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Chapter 1

Introduction

Leonardo Pisa popularly known as Fibonacci was famous for his book on Liber Abaci
published around 1202. In this book, he states a recurrence relation which starts with
0 and 1 and the subsequent terms are obtained by adding the preceding two terms.

Thus, we have

0,1,1,2,3,5,- - (1.1)

Equation (1.1) was later named as the Fibonacci sequence. This name was given by
the French mathematician Edouard Lucas in 1876. These numbers can be mathe-

matically expressed in terms of the recurrence relation (|7], [31] and [29]) by
Fopi = Fp + Fy 1,¥n > 1, with Fy =0and F =1, (1.2)

where F), is the n** Fibonacci number.

Edouard Lucas used the same recurrence relation of Fibonacci sequence with dif-
ferent seed values to generate a new sequence which is now called Lucas sequence.

Lucas sequence is given by the recurrence relation

Lpi1 =Ly + Ly_1,Yn > 1, with Ly = 2 and L; = 1, (1.3)

1



where L, is the n'" Lucas number. Identities similar to the identities of Fibonacci

sequence can be also obtained for the equation (1.3) (see [31], [29]).

Fibonacci is the family surname in Italian and it means "son of the simpleton
(Bonaccio)". He was born around the year 1170. Fibonacci studied Indo-Arabic
numeration system and computation techniques from his school teacher. Although
the Fibonacci sequence was described earlier in Indian mathematics, Fibonacci was
the first person to introduce it to the world through his book on Liber Abaci. He
also included arithmetic, elementary Algebra, Indo-numeration system, elementary
algorithms and some examples of business problems. However today he is known
to the world mostly for the Fibonacci sequence. People appreciated his work in
Indo-Arabic system. Leonardo Fibonacci used this sequence to win a competition
sponsored by Emperor Frederick IT in 1225. The contest question was: Start with a
pair of rabbits. Every month, every pair of rabbits who are over a month old gives
birth to a new pair of rabbits. After 'n’ months, how many pairs of rabbits are there?

He found that solution for this problem was the Fibonacci sequence.

Kepler studied the Fibonacci sequence independently and also its properties [31].
One of the recurrence property he discovered is about the ratios of the consecutive
terms of the Fibonacci sequence, that is

1 _
1 =1

=N

= 2,

N

= 15,2 = 1.666..., 5 = 1.6, 2 = 1.625, % = 1.61538--- He showed
that this ratio approaches a number 1.618 (approx.) which is denoted by ¢ and is
commonly known as the Golden ratio, named after the Greek sculptor Phidias, who
used it in his artwork. This ratio has many applications. The rectangle in which
the sides are in the ratio ¢ : 1, is considered to be most pleasing to the human
eye. There are many more applications in which this golden ratio appears. Like

Fibonacci numbers, Tribonacci numbers also play an important role in problems of

combinatorics ([16]) and also in the evaluation of determinants of circulant matrices

([6])-



It is this sequence which created interest within us to explore its extensions and
learn various extended identities as (1.2) has wide varieties of interesting mathemat-
ical properties and various applications ranging from Nature to Technology.

The thesis is designed as follows:

Chapter 1 is Introduction and Chapter 2 deals with an overview of literature
work.

In Chapter 3 we have introduced B-Tribonacci and B-Tri Lucas sequences, in-
complete B-Tribonacci and B-Tri Lucas sequences. We also study various identities
related to these sequences.

Chapter 4 deals with the ¢ order linear recurrence relation as an extension
of the ideas introduced in Chapter 3. Here ¢ > 2 and ¢ € N. In this chapter B-q
bonacci, B-q Lucas, incomplete B-q bonacci and incomplete B-q Lucas sequences are
introduced.

In Chapter 5, the generalized bivariate B-Tribonacci, B-Tri Lucas, B-q bonacci,
B-q Lucas, incomplete B-Tribonacci, incomplete B-Tri Lucas, incomplete B-q bonacci
and incomplete B-g Lucas polynomials are introduced. The results discussed in Chap-
ter 3 and Chapter 4 are extended to these polynomials. In this chapter, the identities
involving partial derivatives of these polynomials are included.

In Chapter 6, the Fibonacci functional equation is extended to the generalized
linear Tribonacci functional equation and proven that its solution is associated with
generalized Tribonacci sequence. Its stability in the class of functions f : R — X,
where X is a real (or complex) Banach space is obtained. These results are further
extended to the generalized linear ¢-bonacci functional equation.

At the end a brief summary of the work done is included. Few Python program-
ming codes which are used to verify the identities are given in Appendix. This is

followed by a list of publications. The thesis ends with a bibliography.



Chapter 2

Literature review

Let (a,) be a real-valued sequence and ¢;i = 1,2,--- ,n denote any real constants.
The k' order linear homogeneous recurrence relation with constant coefficients given

by
Gy = C1Qp_1 + C2Qp_o + C3Ap_3+ -+ + Crp_k, N,k € Nand k < n, (2.1)

occur in various branches of Science and Social Science. There are numerous tech-
niques of solving this equation. One technique which is stated in [32] and which we
shall use in this thesis is listed below:

Consider the characteristic equation corresponding to (2.1),

A — NPT — NP2 — e N3 — s — g A" F =0 and let a5, = 1,2,--- ,n be the

distinct roots of this characteristic equation. Then the solution of (2.1) is given by
n
ay, = Z C;a, where C;, i = 1,2,--- ,n, are any constants. (2.2)
i=1

For example, if £ = 2,¢; = 1,¢5 = 1,49 = 0 and a; = 1, then (2.1) reduces to the
Fibonacci sequence defined by (1.2).

Another concept which we shall use in this thesis is of Generating function.

4



Generating functions are powerful tools used for solving linear recursion relations and
identities relating to them. The function g(z) = ag + a1 + asx?® + -+ + a,z" + - - -
generates the terms of the recurrence relation defined by (2.1) and hence it is called

the generating function of the sequence a,,. Thus we have the following definition.

Definition 2.0.1. Let (a,) be a sequence of real (or complex) numbers. If there exists

a function g : X — R such that

g(x) = Z a; «' (2.3)

then g(x) is called the generating function of the sequence (ay).

In 1718, the French mathematician Abraham De Moivre (1667-1754) used the

generating function to generate the terms of the Fibonacci sequence (1.2) [31]. He

proved that the function f(z) = m generates the terms of the Fibonacci
sequence. The generating function of Lucas sequence is given by g(x) = 173(_11%)

Since (1.2) is a linear homogeneous recurrence relation of second degree, it can be

solved using the characteristic equation

M—-A-1=0 (2.4)

If the distinct roots of (2.4) are ¢; and ¢y, then the n'* term of (1.2) is given by

Ll o5
F, = + 2.5
o1 — @2 P2 — (25)
Note that ¢, = %5 and ¢y = 1_2‘/‘;’. Hence (2.5) reduces to
Fo= (P LA 26)
VB2 Vb2 '



Similarly, we have
(261~ @)}, (262 — a)¢3
¢1 — &2 P2 — 1

=01 + 0. (2.7)

L, =

In 1843, the French mathematician Jacques-Phillipe-Marie Binet [31] discovered this
formula which is one of the techniques of finding the n'* term of (1.2). It is called

the Binet’s formula.

Some of the identities obtained in the thesis are in terms of falling factorial power

n% (read as n to the k falling) [3]. We define it below. For n € N U {0},

(

nn—1)---(n—(k—-1)), itkeN, k<n;
0, if & > n;

1 if k= 0;

Y

1
\ (n+1)(n+2)-(n—k)”

if k is a negative integer.

The factorial of negative integers k is defined by [3]:
(k)= (=k)(=k+1)(=k+2)---(—1). (2.9)
For negative integer n and integer k ([19], [32]),

El(—1)nF —(7(’:}2?, if k& <mn;

Bl

nt=q (=DF(—n+k—1E ifk>0; (2.10)

0, otherwise.

We now state the identity related to n'® term of (1.2) and (1.3) respectively.

2
(n—1—r)t
F,= ) > (2.11)



L Ve > 1 (2.12)

2.1 Identities of Fibonacci sequence

In this section, we state some of the interesting properties of Fibonacci sequence.

(1) If 1 is added to the sum of n+1 terms of Fibonacci sequence with initial term

Fy, the resultant sum is (n + 2)% term. i.e.
I+ Z?:OE = Fn+2-

(2) The sum of the first n terms with odd suffices with initial value F}, is the (2n)%"

term which is the term with even suffix. i.e.
Z?:l FQi—l - FQTL'

On the other hand, if 1 is added to the sum of the first n+1 terms with even

suffices with initial term Fp, the sum is (2n + 1)™ term. i.e.

1+ Z?:o Fo = Foppq.

(4) The sum of the squares of the first (n+1) terms with initial term Fp of (1.2), is

the product of n'* term and (n + 1) term of (1.2), i.e.
(5) Sum of the squares of n term and (n + 1) term is (2n + 1) term. i.e.

F2 4 F2,) = Foyr.



(6) The difference of the product of (n + 1)" term and (n — 1) term, and the

square of n'" term of the Fibonacci sequence is (—1)". i.e.
Fn+1Fn_1 - Fg = (-1)”

Remark: The above identities can be proved using the generating function,

Binet’s formula or by Mathematical induction on n.

Rewriting (1.2) as F,,_1 = F,41 — F, and using Fy = 0 and F; = 1, we can

obtain the following sequence.

FOZO, Flzl, F,1:1,F,2:—17F73:2,F,4:—3,"‘.

Note that F_,, = (—=1)"*1F,.

In [31], some of the identities of Fibonacci sequence stated above are proven for

Lucas sequence.

Following identities show the relation between Fibonacci and Lucas sequences.

(1) The sum of (n + 1) and (n — 1) Fibonacci numbers is the n'* Lucas

number. i.e
Ln — I'n+1 + Fn—l-

(2) If (n—2)™ Fibonacci number is subtracted from (n+2)™" Fibonacci number

then the resultant value is the n* Lucas number. i.e.
L, = n+2 F_s.

(3) The product of F,, 4 and L, is Fy,11 — 1, if nis odd and Fy, 1 + 1, if n is

even, i.e.

F2n+1 — 1, n is Odd,
Fn+1Ln =

Fy,11 4+ 1, niseven.



2.2 Generalized Fibonacci sequence

In [31], the generalized Fibonacci sequence G,, with initial conditions G; = a and
G5 = b is defined by
Gny1 = Gn+ Gy (2.13)

The terms generated by this sequence are
Gi=a,Go=bG3=a+b,Gy = a+2b,G5 = 2a+ 3b etc. It is interesting to see that
the coefficients of the terms are the terms of classical Fibonacci sequence (1.2).

Thus, we have

Gn+1 = Fn,1 a—+ Fn b,v n > 1. (214)

(2.14) can be proved using induction on n, see [31]. With a=1 and b=1, the sequence
(2.14) reduces to G, 41 = F,,_1 + F,, which is Fibonacci sequence (1.2) and if a=2 and
b=1, it reduces to Lucas sequence (1.3).

We state below some of the properties of (2.14).

(1) Sum of the first n terms:

> G, =aF, +bF,—bVn> 1. (2.15)
r=1
(2) Binet’s Formula:
Gome B g BT (2.16)
¢1— Q2 P2— P

where c=a+ b ¢y and d = a + b ¢».

In [8], the authors consider the set of all sequences (A,) satisfying the following
equation

An+2 = CLAn+1 + bAn (217)

with initial terms, Ag and A; and later list various cases of this sequence by giving the

choices for a,b, Ag and A; including the generalized Fibonacci and Lucas sequences

9



which are defined below respectively by:

Fn+2 = CLFn+1 + bFn7W1th F() =0and F1 = ]., (218)

Lyio=aly,y1+bL,,with Ly =2 and L; = a, (2.19)

where a and b are fixed real constants. The authors in this paper have studied various
properties of generalized Fibonacci sequence and Lucas sequence using the Difference
operator.

First few terms of the sequence (2.18) are Fy =0, Fy =1, Fy = a, F3 = a* + b,
Fy = a® + 2ab, F5 = a* + 3a®b + b?, Fs = a® + 4a®b + 3ab?.

For 0 < n < 4, terms of the sequence (2.19) are Ly = 2, L; = a, Ly = a* + 2b,
Ls = a® + 3ab, Ly = a* + 4a®b + 2b°.

The terms of (2.18) can also be obtained by adding the anti-diagonal terms of the

following Pascal type triangle.

1
a b
a? 2ab b?
a’ 3a%b 3ab? b
Rewriting equation (2.18), we get
F,_ = %(Fnﬂ —a F,), with Fy =0and F; = 1. (2.20)

For —2 < n <0, we obtain the terms F_; = %,F_Q =5, Fs= “j);rb.

10



We list below some of the properties of (2.18) that fascinated us ([8] and [25]).

(1) The n'* number F, is given by

or 2 2 .
St @A FO;
F, = P1—b2 p2—h1 (2‘21)

n¢n71 ’ CL2 + 4b = 07 Cbl = ¢2 = ¢7

where ¢ = Vet V‘;Hb and ¢ = =YL ED V‘;Hb, for all a,b € R\ {0}, are roots of the

equation A2 —a A — b = 0.

(2) The generating function for Fibonacci sequence (2.18) is given by

1
Glr) = ——. 2.22
(=) 1 —z(a+ bx) (222)
(3) The n'* number F, is also given by
e (n—1—r)
_ N n—=1-2r gr
F, = ;T a b, n > 1. (2.23)
With a = k and b = 1, the result can be seen in [25].
(4) For all n > 0,
- bF, + Fpi — 1
SR =Tt o (2.24)
a+b—1

provided a + b # 1.
Another form of the extended Fibonacci sequence defined in [25] and [21], the

k-Fibonacci sequence can be obtained from (2.18) by substituting a = k£ and b = 1.

Various identities related to this sequence are included in this paper.

11



In Matrix form, the Fibonacci sequence (see [8]) is represented by

F, 01 F,_
Fn+1 b a F'n,
0 1 F, F bF,1 F,
Let A= = , then A" =
b a bFl F2 b Fn Fn+1

Following identities can be proved by using the above matrix representation.

(5) (Honsberger identity)
For any m,n € Z,

Foim1 =bF, \Fp1 + F,Fp. (2.25)

With m = n identity (2.25) reduces to

(2) Fon_y = b F2 , + F2.
With m = n + 1 identity (2.25) reduces to

(b) FQn - banan + FnFn+1.
Also using (2.18) and (5b), we can obtain, Fy, = aF?+ 2b F,,_,F},.

(6) (General bilinear identity)

For all mq, mgy, nqy,ne € Z with my + ny = mo + nyq,

Fm1 Fn1 le—s Fnl—s
— (=b)* . (2.26)

Fmg an szfs anfs

(7) ( d’Ocagne identity)

For all m,n € Z,

= (=b)" Fp. (2.27)



(8) (Catalan identity)

For all n,r € Z,

Fn Fn+7“
= —(=b)"F, F_, = (=b)" "F~. (2.28)
Fn—r Fn

putting » = 1, in (2.28) we get the following identity.
(9) (Cassini identity)

Fn anl
= (=b)" ', Vn € Z. (2.29)

Fn—l—l Fn

2.3 Incomplete Fibonacci and Lucas sequences

Filipponi introduced the incomplete Fibonacci numbers F!, incomplete Lucas num-
bers L! as well as studied their various identities in [22|. Various identities related
to the incomplete k-Fibonacci and k-Lucas numbers are studied in [12]. The author

defines the incomplete k-Fibonacci and k-Lucas numbers respectively by

l

(n—1-=0)% | 5 n—1
T B R = )
=0
'Lon (n—i) n
Li,=>_ — L kT 0<I< |2 > 1 2.31
o i:on—i 1! U= _LQJ’vn_ ’ (2.31)

where k is a positive real number.
He also studied various identities of these sequences.

We list below the properties of (2.30) and (2.31), (see [12]).

(1) For all n > 2,

[ l l
ij;g =k ij;l +F,. 0<I1<|

. (2.32)

13



Using (2.30), equation (2.32) can be rewritten as

(n—1-0t
Flf:,n+2 =k F,imﬂ + F,in - grn—1-20
(2) For all s >0,
st i _ pl+s n—s—1
ZEFIC;—I—Z‘IC_FIC;-Fy 0<i<| 5 ]
i=0
(3) For all s > 1,
s—1
Z Fli,n+z‘ks_1_i = F;i;isﬂ - ksF,ij;lJrl,
i=0
(4) For all n > 2,
-2
Lt =k Ll + L, 0<1< ==,
Using (2.31), equation (2.36) can be rewritten as
(n—1-0t
Lk,n+2 =k Lgc,n—i—l + ng,n I TR grim2
(5) Foralln>1, s >0,
—~ st I+s n—s—1
i=0
(6) For all s > 1,
s—1
Z Lé“v”” B = Lﬁnl+s+1 - ksLicTan-
i=0

(7) For all n > 2,

n

L, =F L +F,.,, 0<I< L%J.

14
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2.4 Fibonacci polynomials

Fibonacci polynomials are the natural extensions of Fibonacci sequence. In [25] and
[31], these polynomials are studied in one variable, where as Hongquan Yu and Chuan-
guang Liang derives identities involving partial derivatives of bivariate Fibonacci and

Lucas polynomials in [11]. In [25], Fibonacci polynomials are defined by

1, when n = 0,
Fop(r) =9 =, whenn =1, (2.41)

zF,(x) + F,_1(z), whenn > 2,

with Fy(x) = 0, where F,(z) is the n'® Fibonacci polynomial.

In [15], Lucas polynomials in x are defined by
Lpi1(z) = xLy(x) 4+ Ly (x), Yn > 1, (2.42)

with Lo(z) = 2 and L,(x) = x, where L, () is the n'* Lucas polynomial.

In [11], the bivariate Fibonacci and Lucas polynomials are respectively defined by
Fo(z,y) =aF,(x,y) + yF._1(z,y), Vn > 1, (2.43)

with Fy(x,y) = 0 and Fi(z,y) = 1, where F,(z,y) is the n'* Fibonacci polynomial.
Lpii(z,y) = aLly(x,y) + yLy1(x,y), Vn > 1, (2.44)

with Lo(z,y) = 2 and L, (z,y) = z, where L, (z,y) is the n* Lucas polynomial.
Various properties related to the polynomials (2.43) and (2.44) are obtained in [31].

For simplicity, let F,, denote F,,(x,y) and L,, denote L, (z,vy).

15



The n'* term of (2.43) and (2.44) respectively as defined in [11] are given below

—1—=3) ,
F, = u ZE LTy > 1, (2.45)
- 2.

n (n—i)t

Ln = ((n—z’) il

1=0

) "2yt n > 1. (2.46)
Identities relating Fibonacci and Lucas polynomials (2.43) and (2.44) are

(1) Ly = Foot + yFps.

(2) Ly = 2Fu1 — 2F,.

Following identities involving partial derivatives of F,, and L, discussed in [11].

Let B = 25 (B ) and L$Y = 22 (L,), k,j > 0.

T Oxkoyi T Oxkoyd

we list the identities below:
(1) LY =y 5D + GEMY 4 D
(2) B = aF 5] 4 yF&) 4+ kFE) 4 G,
(8) L = e Ly +yLyty) + kLIS 4 LY,

(4) nEM = L),

(5) nF™) = L+,

2.5 Incomplete Fibonacci and Lucas polynomials

The incomplete h(x)-Fibonacci and h(z)-Lucas polynomials and their identities are
introduced in [14], whereas in [13], the incomplete Tribonacci polynomials and their

identities are studied.

16



Definition 2.5.1. The incomplete h(x)-Fibonacci polynomials is defined by

l

) i Ty N P e p (2.47)

F!
h 2
=0

n

Definition 2.5.2. The incomplete h(x)-Lucas polynomials is defined by

IN

Ly (x) =) n _u hE (), 0<1

e 1Z]. (2.48)

Identities similar to incomplete k-Fibonacci and k-Lucas sequences are obtained
for the polynomials F} () and Lj , (z) in [14].
In [13], the Tribonacci numbers are defined by
tn+2 = tn+1 + tn + tn—la Vn Z 1, (249)

with tOZO, tl =1 and tg =1.

In [13], Jose L.R. introduces the incomplete Tribonacci numbers and incomplete

Tribonacci polynomials. These are respectively defined by

t;:ZZZ<n_i;!j_l)i> Oglgtnglj‘ (2.50)

l i . . . :
Lo En—i—J— 1) 5 9 364 n—1
T(:c)—’z’oﬁ g x J,oglg[TJ. (2.51)

Various identities relating to (2.50) and (2.51) are discussed in [13].
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2.6 Functional equations

A functional equation is an equation whose solutions are the functions [24]. Stability
problems of functional equations have been extensively studied. (see [9], ([23]), (|26])
and references therein). The importance of the topic lies in the fact that stability of
functional equation is associated with notions of Controlled Chaos [30] and Shadowing
[33]. In [26], the author discusses the stability problem in Banach space for Fibonacci
functional equation defined by f(z) = f(x—1)+ f(x—2), whereas in [27], he discusses

the stability of the generalized functional equation defined by

f($) :pf(x—l)—qf(:v—Q),Vp,qE]R, (252)

in Banach space. In [20], the problem is discussed in Modular Functional space. In
[4], k-Fibonacci functional equation is discussed whereas in [18] and [10] solution and
stability of Tribonacci functional equation f(z) = f(z — 1)+ f(z — 2) + f(z — 3)
in non-Archimedean Banach spaces and 2-normed spaces have been discussed re-
spectively. Stability of Tribonacci and k-Tribonacci functional equations in Modular
spaces are discussed in [17]. In [28], authors investigate the solution of generalized

linear Tribonacci functional equation in terms of Fibonacci numbers.
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Chapter 3

B-Tribonacci and B-Tri Lucas sequences

This Chapter include the content of published paper P1.



Chapter 3

B-Tribonacci and B-Tri Lucas

Sequences

3.1 Introduction

In this Chapter, we introduce a new extension of generalized Fibonacci sequence
defined by the recurrence relation (2.18), namely, F,, ;1 = aF,, + bF,,_1, with Fy =0
and F; = 1. We consider the coefficient on the right hand side, namely a and b to be
the terms of the binomial expansion of (a + b)'. We rename this sequence as
B-Fibonacci sequence.

Through out this Chapter, we denote a and b to be non-zero real numbers.

We define B-Fibonacci sequence in terms of new notation as follows.

Definition 3.1.1. Let n € NU{0}. The B-Fibonacci sequence is defined by
('Bpyr=a (!B)p+b (B, Vn>1, (3.1)
with (Y B)y = 0 and ( B), = 1,

where (' B),, is the n'* term.
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Rewriting equation (3.1),we get

(B)sr =3 (('Blurs —a UB),), (3.2)

with (Y B)y = 0 and (' B), = 1.

Using this representation, we obtain the terms of (Y B),, with negative integer suffix.

Thus, (3.1) is true for all n € Z and we have,
(B)py1=a (!B), +b('B),_1,¥n € Z, (3.3)

with (‘B)y = 0and ('B), =1,

where (Y B),, is the n'® term of the sequence defined by (3.3).

Note that equation (3.3) is equation (2.18) of Chapter 2 with the change in
notation and hence all the identities stated there holds. The change in notation from

F to (/ B) is made with expected further extensions.

The above idea is extended to Tribonacci sequence such that the n'* term is
obtained by adding the preceding (n—1)", (n—2)", (n—3)" terms having coefficient
a?, 2ab and b? respectively. These coefficients are the terms of the binomial expansion
of (a+b)% Tt is well known that the binomial coefficients carry a lot of combinatorial
information in them. As Binomial expansion is an important tool in Combinatorics

related fields, it is natural to expect some applications of such sequences.

In Section 2 of this Chapter, we study B-Tribonacci sequence and its various
identities. In Section 3, we introduce B-Tri Lucas sequence and extend the identities
of the B-Tribonacci sequence to B-Tri Lucas sequence. The last section deals with
the incomplete B-Tribonacci sequence and incomplete B-Tri Lucas sequence. We also

study their identities.
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3.2 B-Tribonacci sequence

The Tribonacci sequence is an extension of the Fibonacci sequence where each term
is the sum of the three preceding terms. This sequence has been extended in many
ways. Here we extend the idea of introducing the sequence (3.3) to define a new

sequence. We call it B-Tribonacci sequence and denote it by (*B),,.

Definition 3.2.1. Let n € NU{0}. The B-Tribonacci sequence is defined by

('B)ps2 = a*('B)ps1 + 2ab('B)p, + b* ('B)p_1, n > 1, (3.4)
with (*B)y =0, (*B); =0and ("B), =1,
where the coefficients on the right hand side are the terms of the binomial expansion
of (a+b)? and ('B), is the n'® term.

The first six terms of (3.4) are (*B)y =0, (*B); =0, (‘B), = 1, ('B)s = d?,
(!B)y = a* + 2ab and (*B)s = a® + 4a3b + b*.

Rewriting equation (3.4), we get

For —3 < n < 0, we have the terms of (3.5) as follows:
(B)y= & (B) o= (B) 5= % (B), = = 4 & = L(—da®h+1?).

Thus, Definition 3.2.1 can be extended as follows:

Definition 3.2.2. The B-Tribonacci sequence is defined by

('B)pio = a*('B)py1 + 2ab(*B),, + V* ('B),_1, ¥ n € Z, (3.6)

with (*B)y =0, (*B); = 0and ("B), =1,
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where (*B), is the n'™ term of (3.6).

We have following identities for the B-Tribonacci sequence.

The n" term of Fibonacci type sequences can be obtained directly using Binet

formula. We have similar type formula for B-Tribonacci sequence.

Theorem 3.2.3. If ¢1,¢2 and ¢3 are roots of the characteristic equation

A3 — a2\2 — 2ab\ — b2 = 0 (3.7)

corresponding to (3.6), then the n'" term of B-Tribonacci sequence (5.6) is given by

o1
(p1—92)(P1— 03

b3 o3

, .
S ada) T Gaman)Ba—am) » ©i's are all distinct,

) T

¢n ¢n n¢n71 , B
\ G~ o T Gaeryy  @'s are such that ¢y # ¢y = ¢s.

(3.8)
Proof. If ¢1, ¢ and ¢3 are distinct roots of the characteristic equation (3.7), then the
solution of (3.6) is given by

(*B), = C1¢} + Cody + C30%, where C;, i = 1,2, 3 are real constants. (3.9)

If any two roots of the characteristic equation (3.7) are equal, say, ¢o = ¢3, then its

solution is given by
('B),, = C1¢} + (Cy + n C3)¢h, where C;, i = 1,2,3 are real constants.  (3.10)

Equations (3.9) and (3.10), satisfying the conditions (*B)y = 0, (*B); = 0 and
(*B)y = 1, leads to (3.8). O

Equation (3.8) is a Binet type formula for the B-Tribonacci sequence (3.6).
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Remark: The case of all three roots of the characteristic equation being equal, is

ruled out due to the choice of coefficients.

Theorem 3.2.4. The n'" term of B-Tribonacci sequence (3.4) is given by

on —4 — 2r)-
(‘B)n = 2n r) a® A W > 2. (3.11)

Proof. By induction on n.

For n = 2, R.H.S. of (3.11) = 30_, (_3—,T)£ a™ b =1= ('B); = L.H.S., hence the
result is true for n = 2.

Now let the result be true for n < m and consider n = m + 1.

Let k£ > 1. We divide the proof into three cases, m = 3k, 3k + 1, 3k + 2.

Case (i) m = 3k,

Consider, a*(*B)s; + 2ab(*B)sy,_1 + b* (' B)3j_2

— \"2k—2 (6k—4-2r)"  6k—2-3r pr 2k—2 (6k—6-2r)"  6k—5-3r pr+1
=20 b2 b

2k36k82r’" _8_
‘1”2 ) qk—8-3r pr+2

_ (6k&4)Q abk—=2p0 4 ((6k 6)L +2) 6k—5 1

—4—9r)" 771”7“71 771”7“72 9
+Z2k 1(6k i;Q) 1 o6k (;4_?)!) G (f_g)? ) abk—2-3r pr

6k—4)0 _ 6k—4)L _
_( 0!) afk—2p0 4 ( 1!) abk—5 pl

+22k 1 ( (6k— 3 27") i (6k—3—2r)"

e— _1> a6k—2—37’ b

6k—4)0 _ 6k—4 2k—1 (6k—2—27)" _9_
:(0!) a6k2b0+(1!) 6k5bl+z = )t 6k—2=3r pr

2k—1 (6k—2-2r)" 9
=% (6 )t 6k—2-3r pr
r=0 r!
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= ("B)3k11-

Similarly, we can prove the result for m = 3k + 1 and m = 3k + 2.

This completes the proof. n
Using similar procedure we can prove the following Corollary.

Corollary 3.2.5. The n'™ term of B-Tribonacci sequence (3.5) is given by

(‘B)u= ) (2n -4 = 2r)" a® Y W < — 1. (3.12)

Theorem 3.2.6. Sum of the first n + 1 terms of B-Tribonacci sequence (3.4) is

v (B)ugt + (02 +2ab)(“B), + *(*B)py — 1
2B = (a+b)2—1

, Vn >0, (3.13)

r=0
provided a +b # 1, —1.
Proof. Note that for n =0, >.°_ (‘B), = 0.

Also, since ("B)_; = 3, R.H.S. of (3.13) = 0. Hence the result holds for n = 0.

For n > 1, we prove the result by induction on n.

Let n =1, R.H.S.= “B>2+(b2+fjf’gl§;§jll+b2“B)O‘l —0=LHS., as (‘B), = 1.

Therefore, the result holds for n = 1. Assume that the result is true for n < m.

Let n =m+ 1.
m+1 m
Z(tB)r = Z(tB)T + (tB)erl
r=0 r=0
('B)my1 + (0* +2ab)(*B)im + 0*("B)m1 — 1

- (a+b32—1 + (B

(b +2ab)('B)pm + V*(*B) o1 — 1 + (a® + 2ab + b*) (' B) 11
(a+b)2—1
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(*B) i + (0* + 2ab)('B) i1 + 0*(*B),, — 1
(a+0)2—-1

Hence the result is true for n = m + 1.

By mathematical induction, result follows. O

Similarly, we can prove the following Corollary.

Corollary 3.2.7. Sum of the n terms of (*B)_,, for 1 <r <mn is

zn:(tB) _ (tB>—TL + (b2 + 2ab) (tB)—(TH-l) + bg(tB)—(n-i-Q) —1 (3 14)
= (a+b)*—1 ’ '
Vn > 1, provided a + b # 1, —1.
Rewriting (3.14), we have
— 'B)_n+ (b* +2ab)(*B) _(n11) + V*(!B) _(n1o) — 1
tBT::_( n (n+1) (n+2) 315
TZ_:I( ) (CL + b)2 1 ) ( )
provided a + b # 1, —1.
Combining (3.13) and (3.15), we have
S w(B)e = Gt | (Bl = (1B) )
-%§+2wﬂﬁmn—UBme)+§WB%4—UBmeﬂ (3.16)

provided a + b # 1, —1.
Equation (3.16) gives the sum of the terms of (3.6) from r = —n to r = n.

We now state the excluded cases in the above result.

(a) Let a,b € R. If a 4+ b = 1, substituting a = 1 — b in (3.4) and then simplifying,

we obtain the r** term of B-Tribonacci sequence (3.4), given by

r—2 LT;?)J 2r—4—3p
o — 4 — 2p)ste
t _ _ p _ 5( p s+p
(B). =3 (-2 + (-1 S,
p=0 p=0 s=r—1-p



where 3 () =0,if 1 < 0.
Hence we have, 374 (' B),

Znﬂz ( Qb)p+zn+1ZL J227’7473p (_1) s (2r—4—2p)s*P ps+p

y4 0 s=r—1—p pls!

= 1+2b (n +2b 1+22}I)))")+Zn+1 ZL J 221"747310 (_1)5 (27”4—2177 bS+P

y4 0 s=r—1-—p pls!

provided b # —3.

If b= —%, then a = % and equation (3.4) reduces to
9 3
(tB)n+2 = _(tB)n—H - _(tB)n +

The roots of the characteristic equation \* — % A2+ % A — }1 = 0 corresponding
0 (3.17) are ¢ = +

1, ¢2 = 1 = ¢3 and Binet type formula gives the 7 term,

Y S S
(P2 — ¢1)*  (d2 — ¢1)? ¢2 —¢r
Hence,
n+1 o n+1 ¢r T¢r 1
2t (B =205 ey (¢2 )2 t i

=3?E0 -3 = (n+2)] +2(n+1)(n+2).

n—2 LnTisJ 2n—4—3r
t _ r 1\ (2n —4 - 2r)8+T s+r
( B)TL - ;(2b) + — ( 1) S;_T T!S! b )

where Zf«:o ()=0,if Il <0.

This case can also be discussed as above.

A similar type of cases can be studied for equation (3.5).

For a = % and b = % such that a + b = 1, we have the following graph for the
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sequence (3.4) defined by

(‘Bluta = () (Bluts + 2 B)n +(3)° (Bln-r. (3.17)

1.0f

0.8

0.6

0.41

Figure 3-1: Graph showing terms of (3.17)

An interesting property of B-Tribonacci sequence is that like B-Fibonacci se-
quence, the ratio of successive B-Tribonacci sequence converges to one of the roots,
say, ¢1 of the characteristics equation corresponding to the recurrence relation (3.5).
Similarly, a ratio of preceding terms converges to i which is also the root of charac-
teristic equation corresponding to the recurrence relation (3.5). We have the following

theorem.

Theorem 3.2.8. Let the roots ¢1, ¢o and ¢3 of (3.6) be distinct ¢1 # 0 and

|p1] > |p2| > |p3], then

(i)

- ('B)n
lim B o1 (3.18)
(i) t
lim (Bt 1 (3.19)




Proof. By using Binet type formula (3.8).

lim (‘B _ lim Pt (P2 — ¢3) — Oy (D1 — ¢3) + D5 (1 — P2) '
n—oo (!B)p_1  n—0c @1 o — ¢3) — @5 (1 — b3) + 05 (d1 — o)

Since [¢1] > [¢s] > |05, 12 < 1 and 12 < 1.
|2

Hence hmn—»oo(m)n =0 and llmnﬁm(%)” = 0.

Therefore we have,

lim —(tB> = lim (02— 9s) (g_) (&1 ( )
n—oo (‘B)po1  n—oo oy (¢2 — ¢3) — ( 1) (¢1¢2¢3) + (zl) (¢1¢3¢2)

_ (2 — ¢3)
o1 (P2 — ¢3)

= ¢1-

Again using Binet type formula, we can prove the equation (3.19). ]

Theorem 3.2.9. The terms of the equation (3.6) can be generated from the series

Z 2"(a + bz)*"

n=—oo

Proof. 3200 __2Ma+b2) =300 2Ma+b2)? + 3200 2 a + bz)*
— ;_OO P D (21':' akp2n—k2n—k S0 2 Z (2n' a2n—kpk &
=120 2% g 1p3 2318 ) a®b722724+2%(a+b2)0 421 (a+b2) %+ 2% (a+b2) +
= =2ab32 + 07223+ 022+ 027 + 1 2% + a?2 + (o + 2ab)2?

= '+(tB)_22_4+(tB)_1Z_3+(tB)o Z_2+<tB)1 Z_1+<tB)2 ZO+(tB)3 Z+(tB>4 22+

= z;.),oz—co(tB)n+2 2"

Hence the theorem is proved. O

28



Corollary 3.2.10. (1) The generating function for B-Tribonacci sequence (3.4) is

given by
(Gh(2) = 1= z(a1+ b2)2)’ (3.20)
provided |z(a + bz)?| < 1.
(2) The generating function for B-Tribonacci sequence (3.5) is given by
(G)a(e) = ﬁ<1 L@+ b1 —(az + b)2)>’ (3.21)
=

provided |35 (z* 4+ b* — (az +b)?)| < 1.
The B-Tribonacci sequence (3.6) can be represented in Matrix form as follows:

(“B)n 0 1 0] [("B)a
(‘B)psr| = |0 0 1 (‘B)n
(*B) a2 b2 2ab a? (*B) i1

-0 1 0
Let A=1|0 0 1], then
b* 2ab a?

V('B)n_1 V(B)p_o+2ab('B),_1 (!B),
A= | *('B),  b*('B)p_1 +2ab(*'B), (*B)pi1| (3.22)
V*(‘Blnsr U*('B)n +2ab('B)ny1i ("B)uya

Using (3.6), equation (3.22) can also be written as

b2(tB)n—1 (tB)n—l-l - a2(tB)n (tB)n
A"= | P(B)y  (Bluz — (Bl (B)ust| - (3.23)
bQ(tB)n-i-l (tB)n+3 - a2(tB)n+2 (tB)n+2
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Note that A° = I, is an identity matrix of order 3x3. Following result can be

deduced from (3.22).

Theorem 3.2.11. (Honsberger type identity)

For any m,n € Z,

(tB)n+m—1 = bQ(tB)n—l(tB)m—l + (tB)m(b2<tB)n—2 + Qab(tB)n—l) + (tB)n(tB)m-I-l'
(3.24)

Proof. Equation (3.22) implies

b2(tB)n+mfl bQ(tB)n+mf2 + 2ab(tB)n+mfl (tB)ner
An+m = bz(tB)n-i-m bQ(tB)n-&-m—l + 2ab(tB)n+m (tB)n-i-m—l—l <3'25)

V(B)nimi1  V(B)pym +2a0(B)pime1r (OB)pimao-

Let M;; denote the element of first row and first column of the matrix. Then, equating
the element M, of the matrix obtained by multiplying the matrices A" and A™ with

the element M;; of the matrix defined by (3.25), we get the required result. O

Following Corollary follows immediately.
Corollary 3.2.12. For any n € Z,

(1) ("Blan-1 = 0*("B)y 1 + 2 ('B)u("B)nsr — a*('B);

(2) ("B)an = ("B)ji1 + 2ab(' B);, + 26*("B)n (" B)n-1.-
Proof.
(1) Substituting m = n in (3.24) and using (3.6), we get (1).
(2) Substituting m =n + 1 in (3.24) and using (3.6), we get (2). O
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Theorem 3.2.13. (General Trilinear identity)

For all my,n;,r;,seZ, 1 <1<3,

(tB)ml (tB)Tll (tB)Tl (tB)ml—S (tB)nl—S (tB)Tl—S
(B)my (B)ny (‘B)ry | = (=0 (B)inyos (‘Bluyes (‘B)rps |-
('B)my ('B)ny (‘B ("B)mg—s (Blug—s (B)ry—s

(3.26)

provided n; + 1 = ng + 15, M +n; = m; + n;, m; + 1, = my, + 15, for distinct ¢, j, k

such that 1,7,k =1,2,3.
Proof. Let oy = ¢ — 3, ap = ¢1 — 3, a3 = ¢$1 — ¢, Where ¢;,7 = 1,2,3 are

distinct roots of A3 — a?A\? — 2ab\ — b* = 0. Therefore (3.8) implies

a1t — ol + azdh S (—1)Haep

t _ _
( B)n - 109 - 3
10203 [T, o
Consider,
P . _s P . s P . _s
?:1(_,%)”1@1"75;”1 ?:1(7-\1)”10%"75?1 ° 13:1(7“1)#1%(1,;1
=35 <3 =35
i=1 Qi i=1 % i=1 Qi
P . _s P . s P : ro—S
. 218 37 _ ’+1a‘¢m2 1_37 _ z+1a,¢’72 37 _ z+1a,¢_2
RHS - [(_b) ] 1—1( é% a.z Z 1—1( Y:)g a‘Z i 1_1(\(2 a.’L i
i=1 Qi i=1 Qi i=1 %
P. . s P s P s
5:1(7@1“0‘2"1’:”3 ?:1(* )Hlai(ﬁ?s ?:1(* )Hlai‘b:g
~'3 | ~'3 i ~'3 |
i=1 % i=1 % i=1%i

— B (000" — aad T gl )

o ( ?:1 O‘i)g

<(041¢7f2_s — @5+ agdy® ) (g T — gy’ + azdy’ )

—( 977 — a2y + a3y’ ) (9P — Tt + 043(/53378»

—(0n "7 — s T+ syt )
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((041¢71nrs — @y 4 a3y ) (1P — gy’ + azdy’ )

—(1d7 7" — a9y’ 4 a3ds’ ) (T — gy + 043¢§n3_5)>
(197" " — ady T + azgy' )
<(OZ1¢T2_S — Q0?7+ a3y ) (T — gy + azdy® )

—(Q19* " —dy® a3y’ ") (AT — gyt +ag ?375)”

= % [(aléb;m_s — a0y 7 + a3y )
(= s (6100) (81265 + G703 — G705 — 107)
Fanas(0105) (1205 + G — GPOF — 0105)
—azg(das) (G50 + GP O} — ORI — 007
(000} — 0205 + 0305 )
(= @102(0102) (G265 + 6705 — 67205 — 1P 07)
Fonas (6105) (G105 +OT OF — BT B 1 67

T O I (AR AR
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o = adh " + agdy )
(e (6162) (G708 +61 05 — 1200 — 677 037)
s (9r0s) " (GT O+ OT T 01 O — 61
—an0s(0as) (055 +OF O — 0O~ 08 ] ,

since n; + 1, = Ny + i, m; +n; = m; +n;, mj +rp = my + r;, for distinct ¢, 7, k

such that 7,7,k =1,2,3,
=1 gji]is)g [( — a1z (P19203) T OF (G125 + PP 5 — PRBE — PP Bh?)
—a1030005" ($10900) (GG + BTG5 — 910" — 617 0%)
— 03050107 (620501) (6 + OFO — GF G — 6 07))
—((— cr0a0u05 (16020a) (G705 + 0705 — 05 — 67 05)
—anaady (G1602) (ST + GPOT? — OGT — 674 05)
—azas0107 (620901) (G576} + GP G — G — 61767
(= naasdy (91dad) (7765 + 61005 — 165" — 7 65?)
—nasoadl (1030) (D170 + 0005 — G705 — 67 05)
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—042013041§Z57{1 (¢2¢3¢1)78(¢£n2 ¢§3 + ¢g3¢?2 - ¢§2¢§”3 - ¢?3¢§2)>] )

since n; + rp = ng + r;, m; + n; =m; +n;, m; + 1 =myg+7j, for distinct 4, j, k
such that 4,5,k = 1,2,3 and ¢1¢9¢5 = b2,
—b)2]s —S$ m ng T r3 n ro M nsg r
:(é#[_al‘bai%(w) ( 5 (P12 05° + 01 957 — P 9° — G017 9Y?)

=1 @i)?
O3 (G16R + SR 05 — BT GE — 91 0)
FO (G570R + 5057 — R ON — 630y )
—anaay (02) (65 (6705 + 6705 — BT — o1 0R)
FOR (G105 + G057 — GT R — 610%)
O (G5O + G — SR 0L — 0P 0r))
—arazas(8?) (@5 (67265 + 91005 — 165" — 705
G5 (SI0Y + B GY — G — BT 6)
+wwwwww—ww—wwﬂ
— v (—auasag) |65 (O 6F + G705 — 0N — 61 0F)
U5 (G170 + SR 0N — BTGE - O10F)
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+OT (90705 + 957 05" — 95705 — 95" 95’

5 (G105 + 605" — 97 05° — 167

+05 (A1 05" + 195" — 917 05" — B y?)

SR G S i A A i

05 (91205 + @179y — 9105 — ¢ h57)

05" (91 95° + P15 — 1795 — ¢ Py?)

T01 (957 05° + 03° 95" — 3795 — 03" d5?)

P ) P ) P )
?:1@?1)”10‘@;”1 ?:1('?1)z+10‘i¢?1 ?:1??1)”10‘1'9{’:1
<3 <3 <3

i=1 Qi i=1 Qi i=1 Qi

P ; P , P ,
3 m 3 n 3 r
L.HS =| —=mghTae™ gD ed® s ) e

i=1 i i=1 i i=1 Qi

P . . P , . P . .
Y e DT Y D eI Y e DT
<3 '3 ~3

T QG i=1 i=1 %

= ([T 00)~2 (16" — o + asf)
(@161 = 2057 + asei?) (o7 — sy’ + aso})

(@10} — qwdf? + adf?) (6} — audf + asdi))
(10} — ad’ + agdp)
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<(Of1¢71ﬂ2 — 205" + a3p5?) (1B’ — aady’ + azdy’)
(@16} — a0} + aydi?) (10} — audf® + gy )
+H(a g — gy + azdy')
((041¢T2 — @20y + 3¢5 ) (a1 — gy’ + azds?)
—(10)? — azdy® + azdy® ) ()" — ady™ + a3¢73n3))]
= (IT.y )73 [(%Gﬁm — aady" + azgs™)
(— caas(oiap + 67057 — 605" — o107
Fanag(@105 + 665 — 6 6R — 61 6%)
—az05(937 6} + GFOR — GFGR — 6107))
(61 — 0305’ + ag05' ) ( — aaa(9176R + 6PN — TR — $10)
Fanag(672 95 + G R — 6reR — 6P 0%)
—0305(957 05 + OPOF7 — OFON — 91 7))
(6} — asdf + aggf ) — maa(9l7eR + G165 — O — 6105

taras(077 05" + 175" — 1" 5" — 617 d5?)
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—az03(8520° + 0501 — 93205 — 6 01?) ) ]
= (I, ) [( — a0z} (G105 + G708 — G0N — B 05)
—a1050205" (0165 + 67057 — 6178 — 01 07)
— 03050107 (937 6F + G501 — OF 6L — 6 07) )
— (= c100aud} (97765 + 67057 — 65" — 67 07)
— 1030305 (91765 + 6704 — OO — 61 07)
—an0s @7 (65705 + 005" — G T — 650 )
(= crcnaudy (67205° + 61205 — 61205 — 67 65?)
— 01050205 (6765 + 6057 — G105 — 67 65?)
—apasan 0] (05765 + 0507 — 95207 — ¢;“3¢22>)]
= ([T o) [ — Q1003 (ébg“( U0y + 0705 — ¢ 95" — 61°y7)
O3 (G165 + 0957 — B0R — 910 0)
O (BROR + GO — O OR — 03 6F))
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— (o8 (0105 + 6765 — o205 — 61 05)
FOR (G105 + G957 — GT R — 61%)
FOT (G5OR + O 0L — 0RO — 050 )
(65 (6103 + 6oy — 61205 — 67 65?)
FOR (SO + GG — G — BT 6)
+wwwwww—?$—wwﬂ
= ([T ) (—ana0as) | 657 (9205 + 6105 — 91° 5" — $1°05)
IR (GO + BT — 00N — G 0F)
O (GO + GF G — G0N — OR o)
05 (G165 + 0P 0L — GT R — 60%)
R G AR A A SR )
FOPOLOR + OR — SR 0L — 05°0%)
FOR (G178 + O GR — O — §10)

+05' (17 05" + 91795 — 1705 — 91" 957)
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O (G520 + 907 — 005" — 050 .

S.L.HS=RH.S.

Hence the theorem is proved.

Following identities can be deduced from Theorem 3.2.13.

Theorem 3.2.14. (d’Ocagne type identity)

For any m,n,r € Z,

(‘B)m (‘B
(tB)m—H (tB>n+1

(‘B)s
(tB)r—H

(‘B)m+z (‘Blnsz ("B)rsz

= (=8 (CBYnr(Bharir = (Blrsa (‘B ).

Proof. Substitute m; =m+1—1, n; =n+1i—

taking s = r in (3.26), we get

(‘B)m  (‘B)a  ('B),
(tB)erl (tB)n+1 (tB>r+1 = [(_b)Q]T
(tB)erQ (tB)n+2 (tB>7‘+2

(tB)m—T (tB)n—r (tB)O
(tB)m-l-l—r (tB)n—i-l—r (tB)l
(tB)er?fr (tB)nJerr (tB)2

= (=6 (Bl Bhuris = (Byria (Bl ).

Theorem 3.2.15. (Catalan type identity)

For alln,r € Z,

(Bl ("Bt
(‘Ba—r  ("B)n
(tB>n—2T (tB)n—r
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(tB)n—l-Zr
(tB)n—i-r
(‘B)n

(3.27)

1, ri=r+i—1, fori=1,2,3 and

(3.28)



Proof. Substitute m; =n+ (1 —i)r,n; =n+ 2 —i)r,r; =n+ (3—1i)r, fori =1,2,3

and s = n in (3.26), we get

("B)n

(‘B)n—r

(tB)n—QT (tB)n—T

(tB)n-H" (tB)n+2r
(‘Bln (‘Blnsr
(‘B)a

[(=0))"

Theorem 3.2.16. (Cassini type identity)

For alln € Z,

(‘B)n (‘B ('B)as2
(‘B)n1 (*B)n  ('B)un
(tB)n—2 (tB>n—1 (tB>n

(tB)O (tB>r (tB)%
(‘B)-»  ('B)o ('B),
(‘B)-2r ('B)-y ('B)o

(=0 (B2 B) -2y + ('B)2,('B)ar ) since (B)y = 0

]

[(—b)%]" 2. (3.29)

Proof. Substitute r = 1 in (3.28). Using the fact that (*B)_; = 3, (*B); = 0 and

(*B)y = 1, we get the required result.

]

Theorem 3.2.17. (Extended form of Cassini type identity)

For any n,r € Z,

(tB)n (tB)nfl
(tB)n-H (tB)n
(tB>n+r (tB>n+r71

(‘B)n—2
(tB>n—1
(tB)nJrer

[(=0)7" (" B),. (3.30)

Proof. Substitute m; =n+i—1,n,=n+i—2,r;,=n+i—3,1<i<2,

ms=n+mrnyg=n+r—1r3=n+r—2and s =nin (3.26). Using the condition

that (‘B)o =0 = (*B); and (*B)_; = 3, we get the required result.
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We now state two results based on the relation between the n'* terms (*B),, and

(*B)_, of (3.4) and (3.5) respectively.
Theorem 3.2.18. The n'"* terms (!B),, and (!B)_,, satisfy the following relations.

(1
(B2 = (‘B)ucs(' Bt = 1" *('B)_u). (3.31)

(2)

("B)n('B)ns1 — ('B)ps2(*B)p1 = b2n_2((tB)_(n_2) — a2(tB)_(n_1)). (3.32)

Proof. (1) Let ay = ¢2 — ¢3, aa = ¢1 — ¢3 and a3 = ¢1 — ¢, Where ¢;, i = 1,2,3, are

all distinct. Then using Binet type formula (3.8), we get

2
(B)2 = (Blus('Blus1 = frrabys (0167 — a2} + a30})

-(ala;@)z (041¢71%1 — oyt + 043¢§71) (041¢?+1 — i + 063¢g+1)

. 1
T (c1a2a3)?

(0n00(01682)" (61 — 62)° — €1015(6165)" (61 — 65 + r015(25)" (62— 65)?)
B m <a1a2(¢1¢2)n—1(a3)2 — aqog(d103)"H(an)? + a2a3(¢2¢3)n_1(&1)2)
= by (065 = aa(BP05 )" + @By

— b2n72 (tB),(n,l) .

Hence the proof.
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(2) Replace n in (3.31) by n — 1 and then multiply through out by b% to get,
b ('B)ry — b ('B)u-a('B)n = b ("B)—(n-2)
Also, multiplying (3.31) by —a?, we get
—@(B)2 + @ B)u s (Bluys = " @('B) s

Adding the above two equations and using (3.4), we get the required result. [

Analogous to Pythagorean triples of B-Fibonacci sequence [1|, we have them for

B-Tribonacci sequence.

Theorem 3.2.19. If (! B), is the n'" term of B-Tribonacci sequence (3.6), then

2 2

Bt (2 (Busz = 02 B)act) | + [20B)usz((Bluse = B('Blacs ) |

2
= [D(BR2L 2 (Blasa(‘Blass — *(B)ay)] (3.33)
Proof. Since (*B)pio = a® (*B)ny1 + 2ab (*B),, + b* ('B),,_1,
2
V(B = [(Blasz — (2 (B)uss + 2ab (‘B), )|
Hence, squaring both sides, we get
b (B2 +2 (‘Blass(® ('B)uas +2ab ('), )

= (*B)2,, + <a2 (*B)ps1 + 2ab (tB)n>2

Again squaring both sides,
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[b4 (tB)ifl +2 ("B) iz <a2 (*B)pt1 + 2ab (tB>n>} 2

= (BYha+ (02 (B + 200 (B)a) +2 (B (Blass +2ab (B, )

2

= (B (@ (Blaa+20b (B)) | +4 (BYa(@ (Blayi-+2ab (B).)
= [(Bhua— (@ (Byui+2ad (B),)) ((Blusat (a2 (Bhusar2ab (B)) )|

+ [2 (*B)n+2 <Cb2 ("‘B)ny1 + 2ab (tB)”ﬂ 2

Thus, [b4 (tB)2 | +2 (tB)n+2((tB)n+2 —b? (tB)n—1>]2

3.3 B-Tri Lucas sequence

In this section, we discuss B-Tri Lucas sequence and obtain the various identities re-

lated to it. We also prove the relation between the n'" term of B-Tribonacci sequence

and B-Tri Lucas sequence.

We first define the new sequence.

Definition 3.3.1. Let n € NU{0}. The B-Tri Lucas sequence is defined by

("L)pi2 = a* ("L)py1 +2ab ("L), + b*("L),_1, ¥n > 1, (3.34)

with ("L)o =0, ("L); =2 and ("L); = o,
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where (*L),, is the n'* term.

For 0 < n <5, the terms of (3.34) are (*L)q =0, (L), = 2, (*L)y = a?,
(‘L)3 = a* + 4ab, ("L), = a5 + 6a3b + 20% and (‘L)5 = a® + 8a®b + 11ab2.

Equation (3.34) can be expressed as

CL%flzzg[CL%+2—a2CLLH1—2abCLLJ7 (3.35)
with (*L)g =0, (*L); = 2 and (*L)y = a*.

For —4 < n <0, we have terms of (3.35) as follows:

2

(L)1 = 52, (1) 2 = 3( 4 D), (L) s = 52(3a + 4), (L) = £(da® 4 5b),
("L)_5 = 35(—5a° — 4a®b + 2b%).

Thus, we define B-Tri Lucas sequence for all integers n.

Definition 3.3.2. The B-Tri Lucas sequence is defined by

("L)pio = a® ("L)ps1 +2ab (*L), + b*("L)p_1, ¥n € Z, (3.36)
with (*L)o =0, (‘L) = 2 and (*L)y = a?,
where (*L),, is the n'* term.

We have the following identities of B-Tri Lucas sequence.

Theorem 3.3.3.

(293 — a?)
(3 — ¢1)(P3 — B2)

(299 — a?)
(2 — ¢1)(d2 — ¢3)

(291 — @)

(L) = (61 — 02) (b1 — 3)

o7+

¢y + b3,
(3.37)
where ¢;,1 = 1,2,3 are the distinct roots of the characteristic equation corresponding

to (3.36) given by
N —a?)\? — 2ab\ — b* = 0. (3.38)
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Equation (3.37) is a Binet type Formula for (3.36).

Proof. If ¢1,¢2 and ¢3 are distinct roots of the characteristic equation (3.38), then

solution of (3.36) is given by

(‘L) = C19} + Cogy + Csdy (3.39)

Using the conditions (*L)g = 0, (*L); = 2 and (*L), = a?, we get (3.37). O
Remark 3.3.4. The case of repeated roots is excluded here.
The next two theorems give the relationship between (3.6) and (3.36).

Theorem 3.3.5. The n'™ term (*L),, of (3.36) is given by

(‘L) = 2(*B)py1 — a*(*B),, Vn € Z. (3.40)

Proof. Equation (3.37) implies

(2¢3 — a®)
(3 — 1) (P3 — B2)

(292 — a®)
(2 — ¢1)(d2 — ¢3)

(291 — @)
(1 — P2)(d1 — @3)

(tL)n =

b5,

o7+ @5 +

where ¢;,7 = 1,2, 3 are the distinct roots of A — a?\? — 2ab\ — b? = 0.

Therefore,

1 1 1
¢?+ ¢g+ n-+

(¢1 — ¢2)(1 — ¢3) - (2 — ¢1)(d2 — ¢3) -

(tL)n =2 < (3 — ¢1) (03 — ¢2)>

o1 95 o5

_a2<(¢1 — ¢2)(P1 — ¢3)+(¢2 — ¢1)(¢p2 — ¢3)+(¢3 — ¢1)(¢3 — ¢2)

=2('B)yy1 — a*('B),, from (3.8).
Hence the theorem is proved. O
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Corollary 3.3.6. The n'" term of (3.36) is given by

("L)y = ("B)py1 + 2ab('B),1 + b*('B),_2,Vn € Z. (3.41)

Proof. From (3.40), we have
(‘L)n = 2("B)ns1 — a*('B)n
= ('B)ps1 + a*(!B),, +2ab (!B),_1 + b*(!B),_o — a*(*B),,, using (3.6).
= ('B)ps+1 +2ab(*B),—1 + *('B) 2.

Hence the Corollary is proved. O

Theorem 3.3.7. The n'™ term of (3.34) is given by

(2n — 4 — 2r)=2
r!

( (2n—2) (2n—2-—2r)t
(

on — 2 — 2r) ! —r(r=1) ) @Y,
(3.42)

Vn > 2.

Proof. Equations (3.11) and (3.40) implies,

(‘L)n = 2('B)n+1 — a*('B)y,

—9 ZLMJ (2n—2-2r)" q2n—2-3r pr _ 2 ZLMJ (2n—4-2r)" q2n—4-3r pr

3 3
r=0 7! r=0 7!

r! !

_ ZTE;{QJ (2 (2n—2-2r)" (2n—4—2r)£> g2n—2-3r

ZZLMJ%

3
r=0 rl

(2 (2n—2—2r)(2n—3—2r) — (2n— 2 —3r)(2n — 3 — 3r)) 223

_ 5] enmacane=

r=0 rl

(2 (2n—2—2r)(2n—3—2r)—(2n—2—2r—r)(2n—3—27“—7“)> a?n 2T
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_ ZTE(T)L%J (2n—4—2r)r=2

!

(2n—2-2)2n—3-2)+2r(2n =3 - 2) = r +72)) > 25 ¥

2n—2

— ZTLOTJ (@n—d—2r)=> ((2n—3—2r)(2n—2—2r+2r) —r('r—l)) a2 pr

r!

2n—2 — r—
_ ZTLZOS J ((%—2)(%—3—%) L T(T _ 1)(2n—4—2r) 2) Q223" py

rl r!

2n—2 _ e
_ ZTL=03 J ((2n72)(2n7372r) L r(r — 1)(2n74727‘) 2) g2n—2-3r pr

r! r!

r—2

i 1) (2n—4—2r)

r!

2n—2
= ZTL:O3 ) ((27(12112_—2;) (gn_i!_%)i —r(r

) aQn—2—3r b ]
Similarly, we can prove the following Corollary.

Corollary 3.3.8. Let n € Z~, the set of negative integers. The n'* term of (3.35) is

given by

L2n3—2J -
‘ (2n—2) (2n—-2-2r) (2n—4—-2r)=2\ o 55,
(L) = Z <(2n—2—21“) r! —r(r=1) r! ) “ o,

r=n—1

(3.43)

Vn < —1.

Equation (3.43) can be rewritten as

— N (2n—2)(2n—3—2r)=L  (2n—4—2r)"=2\ , o, . .
(o= 2 (55 I AL
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143 (3-1)=£8 244 (4-1)=242
—4 (=317 == (=4)!(=1) -
— L+ (=2+4) ) a® b~ form (2.10).

Similarly, other terms of (*L),, n < —1 can be calculated.

Following theorem give the sum of terms of B-Tri Lucas sequence. This theorem
can be proved by a similar procedure to the one used in Section 2 of this Chapter.

We give here alternative proof using Binet type formula (3.37).

Theorem 3.3.9. The sum of the first n+ 1 terms of (3.84) is

(3.44)

i(tL)T _ (Lngr + (0% + 2ab) ("L) + *("L)n—1 + ("L)2 = ("L

— (a+b)2—1

provided a + b # 1,—1 and n > 0.

Proof. Consider, >"_, (*L),
=23" (*B)ps1 —a* >, ('B),, from (3.37)

=235 ('B), = a® X0 ('B),

(‘B)nia + (bQ +2ab)("B)ny1 + bz(tB)n -1

=2

(a+b)2—1
2 (*B)ps1 + (0* + 2ab)(*B),, + 0*(*B) 1 — 1
(a+0)2—1
1 t 2t
- m [(2( B)niz — a( B)n—i—l)
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+(0* 4 2ab) (2("'B)pt1 — a*("B)n) + 0*((*B)n — a*("B)p_1) — 2+ aﬂ

~ ("L)pyr + (0* +2ab)("L)n + 0*("L)n1 + (*L)2 — (*L):
B (a+0)2—1 '

Similarly, we can prove the following Corollary.

Corollary 3.3.10. The sum of the first n + 1 terms of (3.35) is

— i,y (L) + (0% +2ab)("L)_(ns1) + 0*("L) _(ny2y + (‘L)2 — (‘L)
Z<L)T__ (a+0)?2—1

(3.45)

Y

provided a +b# 1,—1 and n > 1.

Combining (3.44) and (3.45), we have
S (L) = e [ (L) = (L))

FOP 4 200) (L)~ (D)) + (s = (D)), (3.46)

provided a + b # 1, —1.
The next theorem is based on the ratio of successive and preceding terms of B-Tri

Lucas sequence.

Theorem 3.3.11. Let the roots ¢y, 2 and ¢z of (3.38) be distinct, ¢1 # 0 and

|p1] > |d2| > | b3, then

(1)

oy (L _ 2

nlﬂ) (D ¢1(2 ) (3.47)
(i) t

lim LEnet i(2 —a?). (3.48)




Proof.

_ ("L)n

lim
n—oo (*L),_1

. (Blur 5. (‘B
=2 lim —a” lim ————, from (3.40
o ('B), o 0By (340)
= ¢1(2 — @), using equation (3.18).
Similarly, using (3.19) we can prove (3.48). O

Following theorem gives the generating function of B-Tri Lucas sequence (3.6).

Theorem 3.3.12. The terms of the B-Tri Lucas sequence (3.36) can be generated

from the series
o0

(2 —a’2) Z 2" (a + bz)". (3.49)

r=—o00

Proof of Theorem 3.3.12 is similar to that of Theorem 3.2.9.

We now establish some of the identities of B-Tri Lucas sequence as presented in

Section 2 for the B-Tribonacci sequence.

Theorem 3.3.13. (Honsberger type identity)

For any m,n € Z,

(Lsmor = B B)ucr (Do + (P B)uca + 20b('B)us) (L) + (B)u(' L.
(3.50)

Proof. Equation (3.24) implies
(tB)n+m—1 = bQ(tB)n—l(tB)m—l + (b2<tB)n—2 + 2ab(tB>n—1)<tB)m + (tB)TL(tB)m—H

Therefore,

(‘B)otm = b*('Bln-1('B)m + (0°(' B)n-2 + 200(' B)n-1)('B)m1 + (' B)n(* B2
From (3.40), we have

20



(tL)n+m—1 =2 (tB)n+m - az(tB)an—l

— B(*B),s (2(tB)m — a2<tB)m,1)

HO( B2 20 B)or) (20 B)ir=a*( Bl ) + (B (20 B)msa—a?( Bt

Therefore, using again (3.40) we have

(tL)nerfl = bZ(tB)nfl(tL)mfl + (bQ(tB)nﬁ + 2ab(tB)nfl)(tL)m + (tB)n(tL)mH-

Hence the theorem is proved. Il

Theorem 3.3.14. (General Trilinear identity)

For all m;,n;,r;,s € Z, 1 <1 < 3,

(L), (*L)n, (L), (CL)m—s (‘L)nys (L)r_s
("Lymy (‘L)ny (L), | =0T | (L)ipes (Lnges L)y |- (3:51)
(*L)my ("L)ny (‘L) (CL)mg—s (‘L)ng—s ("L)rys

Proof. Let ay = ¢y — ¢3, o = @1 — b3, a3 = ¢ — ¢y and B = a1 (2¢; — a?),
Bo = ao(2¢y — a?) and (3 = as(2¢3 — a?), where ¢;,7 = 1,2, 3 are distinct roots of
A3 —a?)\% — 2ab)\ — b = 0.

Therefore (3.37) implies,

_ Budt — ol + Bty S (D)™ B}

t
L
(L 1003 H?=1 Q;

Using the procedure similar to the one used to prove Theorem 3.2.13, we get the

required result. O

Following identities can be deduced from general Trilinear identity for B-Tri Lucas

sequence.
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Theorem 3.3.15. (d’Ocagne type identity)

For any m,n,r € Z, then

“2((" DDtz = (Lnr(Lhmri2) ). (3.52)

Proof. Substitute m; = m+i1—1n, =n+i—1,r, =r+i—1, fors =1,2,3
and taking s = r in (3.51). Using the procedure similar to the one used for proving
Theorem 3.2.14 and the condition that (‘L)g = 0, (*L); = 2,(*L)s = a?, we get the

required result. O

Theorem 3.3.16. (Catalan type identity)

For any n,r € Z,

(tL)n (tL)n+r (tL)n+2r
(tL)n—r (tL)n (tL)n-H" = [(_b>2]n<(tL)q2n(tL>—2r + (tL)gr(tL)%)‘ (35?))
(tL)n—Zr (tL)n—T (tL)n

Proof. Take m; =n+ (1 —i)r,n; =n+ (2 —1i)r,r; =n+ (3 —1i)r, for i = 1,2,3 and

s = n in identity (3.51). This implies

(tL>n (tL>n+r (tL)n+2r (tL>n—n (tL)n—l—r—n (tL)n—i-Zr—n
(Lor (L) (Lair | =N (Lrn (Dnon (Lngron
(tL)n—QT (tL>n—T (tL)n (tL>n—2r—n (tL)n—T—n (tL>n—n
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(‘LYo ('L)r (*L)2
=[(=0)*]"| (‘L) (‘L) (‘L),
(‘L)—2r ("L)—p (*L)o

= (=021 (L) L)ar + (L)L), ) sinee (L) =0, =

Theorem 3.3.17. ( Cassini type identity )
For alln € Z,

(‘L)n (Lt (‘L)nse
(‘L)1 (L)n ("L)nta :[(—b>2]n_2((tlz)4+2ab(tL)2+3b2(tL)1>. (3.54)

(tL)n—2 (tL)n—l (tL>n

Proof. Substitute 7 =1 in (3.53) and using the condition that (*L)_5 = 5 (a® +b),

2

("L)-1 = 5%, ("L)1 = 2,("L)2 = a®, we get the required result. O

Theorem 3.3.18. (Extended form of Cassini type identity)
For any n,r € Z,

(‘L)n (L)1 ("L)n—2
(Lpsr (L) (L)n (3.55)
(Dusr (Duirs (Ll

— [(=b)2]m2 (a4(tL),, 4 4b(a® + b)(*L)y_1 + 2a2b2(tL)r,2)).

Proof. The result follows by Substituting m; =n+i—1,n, =n+it—2,r;, =n+1—3,

1<i<2,mg=n+rny=n+r—1,r;,=n+r—2and s=nin (3.51). O

3.4 Incomplete B-Tribonacci and B-Tri Lucas sequences

In this section, we study incomplete B-Tribonacci, incomplete B-Tri Lucas sequences

and various properties related to them. We first define the extension of incomplete
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Fibonacci sequence and incomplete Lucas sequence defined in [12] and call them

incomplete B-Tribonacci sequence and incomplete B-Tri Lucas sequence respectively.

Definition 3.4.1. Let n € N. The incomplete B-Tribonacci sequence is defined by

l
2n—4 —2r)t 2n—4
(tB)iz = Z ( n T) a?n—4—37‘ br7 v 0 S l S L n

r!
r=0

Jandn >2. (3.56)

For 1 =0, 1, 2 and |2572], ("B)!, are listed below:

n

=a® "+ (2n—6)a*""" b, Vn > 4.

(‘B)

(‘B)

('B): = a* "+ (2n — 6)a> 7 b4 SR @20 02 Y > 5,
(‘B)

Following table give the terms of incomplete B-Tribonacci sequence.

[l 0 1 2 3
n
2 1
3 | a®
4 at a* + 2ab
5 a® a® + 4a3b a® + 4a3b + b?
6 | a® | a®+6a’b a® + 6a°b + 6a°b?
7 a0 a9 4+8a"b | a'® +8a"b + 15a*b? a'% + 8a°b + 15a*b? + 4ab?
8 | a' | a4+ 10a° | a'? + 10a”b + 28a°b? | a'? 4+ 10a”b + 28a°b? + 20a°b?

Table 3.1: Terms of incomplete B-Tribonacci sequence

The next three theorems give the results on the recurrence properties of incomplete

B-Tribonacci sequence (3.56).
Theorem 3.4.2. The recurrence relation of the incomplete B-Tribonacci

sequence (‘B) is given by

2n —6
3

(‘B)ufs = a('B)ify + 2ab (‘B 5y + 0('B)y, 0 <1< [=——]andn >3. (3.57)
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Proof. RS of (3.57)= a*(*B)!*2 + 2ab ('B)LEY + V(' B),,

2 1 —2-2r)t —1—
— ZH‘ (2” 27“ q2nt2- 37"b7’+2 ZH' (2n—2-2r) q2n—1-3rpr+1

r!

(@2n—4-2r)" 2n—4-3rpr+2
+3 b

—

— a2n+2 + (2n — 2+ 2) 2n— 1b—|— ZH-Q 2”;!27’)£ a2n+2—3rbr

2n+2 3rbr+zl+2 (2n—2r)"=

2n+2—3rbr
r72)!

+23 .75
= g?nt? + (2n)a2”_1b

l n—2r)" n—2r)r—L n—2r n rir
+ZT—‘;22 = 'r'2) + 2 s (rzl))! + s (r22)) 2 20 b

_ Zl+2 (2n+2-2r)" q2nt2-3rpr
7‘

= (*B)}t% = L.H.S.

Hence the theorem is proved.

Theorem 3.4.3. For all s > 1,

2s 1
25)t o . 2n —4 -2
S CF ey a = (B, 0<i< (BT

n—+e

IN

Proof. We prove it by mathematical induction on s.

Let s = 1. Then L.H.S. of (3.58) = .7 & (‘B)", a’b>~ = ('B)52% =

n+1

Thus, the theorem is true for s = 1.

Assume that the result is true for all s < m.

LH.S. of (3.58) = S22 Qe (1 gyt i pame2—i

=0 Al n+1

95

(3.58)

R.H.S.



2m+2 [ (2m—2)1=2 i i 12ma42—i 2m—1)i—1
=20 (% ) R e R

(tB)fm—:Zz ai b2m+27i

4 emt ('B) gi b2m+24>

7! n+i

_x2m (2m)E g o\ I+i42 42 12m—i (2m)L it p\I+i+1 i1 7.2m—it1
= 0 (S (B o e 2 CRLIB) L, 'y

4 2m)t (*B) g b2m—i+2>

3! n-+t

= a*('B) %0 + 2ab(' B), 505 + (' B)

_ (B — RLS,
Hence the result is true for s = m + 1. Thus by mathematical induction, the
theorem is proved. Il

Theorem 3.4.4. For 0 <[ < L%J and s > 1,

»
|
—

(2 a7 1% p (tB)fj_i_ll_H» + a* 7 b2(tB);+i> = (tB)anf2+s - GQS(tB)infT (3.59)

N
Il
=)

Proof. By induction on s.
Note that (3.59) clearly holds for s = 1.
Now let the result be true for s < m. we prove it for s = m + 1.

Consider, > 1", <2a2m+1_2i b(*B)L L+ e bQ(tB)ﬁlH)
= 0" (202 (B)EL  + a2 R (B), )
(200 (B + BB

— GQ(ZZZ—Ol (2 a2m—172ib (tB)il—:—ll-&-i + a2m7272ib2(tB)fl+i)>
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+(2ab (BY s + (B )
= az((tB)fszerm - a2m<tB)£:fz) +2ab (tB>£L++11+m +0? (tB)lTL+m
= a2('B) s — @™ (B) + 2ab (B) L, + B B)

n+2+m n+m

= (*B)}t2 . — a2 (tB)LE2, | from (3.57).

Hence by mathematical induction, the theorem is proved. Il

Definition 3.4.5. The incomplete B-Tri Lucas sequence is defined by

(‘L)
I
_ (2n—2) (2n—2-—2r)" (2n —4 —2r)=2\ o o . .
_;<(2n—2—2r) 7l —rr=1) rl )a v,
2n — 2
‘V’O§Z§Ln3 | and n > 2. (3.60)

Some special cases of (3.60) are listed below:
(*L)Y = a®"72, ¥ n > 2.
(L)) =a®™ 2+ (2n —2)a®* 5 b, ¥V n > 3.
(tL)Z — 22 4 (2n . 2)a2n75 b+ [(2n—2)(2n—7)—2] A28 2. n > 4.

2

N
(‘L)n = ("L)n.

The following table gives the terms of B-Tri Lucas sequence.

We now establish the relation between incomplete B-Tribonacci sequence and
incomplete B-Tri Lucas sequence. These results are used to prove the recurrence

relation for B-Tri Lucas sequence.
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a'® | a'® +10a"Db | a'® + 10a"b + 24a*b? | a'® + 10a"b + 24a*b? + 8ab?
a'? | a'? +12a% | a'? + 12a°b + 41a°0? | a'? + 12a”b + 41a°0? + 364303

n
2 a?

3 at a* + 4ab

4 | a® | a®+6a’b ab + 6a>b + 2b°
5 | a® | a®+8a’b | a®+ 8a°b + 11a’b?
6

7

Table 3.2: Terms of incomplete B-Tri Lucas sequence

Theorem 3.4.6. For2 <1< |[22]
(‘L) = (‘B)yr +2ab ('B), Ty + 07 ('B), . (3.61)
Proof. From (3.56), the R.H.S. of (3.61)

— Zr 0 (271 2—2r)" a2n—2—3rbr + 2ab Ei;lo (2n—6—2r)" a2n—6—3rbT

7! r!

+b2 ZT_O (2n—8—2r)" a?n—8—3rbr

r!

:erzo (Zn*i;%) 2n—2— 3rbr+22T ) (2n— f f)r') q2n—2-3rpr

(2n—4- QT) 2n—2—-3rpr
+Zr 2 (r—2)! a b

:Zl » [(Qn—2—2r)£+2<(2n—4—2r)ﬂ+ (2n—4—2r)’“—2) _ (2n—4-2r)"

21 on—2-3rpr
! r—1)! (r—2)! (r—2)! }a b

:Zf«zo [<2n 2—2r)" +2(<2n—(§:f;>**1) _ (n (f ;;) }azn 2-3ryr

l 2n—2—2r)" r 2n—4—2r)" =2 n—2—3rr
=20 [( : 1+ 555) — ( (r72)!) }aQ 2

r!

— Zl [ 2n—2 ((2n—2—2'r)£) _ (2n—4-2r)

r=2 q2n—2-3rpr
r=0 | 2n—2—-2r r! (r—2)!
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= Zizo [ 2n—2 ((2n—2—2r)1) _ 7“(7“ _ 1) (2n—4—2r)r_2] q2n—2-3rpr

2n—2—2r r! r!

We have the following Corollary.

Corollary 3.4.7. For 0 <1< |[2%2],

‘L), =2 ('B),,, — a® ('B),,. (3.62)

Proof. For 1 =0,2("B)%,, —a® ('B)) =2a* 2 —a* 2= ("L)J.
Also, if [ =1, then
2 ('B)pyy —a® ('B),
=2a?2 4 (2n — 4)a® b — a*(a®* + (2n — 6)a® ")
= ("L)y
Hence (3.62) is true for [ =0, 1.

For [ > 2, the result follows from equations (3.57) and (3.61). O

Theorem 3.4.8. The recurrence relation of the incomplete B-Tri Lucas sequence

(*L)L is given by

2n —4

(L) = a® (‘L)% + 2ab( L) + (L), 0< 1< |

. (3.63)
Proof. From (3.61) we have,
("L)n = (B)yt% +2ab ('B),5s + 07 ('B)js
= a*('B), 5+ 2ab ('B),5 + B ('B)j,
+2ab <a2 (!B)LEL + 2ab (*B)L + b? (tB)i;jl)

+a?(*B), + 2ab(*B)L, " + V(' B)L %
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=a’ (tL)ZfQ + 2ab (tL)i::Lll +b% (*L)!, from (3.61).
Theorem 3.4.9. For s > 1,

2s .
2s)* C i19s—i s 2n — 2 — 2s
SO eyt atr = oy, o<1 < | 222

Proof. Consider, L.H.S. of (3.64),

225 (2;)1 (tL)H—i aib2s—i

i=0 4! n+1

= Y20 B (2 (B)th s — (B )ah

=2 Z?io (2'81)L (tB)fﬁHi a'b*~" —a® Z?io (2_?7 (tB)fﬁiaib%ii

= 2 (B) g, — aX(B)S,, from (3.58).

= (D)5,

Theorem 3.4.10. Forn > [340],

—_

S—

(202 LY+ (D)) = (D — e (L)

Il
=)

i

Proof. Consider, L.H.S. of (3.65)
Zf;é (2 a2s—1—2i(tL)il-:_11+i 4 a25—2—2i(tL)§1+i>
= Y52 (20 B) — @ B) )
FE a2 (2B — 2By ) from (3.62).
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=235 <2 a2 (IB)EL L+ a287272i(tB)51+1+i>

iy (2@ OB + (B,
=2 (B3 — a®(B)3) = ((B)ih,. — a(B)3), from (3.59).
=2 (B) R — (B, — o (2B — a2 (B)E)

= (tL)i;fm-s - GZS(tL)infT

Hence the theorem is proved.
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Chapter 4

B-q bonacci and B-q Lucas Sequences

This Chapter include the content of published paper (P4).



Chapter 4

B-q bonacci and B-q Lucas Sequences

4.1 Introduction

The extension of Fibonacci recurrence relation to m** order linear recurrence relation
is studied in [5]. The author has obtained two properties. In this Chapter we intend
to extend the work done in Chapter 3 to ¢** order linear recurrence relation, where
q > 2 and ¢ € N. In this recurrence relation, the n'” term is the sum of the preceding ¢
terms with coefficients % a?~'="h", r =1,2,---q. These coefficients are the terms
of binomial expansion of (a + b)9~!, where a and b are fixed real numbers and g > 2
and ¢ € N. We call these class of sequences, the B-g bonacci sequences.

In Section 2, we define B-g bonacci sequence and study its various identities which
are the extension of the identities of B- Tribonacci sequence discussed in Chapter 3.
B-q Lucas sequence and its identities similar to the identities of B-¢ bonacci sequence
are discussed in Section 3. In Section 4, the incomplete B-q bonacci sequence and

incomplete B-g Lucas sequence, and their identities are discussed.

4.2 B-q bonacci sequence

We define an extension of (3.4), (3.5) and (3.6). Let ¢ > 2 and ¢ € N.
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Definition 4.2.1. Let n € N J{0}. The B-q bonacci sequence is defined by,

q—1
— 1)
(qB)n+q71 = Z u a® b (qB)n+q727M Vn > L,

(4.1)
|
~ !
with (B); =0,i=0,1,2,3,--- ,¢g— 2 and (B),—1 =1,

where (1B),, is n'" term.
For n = 1,2, 3,4, we list below the terms of (4.1).
B -1 (1B), . = a2V 4 q—1)a?2 b,

a= g+
("B)gs2 = 3(¢-1) 4 (2(q 1)) q20-3 ) 4 L4 1) a®=3p2,
("B)gss = 4(g-1) 4 (3(q 1)) @314 p 4+ (2(q—1))f a4 p2 4 q31) al™ b3,
("B)gss = 5(q— 1)+(4(q D) 495 b+ )) a315 p2 4 (q;))f q20-5 34 q41) ad=5 bt

We rearrange terms of (4.1) as follows to obtain terms for the negative integer

values of n.
1 = (q — 1)£ —1—7r zr
(qB)nfl = bq_—l |i<qB>n+q1 — ZO T a? 1 b (qB)nJrq,Q,r N

with (1B); =0,1=0,1,2,3,---¢g—2and ("B) -1 = 1.

For n = —2,—1,0, the terms of (4.2) are, (“B)_3 = (—‘I(q_l)) a
(“B)_y = —(q¢— 1) and (“B)_; =

q pa—1-

We now define the B-g bonacci sequence for all n € Z.

Definition 4.2.2. Let n € Z. The B-q bonacci sequence is defined by

—(g—1)F
(qB)n-i-q—l = Z —— attry (qB)n-i-q—Z—ry

— 7!
with (1B); =0,1=0,1,2,3,--- ,¢g—2and (“B) -1 = 1,

where (1B),, is n'™ term.
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We have following theorems related to the B-¢ bonacci sequence.
Similar to the Binet type formula, a sum of the terms and generating a formula

for the B-Tribonacci sequence, we have them also for B-g bonacci sequence.

Theorem 4.2.3. (Binet type formula) The n'™ term of (4.3) is given by

22:1(_1>k+1 H1<i<j<qz'j7$k (¢z o ¢J)¢Z
1B), = SIS , .
(B) [icicjcq (00 = ¢5) (44)

where ¢p,p =1,2,--- ,q are q distinct roots of the characteristic equation

A — g;é # alT V=" by \" = 0 corresponding to (4.3).

Proof. Since the roots ¢,,p = 1,2,---,q are ¢ distinct roots of the characteristic
equation \¢ — > 771 % a7V~ p" A" = 0 corresponding to (4.3), solution of (4.3)
is given by )
('B)n =Y _ Crol. (4.5)
r=0

Using the conditions (B); = 0, ¢ = 0,1,2,3,---¢ —2 and (“B),—1 = 1, we get

equation (4.4). O
Remark 4.2.4. The case of repeated roots is excluded.

Theorem 4.2.5. The n'* term of (4.1) is given by

r

\_(q—l)(n—(q—l))

e J —-1n—-(q—1)—r
(‘B), = Z <(q ) 7“(!(] ) )> ala=D=(a=D=r)=r pr = (4 6)

r=0

Vn > qg—1landqg > 2.

Proof. We prove the theorem by induction on n.
Forn=gq—1, (“B)y1=3"_, w a b =1.
Therefore, the theorem is true for n = ¢ — 1.

Now let us assume that the theorem is true for n < m.

We shall prove (4.6) for n = m+ 1, by dividing the proof into ¢ cases depending upon
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the form of m, where m =gk, ¢k +1,---, gk +q—1 and k > 1.
Case (i) m = gk

To prove, (1B)gk+1

L(q—1)<(qk+1)—(q—1))
q

_ 3 : ((g—1)(gk+1—(g—1)—r)" o (@ Daks1-(g-1)-r)) -

0 b".
r=0
That is to prove,
(g—1)k—(g—2) r
q—1)(¢gk+1—-(¢g—1)—7r _ 1)) —ar 1y
(qB)qk+1 _ Z (( )( . ( ) )) a((q 1)(gk+1—(g 1)) ar pr
r=0 ’

Since the result is true for n < m = gk, we have

(1B)gr1 = 2070 o ale=D=s b* (4B) 4y,

s!

<q*1>(<q’“*s>*<q*“)J <<q—1>((qk—s>—<q—1>—r>))i
ZTL:O !

gD ((@h+1-9)=(g=1)=r)) =5 prs

r!

_ Zq L (g—1)= 1)5

r

N (R Cer——)
r=0

. ol (qk+1—(q—1))—Q(T+S) prts

=yl e Znqul =243 ] (e (d—g-1-m)) ™ o@Dk +1--1)) —gm ym

(m—s)!

Since 0 < s < (¢ — 1), we have

(qB)qu — Z(q—l)k—(q—2) ((q—l)(qk+1—(tJ—1)—m))7 a((qfl)(qk+1f(q71)))fqm b

m=0 m!

The proof for the other cases can be given using similar procedure.

Hence the theorem is proved. Il

Similarly, we can prove the following Corollary which gives the n'* term of (4.2).
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Corollary 4.2.6. The n'" term of (4.2) is given by

L(q—l)(n—(q—l))J r

(1B), = Z ((q —1)(n _T(!q - T)>

=n—(q—2)

Vn< —1 and g > 2.

Theorem 4.2.7. (i) Forn > q¢— 1, we have

i(‘IB) — <qB>n+1 + Zg:_g (ZT 1412 (& rll = al” o br‘) (qB)n—i -1

—~ (a+b)—1 —1

a+b#1,if qis even;
provided

a4+ b# +1,if q is odd.

(i) Forn > 1, we have

S 1), = (B)on + T (BT 5 0 ) ().t =

a4~V (n—=(g=1)-7) T

1

(a+b)‘1 1—1

a+ b # 1,if q is even;
provided

a+b# +1,if qis odd.

Proof. (i) For n = ¢ — 1, R.H.S. of (4.8)

P
_ (UB)gt Pe2Pa Loy U @t b (1B)g 1 1
o (a+b)a—1-1

ad— 1+Pz %(q 1)T‘aq 1— T pr—1

(a+b)q 11

P, _ _
g:(l) (g r!1)£ aqflfr‘ br—1

(a+b)a—1-1

=1
=Y (“B),= L.HS.
Therefore, the theorem holds for n = ¢ — 1.

Assume that the result is true for n < m.
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Consider, "1 (4B), = 327 (“B), + (“B) i1

P P
Bt 3 (4, S 0 ) (1)1

r!

(a+b)a=1—1 +(“B)mi1

P _ P _ ”
@B)myrt iog (7o), 2P gei- Tbr) (4B)—i—1+((a6)171 1) (1B) i1

(a+b)a—1-1
P, .,/ P, _
(T, e e ) (98), 14 (@ D)1 (1B)
- (at+b)a—1-1
Pocz (Prch., o5 armior ) @)1 i g - B
- (a+b)a—1-1

P, _,P _
(@B)myat 122 9 hl ((q T!l)r ad—1-7 br) (1B)mi1_i—1
(a+b)a—1-1 :

Hence the result is true.

Using similar procedure we can prove (4.9). O
Combining (4.8) and (4.9) we have

2= n("B)s

(B = (1)) + XYL (%3 @) ((B)ui = (1))
- (a+b)i-1 —1 ’

a+ b # 1,if q is even;
provided

a+b# +1,if qis odd,
For q =4, a = % and b = ;11, we have the following graph for the sequence

(4B)ass = P (B)ura + 30 (D) Bhuir + 3D GV B + () (Blacr. (410)
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1.2p

1.0f

. 0.8p

(“ B),

L S ]

0.4f

0.2

n

Figure 4-1: Graph showing terms of (4.10).
The next theorem is based on the ratio of successive B-q bonacci sequence and
the ratio of preceding terms.

Theorem 4.2.8. Let ¢;,i = 1,2,--- ,q be the distinct roots of (4.4) such that ¢1 # 0

and |p1| > |p2| > -+ > |@,|, then

(i)

im (*B)x =

lim oy = o (4.11)
(1i)

lim % _ (4.12)

Proof. Equation (4.9) implies

P Q
a e DR g g (9i—65)8R
(1B)n =

T lcicj<q (0i—0))

Q

2<icj<q(@i—®5) P+ ho(—1)F ! 1<i<j<q,ijzk (Pi—®;)PL

1<i<j<q (¢i*¢j)

(B)n
(1B)n—1

Therefore, lim,,_,

Q )

2<i<j<q (¢>z‘*¢j) ¢?+DZ:2(*1) A1<i<ji<q,i,j#£k (¢i*¢j) ¢Z
q
k=

2<i<j<q (i—5) ¢?—1+- 2(_1)k+1 Y1§i<j5q,i,j7ék (¢i—¢;) ¢Z_1

= lim,,_.o ©
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Since ¢1 # 0, dividing numerator and denominator by ¢}, we get

. (9B).,
lim,, o @B

Q 2(—1)k+1 Q1<z<]<q i,JF#k (d)z ¢]) ( )

LoD g (0= 05065t (SE)

q
Y 1<ici<aigzh ($i=@i)+ o
=lim,,_ © :

1 B
1<i<j<aijzk ($i=®5) o1+

Q

1<i<j<q,i,j#k (¢i*¢j)

r, since |¢1| > |¢s|,i =2,3,--+ ¢

= lim Q —
T cici<aqinien (Di—95) b1

= ¢1.

Similarly, we can prove the equation (4.12). O

Theorem 4.2.9. The terms of the equation (4.3) can be generated from the series

o0

Z 2"(a + bz)(q_l)"

n=—oo

Proof. %0 2"(a+ bz)abn

_ 7:——00 P Zk 0 ((q 1) ) ak‘ b(q—l)n—kz(q—l)n—k

- TR

k

+Zn Ozn Z(q n (q 1) ) ak b(q—l)n—kz(q—l)n—k

k
— 1:——00 Zk 0 (q ll)n) ak b(q—l)n—kznq—k

k

n —1)n “1n— _
+Zn 0 kq 01) ((q k!) ) aF b(q n k. ng—k

(e

k
=t Do (2 (119' 0. ab b2k kST (7(1—71)) aF p-(@=1)—k ,—a—k

k k
1+ D (@;!1)) ak pla—V—kza—k 4 2 M B p2a-D)—k 20—k 4 .

1
— ... _|_ ((q_lll)) al binZiqil + bf(qfl)zfq + P

+14a9! 2+ (T + (¢ —1) a?7%b) 22 + (a® TV +2(g— 1) a®3b+b%) 2% +
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— + <QB)72 al bq_2z_q_1 +

(QB)ilz_q + e

+H(1B)g-12° + (1B)g 2 + (1B)g12° + (1B) 22 + -+

= Z;L.O:—oo(qB% z

n—(q-1)

In Matrix Form (4.1) is represented as

(“B)n
(qB)n—i-l
(“B)n+2

Let A=

0

1 <14, 3 <gq. Then

pr-!

bqfl(qB)O

— | 07 (“B)in

_bqil(qB)q—l

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
pa—1 (qll abd—2 U 21 a2b9-3 (q;ll)é a3bi—4 aq—l_
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ces 1
(q—lll)labq—z (g=1)2 1)7 a2p1—3 (qgll)éasbqux cel qa!
e S a T (UB) (“B):
(g=Dr (¢—1)—r b (1B . 9B).
ZT q— ] rl a ( )q—l—T—J-H ( )Z
Zr q—J 1" ald=h= rbr(qB)q 1—r—j (qB)q

70

(qB)nfl
(“B)n

(qB>'fl+1

(qB)n+q—3

(qB)n+qf2_




b1 (1B), - - -1 (a=D)" (¢-1)-r b (1B psg-1—r—; .- (“B),

r=q—j !

b (I B) o (i-2) 3;1,_]- W @D (18 o i o (B

A’I’l

bq_l(qB)n+q—2 T Zg;;_] (q;_'l)ﬂ ale=H=r pr (qB)n+2q—2—r—j e (qB)n—i-q—l

(4.13)

We have following results, the particular case (i.e. for ¢ = 3) of which is discussed

in Chapter 3.

Theorem 4.2.10. (Honsberger type identity)
For any m,n € Z,

q—1 r

OB = 3 (S e 0By, ) (B (414)

r=0 s=0 s!
Proof. Let M, be the element of the matrix in the first row and first column. Re-
placing n with n+m in (4.13), we obtain the matrix A"*™. Also multiplying A" and
A™, we obtain the another form of the matrix A"*. The required result can be now

obtained by equating the M;; of these two forms of the matrix A", m
Corollary 4.2.11. Forn € Z,

(i) ("Bon—r = 202y (Xicg U5 0777 @' (“B)ares—y) (‘Blatsr

(ii) (1B)an = 3020 (Xosg U5 097172 @ (1B)n-14sr) (‘B

Proof. Substituting m = n in (4.14), we obtain identity (¢). Taking m = n + 1 in

(4.14), we obtain identity (ii). O
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Theorem 4.2.12. (General g-linear identity)

For any a;,; € Z, 1 <y, j,p < q with distinct i, and the following (1C5)? equations

Qi1 + Qiy2 = Qip1 + Qjy2, 5 Qiy1 T Qigqg = Qi1 + Qiyg, Qip2 + Qig3 = Qg2 + Qjy3, -

U2 + Qigg = Qiga + Qings "+ 5 iy (q—1) T iyqg = Aiy(g—1) + Giy_,q, WE have
(fIB)au ce (QB)QU ce (QB)alq
(1B)ay -+ (“B)ay -+ (“Ba,,
("B)ag ("B)ay ("B)ag,

(qB)an_m .. (QB)alj_m .. (qB)alq_m

= [(=b)~ ™ (B)an-m -+ (Blaym - (“Blay-m

(B)ap-m - (Blayom - (1B)agym

= [(=b)e ™ Z szl sign(o)(“Ba, ,y_s VM € Z, (4.15)

oeSy
ranging over the symmetric group S,, where
+1, 1f o is an even permutation,

sign(o )=
-1 if ois an odd permutation.

Proof. Use (4.4) and the procedure similar to the one used in Theorem 3.2.13. ]

The following identities can be deduced from general q linear identity.
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Theorem 4.2.13. (d’Ocagne type identity)

Forany my e Z, k=1,2,....,q and 1 <1, 5 <q,

(qB)m1 R (qB)mj . (qB)mq
(qB)m1+i—1 e (qB)mj+i—1 e (qB>mq+i—1
(qB)mlJr(q*l) U (qB)ijr(qfl) T (qB)mq+(€1*1)
“11m q .
=0 TL, i) Bnmesat - (4.16)

Proof. Substitute a;; = m; +i—1,1 < 14,5 < g, m = my in general g-linear identity
and evaluating the resulting determinant, we get the result. O]

Theorem 4.2.14. (Catalan type identity)

For any n,r € Z,

(qB)n (qB)nHjil)r (qB)anil)r
(B)nra-iyr = (Blarg-ipr = ("Bngg-iy
(qB)n—i-(l—q)T (QB)n+(j_q)T (qB)n
_11n q
= [(=b)T7Y Z]‘LZ1 sgn(0)(1B) (i—o(i))r- (4.17)
oeSq

Proof. Substitute a;; = n+ (j —i)r,1 <i,j5 < g, m = n in general g-linear identity

(4.15) and evaluating the resulting determinant, we get the result (4.17). O

Remark: When ¢ is odd, it is seen that the contribution of anti-diagonal elements
to the determinant value is zero. Hence the R.H.S. of the above identity takes the
simpler form [(~b)1-1)" Y07 (1B)1 I (1B)T

Jr q=3)r
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Theorem 4.2.15. (Cassini type identity)

ForanyneZ, 1 <1<q,

(QB)n . <QB>n+j_1 - (QB)n+(q_1)
_ —11n—(q—1
(Bt - (Bl -+ (Blary | = (DTN (418)
(Bata-q) =+ Blarg- =+ ("Bla
Proof. Substitute » = 1 in (4.17), the required result can be obtained. ]

Theorem 4.2.16. (Extended form of Cassini type identity)

ForallneZ and 0 <5 < q—2,

(qB)n e (qB)n—i—j e (qB)n+r
1B),_; 1B), 1B)pir; I
(“B) (“B) (“B) = [(=b)"] (g )(qB)r_
("Bln—g-2 -+ ("Blnti—g-2 -+ ("Blntr—(g-2)
(qB)n—(q—l) T (qB)n+j—(q—1) T (qB)n-H“—(q—l)

(4.19)

Proof. Substitute a;; =n+j—4,aq,=n+r—-1,V1<i<gand1 <j<g-—1in
general g-linear identity (4.15) and evaluating the resulting determinant, we get the

result. O

Similar to the Pythagorean result of B-Tribonacci sequence, we have it for B-q

bonacci sequence.
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Theorem 4.2.17. For alln € Z,

2

BB AR By a0 B )|+ 20 B 1 (Bhaa 1 =0 OB )
= [POOEBY L 42 0Bl (Blurgms — 0 B (420)
Proof. Consider (“B)pyq1 = 3020 WD 0017 7 (9B),44 o,
Therefore, (4B),1q-1 — Y0t WD a0 17 7 (4B, 0 = 97" (4B), 4
This implies (13)p4q_1 — ((qB)n+q_1 _pet (qB)n_1> — 51 (9B),_,

Squaring both sides,

b2(q_l) (qB)72’L—1 + 2 (qB>n+q—1 ((qB>n+q—1 - bq_l (qB)n—1>
2
= (B yr + ((Blargr = (1B)ay)

Again squaring again both sides,
2
[52(‘1_1) (“B)a_y +2 (“B)nsg-1 ((“B)nsg-1 — bq_l(qB)n—l)}
4
= By + (OB)ngr — 071 (1))
2
F21B)2 g1 (1B)g1 = W7 (B)o )
2
Thus, [bQ(q_l) ("B)p—1 +2 (1B)nsg-1 ((“B)asg1 — bq_l(qB)nfl)}
_ 2] 2
= B2 = (Bhusgr = 07 (B)r)|

+4("B)2 1 ((1B)nagr — 17! ((’B)n—l)>2

2
Therefore, [52@—1) ("B)2_1 42 ("B)ntg-1 ((1B)psg-1 — bq—l(QB)n,l)]
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— [bq—l 1B)n-1 (2(qB)n+q71 — b (qB)”l)r

2 OBhuias (OBlasar =07 (B

Hence the theorem is proved. Il

4.3 B-q Lucas sequence

In this section, we introduce B-g Lucas sequence and obtain some identities of this

sequemnce.

Definition 4.3.1. Let n € NU{0}. The B-q Lucas sequence is defined by

qg—1
—1)r
("L)nsg1 = [ e e ("L)piq-2-r, ¥ > 1, (4.21)

|
— !
with (1L); =0, i =0,1,2,3,---¢—3 (¢ >3), (“L);o =2 and (“L),1 = a® ",
where (1L1),, is n'"* term of B-q Lucas sequence (4.21).
Terms of (4.21) for ¢ —2 <n < g+ 1 are:
("L)g—2 =2, (1L)g—1 = a®", (1L)g = a®@™D +2(qg — 1)a"? b,
(L)1 = a®@V +3(¢ = 1) @® b+ (¢ — 1)(g — 2) a” %",

Rearranging the terms of (4.21) as follows, we obtain the terms (?L),,, where n is

a negative integer.

q—2

(Der = i [ D - 2wy (] a2

— 7!
with (“L); =0, i=0,1,2,3,--+ ,¢ — 3(¢ > 3), (“L)y_2 =2 and (*L),1 = a?™".

Few terms of (4.22) are given below.

(L) g = =%, (L) g = z25 + (g — 1) 9%, (L) _y = 2@y o0 o'l

ba? 2l patl:
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Now we define B-q Lucas sequence for all n € Z.

Definition 4.3.2. The B-q Lucas sequence is defined by

q—1

— 1)r
(qL)n+q71 = Z u @qilir b (qL)nJrqufravn € Z,

r!
r=0

(4.23)

with (“L); =0, i=0,1,2,3,---¢—3(¢>3), (“L)y2=2and (‘L)1 = a® ",

where (1L),, is n'" term.
We have Binet type formula for (4.23).

Theorem 4.3.3. The n'™ term of (4.23) is given by

oy (1) [licicicqijuen (200 — a? ') (di — b))%
[Ticicj<q(0i — ¢5)

where ¢, p=1,2,--- ,q are q distinct roots of the characteristic equation

(qL)n =

A — g;(l) #a(‘fl)*rb’"}\’" = 0 corresponding to (4.23).
Proof. Proof is similar to that of Binet type formula (4.4).
The following theorem gives the relationship between (4.3) and (4.23).

Theorem 4.3.4. The n'" term (7L),, of (4.23) is given by
(“L)p = 2(B)ps1 — a’ ' (“B),,V integer n.

Proof. Equation (4.24) implies

9 22:1(_1>k+1 H1§i<j§q,i,j7$k <¢z - ¢j)¢z+1
H1§i<j§q(¢i - ¢j)

—qi! Dh (=DM H1§i<j§q,i,j;£k (2¢i —a” 1) (¢ — 65) 0k

(qL)n =

H1§i<j§q(¢i - ¢J)

= 2(’B), 11 — a®” ' (?B),,, using Binet type formula (4.4).

7

(4.24)

(4.25)



Corollary 4.3.5. The n'* term (1L),, of (4.23) is given by

qg—1
(=1 1y
(“L),, = ("B)py1 + Z % a7 ("B pigo1-r, V0 € Z. (4.26)
r=1
Proof. The proof of the theorem follows from equations (4.3) and (4.25). O

We have the following identities of B-q Lucas sequence similar to the identities

of B-q bonacci sequence.

Theorem 4.3.6. The n'" term of B-q Lucas sequence (4.21) is given by

r

& @-D-g-2) (@-Dh-(a-2-1)
(L)"_Z[(q—l)(n—(q—2)—r) 0

r=0

] PACES (n*(q72)) —aryr

_ zp: [ q—1 (- 1) ((q — 1)<n — (Q(T—_UQ; 7‘) +5s— 2>T] a(qfl)(nf(qu)) oy,

r=2 s=
(4.27)

(=1n—(a=2) |

Vn>q—2andp:L 7

Proof. Let n > q — 2. We divide the proof in to g cases by taking n = gk — r, where
r=20,1,2,---qg— 1, and use equations (4.6) and (4.25).
Let n = ¢k and consider,

("L)n = 2("B)ns1 — a’ ("B)n.

L(q—l)(qk-‘rl—(q—l))J
D B R (e (L8 S R A R (G RO R
L<q71)(qk7(q71>)J
—aqi! ZTT (qfl)(qkfgqfl)*r)i ala=D)(gk—(a=1)—r)=r pr

_ Ziq:—oﬂ(k—(q—%) o@D (@h+1-(g=1)=1)"  (q-1)(gh+1~(g—1)—r)—r pr

r!

_qi! Zi‘i}l)(k_(q_z)) ((]—1)(f1/’€—rgq—1)—7“)£ al@=D(gk—(g=1)=r)=r pr
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_ qu 01 ( O 2)) (2 (qfl)(qkﬂf(qfl)*?")ﬂ_(qfl)(qkf(qfl)#ﬁ) ala=Dak—(g=1)=r)=r pr

r! r!

r! ]

q-1)\k—(¢-2) —1)(gk+1—(g—1 1) (gk+1—(q—1)—7)"
—Zro( )(<q Jgk+1-(g=D)-n)" | (¢=1)(gk+1-(g=1)=r)

r!

_ (qfl)(qkf(qfl)*f)i) ala—D(ak—(g=1)=r)=rpr

_ qu 01)( (q— 2)) [ (q—l)(qk—(q—2)> ((q—l)(qk—(q—2)—r)> :|a(q—1)(qk—(q—2))—q7‘br

(g—1) (qkf(qu)*T) T!

r—2
_ qu 21 ( G 2)) [ q- }(S _ 1) <(q1)(qk(?1;)'r)+52> ]a(ql)(qk(qQ)) —aryr

Hence the theorem is proved. Il

Following theorem gives the n'* term of (4.22).

Corollary 4.3.7. The n'* term of (4.22) is given by

r

- 5 [y ek

qg—1)(n—(¢q—2)—r) r!

_ {qus ~1) (<q e (q(r__l)2; L 2)]] a0 (e2) oy (4.98)

s=1

Vn < —1 andp= [%;(‘7_2))]

Theorem 4.3.8. (i) For n > 0, we have

"o (D + (X, P el br) (PL)n—i + (1L)g—1 — ("L )g—2
2 (‘L) = - (a+b)* - !
(4.29)

r=0

a+b+#1, if qiseven;
provided

a+b=# +1, if qis odd.
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(11) For n > 1, we have

— oy (L)n+ (>0 0 2or) 14 qul)r at™ 7" b) (UL) (14 + (1L)g—1 — (1L) g2
2 (D)=~ (a+b)—1—1 =
(4.30)

a+b+#1, if qiseven;
provided

a+0b#+1, if qisodd.
Proof. (i). We use equations(4.25) and (4.8) to prove (4.29).

Consider, > 1" ((9L), =23 o(“B)rs1 — a’™! > r—o("B)r
= Gy (Bl + (T SIL, O 007 ) (B — 1)
gt ((Bhan + (X5 S0, S a7 ) (1B), - 1)
= =i ((20B)use = a7 (1B))
(Dot el gamter g (2(qB)n+1,i—aq_1(qB)n,i)—2—|—a‘1_1>
— ey (Dt (0 S0 5P @71 ) (L) i+ (0 L)y 1~ (L), )

Similarly, using equations (4.25) and (4.9) we can prove (4.30). O

Combining (4.29) and (4.30) we have
Z::—n(qL)T

(Lt — (L)) + T2 S (952 0 ) (L) — (L))
(a+b)—1—1 ’

a+ b # 1,if q is even;
provided

a4+ b=# +1,if q is odd.
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The following theorems can be proved using the procedure similar to that used to

prove the related results of B-Tribonacci sequence in Chapter 3.

Theorem 4.3.9. (Honsberger type identity)
For any m,n € 7Z,

q—1 T

(Limr =S (= a0, ) (D @)

s!
r=0 s=0
Proof. The proof follows from Honsberger type identity (4.14) for (YB),, and equation
(4.25). O

Theorem 4.3.10. (General q-linear formula)

For any a;,; € Z,1 < i, j,n < q with distinct i,, and the following (?C2)?* equations

Qi1+ Qiy2 = Qip1 + Qiy2, 770, Qig1 + Qigqg = Qig1 T Ajyq Qig2 T Qig3 = Qg2 + Qip3, "+,
Aiy2 + Uigg = Aiga + Qings "+ 5 iy _1(q—1) T Cigqg = Aiy(g—1) + Gi,_,q, WE have,
(QL)aH . (QL)alj . (QL)alq
("L)ay =+ (L)ay; -+ ("L)ay,
("L)ag ("L)a, (“L)ay,
("L)ay-m ++ (Lay-m -+ ("L)arg—m
= [(=0)" ™| (1L)ayom - ("L)aym -~ ("L)ayym
(L)ap-m  (Laym - ("L)ay-m

= (=0 ST, sign(o) ("L, . (4.32)

0€eSy

81



ranging over the symmetric group Sy, where

+1, if ois an even permutation;

sign(o )=
—1 1f o is an odd permutation.

Theorem 4.3.11. (d’Ocagne type identity)

Foranympy € Z,k=1,2,...,¢,0<1<qg—1and 1 <j <q,

(qL)ml .. (qL)mj .. (qL)mq
("L)mys1r o (LD)myer o (L)mgn1
(1L)mysi o+ (L o (IL)myrs

(L)mi+-1) - (LDmgra-1 - (Lmgr-1)

= (=0 3T, sign(@) Dot 1 (433)

€Sy

Theorem 4.3.12. (Catalan type identity)

For any n,r € Z,

(“L)n o ("Dntg-vr 0 ("LDntg-1yr
<qL)n+(1—i)T (qL)n+(j—i)T (qL)nJr(q—i)T
(“L)nta-gr = (LngG-gr - (“L)n

= [(=b) 1" ZH@_ sign(o) (L) (i—e(i))r- (4.34)



Theorem 4.3.13. (Cassini type identity)

For any n € Z,

(qL)n R (qL)n+(j_1) A (qL)n+(q_1)
(qL)nJr(lfi) T (qL)nJr(j*i) T (qL)an*i)
(IL)n+a-q)  (L)niG—q " (1L)y,

= 1= YT, sign(o)(“L)g-o:

oeSq

(4.35)

We have Pythagorean result for B-q Lucas sequence. This result can be proved

using the procedure similar to that used to prove Theorem 4.2.17. Hence omitted.

Theorem 4.3.14. For alln € Z,

7 (" L)n-1(2 ("L)nsg-1 — b7 ("L)n-0))* + 2 L)t g1 ("L g1 = 0" ("L)n-1)]?

= PO OL)2 42 ("Lnag 1 (Lhnagr = (L) )]

(4.36)

4.4 Incomplete B-q bonacci and B-q Lucas sequences

In this section, we extend the incomplete B-Tribonacci sequence and incomplete B-

Tri Lucas sequence to ¢ order and call them the incomplete B-¢ bonacci sequence

and incomplete B-g Lucas sequence respectively.

Definition 4.4.1. The incomplete B-q bonacci sequence is defined by
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VOSZSLWJ andn > q— 1.

We list below (?B)!, for [ = 0,1,2 and LMJ.
(B)2 = a@ V(D) Z 1 vy > g1,
(1B} = oD (=@D) 4 (¢~ 1)(n — ¢)) ale V=01 p vy > .
(1B)2 = oD (=@D) 4 (g = 1)(n — ¢))ale-Dr-0-1

N ((q—1>(n—<q+1)>)2(<q—1>(n—<q+2>>) QD) 12 > g 41,

L(q—l)(n—(q—l))J
(“B)n  ° = ("B)n.

We prove below some recurrence properties of the sequence, (B)!.

Theorem 4.4.2. The recurrence relation of the incomplete B-q bonacci sequence

(9B)L is given by

q—1 k
- (¢—1)" ok ge1e
(qB)f:fq T Z T(qB)lan—ll—kk at=1 =k bk (4.38)
k=0

Vo<i< LWJ andn>q—1.

: -1 (¢—Dk l+q—1-k _g—1—
Proof. Consider, > {_, (qk,) (‘IB)anrqqflf,g ad=1=k p¥

Slte-lok <(q1)((n+q1.k)(ql)1ﬂ)> a(‘l*l)((nJrqflfk)*(Q*l)*r),r+qflfk phtr

r

Ziiqoflfk <(q_1) (n;(k-‘r?”))> a(q—l) (n+1_(k+7n))_(k+r) bk-i—?"
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=yt et st (D0 T 101 b taking k47 = s,

El

s=0 s! (s—1)!

— yoltal (@D0+1-9)" G iymri-9-s b, since 2 4+ mL — (1)

_ Zl+q—1 ((q—l)(qu—(q—l)—S))i

S ' (@D (ta—(g=1)=s)=s ps

= B

n-+q D
Theorem 4.4.3. For all s> 1,
(g—1)s i
(“B)ia " = qZ Qg Do (apgyistotis qla-vesiy (4.39)
n+gqs - il n+(q—1)s—1 a ' :
i=0
Proof. Y\, 1e Ll (apy 1O gla=Dsiy
_ yla=Ds (oD
Sl 1)s <(q_1)(”+(q_1j_"_(q_l)_r) ) 01 (n+(a=D)s—i=(g=1)=r) ~r+(g-D)s—i ppti

_ \(e=Ds ((g=1)s)
i=0 al

r

. (q—1>(n+<q—1>(s—1>—(i+r>)>
Zl+(q—l)s—z <

r=0 r!

Taking ¢ + r = m, we get

Z(qfl)s ((g=1)s)* (qB)lJr(qfl)sfi qla—Ds—ipi

i=0 il n+(g—1)s—i

—1)s —1)s)t
_ sole-Ds (a=1s)

3!
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m—i

(4=1) (n+(a=1)(s=1)—m)
I+(g—1)s (
D i (m—i)!

) PACES; (n+q87(q71)7m) —-m pm

m

(g-1) (n+<q—1><s71>+(q—1>sfm)>
_ Zl+(q—1)8 (

0 ' a(qfl) (nJrqsf(qfl)fm) -m pm
m= m!

m

(¢-1) (n+qsf(q71)*m)>
_ Zl+(q—1)s <

m=0 po a(CI*l)<n+qsf(q71)fm) -m bm,

since %5 + —(ﬁ! — _(”ﬂ;l)i
= (1B), " 0

Theorem 4.4.4. For 0 <[ < LMJ and s > 1,

(qB)li(f_ll)H _ a(q—l)s(qB>l+(q—1) (¢—1)
n+(q— s

n+(g—1)

—1)(s—%)—7r 1 I+(g—1)—r
<a(q 1)(s—1) b(qB)an_l)H_r)-

(4.40)

Proof. By mathematical induction on s.
Equation (4.38) implies, (4.40) holds for s = 1. Now let the result be true for s < m.
Let s = m + 1 and consider,

m -1 (¢g—1)- —1)(m+1—3)—r 171 +(g—1)—r
> im0 Z?«:l% <a(q DimH=n=r p (qB)nfgqfl))Hfr)

_ E:'Z)l Z?«: (g-1)= <(a(q—1)(m+1—i)—r b (qB)lJr(qfl)*r )

r! n+(q—1)+i—r

-1 (¢g=1)* 1) (m+1-m)—r pr H(g—1)—r
+ ?‘:1 (qr!) (a“(q 1)( +1 ) b (qB)nJr(EJqfl))+m+1f7')

- m— - ) -1 (m—i)—r pr l —1)=r
= qe! Zz;%(dq 1)(m—i)=r |, (qB)an?qu)Hfr)

+ 300 S (a0 (1B) L)) = (ale Y (1B )
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_ I+(g—1 “1(m I+(g—1
— a1 (qB)nfEqul)Hm _ qla=1)( +1)(qB)n+(Equl))

-I—(qB)f:r(g;;)ﬂ —alb) (1B )f:r(g;;z, by induction assumption.

I+(g—1 “1(m I+q—1
= (4B), ) ey — @D @B) O

We define below the incomplete B-g Lucas sequence and study the various results

related to it.

Definition 4.4.5. The incomplete B-q Lucas sequence is defined by
(“L);,

T

| -1 —(g-2) (@-D0--2-1)) ]a<q1>(n<q2>)qr1f
(g—1D(n—(¢g—2)—r) 7!

l
(-0 —(g—1)—r)+s-2)"
) (r —2)!

—_

q—

[ (s—1

1

-

] PACESY (n*(q%)) Uy (4.41)

[|
N

r S

0<I< {MJ and ¥n > g — 1.

We state below the relation between n'* terms (?B)! and (L)}, of (4.37) and (4.41)
respectively. The proof of the Theorem 4.4.6 can be obtained using the procedure

similar to the procedure used in Theorem 3.4.6.

Theorem 4.4.6. The relation between the n'™ terms (L) and (“B)!, is given by

n—r?

q—1
1)
(1), = (B + 3 iy ey (4.42)
r=1 ’

q-1<1< D) |y > 9(g - 1),

The following result can be obtained from (4.37) and (4.42).
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Corollary 4.4.7. For 0 <[ < {WMJ’
(L), =2 ('B),,, —a" (1B),, (443

n>q—1.

The next three theorems give the results on the recurrence properties of incomplete

B-q Lucas sequence (4.41).

Theorem 4.4.8. The recurrence relation of the incomplete B-q Lucas sequence (L)%

s given by
(=1 i
I+q— —1-r —1-ryr
(qL)ntrqq t= Z T(qL)n—gq—l—r al b ) (444)
r=0 ’

Vo<I< [MJ and n > g — 2.

Proof. L.H.S of (4.44)= Zg;(l) D2 qpyra—Llr ga—1-rpr,

r! n+q—1-r

r! n+q—r n+q—1—r

— Zg;é (q—1)£2 <(qB)l+q—1—r _ qe-l (qB)l+q—1—r >aq—1frbr, from (4.43)
=2 3 ety (1B) T — art D ey (1),

=2 Zg;cl)<qB)f;r(1¢;1 —a?! (qB)fITqill, from (4.38).

e (QL)l+q71 D

n+q

Theorem 4.4.9. For all 0 <1< {(q_l) (”_q(q_Q)—s) J’

(g—1)s i
ay, I+(g—1)s ((q - 1)3)7 aj, I+(g—1)s—i (q_1)5_ibi 4.45
( )n+(]8 - Z Z' ( )n+(q—1)s—ia N ( : )
i=0 )

Proof. RH.S. of (4.45) = S2(0-Ds Wa=be)® (qpylHaUs=i (g-1)s—ipi

1=0 3! n+(g—1)s—i
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—1)s ((g—1)s)t I+(g—1)s—i _ I+(g—1)s—i —1)s—iri
- Zl(io : w (2 <qB)n:(E]q71))s+1fi —a’! (qB)ntr((qQ*l))sJ> a(q b b

-1 —1)s)t I+(q—1)s—i )s—ini
=2 ZZ(10 . % (qB)n-‘r(EIQ—l))S-‘rl—i alt=>=p

_ —1)s ((g—1)s)t I+(q—1)s—i —1)s—ipi
g1 ZEiO) (g 7;!)) (qB)n—i—(E]q—l))s—i ala—1)s—ip,

=2 (\B)H N — et (4B from (4.39).

— (qL)H-(q—l)s'

n—+qs
[l
Theorem 4.4.10. Forn > qufll +q—2],
(g1
I+(a—1) —1)s I+(g=1) _ — ) (g—1)(s—i)—rypr I+(g—1)—r
(qL)n+EJq71)+s - a(q ) (qL)rH»?qfl) - r! a(q o= b (qL>n+(qq71)+ifr'
=0 r=1
(4.46)

Proof. RILS. of (4.46) = Y373 3207} 1 qa-D(s—drpr(ap)Ha

=1 x=q—1 (¢=1)" (g—1)(s—i)—rpr I+(q—1)—r
=2 10 2 %a(q De=0=rh (2(qB)n+(f+(q)—1)+i—r

—at™! (qB)Z;(gq_,ll))_pr , from (4.43)

_ I4+(g—1) —1)s I4+(q—1)
=2 ((qB)n+iI+(q—1)+s —alrV <qB>n+f+(q—1)>

_ I+(g—1 s I+(g—1
—a 1<(qB)"+(E1q—1))+8 —altV (qB)nJr(gq—1))>

_ I+(g—1) - I+(g=1)
- <2<qB)n+f+(qfl)+S —a’™! (qB)nJrElq*l)JFS)
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Y I+(g—1) - A
—ale™h (2 (qB)n+f+(q71) —alt 1)(qB)”+?q*1)>

o I4+(g—1) —1)s l+(q—1)
= (qL)n+E1q—1)+s —alt™ (qL)nJr?q—l)'

Hence the result is proved.
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Chapter 5

Generalized Bivariate B-q bonacci and B-qg Lucas

Polynomials

This Chapter includes the content of published papers (P2), (P3) and (E1).



Chapter 5

Generalized Bivariate B-g bonacci

and B-g Lucas Polynomials

5.1 Introduction

It is known that one way of studying the extensions of Fibonacci sequence is the study
of polynomials associated with it. In this Chapter, we generalize and extend bivariate
Fibonacci polynomials defined by (2.43). The coefficients x and y of F,, and F, 4
in (2.43) is generalized to non-zero polynomials h(z) and g(y) with real coefficients

respectively. Thus, we rewrite (2.43) and (2.44) respectively as

UB)ngmsr(x,y) = h(z) (' B)ngn(z,y) + 9(y) (! Blngn-1(z,y), (5.1)

with (fB)h,g,O(xu y) = 07 (fB>h,g,1(x7y> =L

and
(P Dngnir(@,9) = h(@) (P L)ngn(@,9) + 9(y) (L)ngn1(2,), (5.2)

with (fL)h,g,0<x7y) = 27 (fL>h,g,1<x7y) = .

We call (5.1) and (5.2), generalized bivariate B-Fibonacci polynomials and general-
ized bivariate B-Lucas polynomials respectively. With g(y) = 1, identities of (5.1)

and (5.2) can be seen in [14] and [2]. In this Chapter, we extend and generalized (5.1)
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and (5.2). This extension is such that the n'® polynomial is constructed by adding
the preceding three terms having the coefficients as the terms of the binomial expan-
sion of (h(z)+ g(y))Q. We call them, generalized bivariate B-Tribonacci polynomials
and generalized bivariate B-Tri Lucas polynomials respectively. We also extend and
generalized incomplete Fibonacci and Lucas polynomials defined by (2.47) and (2.48)
respectively. Further they are extended to ¢ order polynomials.

In Section 2, we introduce and obtain various identities relating generalized bi-
variate B-Tribonacci polynomials. Section 3 deals with B-Tri Lucas polynomials and
their identities. In Section 4 and Section 5, we introduce incomplete generalized bi-
variate B-Tribonacci polynomials and incomplete generalized bivariate B-Tri Lucas
polynomials respectively. Section 6 deals with a generalized bivariate B-q bonacci
polynomials. In Section 7, we study generalized bivariate B-q Lucas polynomials.
In Section 8 and Section 9, we study incomplete generalized bivariate B-q bonacci
polynomials and incomplete generalized bivariate B-q Lucas polynomials respectively.
We also study their various identities. Throughout this Chapter we take h(z) and

g(y) to be two non-zero polynomials in z and y with real coefficients respectively.

5.2 Generalized bivariate B-Tribonacci polynomials

We define now generalized bivariate B-Tribonacci polynomials.

Definition 5.2.1. The generalized bivariate B-Tribonacci polynomials are defined by

(‘B)ngm+2(z,y)

= 1*(2)(*B)ngms1(2,y) + 20(x)g(y) O B)hgn (€, y) + 9° (W) ((B)ngm-1(z,3),Yn € N,
(5.3)

with (tB)h,g,O(Ia y) - Oa (tB>h,g,1(x7 y) =0 and (tB)h,g,2(1‘7 y) = ]-a
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where the coefficients of the terms on right hand side of (5.3) are the terms of the

binomial expansion of (h(x) + g(y))* and (*B)ngn(z,y) is the n'™ polynomial.

For 0 < n <6, the terms of (5.3) are (*B)p40(z,y) =0, ("B)pga(z,y) =0,
(‘B)nge(r,y) =1, (B)ags(r,y) = B*(x), (‘B)ngalz,y) = h*(x) + 2h(x)g(y),
(‘B)ngs(w,y) = h®(x) + 4h°(x)g(y) + ¢*(y) and
('Bngs(,y) = h*(x) + 6h°(2)g*(y) + 61*(2)g*(y)-

In particular, if g(y) = 1, then (5.3) with (*B)s1..(z,y) written as (*B)s.(z),

reduces to (1.1) of (P3), namely

("B)nnsa(x) = (@) ('B)nns1(z) + 20(2)('B)nn(2) + (Blnn-1(z), Yn €N, (5.4)
with (*B)po(z) =0,(*B)p1(x) =0 and (*B)p2(x) = 1.

For 0 < n < 6, the terms of (5.4) are (*B)no(z) =0, (‘B)p1(z) =0, (*B)pa(z) =1,
(‘B)ns(x) = h*(z), ('B)na(x) = h*(x) + 2h(x), (‘B)ns(x) = h°(x) + 4h°(x) + 1 and
(*B)ngs(x) = h®(x) + 6h°(x) + 6h*(z).

If h(z) = 1, then (5.4) reduce to B-Tribonacci sequence (3.4) with @ = 1 and

b =1, namely,

("B)iniz=(B)ini1 +2('B)1n+ ("B) 11,V > 1, (5.5)

Wlth (tB)l,O = O7 (tB>171 = O and (tB)LQ — 1

First few terms of (5.5) are (*B)10=0, (‘B)11 =0, B)12=1, ('B)13=1,
(tB)lA = 3, (tB)1’5 = 6, (tB)l,G = 13, (tB)1’7 = 28 and (tB)l’g = 60.
For simplicity, we use (*B)pgn(z,y) = (‘B)ngn, ("B)an(x) = (‘B)pn, h(z) = h and

9(y) = 9.
The following table shows the coefficients of (*B);,, defined by (5.4) arranged in

ascending order and also the terms of the sequence (*B);,, defined by (5.5).
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Lo [P7 [ RT [ 02 [ 7 [ B7 [ R [ B° [ AT B° [ A7 ] RO B [ 172 [ (B |
0] 0 0
10 0
21 1
31001 1
1o/ 2001 3
51004 001 6
6006006001 13
70 [4[0[0[15/0[0|8[0]|0]1 28
S| T/0[0/20[ 00280010 0 1] 60

Table 5.1: Coefficients of (*B),,, and terms of (*B) .

In Table 5.1, the sum of the n' row is the n'* term of the sequence (*B);,,. Also,
for n > 2, sum of the elements in the anti-diagonal of corresponding (2n-3)x(2n-3)
matrix is 22"2).

We state below theorems on the n' term (*B) ., defined by (5.3). These the-

orems can be proved using the procedure similar to that used to prove theorems in

Section 2 of Chapter 3 and hence omitted.

Theorem 5.2.2. The n'" term of (5.3) is given by

(a—=B)y" = (a—=7)B"+ (8 —y)a”

By = , 5.6
B @=BHE- a7 >0
where o, B and v are the distinct roots of the characteristics equation
A3 — h2\% — 2hg\ — g? = 0 corresponding to (5.5).

Equation (5.6) is called the Binet type identity for (5.3).
Theorem 5.2.3. The n' term (*B)j, 4. of (5.8) is given by

T (2n — 4 — 2r)-
('B)ngn = ZO . ) (5.7)
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Theorem 5.2.4. The sum of the first n + 1 terms of (5.3) is

S By — Pranss £ (04 209)(Bign + 5" Bhrana =1
(h+gp—1 / |
provided h + g # +1.
Theorem 5.2.5. The generating function for (5.3) is given by
(Gpna(s) = T 5.9
9 1 —2(h+ gz)?
The next two theorems are related to the recurrence properties of (*B)j, g.p-

Theorem 5.2.6. For all s > 1,

- (2s)t i 2s—i _ (t

Z F ("B)hgnti Vg™ ™" = ("B)n.gnts- (5.10)

Proof. We prove the theorem by mathematical induction on n. For s =1,

L.HS. of (5.10) = X2 @5('B)j, g nys hig>™
= §*("B)ngn +2hg ('B)ngni1 +h* (‘B)ngnio
= ("B)hgnt+s = R.H.S.
Therefore (5.10) is true for s = 1. Assume that the result holds for all s < m.

: 2m+2 (2m+2)% ¢ i om+2—i
Consider, » """ == (‘B)ngnti Mg

i—1

" m)" m m)* i 2mt2—i
= yami (%32); 19 <zzi_>1)! 4 em) ) (' B)gmss hig™+?

7!

_N\2m (2m)t g i+2, 2m—i
_Zi:—2 il (B)h,g,n+i+2h g
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i

+2 fo_l (2_m)l(tB)h,g,n+i+1 pitlgm—itl Z?Z) (2m)* (tB)h,g,n+i hig2m—i+2

il 7!

= 212;”0 (27‘7!1)l h! g2m*i <h2 <tB)h7g,n+i+2 + 2hg (tB)h,g,n—H’-i-l + 92 (tB)mg,n-&-i)
= hQ(tB)h,g,n+3m+2 + 2hg(*B)n,gntsm+1 + g2(tB)h,g,n+3m

— (tB)h,g,n+3m+3-
Hence the result is true for s = m + 1.

Therefore, by mathematical induction on s, the result follows. O

Theorem 5.2.7. For s > 1,

Zzs;ol (2h2$—1—2i 9 (B hgmersi + h22% 92(tB>h,g,n+i)
= (tB)h,g,n+2+s - hzs(tB)h,g,nJrQ- (511)
Proof. By induction on s. If s =1, then (5.11) reduces to

2hg ('B)ngni1 + 9 Bngn = (Bngnis — B* ('B)ngns2,

which is true from (5.3). Hence (5.11) holds for s = 1.

Now let the result be true for s < m. We prove it for s = m + 1.

Consider, " <2h2m+1_2ig(tB>h,g,n+l+i + h2m_2ig2(tB)h,g,n+i)-
= Z?ZJI (2h2m+1_2ig(t8)h,g,n+l+i + h2m_2i92(tB)h,g,n+i>
+ (th(tB)h,g,nerJrl + 92 (tB)h,g,n+m>

= 12 (R B + B Bgn))
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+(2h9('B)ngintmss + 8 (Blngarim)
= h? ((tB)h,g,n+m+2 - h2m(tB)h,g,n+2)
+2hg("B).gntms1 + 92 ('B)ngnim
= W2("B)ngnims2 — PP P2('B)pgnt2 + 20hg("B)hgnim1 + 62 ("B)ngntm

= ("Bngntmrs — B2 (" B)pgnt, from (5.3).

Hence the theorem is proved. Il

Remark 5.2.8. If g(y) = 1, then all the identities listed above reduce to corresponding
identities of (5.4) which are published in (P3).

5.3 Generalized bivariate B-Tri Lucas polynomials

In this section, we define generalized bivariate B-Tri Lucas polynomials and study
their various identities. We also prove the relation between generalized bivariate

B-Tribonacci polynomials and generalized bivariate B-Tri Lucas polynomials.

Definition 5.3.1. The generalized bivariate B-Tri Lucas polynomials are defined by

("Dngna(®,y) = W*@)("L)ngni1(2,y)
+20(2) (W) ("L ngn(®,9) + §° W) (' L)ngn(2,y),Yn € N, (5.12)
with (*L)ngo(x,y) =0, ("L)ng1(x,y) =2 and (‘L) g2(z,y) = h*(z),

where the coefficients of the terms on the right hand side are the terms of the binomial

2
expansion of (h(m) + g(y)) and ("L)pgn(z,y) is the n'™ polynomial.
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For 0 < n <5, the terms of (5.12) are (*L), go(x,y) =0, (*L)pg1(x,y) = 2,
("L)nga(w,y) = h*(x), ("L)ngs(x,y) = h*(x) 4+ 4h(z)g(y),
("L)nga(z,y) = h(x) + 6h°(2)g(y) + 2¢°(y) and

("L)ngs(x,y) = h®(x) + 8h>(x)g(y) + 11h*(x)g*(y).

In particular if g(y) = 1, then (5.12) with (*L)p1,(z,y) written as (*L)j.(z)

reduces to (3.1) of (P3), namely,

("LYnni2() = (@) (‘L) ppsr + 20(2) (L) g () + (L) ppr (), ¥n € N, (5.13)

with (‘*L)po(z) = 0,(*L)p1(x) = 2 and (*L)o(x) = h3(z).
For 0 < n <5, the terms of (5.13) are (*L)xo(z) =0, (*L)p1(z) = 2,
(*L)pa(x) = W3 (z), (*L)ps(x) = h*(z) + 4h(x), (‘"L)pa(z) = h®(x) + 6h3*(x) + 2 and
(*L)ps(x) = h®(z) + 8h°(x) + 11h?(x).
If h(xz) = 1, then (5.13) reduces to B-Tri Lucas sequence defined by
(‘L)1ns2 = (L)1t +2( L)1 + (*L)1n-1, VR EN, (5.14)

Wlth (tL>1’0 = 0, (tL)l,l = 2 and (tL)LQ = 1

First few terms of (5.14) are (*L)10 =0, ("L)11 =2,(*L)12 =1, (*L)13 =5,
(tL)1,4 = 9, (tL>1,5 = 20, (tL)L(; =43 and (tL)lj = 92.

For simplicity, we use (*L)pgn(,y) = ("L)ngn, (L)pn(x) = (*L)pn, h(z) = h and

9(y) =g

Following table show coefficients of (‘L) arranged in ascending order of h and

also terms of sequence (*L)i .
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Lo A7 [n A2 [0 [ B[R0 RO [ BT [R% A7 [ O[T [ ] (D) |
0] 0 0
12 2
2001 ]
504001 5
12006001 9
50 01|00 8]0]0]1 20
60 8|0 0|20/ 0] 010 0] 1 13
7 2003|0040 |0]12] 00 1] 9

Table 5.2: Coefficients of (*L),,,, and terms of (*L); .

In Table 5.2, the sum of the n'" row is the n'" term of (*L); ,,. Also, for n > 2, sum of

the elements in the anti-diagonal of corresponding (2n-1)x(2n-1) matrix is 7 (2%"~2)).

We state below theorems related to the n' term (‘L) 4, of B-Tri Lucas polyno-
mials. These theorems can be proved using the procedure similar to that of theorems

in Section 3 of Chapter 3 and hence omitted.

Theorem 5.3.2. The n' term (*L)}, 4. of (5.12) is given by

(0 = B)7"(2y — %) — (@ = 9)B"(28 = h*) + (B — 7)a" (20 — ?)
(@ =B)(B—7)(a—9)

where o, B and v are the distinct roots of the characteristics equation

(“L)ngm = , (5.15)

A3 — h2\% — 2hg\ — g* = 0 corresponding to (5.12).

Equation (5.15) is called Binet type formula for (5.12).

Theorem 5.3.3. The n' term (*L)}, 4 of (5.12) is given by

(tL)h,gm
252 (2n—2) (2n—2—2r) (2n — 4 — 2r)r=2
= ( —r(r—1) > R 2T N > 2.
—~ \(2n—-2-2r) 7! 7!

(5.16)
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Theorem 5.3.4. The sum of the first n+ 1 terms of (*L)p g is

i(tL) (tL)h,g,n-H + (th + 92) (tL)h,g,n + QZ(tL)h,g,n—l + (tL)h,g,Z - (tL)h,gJ
h,g,r

— (h+g)*—1 ’
(5.17)
provided h + g # +1.
Theorem 5.3.5. The generating function for (*L) g is given by
2 —h?z
("G))ng(2) = : (5.18)
(L)) h.g 1—z(h+gz)2

We have the following theorems on recurrence properties of generalized bivariate

B-Tri Lucas polynomials.

Theorem 5.3.6.
(tL)h,g,n+1 = (tB)h,g,nJrQ + th (tB>h,g,n + QQ(tB)h,g,nfly vn Z 1. (519>

Proof. By induction on n. Since (*L)n g2 = h% (‘B)rgs = h* (‘B)ny1 = 0 and
(*B)n.go =0, (5.19) holds for n = 1.
Now assume that it holds for n < m — 1 and consider (5.12),
("Dngamsr = (L)ngm + 2hg (L)ngm-1+ 9°('L)ngm-—2
= h2 <(tB>h,g,m+1 + 2hg (tB)h,g,m—l + g2<tB)h,g,m—2)
+2hg ((tB)h,g,m + th (tB)h,g,m—Q + 92(tB)h,g,m—3>
+¢ <(tB)h,g7m,1 +2hg ("'B)ngm-3 + gQ(tB)h7gym,4), by assumption.
= (tB)h,g,m+2 + 2hg (tB)h,g,m + 92 (tB)h,g,me

Hence by mathematical induction the result is proved. O]
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Following Corollary can be deduced from (5.3) and (5.19).

Corollary 5.3.7.

("L)hgn =2 ("B)ngnir — h* ('B)ngn, ¥n > 0. (5.20)

Using the above Corollary, we can establish the following results.

Theorem 5.3.8.

2s i . .
(tL>h,g,n+3s = Z ( . ) (tL)h,g,n-‘ri hzg% Z7 S Z 1. (521)
1=0

Proof. Since ("L)ngn =2 ('B)hgnt1 — F*('B)ngm,

> B (Lngnss g

=yr, & <2 ("B)ngn+1+i — h2(tB)h,g,n+z‘> hig*~

=232 & (Bhngneres W™~ = 02 T2 CF (Bgnei hg™™

4!

— 2 (tB)h,g,n+1+3S - h2 (tB>h,g,n+387 from (510)

- (tL)h,g,n+35- [

Using (5.11), (5.20) and the procedure similar to that of Theorem 5.3.8, we get

the following result.

Theorem 5.3.9.

»
|
—

<2 p2s—1-2i g (tL)h,g,n+1+i+h2s_2_2i ¢ (tL)hyg’nH) = (tL)h7g,n+2+s_hfzs(tL>h,g,n+2-

(5.22)

I
[e)
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Following identities involving partial derivatives of the polynomials (*B) 4, and

(*L)p g.n are extensions of some identities discussed in [11].

k k+3j k k+3j k
Let (‘B)i) = 2 ((Blnga), (D) = 52050 ((D)hgn), W0 = L3 (h(x))

h,g,n OxkdyJ h,g,n

and g = - (g(y)).

We have the following identities involving (tB)( and (tL)Elkgjzl

Theorem 5.3.10.
(1) (L)) = (B + Y0 5 b S Bl (k)0 (gn) Ot B)yf =T,
(2) (Bl =30 B Sl & 5 ()0 (gn) O B)E
(3) (L)) = Yo 5 Sy Sl B (h277)0) (gn) (L) te
(4) 20— 1) b & ()0 (B 7
=30, 5 (OB Y B (e (B
(5) 2(n—2) 3o & ()OI (B) Y
= 3%, 5 (OB 4 Y B ()0 (B Y.
(6) S0 % ()01 (B0 = YR B ()0 (B)E
Proof.

(1) Equation (5.19) implies

(tL)h,g,n = (tB)h,g,n+1 + 2hg (tB>h,g,nfl + 92(tB)h,g,nf2

Differentiating both sides k times with respect to x and j times with respect

to y and using Leibnitz theorem for derivatives, we get

k,j (k s s, i k—s,j—1
(Divgn = (Bliigmar +2 50 g & & W00 (B 7Y

h,g,n i=0 s 4l
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l

ji kj—i
+ 30 L (D)),

(k k j kS (s 4 (k—s,j—1
(tB)th7)1+1+Z'r 1 r' Zsz() g:O r J_' (h2 )( 0 (g ) © (tB)hgnJT )

(2) Equation (5.3) implies
(tB)h,g,n = h2 (tB)h,g,n—l + 2hg(tB)h,g,n—2 + QQ(tB>h,g,n—3-

Differentiating both sides k times with respect to x and j times with respect

to y and using Leibnitz theorem for derivatives, we get

k.j k s (k—s j s 4l (g i k—s,j—1
(tB)( ) - Zs 0 k_i (hZ)( 7O)(t‘B)hgnjl + 223 0 g:() ]Z_' jz_' h'( 70)9(07 )(tB)gb,g,nEZ :

h,g,n

gt i k.j—i
+ 104 ()BT,
2 T k ks gt (s (0.4 k—s,j—1
= Zr:O i_' Zs:O 3 0 s' z' (h2 )( 0 (g )(O7 )(tB)gz,g,niljr'

(3) Equation (5.12) implies
(tL)h,g,n - h'2 (tL)h,gm,—l + 2hg(tL)h,g,n—2 + gz(tL)h,g,n—&

Hence identity (3) can be proved by a method similar to that used in identity (2)

above.

+h (*B)\"Y | using

(4) We first prove that 2(n — )AO(*B)j, g1 = 39 (tB) h,g,n+1

hgn

(5.7). For this purpose, we divide the proof in to three cases depending on n,
ie. n=3k 3k+1, 3k + 2.

Case 1 : Let n = 3k. Consider,

39 ('B)\) +h ('B))

h,g,n h,g,n+1

=39 a%((tB)h,gBk) + I %((tB)h,g,Sk-i-l)
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2%—2 (6k—4—27)" _4-3r 2k—1 (6k—2—27)" T
— 392 (Y% ( )t p6k—4-3 g) +h 2 (2% (6k—2-2r)" 1 6k—2-3 q)

r! r!

— 3(sz02 (6k—4-2r)"% 3 6k—5-3r 1,(1,0) g )+ (Z% L (6k=2-2r)™0 5 6k—2-3r 1,(1,0) q")

r! r=0 r!

— (6K — 2)hOF~2](10) +22k 1 <3T(6k 2! 2r)t | (6k=2— 2r)’“+1> pSk—2-3r [ (10) gr
= (6k — 2)hOb-2p(10) 4 Y2 L OR220" (35 4 (G — 2 — 3r)) AOF-273 p(1O) g7
_ (6]{: )h6k 27,(1,0) +Z2k 1 (6k— 2 2r)" (Gk )h6k7273r L (L,0) q"

_ Z% 1(61{; 2) (6k— i 2r)" p,6k—2-3r 1,(1,0) g

= 2(3k — 1)RLO(*B)), g 3011

Hence the result is true for n = 3k.
Similarly, the result can be proved for n = 3k + 1 and n = 3k + 2.

L+ h (‘B

Thus, we have, 2(n — 1)hO(*B);, i1 = 39 (tB) hagmil:

h,g,n
Now differentiating both sides k times with respect to  and j times with respect

to y and using Leibnitz theorem for derivatives, we get the required result.

(5) We first show that
2(n = 2)g D (‘Blngn =39 (B)iigo, + b (B

We consider 3 cases by taking n = 3k, 3k + 1, 3k + 2.

Case 1: Let n = 3k. Consider,
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=39 5:((‘Bngar) +h 5, ((‘Blngaer), from (5.7)

:392(2%—2 (6k—4—2r)" }6k—4-3r r) +h a%(zikol (6k—2-2r)" }6k—2-3r gr)

r=0 r! r!

k r ror k r roor—
=3(3 (Gk(r4—1)2h6k =3 gr gOD) 4 (2 11(6k(rz—1)2h6k 181 gr=1 (O.)

_ 3(Z§k12 (Gk(r41)2r pok—5=3r gr-1 g(o,l))+ (szOQ (6k— 47".27‘)”1 pok—A=3r g g(0,1))

= (6K — 4)hSk—1g(OD) 4 S22 ORZA20% (34 4 (G — 4 — 3r)) RSE—4-37 g7 g(O)
(6k: 4)h6k 49(0 1) +22k 2 (6k— 4 2r) (6k 4) J,6k—4-3r g g(O,l)

— Z% 2(6k 4) (6k— i- 2r)* 1 6k—4—3r g gD

= 2(3k — 2)g OV (*B)p g.31-

Hence the result is true for n = 3k.

Similarly, the result can be proved for n = 3k + 1 and n = 3k + 2.

Thus we have, 2(n — 2)(*B).g.n gV = 3¢ (* B)(O’l) +h(* B),(fizlﬂ

Now differentiating above equation both sides k times with respect to z and j

times with respect to y and using Leibnitz theorem for derivatives, we get the required

result.

(6) We first show that g(®! (tB),(llgozl = h10) (tB),(S;ZLH.

We divide the proof in 3 cases, n = 3k, 3k + 1,3k + 2.

Putting n = 3k in (5.3) and differentiate it with respect to x, we get,
1,0 2%k—2 (6k—4—2r) v
(tB)l(z,g,i)%k = %(Zrzo (T oA g )
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ZQk 2 (6k—4— 21=)TJrl J,6k—5-3r 1,(1,0) g

Therefore, g 01)(tB)(1,g0;k _ Zik02 (6k4r—!2r7”+1 pOk=5-3r p(1.0) grg(01),

Now consider,

0,1
(B = 2((‘Blngars)

_ sz 1 (6k— 2 2r) J6k—2=3r . r—1

0,1)

rg"~t gl

:ZQk 1 (6k—2—2r)" th 2_3p

r=1 (r—1)! "

0,1)

gt gl

_ Z2k 2 (6k—4— 2r)7+1 J,6k—5—3r q" g(o,l)

Thus, KO (1B)("Y) = 722 (Gkod-2n) =l

6k—5—3r7,(1,0)
h,g,3k+1 — r=0 r! h h

gr g(O,l).

Therefore, (tB)hlgon R (1,0) (tB)hOglnle gD,

Differentiating both sides k times with respect to x and j times with respect

to y and using Leibnitz theorem for derivatives, we get

i k+1,j—1 k s s k—s,j+1
z 0 z' g(O o )(tB)ﬁLgnJ ) Zs =0 IZ' h(1+ & ( B)é,g,(n]+1))'

With h(z) = z and g(y) = y, generalized bivariate B-Tribonacci polynomials and

generalized bivariate B-Tri Lucas polynomials respectively reduce to

("'B)nsa(r,y) = 2*('B)nsa(2,9) + 22y ('B)u(@,y) + y*('B)ua(2,y),Yn > 1, (5.23)

with (*B)o(z,y) =0, (*B)1(z,y) =0, (*B)2(z,y) =1
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and

("L)ns2(z,y) = 2*('L)nsr (2,9) + 22y('L)n(2,y) + 9 ('L)na(z,),¥n = 1, (5.24)
with ("L)o(z,y) = 0, ("L)1(z,y) = 2 and (*L)2(z,y) = 2°.
Following Corollary give the corresponding identities of (5.23) and (5.24).
Corollary 5.3.11. For alln > 2,
(h—s,j—0)

k.7) 2 —-r r s jt —r\(s r\(0,
(1) (tL)ﬁz ( )n+l +Zr 17 Z?:O Zi:o %JT'(~T2 )( ’0)(?/ )(07)(tB)nfr

(k r 2—7r r s gL —r\(s i (k—s,j—1
(2) (B)& =32 2 S Sk (p2n)(0) (yry 0t gt =)
k,j r —r r s gt —r\(s r\(0,¢ k—s,j—1
(3) (PL)P = S22 2 S0 S (2 (s0) () O (et ed =)

k i k+1,j—1 s s k s,
—1)(B)E) =33 & () OB T B ()0 (1)K )

n+1 — |

(4) 2(n
(5) 2(n—2)('B)" =331 & () V(BT 0L B ()60 (1B)

(6) (‘B = (B

Theorem 5.3.12. (Convolution property for (‘B); )

(B = B3 (20 Blgnsrs + 290 B ) (Bl (5.25)

Proof. Equation (5.9) implies

= 1
tB " n—2 _
;( Jhgn? 1— 2(h + gz)2

Differentiating both sides with respect to x we get,

S0 (L)) 2

_ 1,0 2hz 2g22
- h( )<1—z(h+gz)2 + 1—z(h+gz)2)
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= OO (2 [ T (Blgnz ) 42022 S22 Bgz ")
= h09 (20 =3[ (Blngn "] + 205 [0 o Bnan"]’)

Therefore, Zfzo(tB),(i’g%z"H

= hO (2035 (0Bl Blngi) "
293070 (o (“Bagi('B)ngn—i) ZnH)

Comparing the coefficients of z"*!,

(tB)gll,;?z = p10) ( Z?:o (2h (tB)h,g,nJrl—i + 29(tB)hﬁgm—i> (tB)h79:i>'

[
Theorem 5.3.13. .(Convolution property for (*L);, 4.,)
CL)n = B[S (20 (Dngmsrs +29 (Lngn-s ) Blgi = 2k (B
i=0
(5.26)

Proof. Equation (5.20) implies

(tL)h,g,n =2 (tB)h,g,n+1 - h2 (tB)h,g,n

Differentiating both sides with respect to z, we get
(tL)(LO) —9 (tB)(LO) B hQ(tB)(I’O) _ 9ph10) (tB)h,g,n

h,g,n h,g,n+1 h,g,n

= 2h(1’0) Z?Iol (2h (tB)h,g,n+2—i + 29 (tB)h7g,n+1—i> (tB)h,g,i
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HOO [ S (2h (Blgniri429 (Blgnoi ) (Bgi—2h( Bligs]
= ht0 [Z?o <2h (2('B)ngntz—i = B ("B)ngn+1-i)
+20 (2 (Bngnsios = 1B ) (Blngs) — 20 (B

= WO 0y (2 (Dngmsrs + 29 (Drgni ) (Blags = 2 (Blagal.
O

5.4 Incomplete generalized bivariate B-Tribonacci

polynomials

In this section, we define the incomplete generalized bivariate B-Tribonacci polyno-

mials and obtain various identities related to these polynomials.

Definition 5.4.1. The incomplete generalized bivariate B-Tribonacci polynomials are

defined by

2n —4
3

l r
tB l _ (271, —4- 27’)7 h2n7473r r V<<
('B)hgn(@,y) = . (2)g"(y), VO << |

r=0

| and n > 2.

(5.27)

We list below terms of (5.27) for 2 < n < 5.
(‘B go(®y) = 1, ("B} 4 3(2,y) = hP(x), ('B)j 4 (2, y) = h*(2),
("B galz,y) = h'(x) + 2h(z)g(y), ('B)j ;. 5(z,y) = h°(2),
("B)hgs(r,y) = h(x) +4h*(x)g(y) and ("'B); , 5(2,y) = h°(z) + 4h°(x)g(y) + g°*(v)-

-4
Note that (*B); 2 J(a:,y) = ("B)ngn(z,y).

h,g,n
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For simplicity, we use (tB)ﬁwm(x,y) = (tB)hgn, (*B)ngn(x,y) = (‘B)ngn,
h(z) =h and g(y) = g.

Following table shows terms of incomplete generalized bivariate B-Tribonacci

I~y
i
¢

h'? +10h% | h'? + 10h%g + 28h°g> h'? 4+ 10h%g + 28h°¢* + 20h3 g3

polynomials.
[ n\l] 0 | 1 \ 2 3
2 1
3 h?
4 h* h* + 2hg
5 ho h® +4h3g h® +4h3g + ¢*
6 h8 h® +6h°g h® + 6h°g + 6h?g*
7 RO K0+ 8hTg Ko 8h7g + 15h1g? Ko+ 8h7g + 15h*g% + 4hg?
8
9

A 412" g [ R + 120" g 4+ 45R%g | B' + 12k g 4 45R%g7 4 56R° g

—_
o

hi® | R +14h13g | R1® + 14h13g + 66R¢? | R0 + 14h13g + 66K g2 + 120R7 g3

Table 5.3: Terms of (‘B)! for 0 <1<3,2<n<10.

h,g,n>

With g(y) = 1, the identities of (5.27) can be seen in (P2).

Next, we prove the recurrence properties of polynomials (tB) hogin

Theorem 5.4.2. The recurrence relation of the incomplete generalized bivariate B-

l

Tribonacci polynomials (*B)j}, ,,, is

( B)lfL+an+3 hQ(tB)lh—i_gQ,n—iQ + 2hg(tB)lh+;n+1 + g ( B)%,g,n’ (528)

OSZSLZ”—;GJ and n > 3.

Proof. Consider, h*(*B)j*2 ., +2hg('B)} ) o1 + 9> ('B)} o

_ Zl+2 (2n 2r h2n+2 37«gr+2 Zl+1 (2n—2—2r)" h,2n 1— 3Tgr+1
[

T

(2n—4-2r)" 3 9n—4-3r r42
+Z7" 0 h 9

T
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h2n+2+zl+2 |:2n;!2r)1 + (271(;311))7;7—1] h2n+2—37‘g7‘

42— 1+Zl+1 |:(2n—2—2r)£+ (2n (2 2r)r=1 } p2n—1-3r gr

7! r—1)!

_ h2n+2+zl+2 (2n+1-2r)" p2n+2— 3rgr+zl+l (2n— 1 2T)r j2n—1- 3rgr
|

Tl

r

9

_ 192n42 1+2 2n+1—2r)" (2n41—2r)— 2In+2—3r
=htE 4T [ - + =i }h+

_ Zl+2 (2n+2 2r)" h2n+2 3rg

= (tB)ijf:s- L

Remark 5.4.3. Using (5.27), equation (5.28) can be rewritten in terms of non-

homogeneous recurrence relation as

(tB)él,g,n+3 = h2( B)hgn+2 + th( B)hgnJrl +9g (tB)iz,g,n

(2n — 4 —21)! pia < , (2n—2-2D"  (2n—2- 2Dt

_ j,2n—1-3l l+1]‘
T T T ) g
(5.29)
Theorem 5.4.4. For s > 1,
2s (25>l
Z i (tB)lh—i_gZ,nJr’L h1g25—l = (tB)éng%2+3s7 (530)

0<1< |22

Proof. We prove (5.30) by mathematical induction on s.
Let s = 1. Then L.H.S. of (5.30) = 7 (& (‘B)i . hig* = ('B)}i2 .= R.H.S.

h,g,n+1i

Thus, the theorem is true for s = 1. Assume that the result is true for all s < m.

. 2m+2 (2m+2)% ¢ p\l+i i ,2m-+2—i
Consider, ) ;" = (B)hgn+lh
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m —2)=2 i i om42—i
= e (BB g

m—1)i=1 i i 9ma2—i m)t i i 9m42—i
vo By pigemeani g g pigamsa-i)

_ x2m [ (2m) ot oy Ii2 i+2 2m—i
_Zz’:O( il (B)hvg,n+i+2h g

2m)E i i —i 2m)t % i ,2m—1
49 Z.!) (tB)il—t_g,—;iiJrlh +1g2m—itl | ( 7;!) (tB)lthmHh e +2>

— h2 (tB>l+2m+2 4+ 2hg(tB)l+2m+1 + g2 (tB)l+2m

h,g,n+3m+2 h,g,n+3m-+1 h,g,n+3m
I+2m+2
- (t )h—t_g,;nr?)m—i-?)'
Hence the result is true for s = m + 1.
Thus, by mathematical induction the theorem is proved. Il
Theorem 5.4.5. Forn > L:”T*GJ and s > 1,
s—1
2512 1 25-2-2 2 ! 42 2 142

(2 h* ' g (tB)fj,_g,nJrlJri_’_h ° ’ g (tB>h,g,n+i> = (tB)ij,_g,n+2+s_h S(tB)}:_g,nJrT

=0
(5.31)

Proof. By mathematical induction on s.
Note that (5.28) implies, (5.31) holds for s = 1. Now let the result be true for s < m.

We prove it for s = m + 1. Consider,

Sy (20 g (B R OB, )
m—1 m-41—2i m—21
= S (20 (B s+ B EP OB )
+ <2hg (tB)iz—t—gl,n+1+m + 92 (tB)él,g,n+m>

m—1 m—1—2¢ m—2—21
= h2<2i20 (2 prm=i=2lg (tB)izTgl,n—I—l-l—i + hEm2R 92(tB)§z,gyn+z‘))
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+ (2 hg(tB)lh—t_gl,n—l—l—o—m + 92 (tB)ﬁz,g,n—&—m)

l
h:g)n+m

(5.32)

= h2 ((tB)él—t_;nJrQer - h2m (tB)ﬁz—t_;nwLQ)
+2hg ('B)H 1w + 97 ((B)} g nim» by induction assumption.
= h2 (tB)iz—t—gQ,nJrPrm - h2m+2 (tB)?,_gz,njLQ + 2hg (tB)lh—t_gl,nJrler + 92 (tB)
= ('B);2 vsam — WP P2 (UB)2 L, from (5.28).
Hence the theorem is proved.
Lemma 5.4.6. For alln > 2,
ZLZE‘IJ T(2n—i!—2r)ﬂ p2n—a=3r gr
2n — 4 h
= T (Blugn = 5 2 (20 Blhgmsrs + 200 B ) ( B
i=0

Proof. We use (5.7) to prove the result.

2n—4 r
Consider, (*B)pgn = ZLS [ @noto2nt pon—a—sr g, Vn > 2.

r!

Differentiating both sides with respect to z, we get

2n—4 r
(tB)](ll,;](?’zl _ Z£:§ (2n—4—37“)7ﬂ(!2n—4—27')7 p2n=5-3r p(1L0) gr

2n—4 r
Therefore, (‘B){"% h = (2n — 4) 00 L7571 @nod=2n) pon—a—sr o

h,g,n r!

—3 h(1,0) ZL%J‘IJ p (2n—d=2r)" p2n—4=3rgr.

r=0 r!

Using Convolution property of (*B)j, g.n, we get

(h(w) Z?:o <2h(tB)h,g,n+1*i + 29(tB)h,g,n4) (tB)h,g,z) h
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204
= (2n —4) ('B)pgn K10 — 3p10) EL:S |, (en—a-on)

!

Thus, h Z?:o <2h(tB)h,g,n+1—i + Zg(tB)h,gyn—Z) (tB)h,g,i

2n—4

— (2n _ 4) (tB)h,g,n _ 32&:8 r (2”# jp2n—4-— 3rgr

2nsi4J (2n—4-2r)" 1 2p—4-3r r
Therefore, S1_3 & p@n=tz2n® g g

rl

h2n 4—3r

T

g -

= 2 (1B)y = S0 (20 B)ngmiii + 20 Bhign i ) ( By

Hence the lemma is proved.

Theorem 5.4.7. For alln > 2,

2n4

ZlO

( )hgn

3 3

= (12512 ) Bty 3 (24 Bhugmir 20 Bl o) ( B

PTOOf. ZZ\S(ZL%J (tB)éz,gn - (tB)hgn (tB)hgn ’ (tB)hgn

(2n42r h2n4+[(2n 9% pon-4 | (2n-d-2)L h2n43‘g:|_{_‘__

1!

+[(2n4 p2n—4 4 ... 4 (@nod-2)r h2n43rg7"i|_'_”.

rl

+[(2n4 p2n—4 .. +(2n42r p2n—A=Bror |

r!

(Qn—zL—QL%J)L%J
(222 )

_|_

h2n_4_L2n3—4J gL2n3—4J:|

(5.33)

2n4

(tB)L

h,g,n

:<L2an4J+1)(2n4 J2n— 4+(L2n;4j> 2n14'2 p2n—i=2g 4 ...

(2n 4— 2L2n 4J)LTJ

N
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2n—4 -
= Z’\;‘:g ] (L%J + 1— r,a) (27‘71—727’)7 h?n—4—37"gr

2n

2n—4
(2n—4— 2r)’“ p2n—a=srr _ LTl @noaoont g ona-gy
Do

=0 ' 0 g

r

9

= (127 +1) o

L2n_4j

— < 2n374J + 1) (tB)h,g,n _ ZT:S r (2n— j 2r)" h2n 4— 3rgr

= < ]+ 1) (‘B)ngn — 25 (‘Blngn
+hy <2h (B)ngmsii + 2 g(tB)h,g,n_i)(tB)h,g,i, by Lemma 5.4.6.

= (1254 = 257 ) (Blngn+ 5 Xl (2 (Bhngmi-i+2 (Blngn-s ) (Bl O

5.5 Incomplete generalized bivariate B-Tri Lucas
polynomials

In this section, we introduce the incomplete generalized bivariate B-Tri Lucas poly-
nomials and study some identities related to it. We also study its relation with the

incomplete generalized bivariate B-Tri bonacci polynomials.

Definition 5.5.1. The incomplete generalized bivariate B-Tri Lucas polynomials are

defined by

("L)hgn(:9)

!
(2n — (2n—2-2r)" (2n—4—2r)"=2\ o o a. .
TX: ( 2n — 2 — 27") rl a (r—2)! > h (z) 9"(w), (5.34)
2n — 2
VO<i< || andn>2,

L2n 2

Note that (‘L)s % *(2,9) = (‘L)ngn(z, y).
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| 202 | (2.9) = (L) L%J’ h(z) = h and g(y) = g.

For simplicity, we use (‘L) » h.g.n

Following table shows terms of incomplete generalized bivariate B-Tri Lucas

polynomials.

\

2

3 ht | h* +4hg

4 RS | h®+6h3g h% 4+ 6h3g + 2¢°
5

6

7

h® | h®48h%g | h®+8h3g+ 11h%¢?
RO | RO +10R7g | h'0 4 10h7g + 24h%*¢* | h'0 + 10h7g + 24h*¢® + Shg®
2| A2+ 12R%g | R12 4+ 12h%g + 41h°¢* | h'? + 12R%g + 41h%¢® + 36h3¢3

Table 5.4: Terms of (‘L) for 0<I<3and0<n<T.

h,g,n>

Following theorems give the relation between incomplete generalized bivariate B-

Tribonacci and B-Tri Lucas polynomials.

Theorem 5.5.2.

(tL)il,g,n = (tB)lhgnJrl + 2hg ( B)hgn 1 + g ( B)ﬁ;g%n—w (535>
2<1< 252

Proof. From (5.27), we have

(tB>lfL,g,n+1 + 2hg (tB)iz gln 1 + 92 (tB>;7,Tg2,n—2

_Zr 0(2n 2—2r)" h2n 2—3r r+2hg Zl 1 (2n—6—2r)" h2n 6— 37'97'

7l 7l

+g Z M h2n 8— 37“97"
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(2n—2—2r)" n— ror (2n—4—2r)— n— ror
= Yoo B hing 9 3 oy it

T—

+Zr ) (2n (f ;T) h2n—2—37"gr

[ (2n—2—2r)= n—4-—2r)r=1 n—4—2r)r=2 n r)r=2 n—2—3r r
S S [ L Te (ff_f);) e (;1_3)!) )— (;‘f S)') ]h2 2-8r

_ Zl—o [ (2n—2—2r)- i 2((2n—3—2r)“1) _ (2n—4—2r)r=2

o =D r—2) ]h2n7273749r

[ (2n—2—2r) r n ryr=2 n— o
:Eizo _(2 7242) 1+ 5.55) — = (f 3)) ]h2 g

= Zi—o 2n2f2—_22r((2n—i!—2r)r) (2n (i ;;) :|h2n 2— 3rgr

— (tL)l

h7g79n‘

Hence the theorem is proved. Il
Using (5.28) and (5.35), following Corollary can be proved.

Corollary 5.5.3.
(L), .. =2 (fB)ng — h* (*B)! (5.36)

0<1< |22

Theorem 5.5.4. The recurrence relation of the incomplete generalized bivariate B-

l

Trt Lucas sequence (tL)hgn

s given by
( L)§L+g2n+3 h2 (tL)lh—t_gQ,nJﬂ + 2hg(tL>§:_gl,n+l + 92 (tL)g‘L,g,n’ (537)

0<i< |2

Proof. Equation (5.35) implies

( L)§L+g2n+3 ( B)ﬁz—t_;,n+4 + 2hg(tB)£:_g1,n+2 + 92 (tB)lh,g,n+1
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- h2 (tB)ilJ,rgz,n—i-?) + 2hg(tB);zTg1,n+2 + gz (tBﬂL,g,n—&-l

+2hg(h*(*B)ylg nir + 209 (Bl g + (' B)jgnt)

h,g,n—1
+h2 ("B}, g + 209 ("B} gy + 9° (B, 2,5, from (5.28)

= W2('L)2 o+ 2hg("L) )y + 9 ('L)], s from (5.35). O

Theorem 5.5.5. For s > 1,

2s i
tL 1+2s o (25)* tL I+ hz 25—i 0<1< 2n — 2 — 2s 5 38
( >h7977’b+35 o Z il ( )h,g,n—l—i g y U U \‘—3 J ( . )
=0 ’

Proof. Equation (5.36) implies,

223 (2_5)l (tL)lJri hngS—i

i=0 3! h,g,n+1i

_ Z?io (2s)t (Q(tB)H-i — h2(*B)L )higzsfi

il h,g,n+1+i h,g,n+1

i

(tB)H-i hiQQS—i _ h2 Z?ig (2§)1 (tB)l—i-i hjig2s—i’ from (510)

o 2s  (2s)
- 2Zi:0 4! h,g,n+1+1 gl h,g,n+1

=2 (tB)il—t_QQ,fL—&-l—&-Qs — I’ (tB)iz—;ifwzs
= (tL)lh—t_QQjLJrQS' u

Similarly, using (5.36) following theorem can be proved.

Theorem 5.5.6. For s > 1,

s—1

(tL)iz—:-QZ—I—s - hZS(tL)ib—:-% = Z (2 hzs_l_Qi(tL)lh—t_gl,n—O—l—&-i + h2s_2_2i(tL)lh,g,n+i>7 (539)
=0
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Lemma 5.5.7. For alln > 2,

(2n—2-2r) 7l (r—2)!

ZLQ";QJT( (2n—2) (2n—2-2r)" (2n—4—2r>“2> p2n—2-3r gr

2n — 2 h
= g(%)h,g,n—g [Z (2h (“L)ngnr1-i129 (tL)h,g,nfi)(tB)h,g,i—Qh (‘B)ngon |-

= (5.40)

Proof. Equation (5.21) implies

In=t 2m—2) (2n—2—2r)" 2n—4—2r)r=2 n—2—3r r
(tL)h,gm = ZTL:OB J ((251,—2—%7‘)( r! £ - T<T - 1)%) h2 23 g .

Differentiating both sides with respect to x.

1,0
(tL)Engazl

| 202 n— n—2—2r)C e d— )2 sl i
=Y, (2n—2— 37“)<(2£Z2_2_2;T) 2 i! 2t (2 (f_;)!) ) p2n=3-3r p(10) gr.

This implies, h(tL)§11770) = (2n—2)h0 (*L)pgn

g7n

| 252 Mm—2) (2n—2-2r)"  (2n—4—2r)'=2 n—9—3r
—3h“’°)27~:5’ 7"((251_2_;?)( = = (1’—2)!) >h2 2-3r g

Thus, h(1,0) ZTEZT_QJ 7“<( (2n=2) (2n—2-2r)= (2n—4—2r)T—2> p2n=2-3r gr

2n—2—2r) 7! (r—2)!

1,0
(tL)ﬁL,g,ZL'

I
—
[\~
7
(V)
A
—~
=
h
SN—
=
Q
3
>
—
“H
e
|
w|s

2n-2 . o
Therefore, ZLS Jr<(2;2f2—_2;T) (2"—3!—27’)* _ (271—(;‘:;;!) 2) p2n=2-3r gr

= (2n3_2) (tL)hvgan - % [Z?:O <2h (tL)h,g,n+1—i + 2g (tL)h,g,n—i> (tB)h,g,z‘
—2h (tB)mg,n], from (5.26). O
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Theorem 5.5.8. For alln > 2,
L%J (‘L) = (LMJ 2n— 5><tL)
=0 h,g,n 3 h,gn
> (20 (Dgmiii + 29 (Dhgini ) (Bligi — 2 (Blaga) - (5.41)

L2n 2J r —a
Proof. 33 ("L)jgn = (L)) g+ (L) g+ (L) g+ 4+ (L)%

_ ((@2n=2) 2n-2)%\ 1on—2 0 (2n=2) 2n—2)0 ;2p—2 0 (2n—2) 2n—4)L) 72n—5
= ((2n—2) 0! )h g +[((271—2) ol )h g +<(2n 1) O )h g]

\enz2s) en—2)” n— n— n—4)L n— n— n— n n—
+[<8n g; (2 0'2 ) 12 290+<gn—i§(2T4)> j,2n5 91+<gn_§; 2 2!6) @ 0'8 ) B2 89]

(2n—2) 2n—2)2\ ;on—2 0, ((2n—2) 2n—4) 2n—5 (2n—2) 2n—6)2 _ (2n—8)%) ;2n-8 2
+[((2n 2)" o )h g +<(2n—4) 1 > h g +<(2n—6) o ol ) h g

o (i e - B ) et g

(2n—=2) 2n—2)2\ 32n—2 0 ((2n=2) Cn—4L\ ;2105 (2n—2) (2n—6)2  (2n—8)%) 72n—8 2
+[((2n 2" 0 ) h 9 +<(2n74) 1 ) h gl+<(2n76) o o ) h 9

(2n—2) (2n—2-2r)"  (2n—4—2r)" "2 2m—2—3r _r
+o ((2n—2—2r) r! - (r—=2)! ) h 9

(2n—2) (2n—2_2r)% (2n—4—2[ 222 2))% p2n—2— 3[2m2) | 202
N ) (= N (e g

n— n— n—2)0 n— n— n— n—4) n—
= (1252) + 1) (g ensat) g go 4 (|22 ) (B Cocti) ponss g1y

n— n—2—2r)" n—4—2r)r =2 n—2—3r _r
(41 ) (gl et ot s
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L 2n372 |

n < (2n—2) (2n—2-2r) (2,1,4,%%”@
(

2n—2—3 2n—2 2n—2
2n7272L2"3;2J) (L2"3;2J)l - (L%J*Q)! )h L 3 Jg[ 3 ]

|22 e 2n—2) (2n—2-2r)T on—4—2r)r=2 n—2—3r r
= Zrzg (L%J + 1— T) ((21(1—2—;7“)( : o : (7”_2)!) ) h2 o g

r!

2n—2

n— n—2—2r)C n—4—2r)"—2 n—2—3r _.r
_ <L2n3—2j n 1) ZLS ((2227272;” (2 3! 2t (2 (;i;)!) ) p2n—2-3r

_Zihhzj r ( (2n—2) (2n—2-2r)- (2n—4—2r)T_2> jy2n—2-3r gr

3 —
=0 (2n—2—2r) r! (r—2)!

= (1252 +1 - ) (L)

4 0 (2 (LDngns1-i29 (Dngni ) (Bhnga=2h (Blngan]  from (5.40)

_ <L2n;;2j _ 2n375)(tL)h7g7n

[0 (20 (D + 29 (Dngns ) (Bl — 2k (B

k) " 4 e
Let ((tB)%,g,n) I —8ik8;j ((tB)él,g,r) and ((tL)ﬁL’g,n)(kJ) — —aika;j ((tL)z’gm).

We have the following identities involving ((tB)ﬁb,g,n)(k’j) and ((tL)lh’g’n)(k’j).

Theorem 5.5.9. Forn > 2,

(k.5) (k.5)
(1) ((Lign) " = ((Blhgnia)
T j s 4i —r\(s (0.3 —r (k—s,5—1)
+272«=1 3_' Zi:o 1=0 ]Z_']Tl(hQ )( ’0)(9 )© )((tB)iz,g,n—'r) ",
(k.4)
(2) ((Bign)”
2 T k j s gL —r\(s (0. —r (k—s,5—1)
= Z’I‘:O 2r_| ZSZO 5:0 % Jz_' (h2 )( 9 (g >(07 )((tB)él,g,nflfr) ’ )
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() ((LYhgn) ™

h,g,n

P o5 3:0 lz_f JZ_'1 (hZfr)(s,O) (gr>(0,i)<(tL)l—r

(kfsvjfi)
h,g,n717r> :

- 22 A lezo
(4) Yoo S (B,

)(k s3I+ p (s41,0) i g
h,g,n+1

i (k+1,5—1) (04
7 Jz_' ((tB)l ) J g(O, +1)
Proof.

h,g,n

(1) Consider,

(tL)éz,g,n - (tB)lhgn+1 + 2hg( B)hgn 1 +

g*('B) 2

h,g,n—2"

Differentiating both sides k times with respect to x and j times with respect

to y and using Leibnitz theorem for derivatives, we get

((tL)l )(lw) _

h,g,n

] S 2
(TIRIIEY ) g STLNE

s| Z‘ (( B)l—l )(k*&j*i)
s=0 =0

h,g,n—1

— ((tB)l )(k,j)

h,g,n+1

b e e ; .
+ X 3 T Do & & (B)ENgN O ((B)

(kf'svj*i)
g, 'f') '
(2) From (5.28), we have

(tB)ﬁ:,rg%n = h2 (tB>ﬁzJ,rg2,n—1 + zhg(tB)s;,rgl,n—Q + QQ(tBﬂL,g,nfB'
Differentiating both sides k times with respect to x and j times with

respect to y and using Leibnitz theorem for derivatives, we get

((tB)iz,g,n)(kJ) = Z]; 0 s (hQ) 80)(( B)l

) (k—s.,7)
h,g,n—1

+22§:0 Iy 8L

s i (k—s, '—Z')
i—0 o 3 R0 g0 )((tB)gl,g,an) ’
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X0 & O Bhgs)

h7gzn73

_ 23:0% Z];:o z . ; i (h2 7") sO)(gr)(D,i)((tB)l )(k—SJ—i)'

h,g,n—1—r

(3) Identity (3) can be proved by differentiating (5.37), k times with respect to z

and j times with respect to y and using Leibnitz theorem for derivatives

(4) Differentiating (5.27) with respect to x, we get

l

((t 29 (10 Z Qn_ — T)m

h?n—5—3rh(l,0)g7"

r=0
Also, (5.27) implies,
1+1
t VIl (2n —2—2r)" 2m—2-3r
( B)h—t_g7n+1 - Z ’]"! h g .
r=0

Differentiating both sides with respect to y,

h,g,n+1

I+1 ,
((tB)lJrl )(0,1) _ Z (2n —2—2r)" p2n—2-3r

' r grflg(o,l)
— r!

_ Z (2n — 2‘ 2r)" p2n—2-3r . gr71g(0,1)
r!
r=1

l

(2n—4—2r)yL ..
. hQ 5—3 g g(O,l)
r=0 ’

Therefore, ((*B)}"}, 1) ODp0

(1,0)
h,g,n+1 = ((tB)l ) 9(071)'

h,g,n
Differentiating k times both sides with respect to x and j times with respect

to y and using Leibnitz theorem, we get

»

(]~
n_ |
<.

»

l 1 (k—s,+1) 5 (s+1,0 ji
h+gn+1) h( +1.0)

»
I
o

|

k+1,j—i i
((BYhg) ™90,
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5.6 Generalized bivariate B-¢g bonacci polynomials

In this section, we extend generalized bivariate B-Tribonacci polynomials to general-
ized B-q bonacci polynomials and state its identities. These identities are similar to
the identities of B-q bonacci sequence defined by (4.1), studied in Section 2 of

Chapter 4. Hence the proof of these results is omitted.

Definition 5.6.1. Let n € NU{0}. The generalized B-q bonacci polynomials (1B)p g.(z, ),
are defined by

- hq_l_r(x) gr(y) (qB)h,g,n+q—2—T(w7y)’v n > 17

(5.42)
with (“B)pgi(z,y) =0, 1=0,1,2,3,--- ¢ —2, and (?B)p44-1(z,y) = 1,

(qB)h,g,n-l-q—l (l’, y) =

where (?B)}, (7, y) is n'" B-q bonacci polynomial.

Few terms of (5.42) are (“B)j, 44(z,y) = h7 ()

(“B)nggsi(z,y) = 2D (@) + (¢ = Dh*2(x) g(y),

(“B)ngara(w,y) = WD (@) + S 120732 g(y) + Uoiopa—s (@) g2 (y),

(“B)ngara (. y) = 0D () + Clpsad(a)g(y) + %h%—%x)g%m
+H R () g3 ().

(“B)ngaqra(a,y) = B2 () + LI o= () y) 4 G a5 () g2(y)

13 o 14,
B 1205 (1) g3 (y) + D he=5(2) g (y).

For simplicity, we write (YB)pgn(%,y) = (1B)pngn and h(z) = h and g(y) = g.

We have following results for (?B)j g.5.

Theorem 5.6.2. The n'" term of (5.42) is given by

22:1(_1)k+1 H1<i< 1<q,i ';Ak((bz' - ¢j)¢z
“B)hgn = e , 5.43
( )hhq’ H1§i<j§q(¢i - ¢J) ( )
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where ¢p,p = 1,2,--- ,q are q distinct roots of characteristic equation corresponding

to (5.42).
Equation (5.43) is called Binet type formula for (5.42).

Theorem 5.6.3. The n'" term (B)p 4. of (5.42) is given by

T

L(q—l)(n—(q—l))J

a -1n—-(@¢q—1)—r
(qB)h’g’n = Z <<q )( T('q ) >> h(q—l)(”—(q—l)—T)—T gT7 (544)

r=0

foralln > ¢ — 1.

Theorem 5.6.4. The sum of the first n + 1 terms of (5.42) is given by

- (1B hgmr1 + 3 tmg S0t I R g7 (1B g —
Z(qB)h,gﬂ" = (h + )qr;l -1 ) (545>
r=0 9

h+g#1, if qiseven;
provided
h+ g # £1, if qis odd.
Theorem 5.6.5. The generating function for (5.42) is given by
‘ 1
(“G(5))ng(2) (5.46)

T 1- z(h + gz)1-t

The next two theorems are related to the recurrence properties of (B)y, 4.,,. Proof
of these theorems is similar to the proof of Theorem 5.2.6 and Theorem 5.2.7

respectively.

Theorem 5.6.6. For all s > 1,

2 (g - 1))t P
(“B)n.gn+es = Z ——— ("B)ngn+i h'g" : (5.47)

7!
i=0

125



Theorem 5.6.7. For all s > 1 and q > 2,

slql

q — ]' (s—1)
(qB>h,g,n+(q—1)+s_h(q *(“B) h,gn+q—1 — ZZ Jh(q R (qB>hgn+(q D+i—j-

=0 j=1

(5.48)

We prove below the results related to first order partial derivative of (B);, ,,, with

respect to x and y.

Theorem 5.6.8. For alln >0,
(1) 49 £ Bhgal +h E(Bhgns] = (= 10— (@ = ) B)pgns1h®
(2) 9OV 5 [(1B)ngn] =h0 Z{(1B)ngns].
(3) 49 B0 Bngal +h B Brgnia) = (= 1) = (= D)B)igng®

(4) 49 5;1(*B)ngn] HO4h L[ B)ngnl 9OV = (¢=1)(n—(g=1))(1B) gV g V.

Proof. (1) Note that for 0 <n < ¢—2, L.LHS.= 0 = R.H.S.

Now let n > ¢ — 1 and take n = gm. Using (5.44) and L.H.S. of (1), we have

49 %[(qB)h»qum] +h %[(qB)h,g,qm—i—l]

_ l(q . 1) (qm . (q o 2))h(q_l)(qm_(q_2)) 4 Ziq:—ll)m—(q—Q) [QT’ ((qfl)(qm*(qu)*r))

r!

r+1
X ((q—l)(qm—(q—2)—r)) :|h(q—1)(qm—(q—2)—7‘)—7‘ g’/‘:| B (1.0)

r!

1) (gm—(a— m—(g-2) ((e=Dlam—(g-2)-n)"
_ {(q— 1) (gm — (q — 2)) hla-Dlam—(a=2) 4 y™a-hm—(a-2) ( e )

[qr +(g—1)(gm—(g—2)—r)— 7“] plo=Dlam={a=2)=r)=r g’"} hH0)

=(¢g—1)(gm —(q—2))

Z(q—l)m—(q—2) ((4*1)(qm*(qf2)4))7 hla=D)(am—(a-2)=r)=r gr,(1,0)

r=0 r!
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= (¢ = 1)(gm — (¢ = 2))(*B)ngam+1h".
Therefore, the result is true for n = gm.
Similarly, the result can be proved for n = gm + 1,--- ,gm + g — 1. Hence (1) is
proved.

Identity (2) can be verified by differentiating (?B)y, ., and (¢B), 4.n+1 respectively
with respect to x and with respect to y. Identity (3) can be proved using Identities
(1) and (2). Identity (4) can be deduced from (2) and (3). O

5.7 Generalized bivariate B-q Lucas polynomials

In this section, we define generalized bivariate B-q Lucas polynomials and obtain

some identities related to these polynomials.

Definition 5.7.1. Let n € NU{0}. The generalized bivariate B-q Lucas polynomials
(“L)p.gn(x,y) are defined by

—

q—

(qL)h,g,n+q—1 (CL’, y) =

T

=

(¢—1)
rl

K1 (1) g7 (y) ("L)n.gntqa—r(z,y), foralln > 1,

(5.49)
with (“L)pgi(x,y) =0, 1 =0,1,2,3,---q—3,(Vg > 3), ("L)pgq—2(z,y) =2 and

I
=)

(L) hgq-1(z,y) = K™Y (x), where (1L)y, g.n(x,y) is '™ B-q Lucas polynomial.

For ¢ > 2 and ¢—1 < n < g+1, the terms of (5.49) are (L) 44-1(7,y) = h? (z),
(“L)nga(w,y) = W1V (x) + 2(¢ — 1h**(z) g(y) and

(L) ng g1 (2, y) = K0 (z) + 3(¢ — D23 () g(y) + (¢ — 1)(q — 2)hT*(z)g*(y).

For simplicity, we use (?L) gn(2,y) = (L) gn and h(z) = h and g(y) = g.

We state below identities related to (1L)p 4.
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Theorem 5.7.2. The n'" term of 5.49) is given by

it (DM T cicycqign (9 — 03)0F (20 — h171)
ay, = k=1 1<i<j<q,i,j#k : 5.50
( )h’g’ H1§z‘<j§q(¢z‘ - ij) ( )

where ¢p,p = 1,2,--- ,q are q distinct roots of characteristic equation corresponding

to (5.49).
Equation (5.50) is called a Binet type formula for (5.49).

Theorem 5.7.3. The n'" term (L), 4. of (5.49) is given by

(qL)h,g,n
L(q—l)(nq—(q—zw B o r
B (a—1D(n—(¢-2)) ((q D(n—(a-2) T)> (-1 (n-(a-2) —ar
B ; [(q—l)(n—(q—2)—r) d }h g
L(rl)(an(qu))J 1 (g— 1)(n (g—1)— r) s r=2
- X [ L q(r ) ) Jpoolmten)rg,

(5.51)

forallm > ¢ — 1.

Theorem 5.7.4. The sum of the first n+ 1 terms of (5.49)

S 0Ly — Phanss + S0 Sty o MG (g + (D ngant = (Dnga-z
h,g,r

— (h+g)rt—1
(5.52)
h+g#1, if qis even;
provided
h+ g # £1, if qis odd.
Theorem 5.7.5. The generating function for (5.49) is given by
2 — hilz
("Gz))ng(2) (5.53)

T 1= z2(h+gz)
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Following theorem gives the relation between bivariate B-q bonacci and B-q Lucas

polynomials.

Theorem 5.7.6. For alln > g — 1,

(“L)ngn = (° hgmz W= i g @By (559

Proof. We prove the theorem by mathematical induction on n.

Note that (5.54) is true for n = ¢ — 1. Assume now that the result is true for n < m.

Consider, (“L)j gm+1 = D iy )z R g™ (UL ) g m—r
_ Zq 1 (q 1 ha— 1—r 7" (qB)h,g,erl*T_‘_ZZ;} (q_s'l)i hq_l—s gs(qB)h,g,mfrfs]
= (qB)hgm+2 + Zq ! (q 1 hq I=s S (qB)hg,m—&—l—S.

Hence the result follows. O]

Following result follows immediately.

Corollary 5.7.7. For alln > q — 2,
(qL)hvg,n =2 (qB)h,g,nH - hq_l(qB)h,g,w (5.55)

Proof. Note that 2 (“B)pngq-1 — h"  (1B)hgg—2=2= ("L)pgq2-
Hence equation (5.55) is true for n = ¢ — 2.

For n > q — 1, the result can be proved using equations (5.42) and (5.54). O
Next two theorems are related to the recurrence properties of (L) -

Theorem 5.7.8. For all s > 1,

Ry ((g —1)s)* i (q—1)s—i
(*L)ngntas = Z " ("L)ngn+i K'g" : (5.56)

7!
i=0
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Theorem 5.7.9. For all s > 1 and q > 2,

slql j
]hqlsz

(qL)h,g7n+(q—1)+ —plaDs (qL h,g,n+q— (qL)hgn+(q 1)4i—j-

=0 j=1

(5.57)

Next, we prove the identities related to first order partial derivatives of (L), 4,

with respect to x and y.

Theorem 5.7.10. For all n > 0,

(1) a9 Z("Lngal +h 1 L)ngns]

=109 (g =)0~ (4= ) Lhngnnr —ala — DA 290 B0,
(2) 9(0 b [(qL)hgn] = h{10) (a%[(q[/)h,g,n-&-l] —(q— 1)hq72(qB)h,gvn>'

(3) a9 a%[(qL)h,g,n] +h a%[(qL)h,g,nH]
= gV ((q — D= (¢=1)("Lngn +2 (¢ - 1)(q3)h,g,n+1)-
(4) 09 1O Dngs] KOO +h LDl = (g=1) (0 (g=2))( L) b Vg0,
Proof. Equation (5.55) implies,

(“L)ngm =2 (“B)pgmni1 — h TV (1B)p g

Differentiating both sides with respect to z, we get
(%[(qL)h,g,n] =2 %[(qB)h,gm-&-l] - h(qil)a%[(qB)h,gm] - (q - l)hqd(qB)h,g,n
Also, a%[(qL)h,g,n-&-l] =2 a%[(qB)hy,n-Irﬂ_h(q I)F[(qB)hgn—H] (q_l)hqﬂ(qB)h,g,n-&-l-

Thus, using (1) of Theorem 5.6.8, we get
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qy a%[(qL)h,g,n] +x a%[(qL>h,g,n+1]
= O (2(g = 1)(n = (g = 3))("B)gnrz — K7 g = 1)(n = (g = 3)) ("Blngnns
_hqil(q - 1)(qB)h,g,n+1 - (q - 1)hq72 (qg (qB)h,g,n + h (qB)h,g,n—i-l))

_ p(10) ((q —1)(n = (q—3)("L)ngnt1 —q(g — g h"‘2("B>h,g,n)-

Similarly, other identities can be proved. O

We now prove some identities involving k* order partial derivative with respect
to o and j** order partial derivative with respect y of bivariate polynomials (1B)hgm

and (?L) g respectively, where k,j > 0. Let (qB)(k’j) and (¢ L) ) denote the K

h,g,n h,g,n

order partial derivative with respect to x and j™* order partial derivative with respect
y of (“B)pgn and (?L), 4., respectively. Let ()% denote the s order derivative of
(.) with respect to 2 and (.)©®P) denote the p™* order derivative of (.) with respect to

y. We have following identities.
Theorem 5.7.11. For alln > q—1,

(1) (L)), = (B

h,g,n h,g,n+1

- -1 —1-r r r\(s, k—s,
3 ST S B (ha )0 () 0P (e By TR,
1 1 —1-r s 4t —r\(s r k—s,
(2) (B)I) = il n S ST ()80 (gny 0 Byt s
k, -1 (¢—1)= —1-r T s 4B (s r k—s,
(3) (L)) = ez et Sl S B I (R )0 (gr) @R ()T

Proof.

(1) Note that (“L)pgn = (B)pgmi1 + 3021 (qu R g (YB)hgn—r-

Differentiating both sides k£ times with respect to x and j times with respect to y

and using Leibnitz theorem for derivatives, we get
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, 1"‘ k —1—r r 14 r s
(DD = OB)ED o+ 00 O 2 (h 1 L B (909 (B)))

ki
= (q )2,9],1)1+1

r T kS r\ (s,0 T 14 r k—s,j—
FXIL I T () S B ()0 (B)jgal

— (qB)( J)

h,g,n+1

+Zq 1 (q 1 Zq 1- TZT— ks G2 (hqflfr)(szo) (gr)(O,p) (4 B)(k $.J—P)

p=0 s! p! h,g,n—r

Hence (1) is proved.

(2) We have from (5.42), (“B)hgn = Y i—o "t hT 1" " (1B)pgn-1-r-

Differentiating both sides k times with respect to x and j times with respect to y

and using Leibnitz theorem for derivatives, we get

k —1-r T = (T
a_k (hq ! Zp:() .7p_1: (g )(0’p) ( B)((?;np)l 'r‘>

—1 —-1)t —1—7r ks —1—7r (510) T 2 r k—s,
_ Zzou Sl ks (hq 1 ) S (gr) ) (4 B)( J—p)

s! p=0 p! h,gn—1—r

—1)- —1—r r s P 1\ (80) ks,
= Zz:(l)u Z_é > el (hq 1 ) (g7)(OP) (qB)( J—p)

r! p=0 s! p! h,gn—1—r"

Hence (2) is proved. Similarly, we can prove the identity (3). O

Remark 5.7.12. Using Leibnitz theorem for derivatives we can established similar

type of identities using identities in Theorem 5.6.8 and Theorem 5.7.10.

Theorem 5.7.13. (Convolution property for (“B)ngn)

n+q 2—r
(¢—2)"
- 0 h(q 2)=r h,g,i )h,g,n+q727r7i .

r!
1=0

l\J

I
=)

T

q—
("B)gn = (= DA (
(5.58)
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Proof. Equation (5.46) implies,

1
G = .
( (B))(z) 1— 2 (h—i—gz)q_l
Therefore,
= 1
§ B n—(g—1) _ )
n:O( Jnan 2 1 —z(h+ gz)la=b)

Differentiating both sides with respect to x we get,

Yoo o (1B)yh) (e
= <Z(q —1)(h+ g2)1? W) h(10)
- —2)C —2)—r T T e8] n—(q— 2
= (g = 1) SIE hor g artt [ (1B gz 0 V]) AOD

— <(q . 1) Zg;g (11;_'2)7* h(q72)7rgrzf2(qf1)+r+l [Z;.O:O(qB)h,g,nzn} 2) h(LO)

= (g DA 122 25 a2 5 (S OB), (1B i 20,

Comparing the coefficients of 2”@~V we get,

1,0 — —2)r N ntg—2—r
()it = (a=1)h0 (203 2 plaDrgr ST B, (B g2 ).

O
Theorem 5.7.14. (Convolution property for (L) ,,)
(L)l
q—2 , n+q—2—r
= (q—1)h1D <( @ pla=2=r g Z (1B (qL)h7g7n+q2ri)_hq—z(qB)h’gm)'
= = (5.59)
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Proof. Equation (5.55) implies,

("L)ngm =2 (“B)hgnt1 — h* ("B)ngn-

Differentiating both sides with respect to x and then using (5.58), we get

(L) =2 (1B~ T IB)) — (¢ = )RR (1B,

= (g - VROV S e g ),
(Q(qB)h,g,n+1+q—2—r—i_hq_1(qB)h,g,n+q—2—r—i>] _(q_l)hq_2h(l’0)(qB>h7g7n
=(q— ) [Zq - !2 "g Zn+q . r(qL)n—i-q—?—T—i(qB)h,gJ

_hq—2(q3)h,g7n] )

5.8 Incomplete generalized bivariate B-q bonacci
polynomials

In this section, we introduce the extension of incomplete generalized bivariate B-
Tribonacci polynomials (5.27) to ¢ order incomplete generalized bivariate polyno-
mials and call it, incomplete generalized bivariate B-¢q bonacci polynomials. We also

study their various identities.

Definition 5.8.1. The incomplete generalized bivariate B-q bonacci polynomials are

defined by

!
q_l n—(q—l)—?“) —1)(n—(¢g—1)—r)—r r
(IB)gn(,y) = S panin-ta-n-n (x)g"(y), (5.60)
r=0

(q—l)(n—(q—l))
I . |

V<< andn > q— 1.

134



L(q—l)("—(q—l))J

Note that (“B);, ,, * (@, y) = ("B)ngn(2,y).

For Simplicity, we use

("Bhgn(®:4) = ("B gins (1B)ngam(,y) = (“B)ngan, h(x) = h and g(y) = g.

We prove identities related to recurrence relations of (“B)}, . (x,y).

Theorem 5.8.2. The recurrence relation of (qB)hgn s given by

-1
lIBl-‘rq—l _q (q_l)E hq—lr TqBH-qlr 0<]1< (q_l)(n_Q)
( >h797”+q - Z rl ( )h,gn+q 1—r? =v = L q J
r=0 ’

I

(5.61)
Vn > q.

Proof. Consider, Y I_, (4= 1)* (qB)2+gfIniqu hamlrgr

qu(ql hqlrr

i

ZlJrqflfr ((q—l)(n+q—1—r—(q—1)—z’))7 h(qfl)(n+qflfrf(qfl)fi)figi

=0 4!

i

R U= R e (ta=tn=r—0)" B (n=r)—qi gr-i

1=0 il

i

_ qg—1 (¢—1)= El—l-q—l—r ((q—l)(n—r—i)) h(q—l)(’rL-‘rl)—qT’—qigT-i-i

1=0 4!

_ Ne-1 (g=D)F ZlJrqfl*?" ((q_l)(”_(”i)))f h(q—l)(n—l—l)—q(r—l—i)gr—l-i‘

1=0 il

Taking 7 =1+ r, we get

Zq 1 (q 1 (qB)l+q 1-r hq_l_’"gr

h,g,n+q—1-r

j;r
= ZHHM pla=1)(nt1)=aj g

j=r (j—r)!
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YA
=yt (<q—1><7;+1—f>) pla=D(nt1)=aj gj

= (4B)ita-t u

h,g,n+q"

Theorem 5.8.3. s > 1,

h,g,n+qs h,g,n+i

(g—1)s ;
_1)s —1)s)t . o
(qB)l+(q 1) — Z ((q )8) (qB)H% hzg(q l)s Z’ (562)

0<1< L(Q*l)(n*qsf(Q*l))J )

Proof. By mathematical induction on s. Clearly (5.62) holds for s = 1.

Assume that the result holds for all s < m.

Consider, 2521)(m+1) ((Q—l)i:n-i-l)) (qB)ir;nH hz‘g(q—l)(m—i—l)—i

i—T

—1)(m -1 —nr \(g-Dm) i i ,(g—1)(m —1
= o) sy et () o g

1=

_ Zz;l Z(qfl)m (g=1)* ((q_l)m) (qB)H—i hig(q—l)(m—i-l)—i

i=r r! (i—r)! h,g,n+1

i
_ Zq—(l) (e=1) Z§q—()l)m—r M (QB)ﬁL‘f‘;-"-i o Bt gla=D0m+)=(i+r)
r= r = 4! ,g,n+r

J
— - 4 —1)—r —Dm—r \(g-1)m)" l+r+j i —1Yym—j
_ Zz:(l) (g T!l) B g(q 1) quzol) ( j! ) (qB)th,:iHj hi g(q Dm—j

— Zz;é (g=D)* (qB)H’TJF((I*l)m hr g(q—l)—r

r! hogn+r+gm

o I+(q—1)(m+1)
- (qB)hﬂgHQ(mH)'

Hence the result is true for s = m + 1.

Thus, by mathematical induction, the theorem is proved. O
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Theorem 5.8.4. Forn > L%L

I+(q—1) —1)s l+q—1
By g m(g1yrs — DO (OB) L
(-1
_ 1)s i—r r l+(g=1)—r
- ZZ r! Skl g B)h,gzt+(qfl)+i*T' (5.63)
i=0 r=1 ’

Proof. By mathematical induction on s. Note that (5.63) clearly holds for s = 1.
Now let the result be true for s < m. We prove it for s = m + 1.

Consider,

1 1 m —(g=1)=r 7 Hg=1)=r
Do SoiTy U R gr(a gyt

m— - -~ —1)(m+1)—(q—1)i—r ,r I4+(g=1)—r
=yt ZZ:}% pla=D(m+)—(a=D)i=r gr (a B +a—1)

h,g,n‘i'(q_l)"‘z_r

1 1= m —(g—1)m—r r I+(g=1)—r
+ e D plam D)~ (a-hmer g (qB>h,g(zl+()Q—1)+m+1—T

— ha— 12 qul) h(qfl) —(g—1)i—r r(qB)H‘(q -7

h.gn+(g—=1)+i-r
q— 1 (g=D~ q 1)—r g p\lt+(@=1)-r
Z 7l ( B)h,g7n+q+m r

I+(g—1) m l4q-1
= (qB)h,giz+(q—1)+m+1 = hla U H)(qB)h,;nﬂ L -

Lemma 5.8.5. Forn > q— 1,

(¢=1)(n=(q=1))
L (D)) D) -ar g

r=0 r!

—2—r

B)h,g,q—2—r+i (qB)h,g,n_Z) .

(5.64)

h . — (q_z)t —2)—r 1 "
hla=2) g

=0 r=0 =0
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Proof. Equation (5.44) implies,

(qB) B L(qfl)(n;(qfl))J ((q_l)(n—(q—l)—r))7 h(q—l)(n—(q—l)—?")—'f r

h,gm — r=0 !

Differentiating both sides with respect to z, we get

(1) h

==t | (g1 (n—(g-1)) ~ar) ((a=D(n—(a-1)—n))" pla=D)(n—(a=1))=ar g },(1.0)

= r=0 r!

Therefore,

Bk = (g = 1)(n— (g = 1)) (B)agn h

(g—=1)(n—(q—1))
g 00 R (e - )-ar g

r=0 r!

(g=1)(n—(g—1))
Thus, h(O Y (D)) -1 gr

r!

_ (g=D(n=(¢=1)) (7B) gm0 — 2 (qB)( 0)
g, q

q h,g,n"

(a=(n—(g-1)) r
Hence, ZL 0 Jr((qfl)(nf(qfl)fr))f Rl (n—(g=1D)=ar g

r!

h,g,n

_ (g=1)(n—=(g—1))

2 (g = 1) X0 S R g T (B i (B2
[l
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Theorem 5.8.6. For alln > g — 1,

4= Din=a=1) (o (1) r (g
S (B, = (L(q 1)( - (=1) | | 9=(a 1)(q (4 1))>(qB)h79’11
h q—2 q— 9\ o rn+q72fr
(S e Y (B (Bhugrgars). (565)
r=0 ’ =0
| a=Dn=(a=1) l
P’I"OOf. Zl:o ! (qB>h,g,n

|la=Ln=(a=1) |
+ .4 (qB)h a

g,

= (9B)j g+ (1B)j g + -+ (“B);,

»g,m

— (a=D)(n—(a=1))° 1 (g—1)(n—(g—1))
o

_I_[((q—l)(n&(q—l)))gh(qfl)(nf(qfl))+ (q—l)(”_g‘!l_l)_1))lh(q71)(n7(q71))7qgi| I

+[((q—1)(n—(q—1)))g pla-Dn—(a=1) 4 ... 4 ((q—l)(”—(q—l)—T))Lh(qfl)(nf(qfl))fqrgr]

0! r!

+ [((q—l)(n—(q—l)))g h(qfl)(nf(qfl)) NS ((q—l)(”—(q—l)—r))ﬁh(qfl)(nf(qfl))7q7'gr

0! r!

L (qfl)(nq%q*l)) ]

(<q—1> R S R, Jy(a-1)(n—(g—1)) ~g| (=Dl
+ ((=De== ), ! g
q

_ (L(q_l)("q_(q_”) |+ 1) (a=Din—{g=1)" p(a-1)(n—(a-D)
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(g=1)(n—(q—1))
| @=Dn—(a=1) |



+<L(q_1)(”q_(q_l” J> (e=Dn—le=D-D)" p(g-D)n—(a-1)=ag 4 ...

+<L(q 1)( ~@1)| 41 ><(q_1)(n_r<;1_1)_r>)£ pla=D(n—(g=1)=ar gr

L(qfl)(an(qfl)) |
<(q,1)(nf(q,1),twj)>—

(qfl))J
(L(q 1)( —(g— 1))J)

+

plaDn—(g=1)—g | SRt | =00

q

L<q (n—(q 1))J 1 1 1 1
—y (L(q— Jn—te- ))J—H—r) (gD n=(g=D=r)™ p(g-1)(n—(g-1))=ar gr

r!

(¢=D(n—=(¢=1))
D J<L<q—1>(nq—<q—1>>J +1) (E=DE—=D)=)" (gD (a-1)-argr

!

(g=1)(n—(g—1))
L ()= )1 ar g

r=0 r!

_ <L(q—1)(“q—(q—1))J +1-— (q_l)(nq_(q_l))>(qB)h,g,n

ST (g1 ( ST U By ST (OB i (B g

—1)(n—(g—1 —(qg—1)(n—(q—1
:<L<q )(q(q )|y a-la )(q (g ”)(qB)h,g,n

+% Z?:o(q_1)< Zq 3 (qr2 hla=2- g Znﬂ - T(qB) h,g,q—2—r+i (qB)h,g,n—i>-

]
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5.9 Incomplete generalized bivariate B-q Lucas
polynomials

In this section we introduce the extension of incomplete generalized bivariate B-Tri
Lucas polynomials (5.34) to ¢ order incomplete generalized bivariate polynomials
and call it incomplete generalized bivariate B-q Lucas polynomials. We also study

their various identities.

Definition 5.9.1. The incomplete generalized bivariate B-q Lucas polynomials are

defined by

("L )5 g ()

r

i[ @-Dn—-2) (@-DE-(-2-)

(q—1)(n—(g—2)—7) ! }h(ql)(n(“))q%)g’“(y)

z’: [qz_i (s —1) ((q - 1)(n - (Q(T—_l)Q; 7") +s5— 2)] h(q—l)(n—(q—2))—qr($)gr(y)7

(5.66)

Vnzqandoglgle'

Next three theorems give results on recurrence properties of incomplete generalized
bivariate B-¢q Lucas polynomials (5.72). Proof of these results can be obtained using
a procedure similar to that used in the relative identities of incomplete generalized

bivariate B-¢q bonacci sequence (5.60).

Theorem 5.9.2. The recurrence relation for incomplete generalized bivariate B-q

Lucas polynomials (YL);, , . is given by
(-1
l -4 l r —1—r r
(gt =D~ (Digaia i h (5.67)
r=0 )
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VO<I< LMJ and n > ¢ — 2.

Theorem 5.9.3. For all 0 <[ < {(‘1_1)(”_;‘1—2)—8)}

(g—1)s )
I+(q-1)s _ ((q = 1)8)" 4 \i+(g—1)s—i e
<qL)h:gz‘b+qS o Z il (qL)hgiH_(q_l)s_i h(q b g . (568)
=0 ’

Theorem 5.9.4. Forn > [Lll +q— 2J,

q—

H(g—1) —1)s H(q—1)
<qL)h,g,n+(q—1)+s - h(q ) (qL)h,g,n+(q—l)

—_

S—

-1
<— (¢—1)r
r!

—1)s—r—(q—1)i r H(g—1)—r
(h(q 1) (g—1) g (qL)h—t_‘gE,q?l-‘y-l()q—l)-i-i—T)’ (5.69)

7

I
=)

r=1

Next two results gives the relation between n* term (?B)!  and (7L)!

h,g,n h,g,n*

Theorem 5.9.5. The relation between the n' term (L)}, .. and n'* term (“B)j, ,,
s given by

q—1

@=D"  ir ragyi—r (¢ =D —-(¢-2)

(1LY} g = (‘IB)LQWHJFZ . W g (BT 0 1< { p J

r=1

(5.70)

Proof of the Theorem 5.9.5 is similar to that of Theorem 5.5.2.

Corollary 5.9.6.

_ qg—1)(n—(¢g—2
Ly =2 (Bl — 107 (1B 021 (LD 5y
Proof. Using equations (5.61) and (5.70), the Corollary can be proved. O
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Lemma 5.9.7. For alln > g — 2,

r

n—(g-2) (@-Dl-@=2-r)) 0 ),
-l (et
_ér[ q:(s ) ((q —1)(n - (q<;_1)2; r)+s— 2)] h(q—l)(n—(q—?))—qrgr,
T (5.72)

(a2
(( - pla=2=r g7 Z (“B)pg,i (qL)h,g,n+q—2—7"—i> — b ("B)hgn

r=0 =0

N—

(qfl)(n*(q%))J '

where | = L .

Theorem 5.9.8. For alln > g — 2,

(g—1)(n—(g9—2))
sl =gy

h,g,n

_ <L<q—1><n—<q—2>) |+ q—(@—l)(n—(q—?)))(q L)ngn

q q

—l—%(q —1) (( 2 % pla=2)=r gr

n+q—2—r
Z (qB)h,g,i (qL)h,g,n+q—2—r—i> - hq_Q(qB)h,g,n>' (5-74)

1=0

Proof. Use Lemma 5.9.7 and procedure similar to that of Theorem 5.5.8. m
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Chapter 6

Hyers-Ulam Stability of Generalized Functional

Equation

This Chapter include the content of published paper (P5).



Chapter 6

Hyers-Ulam Stability of Generalized

Functional Equation

6.1 Introduction

Ulam first proposed the problem of stability of the linear functional equation

f(x+1y) = f(z)+ f(y). In 1941, Donald H. Hyers gave a partial affirmative answer
to the question of Ulam in the context of Banach spaces [9]. Since then, the problem
of Hyers-Ulam stability of functional equations has become very popular and studied
by many mathematicians. In Section 2 of this chapter, the solution of generalized
linear Tribonacci functional equation is established in terms of generalized Tribonacci
sequence. In Section 3, the Hyers-Ulam stability of this functional equation has been
obtained in the class of functions f : R — X, where X is a real (or complex) Banach
space. This result is further extended to generalized linear ¢-bonacci functional equa-
tion. In Section 4, the solution of the generalized linear ¢g-bonacci functional equation
is obtained in terms of generalized g-bonacci sequence and its Hyers-Ulam stability
in the class of functions f : R — X, where X is a real (or complex) Banach space is

discussed in Section 5.
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6.2 Generalized Tribonacci functional equation

In this section, we define the generalized Tribonacci sequence and Tribonacci func-
tional equation and prove that the general solution of Tribonacci functional equation

is associated with the generalized Tribonacci sequence.

Definition 6.2.1. The generalized Tribonacci sequence is defined by

Tn+2 =a Tn+1 +b Tn +c Tn—l; (61)
T():O, leOandngl, VnGZ,

where a, b and ¢ are non-zero fixed real numbers and 7}, is the n'* term. T}, is

also given by the Binet type formula,

(= B)y" — (@ —7)8" + (B —7)a”

= T A - -

, Vn € Z, (6.2)

where «, § and v are distinct roots of the characteristics equation

N—aM—bA—c=0 (6.3)

corresponding to (6.1).

Definition 6.2.2. Let X be a real (or complex) Banach space. A function f : R — X
1s called a generalized Tribonacci function if it satisfies the generalized Tribonacci

functional equation

f@)=aflx—=1)40b f(x —2)+c f(x — 3),Vx € R, (6.4)

where a, b and ¢ are non-zero fized real numbers.

We need the following lemma.
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Lemma 6.2.3. If o, 3 and 7 are distinct roots of the characteristics equation (6.3),

then the generalized Tribonacci function f: R — X satisfies

fx) =Toaf(x =n) + (b Topr +c To) flw =n—1) + e Ty fx —n —2),  (6.5)

Vo € R and Vn € Z, where T,, is given by (6.2).

Proof. Since «, f and ~ are distinct roots of (6.3), we get
a=a+p+7v, b=—(ay+ fy+ af) and ¢ = affy. Substituting a,b and ¢ in (6.4),

we have

f@)=(a+ 8+ flx—1)—(af+ay+py)f(x—2)+ (afy)f(z —3), which implies

f@) = (a+B)f (@ =1)+(@B)f (2=2) =7 (f(z=1) = (a+8) (= 2) + (aB) f(z~3)).
(6.6)
Replacing by = — 1 in (6.6), we get

Fla=1)~(a+8)f(x=2)+ (@) f(x—3) =7 (F(2-2)~ (0+ B) (2 =3) + (aB) f(z—4)

and (6.6) yields

Fl@)~ (at+8)fa—1) + (@) f(x—2) =7 (F(x~2) ~ (a+0) f(z—3)+ (o) f(z —4) ).

Hence, by induction on n, we get

F(@)~(a+B) (r=1)+ad) f(2=2) = 7" (fla—n)—(a+ ) f(z—n—1)+(aB) f(z—n—2)).
(6.7)

Similarly, we have

Fl@)= (a7 F =)+ () fla=2) = 8 (F(z—n)—(at7)f (e—n—1)+(07) fla—n-2))
(6.8)
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and

F@)= (B fa=1)+(89) f(2=2) = o (f(w=n)= (B+7) fla=n—=1)+(87)f(-n~2) ).
(6.9)
Vz € R and ¥n € N U {0}.

Now replacing « by x 4+ 1 in (6.6), we get

Fla+1) = o+ B)f (@) + @B) fe = 1) =7 (1) = (a+ B)f (e = 1) + (aB) flz — 2) ).

Therefore,

fl@) = (a4 D=1+ (@B)f (2 =2) =77 (@ +1) = (a+ H)f (@) + (@B) fz—1)).
since ¢ is non-zero and ¢ = a7, v # 0. Thus, by induction on n, we get
(@) ~(@tB)f (e—1)+ () f(2=2) =7 (flatn)— (ot B) fatn—1)+(aB) [ (e+n-2)).

Similarly, we have

F@)— () fa=1)+(an)f(5=2) = 57 (f(atn)—(a+7) fa+n—1)+(a7)f(s+n-2))

and

F@)=(B+7)Fa=1)+(89) f=2) = o™ (f(a-+n)=(3+7)f (+n—1)+(37) f(a-+n—2) ),

Vz € R and Vn € NU {0}.
Therefore, equations (6.7),(6.8) and (6.9) are true Vo € R and Vn € Z.

Now multiplying equations (6.7),(6.8) and (6.9) by v*(a — 3), —3*(a — 7),

a?(B3 — ) respectively and adding, we get
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_ (2" (a=p) =" 2 (a=) a2 (B—y) _
f (‘f)—< (@B (B—)(a—) >f (z —n)

Y (a=p)—p"* (a—)+a" T (B—y) 1 (a=B)-B"(a—y)+a" (B—) oy
+<b (@A) F—)(a—) T a0 )f (z=n=1)

Y (a=B) ="+ (a=y)+a" 1 (8—) —n—
+e( @B )@ =n=2).

Using (6.2), this gives
f(x) =T f(x —n) + (an+1 + cTn) fle—n—1)+cThi1 flx —n—2),

Vr € Rand Vn € Z. O
We use Lemma 6.2.3 to prove the following result.

Theorem 6.2.4. A function f : R — X is a solution of functional equation (6.4) if

and only if there exists a function h:[—2,1) — X such that
f(@) =T g)12 Ma—|2])+ 0T g 41+cT2)) R(z— 2] =1)+cT s 1 h(x— 2] —2), (6.10)

Vo € R, where T,, is given by (6.2).

Proof. 1f f(z) is a solution of (6.4), then by Lemma 6.2.3, f(z) satisfies (6.5). Putting

n=|z| in (6.5), we get

f(x) = Tm+2f(x — [z])+ (b Tizj41+c Tp;])f(x —lz]-1)+c Tm+1f(x — [z] —2).

Since0<z—|z|]<1l,-1<z—|z]-1<0 and —2<z— |z|—2 < —1, we define
a function h : [-2,1) — X by h:= f|_21), then f(x) is of the form (6.10).
Now we assume that f(z) is a function of the form (6.10) and prove that it is a

solution of (6.4).
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Consider, f(z) —a f(x —1)=b f(r —2) —c f(z — 3)
= <TLch+2 —aTapn —0Te) —c TLxJ—1>h(f€ - [=])
+b (Taprr = a Tlay =0 Tay 1 = ¢ Tpaj2) Mz — 2] = 1)
+e(Tle) = a Tiaj1 = b Tlay2 — ¢ Tjay-s) bz — [2] = 1)

+c (TLIJ-H —a Tm —b Tij—l — CTLIJ_2>h(ZL’ — LZEJ - 2)

=0, Yz € R and arbitrary function A : [-2,1) — X, from (6.1).

Therefore, (6.10) is a solution of (6.4). Hence the theorem is proved.

The above result is illustrated by the following.

Example 6.2.5. Consider the functional equation

23 3

fe) =2 fla=1) = S —2)+ S fw )

Define the function h:[—2,1) — X by

Note that %, }l, and 5 are distinct roots of the characteristic equation

A3 — % A+ % A— g = 0 corresponding to the recurrence relation

23 31 5
Tn = - Tn - Tn S Tnf ’
+2 4 T + 3 1

with TO = 0,T1 = O, and Ty = 1,Vn €.
Therefore (6.10) implies
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31 5

f(@) = Tiayp2 M —[z))+(—— Twjsrt3 Tie)h(z— 2] —1)+§ )1 h(z—[7] =2),

8 8 8

is a solution of (6.11), where h(x) is given by (6.12).

6.3

f(x)

Figure 6-1: Graph showing solution of (6.11).

Hyers-Ulam stability of generalized Tribonacci

functional equation

In this section, we prove the Hyers-Ulam stability of functional equation (6.4) by

assuming that roots «, § and « are distinct and 0 < |af, |7| < 1,|5] > 1.

We first prove the lemma required for this purpose.

Lemma 6.3.1. If a function f: R — X satisfies,

Hf(x) —af(e—1)—bfx—2)—c flz— 3)H <eVreR, (6.13)

for some € > 0 and o, § and 7y are distinct roots of (6.3) such that 0 < |af, || < 1,

|B| > 1, then there exist Tribonacci functions Fy, Fy, F3 : R — X defined by
Fi(z) =lim, o[ f(z —n) — (a+ B)f(x —n—1) + (af) f(x — n — 2)],
Fy(z) =lim, oo [f(x—n)— (B+7)f(x—n—1)+ (B7)f(x —n—2)]and
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Fy(a) = limy, oo 67" [f(z +n) — (@ +7)f(x+n—1) + () f(z +n —2)],
such that

[r@) ~ @+ o)1 =)+ @) -2 - R@| < = 619
|r@ @+t -n+ @i -9 - B@| < 619)
and
|Es@) = (@) = @+ e =D e fe -2l < p ©19)
Vs e R.

Proof. Using (6.7) with n =1 and (6.13), we have

|#@) = @+ 1@ =1+ (@B)f(z - 2)

S =1) = (@ + B)f(z =2+ (@B)f (e - 3)] | <

Replacing x by x — k, we have

|f@ =8~ @+ D@~k =D+ @)@~k -2)
“A[fe—k=1) = (@+B)fle—k—2)+(@B)f(z - k- 3)] | <e

Multiplying both side by ||,

[ ta =)~ (@ + )1(a = 1)+ @) sa — k- 2]

= k= 1) = (a+ Az — k= 2) + (@B) [z — k- 3)]|

< [yl (6.17)
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Vere R ke Z.

Further, || f(z) — (o + 8)f(z — 1) + (aB) f (z — 2)
7 [fl@—n) = (a+B)f —n—1) +(@B)f (@ —n—2)]|
< YIS [V f @ = k) = (a+ B f(x — k= 1) + (aB) fx — k - 2)]

S = k= 1) = @+ B)fw ~ k= 2) + (@B)f(z ~ k- 3)] |

<S4 Fe, Vo € R and Vn € N.

Therefore,

|f@ =@+ 8@ 1) + (@B)f (@ =2) =" [f@ —n) = (@ + Hf e —n—1)

Hap)f—n—-2)]| <3 |4 (6.18)

Vo € R,Vk € Z and Vn € N.
Since 0 < |y| < 1, for any = € R, (6.17) implies that the sequence
{7” [f(z—n)— (a+B)flx—n—1)+ (aB)f(x —n — 2)] } is a Cauchy sequence.
Therefore, since X is Banach space, we can define a function F; : R — X by
Fi(e) = lim, oo 7" [f(z — 1) — (a+ B) f(x —n— 1) + (aB) f(z —n - 2)]
We now prove that Fy(z) satisfies (6.4).
Consider, a Fi(x — 1)+ b Fi(z —2) + ¢ Fi(x — 3)
= ay M lim, oo Y [f(z = (n41)) = (@ + ) f(z — (n+2)) + (af) f(z — (n+3))]
by limy, oo VP [ (2 — (n+2)) = (a+ ) f(x — (n+3)) + (aB) f(x — (n+4))]
(n+3)) = (a+p) f(z— (n+4)) +(af) f(x = (n+5))]

8
8

+c 3 limy, oo Y[ f (2 —
=F(z)(ay '+ by i+ er7?)

= Fi(z),Vz € R, since 7 satisfies (6.3).
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Hence Fi(z) is a Tribonacci function.

Now taking n — oo, (6.18) implies

n—1

Hf(x) —(a+p0)flx —1)+ (af) f(z — 2) — Fl(x)H < nh—I>nooZ Iy |Fe=
k=0

€
1—|y|

Similarly since 0 < || < 1, using equation (6.9) with n = 1 and (6.13), we can prove
that {a” [f(x=n)—(B+7)flx—n—1)+(B7)f(z —n—2)] } is a Cauchy sequence
and since X is a Banach space, there exists a Tribonacci function F5 : R — X given
by

Fy(2) = limy oo 0" [f(z — 1) — (B4 1) f(z —n— 1) + (1) f(x — n — 2)]

such that

€

Hf(x) —B4+Nfl@—=1)+(By)f(x—2) - FQ@H < n@mnzl o lfe= —

—laf

Again from equation (6.8) with n = 1 and (6.13), it follows that
| £@) = @+ fla=1)+ar (2= = Blf (2=1) = (a+7) (=2 +arf (=3)] | < e

Since || # 0, replacing x by = + k and multiplying both side by |37, we get

|81+ B) = (@ )@+ = 1)+ arf@+ k- 2)
Bt k= 1) = (@4 NS @+ k—2) + arfle+ k= 3)]| I8 (6.19)

Ve € R and Vk € Z.

Therefore, for n € N, (|87 [f(z+n) — (a+7)f(x+n—1)+ayf(z+n—2)]

~[f@) = (@ +Nf@ =1 +arfz - 2)] |
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< 2kt Hﬁ”“ fa+k)—(a+y) fla+b—1)+ayfle+k—2)] =87 [f(z+k—1)
(a4 NS+ k=2) +arfl@+k-3)]| < iy 18] ke

Thus, for all x € R and Vn € N,

Hﬁ*”[f(x—l—n)—(oz+’y)f(x+n—1)+owf(x+n—2)]

~[f@) ~ e+ NS @ = 1) +arflz = 2)]| < 31814 (6.20)

Since 0 < || < 1, Equation (6.19) implies that
{8 +n) = @+ fle+n—1)+ (@) fle+n-2)]}
is a Cauchy sequence for all z € R. Since X is a Banach space, we can define a
function F3 : R — X by
Fy() = limy oo 7 [f (2 + 1) = (@ +9)f (2 + 10— 1) + (a7) f(z +n— 2)].
Now Consider, a Fy(z — 1) + b Fy(z — 2) + ¢ Fy(x — 3)
= a 7 iy g B [f(a (n— 1) = (a+7) f(5+(n—2))+ (a7) f(+(n—3))]
+b B2 limy, oo 8" [fz+ (n—2)) = (a+7) fa+(n—3)) + (ay) f(x+(n—4))]
e B8 imy o B[+ (n—3)) — (a+9)f (@ + (n—4)) + (a7) f(a+ (n—5))]
= F3(z)(af™t + 0072+ ¢67?)
= F3(x),Vz € R.

Therefore, F3(z) is a Tribonacci function. So as n — oo, we have

€

6] -1

Fy(@) = (f(@) = (@ + )@= 1) + (@nfe -2)) | = 13002 8] e =
Vz € R. O

Next we prove the following theorem.
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Theorem 6.3.2. If a function f: R — X satisfies the inequality
Hf(x)—af(x—l)—bf(x—2)—cf(x—3)H <eVreR,

for some € > 0 and o, 3 and 7y are distinct roots of (6.3), then there exists a unique

solution function F': R — X of the functional equation (6.4) such that
|£@) - F@)|

€ (ed=18DIV? | (ed=1DIB2 | (Bl=1rDlef?
= la—pB[ 18— la—] ( 1—|] + Bl—1 + —|a| ),V$ e R.

Proof. Since (o — 3)(B —7)(a —7) = (a = B)7* — (@ = 7)5* + (B — 7)a?,
(@® — 32 — (a® =) + (> — v*)a® = 0 and

(af)(a = B)7* = (ay)(a = 7)8* + (B = 7)(By)a® = 0,

_ (@=BFi(@)—(a—)B2Fs(@)+(B—1)a? Fa(a)
Hf () (@—B)(3—)(a—)

(a=B)72 (@)~ Fi(2)) ~(a-7)82 (1(2)~F3(2) ) +(8-)02 (f(2) ~ Fa(a)) H
@B B—)a—)

((a = 8)(f@) = (@ +B)f (@~ 1) + (@) f —2) - Fala)) |

S AT
e[ - e (F@) = B+ Nfa -1+ BN —2) - BE)|

S
e ey

(a =)@ (Fa(x) = [f(2) = (a+ (@ =1) + (@) f(z ~ 2)] )

Y

a— 2 —| a2 a— 2
< ST (' ARE o Jpomlel |l a1 ) from (6.14),(6.15) and (6.16).
We now define a function F': R — X by

_ (a=B)¥*Fi(z)—(a—) B2 F3(x)+(B—)a? Fa(x)
Fle) = (@A) B—)(a=) , Vo € R.
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Consider, a F(z —1)+b F(x —2) + ¢ F(x — 3)

,a=PP P —1) — (a = 9)BF(x —1) + (5 - y)a’Fa(z — 1)
(@ =B3)(B =) —7)

+b<

a— B’ Fi(r—2) — (o= 7)BFs(x = 2) + (B = y)o’Fy(z - 2)
(a=B)(B =) (—=7)

(o = B)v*Fi(x — 3) — (a = 7)B*Fs(x — 3) + (B — 7)o’ Fy(z — 3)
(a=B)(B=7)(a—=7)

(o = B)y*Fa(x) — (o = ) B Fi(x) + (B — 7)o Fy(x)
(= B)(B =) =)

+c

= F(x),Vx € R.
Therefore, F'(x) is a solution of (6.4). Now we prove the uniqueness of F(x).
Assume that F,F : R — X are solutions of (6.4) and that there exist positive

constants Cy and Cy such that Hf(z) H < (4 and Hf F(x)

‘<CQ,V$ER

Therefore, by Theorem 6.2.4, there exist h, g : [-2,1) — X such that for all z € R,

F(l‘) = TLxH_Q h(x — LJIJ) + (bTLocJ-H + CTLxJ)h(:L' — LZEJ — 1) + (CTLxJ_H)h(.’L’ — LZEJ — 2)

and (6.21)

F(x) = Tlays2 9(x — |2]) + (0T aps1 + Tla)g(@ — (2] = 1) + (Tap)g(@ — (2] = 2).

Fix t with 0 <t < 1 and take |z] = n. It then follows from (6.21) and (6.22) ti16a'32)

Tosa(h(8) = g(8)) + (FTi1+¢T) (At —1) = g(t=1))+ (¢ Top) (h(t—2) —g(t-2))|

_ HF(n) —ﬁ(n)H
< [P+ = s+ 0 + £+ 0 - Fint )|

< C) + (O, for each n € Z.
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Therefore, ||Thi2(h(t) — g(t)) + (0Tns1 + T (R(t — 1) — g(t — 1))
+eT e (h(t— 2) — g(t — 2)) H <C 40

This implies

(o = B = (0 = 7)B"*2 + (B — 7)o+ i
I CEDICEDICED) ) (16~ 9(0)
(0 = By = (@ = 7)™ + (B = y)a™!
+(0 @ =B F=)a—7)

(a=p)y" —(a—7)B" + (B —7)a"
(a=B)(B =) (=)
N (c(a — A" = (a =)™ + (B =)o
(a=B3)(B—7)(a—7)

+e >(h(t — 1) —g(t—1))

) (bt = 2) = gt - 2))|
< Ch+ O (6.23)
Dividing both sides by |3|" and by letting n — oo, we obtain

| = (@ = NB0(t) = g(t)~ (b (0 =N+ (a =) (bt = 1) = gt = 1)

—c (@ =7)B(h(t =2) = g(t —2))|| = 0

Therefore,

|82t = 9(0) + (0 B+ ) (h(t = 1) — gt = 1)) + ¢ Bt —2) — g(t ~2))|| = 0. (6:24)

Analogously, if we divide both sides of by |a|™ and |y|™ and let n — —oo, then we get

respectively,

Q2 (h(t) = (1)) + (b a+-c) (At = 1) = g(t— 1)) +c alh(t—2) - g(t 2))[| = 0 (6.25)

and

[72n&) = g(0) + (b 7+ )t = 1) = glt = 1)) + e A(Alt —2) — g(t = 2))|| = 0. (6.26)
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Rewriting equations (6.24), (6.25) and (6.26) in matrix form, we get

[\

7 by+ce ey h(t) — g(t) 0
ar bat+c cal [h(t—1)—gt—1)| = |0] - (6.27)
B bB+c cfB| |h(t—2)—g(t—2) 0

(]

Note that since ¢ # 0 and «, (3, are distinct roots,

¥ by+c crv o Y
o ba+ec cal|=a2 1 a
B bB+c ¢f g2 1

=ca—=7)(B—=7)(a—3)#0.
Therefore, (6.27) has only trivial solution and we have, h(t) = g(t),
h(t—1)=g(t—1),h(t —2) =g(t — 2),Vt € [0,1).
That is, h(z) = g(z) for all z € [-2,1).
Therefore, we conclude that F(z) = F(z),Yz € R. O

We illustrate this result.

Example 6.3.3. Consider the functional equation

23

f) =2 fo = 1) = S f(e - 2) + 2 S - 3) (6.25)

and Tribonacci recurrence relation associated to it.

23 31 5
Thio=—"Ty1——T,4+ =T,_1, 6.29
+2 1 +1 3 + 3 1 ( )

with TO = O,Tl = 07T2 = 1,‘v’n e Z.
- - 23 31y 5 -
Roots of the characteristic equation N> — Z)‘2+§)‘_ ¢ = 0 corresponding to (6.29)

and 5.

11
G/r'62,4
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Let o = %,6 =5and~y = %t. Note that roots «, 3,7 are distinct and |o] < 1, ]y < 1
and |G| > 1.

Hence the solution is given by

F(q}) = (a=B)¥*F1(x)—(a—) B2 F3(z)+(B—)o Fa(z

)
@=—B)(B—)(a—) , where

Fy(2) = limy oo (1) (2 = 1) = (0 + B)f(z = 0= 1) + (aB) flz — n — 2)]
Fo(w) = limy e (3)"[ /(& = 1) = (B ) flw =0 = 1) + (39)f(z = n = 2)]
Fy() = Ty (5) " | f(@ 4+ 1) = (@ +9)f (@ +n = 1)+ (@) f(z +n—2)]

Therefore,

F(I) _ _TQX%)Fl (Z‘)—(%X25)F3(Z‘)+(%X%)F2(Z‘)

FHEGE)
_ 9F1(2)+200F3 (z)—38F ()
171

and

|£@) = Flo)| < 4t e

In the next section, we extend this result to generalized ¢-bonacci functional equa-
tion, where ¢ € N and ¢ > 2. Through out this section we denote a;,i = 1,2,--- ,q,

by any fixed real numbers.

6.4 Generalized ¢-bonacci functional equation

In this section, we show that the solution of generalized ¢-bonacci functional equa-
tion is associated with the generalized g-bonacci sequence and prove its Hyer-Ulam
stability in the class of functions f : R — X, where X is a real or complex Banach

space.
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Definition 6.4.1. Let ¢ € N and q > 2. The generalized q-bonacci sequence defined

by
q

Qn—i—q—l - Z a; Qn—l—q—l—ia (630)

i=1
with Q; =0,1=0,1,2,---¢g—2 and Q41 = 1,Vn € Z.

The n* term of (6.30) is given by the Binet type formula

a4 (_1)kt e (0 — ag)al
_ > 1 (—1) H1§z<JSqﬂ,J7ﬁk< i) Yn € Z, (6.31)
[hcicjcq(@i — o)

@n

where «;,7 =1,2,3---q are the distinct roots of the characteristic equation
q .
A= @M =0, (6.32)

=1

corresponding to (6.30).

Definition 6.4.2. Let X be a real (or complex) Banach space. A function f : R — X
defined by

q
F) =3 aif(a— i), (6.33)
i=1
15 called a generalized q-bonacci functional equation.

We have the following lemma.

Lemma 6.4.3. If o;,1 = 1,2,--- ,q are distinct roots of the characteristic equation

(6.32), then the g-bonacci function f: R — X defined by (6.33) satisfies

f(:L‘) = QnJrq*lf(x - n) + Z Z Astp+1 Qn+q*2*s f(x —n- ])), (634)

where @, is given by (6.50).

Proof. Since «;,1 =1,2,3,---q are the ¢ distinct roots of (6.32), we have
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f(z) = q _1 4y f(x — p), where a, = (—=1)"*! Zlgi1<"'<ik<"'<ip§q h=t iy
Therefore, f(z) — ;];:1 <(_1)p+1 Zl§i1<"'<ik<"'<ip§q - &ik>f(x -p)=0.

This implies,

F@) = S0 (F07 Sy iy iyt iy 0 ) F @ = )

q—1 P
:aim[ fle—1) Z( 1)pL 3 Haik>f(x—1—p)], (6.35)
p=1 1< << <+ <dp <@, i Eim k=1

Ve € R and ¢, m=1,2,--- q.
Replacing = by z — 1, in (6.35), we get

Fo=1) = 00 (0P Sy wcipeciyzaiuion Lo @3 ) F@ = 1= p)

q—1

=, | flx=2) = > (=1 3 ﬁ @) flw =2 -p)].

p=1 1<y <o <lig <o <ip <y i g Fom k=1
(6.36)

Therefore, (6.35) and (6.36) implies

f(z) - ZZ: ((_1)p+1 219'1<~~<z‘k<--~<z‘p§q,z’k7éim Hi:1 O‘ik)f(f —Dp)

q—1

—a? [fr-2) =3 (-1 > [Tew)ste—2-)

p=1 1< <o <l <o <ip <qig Al k=1

Ve € R and ¢, m=1,2,--- q.
Thus by induction on n, we have

HEEDwy(CV) SIS | T FICES?

q—1 P

_ p+1

= aj [ r—n)—Y ( > Haik)f(iv—n—P),
p=1 1<ty <o i< <ip S i h=1

(6.37)
Vr € R and ¢, m=1,2,--- q.

Now replacing = by x + 1 in (6.35), we get
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f(l' + 1) N Z;i <( )p+1 Z1<21< L < <ip<q,iFEim Hk 1 alk)f(x +1- p)
= Yim |:f<x>_zp:1 (<_1)p+1 Zlgil<"'<7;k<"'<ip§%ik7éim Hkil alk) f(‘r_p)] ) VzeR
and i,,,m=1,2,--- q.

Also, since a, # 0,]]! _; a,, is non-zero, hence «;,, # 0, and we have

f(x) - ZZ: (=1t 21<11< Ll <o i < Qi Fim [Tioy i ) fz —p)
| ( )@ =)

q—1 p

:a;ﬂ}[f(x—i—l)— ((—1)p+1 Z H@ik>f($+1—p)]a

1 1<i1 <o < <+ <ip <@y i g Fim k=1

3
Il

Hence by induction on n, we get
~1
[f($) o Z:l ((_1)p+1 Zlgil<...<ik<...<ip§q,ik;£im i:l alk)f(x - p)]

1 p

—aplerm =Y (o Y Tew)sern-n),

p=1 1<y <o gy <o <ip <@y i k=1

Q
|

Vr e R and 2, m=1,2,--- ¢

Thus, (6.37) is true for all n € Z. Note that corresponding to g values of m, there
are g equations.

For simplicity, we write 4,, as m, i; as j and i; as k. Multiplying the m' equation
by (=)™l 1< cpeg(@j—an), j, k # m, foreachm = 1,2, -+, g and then adding
these equations, we get

F(@) = Quigr fla = n) + S} (L0 vy Qurgaa ) @ = n =)

Vr € Randn € Z. O

Theorem 6.4.4. A function f : R — X is a solution of the functional equation
(6.33) if and only if there exists a function h: [—(¢ —1),1) — X such that

- g—1-p

f( ) QLmJ+q lh x_ +Z ( Z Ustp+1 QLIJ+q 2— S) (Q}— LxJ _p)a (6'38>

=1

Vo € R, where Q,, is the n'™ term of (6.51).
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Proof. We use Lemma 6.4.3 to prove the theorem. Let f(x) be a solution of (6.33),

then replacing n by |[z] in (6.34), we get

g—1 q—1-s
f(@) = Qajsg—1f(x — |z]) + Z < Z as+p+1Q|_:(:j+q7275>f(x — z] —p), Vo eR
p=1 s=0

Also, since 0 <z — |z| < 1, we have =1 <z — |z] =1 <0,---,
—(g-D<z—lz-(¢-1)<—-(¢g-2).

So, if we define a function A : [— (g —1), 1) — X, by h := fi—(4-1),1), then we see
that f(x) is a function of the form (6.38).

Now, we assume that f(z) is a function of the form (6.38) where h : [—(¢—1),1) — X,
is an arbitrary function.

Then, it follows from (6.38) that

- qg—1-p

f(@) = Quupsg-rhlz — | +Z(Zas+pﬂ@w“) he —|z] —p)

Therefore, for all i =1,2,--- ,q,

q—1 qg—1-p

Fe =) = Quirgri (e = 12)) + 3 (X s Quesraasi) bz — |2] = p).

Thus, we have
flz) — Zgzl aif(r —1)
= (Quejra-1 = 2201 6iQu)g-1-4) hlw — |2])
+ Z 23_1— As+p+1 <QL&:J+(1—2—S - Z?ﬂ a; QLa:j+q—2—s—i> h(m - Ll‘J - p)

=0, from (6.30).

Hence f(x) is a solution of (6.33). O
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6.5 Hyers-Ulam stability of generalized g-bonacci

functional equation

In this section, we assume that «;,7 = 1,2, --- , g are the distinct roots of characteris-
tics equation (6.32), 0 < |ag_1| <1, I =1,2,--,|%] Jagy| > 1, I =1,2,---, [£].

We now prove the Hyers-Ulam stability of the functional equation (6.33).

Lemma 6.5.1. If o;,i = 1,2,--- ,q are the distinct roots of (6.32) such that
0 < Jag] <1, 1 = 1,2,---,{%], lag| > 1,1 = 1,2,--- ,[2] and a function

f:R — X defined by (6.33) satisfies the inequality,
Hf(x) _Zaif<x_i)H <, (6.39)
i=1

for some € > 0 and Vx € R, then there exists q-bonacci functions Fi(x) : R — X,

i=1,2,---,q of the functional equation (6.33) defined by

Fo_1(z)
q—1 P
= Tim ag, [fl@—n) = > (=17 > [Tei)f@—n-»),
p=1 1§i1<"'<’ik<'~~<ip§q,ik7éigl_1 k=1
[=1,2,--- ,Lq;—lj and
FQ[((L’)
q—1 p
= Tim agy| /(@ +n) = > (=1 3 [Tei)f@—n-»),
p=1 1<y <o <y <o <ip <qyin Aoy k=1

lfo-Ser( S [ew)fe-n - Faalo)|

p=1 1<y <o < <o <ip £ g1 #2011 k=1

€
—_ 6.40
1|y | ( )

164



and

q—1 P
| Pty = [y = > =1y > [Tew) st -n)|
p=1 1< <o < < <p <1 721 k=1
€
< < 6.41
Vo € R.
Proof. Since a;,i = 1,2, -+ , q are the distinct roots of characteristics equation (6.32),

— (_1)ptl p .
we have a, = (—1) Zl§i1<~~-<ik<~~<ip§q k=1 Qi -

Therefore, equation (6.39) implies

||f($) - ZZ:(_DPH ( Zl§i1<--~<ik<~~-<ip§q,ik7é2l—1 HZ:1 aik) f(z —p)

a1 [ (0= 1) = S0 (1P sy g i oy i) fla=1=p)] |
<eVreRandl=1,2,..., |22

2

If we replace = by x — m; in the last inequality, we get

£ =) = T 07 ( Ly cincsy < [T 0 ) £l = s = p)

q—1 D
—Qug—1 [f(x—ml—l)—Z(_l)PH( Z Haik>f($—m1—1—p)}H <k,
p=1 1<i) << <-<ip<q k=1

(6.42)

Ve €Ryip#2l—1landl=1,2,..., |2

Multiplying both sides by | ag 1 |, we get

”043;1—1 (f(x —my) — Z:(_l)pﬂ ( El§i1<---<ik<---<ip§q het O‘ik> flz—my —P>))
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—ap it fw = = 1)

Z ( )pﬂ<Z1§z‘1<m<z‘k<-~<ipﬁq bt O‘ik>f(x —myp — 11— p)} H

<l g1 |™ €, Vo € R,iy, # 20 — 1 and my € Z. (6.43)
Thus, || f(z) — Y02 (—1)7*! ( D i<ii<ciper<ipzg ket aik>f($ —p)
—aty[£w = m) = S (S i [l a0 ) o == )|
< D ommo llasity (F (@ = ma)
— S D (St i ceeipeq Ll @) £z = my = p)
—agt! [ fla—mi—1)

~ S Sicie e cipzo i 00) fo = = 1= )|

n—1
<Y oy ™eVrER i #2—landn €N (6.44)

m1=0

Since 0 <| ag_1 |< 1, for any = € R, equation (6.43) implies that

{ogis [ =n) = S0 (S cocipeciycginiar s [Ty 0 ) e —n = )]}

is a Cauchy sequence. Therefore, since X is a Banach space, foreach [ =1,2,--- | L%j,

we can define a function F5_; : R — X by

Foy_y = lim, o aly_4 [f(:v —n)— g:l(—l)f“rl

(Zlgil<---<ik<---<ip§q,ik7é2lfl Hi:l O‘m)ﬂx -n- P)] .
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We prove that Fy_;(z) satisfies (6.33).

Consider, Z?=1 ajFo_1(z — j)

=iy ailimy o oy [f(2 = (7 +n))

- Z,‘ﬁli(—l)p“ ( Zl§i1<~--<ik<~~~<ip§q i:l,i;ﬁéQl—l O‘ik>f(x —(j+n) - p)}
=2 i aj0n im0 ™ [f@ = (j+n)

- Z,‘ﬁi(—l)p“ ( Zl§i1<~--<ik<~~~<ip§q i:1,ik¢25—1 O‘ik>f(x —(j+n) - p)}
= Z;]‘:l ajo‘z_lj;lF2l—1(x)

= Fya(2) X5, ajaq 4

q—1 q=2 .
a1 oy taz ay i+ +aq>

7
®Xo1—1

= Fy_1(x) <

= Fy_1(x) (Z%H), since ap;—; satisfies (6.32).

201—-1

= FQZ_I(I).
Therefore, Fy_1(x) is a g-bonacci function, for each [ =1,2,-- | L%j
If n — oo, then (6.44) implies that
q—1 P p
Hf(l‘)— (—1)p+1( > Haik>f($—1?) — By < T Tana |
—1 1<y <o <<l <q k=1 201

V$€R772k7é2l—1 and [ = 1’27... ’L(F;_IJ
On the other hand, it also follows from (6.39) and the fact that
ap = (—1)p+1 ZlSi1<“'<ik<~-<ip§q HZ:I QG
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[HEEDwiICEl O NN | (I FICEY)
—Q2 [f(:)c -1)- g;i(_l)ﬁl(Zl§i1<---<ik<---<ip§q i=1 ai’“)‘f(z P 1)} H =6

Ve eRyip #2land [ =1,2,--- , | 1].

If we replace x by x + m; in the last inequality, we get

1
Hf(x +my) — Z;Z:l(_l)pH ( Zl§i1<---<ik<---<ipﬁq z=1 aik)f(x = p)
—aiy [f(x +my —1)
- Zg;}(_]‘)p+1 < Zl§i1<“~<ik<-“<ip§q i:l alk) f(l‘—l—ml _p_ 1):| H S &

Ve € Ry #2land [ =1,2,---, |2].

2

Since a, # 0, |ay| # 0. Therefore dividing both sides by | ag |, we get

oy (fl@+m1) = S 0 (i g Loy @) fl@+m1 =)

—042_1””“ [f(x +my — 1)

i
L

eyt ﬁaik>f(x+m1—p—1)]H <o [ ™ e, (6.45)

1 1<d <ig < <ip<q k=1

=
I

Ve € R, my € Z and i # 2I.

a;l"[f(a:—l—n)

Therefore,
B Zg:(_l)pH < Z1§i1<-~~<ik<--~<z‘p§q fet aik) flz+n— p)]
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< s oz [ £+ ma)

=S D (g Ty @) fla+mi = )]
—ag™ [ fl@+mi = 1)

= S D (S e cig [Ty i) (@ +mi = p = 1)

<Yy lay [T e for x € R,iy # 20 and n € N.

Hence, we have

‘a;l”[f(:c—l—n)

- Z ( )p+1 ( Zlgi1<---<ik<---<ipgq szl O‘Z’k) f(:E +n— p)]

_ [f(w) — i(_l)pH( Z ﬁ OZik>f(9U —p)] H < Zn: | gy |7 €,
p=1 1<) << <+ <ip<g k=1 m1=1

(6.46)

Ve eR,,ip #20,1=1,2,--- ,[1] andn € N.

Since |ag| > 1, for any = € R (6.45) implies that

{0 [z +n) = S0 Yo concya Lo @@+ =p)] }
is a Cauchy sequence.

Thus, since X is a Banach space, for each/ = 1,2, --- , [ ], we can define a function
Fy R — X by

Fy(z) = limy, 00 o) [f(a: +n)

=S (Sce i cty g i ) Fa 0= )],
We show that Fy(z) satisfies (6.33).
Consider, »7_, a;Fy(z — j)
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= Sy limy e 05" [ (j = )
= S D (it | Ty @) @ = (=) =p)]
= >0 ajay] lim, ooy " [f(z — (j — 1))
~ S D (it LTy @) fa= (=) = p)]

= Zgzl ajo‘z_ljFﬂ(x)

_ (et et
- q

Qg

= Fy(x), since ay; satisfies (6.33).

If n — oo, then (6.46) implies that

for all z € R4 # 2l and each [ =1,2,--- , | %]. ]

2

Bl cr( X el =

p=1 1<y <ig < <ip<q k=1

Theorem 6.5.2. If a function f:R — X defined by (6.33) satisfies the inequality,

‘V@ﬂ—éﬁmﬂx—@“gg (6.47)

for some € > 0 and Vx € R, then there exists a unique solution function F': R — X

of the functional equation (6.33) such that

o Z 11 <|ozg| |Oék:|>|am|n’ (6.48)

H - H1<j<k<q aj — p=1 1<j<k<gq |

vxER,j’k‘%m’ fOT 6&6hm:1’27... ..
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Proof. From (6.40) and(6.41), we have

FDq _ m,+1(2

| £a) - ===

1’5]<k<q J,k# m(aJ ak)am Qm( )

P Q .
_” 1<k (=R @)= 5o D™ g kg, bt m(Q 0RO Qi (@)
1<j,k<q (@ —%k)

1<j, k<q(aj ag)

FDQ _ Tn+1c2

~ )

1<j<k<q kg ml(Qi—ok)ad ! (f(@*@m(@) H
(@)

1<j,k<q(@5—ak)

since ngj,kgq(aj — o) =3, (=" H1§j<k§q, j,k;ém(aj — ag)of .

Pq — m+1Q o —oy ) o
Therefore, ‘f(x) _ _m=(E1) gu<ka. st m(@ = k)0 “1Qm(2)

Y

1<, k<q (0 —0k)

< 1<j, k<q|a] ag] Zm 1( )m i 1_[1<j<k<q7 j.k#Em |(aj - ak)ag;l

(1@ = S 07 S ity T 0 F (= ) = Q@) )

. q—1
Q— 1)m+1 loj —a] |am|
< o —a] >t (—1) Hl<]<k<q,]k7§m T— o] Ve € R.

1<j<k<q

We now define a function F': R — X by

P m Q
F([Z’) = Zl:l(_l) i ?SJ<’€<11 I, k# m(aJ ak)am Qm vx c R

1<j, k<q(aJ ay)

Consider, > 7 a; f(z — 1)

P Q )
q gn:1(*1)m+1 1§y<k<a, ]k#m(aj Oflc)am Frm (z—1)

1= 1aZ

1<y, k<q(aj ag)

= F(x) for each x € R.
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This implies F(z) is a solution of (6.33).

Now, we prove the uniqueness of F(x).
Assume that F, F : R — X are solutions of (6.32) and that there exist positive
constants C and Cy with Hf(x) - F(x)” < ) and Hf(a:) — ﬁ(az)” < Oy, Vz € R.

According to Theorem 6.4.4, there exist functions h,g: [—(¢ — 1),1) — X such that

g—1 g—1-—p
F(z) = QI_:EJ‘HI 1h(z = z]) + Z Z As+p+1 QLJEJ—H]—Q—S Wz —[z] —p) (6.49)
p=1 s=0

and

qg—1 g¢g—1-p

]3(33) = Qlz)+q19(x — [7]) + Z Z Asipt1 Qu)+q—2-5 9(x — [z] —p)  (6.50)

for any x € R.

Fix t € R with 0 <t < 1 and take || = n. It then follows from (6.49) and (6.50)
that

[@nsaa (1) = 90) + 028 S0 s Quigos (= 1) = (0 = 1)) |

P
= || ikt (0 )l - (h(t) — (1))

1<g<k<q(a3 ag)

1
+3 0

n+q—2—s

) Pa_ (cymn @ (aj—an )l
—1l— m= < < 'rna -«
Dic0 | Gorprn — R vy (Mt—m—g@—pﬁu

= |Fo) - Fw)|
SHpm+w_fm+wwme+w—ﬁm+wH

< C1 + Cy, (from assumption.)
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Dividing both sides by |ag|",1 =1,2,3,---, %] and letting n — oo, we obtain

m+1 Q

H m=1 (D™D " i< cn<qinzm(@i—aR)og
Q

(ht) = 9)

1<j<k<q (% —k)

P
o1 (D)™

q—2—1
Q 1<j<k<gq,J, k;ﬁm(%*ak)%l

+> - D (h(t—p)—g(t—p)>H

1<]<k<q(% ag)
=0, since 0 < [ay-1| < 1 and |ay| > 1, hence 0 < [+ < L.
Also, dividing both sides by |ag_1|", 1 =1,2,3, -, L%lj and letting n — —oo, we

obtain

H Pm (=)™ nQ1<j<k:<q] k;ém(aj O‘k)%z 11 (h(t) o g(t))

1<g<k<q(% ag)

oo

Q i
D yab S NEEEECL e S ()]

p=1 1<j<h<ql0j—ar)

=0, since 0 < |ag_1| < 1 and |ag| > 1, hence ’ar;z_zly > 1.

Thus, corresponding to ¢ values of m, we have ¢ equations. In matrix form this

equations are represented by

Oé?_l T g=1+s aio‘?_i T aqa?_Q h(t) = 9(t) 0
adt s Y gl ggad h(t—1)—g(t—1) 0
™l Y @l agal? h(t —2) —g(t —2) =10
_04371 e sl aqagﬂ_ _h@ B U 1>_ [0

where s =1,2,--- | q.
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Note that

g—1 q -t q—2
%1 i=1+s 41 g0y
q—1 q N q—2
&) i=1+s A% aqO‘2
q—1 q gt q—2
3 T i=1+s 33 QqCe3 ’
-1 .. q N S A q—2
ol im14s Qi aqod
where s =1,2,--- ,q and «;,7 = 1,2, - - - q are distinct roots.
-1 4 -2
q—1 q—2
% 1 %
— GQ*l q—1 1 q—2
q a3 Qg - a3
q—1 q—2
o 1 a af

= ad™ Tlicjopeq (@ —ar) #0,
Therefore, h(t) = g(t),h(t — 1) = g(t = 1),--- ,h(t = (¢ — 1)) = g(t — (¢ — 1)),
Vvt € [—=(¢—1),1). Thus, h(t) = g(t), Vt € [~(q¢ — 1),1).
Hence we conclude that F(z) = F(z), for all z € R.

Thus, the theorem is proved. Il
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Summary

In our thesis, we look at the generalized Fibonacci sequence, F, .1 = aF,, + bF,
with Fy = 0 and F; = 1 in a new way. The coefficients a and b are considered
as the terms of the binomial expansion of (a + b)!. It’s related generalized Lucas
sequence is defined by L+, = alL, + bL,_; with Ly = 2 and L; = a. We call theses
sequences by B-Fibonacci sequence and B-Lucas sequence respectively. In Chapter 3,
we extend the B-Fibonacci sequence to B-Tribonacci sequence defined by (*B),, 1o =
a*('B)py1 + 2ab(*B), + V*('B),,—1,Yn € Z with (*B)y = 0,(*B); = 0 and (‘B), = 1.
Various identities of the B-Fibonacci sequence are extended to B-Tribonacci sequence.
Some of these include Honsberger type identity, General Trilinear identity, d’Ocagne
type identity and Catalan type identity. We also discuss incomplete B-Tribonacci
and B-Tri Lucas sequences and their identities. In Chapter 4, we extend these B-
Tri sequences to the ¢ order sequences. These are called B-g bonaacci sequences.
For example, the n'" term of this sequence is calculated by adding the preceding ¢
terms having the coefficients as the terms of the binomial expansion of (a + b)?~ .
The identities of B-Tribonacci sequence and other sequences discussed in Chapter 3

are extended to B-q bonacci sequences.

Another way of looking at the generalized Fibonacci sequence is its associated
Fibonacci polynomials. In Chapter 5, we study the generalized bivariate B-Tribonacci,
B-Tri Lucas, B-q bonacci and B-q Lucas polynomials and some identities related to
these polynomials. Besides these identities, we have obtained identities involving par-
tial derivatives of these polynomials. We have also included Convolution property of
these polynomials. In the same Chapter, we also study the incomplete generalized
bivariate B-Tribonacci, B-Tri Lucas, B-q bonacci and B-g Lucas polynomials, and
their various identities. In Chapter 6, we show that the solution of generalized lin-

ear Tribonacci functional equation is associated with generalized Tribonacci sequence
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and also obtain its stability in the class of functions f : X — R where X is a real
(or complex) Banach space. This result is further extended to the generalized linear
g-bonacci functional equation.

Problems for further studies:

There are many interesting identities of generalized Fibonacci and Lucas sequences
and polynomials which can be extended to the sequences and polynomials that we
have introduced in our thesis. In addition to this one can look for the applications
of these sequences and polynomials in the area of Electrical Network Theory, Com-
binatorics, forecasting the stock market and many other areas in which the famous

Fibonacci sequence is used.
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Appendix

Content of the Appendix is published in (E2).



Appendix

The classical Fibonacci sequence is a unique and fascinating string of numbers with
interesting properties which are obtained by using various Mathematical techniques.
In (P1), B-Tribonacci sequence and its identities are discussed. We give here some

Python programming codes which are used for verifying the identities obtained.

Python code for generating the terms of

("‘B)nya = a*("B)py1 +2ab ("B)y + b°("B)n1.

Python Code 1.
from sympy import *
from pylab import *
a=Symbol(’a’)
b=Symbol(’b’)
def B(n):
ifn ==0:
return 0
elif n == 1:
return 0
elif n==2:
return 1
elif n<=0:
return expand(1/b**2)*((B(n+3)-a**2*B(n+2)-2*a*b*B(n+1)))
else :
return expand(a**2*B(n-1)+2%*a*b*B(n-2)+b**2*B(n-3))
for i in range (0,15):
print 'B(",i,)=",B(i)
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Python code for generating the graph of
("B)urz = (3)°("B)as1 + 2(3)(3) (‘B)u + (5)*(*B)n-1.
Python Code 2.
from sympy import *
from pylab import *
a=Symbol(’a’)
b=Symbol(’b’)
a=1/2.0
b=1/2.0
def B(n):
ifn ==0:
return 0
elif n ==
return 0
elif n==2:
return 1
elif n<=0:
return expand(1/b**2)*((B(n+3)-a**2*B(n+2)-2*a*b*B(n+1)))
else :
return expand(a**2*B(n-1)+2*a*b*B(n-2)+b**2*B(n-3))
for i in range (0,15):
scatter(i,float64(B(i)))
grid(True)
xlabel(r'n’, fontsize=18)
ylabel(r’B,,’, fontsize=18)

show/()
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Python code for generating the terms of B-q bonacci sequence for ¢ > 2 andn > 0.

Python Code 3.
from numpy import *
from math import *
from pylab import *
from sympy import *
a=Symbol(’a’)

b—Symbol(’b")
q=input("Enter q’)

def B(n):

ifn <= q-2:
return 0

elif n == q-1:
return 1

elifn > g-1:
sum=0
for r in range (q):

sum=sum-+ expand(binomial(q-1,r)*a**(g-1-r)*b**r*B(n-1-1))

return sum

else :

print "Exit’
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at the National conference on ’Emerging Trends in Mathematics and Math-
ematical Sciences’ held during 17-19 th Dec, 2015 at Calcutta Mathemat-

ical Society, Kolkata. This is a published paper (P5).
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