!

(
(tB)l+1

h,g,n+1

)(k−s,j+1)
h(s+1,0) =

∑j
i=0

ji

i!

(
(tB)l

h,g,n

)(k+1,j−i)
g(0,i+1).

Proof. (1) Consider,

(tL)l
h,g,n = (tB)l

h,g,n+1 + 2hg(tB)l−1
h,g,n−1 + g2(tB)l−2

h,g,n−2.

Differentiating both sides k times with respect to x and j times with respect

to y and using Leibnitz theorem for derivatives, we get

(
(tL)l

h,g,n

)(k,j)
= ((tB)l

h,g,n+1)
(k,j)+2

k∑
s=0

j∑
i=0

ks

s!

ji

i!
h(s,0)g(0,i)

(
(tB)l−1

h,g,n−1

)(k−s,j−i)

+
∑j

i=0
ji

i!
(g2)(0,i)

(
(tB)l−2

h,g,n−2

)(k,j−i)

=
(
(tB)l

h,g,n+1

)(k,j)

+
∑2

r=1
2r

r!

∑k
s=0

∑j
i=0

ks

s!
ji

i!
(h2−r)(s,0)(gr)(0,i)

(
(tB)l−r

h,g,n−r

)(k−s,j−i)
.

(2) From (5.28), we have

(tB)l+2
h,g,n = h2(tB)l+2

h,g,n−1 + 2hg(tB)l+1
h,g,n−2 + g2(tB)l

h,g,n−3.

Differentiating both sides k times with respect to x and j times with

respect to y and using Leibnitz theorem for derivatives, we get

(
(tB)l

h,g,n

)(k,j)
=

∑k
s=0

ks

s!
(h2)(s,0)

(
(tB)l

h,g,n−1

)(k−s,j)

+2
∑k

s=0

∑j
i=0

ks

s!
ji

i!
h(s,0)g(0,i)

(
(tB)l

h,g,n−2

)(k−s,j−i)
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+
∑j

i=0
ji

i!
(g2)(0,i)

(
(tB)l

h,g,n−3

)(k,j−i)

=
∑2

r=0
2r

r!

∑k
s=0

∑j
i=0

ks

s!
ji

i!
(h2−r)(s,0)(gr)(0,i)

(
(tB)l

h,g,n−1−r

)(k−s,j−i)
.

(3) Identity (3) can be proved by differentiating (5.37), k times with respect to x

and j times with respect to y and using Leibnitz theorem for derivatives.

(4) Differentiating (5.27) with respect to x, we get

((tB)l
h,g,n)(1,0) =

l∑
r=0

(2n− 4− 2r)r+1

r!
h2n−5−3rh(1,0)gr.

Also, (5.27) implies,

(tB)l+1
h,g,n+1 =

l+1∑
r=0

(2n− 2− 2r)r

r!
h2n−2−3rgr.

Differentiating both sides with respect to y,

((tB)l+1
h,g,n+1)

(0,1) =
l+1∑
r=0

(2n− 2− 2r)r

r!
h2n−2−3r r gr−1g(0,1)

=
l+1∑
r=1

(2n− 2− 2r)r

r!
h2n−2−3r r gr−1g(0,1)

=
l∑

r=0

(2n− 4− 2r)r+1

r!
h2n−5−3r grg(0,1)

Therefore,
(
(tB)l+1

h,g,n+1

)(0,1)
h(1,0) =

(
(tB)l

h,g,n

)(1,0)
g(0,1).

Differentiating k times both sides with respect to x and j times with respect

to y and using Leibnitz theorem, we get

k∑
s=0

ks

s!

(
(tB)l+1

h,g,n+1

)(k−s,j+1)
h(s+1,0) =

j∑
i=0

ji

i!

(
(tB)l

h,g,n

)(k+1,j−i)
g(0,i+1).
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5.6 Generalized bivariate B-q bonacci polynomials

In this section, we extend generalized bivariate B-Tribonacci polynomials to general-

ized B-q bonacci polynomials and state its identities. These identities are similar to

the identities of B-q bonacci sequence defined by (4.1), studied in Section 2 of

Chapter 4. Hence the proof of these results is omitted.

Definition 5.6.1. Let n ∈ N∪{0}. The generalized B-q bonacci polynomials (qB)h,g,n(x, y),

are defined by

(qB)h,g,n+q−1(x, y) =

q−1∑
r=0

(q − 1)r

r!
hq−1−r(x) gr(y) (qB)h,g,n+q−2−r(x, y),∀ n ≥ 1,

(5.42)
with (qB)h,g,i(x, y) = 0, i = 0, 1, 2, 3, · · · q − 2, and (qB)h,g,q−1(x, y) = 1,

where (qB)h,g,n(x, y) is nth B-q bonacci polynomial.

Few terms of (5.42) are (qB)h,g,q(x, y) = hq−1(x)

(qB)h,g,q+1(x, y) = h2(q−1)(x) + (q − 1)hq−2(x) g(y),

(qB)h,g,q+2(x, y) = h3(q−1)(x) + (2(q−1))1

1!
h2q−3(x) g(y) + (q−1)2

2!
hq−3(x)g2(y),

(qB)h,g,q+3(x, y) = h4(q−1)(x) + (3(q−1))1

1!
h3q−4(x)g(y) + (2(q−1))2

2!
h2q−4(x)g2(y)

+ (q−1)3

3!
hq−4(y)g3(y),

(qB)h,g,q+4(x, y) = h5(q−1)(x) + (4(q−1))1

1!
h4q−5(x)g(y) + (3(q−1))2

2!
h3q−5(x)g2(y)

+ (2(q−1))3

3!
h2q−5(x)g3(y) + (q−1)4

4!
hq−5(x) g4(y).

For simplicity, we write (qB)h,g,n(x, y) = (qB)h,g,n and h(x) = h and g(y) = g.

We have following results for (qB)h,g,n.

Theorem 5.6.2. The nth term of (5.42) is given by

(qB)h,g,n =

∑q
k=1(−1)k+1

∏
1≤i<j≤q,i,j 6=k(φi − φj)φ

n
k∏

1≤i<j≤q(φi − φj)
, (5.43)
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where φp, p = 1, 2, · · · , q are q distinct roots of characteristic equation corresponding

to (5.42).

Equation (5.43) is called Binet type formula for (5.42).

Theorem 5.6.3. The nth term (qB)h,g,n of (5.42) is given by

(qB)h,g,n =

b (q−1)(n−(q−1))
q

c∑
r=0

(
(q − 1)(n− (q − 1)− r)

)r

r!
h(q−1)(n−(q−1)−r)−r gr, (5.44)

for all n ≥ q − 1.

Theorem 5.6.4. The sum of the first n + 1 terms of (5.42) is given by

n∑
r=0

(qB)h,g,r =
(qB)h,g,n+1 +

∑q−2
i=0

∑q−1
r=1+i

(q−1)r
r!

hq−1−r gr (qB)h,g,n−i − 1

(h + g)q−1 − 1
, (5.45)

provided





h + g 6= 1, if q is even;

h + g 6= ±1, if q is odd.

Theorem 5.6.5. The generating function for (5.42) is given by

(qG(B))h,g(z) =
1

1− z(h + gz)q−1
(5.46)

The next two theorems are related to the recurrence properties of (qB)h,g,n. Proof

of these theorems is similar to the proof of Theorem 5.2.6 and Theorem 5.2.7

respectively.

Theorem 5.6.6. For all s ≥ 1,

(qB)h,g,n+qs =

(q−1)s∑
i=0

((q − 1)s)i

i!
(qB)h,g,n+i hig(q−1)s−i. (5.47)
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Theorem 5.6.7. For all s ≥ 1 and q ≥ 2,

(qB)h,g,n+(q−1)+s−h(q−1)s(qB)h,g,n+q−1 =
s−1∑
i=0

q−1∑
j=1

(q − 1)j

j!
gjh(q−1)(s−i)−j(qB)h,g,n+(q−1)+i−j.

(5.48)

We prove below the results related to first order partial derivative of (qB)h,g,n with

respect to x and y.

Theorem 5.6.8. For all n ≥ 0,

(1) qg ∂
∂x

[(qB)h,g,n] + h ∂
∂x

[(qB)h,g,n+1] = (q − 1)(n− (q − 2))(qB)h,g,n+1h
(1,0).

(2) g(0,1) ∂
∂x

[(qB)h,g,n] = h(1,0) ∂
∂y

[(qB)h,g,n+1].

(3) qg ∂
∂y

[(qB)h,g,n] + h ∂
∂y

[(qB)h,g,n+1] = (q − 1)(n− (q − 1))(qB)h,g,ng
(0,1).

(4) qg ∂
∂y

[(qB)h,g,n] h(1,0)+h ∂
∂x

[(qB)h,g,n] g(0,1) = (q−1)(n−(q−1))(qB)h,g,nh
(1,0)g(0,1).

Proof. (1) Note that for 0 ≤ n ≤ q − 2, L.H.S.= 0 = R.H.S.

Now let n ≥ q − 1 and take n = qm. Using (5.44) and L.H.S. of (1), we have

qg ∂
∂x

[(qB)h,g,qm] + h ∂
∂x

[(qB)h,g,qm+1]

=

[
(q − 1)

(
qm− (q − 2)

)
h(q−1)(qm−(q−2)) +

∑(q−1)m−(q−2)
r=1

[
qr

(
(q−1)(qm−(q−2)−r)

)r

r!

+

(
(q−1)(qm−(q−2)−r)

)r+1

r!

]
h(q−1)(qm−(q−2)−r)−r gr

]
h(1,0)

=

[
(q − 1)

(
qm− (q − 2)

)
h(q−1)(qm−(q−2)) +

∑(q−1)m−(q−2)
r=1

(
(q−1)(qm−(q−2)−r)

)r

(r−1)!

[
qr + (q − 1)(qm− (q − 2)− r)− r

]
h(q−1)(qm−(q−2)−r)−r gr

]
h(1,0)

= (q − 1)
(
qm− (q − 2)

)

∑(q−1)m−(q−2)
r=0

(
(q−1)(qm−(q−2)−r)

)r

r!
h(q−1)(qm−(q−2)−r)−rgrh(1,0)
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= (q − 1)(qm− (q − 2))(qB)h,g,qm+1h
(1,0).

Therefore, the result is true for n = qm.

Similarly, the result can be proved for n = qm + 1, · · · , qm + q − 1. Hence (1) is

proved.

Identity (2) can be verified by differentiating (qB)h,g,n and (qB)h,g,n+1 respectively

with respect to x and with respect to y. Identity (3) can be proved using Identities

(1) and (2). Identity (4) can be deduced from (2) and (3).

5.7 Generalized bivariate B-q Lucas polynomials

In this section, we define generalized bivariate B-q Lucas polynomials and obtain

some identities related to these polynomials.

Definition 5.7.1. Let n ∈ N∪{0}. The generalized bivariate B-q Lucas polynomials

(qL)h,g,n(x, y) are defined by

(qL)h,g,n+q−1(x, y) =

q−1∑
r=0

(q − 1)r

r!
hq−1−r(x) gr(y) (qL)h,g,n+q−2−r(x, y), for all n ≥ 1,

(5.49)
with (qL)h,g,i(x, y) = 0, i = 0, 1, 2, 3, · · · q−3, (∀q ≥ 3), (qL)h,g,q−2(x, y) = 2 and

(qL)h,g,q−1(x, y) = hq−1(x), where (qL)h,g,n(x, y) is nth B-q Lucas polynomial.

For q ≥ 2 and q−1 ≤ n ≤ q+1, the terms of (5.49) are (qL)h,g,q−1(x, y) = hq−1(x),

(qL)h,g,q(x, y) = h2(q−1)(x) + 2(q − 1)hq−2(x) g(y) and

(qL)h,g,q+1(x, y) = h3(q−1)(x) + 3(q − 1)h2q−3(x) g(y) + (q − 1)(q − 2)hq−3(x)g2(y).

For simplicity, we use (qL)h,g,n(x, y) = (qL)h,g,n and h(x) = h and g(y) = g.

We state below identities related to (qL)h,g,n.
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Theorem 5.7.2. The nth term of 5.49) is given by

(qL)h,g,n =

∑q
k=1(−1)k+1

∏
1≤i<j≤q,i,j 6=k(φi − φj)φ

n
k(2φk − hq−1)∏

1≤i<j≤q(φi − φj)
, (5.50)

where φp, p = 1, 2, · · · , q are q distinct roots of characteristic equation corresponding

to (5.49).

Equation (5.50) is called a Binet type formula for (5.49).

Theorem 5.7.3. The nth term (qL)h,g,n of (5.49) is given by

(qL)h,g,n

=

⌊
(q−1)(n−(q−2))

q

⌋
∑
r=0

[ (q − 1)
(
n− (q − 2)

)

(q − 1)
(
n− (q − 2)− r

)
(
(q − 1)

(
n− (q − 2)− r

))r

r!

]
h(q−1)

(
n−(q−2)

)
−qrgr

−

⌊
(q−1)(n−(q−2))

q

⌋
∑
r=2

[ q−1∑
s=1

(s−1)

(
(q − 1)

(
n− (q − 1)− r

)
+ s− 2

)r−2

(r − 2)!

]
h(q−1)

(
n−(q−2)

)
−qrgr,

(5.51)

for all n ≥ q − 1.

Theorem 5.7.4. The sum of the first n + 1 terms of (5.49)

n∑
r=0

(qL)h,g,r =
(qL)h,g,n+1 +

∑q−2
i=0

∑q−1
r=1+i

(q−1)r
r!

hq−1−r gr (qL)h,g,n−i + (qL)h,g,q−1 − (qL)h,g,q−2

(h + g)q−1 − 1
,

(5.52)

provided





h + g 6= 1, if q is even;

h + g 6= ±1, if q is odd.

Theorem 5.7.5. The generating function for (5.49) is given by

(qG(L))h,g(z) =
2− hq−1z

1− z(h + gz)q−1
. (5.53)
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Following theorem gives the relation between bivariate B-q bonacci and B-q Lucas

polynomials.

Theorem 5.7.6. For all n ≥ q − 1,

(qL)h,g,n = (qB)h,g,n+1 +

q−1∑
r=1

(q − 1)r

r!
hq−1−r gr (qB)h,g,n−r. (5.54)

Proof. We prove the theorem by mathematical induction on n.

Note that (5.54) is true for n = q − 1. Assume now that the result is true for n ≤ m.

Consider, (qL)h,g,m+1 =
∑q−1

r=0
(q−1)r

r!
hq−1−r gr (qL)h,g,m−r

=
∑q−1

r=0
(q−1)r

r!
hq−1−r gr

[
(qB)h,g,m+1−r+

∑q−1
s=1

(q−1)s

s!
hq−1−s gs(qB)h,g,m−r−s

]

= (qB)h,g,m+2 +
∑q−1

s=1
(q−1)s

s!
hq−1−s gs (qB)h,g,m+1−s.

Hence the result follows.

Following result follows immediately.

Corollary 5.7.7. For all n ≥ q − 2,

(qL)h,g,n = 2 (qB)h,g,n+1 − hq−1(qB)h,g,n. (5.55)

Proof. Note that 2 (qB)h,g,q−1 − hq−1(qB)h,g,q−2 = 2 = (qL)h,g,q−2.

Hence equation (5.55) is true for n = q − 2.

For n ≥ q − 1, the result can be proved using equations (5.42) and (5.54).

Next two theorems are related to the recurrence properties of (qL)h,g,n.

Theorem 5.7.8. For all s ≥ 1,

(qL)h,g,n+qs =

(q−1)s∑
i=0

((q − 1)s)i

i!
(qL)h,g,n+i hig(q−1)s−i. (5.56)
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Theorem 5.7.9. For all s ≥ 1 and q ≥ 2,

(qL)h,g,n+(q−1)+s−h(q−1)s(qL)h,g,n+q−1 =
s−1∑
i=0

q−1∑
j=1

(q − 1)j

j!
gjh(q−1)(s−i)−j(qL)h,g,n+(q−1)+i−j.

(5.57)

Next, we prove the identities related to first order partial derivatives of (qL)h,g,n

with respect to x and y.

Theorem 5.7.10. For all n ≥ 0,

(1) qg ∂
∂x

[(qL)h,g,n] + h ∂
∂x

[(qL)h,g,n+1]

= h(1,0)
(
(q − 1)(n− (q − 3))(qL)h,g,n+1 − q(q − 1)hq−2g(qB)h,g,n

)
.

(2) g(0,1) ∂
∂x

[(qL)h,g,n] = h(1,0)
(

∂
∂y

[(qL)h,g,n+1]− (q − 1)hq−2(qB)h,g,n

)
.

(3) qg ∂
∂y

[(qL)h,g,n] + h ∂
∂y

[(qL)h,g,n+1]

= g(0,1)
(
(q − 1)(n− (q − 1))(qL)h,g,n + 2 (q − 1)(qB)h,g,n+1

)
.

(4) qg ∂
∂y

[(qL)h,g,n] h(1,0)+h ∂
∂x

[(qL)h,g,n]g(0,1) = (q−1)(n−(q−2))(qL)h,g,nh
(1,0)g(0,1).

Proof. Equation (5.55) implies,

(qL)h,g,n = 2 (qB)h,g,n+1 − h(q−1)(qB)h,g,n.

Differentiating both sides with respect to x, we get

∂
∂x

[(qL)h,g,n] = 2 ∂
∂x

[(qB)h,g,n+1]− h(q−1) ∂
∂x

[(qB)h,g,n]− (q − 1)hq−2(qB)h,g,n

Also, ∂
∂x

[(qL)h,g,n+1] = 2 ∂
∂x

[(qB)h,g,n+2]−h(q−1) ∂
∂x

[(qB)h,g,n+1]−(q−1)hq−2(qB)h,g,n+1.

Thus, using (1) of Theorem 5.6.8, we get
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qy ∂
∂x

[(qL)h,g,n] + x ∂
∂x

[(qL)h,g,n+1]

= h(1,0)
(
2(q − 1)(n− (q − 3))(qB)h,g,n+2 − hq−1(q − 1)(n− (q − 3))(qB)h,g,n+1

−hq−1(q − 1)(qB)h,g,n+1 − (q − 1)hq−2
(
qg (qB)h,g,n + h (qB)h,g,n+1

))

= h(1,0)
(
(q − 1)(n− (q − 3)(qL)h,g,n+1 − q(q − 1)g hq−2(qB)h,g,n

)
.

Similarly, other identities can be proved.

We now prove some identities involving kth order partial derivative with respect

to x and jth order partial derivative with respect y of bivariate polynomials (qB)h,g,n

and (qL)h,g,n respectively, where k, j ≥ 0. Let (qB)
(k,j)
h,g,n and (qL)

(k,j)
h,g,n denote the kth

order partial derivative with respect to x and jth order partial derivative with respect

y of (qB)h,g,n and (qL)h,g,n respectively. Let (.)(s,0) denote the sth order derivative of

(.) with respect to x and (.)(0,p) denote the pth order derivative of (.) with respect to

y. We have following identities.

Theorem 5.7.11. For all n ≥ q − 1,

(1) (qL)
(k,j)
h,g,n = (qB)

(k,j)
h,g,n+1

+
∑q−1

r=1
(q−1)r

r!

∑q−1−r
s=0

∑r
p=0

ks

s!
jp

p!
(hq−1−r)(s,0)(gr)(0,p)(qB)

(k−s,j−p)
h,g,n−r .

(2) (qB)
(k,j)
h,g,n =

∑q−1
r=0

(q−1)r

r!

∑q−1−r
s=0

∑r
p=0

ks

s!
jt

p!
(hq−1−r)(s,0) (gr)(0,p)(qB)

(k−s,j−p)
h,g,n−1−r.

(3) (qL)
(k,j)
h,g,n =

∑q−1
r=0

(q−1)r

r!

∑q−1−r
s=0

∑r
p=0

ks

s!
jp

p!
(hq−1−r)(s,0) (gr)(0,p)(qL)

(k−s,j−p)
h,g,n−1−r.

Proof.

(1) Note that (qL)h,g,n = (qB)h,g,n+1 +
∑q−1

r=1
(q−1)r

r!
hq−1−r gr (qB)h,g,n−r.

Differentiating both sides k times with respect to x and j times with respect to y

and using Leibnitz theorem for derivatives, we get

131



(qL)
(k,j)
h,g,n = (qB)

(k,j)
h,g,n+1 +

∑q−1
r=1

(q−1)r

r!
∂k

∂hk

(
hq−1−r

∑r
p=0

jp

p!
(gr)(0,p) (qB)

(0,j−p)
h,g,n−r

)

= (qB)
(k,j)
h,g,n+1

+
∑q−1

r=1
(q−1)r

r!

∑q−1−r
s−0

ks

s!

(
hq−1−r

)(s,0) ∑r
p=0

jp

p!
(gr)(0,p) (qB)

(k−s,j−p)
h,g,n−r

= (qB)
(k,j)
h,g,n+1

+
∑q−1

r=1
(q−1)r

r!

∑q−1−r
s=0

∑r
p=0

ks

s!
jp

p!

(
hq−1−r

)(s,0)
(gr)(0,p) (qB)

(k−s,j−p)
h,g,n−r .

Hence (1) is proved.

(2) We have from (5.42), (qB)h,g,n =
∑q−1

r=0
(q−1)r

r!
hq−1−r gr (qB)h,g,n−1−r.

Differentiating both sides k times with respect to x and j times with respect to y

and using Leibnitz theorem for derivatives, we get

(qB)
(k,j)
h,g,n =

∑q−1
r=0

(q−1)r

r!
∂k

∂hk

(
hq−1−r

∑r
p=0

jp

p!
(gr)(0,p) (qB)

(0,j−p)
h,g,n−1−r

)

=
∑q−1

r=0
(q−1)r

r!

∑q−1−r
s=0

ks

s!

(
hq−1−r

)(s,0) ∑r
p=0

jp

p!
(gr)(0,p) (qB)

(k−s,j−p)
h,g,n−1−r

=
∑q−1

r=0
(q−1)r

r!

∑q−1−r
s−0

∑r
p=0

ks

s!
jp

p!

(
hq−1−r

)(s,0)
(gr)(0,p) (qB)

(k−s,j−p)
h,g,n−1−r.

Hence (2) is proved. Similarly, we can prove the identity (3).

Remark 5.7.12. Using Leibnitz theorem for derivatives we can established similar

type of identities using identities in Theorem 5.6.8 and Theorem 5.7.10.

Theorem 5.7.13. (Convolution property for (qB)h,g,n)

(qB)
(1,0)
h,g,n = (q − 1)h(1,0)

(
q−2∑
r=0

(q − 2)r

r!
h(q−2)−r gr

n+q−2−r∑
i=0

(qB)h,g,i (qB)h,g,n+q−2−r−i

)
.

(5.58)
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Proof. Equation (5.46) implies,

(qG(B))(z) =
1

1− z (h + gz)q−1
.

Therefore,
∞∑

n=0

(qB)h,g,n zn−(q−1) =
1

1− z(h + gz)(q−1)
.

Differentiating both sides with respect to x we get,

∑∞
n=0(

qB)
(1,0)
h,g,nz

n−(q−1)

=
(
z(q − 1)(h + gz)q−2 1

[1−z(h+gz)q−1]2

)
h(1,0)

=
(
(q − 1)

∑q−2
r=0

(q−2)r

r!
h(q−2)−rgrzr+1

[ ∑∞
n=0(

qB)h,g,nz
n−(q−1)

]2
)

h(1,0)

=
(
(q − 1)

∑q−2
r=0

(q−2)r

r!
h(q−2)−rgrz−2(q−1)+r+1

[ ∑∞
n=0(

qB)h,g,nz
n
]2

)
h(1,0)

= (q−1)h(1,0)
∑q−2

r=0
(q−2)r

r!
h(q−2)−rgr

∑∞
n=0

( ∑n
i=0(

qB)h,g,i(
qB)h,g,n−iz

n−2(q−1)+r+1
)
.

Comparing the coefficients of zn−(q−1) we get,

(qB)
(1,0)
h,g,n = (q−1)h(1,0)

( ∑q−2
r=0

(q−2)r

r!
h(q−2)−rgr

∑n+q−2−r
i=0 (qB)h,g,i(

qB)h,g,n+q−2−r−i

)
.

Theorem 5.7.14. (Convolution property for (qL)h,g,n)

(qL)
(1,0)
h,g,n

= (q−1)h(1,0)

(( q−2∑
r=0

(q − 2)r

r!
h(q−2)−r gr

n+q−2−r∑
i=0

(qB)h,g,i (qL)h,g,n+q−2−r−i

)
−hq−2(qB)h,g,n

)
.

(5.59)
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Proof. Equation (5.55) implies,

(qL)h,g,n = 2 (qB)h,g,n+1 − hq−1(qB)h,g,n.

Differentiating both sides with respect to x and then using (5.58), we get

(qL)
(1,0)
h,g,n = 2 (qB)

(1,0)
h,g,n+1 − hq−1(qB)

(1,0)
h,g,n − (q − 1)hq−2h(1,0)(qB)h,g,n

= (q − 1)h(1,0)
[ ∑q−2

r=0
(q−2)r

r!
h(q−2)−r gr

∑n+q−2−r
i=0 (qB)h,g,i

(
2(qB)h,g,n+1+q−2−r−i−hq−1(qB)h,g,n+q−2−r−i

)]
−(q−1)hq−2h(1,0)(qB)h,g,n

= (q− 1)h(1,0)
[ ∑q−2

r=0
(q−2)r

r!
h(q−2)−r gr

∑n+q−2−r
i=0 (qL)n+q−2−r−i(

qB)h,g,i

−hq−2(qB)h,g,n

]
.

5.8 Incomplete generalized bivariate B-q bonacci

polynomials

In this section, we introduce the extension of incomplete generalized bivariate B-

Tribonacci polynomials (5.27) to qth order incomplete generalized bivariate polyno-

mials and call it, incomplete generalized bivariate B-q bonacci polynomials. We also

study their various identities.

Definition 5.8.1. The incomplete generalized bivariate B-q bonacci polynomials are

defined by

(qB)l
h,g,n(x, y) =

l∑
r=0

(
(q − 1)(n− (q − 1)− r)

)r

r!
h(q−1)(n−(q−1)−r)−r(x)gr(y), (5.60)

∀ 0 ≤ l ≤ ⌊(q − 1)
(
n− (q − 1)

)

q

⌋
and n ≥ q − 1.
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Note that (qB)
b (q−1)(n−(q−1))

q
c

h,g,n (x, y) = (qB)h,g,n(x, y).

For Simplicity, we use

(qB)l
h,g,n(x, y) = (qB)l

h,g,n, (
qB)h,g,n(x, y) = (qB)h,g,n, h(x) = h and g(y) = g.

We prove identities related to recurrence relations of (qB)l
h,g,n(x, y).

Theorem 5.8.2. The recurrence relation of (qB)l
h,g,n is given by

(qB)l+q−1
h,g,n+q =

q−1∑
r=0

(q − 1)r

r!
hq−1−r gr (qB)l+q−1−r

h,g,n+q−1−r, 0 ≤ l ≤ b(q − 1)(n− q)

q
c,

(5.61)

∀n ≥ q.

Proof. Consider,
∑q−1

r=0
(q−1)r

r!
(qB)l+q−1−r

h,g,n+q−1−rh
q−1−rgr

=
∑q−1

r=0
(q−1)r

r!
hq−1−rgr

∑l+q−1−r
i=0

(
(q−1)(n+q−1−r−(q−1)−i)

)i

i!
h(q−1)(n+q−1−r−(q−1)−i)−igi

=
∑q−1

r=0
(q−1)r

r!
hq−1−r

∑l+q−1−r
i=0

(
(q−1)(n−r−i)

)i

i!
h(q−1)(n−r)−qigr+i

=
∑q−1

r=0
(q−1)r

r!

∑l+q−1−r
i=0

(
(q−1)(n−r−i)

)i

i!
h(q−1)(n+1)−qr−qigr+i

=
∑q−1

r=0
(q−1)r

r!

∑l+q−1−r
i=0

(
(q−1)(n−(r+i))

)i

i!
h(q−1)(n+1)−q(r+i)gr+i.

Taking j = i + r, we get

∑q−1
r=0

(q−1)r

r!
(qB)l+q−1−r

h,g,n+q−1−rh
q−1−rgr

=
∑q−1

r=0
(q−1)r

r!

∑l+q−1
j=r

(
(q−1)(n−j)

)j−r

(j−r)!
h(q−1)(n+1)−qjgj
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=
∑l+q−1

j=0

(
(q−1)(n+1−j)

)j

j!
h(q−1)(n+1)−qjgj

= (qB)l+q−1
h,g,n+q.

Theorem 5.8.3. s ≥ 1,

(qB)
l+(q−1)s
h,g,n+qs =

(q−1)s∑
i=0

((q − 1)s)i

i!
(qB)l+i

h,g,n+i hig(q−1)s−i, (5.62)

0 ≤ l ≤ ⌊ (q−1)(n−s−(q−1))
q

⌋
.

Proof. By mathematical induction on s. Clearly (5.62) holds for s = 1.

Assume that the result holds for all s ≤ m.

Consider,
∑(q−1)(m+1)

i=0

(
(q−1)(m+1)

)i

i!
(qB)l+i

h,g,n+i hig(q−1)(m+1)−i

=
∑(q−1)(m+1)

i=0

∑q−1
r=0

(q−1)r

r!

(
(q−1)m

)i−r

(i−r)!
(qB)l+i

h,g,n+i hig(q−1)(m+1)−i

=
∑q−1

r=0

∑(q−1)m
i=r

(q−1)r

r!

(
(q−1)m

)i−r

(i−r)!
(qB)l+i

h,g,n+i hig(q−1)(m+1)−i

=
∑q−1

r=0
(q−1)r

r!

∑(q−1)m−r
j=0

(
(q−1)m

)j

j!
(qB)l+r+j

h,g,n+r+j hj+r g(q−1)(m+1)−(j+r)

=
∑q−1

r=0
(q−1)r

r!
hr g(q−1)−r

∑(q−1)m−r
j=0

(
(q−1)m

)j

j!
(qB)l+r+j

h,g,n+r+j hj g(q−1)m−j

=
∑q−1

r=0
(q−1)r

r!
(qB)

l+r+(q−1)m
h,g,n+r+qm hr g(q−1)−r

= (qB)
l+(q−1)(m+1)
h,g,n+q(m+1) .

Hence the result is true for s = m + 1.

Thus, by mathematical induction, the theorem is proved.
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Theorem 5.8.4. For n ≥ b ql+2(q−1)
q−1

c,

(qB)
l+(q−1)
h,g,n+(q−1)+s − h(q−1)s(qB)l+q−1

h,g,n+q−1

=
s−1∑
i=0

q−1∑
r=1

(q − 1)r

r!
h(q−1)s−(q−1)i−rgr(qB)

l+(q−1)−r
h,g,n+(q−1)+i−r. (5.63)

Proof. By mathematical induction on s. Note that (5.63) clearly holds for s = 1.

Now let the result be true for s ≤ m. We prove it for s = m + 1.

Consider,

∑m
i=0

∑q−1
r=1

(q−1)r

r!
h(q−1)(m+1)−(q−1)−rgr(qB)

l+(q−1)−r
h,g,n+(q−1)+i−r

=
∑m−1

i=0

∑q−1
r=1

(q−1)r

r!
h(q−1)(m+1)−(q−1)i−rgr(qB)

l+(q−1)−r
h,g,n+(q−1)+i−r

+
∑q−1

r=1
(q−1)r

r!
h(q−1)(m+1)−(q−1)m−rgr(qB)

l+(q−1)−r
h,g,n+(q−1)+m+1−r

= hq−1
∑m−1

i=0

∑q−1
r=1

(q−1)r

r!
h(q−1)m−(q−1)i−rgr(qB)

l+(q−1)−r
h,g,n+(q−1)+i−r

+
∑q−1

r=1
(q−1)r

r!
h(q−1)−rgr(qB)

l+(q−1)−r
h,g,n+q+m−r

= (qB)
l+(q−1)
h,g,n+(q−1)+m+1 − h(q−1)(m+1)(qB)l+q−1

h,g,n+q−1.

Lemma 5.8.5. For n ≥ q − 1,

∑b (q−1)(n−(q−1))
q

c
r=0 r ((q−1)(n−(q−1)−r))r

r!
h(q−1)(n−(q−1))−qrgr

= (q−1)(n−(q−1))
q

(qB)h,g,n

−h

q

n∑
i=0

(q−1)
( q−2∑

r=0

(q − 2)r

r!
h(q−2)−r gr

n+q−2−r∑
i=0

(qB)h,g,q−2−r+i (qB)h,g,n−i

)
.

(5.64)
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Proof. Equation (5.44) implies,

(qB)h,g,n =
∑⌊

(q−1)(n−(q−1))
q

⌋
r=0

(
(q−1)(n−(q−1)−r)

)r

r!
h(q−1)(n−(q−1)−r)−r gr.

Differentiating both sides with respect to x, we get

(qB)
(1,0)
h,g,n h

=
∑⌊

(q−1)(n−(q−1))
q

⌋
r=0

(
(q−1)

(
n−(q−1)

)
−qr

) (
(q−1)(n−(q−1)−r)

)r

r!
h(q−1)(n−(q−1))−qrgr h(1,0).

Therefore,

(qB)
(1,0)
h,g,nh = ((q − 1)(n− (q − 1))) (qB)h,g,n h(1,0)

−q h(1,0)
∑b (q−1)(n−(q−1))

q
c

r=0 r ((q−1)(n−(q−1)−r))r

r!
h(q−1)(n−(q−1))−qrgr.

Thus, h(1,0)
∑b (q−1)(n−(q−1))

q
c

r=0 r ((q−1)(n−(q−1)−r))r

r!
h(q−1)(n−(q−1))−qrgr

= (q−1)(n−(q−1))
q

(qB)h,g,nh
(1,0) − h

q
(qB)

(1,0)
h,g,n.

Hence,
∑b (q−1)(n−(q−1))

q
c

r=0 r ((q−1)(n−(q−1)−r))r

r!
h(q−1)(n−(q−1))−qrgr

= (q−1)(n−(q−1))
q

(qB)h,g,n

−h
q

(q − 1)
( ∑q−2

r=0
(q−2)r

r!
h(q−2)−r gr

∑n+q−2−r
i=0 (qB)h,g,i (qB)h,g,n+q−2−r−i

)
.
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Theorem 5.8.6. For all n ≥ q − 1,

∑b (q−1)(n−(q−1))
q

c
l=0 (qB)l

h,g,n =
(
b (q−1)(n−(q−1))

q
c+ q−(q−1)(n−(q−1))

q

)
(qB)h,g,n

+
h

q
(q − 1)

( q−2∑
r=0

(q − 2)r

r!
h(q−2)−r gr

n+q−2−r∑
i=0

(qB)h,g,i (qB)h,g,n+q−2−r−i

)
. (5.65)

Proof.
∑b (q−1)(n−(q−1))

q
c

l=0 (qB)l
h,g,n

= (qB)0
h,g,n + (qB)1

h,g,n + · · ·+ (qB)r
h,g,n + · · ·+ (qB)

b (q−1)(n−(q−1))
q

c
h,g,n

= ((q−1)(n−(q−1)))0

0!
h(q−1)(n−(q−1))

+
[

((q−1)(n−(q−1)))0

0!
h(q−1)(n−(q−1)) + (q−1)(n−(q−1)−1))1

1!
h(q−1)(n−(q−1))−qg

]
+ · · ·

+
[

((q−1)(n−(q−1)))0

0!
h(q−1)(n−(q−1)) + · · ·+ ((q−1)(n−(q−1)−r))r

r!
h(q−1)(n−(q−1))−qrgr

]

+ · · ·

+
[

((q−1)(n−(q−1)))0

0!
h(q−1)(n−(q−1)) + · · ·+ ((q−1)(n−(q−1)−r))r

r!
h(q−1)(n−(q−1))−qrgr

+ · · ·

+

(
(q−1)

(
n−(q−1)−b (q−1)(n−(q−1))

q
c
))b (q−1)(n−(q−1))

q c

(b (q−1)(n−(q−1))
q

c)! h(q−1)(n−(q−1))−qb (q−1)(n−(q−1))
q

cgb
(q−1)(n−(q−1))

q
c
]

=
(
b (q−1)(n−(q−1))

q
c+ 1

)
((q−1)(n−(q−1)))0

0!
h(q−1)(n−(q−1))
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+
(
b (q−1)(n−(q−1))

q
c
)

((q−1)(n−(q−1)−1))1

1!
h(q−1)(n−(q−1))−qg + · · ·

+
(
b (q−1)(n−(q−1))

q
c+ 1− r

)
((q−1)(n−(q−1)−r))r

r!
h(q−1)(n−(q−1))−qrgr

+ · · ·

+

(
(q−1)

(
n−(q−1)−b (q−1)(n−(q−1))

q
c
))b (q−1)(n−(q−1))

q c

(b (q−1)(n−(q−1))
q

c)! h(q−1)(n−(q−1))−q b (q−1)(n−(q−1))
q

cgb
(q−1)(n−(q−1))

q
c

=
∑b (q−1)(n−(q−1))

q
c

r=0

(
b (q−1)(n−(q−1))

q
c+1−r

)
((q−1)(n−(q−1)−r))r

r!
h(q−1)(n−(q−1))−qrgr

=
∑b (q−1)(n−(q−1))

q
c

r=0

(
b (q−1)(n−(q−1))

q
c+ 1

)
((q−1)(n−(q−1)−r))r

r!
h(q−1)(n−(q−1))−qrgr

−∑b (q−1)(n−(q−1))
q

c
r=0 r ((q−1)(n−(q−1)−r))r

r!
h(q−1)(n−(q−1))−qrgr

=
(
b (q−1)(n−(q−1))

q
c+ 1− (q−1)(n−(q−1))

q

)
(qB)h,g,n

+h
q

∑n
i=0(q−1)

( ∑q−2
r=0

(q−2)r

r!
h(q−2)−rgr

∑n+q−2−r
i=0 (qB)h,g,q−2−r+i (qB)h,g,n−i

)

=
(
b (q−1)(n−(q−1))

q
c+ q−(q−1)(n−(q−1))

q

)
(qB)h,g,n

+h
q

∑n
i=0(q−1)

( ∑q−2
r=0

(q−2)r

r!
h(q−2)−rgr

∑n+q−2−r
i=0 (qB)h,g,q−2−r+i (qB)h,g,n−i

)
.
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5.9 Incomplete generalized bivariate B-q Lucas

polynomials

In this section we introduce the extension of incomplete generalized bivariate B-Tri

Lucas polynomials (5.34) to qth order incomplete generalized bivariate polynomials

and call it incomplete generalized bivariate B-q Lucas polynomials. We also study

their various identities.

Definition 5.9.1. The incomplete generalized bivariate B-q Lucas polynomials are

defined by

(qL)l
h,g,n(x, y)

=
l∑

r=0

[ (q − 1)
(
n− (q − 2)

)

(q − 1)
(
n− (q − 2)− r

)
(
(q − 1)

(
n− (q − 2)− r

))r

r!

]
h(q−1)

(
n−(q−2)

)
−qr(x)gr(y)

−
l∑

r=2

[ q−1∑
s=1

(s− 1)

(
(q − 1)

(
n− (q − 1)− r

)
+ s− 2

)r−2

(r − 2)!

]
h(q−1)

(
n−(q−2)

)
−qr(x)gr(y),

(5.66)

∀n ≥ q and 0 ≤ l ≤ ⌊ (q−1)(n−(q−2))
q

⌋
.

Next three theorems give results on recurrence properties of incomplete generalized

bivariate B-q Lucas polynomials (5.72). Proof of these results can be obtained using

a procedure similar to that used in the relative identities of incomplete generalized

bivariate B-q bonacci sequence (5.60).

Theorem 5.9.2. The recurrence relation for incomplete generalized bivariate B-q

Lucas polynomials (qL)l
h,g,n is given by

(qL)l+q−1
h,g,n+q =

q−1∑
r=0

(q − 1)r

r!
(qL)l+q−1−r

h,g,n+q−1−rh
q−1−rgr, (5.67)
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∀ 0 ≤ l ≤
⌊

(q−1)(n−(q−2))
q

⌋
and n ≥ q − 2.

Theorem 5.9.3. For all 0 ≤ l ≤
⌊

(q−1)
(

n−(q−2)−s
)

q

⌋
,

(qL)
l+(q−1)s
h,g,n+qs =

(q−1)s∑
i=0

((q − 1)s)i

i!
(qL)

l+(q−1)s−i
h,g,n+(q−1)s−i h(q−1)s−igi. (5.68)

Theorem 5.9.4. For n ≥ ⌊
ql

q−1
+ q − 2

⌋
,

(qL)
l+(q−1)
h,g,n+(q−1)+s − h(q−1)s(qL)

l+(q−1)
h,g,n+(q−1)

=
s−1∑
i=0

q−1∑
r=1

(q − 1)r

r!

(
h(q−1)s−r−(q−1)igr(qL)

l+(q−1)−r
h,g,n+(q−1)+i−r

)
. (5.69)

Next two results gives the relation between nth term (qB)l
h,g,n and (qL)l

h,g,n.

Theorem 5.9.5. The relation between the nth term (qL)l
h,g,n and nth term (qB)l

h,g,n

is given by

(qL)l
h,g,n = (qB)l

h,g,n+1+

q−1∑
r=1

(q − 1)r

r!
hq−1−rgr(qB)l−r

h,g,n−r, 0 ≤ l ≤
⌊(q − 1)(n− (q − 2))

q

⌋
.

(5.70)

Proof of the Theorem 5.9.5 is similar to that of Theorem 5.5.2.

Corollary 5.9.6.

(qL)l
h,g,n = 2 (qB)l

h,g,n+1 − hq−1 (qB)l
h,g,n, 0 ≤ l ≤ ⌊(q − 1)(n− (q − 2))

q

⌋
. (5.71)

Proof. Using equations (5.61) and (5.70), the Corollary can be proved.
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Lemma 5.9.7. For all n ≥ q − 2,

=
l∑

r=0

r
[ (q − 1)

(
n− (q − 2)

)

(q − 1)
(
n− (q − 2)− r

)
(
(q − 1)

(
n− (q − 2)− r

))r

r!

]
h(q−1)

(
n−(q−2)

)
−qrgr

−
l∑

r=2

r
[ q−1∑

s=1

(s− 1)

(
(q − 1)

(
n− (q − 1)− r

)
+ s− 2

)r−2

(r − 2)!

]
h(q−1)

(
n−(q−2)

)
−qrgr,

(5.72)

= (q−1)(n−(q−2))
q

(qL)h,g,n − h
q
(q − 1)

(( q−2∑
r=0

(q − 2)r

r!
h(q−2)−r gr

n+q−2−r∑
i=0

(qB)h,g,i (qL)h,g,n+q−2−r−i

)
− hq−2(qB)h,g,n

)
,

(5.73)

where l =
⌊

(q−1)(n−(q−2))
q

⌋
.

Theorem 5.9.8. For all n ≥ q − 2,

∑⌊
(q−1)(n−(q−2))

q

⌋
l=0 (qL)l

h,g,n

=
(
b (q−1)(n−(q−2))

q
c+

q−
(
(q−1)(n−(q−2)

)
q

)
(qL)h,g,n

+h
q
(q − 1)

(( ∑q−2
r=0

(q−2)r

r!
h(q−2)−r gr

n+q−2−r∑
i=0

(qB)h,g,i (qL)h,g,n+q−2−r−i

)
− hq−2(qB)h,g,n

)
. (5.74)

Proof. Use Lemma 5.9.7 and procedure similar to that of Theorem 5.5.8.
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Chapter 6

Hyers-Ulam Stability of Generalized Functional

Equation

This Chapter include the content of published paper (P5).



Chapter 6

Hyers-Ulam Stability of Generalized

Functional Equation

6.1 Introduction

Ulam first proposed the problem of stability of the linear functional equation

f(x + y) = f(x) + f(y). In 1941, Donald H. Hyers gave a partial affirmative answer

to the question of Ulam in the context of Banach spaces [9]. Since then, the problem

of Hyers-Ulam stability of functional equations has become very popular and studied

by many mathematicians. In Section 2 of this chapter, the solution of generalized

linear Tribonacci functional equation is established in terms of generalized Tribonacci

sequence. In Section 3, the Hyers-Ulam stability of this functional equation has been

obtained in the class of functions f : R→ X, where X is a real (or complex) Banach

space. This result is further extended to generalized linear q-bonacci functional equa-

tion. In Section 4, the solution of the generalized linear q-bonacci functional equation

is obtained in terms of generalized q-bonacci sequence and its Hyers-Ulam stability

in the class of functions f : R→ X, where X is a real (or complex) Banach space is

discussed in Section 5.
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6.2 Generalized Tribonacci functional equation

In this section, we define the generalized Tribonacci sequence and Tribonacci func-

tional equation and prove that the general solution of Tribonacci functional equation

is associated with the generalized Tribonacci sequence.

Definition 6.2.1. The generalized Tribonacci sequence is defined by

Tn+2 = a Tn+1 + b Tn + c Tn−1, (6.1)

T0 = 0, T1 = 0 and T2 = 1, ∀ n ∈ Z,

where a, b and c are non-zero fixed real numbers and Tn is the nth term. Tn is

also given by the Binet type formula,

Tn =
(α− β)γn − (α− γ)βn + (β − γ)αn

(α− β)(β − γ)(α− γ)
, ∀n ∈ Z, (6.2)

where α, β and γ are distinct roots of the characteristics equation

λ3 − a λ2 − b λ− c = 0 (6.3)

corresponding to (6.1).

Definition 6.2.2. Let X be a real (or complex) Banach space. A function f : R→ X

is called a generalized Tribonacci function if it satisfies the generalized Tribonacci

functional equation

f(x) = a f(x− 1) + b f(x− 2) + c f(x− 3),∀x ∈ R, (6.4)

where a, b and c are non-zero fixed real numbers.

We need the following lemma.
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Lemma 6.2.3. If α, β and γ are distinct roots of the characteristics equation (6.3),

then the generalized Tribonacci function f : R→ X satisfies

f(x) = Tn+2f(x− n) +
(
b Tn+1 + c Tn

)
f(x− n− 1) + c Tn+1f(x− n− 2), (6.5)

∀x ∈ R and ∀n ∈ Z, where Tn is given by (6.2).

Proof. Since α, β and γ are distinct roots of (6.3), we get

a = α + β + γ, b = −(αγ + βγ + αβ) and c = αβγ. Substituting a, b and c in (6.4),

we have

f(x) = (α + β + γ)f(x− 1)− (αβ + αγ + βγ)f(x− 2) + (αβγ)f(x− 3), which implies

f(x)−(α+β)f(x−1)+(αβ)f(x−2) = γ
(
f(x−1)−(α+β)f(x−2)+(αβ)f(x−3)

)
.

(6.6)

Replacing x by x− 1 in (6.6), we get

f(x−1)−(α+β)f(x−2)+(αβ)f(x−3) = γ
(
f(x−2)−(α+β)f(x−3)+(αβ)f(x−4)

)

and (6.6) yields

f(x)−(α+β)f(x−1)+(αβ)f(x−2) = γ2
(
f(x−2)−(α+β)f(x−3)+(αβ)f(x−4)

)
.

Hence, by induction on n, we get

f(x)−(α+β)f(x−1)+(αβ)f(x−2) = γn
(
f(x−n)−(α+β)f(x−n−1)+(αβ)f(x−n−2)

)
.

(6.7)

Similarly, we have

f(x)−(α+γ)f(x−1)+(αγ)f(x−2) = βn
(
f(x−n)−(α+γ)f(x−n−1)+(αγ)f(x−n−2)

)

(6.8)
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and

f(x)−(β+γ)f(x−1)+(βγ)f(x−2) = αn
(
f(x−n)−(β+γ)f(x−n−1)+(βγ)f(x−n−2)

)
,

(6.9)
∀x ∈ R and ∀n ∈ N ∪ {0}.

Now replacing x by x + 1 in (6.6), we get

f(x + 1)− (α + β)f(x) + (αβ)f(x− 1) = γ
(
f(x)− (α + β)f(x− 1) + (αβ)f(x− 2)

)
.

Therefore,

f(x)− (α+β)f(x−1)+(αβ)f(x−2) = γ−1
(
f(x+1)− (α+β)f(x)+(αβ)f(x−1)

)
,

since c is non-zero and c = αβγ, γ 6= 0. Thus, by induction on n, we get

f(x)−(α+β)f(x−1)+(αβ)f(x−2) = γ−n
(
f(x+n)−(α+β)f(x+n−1)+(αβ)f(x+n−2)

)
.

Similarly, we have

f(x)−(α+γ)f(x−1)+(αγ)f(x−2) = β−n
(
f(x+n)−(α+γ)f(x+n−1)+(αγ)f(x+n−2)

)

and

f(x)−(β+γ)f(x−1)+(βγ)f(x−2) = α−n
(
f(x+n)−(β+γ)f(x+n−1)+(βγ)f(x+n−2)

)
,

∀x ∈ R and ∀n ∈ N ∪ {0}.
Therefore, equations (6.7),(6.8) and (6.9) are true ∀x ∈ R and ∀n ∈ Z.

Now multiplying equations (6.7),(6.8) and (6.9) by γ2(α− β),−β2(α− γ),

α2(β − γ) respectively and adding, we get
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f(x) =
(

γn+2(α−β)−βn+2(α−γ)+αn+2(β−γ)
(α−β)(β−γ)(α−γ)

)
f(x− n)

+
(
b γn+1(α−β)−βn+1(α−γ)+αn+1(β−γ)

(α−β)(β−γ)(α−γ)
+ cγn(α−β)−βn(α−γ)+αn(β−γ)

(α−β)(β−γ)(α−γ)

)
f(x− n− 1)

+c
(

γn+1(α−β)−βn+1(α−γ)+αn+1(β−γ)
(α−β)(β−γ)(α−γ)

)
f(x− n− 2).

Using (6.2), this gives

f(x) = Tn+2 f(x− n) +
(
bTn+1 + cTn

)
f(x− n− 1) + c Tn+1 f(x− n− 2),

∀x ∈ R and ∀n ∈ Z.

We use Lemma 6.2.3 to prove the following result.

Theorem 6.2.4. A function f : R → X is a solution of functional equation (6.4) if

and only if there exists a function h : [−2, 1) → X such that

f(x) = Tbxc+2 h(x−bxc)+(bTbxc+1+cTbxc)h(x−bxc−1)+cTbxc+1h(x−bxc−2), (6.10)

∀x ∈ R, where Tn is given by (6.2).

Proof. If f(x) is a solution of (6.4), then by Lemma 6.2.3, f(x) satisfies (6.5). Putting

n = bxc in (6.5), we get

f(x) = Tbxc+2f(x− bxc) +
(
b Tbxc+1 + c Tbxc

)
f(x− bxc − 1) + c Tbxc+1f(x− bxc − 2).

Since 0 ≤ x−bxc < 1,−1 ≤ x−bxc− 1 < 0 and −2 ≤ x−bxc− 2 < −1, we define

a function h : [−2, 1) → X by h := f |[−2,1), then f(x) is of the form (6.10).

Now we assume that f(x) is a function of the form (6.10) and prove that it is a

solution of (6.4).
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Consider, f(x)− a f(x− 1)− b f(x− 2)− c f(x− 3)

=
(
Tbxc+2 − a Tbxc+1 − b Tbxc − c Tbxc−1

)
h(x− bxc)

+b
(
Tbxc+1 − a Tbxc − b Tbxc−1 − c Tbxc−2

)
h(x− bxc − 1)

+c
(
Tbxc − a Tbxc−1 − b Tbxc−2 − c Tbxc−3

)
h(x− bxc − 1)

+c
(
Tbxc+1 − a Tbxc − b Tbxc−1 − c Tbxc−2

)
h(x− bxc − 2)

= 0, ∀x ∈ R and arbitrary function h : [−2, 1) → X, from (6.1).

Therefore, (6.10) is a solution of (6.4). Hence the theorem is proved.

The above result is illustrated by the following.

Example 6.2.5. Consider the functional equation

f(x) =
23

4
f(x− 1)− 31

8
f(x− 2) +

5

8
f(x− 3). (6.11)

Define the function h : [−2, 1) → X by

h(x) = x3 − 23

4
x2 +

31

8
x− 5

8
. (6.12)

Note that 1
2
, 1

4
, and 5 are distinct roots of the characteristic equation

λ3 − 23
4

λ2 + 31
8

λ− 5
8

= 0 corresponding to the recurrence relation

Tn+2 =
23

4
Tn+1 − 31

8
Tn +

5

8
Tn−1,

with T0 = 0, T1 = 0, and T2 = 1,∀n ∈ Z.

Therefore (6.10) implies
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f(x) = Tbxc+2 h(x−bxc)+(−31

8
Tbxc+1+

5

8
Tbxc)h(x−bxc−1)+

5

8
Tbxc+1h(x−bxc−2),

is a solution of (6.11), where h(x) is given by (6.12).

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0
x

−25

−20

−15

−10

−5

0

5

f(
x
)

Figure 6-1: Graph showing solution of (6.11).

6.3 Hyers-Ulam stability of generalized Tribonacci

functional equation

In this section, we prove the Hyers-Ulam stability of functional equation (6.4) by

assuming that roots α, β and γ are distinct and 0 < |α|, |γ| < 1, |β| > 1.

We first prove the lemma required for this purpose.

Lemma 6.3.1. If a function f : R→ X satisfies,

∥∥∥f(x)− a f(x− 1)− b f(x− 2)− c f(x− 3)
∥∥∥ ≤ ε, ∀x ∈ R, (6.13)

for some ε ≥ 0 and α, β and γ are distinct roots of (6.3) such that 0 < |α|, |γ| < 1,

|β| > 1, then there exist Tribonacci functions F1, F2, F3 : R→ X defined by

F1(x) = limn−→∞ γn
[
f(x− n)− (α + β)f(x− n− 1) + (αβ)f(x− n− 2)

]
,

F2(x) = limn−→∞ αn
[
f(x− n)− (β + γ)f(x− n− 1) + (βγ)f(x− n− 2)

]
and
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F3(x) = limn−→∞ β−n
[
f(x + n)− (α + γ)f(x + n− 1) + (αγ)f(x + n− 2)

]
,

such that

∥∥∥f(x)− (α + β)f(x− 1) + (αβ)f(x− 2)− F1(x)
∥∥∥ ≤ ε

1− |γ| , (6.14)

∥∥∥f(x)− (β + γ)f(x− 1) + (βγ)f(x− 2)− F2(x)
∥∥∥ ≤ ε

1− |α| (6.15)

and

∥∥∥F3(x)− [f(x)− (α + γ)f(x− 1) + (αγ)f(x− 2)]
∥∥∥ ≤ ε

|β| − 1
, (6.16)

∀x ∈ R.

Proof. Using (6.7) with n = 1 and (6.13), we have
∥∥∥f(x)− (α + β)f(x− 1) + (αβ)f(x− 2)

−γ
[
f(x− 1)− (α + β)f(x− 2) + (αβ)f(x− 3)

]∥∥∥ ≤ ε.

Replacing x by x− k, we have
∥∥∥f(x− k)− (α + β)f(x− k − 1) + (αβ)f(x− k − 2)

−γ
[
f(x− k − 1)− (α + β)f(x− k − 2) + (αβ)f(x− k − 3)

]∥∥∥ ≤ ε.

Multiplying both side by |γ|k,
∥∥∥γk

[
f(x− k)− (α + β)f(x− k − 1) + (αβ)f(x− k − 2)

]

−γk+1
[
f(x− k − 1)− (α + β)f(x− k − 2) + (αβ)f(x− k − 3)

]∥∥∥

≤ |γ|kε, (6.17)
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∀x ∈ R, k ∈ Z.

Further,
∥∥∥f(x)− (α + β)f(x− 1) + (αβ)f(x− 2)

−γn
[
f(x− n)− (α + β)f(x− n− 1) + (αβ)f(x− n− 2)

]∥∥∥

≤ ∑n−1
k=0

∥∥∥γk
[
f(x− k)− (α + β)f(x− k − 1) + (αβ)f(x− k − 2)

]

−γk+1
[
f(x− k − 1)− (α + β)f(x− k − 2) + (αβ)f(x− k − 3)

]∥∥∥

≤ ∑n−1
k=0 | γ |k ε, ∀x ∈ R and ∀n ∈ N.

Therefore,
∥∥∥f(x)− (α + β)f(x− 1) + (αβ)f(x− 2)− γn

[
f(x− n)− (α + β)f(x− n− 1)

+(αβ)f(x− n− 2)
]∥∥∥ ≤

n−1∑

k=0

| γ |k ε, (6.18)

∀x ∈ R,∀k ∈ Z and ∀n ∈ N.

Since 0 < |γ| < 1, for any x ∈ R, (6.17) implies that the sequence
{

γn
[
f(x− n)− (α + β)f(x− n− 1) + (αβ)f(x− n− 2)

]}
is a Cauchy sequence.

Therefore, since X is Banach space, we can define a function F1 : R→ X by

F1(x) = limn−→∞ γn
[
f(x− n)− (α + β)f(x− n− 1) + (αβ)f(x− n− 2)

]

We now prove that F1(x) satisfies (6.4).

Consider, a F1(x− 1) + b F1(x− 2) + c F1(x− 3)

= aγ−1 limn−→∞ γn+1
[
f(x− (n+1))− (α+β)f(x− (n+2))+(αβ)f(x− (n+3))

]

+b γ−2 limn−→∞ γn+2
[
f(x− (n+2))− (α+β)f(x− (n+3))+(αβ)f(x− (n+4))

]

+c γ−3 limn−→∞ γn+3
[
f(x−(n+3))−(α+β)f(x− (n+4))+(αβ)f(x− (n+5))

]

= F1(x)
(
aγ−1 + bγ−2 + cγ−3

)

= F1(x),∀x ∈ R, since γ satisfies (6.3).
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Hence F1(x) is a Tribonacci function.

Now taking n →∞, (6.18) implies

∥∥∥f(x)− (α + β)f(x− 1) + (αβ)f(x− 2)− F1(x)
∥∥∥ ≤ lim

n−→∞

n−1∑

k=0

| γ |k ε =
ε

1− |γ| .

Similarly since 0 < |α| < 1, using equation (6.9) with n = 1 and (6.13), we can prove

that
{

αn
[
f(x− n)− (β + γ)f(x− n− 1) + (βγ)f(x− n− 2)

]}
is a Cauchy sequence

and since X is a Banach space, there exists a Tribonacci function F2 : R → X given

by

F2(x) = limn−→∞ αn
[
f(x− n)− (β + γ)f(x− n− 1) + (βγ)f(x− n− 2)

]

such that

∥∥∥f(x)− (β + γ)f(x− 1) + (βγ)f(x− 2)− F2(x)
∥∥∥ ≤ lim

n−→∞

n−1∑

k=0

| α |k ε =
ε

1− |α| .

Again from equation (6.8) with n = 1 and (6.13), it follows that

∥∥∥f(x)−(α+γ)f(x−1)+αγf(x−2)−β[f(x−1)−(α+γ)f(x−2)+αγf(x−3)]
∥∥∥ ≤ ε.

Since |β| 6= 0, replacing x by x + k and multiplying both side by |β|−k, we get
∥∥∥β−kf(x + k)− (α + γ)f(x + k − 1) + αγf(x + k − 2)

−β−k+1[f(x + k − 1)− (α + γ)f(x + k − 2) + αγf(x + k − 3)]
∥∥∥ ≤ |β|−kε, (6.19)

∀x ∈ R and ∀k ∈ Z.

Therefore, for n ∈ N,
∥∥∥β−n

[
f(x + n)− (α + γ)f(x + n− 1) + αγf(x + n− 2)

]

−[
f(x)− (α + γ)f(x− 1) + αγf(x− 2)

]∥∥∥
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≤ ∑n
k=1

∥∥∥β−k
[
f(x+k)−(α+γ)f(x+k−1)+αγf(x+k−2)

]−β−k+1
[
f(x+k−1)

−(α + γ)f(x + k − 2) + αγf(x + k − 3)
]∥∥∥ ≤ ∑n

k=1 |β|−kε.

Thus, for all x ∈ R and ∀n ∈ N,
∥∥∥β−n

[
f(x + n)− (α + γ)f(x + n− 1) + αγf(x + n− 2)

]

−[
f(x)− (α + γ)f(x− 1) + αγf(x− 2)

]∥∥∥ ≤
n∑

k=1

|β|−kε. (6.20)

Since 0 ≤ |β| < 1, Equation (6.19) implies that
{

β−n
[
f(x + n)− (α + γ)f(x + n− 1) + (αγ)f(x + n− 2)

]}

is a Cauchy sequence for all x ∈ R. Since X is a Banach space, we can define a

function F3 : R→ X by

F3(x) = limn−→∞ β−n
[
f(x + n)− (α + γ)f(x + n− 1) + (αγ)f(x + n− 2)

]
.

Now Consider, a F3(x− 1) + b F3(x− 2) + c F3(x− 3)

= a β−1 limn−→∞ β−n+1
[
f(x+(n−1))−(α+γ)f(x+(n−2))+(αγ)f(x+(n−3))

]

+b β−2 limn−→∞ βn+2
[
f(x+(n−2))− (α+γ)f(x+(n−3))+(αγ)f(x+(n−4))

]

+c β−3 limn−→∞ βn+3
[
f(x+(n−3))− (α+γ)f(x+(n−4))+(αγ)f(x+(n−5))

]

= F3(x)(aβ−1 + bβ−2 + cβ−3)

= F3(x),∀x ∈ R.

Therefore, F3(x) is a Tribonacci function. So as n →∞, we have

∥∥∥F3(x)−
(
f(x)− (α + γ)f(x− 1) + (αγ)f(x− 2)

)∥∥∥ ≤ lim
n−→∞

n−1∑

k=1

|β|−kε =
ε

|β| − 1
,

∀x ∈ R.

Next we prove the following theorem.
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Theorem 6.3.2. If a function f : R→ X satisfies the inequality

∥∥∥f(x)− a f(x− 1)− b f(x− 2)− c f(x− 3)
∥∥∥ ≤ ε, ∀x ∈ R,

for some ε ≥ 0 and α, β and γ are distinct roots of (6.3), then there exists a unique

solution function F : R→ X of the functional equation (6.4) such that
∥∥∥f(x)− F (x)

∥∥∥
≤ ε

|α−β| |β−γ| |α−γ|

(
(|α|−|β|)|γ|2

1−|γ| + (|α|−|γ|)|β|2
|β|−1

+ (|β|−|γ|)|α|2
1−|α|

)
,∀x ∈ R.

Proof. Since (α− β)(β − γ)(α− γ) = (α− β)γ2 − (α− γ)β2 + (β − γ)α2,

(α2 − β2)γ2 − (α2 − γ2)β2 + (β2 − γ2)α2 = 0 and

(αβ)(α− β)γ2 − (αγ)(α− γ)β2 + (β − γ)(βγ)α2 = 0,

∥∥∥f(x)− (α−β)γ2F1(x)−(α−γ)β2F3(x)+(β−γ)α2F2(x)
(α−β)(β−γ)(α−γ)

∥∥∥

=
∥∥∥ (α−β)γ2

(
f(x)−F1(x)

)
−(α−γ)β2

(
f(x)−F3(x)

)
+(β−γ)α2

(
f(x)−F2(x)

)
(α−β)(β−γ)(α−γ)

∥∥∥

≤ 1
|α−β| |β−γ| |α−γ|

∥∥∥
(
(α− β)γ2

(
f(x)− (α + β)f(x− 1) + (αβ)f(x− 2)− F1(x)

)∥∥∥

+ 1
|α−β| |β−γ| |α−γ|

∥∥∥(β − γ)α2
(
f(x)− (β + γ)f(x− 1) + (βγ)f(x− 2)− F2(x)

)∥∥∥

+ 1
|α−β| |β−γ| |α−γ|

∥∥∥(α− γ)β2
(
F3(x)− [

f(x)− (α + γ)f(x− 1) + (αγ)f(x− 2)
])∥∥∥,

≤ ε
|α−β| |β−γ| |α−γ|

(
|α−β| |γ|2

1−|γ| + |β−γ| |α|2
1−|α| + |α−γ| |β|2

|β|−1

)
, from (6.14),(6.15) and (6.16).

We now define a function F : R→ X by

F (x) = (α−β)γ2F1(x)−(α−γ)β2F3(x)+(β−γ)α2F2(x)
(α−β)(β−γ)(α−γ)

, ∀x ∈ R.
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Consider, a F (x− 1) + b F (x− 2) + c F (x− 3)

= a
(α− β)γ2F1(x− 1)− (α− γ)β2F3(x− 1) + (β − γ)α2F2(x− 1)

(α− β)(β − γ)(α− γ)

+b
(α− β)γ2F1(x− 2)− (α− γ)β2F3(x− 2) + (β − γ)α2F2(x− 2)

(α− β)(β − γ)(α− γ)

+c
(α− β)γ2F1(x− 3)− (α− γ)β2F3(x− 3) + (β − γ)α2F2(x− 3)

(α− β)(β − γ)(α− γ)

=
(α− β)γ2F1(x)− (α− γ)β2F3(x) + (β − γ)α2F2(x)

(α− β)(β − γ)(α− γ)

= F (x),∀x ∈ R.

Therefore, F (x) is a solution of (6.4). Now we prove the uniqueness of F (x).

Assume that F, F̂ : R → X are solutions of (6.4) and that there exist positive

constants C1 and C2 such that
∥∥∥f(x)−F (x)

∥∥∥ ≤ C1 and
∥∥∥f(x)− F̂ (x)

∥∥∥ ≤ C2,∀x ∈ R.

Therefore, by Theorem 6.2.4, there exist h, g : [−2, 1) → X such that for all x ∈ R,

F (x) = Tbxc+2 h(x− bxc) + (bTbxc+1 + cTbxc)h(x− bxc − 1) + (cTbxc+1)h(x− bxc − 2)

(6.21)and

F̂ (x) = Tbxc+2 g(x− bxc) + (bTbxc+1 + cTbxc)g(x− bxc − 1) + (cTbxc+1)g(x− bxc − 2).

(6.22)Fix t with 0 ≤ t < 1 and take bxc = n. It then follows from (6.21) and (6.22) that

∥∥∥Tn+2(h(t)−g(t))+(bTn+1+cTn)(h(t−1)−g(t−1))+ (c Tn+1) (h(t−2)−g(t−2))
∥∥∥

=
∥∥∥F (n)− F̂ (n)

∥∥∥

≤
∥∥∥F (n + t)− f(n + t)

∥∥∥ +
∥∥∥f(n + t)− F̂ (n + t)

∥∥∥

≤ C1 + C2, for each n ∈ Z.
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Therefore,
∥∥∥Tn+2

(
h(t)− g(t)

)
+

(
bTn+1 + cTn

)(
h(t− 1)− g(t− 1)

)

+cTn+1

(
h(t− 2)− g(t− 2)

)∥∥∥ ≤ C1 + C2.

This implies

∥∥∥
((α− β)γn+2 − (α− γ)βn+2 + (β − γ)αn+2

(α− β)(β − γ)(α− γ)

)(
h(t)− g(t)

)

+
(
b
(α− β)γn+1 − (α− γ)βn+1 + (β − γ)αn+1

(α− β)(β − γ)(α− γ)

+c
(α− β)γn − (α− γ)βn + (β − γ)αn

(α− β)(β − γ)(α− γ)

)(
h(t− 1)− g(t− 1)

)

+
(
c
(α− β)γn+1 − (α− γ)βn+1 + (β − γ)αn+1

(α− β)(β − γ)(α− γ)

)(
h(t− 2)− g(t− 2)

)∥∥∥

≤ C1 + C2. (6.23)

Dividing both sides by |β|n and by letting n →∞, we obtain
∥∥∥− (α− γ)β2(h(t)− g(t))−

(
b (α− γ)β + c (α− γ)

)
(h(t− 1)− g(t− 1))

−c (α− γ)β(h(t− 2)− g(t− 2))
∥∥∥ = 0

Therefore,

∥∥∥β2(h(t)−g(t))+(b β + c)(h(t−1)−g(t−1))+ c β(h(t−2)−g(t−2))
∥∥∥ = 0. (6.24)

Analogously, if we divide both sides of by |α|n and |γ|n and let n → −∞, then we get

respectively,

∥∥∥α2(h(t)− g(t))+ (b α+ c)(h(t− 1)− g(t− 1))+ c α(h(t− 2)− g(t− 2))
∥∥∥ = 0 (6.25)

and

∥∥∥γ2(h(t)− g(t))+ (b γ + c)(h(t−1)− g(t−1))+ c γ(h(t−2)− g(t−2))
∥∥∥ = 0. (6.26)
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Rewriting equations (6.24), (6.25) and (6.26) in matrix form, we get




γ2 b γ + c c γ

α2 b α + c c α

β2 b β + c c β







h(t)− g(t)

h(t− 1)− g(t− 1)

h(t− 2)− g(t− 2)




=




0

0

0




. (6.27)

Note that since c 6= 0 and α, β, γ are distinct roots,

∣∣∣∣∣∣∣∣∣∣

γ2 b γ + c c γ

α2 b α + c c α

β2 b β + c c β

∣∣∣∣∣∣∣∣∣∣

= c2

∣∣∣∣∣∣∣∣∣∣

γ2 1 γ

α2 1 α

β2 1 β

∣∣∣∣∣∣∣∣∣∣

= c2(α− γ)(β − γ)(α− β) 6= 0.

Therefore, (6.27) has only trivial solution and we have, h(t) = g(t),

h(t− 1) = g(t− 1), h(t− 2) = g(t− 2),∀t ∈ [0, 1).

That is, h(x) = g(x) for all x ∈ [−2, 1).

Therefore, we conclude that F (x) = F̂ (x),∀x ∈ R.

We illustrate this result.

Example 6.3.3. Consider the functional equation

f(x) =
23

4
f(x− 1)− 31

8
f(x− 2) +

5

8
f(x− 3) (6.28)

and Tribonacci recurrence relation associated to it.

Tn+2 =
23

4
Tn+1 − 31

8
Tn +

5

8
Tn−1, (6.29)

with T0 = 0, T1 = 0, T2 = 1,∀n ∈ Z.

Roots of the characteristic equation λ3− 23
4
λ2+ 31

8
λ− 5

8
= 0 corresponding to (6.29)

are 1
2
, 1

4
and 5.
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Let α = 1
2
, β = 5 and γ = 1

4
. Note that roots α, β, γ are distinct and |α| < 1, |γ| < 1

and |β| > 1.

Hence the solution is given by

F (x) = (α−β)γ2F1(x)−(α−γ)β2F3(x)+(β−γ)α2F2(x)
(α−β)(β−γ)(α−γ)

, where

F1(x) = limn−→∞(1
4
)n

[
f(x− n)− (α + β)f(x− n− 1) + (αβ)f(x− n− 2)

]

F2(x) = limn−→∞(1
2
)n

[
f(x− n)− (β + γ)f(x− n− 1) + (βγ)f(x− n− 2)

]

F3(x) = limn−→∞(5)−n
[
f(x + n)− (α + γ)f(x + n− 1) + (αγ)f(x + n− 2)

]
,

Therefore,

F (x) =
(−9

2
x 1

16
)F1(x)−( 1

4
x25)F3(x)+( 19

4
x 1

4
)F2(x)

(−9
2

)( 19
4

)( 1
4
)

= 9F1(x)+200F3(x)−38F2(x)
171

and
∥∥∥f(x)− F (x)

∥∥∥ ≤ 114
171

ε.

In the next section, we extend this result to generalized q-bonacci functional equa-

tion, where q ∈ N and q ≥ 2. Through out this section we denote ai, i = 1, 2, · · · , q,

by any fixed real numbers.

6.4 Generalized q-bonacci functional equation

In this section, we show that the solution of generalized q-bonacci functional equa-

tion is associated with the generalized q-bonacci sequence and prove its Hyer-Ulam

stability in the class of functions f : R → X, where X is a real or complex Banach

space.
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Definition 6.4.1. Let q ∈ N and q ≥ 2. The generalized q-bonacci sequence defined

by

Qn+q−1 =

q∑
i=1

ai Qn+q−1−i, (6.30)

with Qi = 0, i = 0, 1, 2, · · · q − 2 and Qq−1 = 1,∀n ∈ Z.

The nth term of (6.30) is given by the Binet type formula

Qn =

∑q
k=1(−1)k+1

∏
1≤i<j≤q,i,j 6=k(αi − αj)α

n
k∏

1≤i<j≤q(αi − αj)
,∀n ∈ Z, (6.31)

where αi, i = 1, 2, 3 · · · q are the distinct roots of the characteristic equation

λq −
q∑

i=1

aiλ
q−i = 0, (6.32)

corresponding to (6.30).

Definition 6.4.2. Let X be a real (or complex) Banach space. A function f : R→ X

defined by

f(x) =

q∑
i=1

aif(x− i), (6.33)

is called a generalized q-bonacci functional equation.

We have the following lemma.

Lemma 6.4.3. If αi, i = 1, 2, · · · , q are distinct roots of the characteristic equation

(6.32), then the q-bonacci function f : R→ X defined by (6.33) satisfies

f(x) = Qn+q−1f(x− n) +

q−1∑
p=1

q−1−p∑
s=0

as+p+1 Qn+q−2−s f(x− n− p), (6.34)

where Qn is given by (6.30).

Proof. Since αi, i = 1, 2, 3, · · · q are the q distinct roots of (6.32), we have
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f(x) =
∑q

p=1 ap f(x− p), where ap = (−1)p+1
∑

1≤i1<···<ik<···<ip≤q

∏p
k=1 αik .

Therefore, f(x)−∑q
p=1

(
(−1)p+1

∑
1≤i1<···<ik<···<ip≤q

∏p
k=1 αik

)
f(x− p) = 0.

This implies,

f(x)−∑q−1
p=1

(
(−1)p+1

∑
1≤i1<···<ik<···<ip≤q,ik 6=im

∏p
k=1 αik

)
f(x− p)

= αim

[
f(x− 1)−

q−1∑
p=1

(
(−1)p+1

∑

1≤i1<···<ik<···<ip≤q,ik 6=im

p∏

k=1

αik

)
f(x− 1− p)

]
, (6.35)

∀x ∈ R and im,m = 1, 2, · · · , q.

Replacing x by x− 1, in (6.35), we get

f(x− 1)−∑q−1
p=1

(
(−1)p+1

∑
1≤i1<···<ik<···<ip≤q,ik 6=im

∏p
k=1 αik

)
f(x− 1− p)

= αim

[
f(x− 2)−

q−1∑
p=1

(
(−1)p+1

∑

1≤i1<···<ik<···<ip≤q,ik 6=im

p∏

k=1

αik

)
f(x− 2− p)

]
.

(6.36)

Therefore, (6.35) and (6.36) implies

f(x)−∑q−1
p=1

(
(−1)p+1

∑
1≤i1<···<ik<···<ip≤q,ik 6=im

∏p
k=1 αik

)
f(x− p)

= α2
im

[
f(x− 2)−

q−1∑
p=1

(
(−1)p+1

∑

1≤i1<···<ik<···<ip≤q,ik 6=im

p∏

k=1

αik

)
f(x− 2− p)

]
,

∀x ∈ R and im,m = 1, 2, · · · , q.

Thus by induction on n, we have

f(x)−∑q−1
p=1

(
(−1)p+1

∑
1≤i1<···<ik<···<ip≤q,ik 6=im

∏p
k=1 αik

)
f(x− p)

= αn
im

[
f(x− n)−

q−1∑
p=1

(
(−1)p+1

∑

1≤i1<···<ik<···<ip≤q,ik 6=im

p∏

k=1

αik

)
f(x− n− p)

]
,

(6.37)

∀x ∈ R and im,m = 1, 2, · · · , q.

Now replacing x by x + 1 in (6.35), we get
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f(x + 1)−∑q−1
p=1

(
(−1)p+1

∑
1≤i1<···<ik<···<ip≤q,ik 6=im

∏p
k=1 αik

)
f(x + 1− p)

= αim

[
f(x)−∑q−1

p=1

(
(−1)p+1

∑
1≤i1<···<ik<···<ip≤q,ik 6=im

∏p
k=1 αik

)
f(x−p)

]
, ∀ x ∈ R

and im,m = 1, 2, · · · , q.

Also, since aq 6= 0,
∏q

im=1 αim is non-zero, hence αim 6= 0, and we have
[
f(x)−∑q−1

p=1

(
(−1)p+1

∑
1≤i1<···<ik<···<ip≤q,ik 6=im

∏p
k=1 αik

)
f(x− p)

]

= α−1
im

[
f(x + 1)−

q−1∑
p=1

(
(−1)p+1

∑

1≤i1<···<ik<···<ip≤q,ik 6=im

p∏

k=1

αik

)
f(x + 1− p)

]
,

Hence by induction on n, we get
[
f(x)−∑q−1

p=1

(
(−1)p+1

∑
1≤i1<···<ik<···<ip≤q,ik 6=im

∏p
k=1 αik

)
f(x− p)

]

= α−n
im

[
f(x + n)−

q−1∑
p=1

(
(−1)p+1

∑

1≤i1<···<ik<···<ip≤q,ik 6=im

p∏

k=1

αik

)
f(x + n− p)

]
,

∀x ∈ R and im,m = 1, 2, · · · , q.

Thus, (6.37) is true for all n ∈ Z. Note that corresponding to q values of m, there

are q equations.

For simplicity, we write im as m, ij as j and ik as k. Multiplying the mth equation

by (−1)m+1αq−1
m

∏
1≤j<k≤q(αj−αk), j, k 6= m, for each m = 1, 2, · · · , q and then adding

these equations, we get

f(x) = Qn+q−1f(x− n) +
∑q−1

p=1

( ∑q−1−p
s=0 as+p+1Qn+q−2−s

)
f(x− n− p),

∀x ∈ R and n ∈ Z.

Theorem 6.4.4. A function f : R → X is a solution of the functional equation

(6.33) if and only if there exists a function h : [−(q − 1), 1) → X such that

f(x) = Qbxc+q−1h(x− bxc) +

q−1∑
p=1

( q−1−p∑
s=0

as+p+1 Qbxc+q−2−s

)
h(x− bxc − p), (6.38)

∀x ∈ R, where Qn is the nth term of (6.31).
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Proof. We use Lemma 6.4.3 to prove the theorem. Let f(x) be a solution of (6.33),

then replacing n by bxc in (6.34), we get

f(x) = Qbxc+q−1f(x− bxc) +

q−1∑
p=1

( q−1−s∑
s=0

as+p+1Qbxc+q−2−s

)
f(x− bxc − p), ∀x ∈ R.

Also, since 0 ≤ x− bxc < 1, we have −1 ≤ x− bxc − 1 < 0, · · · ,

−(q − 1) ≤ x− bxc − (q − 1) < −(q − 2).

So, if we define a function h :
[ − (q − 1), 1

) → X, by h := f|[−(q−1),1), then we see

that f(x) is a function of the form (6.38).

Now, we assume that f(x) is a function of the form (6.38) where h :
[−(q−1), 1

) → X,

is an arbitrary function.

Then, it follows from (6.38) that

f(x) = Qbxc+q−1h(x− bxc) +

q−1∑
p=1

( q−1−p∑
s=0

as+p+1 Qbxc+q−2−s

)
h(x− bxc − p)

Therefore, for all i = 1, 2, · · · , q,

f(x− i) = Qbxc+q−1−i h(x− bxc) +

q−1∑
p=1

( q−1−p∑
s=0

as+p+1 Qbxc+q−2−s−i

)
h(x− bxc − p).

Thus, we have

f(x)−∑q
i=1 aif(x− i)

=
(
Qbxc+q−1 −

∑q
i=1 aiQbxc+q−1−i

)
h(x− bxc)

+
∑q−1

p=1

∑q−1−p
s=0 as+p+1

(
Qbxc+q−2−s −

∑q
i=1 ai Qbxc+q−2−s−i

)
h(x− bxc − p)

= 0, from (6.30).

Hence f(x) is a solution of (6.33).
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6.5 Hyers-Ulam stability of generalized q-bonacci

functional equation

In this section, we assume that αi, i = 1, 2, · · · , q are the distinct roots of characteris-

tics equation (6.32), 0 < |α2l−1| < 1, l = 1, 2, · · · , b q+1
2
c, |α2l| > 1, l = 1, 2, · · · , b q

2
c.

We now prove the Hyers-Ulam stability of the functional equation (6.33).

Lemma 6.5.1. If αi, i = 1, 2, · · · , q are the distinct roots of (6.32) such that

0 ≤ |α2l−1| ≤ 1, l = 1, 2, · · · , b q+1
2
c, |α2l| ≥ 1, l = 1, 2, · · · , b q

2
c and a function

f : R→ X defined by (6.33) satisfies the inequality,

∥∥∥f(x)−
q∑

i=1

aif(x− i)
∥∥∥ ≤ ε, (6.39)

for some ε ≥ 0 and ∀x ∈ R, then there exists q-bonacci functions Fi(x) : R → X,

i = 1, 2, · · · , q of the functional equation (6.33) defined by

F2l−1(x)

= lim
n→∞

αn
2l−1

[
f(x− n)−

q−1∑
p=1

(−1)p+1
( ∑

1≤i1<···<ik<···<ip≤q,ik 6=i2l−1

p∏

k=1

αik

)
f(x− n− p)

]
,

l = 1, 2, · · · , b q+1
2
c and

F2l(x)

= lim
n→∞

αn
2l

[
f(x + n)−

q−1∑
p=1

(−1)p
( ∑

1≤i1<···<ik<···<ip≤q,ik 6=i2l

p∏

k=1

αik

)
f(x− n− p)

]
,

l = 1, 2, · · · , b q
2
c such that

∥∥∥f(x)−
q−1∑
p=1

(−1)p+1
( ∑

1≤i1<···<ik<···<ip≤q,ik 6=2l−1

p∏

k=1

αik

)
f(x− p)− F2l−1(x)

∥∥∥

≤ ε

1− | α2l−1 | (6.40)
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and

∥∥∥F2l(x)−
[
f(x)−

q−1∑
p=1

(−1)p+1
( ∑

1≤i1<···<ik<···<ip≤q,ik 6=2l

p∏

k=1

αik

)
f(x− p)

]∥∥∥

≤ ε

| α2l | −1
, (6.41)

∀x ∈ R.

Proof. Since αi, i = 1, 2, · · · , q are the distinct roots of characteristics equation (6.32),

we have ap = (−1)p+1
∑

1≤i1<···<ik<···<ip≤q

∏p
k=1 αik .

Therefore, equation (6.39) implies
∥∥f(x)−∑q−1

p=1(−1)p+1
( ∑

1≤i1<···<ik<···<ip≤q,ik 6=2l−1

∏p
k=1 αik

)
f(x− p)

−α2l−1

[
f(x−1)−∑q−1

p=1(−1)p+1(
∑

1≤i1<···<ik<···<ip≤q,ik 6=2l−1

∏p
k=1 αik)f(x−1−p)

]∥∥

≤ ε, ∀x ∈ R and l = 1, 2, . . . , b q+1
2
c.

If we replace x by x−m1 in the last inequality, we get

∥∥f(x−m1)−
∑q−1

p=1(−1)p+1
( ∑

1≤i1<i2<···<ip≤q

∏p
k=1 αik

)
f(x−m1 − p)

−α2l−1

[
f(x−m1−1)−

q−1∑
p=1

(−1)p+1
( ∑

1≤i1<···<ik<···<ip≤q

p∏

k=1

αik

)
f(x−m1−1−p)

]∥∥ ≤ ε,

(6.42)
∀x ∈ R, ik 6= 2l − 1 and l = 1, 2, . . . , b q+1

2
c.

Multiplying both sides by | α2l−1 |m1 , we get

∥∥αm1
2l−1

(
f(x−m1)−

∑q−1
p=1(−1)p+1

( ∑
1≤i1<···<ik<···<ip≤q

∏p
k=1 αik

)
f(x−m1−p))

)
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−αm1+1
2l−1

[
f(x−m1 − 1)

−∑q−1
p=1(−1)p+1

( ∑
1≤i1<···<ik<···<ip≤q

∏p
k=1 αik

)
f(x−m1 − 1− p)

]∥∥

≤| α2l−1 |m1 ε, ∀x ∈ R, ik 6= 2l − 1 and m1 ∈ Z. (6.43)

Thus,
∥∥f(x)−∑q−1

p=1(−1)p+1
( ∑

1≤i1<···<ik<···<ip≤q

∏p
k=1 αik

)
f(x− p)

−αn
2l−1

[
f(x− n)−∑q−1

p=1(−1)p+1
( ∑

1≤i1<···<ik<···<ip≤q

∏p
k=1 αik

)
f(x− n− p)

]∥∥

≤ ∑n−1
m1=0

∥∥αm1
2l−1

(
f(x−m1)

−∑q−1
p=1(−1)p+1

( ∑
1≤i1<···<ik<···<ip≤q

∏p
k=1 αik

)
f(x−m1 − p)

−αm1+1
2l−1

[
f(x−m1 − 1)

−∑q−1
p=1(−1)p+1

( ∑
1≤i1<···<ik<···<ip≤q

∏p
k=1 αik

)
f(x−m1 − 1− p)

]∥∥

≤
n−1∑

m1=0

| α2l−1 |m1 ε, ∀x ∈ R, ik 6= 2l − 1 and n ∈ N. (6.44)

Since 0 <| α2l−1 |< 1, for any x ∈ R, equation (6.43) implies that

{
αn

2l−1

[
f(x− n)−∑q−1

p=1(−1)p+1
( ∑

1≤i1<···<ik<···<ip≤q,ik 6=2l−1

∏p
k=1 αik

)
f(x− n− p)

]}

is a Cauchy sequence. Therefore, since X is a Banach space, for each l = 1, 2, · · · , b q+1
2
c,

we can define a function F2l−1 : R→ X by

F2l−1 = limn→∞ αn
2l−1

[
f(x− n)−∑q

p=1(−1)p+1

( ∑
1≤i1<···<ik<···<ip≤q,ik 6=2l−1

∏p
k=1 αik

)
f(x− n− p)

]
.
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We prove that F2l−1(x) satisfies (6.33).

Consider,
∑q

j=1 ajF2l−1(x− j)

=
∑q

j=1 aj limn→∞ αn
2l−1

[
f(x− (j + n))

−∑q−1
p=1(−1)p+1

( ∑
1≤i1<···<ik<···<ip≤q

∏p
k=1,ik 6=2l−1 αik

)
f(x− (j + n)− p)

]

=
∑q

j=1 ajα
−j
2l−1 limn→∞ αj+n

2l−1

[
f(x− (j + n))

−∑q−1
p=1(−1)p+1

( ∑
1≤i1<···<ik<···<ip≤q

∏p
k=1,ik 6=2l−1 αik

)
f(x− (j + n)− p)

]

=
∑q

j=1 ajα
−j
2l−1F2l−1(x)

= F2l−1(x)
∑q

j=1 ajα
−j
2l−1

= F2l−1(x)
(

a1 αq−1
2l−1+a2 αq−2

2l−1+···+aq

αq
2l−1

)

= F2l−1(x)
(

αq
2l−1

αq
2l−1

)
, since α2l−1 satisfies (6.32).

= F2l−1(x).

Therefore, F2l−1(x) is a q-bonacci function, for each l = 1, 2, · · · , b q+1
2
c.

If n →∞, then (6.44) implies that

∥∥∥f(x)−
q−1∑
p=1

(−1)p+1
( ∑

1≤i1<···<ik<···<ip≤q

p∏

k=1

αik

)
f(x− p)− F2l−1

∥∥∥ ≤ ε

1− | α2l−1 | ,

∀x ∈ R, , ik 6= 2l − 1 and l = 1, 2, · · · , b q+1
2
c.

On the other hand, it also follows from (6.39) and the fact that

ap = (−1)p+1
∑

1≤i1<···<ik<···<ip≤q

∏p
k=1 αik ,
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∥∥∥f(x)−∑q−1
p=1(−1)p+1

( ∑
1≤i1<···<ik<···<ip≤q

∏p
k=1 αik

)
f(x− p)

−α2l

[
f(x− 1)−∑q−1

p=1(−1)p+1
( ∑

1≤i1<···<ik<···<ip≤q

∏p
k=1 αik

)
f(x− p− 1)

]∥∥∥ ≤ ε,

∀x ∈ R, ik 6= 2l and l = 1, 2, · · · , b q
2
c.

If we replace x by x + m1 in the last inequality, we get

∥∥∥f(x + m1)−
∑q−1

p=1(−1)p+1
( ∑

1≤i1<···<ik<···<ip≤q

∏p
k=1 αik

)
f(x + m1 − p)

−α2l

[
f(x + m1 − 1)

−∑q−1
p=1(−1)p+1

( ∑
1≤i1<···<ik<···<ip≤q

∏p
k=1 αik

)
f(x+m1−p−1)

]∥∥∥ ≤ ε,

∀x ∈ R, ik 6= 2l and l = 1, 2, · · · ,
⌊

q
2

⌋
.

Since aq 6= 0, |α2l| 6= 0. Therefore dividing both sides by | α2l |m1 , we get

∥∥∥α−m
2l

(
f(x + m1)−

∑q−1
p=1(−1)p+1

( ∑
1≤i1<···<ik<···<ip≤q

∏p
k=1 αik

)
f(x + m1 − p)

−α−m1+1
2l

[
f(x + m1 − 1)

−
q−1∑
p=1

(−1)p+1
( ∑

1≤i1<i2<···<ip≤q

p∏

k=1

αik

)
f(x+m1−p−1)

]∥∥∥ ≤| α2l |−m1 ε, (6.45)

∀x ∈ R, m1 ∈ Z and ik 6= 2l.

Therefore,
∥∥∥α−n

2l

[
f(x + n)

−∑q−1
p=1(−1)p+1

( ∑
1≤i1<···<ik<···<ip≤q

∏p
k=1 αik

)
f(x + n− p)

]

−
[
f(x)−∑q−1

p=1(−1)p+1
( ∑

1≤i1<···<ik<···<ip≤q

∏p
k=1 αik

)
f(x− p)

]∥∥∥
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≤ ∑n
m1=1

∥∥∥α−m1
2l

[
f(x + m1)

−∑q−1
p=1(−1)p+1

( ∑
1≤i1<···<ik<···<ip≤q

∏p
k=1 αik

)
f(x + m1 − p)

]

−α−m1+1
2l

[
f(x + m1 − 1)

−∑q−1
p=1(−1)p+1

( ∑
1≤i1<···<ik<···<ip≤q

∏p
k=1 αik

)
f(x + m1 − p− 1)

]∥∥∥

≤ ∑n
m1=1 | α2l |−m1 ε, for x ∈ R, ik 6= 2l and n ∈ N.

Hence, we have
∥∥∥α−n

2l

[
f(x + n)

−∑q−1
p=1(−1)p+1

( ∑
1≤i1<···<ik<···<ip≤q

∏p
k=1 αik

)
f(x + n− p)

]

−
[
f(x)−

q−1∑
p=1

(−1)p+1
( ∑

1≤i1<···<ik<···<ip≤q

p∏

k=1

αik

)
f(x− p)

]∥∥∥ ≤
n∑

m1=1

| α2l |−m1 ε,

(6.46)

∀x ∈ R, , ik 6= 2l, l = 1, 2, · · · , b q
2
c and n ∈ N.

Since |α2l| > 1, for any x ∈ R (6.45) implies that
{

α−n
2l

[
f(x + n)−∑q−1

p=1(−1)p+1
∑

1≤i1<···<ik<···<ip≤q

∏p
k=1,ik 6=2l αikf(x + n− p)

]}

is a Cauchy sequence.

Thus, since X is a Banach space, for each l = 1, 2, · · · , b q
2
c, we can define a function

F2l : R→ X by

F2l(x) = limn→∞ α−n
2l

[
f(x + n)

−∑q−1
p=1(−1)p+1

( ∑
1≤i1<···<ik<···<ip≤q

∏p
k=1,ik 6=2l αik

)
f(x + n− p)

]
.

We show that F2l(x) satisfies (6.33).

Consider,
∑q

j=1 ajF2l(x− j)
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=
∑q

j=1 aj limn→∞ α−n
2l

[
f(x− (j − n))

−∑q−1
p=1(−1)p+1

( ∑
1≤i1<···<ik<···<ip≤q,ik 6=2l

∏p
k=1 αik

)
f(x− (j−n)−p)

]

=
∑q

j=1 ajα
−j
2l limn→∞ αj−n

2l

[
f(x− (j − n))

−∑q−1
p=1(−1)p+1

( ∑
1≤i1<···<ik<···<ip≤q,ik 6=2l

∏p
k=1 αik

)
f(x− (j − n)− p)

]

=
∑q

j=1 ajα
−j
2l F2l(x)

=
(

a1αq−1
2l +a2αq−2

2l +···+aq

αq
2l

)
F2l(x)

= F2l(x), since α2l satisfies (6.33).

If n →∞, then (6.46) implies that

∥∥∥F2l −
[
f(x) +

q−1∑
p=1

(−1)p
( ∑

1≤i1···<ik<···<ip≤q

p∏

k=1

αik

)
f(x− p)

]∥∥∥ ≤ ε

| α2l | −1

for all x ∈ R, ik 6= 2l and each l = 1, 2, · · · , b q
2
c.

Theorem 6.5.2. If a function f : R→ X defined by (6.33) satisfies the inequality,

∥∥∥f(x)−
q∑

i=1

aif(x− i)
∥∥∥ ≤ ε, (6.47)

for some ε ≥ 0 and ∀x ∈ R, then there exists a unique solution function F : R → X

of the functional equation (6.33) such that

∥∥∥f(x)− F (x)
∥∥∥ ≤ ε∏

1≤j<k≤q |αj − αk|
q−1∑
p=1

∏

1≤j<k≤q

( |αj| − |αk|
1− |αm|

)
|αm|n, (6.48)

∀x ∈ R, j, k 6= m, for each m = 1, 2, · · · , q.
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Proof. From (6.40) and(6.41), we have

∥∥∥f(x)−
Pq

m=1(−1)m+1
Q

1≤j<k≤q, j,k 6= m(αj−αk)αq−1
m Qm(x)Q

1≤j,k≤q(αj−αk)

∥∥∥

=
∥∥∥
Q

1≤j,k≤q(αj−αk)f(x)−Pq
m=1(−1)m+1

Q
1≤j<k≤q, j,k 6= m(αj−αk)αq−1

m Qm(x)Q
1≤j,k≤q(αj−αk)

∥∥∥

=
∥∥∥
Pq

m=1(−1)m+1
Q

1≤j<k≤q, j,k 6= m(αj−αk)αq−1
m

(
f(x)−Qm(x)

)
Q

1≤j,k≤q(αj−αk)

∥∥∥,

since
∏

1≤j,k≤q(αj − αk) =
∑q

m=1(−1)m+1
∏

1≤j<k≤q, j,k 6= m(αj − αk)α
q−1
m .

Therefore,
∥∥∥f(x)−

Pq
m=1(−1)m+1

Q
1≤j<k≤q, j,k 6= m(αj−αk)αq−1

m Qm(x)Q
1≤j,k≤q(αj−αk)

∥∥∥,

≤ 1Q
1≤j,k≤q |αj−αk|

∑q
m=1(−1)m+1

∏
1≤j<k≤q, j,k 6= m |(αj − αk)α

q−1
m

(∥∥∥f(x)−∑q−1
p=1(−1)p+1

∑
1≤i1<···<ik<···<ip≤q

∏p
k=1,ik 6=m αikf(x− p)−Qm(x)

∥∥∥
)
|

≤ εQ
1≤j<k≤q |αj−αk|

∑q
m=1(−1)m+1

∏
1≤j<k≤q, j,k 6= m

|αj−αk| |αm|q−1

1− |αm| ,∀x ∈ R.

We now define a function F : R→ X by

F (x) =
Pq

m=1(−1)m+1
Q

1≤j<k≤q, j,k 6= m(αj−αk)αq−1
m Qm(x)Q

1≤j,k≤q(αj−αk)
, ∀x ∈ R.

Consider,
∑q

i=1 ai f(x− i)

=
∑q

i=1 ai

Pq
m=1(−1)m+1

Q
1≤j<k≤q, j,k 6= m(αj−αk)αq−1

m Fm(x−i)Q
1≤j,k≤q(αj−αk)

= F (x) for each x ∈ R.
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This implies F (x) is a solution of (6.33).

Now, we prove the uniqueness of F (x).

Assume that F, F̂ : R→ X are solutions of (6.32) and that there exist positive

constants C1 and C2 with
∥∥∥f(x)− F (x)

∥∥∥ ≤ C1 and
∥∥∥f(x)− F̂ (x)

∥∥∥ ≤ C2, ∀x ∈ R.

According to Theorem 6.4.4, there exist functions h, g : [−(q − 1), 1) → X such that

F (x) = Qbxc+q−1h(x− bxc) +

q−1∑
p=1

q−1−p∑
s=0

as+p+1 Qbxc+q−2−s h(x− bxc − p) (6.49)

and

F̂ (x) = Qbxc+q−1g(x− bxc) +

q−1∑
p=1

q−1−p∑
s=0

as+p+1 Qbxc+q−2−s g(x− bxc − p) (6.50)

for any x ∈ R.

Fix t ∈ R with 0 ≤ t < 1 and take bxc = n. It then follows from (6.49) and (6.50)

that
∥∥∥Qn+q−1

(
h(t)− g(t)

)
+

∑q−1
p=1

∑q−1−p
s=0 as+p+1 Qn+q−2−s

(
h(t− p)− g(t− p)

)∥∥∥

=
∥∥∥
Pq

m=1(−1)m+1
Q

1≤j<k≤q,j,k 6=m(αj−αk)αn+q−1
mQ

1≤j<k≤q(αj−αk)

(
h(t)− g(t)

)

+
∑q−1

p=1

∑q−1−p
s=0 as+p+1

Pq
m=1(−1)m+1

Q
1≤j<k≤q,j,k 6=m(αj−αk)αn+q−2−s

mQ
1≤j<k≤q(αj−αk)

(
h(t− p)− g(t− p)

)∥∥∥

=
∥∥∥F (n)− F̂ (n)

∥∥∥

≤
∥∥∥F (n + t)− f(n + t)

∥∥∥ +
∥∥∥f(n + t)− F̂ (n + t)

∥∥∥

≤ C1 + C2, (from assumption.)
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Dividing both sides by |α2l|n, l = 1, 2, 3, · · · , b q
2
c and letting n →∞, we obtain

∥∥∥
Pq

m=1(−1)m+1
Q

1≤j<k≤q,j,k 6=m(αj−αk)αq−1
2lQ

1≤j<k≤q(αj−αk)

(
h(t)− g(t)

)

+
∑q−1

p=1

∑q−1−p
i=0 ai+p+1

Pq
m=1(−1)m+1

Q
1≤j<k≤q,j,k 6=m(αj−αk)αq−2−i

2lQ
1≤j<k≤q(αj−αk)

(
h(t− p)− g(t− p)

)∥∥∥

= 0, since 0 < |α2l−1| < 1 and |α2l| > 1, hence 0 < |α2l−1

α2l
| < 1.

Also, dividing both sides by |α2l−1|n, l = 1, 2, 3, · · · , b q+1
2
c and letting n → −∞, we

obtain

∥∥∥
Pq

m=1(−1)m+1
Q

1≤j<k≤q,j,k 6=m(αj−αk)αq−1
2l−1Q

1≤j<k≤q(αj−αk)

(
h(t)− g(t)

)

+
∑q−1

p=1

∑q−1−p
i=0 ai+p+1

Pq
m=1(−1)m+1

Q
1≤j<k≤q,j,k 6=m(αj−αk)αq−2−i

2l−1Q
1≤j<k≤q(αj−αk)

(
h(t− p)− g(t− p)

)∥∥∥

= 0, since 0 < |α2l−1| < 1 and |α2l| > 1, hence | α2l

α2l−1
| > 1.

Thus, corresponding to q values of m, we have q equations. In matrix form this

equations are represented by




αq−1
1 · · · ∑q

i=1+s aiα
q−i
1 · · · aqα

q−2
1

αq−1
2 · · · ∑q

i=1+s aiα
q−i
2 · · · aqα

q−2
2

αq−1
3 · · · ∑q

i=1+s aiα
q−i
3 · · · aqα

q−2
3

· · ·

αq−1
q · · · ∑q

i=1+s aiα
q−i
q · · · aqα

q−2
q







h(t)− g(t)

h(t− 1)− g(t− 1)

h(t− 2)− g(t− 2)

· · ·
h(t− q − 1)− g(t− q − 1)




=




0

0

0

· · ·
0




,

where s = 1, 2, · · · , q.
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Note that ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

αq−1
1 · · · ∑q

i=1+s aiα
q−i
1 · · · aqα

q−2
1

αq−1
2 · · · ∑q

i=1+s aiα
q−i
2 · · · aqα

q−2
2

αq−1
3 · · · ∑q

i=1+s aiα
q−i
3 · · · aqα

q−2
3

· · ·
αq−1

q · · · ∑q
i=1+s aiα

q−i
q · · · aqα

q−2
q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where s = 1, 2, · · · , q and αi, i = 1, 2, · · · q are distinct roots.

= aq−1
q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

αq−1
1 1 α1 · · · αq−2

1

αq−1
2 1 α2 · · · αq−2

2

αq−1
3 1 α3 · · · αq−2

3

· · ·
αq−1

q 1 αq · · · αq−2
q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= aq−1
q

∏
1≤j<k≤q(αj − αk) 6= 0,

Therefore, h(t) = g(t), h(t − 1) = g(t − 1), · · · , h(t − (q − 1)) = g(t − (q − 1)),

∀t ∈ [−(q − 1), 1). Thus, h(t) = g(t), ∀t ∈ [−(q − 1), 1).

Hence we conclude that F (x) = F̂ (x), for all x ∈ R.

Thus, the theorem is proved.
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Summary

In our thesis, we look at the generalized Fibonacci sequence, Fn+1 = aFn + bFn−1

with F0 = 0 and F1 = 1 in a new way. The coefficients a and b are considered

as the terms of the binomial expansion of (a + b)1. It’s related generalized Lucas

sequence is defined by Ln+1 = aLn + bLn−1 with L0 = 2 and L1 = a. We call theses

sequences by B-Fibonacci sequence and B-Lucas sequence respectively. In Chapter 3,

we extend the B-Fibonacci sequence to B-Tribonacci sequence defined by (tB)n+2 =

a2(tB)n+1 + 2ab(tB)n + b2(tB)n−1,∀n ∈ Z with (tB)0 = 0, (tB)1 = 0 and (tB)2 = 1.

Various identities of the B-Fibonacci sequence are extended to B-Tribonacci sequence.

Some of these include Honsberger type identity, General Trilinear identity, d’Ocagne

type identity and Catalan type identity. We also discuss incomplete B-Tribonacci

and B-Tri Lucas sequences and their identities. In Chapter 4, we extend these B-

Tri sequences to the qth order sequences. These are called B-q bonaacci sequences.

For example, the nth term of this sequence is calculated by adding the preceding q

terms having the coefficients as the terms of the binomial expansion of (a + b)q−1.

The identities of B-Tribonacci sequence and other sequences discussed in Chapter 3

are extended to B-q bonacci sequences.

Another way of looking at the generalized Fibonacci sequence is its associated

Fibonacci polynomials. In Chapter 5, we study the generalized bivariate B-Tribonacci,

B-Tri Lucas, B-q bonacci and B-q Lucas polynomials and some identities related to

these polynomials. Besides these identities, we have obtained identities involving par-

tial derivatives of these polynomials. We have also included Convolution property of

these polynomials. In the same Chapter, we also study the incomplete generalized

bivariate B-Tribonacci, B-Tri Lucas, B-q bonacci and B-q Lucas polynomials, and

their various identities. In Chapter 6, we show that the solution of generalized lin-

ear Tribonacci functional equation is associated with generalized Tribonacci sequence
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and also obtain its stability in the class of functions f : X → R where X is a real

(or complex) Banach space. This result is further extended to the generalized linear

q-bonacci functional equation.

Problems for further studies:

There are many interesting identities of generalized Fibonacci and Lucas sequences

and polynomials which can be extended to the sequences and polynomials that we

have introduced in our thesis. In addition to this one can look for the applications

of these sequences and polynomials in the area of Electrical Network Theory, Com-

binatorics, forecasting the stock market and many other areas in which the famous

Fibonacci sequence is used.
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Appendix

Content of the Appendix is published in (E2).



Appendix

The classical Fibonacci sequence is a unique and fascinating string of numbers with

interesting properties which are obtained by using various Mathematical techniques.

In (P1), B-Tribonacci sequence and its identities are discussed. We give here some

Python programming codes which are used for verifying the identities obtained.

Python code for generating the terms of

(tB)n+2 = a2(tB)n+1 + 2ab (tB)n + b2(tB)n−1.

Python Code 1.

from sympy import *

from pylab import *

a=Symbol(’a’)

b=Symbol(’b’)

def B(n):

if n == 0:

return 0

elif n == 1:

return 0

elif n==2:

return 1

elif n<=0:

return expand(1/b**2)*((B(n+3)-a**2*B(n+2)-2*a*b*B(n+1)))

else :

return expand(a**2*B(n-1)+2*a*b*B(n-2)+b**2*B(n-3))

for i in range (0,15):

print ’B(’,i,’)=’,B(i)
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Python code for generating the graph of

(tB)n+2 = (1
2
)2(tB)n+1 + 2(1

2
)(1

2
) (tB)n + (1

2
)2(tB)n−1.

Python Code 2.

from sympy import *

from pylab import *

a=Symbol(’a’)

b=Symbol(’b’)

a=1/2.0

b=1/2.0

def B(n):

if n == 0:

return 0

elif n == 1:

return 0

elif n==2:

return 1

elif n<=0:

return expand(1/b**2)*((B(n+3)-a**2*B(n+2)-2*a*b*B(n+1)))

else :

return expand(a**2*B(n-1)+2*a*b*B(n-2)+b**2*B(n-3))

for i in range (0,15):

scatter(i,float64(B(i)))

grid(True)

xlabel(r’n’, fontsize=18)

ylabel(r’Bn’, fontsize=18)

show()
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Python code for generating the terms of B-q bonacci sequence for q ≥ 2 and n ≥ 0.

Python Code 3.

from numpy import *

from math import *

from pylab import *

from sympy import *

a=Symbol(’a’)

b=Symbol(’b’)

q=input(’Enter q’)

def B(n):

if n <= q-2 :

return 0

elif n == q-1:

return 1

elif n > q-1 :

sum=0

for r in range (q):

sum=sum+ expand(binomial(q-1,r)*a**(q-1-r)*b**r*B(n-1-r))

return sum

else :

print ’Exit’
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