
Itemset Based Pattern Mining

Algorithms for Data Streams

A Thesis

submitted to Goa University

for the award of the degree of

Doctor of Philosophy

by

Shankar Bhiwa Naik

under the guidance of

Dr. Jyoti D. Pawar

Department of Computer Science and Technology

Goa University

Taleigao Plateau, Goa

May 2017

Dedicated to

Sahej, Smit, Dipesh & Salman

Statement

As required under the ordinance of Goa University, I, Shankar Bhiwa Naik, state

that the present Ph.D. thesis entitled, Itemset Based Frequent Pattern Mining

Algorithms for Data Streams’ is my original contribution carried out under the

supervision of Dr. Jyoti Pawar, Associate Professor, Department of Computer

Science and Technology, Goa University and the same has not been submitted on

any previous occasion. To the best of my knowledge, the present study is the first

comprehensive work of its kind in the area mentioned. The literature related to

the problem investigated has been cited. Due acknowledgments have been made

whenever facilities and suggestions have been availed of.

Shankar Bhiwa Naik

ii

Certificate

This is to certify that the thesis entitled Itemset Based Frequent Pattern Mining

Algorithms for Data Streams, submitted by Shri. Shankar Bhiwa Naik for the

award of the degree of Doctor of Philosophy in Computer Science, is based on

his original studies carried out under my supervision. The thesis or any part

thereof has not been previously submitted for any other degree or diploma in any

University or Institute.

Dr. Jyoti D. Pawar

Department of Computer Science and Technology

Goa University, Taleigao Plateau

Goa-403206, India.

Date: 31st May 2017

Place: Department of Computer Science and Technology, Goa University, Goa.

iii

Acknowledgments

I express my sincere gratitude towards my guide Dr. Jyoti D. Pawar for her con-

stant help, encouragement and inspiration throughout the research work. Without

her invaluable guidance, this work would never have been a successful one.

′DevasiPujitaGurusiAnand,GurusipujitaDevaParmanad′...It is because of her

that I get this opportunity to thank all.

I am grateful to my parents, sister and brother-in-law for all the sacrifices they

have made to get this work done.

I thank Dr. Gervasio S.F.L. Mendes, Principal of S.S.A. Govt. College, Pernem

for the support and encouragement given to me.

I thank Shri. Bhaskar G. Nayak, Director of Higher Education, Govt. of Goa

for having supported me in this journey.

Shankar Bhiwa Naik

Goa University

May 31, 2017

iv

Itemset Based Frequent Pattern Mining
Algorithms for Data Streams

by

Shankar B. Naik

Abstract

Itemset mining is defined as the process of discovering interesting and useful pat-

terns in the form of a group of items normally referred to as itemsets which ap-

pear together in transaction databases. Although itemset mining was originally

designed for market basket analysis, it is viewed more generally as the task of

discovering groups of attribute values occurring together in databases. With the

technological advancements in both the hardware as well as software the amount

of data captured is huge and pose challenges in processing and analyzing it. A

data stream belongs to such category of data. The focus of this research work has

been to identify patterns from data streams using itemset mining.

A data stream is a continuous sequence or flow of data over time and often at

high velocity. Data streams produce a huge amount of data which can come from

different sources. Social networks, sensors, financial system and health manage-

ment systems are good sources of data streams. They generate a huge amount of

timely information which may contain packets of hidden knowledge. This knowl-

edge can be extracted in the form of patterns. Detecting patterns from data

streams is very challenging due to the inherent characteristics of data streams.

The data elements in a data stream arrive in at a high rate and the size of the

streams is typically unbounded. It is not possible to store all the elements of the

v

data stream at once in the system making it impossible to backtrack over data

elements or maintain and review the entire history. A straightforward transla-

tion of the existing traditional algorithms in data mining is not adequate enough

for a data stream mining process. Thus, there is a need to develop frameworks

and algorithms to identify patterns from data streams. The elements of the data

stream are processed individually or as batches as they arrive. The results of this

processing are stored in an intermediate summary data structure which is used to

store the summary of the data present in a data stream. This data in the summary

data structure is used to generate patterns of interest from a data stream.

The approaches used in the work carried out as part of this research work can

be categorized under two broad categories - first category which uses a general

approach and the second category which uses an application oriented approach.

The work carried out under the first category began with the design of an algorithm

which finds frequent itemsets for the entire or a part of an input data stream.

Frequent itemsets were generated for segments of the data stream and stored in

an intermediate summary data structure. The data in the summary data structure

is then used for finding frequent itemsets. During the experimental study, it was

observed that the number of frequent itemsets generated increased with increase

in the number of segments and became difficult to store them all in the memory.

This problem was resolved by designing a single pass incremental algorithm to find

closed frequent itemsets from the data stream. A closed itemset has no superset

with a similar support. The advantage of finding closed frequent itemsets is that

they are less in number and contain complete information about all the subsets of

the itemsets that are frequent. These two approaches aimed at generating frequent

itemsets from any data stream in general and not from any specific application

point of view.

The work carried out under the second category was more from application

point of view. Here we proposed a framework to generate itemsets with utilities

vi

and use this utility information to compress the data in the sliding window. The

utility of an itemset is a profit value associated with the itemset. In our study, we

defined the utility of an itemset in terms of the amount of memory which could

be saved by storing the itemset in a compressed form. Itemsets with high utilities

were stored in a compressed form, which lead to the reduction in the amount of

memory required to store a sliding window thereby allowing more elements in the

data stream to be present in the sliding window thereby allowing for more efficient

data analysis.

In this research work, we have also presented an approach to dynamically gen-

erate the value of the minimum support threshold. Itemset mining on datasets

generates a large set of patterns out of which only a few may be of actual interest

to the users. A minimum support threshold is used to separate the interesting

patterns from the non-interesting ones. The value of minimum support threshold

should be carefully chosen. A lower value of it may lead to the generation of many

non-interesting patterns as interesting. While a higher value of it may prevent in-

teresting patterns from being shown as interesting. The value of minimum support

threshold generated by the approach proposed in this study gives an idea about

the data in the sliding window and helps the user to specify his / her minimum

support threshold value.

In the concluding part of this research, we have proposed an algorithm to

cluster the values of an attribute. This algorithm is applicable to data streams

where each element is represented as a pair of values of an attribute. For example,

a large number of users create and update their profiles on social websites. These

profiles consist of many attributes. User update attribute by replacing the old

value with a new one. The pair, of the old and the new values, becomes the

element of the data stream considered in this problem. This pair indicates that

the two values are related to each other. Analyzing such a pair can produce clusters

of attribute values. In case the attribute considered is workplace then each cluster

vii

contains company names related to a similar domain. We extended this algorithm

on two attributes and proposed an algorithm to cluster values of an attribute and

then generate associations between clusters of two different attributes.

The algorithms were tested using synthetic as well as real datasets. Itemset

based pattern mining in data streams has very interesting applications and can

be used to mine useful hidden knowledge in transactional data mining, sentiment

analysis of messages on social media, web-click pattern mining and sensor-data

analysis.

viii

Contents

Statement ii

Certificate iii

Acknowledgments iv

Abstract v

List of Figures xiv

List of Tables xv

1 Introduction 1

1.1 Background . 1

1.1.1 Frequent itemset mining . 1

1.1.2 Data stream processing . 2

1.2 Motivation . 3

1.3 Thesis Contribution . 4

1.4 Thesis Outline . 5

2 Related Work 7

2.1 Frequent Itemset Mining . 7

2.2 Closed Frequent Itemset Mining in Data Streams 8

2.3 High utility itemset mining . 9

ix

2.4 Attribute Value Clustering . 10

3 Frequent Itemset mining using Support Trends 11

3.1 Introduction . 11

3.2 Related Work . 12

3.3 Problem Definition . 13

3.3.1 Preliminaries . 13

3.3.2 Problem Statement . 13

3.4 Framework for Frequent Itemset Mining Using Support Trends . . . 14

3.4.1 The Intermediate Summary Data Structure 14

3.4.2 Algorithm FIMUST-Frequent Itemset Minimg Using Sup-

port Trends . 14

3.5 Experimental Study . 17

3.5.1 Error calculation . 17

3.5.2 Average error versus minimum support 18

3.5.3 Support error versus number of partitions 19

3.6 Conclusion . 19

4 Incremental Closed Frequent Itemset Mining using Single Pass

Algorithms 21

4.1 Introduction . 21

4.2 Related Work and Motivation . 22

4.3 Problem Definition . 24

4.3.1 Preliminaries . 24

4.3.2 Problem Statement . 25

4.4 Framework for Incremental Mining of Closed Frequent Itemsets

from Data Streams . 25

4.4.1 The Intermediate Summary Data Structure 25

x

4.4.2 Algorithm SPAIM-CFI-Single Pass Algorithm for Incremen-

tal Mining of Closed Frequent Itemsets 26

4.5 Experimental Study . 36

4.6 Conclusion . 38

5 Framework for High Utility Pattern Mining using Closed Fre-

quent Itemsets 39

5.1 Introduction . 39

5.2 Related Work . 40

5.3 Problem Definition . 41

5.3.1 Preliminaries . 41

5.3.2 Utility of an itemset . 41

5.4 Framework forHigh Utility Itemset Mining using Closed Frequent

Itemsets . 42

5.4.1 The Intermediate Summary Data Structure 42

5.4.2 The approach . 43

5.4.3 Automatic generation of the minimum support threshold s0 43

5.4.4 Detection of frequent events in the sliding window 44

5.5 Experiments . 44

5.5.1 Frequent Itemset Mining using Itemset Utility 44

5.5.2 Frequent pattern generation using dynamically generated s0 46

5.6 Conclusion . 47

6 Clustering Values of Single Attribute in Transitional Data Streams 48

6.1 Introduction . 48

6.2 Background and Motivation . 51

6.3 Problem Definition . 52

6.3.1 Preliminaries . 52

6.3.2 Significance of s0 . 53

xi

6.3.3 Problem Statement . 54

6.4 The Proposed Approach . 54

6.4.1 The intermediate summary data structure 54

6.4.2 The Algorithm . 55

6.5 Experimental Analysis . 59

6.6 Conclusion . 60

7 Mining Associations between Clusters of Values of Multiple At-

tributes in a Data Stream 61

7.1 Introduction . 61

7.2 Background and Motivation . 63

7.3 Problem Definition . 64

7.3.1 Preliminaries . 64

7.3.2 Problem Statement . 65

7.4 The Approach . 65

7.5 The Algorithm . 66

7.6 Experimental Analysis . 68

7.7 Conclusion . 70

8 Conclusion 71

9 Future Work 74

xii

List of Figures

3.1 The framework showing data stream and partition window 13

3.2 Average error in calculated support versus minimum support 18

3.3 Error in calculated support versus number of partitions 19

4.1 Data stream and sliding window . 24

4.2 Intermediate summary data structure 25

4.3 Intermediate summary data structure with Temp 27

4.4 Algorithm- Insert . 27

4.5 Intermediate summary data structure 29

4.6 Index and ItemSets . 30

4.7 Intermediate summary data structure 30

4.8 Intermediate summary data structure 31

4.9 Algorithm-Delete . 32

4.10 Intermediate summary data structure 33

4.11 ITemp - Iteration 1 . 34

4.12 ITemp - Iteration 2 . 34

4.13 Intermediate summary data structure 35

4.14 Intermediate summary data structure 35

4.15 Intermediate summary data structure 35

4.16 Memory required versus minimum support 37

4.17 Execution time required versus minimum support 37

4.18 Execution time required versus minimum support 38

xiii

5.1 Data stream and the intermediate summary data structure 42

5.2 Memory saved against sliding window size 45

5.3 Memory saved as window slide over data stream 46

5.4 Dataset- IPL Cricket matches . 46

5.5 Snapshot of frequent patterns . 47

6.1 The framework . 50

6.2 Matrix MAT . 56

6.3 Matrix MAT . 56

6.4 Algorithm- Generate . 57

6.5 The matrix MAT . 57

6.6 Iteration 1 of the Generate step . 58

6.7 Iteration 2 of the Generate step . 58

6.8 Number of clusters versus minimum support 59

6.9 Execution time versus minimum support 60

7.1 Data stream, clusters and cluster associations 63

7.2 Intermediate summary data structure 65

7.3 Generate| − Cluster step example 67

7.4 Generate Association step example 68

7.5 Number of clusters versus minimum support 69

7.6 Precision, recall and accuracy of clusters 70

xiv

List of Tables

3.1 Parameters of Datasets for FIMUST Algorithm 17

3.2 Experimental results, minsup=0.4 18

4.1 Parameters of Datasets for Closed Frequent Itemset Mining 36

5.1 Dataset Parameters . 45

6.1 Parameters of Dataset for Attribute Value Clustering Experiment . 59

7.1 Parameters of Datasets for Cluster Association Generation 68

xv

Chapter 1

Introduction

1.1 Background

In recent years there has been an explosion in the amount of data generated by

human activities both on-line and off-line. These data within them contain hidden

knowledge that needs to be mined. Data mining aims to design and develop tools

and techniques needed to handle such data.

1.1.1 Frequent itemset mining

Data mining is useful in recording the occurrences of certain patterns of knowledge

in data. Frequent patterns are sets of data items found together more than a given

number of occurrences in data. They are the transactions or itemsets which occur

with frequency not less than a predefined threshold called minimum support. The

aim of frequent itemset mining is to find out the elements in a dataset which

mostly appear together. Frequent itemset mining is one of the beginning steps

of other data mining tasks such as frequent sequence mining, association rule

mining, amongst others. It was first proposed by Agrawal [3]. There are three

methodologies used in generating frequent itemsets from data sets, Apriori[3],

FP-Growth[12] and Eclat[11]. The Apriori algorithm generates frequent itemsets

1

1.1 Background

by candidate generation and requires multiple scans of the dataset. FP-Growth

generates frequent itemsets without candidate generation and requires less number

of dataset scans[12]. Frequent itemset is applied to data stream analysis, sensor

network mining, bio-informatics, amongst others [4].

1.1.2 Data stream processing

In this research work we have mainly focused on developing methods for detecting

and identifying patterns in data streams. Data Stream is an unbounded, con-

tinuous, real-time sequence of data items [5][10]. They produce large amount

of data. Their sources are social networks, web-click streams, health manage-

ment systems, financial systems, radio astronomy and physical science systems,

traffic management systems, telecommunication devices, micro-blogging websites,

amongst others[4].

For example, the posts tweeted on www.twitter.com is an example of a data

stream. A transactional data stream is a sequence of transactions where each

transaction is an itemset. A data stream is processed using a sliding window.

A sliding window is an excerpt of items pertaining to the stream. Two types of

windows are used to process a data stream. They are count-based window and

time-based window[9][13]. The count-based window contains a predefined fixed

number of elements of a data stream. The time-based window contains elements

of the data stream for a fixed period. Our study is based on count-based window.

A data stream is processed using three models. They are, the landmark model, the

damped window model, and the sliding window model[4]. The landmark window

considers elements of the data stream from a timestamp, called as the landmark,

through the latest element of the data stream. It treats all elements equally.

Usually it starts with the element at the beginning of the stream till the latest

element. The damped window model considers the latest elements of the stream

more significant than the older ones. It assigns higher weights to new elements

2

1.2 Motivation

and lower weights to older elements of the data stream. The sliding window model

contains the latest n elements of the data stream, where n is the size of the sliding

window. A sliding window can be a transactional sliding window or a time-based

sliding window. A transactional sliding window contains a fixed number of data

stream elements (transactions), whereas a time-based sliding window has a fixed

time length.

Approach in data stream processing

It is not possible to store the entire data stream into the memory for processing

at once. An element once processed and discarded cannot be revisited again.

The most common approach in processing a data stream is to process the

elements of the data stream as they arrive in batches, store them in the memory

to generate intermediate results or a summary of the data which are stored in the

intermediate summary data structure.

An intermediate summary data structure stores the intermediate results or the

summary of the data stream elements which is used to generate final results.

1.2 Motivation

The main objective of this research is to extend frequent itemset mining onto

data streams. Processing a data stream is a challenging task due to the follow-

ing characteristics of a data stream[5][10],(1) the items of the data stream arrive

continuously at high rate,(2) the items can be accessed only once, and (3) the

data is unbounded and potentially infinite. Itemset based pattern mining in data

streams is a particular case of frequent itemset mining on datasets that include

extra challenges.

With a huge growth in both the hardware as well as software that produce

huge data in real-time, there has been a need for methods which can process such

3

1.3 Thesis Contribution

huge amounts of data. A straightforward translation of the existing traditional

algorithms in data mining is not adequate enough for the stream mining process.

As it is not feasible to store all the elements of the data stream in the memory,

unlike in static datasets, it is difficult to apply analysis to all data of the data

stream at once. Unlike in the case of static dataset where the analysis begins

when a query is submitted to the system and ends when the results are found, data

streams require continuous processing which is never ending. Data streams are

processed by using intermediate summary data structures which store summary

information about the elements of the data stream.

Our motivation has been to provide a set of frameworks and algorithms to

identify patterns containing hidden knowledge in data streams.

Itemset based pattern mining in data streams is applied to online transactional

data mining, sentiment analysis of messages on social media, web-click pattern

mining, sensor-data analysis, amongst others[9][13].

1.3 Thesis Contribution

The major contribution of the thesis is the design of intermediate summary data

structures and algorithms which use the intermediate summary data structures

to mine patterns from data stream. The first contribution is the design of an ap-

proach which partitions the data stream into segments, generates frequent itemsets

for each of the segments and stores them segment-wise in partitions into the in-

termediate summary data structure. Each partition stores frequent itemsets for a

segment of the data stream. An itemset is present in the partitions corresponding

to the segments of the data stream in which it is frequent. The approach esti-

mates the support of an itemset in a partition in which it is not frequent, from the

supports of the itemset in the partitions in which it is frequent. The estimated

support of the itemset is used in calculating the support for a larger part of the

4

1.4 Thesis Outline

data stream.

The second contribution is the design of incremental single-pass approach to

find closed frequent itemsets from a data stream. By single-pass we mean the

algorithm does not require multiple scans of the datasets.

The third contribution is the design of a framework which uses high utility

itemset mining to store data stream elements in a compressed form and then

detect patterns from the sliding window. This approach promises to reduce the

memory requirements when applied to frequent pattern mining in data streams.

The fourth contribution is the design of an approach to find clusters of values

within and across attributes in data streams. There are two approaches presented.

In the first one, the elements of the data stream are pairs of values of a single

attribute. It aims at finding clusters of values of a single attribute in the data

stream. In the second approach, the elements of the data stream are pairs of

values of two different attributes. It aims at first finding attribute-wise clusters of

values and then finds associations between clusters of two attributes.

1.4 Thesis Outline

The thesis consists of the following main chapters. Chapter 2 contains the work

done related to the research work presented in this thesis. Chapter 3 discusses our

work on frequent itemset mining using support trends in data streams. Incremen-

tal closed frequent itemset mining in data stream using single-pass algorithm has

been discussed in chapter 4. A framework for high utility pattern mining in data

streams using frequent itemset mining has been discussed in Chapter 5. Chapter

6 presents the details of work carried out on cluster analysis of single attribute

value in transitional data streams whose elements show transition of an attribute

from old value to a new one. The cluster analysis of values across two attributes is

presented in Chapter 7. Finally, Chapter 8 and Chapter 9 contain the conclusion

5

1.4 Thesis Outline

and future work, respectively.

6

Chapter 2

Related Work

2.1 Frequent Itemset Mining

Frequent itemsets mining was introduced by Agrawal [3] back in the early 90s, and

it is used for finding common and potentially interesting patterns in databases.

The motivation came from the need to analyze ’supermarket transaction’ data, i.e.,

to examine customer behavior in terms of the purchased products. In this scope,

data are represented by means of transactions, each of which is a set of items la-

beled by a unique ID. The purpose of frequent itemsets mining is to find the most

frequently-occurring subsets from these transactions. Together with the introduc-

tion of the frequent set mining problem, also the first to solve it was proposed.

The algorithm was improved by R. Agrawal and R. Srikant and called Apriori. It

uses an iterative approach where k-itemsets are used to explore (k+1)-itemsets.

It uses the Apriori property that all nonempty subsets of a frequent itemset must

also be frequent. The algorithm which at the first instance generates set itemsets

of size one and prunes this set to discard the non-frequent itemsets. The algorithm

then generates the set of itemsets of size two, from the set of frequent single sized

itemsets, which is also pruned to discard the non-frequent itemsets in them. The

process continues till no new frequent itemsets are generated. The algorithm wile

7

2.2 Closed Frequent Itemset Mining in Data Streams

pruning needs to scan the entire dataset to identify the frequent itemsets from the

candidate itemsets generated. Thus, Apriori algorithm scans the dataset multiple

number of times in order to generate the frequent itemsets. It may also generate

a huge number of candidate itemsets.

Solution to this problem was provided by the FP-Growth Algorithm proposed

by Han.et.al [12]. FP-Growth mines the set of frequent items without generating

the candidate itemsets. It generates a frequent pattern tree called as FP-tree.

FP-tree contains information about the itemset associations. FP-growth uses the

information contained in FP-tree to generate frequent itemsets. Both the algo-

rithms use horizontal data format. Alternatively data can also be presented in

vertical data format. Eclat [11] uses a vertical database format. It extends an

itemset prefix until it reaches the boundary between frequent and infrequent item

sets and then backtracks to work on the next prefix in lexicographic order. Eclat

determines the support of an item set by creating the list of transaction ids con-

taining the itemset. An intersection of two lists of transaction ids of two itemsets

is done such that both the itemsets differ by one item is performed. The union

of the two itemsets generates the new itemset. The support is the number of

transactions ids in the present in the new list obtained after intersection.

2.2 Closed Frequent Itemset Mining in Data Streams

Chi.et.al [9] proposed the algorithm Moment, considered as the first, to find closed

frequent itemsets from data streams. It uses an in-memory summary data struc-

ture called CET (Closed Enumeration Tree) to maintain a set of itemsets in a

sliding window. Moment maintains a large number of nodes in its summary data

structure. This is because it stores not only the closed frequent itemsets, but also

closed infrequent itemsets potentially to become frequent in subsequent times. Li.

Et al. [13] proposed the algorithm NewMoment to mine closed frequent item-

8

2.3 High utility itemset mining

sets from a transactional data stream with a transaction-sensitive sliding window.

NewMoment uses a bit-sequence representation of items to lower cost in terms of

the time and memory needed to slide the window. It uses the in-memory summary

data structure NewCET to generate closed frequent itemsets. NewCET consists

of three parts: (1) the bit-sequences of all 1-itemsets in the current transaction-

sensitive sliding window; (2) a set of closed frequent itemsets in the transaction-

sensitive sliding window; and (3) a hash table to store all closed frequent itemsets

with their supports as keys. NewMoment works in three steps: (1) Build; (2)

Delete; and (3) Append. At the end of the Build step, NewCET contains a set of

nodes containing closed frequent itemsets in the first sliding window. The Delete

step removes the oldest transaction from the sliding window. It then reconstructs

the NewCET to contain the closed frequent itemsets for the current sliding win-

dow. The Append step inserts the incoming transaction of the data stream into

the sliding window. It then reconstructs the NewCET to generate the new closed

frequent itemsets for the current sliding window. Append is almost the same as

Build except that it updates the support of the already existing itemsets in the

summary data structure.

2.3 High utility itemset mining

High utility itemset mining has been worked upon by Leeuven at.al. [15] and

Yang et.al[17]. in both the approaches, the data stream is divided into batches.

After the arrival of all the elements of the batch, the algorithms generate codes

for every batch which are then used to compress the elements of the data stream.

The approach mentioned in [15] compresses the elements using codes generated

based on the occurrences of elements in the previous batch. The approach in [17]

compresses elements by dividing the data stream into same sized batches. It finds

frequent patterns for each batch and uses these patterns to compress the elements

9

2.4 Attribute Value Clustering

of the subsequent batches. Both the approaches compress the elements of the

entire data stream in batches.

2.4 Attribute Value Clustering

Cheng et. al. [8] have worked on clustering attribute values but not from a data

stream point of view. In this paper, they have analyzed the job information from

the social network point of view. They first collect the job-related information

from various social media sources. Thereafter they construct an inter-company

job-hopping network. The vertices denoting companies and the edges denoting

the movement of people between companies. They use graph mining techniques

to mine groups of related companies. Xu et. al.[16] also have presented a similar

problem from a social network model point of view. Both these papers have

specifically focused on the work company attribute of the user and aim at find

relations between companies from employment point of view. The data is analysed

offline. In this paper we provide an approach not limited to the attribute work

company. It is applicable to attributes beyond just the one mentioned. The

approach enables the user to analyse the transition data in online. Our approach

allows the users to specify a minimum threshold value to prevent clustering of

weakly associated values together.

10

Chapter 3

Frequent Itemset mining using

Support Trends

3.1 Introduction

The main aim of this module is to generate frequent itemsets from a transactional

data stream. A transactional data stream is a data stream, where each element of

the data stream is an itemset. The stream is divided into segments called sliding

window of a particular size. Frequent itemsets are generated for each sliding

window. The frequent itemsets for each sliding window are stored in partitions

in an intermediate summary data structure for further processing. Each partition

corresponds to a sliding window. A partition contains itemsets which are frequent

with their supports known. The itemsets which are not frequent are not stored in

the partition. Hence, their support information is lost. The approach estimates the

support of an itemset in a partition in which it is not frequent from the supports

of the same itemset in the other partitions in which it is frequent. The estimated

support is used in calculating the support of the itemset for a larger part of the

data stream.

This module attempts to find solution to the problem of mining frequent item-

11

3.2 Related Work

sets over a given data stream given a fixed sized sliding window and a minimum

support threshold.

The major contribution in this chapter is the design of an approach to maintain

frequent itemsets over data stream from the beginning till the latest element of

the data stream using a sliding window. This approach however suffers from

the problem of explosion of large number of frequent itemsets for lower values of

minimum support threshold[14] which is resolved using closed frequent itemset

mining described in the next chapter.

The study carried out in this chapter is our first experience in the area of data

stream with limited resources and knowledge about data stream processing. The

datasets used were small. Nevertheless, it gave us a better insight about pattern

finding in data streams which helped us overcome the limitations to scale up the

study described in the subsequent chapters.

3.2 Related Work

Frequent itemsets mining was introduced by Agrawal[3] back in the early 90s, and

it is used for finding common and potentially interesting patterns in databases.

In this scope, data are represented by means of transactions, each of which is a

set of items labeled by a unique ID. The purpose of frequent itemsets mining is to

find the most frequently-occurring subsets from these transactions

Frequent itemset mining on data streams has been proposed in [5][10][6][7].

The study has been done by considering the latest elements of the data stream

significant. Whereas, the approach presented in this chapter mines frequent pat-

tern for any part or the whole of the data stream i.e till the latest element.

12

3.3 Problem Definition

Figure 3.1: The framework showing data stream and partition window

3.3 Problem Definition

3.3.1 Preliminaries

Let D be a data stream of elements where each element is an itemset. Let Ti be

the ith element in D. The range S[a, b] denotes a segment of the data stream D

having elements belonging to the interval [a, b]. Let SW be the sliding window

of size w sliding over the data stream D as shown in figure 3.1. Support of an

itemset X in this chapter is the ratio of number of elements containing the itemset

X upon the total number of elements in the dataset.

3.3.2 Problem Statement

Given data stream D, a sliding window SW of size w and a minimum support

threshold s0, the problem is to mine frequent itemsets over a data stream using

the sliding window.

13

3.4 Framework for Frequent Itemset Mining Using Support Trends

3.4 Framework for Frequent Itemset Mining Us-

ing Support Trends

3.4.1 The Intermediate Summary Data Structure

The intermediate summary data structure consist of a partition window PW which

is set of partitions P1, P2, ...Pp, where p is the number of partitions that can be

stored in PW . A partition Pi contains frequent itemsets for a segment of the

data stream D(Figure 3.1). The partition Pi[a, b] represents the ith partition in

PW containing the frequent itemsets of data stream segment S[a, b], where a and

b are the ids of the first and the last element of the segment S[a, b] in the data

stream. The value of |Pi| denotes the size of segment associated with the partition

Pi calculated as

|Pi| = b− a+ 1 (3.1)

3.4.2 Algorithm FIMUST-Frequent Itemset Minimg Us-

ing Support Trends

As the elements of the data stream arrive, the first w elements of D are stored

in the sliding window SW . At the moment, SW has the elements of the first

segment S[1, w] of the data stream. Frequent itemsets are generated by executing

the apriori algorithm on SW . The generated frequent itemsets are stored in

the partition P1. In the meanwhile, the next w elements of the data stream

are loaded into the sliding window. Frequent itemsets are generated using the

apriori algorithm for the second segment, S[w + 1, 2w], which are then stored in

the partition P2. This process is repeated for every sliding window until all p

partitions of PW are full. In case all the partitions of PW are full, two oldest

partitions representing data stream segments of same size are merged together to

14

3.4 Framework for Frequent Itemset Mining Using Support Trends

create space for a new partition.

Merging of partitions

Merging of two partitions is done when all the partitions in the partition window

are full and there is no partition available to accommodate frequent itemsets of

the next sliding window. Let the partitions to be merged be Pi and Pi+1. Let P

be the partition obtained after merging Pi and Pi+1. Partition P will have two

kinds of itemsets, the first kind are present in both the partitions Pi and Pi+1 and

the second kind are the ones that are present in only one of the partitions either

Pi or Pi+1. Both the cases are presented separately in the following sections.

Itemset present in both partitions

Let X ∈ Pi,Pi+1 be the itemset present in both partitions. Let suppPi(X) be the

support of X in the partition Pi. Let |P | denote the number of elements in the

data stream segment corresponding to the partition P . The support of X in P is

calculated as

suppP (X) = (|Pi| ∗ suppPi(X) + |Pi+1| ∗ supPi+1(X))/(|Pi|+ |Pi+1|) (3.2)

Itemset present in one partition

Let the partitions to be merged be Pi and Pj. Let X be the itemset present in

one partition Pi. Let suppP (X) be the support of X in the partition P . Let |P |

denote the number of elements in the data stream segment corresponding to the

partition P . The support of X in Pj is calculated as

suppPj(X) = minsup ∗ suppPi(X) (3.3)

15

3.4 Framework for Frequent Itemset Mining Using Support Trends

The term minsup ∗ suppPi(X) is based on the trend of the itemset X in the

partition Pi.

Once value of suppPi(X) and suppPj(X) are known, the support of X in P is

calculated using equation 3.2.

Selection of partitions for merging

The oldest two adjacent partition representing the smallest sized data stream

segments in the partition window are selected for merging. This is because they

contain the oldest elements of the data stream which are considered less significant

than the latest ones. Both the partitions should correspond to the data stream

segments of same size. The time complexity of the ’merging’ process is O(n2).

Generation of frequent itemsets from partitions

The partitions in the partition window have frequent itemsets of their correspond-

ing segments of the data stream. There are two types of itemsets in the partitions.

This first type are the ones that are present in all the partition and the second

type are the ones that are not be present in some partitions. The supports of the

second type of itemsets are not known for the partitions in which they are not

present. However, their support in the corresponding segment must be below min-

sup value. The value of this unknown support for each such itemset is calculate

in the following way.

Let X be the itemset which is not present in some partitions. The support of

X in the partitions not containing X is calculated as

minsup ∗
∑

(suppPi(X) ∗ |Pi|)/
∑
|Pi| (3.4)

for all partitions Pi containing X.

The support of X for the part of the data stream represented by the range[a, b]

16

3.5 Experimental Study

is calculated as

∑
(suppPi(X) ∗ |Pi|)/

∑
|Pi|,∀Pi (3.5)

where Pi is the partition in the partition window corresponding to the segments

of the data stream in the range [a, b].

3.5 Experimental Study

The above approach was implemented using C++ and executed over synthetic

data generated using IBM Synthetic Data Generator [1][3]. The characteristics of

these datasets is given in table 3.1.

Dataset Number of Items Number of Records
D1 5 1.5K
D2 5 1K

Table 3.1: Parameters of Datasets for FIMUST Algorithm

3.5.1 Error calculation

In this experiment, the size of sliding window was set to 10, number of partitions

in PW were 10, and the value of minimum support threshold was set to 0.4.

The summary of the results is given in table 3.2. For an itemset, the error in

estimated support is calculated by finding the difference between itemset support

as calculated by the presented approach and the actual support of the itemsets

which is calculated by running the apriori algorithm on the entire data.

17

3.5 Experimental Study

Dataset Number of Frequent Items Average Error
D1 6 0.05648
D2 5 0.01

Table 3.2: Experimental results, minsup=0.4

Figure 3.2: Average error in calculated support versus minimum support

3.5.2 Average error versus minimum support

This experiment was performed to observe the change in the average error in

the estimated support of the itemsets by varying the value of minimum support.

(Figure 3.2).

For lower minimum support values, the average error in the supports is less.

The average error in supports increases as the value of minimum support increases.

There is an overall increase in the error with increase in minimum support values.

However, for small intervals of minimum support the average error is observed to

be decreasing. Nevertheless, the average error in support is always less than the

minimum support. These trends need not be reflected for all data sets as they

depend on the actual data in the data streams.

Two itemsets which were actually frequent were generated as non-frequent by

FIMUST algorithm for minimum support value above 0.85 in Dataset D1.

18

3.6 Conclusion

Figure 3.3: Error in calculated support versus number of partitions

3.5.3 Support error versus number of partitions

This experiment was performed to observe the change in error in an itemset sup-

port by changing the number of partitions in the partition window (Figure 3.3).

The average error in support is very high for small number of partitions. This

is because, the frequency of merging of partitions when the number of partitions

is small is high. Higher number of merging increases the number of estimates in

the support value of an itemset. Whereas, The frequency of merging of partitions

reduces as the number of partitions available in the partition window is large.

This leads to lesser number of estimates which in turn results in smaller values of

average errors.

3.6 Conclusion

Most research efforts in data mining have been focusing upon analysis of static

datasets. The approach presented in this chapter is applicable to data streams.

We proposed the method to find frequent itemsets in data streams by dividing

the data stream into segments of elements that were stored in the memory for

19

3.6 Conclusion

analysis. The frequent itemsets generated for every segment of the stream are

stored in the intermediate summary data structure for further analysis.

The intermediate summary data structure is a set of partitions, where each

partition contains the frequent itemsets for a segment of the data stream. An

itemset frequent in a partition may not be present in another partition as it was

not frequent in that segment of the data stream pertaining to the partition in

which it is not present. The actual support of the itemset in such a partition is

not known and is required while generating the frequent itemsets for the entire

stream and while merging two partitions. The support of such an itemset for

the segment of the data stream pertaining to the partition in which it is not

present is calculated by using a method which uses information about the itemset

from those segments (partitions) of data stream that have the itemset as frequent.

These estimations introduce some error in the final results.

The major contribution in this module is the new approach to maintain fre-

quent itemsets over data stream evenly throughout the data stream using a sliding

window. The approach estimates the support count of an itemset in a partition,

in which it is not frequent, from supports of the itemset in the partitions in which

it is frequent. The estimated support is used in calculating the support for a

larger part of the data stream. As the size of the data stream increases the size

of each data stream segment pertaining to the partitions in the partition window

increases. It looses the information about the supports of itemsets for smaller

parts of the data stream.

This approach however suffers from the problem of explosion of large number

of frequent itemsets for lower values of minimum support threshold. This issue is

resolved by mining closed frequent itemset as discussed chapter 4.

20

Chapter 4

Incremental Closed Frequent

Itemset Mining using Single Pass

Algorithms

4.1 Introduction

In the previous chapter it was observed that the number of frequent itemsets

generated for a dataset or in a sliding window was very large, mostly in the case

when the value of minimum support threshold was low. A large number of frequent

itemset incurs a huge cost in terms memory for storing all the frequent itemsets

and requires more time to search for itemsets. In this chapter we have presented

an approach to resolve this problem by mining closed frequent itemset.

A closed itemset is an itemset which has no proper superset with similar sup-

port [9][13]. A closed itemset is frequent if its support is greater than or equal to

the minimum support threshold. The rationale behind generating closed frequent

itemsets is that the complete set of frequent itemsets can be generated from the

set of closed frequent itemsets and the number of closed frequent itemsets is less

than the total number of frequent itemsets.

21

4.2 Related Work and Motivation

In this chapter we present an approach to mine closed frequent itemsets from

data stream using the sliding window model. The approach is both single pass

and incremental. By single pass we mean that it does not require multiple scans of

the elements in the sliding window. By incremental we mean that it maintains the

itemsets in the intermediate summary data structure without regenerating them

for every slide of the sliding window across the data stream.

4.2 Related Work and Motivation

Chi.et.al [9] proposed the algorithm Moment, to find closed frequent itemsets from

data streams. It uses CET (Closed Enumeration Tree) as its intermediate sum-

mary data structure to generate the closed frequent itemsets. Moment maintains a

large number of nodes in its summary data structure. This is because it stores not

only the closed frequent itemsets, but also closed infrequent itemsets potentially

to become frequent in subsequent times.

Li. Et al. [13] proposed the algorithm NewMoment to mine closed frequent

itemsets from a transactional data stream. It uses a transaction-sensitive sliding

window to find closed frequent itemsets. Items in the intermediate summary data

structure are represented uisng bit-sequences. It uses the in-memory summary

data structure called NewCET to generate closed frequent itemsets. NewCET

consists of: the bit-sequences of 1-itemsets which are currently present in the

transaction-sensitive sliding window; a set of closed frequent itemsets for the trans-

actions currently in the transaction-sensitive sliding window; and a hash table

which is used to store the closed frequent itemsets having keys as their supports.

NewMoment works in three steps: (1) Build; (2) Delete; and (3) Append. At

the end of the Build step, NewCET contains a set of nodes containing closed

frequent itemsets in the first sliding window. The Delete step removes the oldest

transaction from the sliding window. It then reconstructs the NewCET to gener-

22

4.2 Related Work and Motivation

ate the closed frequent itemsets for the current sliding window. The Append step

inserts the incoming transaction of the data stream into the sliding window. It

then reconstructs the NewCET to generate the new closed frequent itemsets for

the current sliding window. Append is almost the same as Build except that it

updates the support of the already existing itemsets in the intermediate summary

data structure.

NewMoment generates the NewCET tree every time the Append and Delete

steps are performed. Generation of NewCET requires multiple scans of the ele-

ments in the sliding window. Hence, a considerable amount of time is required to

update and maintain the data in the intermediate summary data structure.

NewMoment uses a hash table which stores the frequent itemsets based on the

order of their supports. The hash table makes it easy to check whether an itemset

is frequent or not. However, it does not improve the searching of itemsets in the

summary data structure because the entire set of the frequent itemsets has to be

scanned to search for an itemset in the summary data structure.

In order to generate and update the set of closed frequent itemsets in the

intermediate summary data structure, NewMoment uses an approach that requires

multiple scans of the sliding window which is time consuming.NewMoment does

not allow the user of the system to specify the value of minimum support threshold

online.

The approach presented in this chapter does not need to refer to the elements

of the sliding window multiple times. Instead, it reads the element only when it

arrives and when it leave the sliding window. Not having to have multiple scans

of the sliding window saves a considerable amount of time making the presented

approach time efficient. The approach updates the closed itemsets by accessing

the data in intermediate summary data structure only. This make it more time

efficient. It also allows the user to specify the value of minimum support threshold

online.

23

4.3 Problem Definition

Figure 4.1: Data stream and sliding window

The approach outperforms some of the other algorithms for lower values of

minimum support in terms of time efficiency. Its efficiency for higher values can

be improved by making it to generate only the frequent closed itemsets.

4.3 Problem Definition

4.3.1 Preliminaries

Let I = {i1, i2, , im} be a set of literals called items.

A transaction T = (tid, x1, x2, ..., xn) is an (n+1)-tuple where Xi ∈ I, for

1 <= i <= n, n is the size of transaction, and tid is the unique identifier of the

transaction.

A transactional data stream D = T1, T2, , TN is a sequence of transactions,

where N is the tid of the latest transaction TN (Figure 4.1). An itemset X =

{x1, x2, ..., xn} is a collection of items where each item Xi ∈ I.

A sliding window SW of size w contains the latest w transactions of the data

stream (Figure 4.1).

The support of an itemset X, sup(X), in a sliding window SW is the number

of transactions in SW having X as a subset.

An itemset X is frequent if sup(X) ≥ s.w, where s is a user specified minimum

support threshold (0 ≤ s ≤ 1).

An itemset X is closed if it does not have a proper superset with the same

24

4.4 Framework for Incremental Mining of Closed Frequent Itemsets from Data
Streams

Figure 4.2: Intermediate summary data structure

support.

An itemset X is a closed frequent itemset if it is closed and frequent.

4.3.2 Problem Statement

Given a transactional data stream D, a sliding window SW of size w and a mini-

mum support threshold s, the problem is to mine closed frequent itemsets in SW

,i.e., from the latest w elements of the data stream D.

4.4 Framework for Incremental Mining of Closed

Frequent Itemsets from Data Streams

4.4.1 The Intermediate Summary Data Structure

The intermediate summary data structure consists of (1) ItemSets; and (2)Index

(Figure 4.2).

ItemSets

ItemSets contains closed frequent itemsets generated for a sliding window. ItemSets

is a table with fields: (1) Id; (2) Itemset; and (3) Support. Id is the identifier of

the Itemset in ItemSets table. The field Support is the support of the Itemset

in the current sliding window.

25

4.4 Framework for Incremental Mining of Closed Frequent Itemsets from Data
Streams

Index

Index is a table which is used to search itemsets in ItemSets table. It has two

fields: Item, and LocationV ector. Each value of the field Item belongs to the set

of literals, I. The LocationV ector is a bit-sequence in which the ith bit is set to 1

if the Item belongs to the Itemset in ItemSets table and i is the Id of Itemset

in ItemSets. Index is very efficient in searching for itemsets in ItemSets table.

4.4.2 Algorithm SPAIM-CFI-Single Pass Algorithm for In-

cremental Mining of Closed Frequent Itemsets

The algorithm presented in this chapter works in two steps, The Insert step and

the Delete step. The Insert step is executed when a new element of the data

stream enters into the sliding window. The Delete step is executed when the

oldest element leaves the sliding window.

Every element of the data stream is pre-processed with proper word stemming

and stop-word removal, if required.

The Insert step

This step is performed when a new element enters the sliding window. Let X

be the itemset contained in the element that is entering the sliding window. The

algorithm searches the ItemSets table for the subsets of X and then increases each

of their supports each by one. The algorithm uses a temporary list of itemsets

called Temp. Temp is a table having two fields, ItemSet, and SId. SId is the

Id of the ItemSet in the ItemSets table which is a superset with highest support

as shown in figure 4.3 The algorithm is given in figure 4.4. When a new element

containing the itemset X arrives at the sliding window, the algorithm inserts the

itemset X into the Temp table with Sid as 0. Then it searches for the subsets

of itemset X in the ItemSets table. To do this the algorithm take bit-wise OR

26

4.4 Framework for Incremental Mining of Closed Frequent Itemsets from Data
Streams

Figure 4.3: Intermediate summary data structure with Temp

Figure 4.4: Algorithm- Insert

of the LocationV ectors of each item of X. The positions of the bits having value

1 in the resulting bit-vector will be the locations of the itemsets in the ItemSets

table which are subsets of X.

Let Y ∈ ItemSets with Id i be an itemset which is a subset of X. The

algorithm finds X ∩ Y and inserts it in Temp if it not present in Temp. The

algorithm inserts X ∩ Y into Temp with SId as the Id of Y in the ItemSets

table. If X ∩ Y is already present in the Temp table with SId k, then it is

assigned the SId as i if support of Y is greater than the support of the itemset

with SId k in the table ItemSets. This step ensures that the itemset X ∩ Y in

Temp has Sid value which is the Id of the Itemset in the table ItemSets with

highest support.

In the next step, the algorithm updates the set of itemsets in the ItemSets

27

4.4 Framework for Incremental Mining of Closed Frequent Itemsets from Data
Streams

table using the data in the Temp table. Let X be an itemset with SId i in the

Temp table. Let Y be the itemset with Id i in the ItemSets table. If X and Y

are the same sets then the support of Y is increased by one in the ItemSets table.

Otherwise, X is inserted as a new itemset in the ItemSets table. This process is

repeated for all the itemsets present in Temp table.

Let n be the Id of an itemset X when it is newly inserted into the table

ItemSets. The nth bits of the LocationV ectors of all the itemset belonging to X

are set to 1. This helps to quickly search for the itemset X in the ItemSets table.

At the end of the Add step the contents of the Temp table are deleted. In

order to prevent from unnecessary expansion of the ItemSets table, the algorithm

inserts the new itemset into the first available free slot in the ItemSets table. The

positions of the bits having value 1 in the resulting bit-vector will be the locations

of the itemsets in the ItemSets table which are subsets of X.

The complexity of the Insert step is O(n2).

Running example of the Add Step

Let the size of sliding window w be 4. Consider the example from Figure 4.1. At

the arrival of the first transaction containing the itemset {abd}, SPAIM − CFI

inserts it in Temp with SId 0. Since ItemSets is empty no intersections are

performed. SPAIM −CFI simply inserts itemset {abd} into ItemSets with Id 1

and Support1. The first bits of the LocationV ectors of items a,b, and d in Index

are set to 1 as the itemset {abd} is inserted into ItemSets at Id 1 (Figure 4.5).

The contents of Temp are deleted.

Upon the arrival of the second transaction containing itemset {abc},SPAIM−

CFI inserts {abc} into Temp with SId 0. SPAIM −CFI performs bit-wise OR

of the LocationV ectors of items a,b, and c to find the Ids of itemsets in ItemSets

containing at least one item from {abc}.

The only Id is 1 since there is one itemset in ItemSets. SPAIM − CFI

28

4.4 Framework for Incremental Mining of Closed Frequent Itemsets from Data
Streams

Figure 4.5: Intermediate summary data structure

performs intersection of {abc} with {abd} to generate {ab}. This means that

itemset {ab} which is a subset of {abc} may be affected due to the arrival of

{abc}. Since {ab} is not present in Temp it is entered into it with SId equal to

Id of {abd} in ItemSets.

SPAIM − CFI inserts {abc} from Temp into ItemSets with Id2 directly as

its SId in Temp is 0. The second bits of the LocationV ectors of items a,b, and

c in Index are set to 1 as the itemset {abc} is inserted into ItemSets at Id2.

For the second itemset {ab} in Temp, SPAIM − CFI compares {ab} with the

Itemset in ItemSets table with Id equal to the SId of {ab} in Temp which is 1.

The itemset with Id1 in ItemSets is {abd}. Since {ab} is not similar to {abd},

SPAIM − CFI inserts {ab} into ItemSets with Id 3. The Support of {ab} is

calculated by incrementing, the Support of itemset in ItemSets with Id equal to

the SId of {ab} by one. The SId of {ab} is 1. The Itemset in ItemSets at 1

is {abd}. Hence, SPAIM − CFI calculates the new support of {ab} as 2 which

is one more than the support of {abd}. LocationV ectors of items in Index are

updated accordingly.

Figure 4.6 shows the contents of the summary data structure at the end of

sliding window 1.

Upon the arrival of fifth transaction containing {bc}, SPAIM − CFI inserts

{bc} into Temp with SId as 0. The Ids generated after performing bit-wise OR of

the LocationV ectors of items b and c are 1,2,3,4, and 5. SPAIM−CFI performs

intersection of {bc} with the itemsets in ItemSets table with these Ids generated.

29

4.4 Framework for Incremental Mining of Closed Frequent Itemsets from Data
Streams

Figure 4.6: Index and ItemSets

Figure 4.7: Intermediate summary data structure

Intersection of {bc} with {abd} is {b}. Since {b} does not exist in Temp, it is

inserted into it with SId1 which is the Id of {abd} in ItemSets. SPAIM −CFI

performs intersection of {bc} with the next itemset in ItemSets, {abc} to get

{bc}. Itemset {bc} is already present in Temp with SId0. Since the Support in

ItemSets at Id0 is less than the Support of itemset {abc}, SId of {bc} in Temp

is replaced by the Id of {abc} in ItemSets. SPAIM −CFI performs intersection

of {bc} with the third itemset {ab} in ItemSets to get {b}. Itemset {b} is already

present in Temp with SId1. Since the Support in ItemSets at Id1 is less than

the Support of itemset {ab}, SId of {b} in Temp is replaced by the Id of {ab}

in ItemSets. Figure 4.7 shows the contents of the summary data structure after

performing intersection with all relevant itemsets of ItemSets.

For the first itemset {bc} in Temp, SPAIM − CFI compares it with the

itemset in ItemSets having Id equal to SId of {bc} which is 4. Since they both

30

4.4 Framework for Incremental Mining of Closed Frequent Itemsets from Data
Streams

Figure 4.8: Intermediate summary data structure

are the same Support of {bc} in ItemSets is increased by 1 which is 4. Similarly,

for the itemset {b}, Support of {b} in ItemSets is increased by 1 to be 5 (Figure

4.8).

The Delete Step

Let the itemset in the element leaving the sliding window be X. When the element

leave the sliding window the supports of only the subsets of X must be decreased

by one. In this case some subsets of X in the ItemSets table may cease to be

as closed itemset. Such itemsets should be deleted from the ItemSets table. The

algorithm is given in figure 4.9.

The Delete step maintains a temporary list of itemsets called ITemp. ITemp

is a table having three fields, ItemSet, SId and HSSId. SId is the Id of the

itemsets in the ItemSets table with support equal to the support of X. HSSId is

the Id of the closed superset of X in the ItemSets table with the largest support

and is not a proper subset of X.

The Delete step finds the subsets of X from the ItemSets table by using the

LocationV ectors in the Index table. It performs a bit-wise OR operation on the

LocationV ectors corresponding to the items in the itemset X. It then performs

intersection with each of these subsets.

31

4.4 Framework for Incremental Mining of Closed Frequent Itemsets from Data
Streams

Figure 4.9: Algorithm-Delete

Let Y ∈ ItemSets with Id i be an itemset which is a subset of X. The

algorithm finds X ∩ Y and inserts it in Temp if it not present in Temp. The

algorithm inserts X ∩ Y into Temp with SId as the Id of Y in the ItemSets

table. It assigns the HSSId of X ∩ Y as the Id of the itemset in ItemSets table

which is a proper superset of X ∩ Y with highest support. If X ∩ Y is already

present in the ITemp table with SId sand HSSId h, then the Delete step sets

the SId of X ∩ Y to i if support of the itemset in ItemSets table with Id s is

less than support of Y in ItemSets table. It sets the HSSId of X ∩ Y to i if the

support of the itemset in ItemSets table with Id h is less than the support of Y

in ItemSets table.

The Delete step decreases the supports of all the itemsets in ItemSets table

which are present in ITemp table. The Delete step then updates the ItemSets

table from the information in ITemp table. Let Y be an itemset in ITemp table

with SId as s and HSSId as h. The Delete step removes the itemset with Id

value s from the ItemSets table if its support is same as the support of itemset

with Id h in the ItemSets table.

The complexity of the Delete step is O(n2).

32

4.4 Framework for Incremental Mining of Closed Frequent Itemsets from Data
Streams

Figure 4.10: Intermediate summary data structure

Running example of the Delete step

Consider the example from Figure 4.1. The deleted transaction contains the item-

set is {abd}.

The contents of ItemSets, Index, and ITemp are shown in Figure 4.10. The

algorithm first finds the bitwise OR of the LocationV ectors of items a,b, and d

and gets the bit-sequence 1111. This means that an intersection is requires with

all the four itemsets in ItemSets table. The intersection of {abd} with the first

itemset {abc} is {ab}. Since ITemp does not contain {ab}, it is entered into ITemp

table with SId and HSSId values set to 1 and 0, respectively. The intersection

of {abd} with the second itemset in ItemSets Table {ab} is {ab}. Itemset {ab}

already exists in ITemp table with SId and HSSId values 1 and 0, respectively.

Since support of the itemset with Id 2 is greater than the support of the itemset

with Id 1 in the ItemSets table, the SId of {ab} in ITemp is set to 2. The

algorithm sets the HSSId of {ab} to 1 since {abc} contains {ab} and the support

of {abc} is the highest among the itemSets containing {ab} in ItemSets so far

(Figure 4.11).

The algorithm performs intersection of {abd} with the third itemset {bc}. The

intersection generates the set {b} which is not present in ITemp table. It stores

{b} into ITemp table with SId3 and HSSId as 2 since {ab} contains b and has

the highest support among the Itemsets containing {b} in ItemSets so far. The

33

4.4 Framework for Incremental Mining of Closed Frequent Itemsets from Data
Streams

Figure 4.11: ITemp - Iteration 1

Figure 4.12: ITemp - Iteration 2

algorithm then performs intersection of {abd} with {b} to generate {b} which is

already existing in ITemp table (Figure 4.12). The contents of ItemSets, Index

and ITemp are shown in Figure 4.13.

The supports of {ab} and {b} are decreased by 1 (Figure 4.14). Itemset {ab}

in ITemp table has SId and HSSId values as 2 and 1 respectively. From the

ItemSets, support at Id 2 is same to support at Id1. Hence, itemset {ab} is not

closed itemset. Itemset {ab} is removed from ItemSets. The first bits in Vectors

of a and b are set to 0.

For the second itemset {b} in ITemp table, the support values for Id4 and 2are

different. Therefore, itemset {b} is closed frequent, so it is retained in ItemSets

as shown in Figure 4.15.

34

4.4 Framework for Incremental Mining of Closed Frequent Itemsets from Data
Streams

Figure 4.13: Intermediate summary data structure

Figure 4.14: Intermediate summary data structure

Figure 4.15: Intermediate summary data structure

35

4.5 Experimental Study

4.5 Experimental Study

Experiments were performed to compare the performance of SPAIM-CFI approach

with NewMoment algorithm. The specifications of the system on which the exper-

iments were done are, 2.26GHz Intel Core i3 Processor, 3 GB RAM, and Windows

7 OS. The proposed algorithm is implemented using C++. The compiler used was

GNU GCC compiler. The synthetic dataset was generated using IBM Synthetic

Data Generator[1][3]. The parameters of the dataset generated are given in table

4.1.

Parameter Value
Number of transactions 200K

Average items per transaction 10
Number of items 200

Table 4.1: Parameters of Datasets for Closed Frequent Itemset Mining

Mining for different size of sliding window

This experiment is performed by changing the sliding window size w from 10K

to 100K. The value of minimum support threshold is set to 0.2.For smaller sizes

of sliding windows, the time required was less.There has been an increase in the

execution time per sliding window in both the algorithms. This is because of the

increase in the number of data stream elements processed in a sliding window.

Mining for different values of minimum support

This experiment is performed by varying the minimum support threshold s from

0 to 1. In case of NewMoment the execution time is more for lower values of s

and decreases for higher values of s. This happens because of the decrease in the

number of closed frequent itemsets generated by NewMoment. Figure 4.16 and

figure 4.17 show that the proposed approach requires less memory and time for a

36

4.5 Experimental Study

Figure 4.16: Memory required versus minimum support

Figure 4.17: Execution time required versus minimum support

transition of a sliding window as compared to NewMoment. These observations

are done by taking average of 50 transitions.

However, the results shown in figure 4.18 have also shown that the NewMo-

ment outperforms the proposed approach for higher values of minimum support

threshold as NewMoment maintains only the frequent closed itemsets, whereas,

the proposed approach maintains all the closed itemsets.

37

4.6 Conclusion

Figure 4.18: Execution time required versus minimum support

4.6 Conclusion

In this section we have proposed an incremental approach to mine closed frequent

itemsets over transactional data streams. It uses an intermediate summary data

structure which is efficient in terms of searching of itemsets stored in it. The pro-

posed approach outperforms the NewMoment algorithm in mining closed frequent

itemsets over transactional data streams.

The NewMoment algorithm outperforms the proposed approach for higher val-

ues of minimum support threshold as NewMoment maintains only the frequent

closed itemsets, whereas, the proposed approach maintains all the closed itemsets.

However, the difference in time requirements is negligible.

The proposed algorithm has the following limitation. The size of LocationV ector

depends upon the number of itemsets stored in the intermediate summary data

structure. it is difficult to predict this vale a priori.

38

Chapter 5

Framework for High Utility

Pattern Mining using Closed

Frequent Itemsets

5.1 Introduction

The number of active users on microblogging sites is large and so are the messages

posted by them. This data can be used to mine knowledge such as the current topic

of discussion between the users. Finding answers to such queries is challenging

due to the large amount of data generated.

In this chapter we consider such data streams where each of its element is

compressed using high utility itemset mining method. High utility itemset mining

associates a profit value, called as utility, to an itemset. The utility of an itemset

could be profit on retail price in case of superstore or retail market datasets,

frequency of its occurrence, etc.

In this chapter we define utility in terms of the amount of memory saved by

storing the itemset in a compressed form in the sliding window. This approach

reduces the amount of memory required to store the itemsets in a sliding window

39

5.2 Related Work

which in turn reduces the size of the sliding window.

5.2 Related Work

High utility itemset mining has been worked upon in [15] and [17]. According to

the approach presented in [15], the data stream is divided into batches of elements.

For each itemset in a batch, codes are generated based on the occurrences of

itemsets in that batch. The elements of every batch are then compressed using

the codes generated. For a current batch the compression is based on the codes

of itemsets generated in the previous batch. Using codes of a previous batch to

compress the elements of current batch is not appropriate as itemsets need not

show similar trends in all batches. The approach in [17] compresses elements by

dividing the data stream into same sized batches. It finds frequent patterns for

each batch and uses these patterns to compress the elements of the subsequent

batches. Both approaches compress the elements of the entire data stream in

batches.

In this chapter we propose a framework which incrementally compresses the

elements in a sliding window. By incremental we mean that compression is done

while an element enters or leaves the sliding window unlike in [15] and [17] where

itemsets are compressed at the end of a batch. The compression of elements is

based on the utility of the elements in the current sliding window. The approach

presented in this chapter is suitable for processing data stream using a sliding

window model as it allows more elements to be stored in a sliding window for a

fixed memory budget.

40

5.3 Problem Definition

5.3 Problem Definition

5.3.1 Preliminaries

Let D = (T1, T2, ...) be a data stream where Ti is an itemset. Let SW be a sliding

window, of size w, which slide over the data stream D. The support of an itemset

X, denoted as supp(X), is the number of element containing X in the sliding

window SW .

The idea is to replace the itemsets in elements of the sliding window by links

to the itemsets themselves stored as closed itemsets in the intermediate summary

data structure. Not all the itemsets in the sliding window are replaced but the

ones which are chosen based their utility in the sliding window. The method to

find the utility of an itemset is described in the subsequent subsections.

5.3.2 Utility of an itemset

Utility of an itemset is the profit value associated with the itemset. In this chapter

we define utility of an itemset based on two factors. The first factor is the amount

of memory saved by replacing the itemset in the sliding window by a link. This is

calculated as the difference between the amount of memory required to store the

itemset and the size of the link to the itemset. The second factor is the frequency

of occurrence of the itemset in the sliding window, which is the support of the

itemset.

The utility of an itemset X, denoted as utility(X), is calculated in as follows.

If vi is the size of an item in X, then size of X is calculated as

v(X) =
∑

vi,∀viεX (5.1)

If γ is the memory required by X in summary data structure, then utility(X) is

41

5.4 Framework forHigh Utility Itemset Mining using Closed Frequent Itemsets

Figure 5.1: Data stream and the intermediate summary data structure

given by

utility(X) = support(X) ∗ (v(X)− γ)− v(X) (5.2)

where v(X) is the size of X and is memory size of X. The term u(X) − γ is

the memory saved by compressing X once. The term support(X) ∗ (v(X) − γ)

is the memory saved in compressing Xsupport(X) number of times in the sliding

window. utility(X) is memory saving offered by X if compressed. If utility(X) >

0 then X should be compressed and not otherwise.

5.4 Framework forHigh Utility Itemset Mining

using Closed Frequent Itemsets

5.4.1 The Intermediate Summary Data Structure

Intermediate summary data structure is used to store the temporary results gener-

ated while processing the data stream. The intermediate summary data structure

presented in this chapter is a table ItemList. ItemList has three fields- Id,

Support, ItemSet and Utility as shown in the 5.1.

42

5.4 Framework forHigh Utility Itemset Mining using Closed Frequent Itemsets

5.4.2 The approach

The approach uses the algorithm described in chapter 4 to generated closed item-

sets. When an itemset X is inserted into ItemList, the approach calculates the

value of u(X) − γ and uses it to calculate utility(X) which is then stored in

ItemList table.

The approach then selects the itemsets to be replaced by the link pointing to

them in the ItemList table. This selection is based on the utility values of the

itemsets. Itemsets with utilities above zero can be replaced.

5.4.3 Automatic generation of the minimum support thresh-

old s0

Most of the approaches, including the ones presented in this thesis, use minimum

threshold values that are specified by the users. Users have no idea about the

distribution of data in sliding window and in datasets, and are not in a position to

specify a proper value of minimum support threshold. This is mostly true in the

case of data streams produced by social websites and micro-blogging websites. A

lower value of minimum support threshold may lead to generation of large number

of frequent patterns which are trivial. Similarly, a high value of minimum support

threshold may prevent frequent patterns from being shown as frequent. It is a

good idea to provide the user with a suitable value of minimum support threshold

based on the data present in the sliding window or in the dataset. However, the

user can use his/her discretion to specify the value of minimum support threshold

based on the one specified by the system. In this section we present a method to

dynamically generate the value of minimum support threshold based on the data

in the sliding window or the dataset.

This approach finds the mean and the standard deviation of supports of all

the itemsets in the summary data structure. The sum of mean and the standard

43

5.5 Experiments

deviation of supports of all itemsets is assigned to s0.

The value of s0 is defined as

s0 =

∑
supp(X)

N
+ δ, ∀XεIsets (5.3)

where N is the number of itemsets in ItemList and δ is the standard deviation of

the supports of all itemsets in ItemList at that moment.

Deciding which pattern is interesting is a matter of discretion of the user.

However, the user can specify his/her own minimum support threshold based on

dynamically generated value of s0.

5.4.4 Detection of frequent events in the sliding window

The approach generates closed frequent itemsets from the set of closed itemsets in

the intermediate summary data structure by comparing their supports with the

the minimum support threshold s0.

5.5 Experiments

The experimental study was performed on system with 2.26GHz Intel Core i3

processor, 3 GB memory and Windows 7 OS and implemented in C++. The

compiler used is GNU GCC compiler.

5.5.1 Frequent Itemset Mining using Itemset Utility

The data set used for these experiments is generated using IBM Synthetic Data

Generator [1][3] and is a synthetic dataset. The parameters of the dataset are

mentioned in table 5.1.

44

5.5 Experiments

Table 5.1: Dataset Parameters
Parameter Value
Number of transactions 210K
Average items per transac-
tion

10

Number of items 250

Figure 5.2: Memory saved against sliding window size

Varying sliding window size

The sliding window size was changed from 5K to 15K with intervals of 5K. Figure

5.2 depicts that the amount of memory saved in storing the elements of sliding

window is increases with the sliding window size increases.

Fixed sliding window size

The sliding window was slided over the data stream by one element. The amount

of memory saved was observed for each sliding window for 100 transitions. Figure

5.3 depicts that the amount of memory saved for sliding windows in the beginning

is less and increases to become almost stable later. This can be explained as the

algorithm learns about the itemset utility at the beginning. Thus, the number of

itemsets replaced(compressed) is less.

The amount of memory saved by our approach depends upon the kind of data

in the sliding window. The results of the proposed algorithm need not be promising

45

5.5 Experiments

Figure 5.3: Memory saved as window slide over data stream

Figure 5.4: Dataset- IPL Cricket matches

always. It shall work best if the number and size of frequent itemsets are large.

5.5.2 Frequent pattern generation using dynamically gen-

erated s0

The data set used in this experiment is a real dataset available on the website [2]

The dataset is a set elements where each element is a set words and is ball-by-ball

description(commentary) of 636 matches in IPL. These elements were processed

to have only significant information alike matchid, team details, bowler, batsman,

runs scored, etc. There were 150460 elements in the data stream. Figure 5.4

depicts a glimpse of the dataset.

It was observed that 48798 itemsets were generated. The value assigned by the

approach to s0 was 0.596009. Out of 48798 patterns 7268 patterns were frequent

for s0 = 0.596009.

46

5.6 Conclusion

Figure 5.5: Snapshot of frequent patterns

A snapshot of the patters obtained in experimental study is shoqn in Figure

5.5.

5.6 Conclusion

The major contribution in this section is the design of an approach that stores

element of a sliding window in a compressed form and then detects events for the

sliding window using the data from summary data structure.

The replacement of the itemsets in the data stream by the link to the itemset

stored in the intermediate summary data structure may generate false positive

results. This could be avoided by generating closed frequent itemsets.

This approach also detects itemsets in the sliding window by dynamically gen-

erating a suitable value for the minimum support threshold. This estimated value

of minimum support threshold gives an idea about the data distribution in the slid-

ing window and helps the user to specify his/her own minimum support threshold

value. This approach is useful in detecting events from posts on micro-blogging

websites.

47

Chapter 6

Clustering Values of Single

Attribute in Transitional Data

Streams

6.1 Introduction

Social media websites have gained immense popularity among people since the ad-

vancement of internet technology. The influx of people into social media websites

is further greater among the younger generation who do not want to be left out

from the emerging technology. To be part of the social media website, there is a

need to create a user profile to uniquely identify the individual belonging to the

website. User profiles often contain a set of attributes pertinent to their personal,

educational, and/or other relevant data. It is often seen that users update their

profiles by changing the values of these attributes. The change is mostly in terms

of replacing an old value by a new one. This change to an attribute in the form

of a transition from an old value to a new one can be mined to extract valuable

pieces of information which further can aid in better decision making.

For example, when a user changes his/her work company attribute value to a

48

6.1 Introduction

new one, it can be learnt that both the new value and the replaced old value repre-

sent names of the companies belonging to the same sector or domain. Processing

this information from different user profiles can help find knowledge patterns in

the form of clusters of companies offering similar kinds of jobs. This information

can be used by employer’s recruitment departments to locate companies which

may have the human resource required by them. Also, this information can be

used by job aspirants and employees to locate companies offering recruitment op-

portunities in their domain.

Similarly, studying the change in values of address attribute can help identify

migratory patterns of humans between places. Also, the analysis of contact num-

ber attribute can help to identify the switching patterns of people across telecom

service providers.

Extending this study from a single attribute to two or more attributes can help

identify relations between values across different attributes. For example, analysis

across two attributes, Educational Institute and Work Company, can find patterns

containing information about the educational institutes and the companies in the

same domain. This information can be used by students to locate companies

offering job opportunities in the area related to their studies. This information

can also be used by companies to locate educational institutes from which students

passing out can be absorbed by them.

Due to the large number of users on social media, the number of updates done

to user profiles is also large. Let an update done to a single attribute by a user

to his/her profile be considered as an event. The frequency of occurrence of such

events is high. These events can be modelled as elements of a data stream of which

every element is a pair of values of the attribute. All elements of the data stream

consist of values which belong to a single attribute. The data stream in this case

will have its elements as a pairs of values of an attribute in which the first value

is the old one and the second value is the new one replacing the old. We call such

49

6.1 Introduction

Figure 6.1: The framework

a data stream as a transitional data stream. Every element of a transitional data

stream denotes a transition in an attribute from an old value to a new one.

In this chapter we present an approach to cluster values of attributes similar

to each other from a transitional data stream and the results of the experimental

study done.

The approach is based on two frameworks. The first framework is the market

basket analysis approach that is used in finding frequent itemsets of values from

the transitional data stream. Each itemset has two items. The second framework

is the clustering framework that is used to group the values of the attribute. The

approach can be made more intelligent by incorporating text mining and semantic

analysis methods. In this chapter we have limited our study to attribute values

only. The problem and the approach presented in this chapter is demonstrated in

figure 6.1.

Let the attribute under consideration be A. Let {a, b, c, d, e} be the set of values

that can be assigned to the attribute A. As shown in the figure 6.1, the data stream

D has ten elements. Matrix MAT is the intermediate summary data structure

used to maintain summary of results as the elements are processed. CList stores

50

6.2 Background and Motivation

the clusters as they are generated. As the elements are processed, the intermediate

summary data structure, matrix MAT , is updated. The algorithms described in

the subsequent sections are executed on matrix MAT to generate clusters which

are stored in CList. The approach generates two clusters, CL0 = {a, b, c} and

CL1 = {d, e} for a minimum threshold of 2. A minimum threshold value is

specified to enforce the condition of generating quality clusters.

This is a recent area of research and to the best of our knowledge no such

approach has been proposed. However, a study on network transition analysis has

been performed in an offline manner [8][16].

6.2 Background and Motivation

A similar problem has been worked upon but not from a data stream point of

view in [8]. The study is based on social network point of view. Job related infor-

mation about the users was collected from various social media websites and this

information was used to construct an inter-company job hopping network graph.

In the graph, the vertices denote companies and the edges denote the movement

of the people between these companies. Further, graph mining techniques were

used to mine cluster of companies related to each other. A similar work has also

been presented in [16].

The study carried out in both the papers, [8] and [16] has been specifically on

the work place attribute of people with the aim to find out clusters called as talent

circles of companies offering job opportunities pertaining to a particular domain.

The analysis is done on a dataset in static environment which cannot be directly

translated to be applied onto a data stream environment.

In this chapter, we present an approach that is not limited to a specific at-

tribute. It enables the user to analyze data in online and incremental manner.

It allows the user to prevent grouping of weakly associated values together by

51

6.3 Problem Definition

specifying a minimum threshold value s0.

6.3 Problem Definition

6.3.1 Preliminaries

Let the attribute of study be A. For example, A could be the workcompany of a

person. Let V = {v1, v2, ..., vn} be the set of values that could be assigned to the

attribute A. For example, V = {Technostar,Digiworld, Protech, ...} is the set of

company name. An element T is a pair of values, (vo, vn), where value vo is replaced

by vn for the attribute A and vo, vnεV . For example, if a person on her/his profile

replaces the value of his/her work place from Technostar to Digiworld, then this

event generates the pair (Technostar,Digiworld) as an element of the data stream

with vo as Technostar and vn as Digiworld. When a person updates an attribute

on her/his user profile on social media an element of this form gets created. The

study presented in this chapter is limited to un-directional associations between the

values, i.e., the elements (Technostar,Digiworld) and (Digiworld, Technostar)

are considered as the same. Incorporation of information about the directions of

transitions of attributes across values will yield more knowledgeable patterns.

We define similarity between two values of an attribute, denoted as sim(v1, v2),

based number of elements containing both the values in it. Two values v1 and v2

are similar, denoted as v1 ∼ v2 if sim(v1, v2) >= s0, where s0 is a user specified

minimum support threshold. This means that both v1 and v2 should belong to

the same cluster.

If v1 ∼ v2, and v2 ∼ v3, then v1 ∼ v3, i.e. all three are similar. As v1 and v2

are similar, they both belong to same cluster. Let the cluster to which they both

belong be C. Similarly, as v2 and v3 are similar, they v3 has to belong to the same

cluster C which also contains v1. Now since both v1 and v3 belong to the same

cluster C, they are similar.

52

6.3 Problem Definition

A cluster C is a set of similar values, i.e. C = {vi/all vis are similar}. For

example, if a large number of persons update their user profiles by changing work

place from Technostar to Digiworld and a large number of persons update their

user profile by changing work company from Digiworld to Protech, then the

values Technostar, Digiworld and Protech are similar to each other and belong

to the same cluster. In this example, the cluster has names of companies offering

similar job. A data stream D is a stream of such elements, i.e. D = {T1, T2, , Tn}.

Two elements T1 and T2 of the same data stream are same if they both have same

sets of values.

The approach presented here is based on sliding window model.

6.3.2 Significance of s0

It is quite possible that few elements in a data stream have values which may be

completely from a different domain and should not be grouped together. These

elements represent those values that hardly have any transitions happening be-

tween them. The value of s0 prevents the grouping of values which are not related

to each other. For example, a very few persons changing their work company by

hopping between companies of completely different domains. These companies if

grouped together could be misleading and should not be grouped together.

Nevertheless, this information can be mined to find out hidden patterns that

would reflect exceptions in job transitions and would help user discover knowledge

useful to people who would switch over to new fields in their careers. However,

such a pattern mining process is out of the scope of the study presented in this

chapter.

53

6.4 The Proposed Approach

6.3.3 Problem Statement

For an attribute A with set of possible values V = {v1, v2, ...}, a data stream D

consisting of elements T = (vo, vn), vo, vn ∈ V , the problem is to generate clusters

containing values similar to each other.

6.4 The Proposed Approach

6.4.1 The intermediate summary data structure

The intermediate summary data structure has two parts, a matrix MAT and a

list of clusters CList as described in the following subsections.

MAT

MAT is the square matrix of size n ∗ n, where n is the number of attribute

values in V . The rows and columns of MAT represent the values in V . The

value of MAT [vi][vj] denotes the number of data stream elements containing both

the values vi and vj. Matrix MAT represents an un-directional weighted graph

in which the vertices represent the values of attribute, the edges represent the

transition between values, and the weights on the edges represent the similarity

between the values joined by the corresponding edge.

MAT can be implemented in two forms, as an array and as a list. If imple-

mented as an array it is required that the list of all the values possible for the

attribute be known earlier. Whereas, when implemented as a list it allows a new

value to be added dynamically to the list of values V . No sooner does a new value

is found the first time in the data stream, then it is added to V and is listed in

MAT . We have implemented the algorithm using an array.

54

6.4 The Proposed Approach

CList

CList is a set of attribute value clusters which are generated as the data stream

elements are processed.

The intermediate summary data structure also maintains s bit-vector B =

(b1, b2, ..., bn), where n is the number of values in V . The value of bi is set to 1 if

vi belongs to some cluster in CList, otherwise it is set to 0.

6.4.2 The Algorithm

The algorithm works in two steps, Update andGenerate. The Update step updates

the matrix MAT as the new element enters and the old element leaves the sliding

window, i.e. when the sliding window slides across the data stream by one element.

The Generate steps uses the data in matrix MAT to generate and maintain the

clusters CList. The Generate step can be executed at any time by the user.

The Update step

The Update step is performed when the sliding window slides across the data

stream by one element. As the oldest element leaves the sliding window and a

new one enters it, the Update step updates the matrix MAT in the way described

in the next two subsections. The Update step is made up of two steps, the Add step

which is performed when a new element enters the sliding window, and the Remove

step which is performed when the oldest element leaves the sliding window.

The Add step

This step is performed when a new element arrives at the sliding window. When

a new element T = (vi, vj) enters in the sliding window the Add step increases the

values of both MAT [vi][vj] and MAT [vj][vi] by one each as shown in 6.2.

55

6.4 The Proposed Approach

Figure 6.2: Matrix MAT

Figure 6.3: Matrix MAT

The Remove step

The Remove step is performed when the oldest element leaves the sliding win-

dow. When the element T = (vi, vj) leaves the sliding window the Remove step

decreases the values of both MAT [vi][vj] and MAT [vj][vi] by one each as shown

in 6.3.

56

6.4 The Proposed Approach

Figure 6.4: Algorithm- Generate

Figure 6.5: The matrix MAT

The Generate Step

The Generate step generates attribute value clusters based on the data in matrix

MAT and stores them in CList. The time complexity of the algorithm is of O(n2).

The algorithm is given in figure 6.4.

The Generate step can be called at any time by the user by specifying the

value of minimum support threshold s0.

Running example for the Generate step

The execution of the above algorithm is demonstrated by generating clusters based

on the matrix MAT as shown in figure 6.5. Let the value of s0 be 2. The first row

attribute value of MAT is a. Hence, C0 = {a} and makes B[a] = 1. Then it finds

S(C0) = S(a) = {b}, since b is the only element in the row a with MAT (a, b) =

3 >= s0 . The next step finds C1 = C0US(C0), i.e., C1 = {a}U{b} = {a, b} and

57

6.4 The Proposed Approach

Figure 6.6: Iteration 1 of the Generate step

Figure 6.7: Iteration 2 of the Generate step

makes B[b] = 1. Since C0C1, the algorithm finds S(C1) = S({a, b}) = {c}, since c

is the only new element related to either a or b, i.e., MAT (b, c) = 2 >= s0. Thus

C2 = C1US(C1), i.e., C2 = {a, b}U{c} = {a, b, c} and makes B[c] = 1. Similarly

C3 = {a, b, c}. Since C3 = C2, it adds C3 as a cluster in CList as CL0 (Figure

6.6) and proceeds to the next row b.

Since b and c are already included in the cluster the algorithm moves to the

row d. Since d is not included in any cluster, C0 = {d}. Repeating the steps that

were applied to the previous row a, the algorithm find C2 = {d, e} and adds it to

CList as CL1. Meanwhile, B[d] and B[e] are set to 1 (Figure 6.7).

58

6.5 Experimental Analysis

Parameters Values
Number of elements in data stream 2000K
Number of values in the attribute 10

Table 6.1: Parameters of Dataset for Attribute Value Clustering Experiment

Figure 6.8: Number of clusters versus minimum support

6.5 Experimental Analysis

The experiments were carried on 2.26GHz Intel Core i3 PC with 3 GB memory

on Windows 7 system. The proposed approach was implemented in C++ and

compiled using GNU GCC compiler.

The experiments were performed on synthetic data generated using IBM Syn-

thetic Data Generator [1][3]. The generated dataset had itemsets of different sizes.

The dataset was pruned to discard itemsets of size other than two. The parameters

of the dataset are given in the table 6.1. The experiment was performed using the

sliding window model approach to determine the number of clusters by varying

the value of minimum support threshold from 0 to 1. This range is obtained by

dividing the value of the minimum support threshold s0 by the size of the sliding

window. The size of the sliding window was kept to 10K (Figure 6.8).

The number of clusters increases as the value of minimum support threshold

increases. For lower values of minimum support threshold, the number of clus-

ters is less. This is because the attribute values with low with low similarity

between them, but higher than the minimum support threshold value are grouped

together. As the value of minimum support threshold increases, more attribute

59

6.6 Conclusion

Figure 6.9: Execution time versus minimum support

values become dissimilar from each other as the similarity between them begins

to fall below the minimum support threshold. Figure 6.9 shows the time required

to generate the clusters by varying the value of s0. The number of data stream

elements analyzed at this time is 2000K.

6.6 Conclusion

In this chapter we proposed framework and algorithms to analyze data streams

having elements which are pair of values of a single attribute. These attribute

values are clustered together. These values can be objects like company names,

educational institute name, names of places, etc. In this approach we have con-

sidered values of attributes only. Intelligent mining can be done by incorporating

more data about the values themselves.

The study is limited to a data stream with one attribute. In the next chapter

we have extended the study to data streams with two attributes

60

Chapter 7

Mining Associations between

Clusters of Values of Multiple

Attributes in a Data Stream

7.1 Introduction

In chapter 6 we presented an approach to cluster values of a single attribute in a

data stream. There the criteria for two values to belong to a cluster was based

the number of occurrences of both the values together in the sliding window. In

this chapter, we present an approach extended to two attributes. A data stream

element is a pair of values where each value belongs to a different attribute. The

approach generates clusters of values for each attribute and then finds association

rules between two clusters of different attributes.

For example, let us consider two attributes educational-institute and work-

place of people. This approach when applied to both the attributes will first

generate clusters for the attribute educational-institute having names of institutes

that offer education in similar domain. Similarly, the clusters generated for the

attribute work-place will have a name of companies offering jobs in domains related

61

7.1 Introduction

to each other. The approach then generates association rules between clusters

from the educational institute attribute and clusters from workplace attribute.

Each association rule has two clusters in it, one containing names of educational

institutes and the other containing name of companies. Such an association is

useful to find out the institutes and the companies in similar domains.

As already discussed in the previous chapter, many persons have their user

profiles created on social media website. A user profile often consists of a set

of attributes. As the number of users on social media is huge, the number of

updates done to their user profiles is large. It may be recalled that the number

of attributes considered in this study is two. Let the update done by a user by

assigning a new value to any one or both the attributes of study be called as an

event. This event creates a pair of two values each belonging to the attributes of

study. The frequency of such events is high. The sequence of such events can be

modeled as a data stream in which every element of the data stream is a pair of

updated values each belonging to different attributes.

As mentioned earlier in this section, we present an approach to cluster val-

ues for each attribute and then find associations between two clusters of different

attributes. The approach is based on two frameworks. The first framework is

clustering analysis that is used to group values of attributes. The second frame-

work is the market basket analysis used to find associations between clusters. The

approach can be made more intelligent by incorporating text mining and semantic

analysis methods. In this chapter we have limited our study to attribute values

only.

The problem and the approach presented in this chapter is briefly explained

in figure 7.1. Let the attributes of study be A1 and A2. Let V1 = {a, b, c} and

V2 = {u, v, x, y, z} be the sets of values that can be assigned to the attributes

A1 and A2, respectively. As shown in the figure the data stream D has ten

elements. The approach uses an intermediate summary data structure which stores

62

7.2 Background and Motivation

Figure 7.1: Data stream, clusters and cluster associations

the clusters as they are generated for each attribute. As the elements are processed,

the intermediate summary data structure is updated. The algorithms described

in the subsequent sections are executed on the data in the intermediate summary

data structure to generate clusters which are stored as a list of clusters. The

approach generates two clusters {a, b} and {c} for the attribute A1 and two clusters

{x, y, z} and {u, v} for the attribute A2, for a minimum threshold of 2. A minimum

threshold value is specified to enforce the condition of generating quality patterns.

The approach then executes algorithms described in the following sections which

generate associations {a, b} ↔ {x, y, z} and {c} ↔ {u, v}. This is a recent area of

research and to the best of our knowledge no such approach has been proposed.

However, a study on network transition analysis has been performed in an off-line

manner.

7.2 Background and Motivation

A similar study has been presented by us in the chapter 6. The study was limited

to clustering of values of a single attribute in a data stream. Whereas, the work

carried out in this chapter clusters values of two attributes and find relations

between two clusters of different attributes.

63

7.3 Problem Definition

7.3 Problem Definition

7.3.1 Preliminaries

Let A1 and A2 be the attributes of study. Let V1 = {v11, v12, , v1n} and V2 =

{v21, v22, ..., v2m} be the sets of values for an attribute A1 and A2, respectively.

For example V1 = {GMC,KLE, ...} is a set of educational institutes and V2 =

{Govt.Hospital, V ision, ...} is a set of organizations employing people.

An element T is a pair of values (v1i, v2j) where vi1 ∈ V1 and v2j ∈ V2. For

example the element T = (GMC, V ision) means the person has studied in GMC

school and works for V ision organization.

Two values v11 ∈ T1 and v12 ∈ T2 are similar if there exists Ti = (v11, v2i)

and Tj = (v12, v2j) where v2i = v2j and i 6= j. If v11 is similar to v12 and v12 is

similar to v13 then v11, v12 and v13 are similar. For example, if (GMC, V ision)

and (KLE, V ision) are elements of the data stream, then GMC and KLE are

similar. The similarity between two values v11 and v12, denoted as sim(v11, v12),

is the total count of elements containing both v11 and v12.

The set C = {vji/all vjis are similar} is a cluster of similar values of attribute

Aj. For example, {GMC,KLE} is a cluster as GMC and KLE are similar.

A data stream D = {T1, T2..., Tn} is a stream of events. Two elements T1

and T2 are same if they represent same sets of values. Two values v11 ∈ T1 and

v12 ∈ T2 are heavily similar if the number of Ti = (v11, v2i) and Tj = (v12, v2j)

where v2i = v2j and i 6= j, are not less than a minimum threshold value s0 i.e.

sim(v11, v12) >= s0. The value of s0 is decided by the user. The significance

of s0 is that it prevents the clustering of values together, which hardly have any

transitions happening between them, which is quite often a situation in the real

world. For example, a person changing joins a company not related to the type

of study done at school. Such elements should be ignored so as to nullify their

effect on the results. Such transitions seldom happen and are less in number. A

64

7.4 The Approach

Figure 7.2: Intermediate summary data structure

minimum support threshold will restrain such values from clustering together.

Let C1i and C2j be clusters of values of attributes A1 and A2, respectively. The

clusters C1i and C2j are associated with each other if there exists v1a ∈ C1i and

v2b ∈ C2j such that sim(v1a, v2b) >= s0, where sim(v1a, v2b) is the total number of

elements containing both v1a and v2b.

7.3.2 Problem Statement

For two attributes A1 and A2, a set of values V1 = {v11, v12, ...} and V2 =

{v21, v22, ...}, a data stream D = {T1, T2, ...} consisting of elements element T =

(v1i, v2i), where v1i ∈ V1 and v2i ∈ V2, the problem is to generate a set of clus-

ters of values for each attribute and association rules between two clusters, each

belonging to attribute A1 and attribute A2.

7.4 The Approach

The intermediate summary data structure

The intermediate summary data structure presented in this chapter has two parts,

a matrix MAT and two lists of clusters CList1 and CList2 for the attributes A1

and A2, respectively (Figure 7.2).

65

7.5 The Algorithm

Matrix MAT

MAT is a matrix whose rows represent the values of V1 and columns represent the

values of V2.The value of MAT [vi][vj] represent the total number of data stream

elements having both the values v1i and v2j in it.

List of clusters CList1 and CList2

CList1 and CList2 are sets of clusters of values of attributes A1 and A2, respec-

tively.

7.5 The Algorithm

The algorithm presented in this chapter works in three steps. They are the Update

step, the Generate Cluster step, and the Generate Association step.

The Update step

This step is executed when the sliding window slides across the data stream. It

updates the matrix MAT when a new element enters and the oldest element leave

the sliding window. It works in two steps, the Add step and the Remove step.

The Add step is performed when a new element enters the sliding window.

When a new element (vi, vj) enters the sliding window, the Add step increases the

value of MAT [vi][vj] by one.

The Remove step is performed when the oldest element leaves the sliding

window. For an element (vi, vj) leaving the sliding window, the Remove step

decreases the value of MAT [vi][vj] by one.

The Generate Cluster step

This step is executed to generate clusters from the matrix MAT . First, it gen-

erates clusters for each row in MAT in the following way. For a row in MAT ,

66

7.5 The Algorithm

Figure 7.3: Generate| − Cluster step example

it clusters the values of the columns which are having the matrix value greater

than or equal to s0 and store them in CList1. That is, for a row v1i in matrix

MAT , the Generate Cluster step will form the cluster {v2s/MAT [v1i][v2s] >= s0}.

Thereafter, the clusters in CList1 having at least one common element are merged

together. Clusters for the other attribute are obtained in the similar way.

The Generate step is demonstrated using a running example. The value of s0

is set to 1. In the first row a, the cluster generated is C2 = {x, y, x} as MAT [a][x],

MAT [a][y], and MAT [a][x] are greater than or equal to s0. In the second row b,

the cluster generated is C2 = {x, z} and for the third row the cluster generated is

C3 = {u, v}. Since C0 ∩ C1 = {x, z}, the clusters C0 and C1 are merged. Hence,

CL1 = {{x, y, z}, {u, v}}. The above algorithm can be executed by the user at

any time by specifying the minimum threshold value s0 (Figure 7.3).

The time complexity of the Generate Cluster step is O(n2).

The Generate Association step

This step generates associations between clusters of different attributes. Two

clusters C1 ∈ CL1 and C2 ∈ CL2 are associated if sim(v1, v2) >= s0, v1 ∈ C1 and

v2 ∈ C2. The association between two clusters C1 and C2 is denoted as C1 ↔ C2

(Figure 7.4).

67

7.6 Experimental Analysis

Figure 7.4: Generate Association step example

Parameters Values
Number of elements in data stream 2000K

Number of attributes values per attribute 10

Table 7.1: Parameters of Datasets for Cluster Association Generation

The time complexity of the Generate Association step is O(n2).

7.6 Experimental Analysis

Experiments were performed to check the efficiency of the proposed algorithm on

two data sets, synthetic and a real data set. All experiments were performed on

a system with 2.26GHz Intel Core i3 processor, 3 GB memory and Windows 7

operating system. The algorithms were implemented in C++ language and was

compiled with GNU GCC compiler.

The synthetic data were generated using IBM Synthetic Data Generator [1][3].

The synthetic dataset parameters are mentioned in Table 7.1.

These experiment were performed on the above data sets using the sliding

window model approach to determine the number of clusters by changing the

value of minimum threshold. The size of the sliding window was kept to 10K in

both the cases

The experiment in figure 7.5 was performed on synthetic data set by varying

68

7.6 Experimental Analysis

Figure 7.5: Number of clusters versus minimum support

the value of minimum support threshold from 0 to 1. This range is obtained by

dividing the value of the minimum support threshold s0 by the size of the sliding

window. The clusters shown contain values of only one attribute. The number

of clusters increases as the value of minimum support threshold increase. For

lower values of minimum support threshold, the number of clusters is less because

values that even have low similarity between them, but higher than the minimum

support value, are grouped together. As the value of minimum support threshold

increases more and more values become dissimilar as the similarity between the

values begins to fall below the minimum support threshold.

The main objective of performing the above experiments was to check the ac-

curacy, precision and recall of the algorithm. This was done by varying the value

of minimum support. For every value of minimum support the clusters were gen-

erated for values of each attribute. Thereafter, associations between two clusters,

each of different attribute were generated. The generated clusters and associations

between them were compared with results obtained by applying apriori algorithm

to the real data set to find the accuracy, precision and recall separately for the

attributes and the associations. The results are as below.

The experiment in figure 7.6 was performed by varying the value of minimum

support from 0 to 1. The precision value for the associations varied with upper

69

7.7 Conclusion

Figure 7.6: Precision, recall and accuracy of clusters

bound as 0.88 and lower bound as 0.77. The value recall value varied between

0.74 and 0.87. The recall value increased consistently with the value of minimum

support and stayed stable after 0.6 in 87%, while the accuracy was always above

96%.

7.7 Conclusion

We proposed algorithms and an approach for analysis data of streams having its

element as pair of values of two different attributes. The values of an attribute

were clustered to generate groups of attribute values related to each other and

then find association between clusters of values across different attributes. These

values can be objects like company names, educational institutes, places, etc.

We have limited our study by considering only the attribute values. Data

about the values themselves can be incorporated into the algorithms to generate

better patterns.

The study is limited to a data stream pertaining to two attributes only. It

can be applied to data streams with multiple attributes. As there is no similar

work done in this area a comparative study was not possible and experiments were

performed to check the precision, recall and accuracy of the algorithm.

70

Chapter 8

Conclusion

Data stream mining is very interesting problem and can be applied to online

transactional data mining, sentiment analysis of messages on social media, web-

click pattern mining, sensor-data analysis,etc.

The process of mining patterns from data streams is challenging due to the

inherent characteristics of data streams. The major ones being the unbounded size

of the data stream and the inability to have multiple scans or revisit the entire

history of the data stream.

In our study we have used sliding window to find patterns from data streams.

The results of this processing were stored in intermediate summary data structure.

The data from the intermediate summary data structure was used to generate

patterns of interests. The patterns were mostly in the form of itemsets. The final

results had an error component added to them as the patterns were generated

from the summary data and not from the original data in the data streams.

Itemset mining generally requires multiple scans of the datasets. In data stream

processing it is not possible to have multiple scans of the data. Hence, the major

focus of this research work was on the development of single pass and incremental

algorithms to mine patterns by extending itemset mining to data streams.

We began with partitioning the data stream into segments and generating fre-

71

quent itemsets for each segment. The frequent itemsets generated were stored in

the intermediate summary data structure. This data was used to generate frequent

itemsets for the entire or part of the data stream. This approach suffered from the

problem of loosing itemset information for smaller segments of the data streams as

the size of the data stream increased. The number of itemsets generated for each

segment was large. This problem was addressed by proposing a single pass incre-

mental algorithm which generated closed frequent itemsets for the data streams.

This algorithm used a data structure called PositionV ector to speed up the pro-

cess of searching itemsets stored in the intermediate summary data structure.

Experiments showed that this algorithm outperformed some other algorithms like

NewMoment[13] for lower values of minimum support. This algorithm faced the

challenge of choosing the appropriate size of the PositionV ector.

The later part of our study was more from application point of view. In this

part we proposed a framework and an algorithm which used utility of an itemset

to compress the size of the sliding window by replacing the itemsets in the sliding

window, with high utilities, by pointers. These pointers pointed to the same

itemsets but stored only once in the intermediate summary data structure. This

algorithm promises good results for datasets having itemsets which are large in

size and occur large number of times.

The process of pattern mining generates a large number of patterns out of

which not all are of actual interest to the users. Users are generally interested in

frequent patterns. Pattern generation can be restricted only to frequent patterns

using a minimum support threshold value which is usually specified by the user.

This value should be carefully specified in order to generate the most appropriate

set of frequent patterns. Users have no sufficient clue about the data in the data

stream to be able to specify the appropriate value of minimum support threshold.

Hence we proposed an approach to dynamically generate the value of minimum

support by calculating the mean and standard deviation of supports of itemsets

72

in the intermediate summary data structure. Users can specify their value of

minimum support threshold using the value generated dynamically.

In the next part of the study we proposed an algorithm to cluster values of

an attribute in a data stream. The data stream considered had pairs of values

belonging to a same attribute as its elements. Two values were clustered together

based on their occurrence as pairs in an element of the data stream. The same

algorithm was then extended to two attributes to generate clusters of values for

each attribute at the first instance and then generate association rules out of these

clusters.

All the algorithms were implemented using C++ and experiments were per-

formed on both synthetic and real data sets.

Itemset based pattern mining in data streams is an open research problem

having high scope for further improvements by incorporating techniques like text

mining, fuzzy-logic, etc.

73

Chapter 9

Future Work

The work done in our study can be extended in the future in the following

directions- The FIMUST algorithm proposed in chapter 3 generates itemsets using

the Apriori algorithm which requires multiple scans of the sliding window. These

itemsets can be generated using single pass algorithms mentioned in chapter 4.

The algorithm proposed in chapter 4 uses static size for PositionV ector to in-

crease its search efficiency. It would be worth exploring the effect of dynamic sized

PositionV ectors on the efficiency. The algorithm also stores the non-frequent

closed itemsets in the intermediate summary data structure. There is a scope to

work upon an algorithm to generate frequent itemsets without storing the non-

frequent itemsets.

The algorithm proposed in chapter 5 compresses the itemsets to reduces the

size of the sliding window. Our study was only limited to identifying the amount of

space saved using the method proposed. Exploring the ways of proper utilization

and benefits of this methods, other than generating frequent itemsets, is proposed

to be studied in the future.

The algorithms in chapters 6 and 7 are applied to one and two attributes

respectively. There is a scope for extending the study to multiple attributes.

Incorporating added information about the values themselves shall yield patterns

74

with more knowledge.

75

List of Publications

1. Naik SB, Pawar JD (2012) Finding frequent item sets from data streams with

supports estimated using trends. J Inf Oper Manage 3(1):153

2. Naik SB, Pawar JD (2013) An efficient incremental algorithm to mine

closed frequent itemsets over data streams. In: Proceedings of the 19th Inter-

national Conference on Management of Data, COMAD13, Mumbai, India, India.

Computer Society of India, pp 117120

3. Naik SB, Pawar JD (2015) A quick algorithm for incremental mining closed

frequent itemsets over data streams. In: Proceedings of the Second ACM IKDD

Conference on Data Sciences, CoDS 15, New York, NY, USA. ACM, New York,

pp 126127

4. Naik, S. B., Pawar, J. D. (2017, May). Clustering attribute values in tran-

sitional data streams. In Computing, Communication and Automation (ICCCA),

2017 International Conference on (pp. 58-62). IEEE.

5. Naik, S. B., Pawar, J. D. (2017, June). Mining association rules between

values across attributes in data streams. In Computational Intelligence in Data

Science (ICCIDS), 2017 International Conference on (pp. 1-6). IEEE.

6. Naik, S. B., Pawar, J. D. (2017, July). A single-pass algorithm for incre-

mental mining patterns over data streams. In 2017 International Conference on

Intelligent Computing, Instrumentation and Control Technologies (ICICICT) (pp.

565-569). IEEE.

7. Naik S.B., Pawar J.D. (2019) Frequent Itemsets in Data Streams Using

Dynamically Generated Minimum Support. In: Kulkarni A., Satapathy S., Kang

T., Kashan A. (eds) Proceedings of the 2nd International Conference on Data

Engineering and Communication Technology. Advances in Intelligent Systems

76

and Computing, vol 828. Springer, Singapore

8. Naik S.B., Pawar J.D. (2019) Framework for High Utility Pattern Mining

using Dynamically Generated Minimum Support Threshold. International Journal

of Engineering and Technology(UAE)

77

Bibliography

[1] https://ibm-quest-synthetic-data-generator.soft112.com.

[2] www.kaggle.com.

[3] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association

rules between sets of items in large databases. In Acm sigmod record, vol-

ume 22, pages 207–216. ACM, 1993.

[4] Nora Alkhamees and Maria Fasli. Event detection from social network

streams using frequent pattern mining with dynamic support values. In Big

Data (Big Data), 2016 IEEE International Conference on, pages 1670–1679.

IEEE, 2016.

[5] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer

Widom. Models and issues in data stream systems. In Proceedings of the

twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of

database systems, pages 1–16. ACM, 2002.

[6] Joong Hyuk Chang and Won Suk Lee. Decaying obsolete information in

finding recent frequent itemsets over data streams. IEICE transactions on

information and systems, 87(6):1588–1592, 2004.

[7] Joong Hyuk Chang and Won Suk Lee. Finding frequent itemsets over online

data streams. Information and Software Technology, 48(7):606–618, 2006.

78

BIBLIOGRAPHY

[8] Yu Cheng, Yusheng Xie, Zhengzhang Chen, Ankit Agrawal, Alok Choudhary,

and Songtao Guo. Jobminer: A real-time system for mining job-related pat-

terns from social media. In Proceedings of the 19th ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining, pages 1450–1453.

ACM, 2013.

[9] Yun Chi, Haixun Wang, Philip S Yu, and Richard R Muntz. Moment: Main-

taining closed frequent itemsets over a stream sliding window. In Data Min-

ing, 2004. ICDM’04. Fourth IEEE International Conference on, pages 59–66.

IEEE, 2004.

[10] Chris Giannella, Jiawei Han, Jian Pei, Xifeng Yan, and Philip S Yu. Min-

ing frequent patterns in data streams at multiple time granularities. Next

generation data mining, 212:191–212, 2003.

[11] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. Frequent pattern min-

ing: current status and future directions. Data Mining and Knowledge Dis-

covery, 15(1):55–86, 2007.

[12] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining frequent patterns

without candidate generation: A frequent-pattern tree approach. Data mining

and knowledge discovery, 8(1):53–87, 2004.

[13] Hua-Fu Li, Chin-Chuan Ho, and Suh-Yin Lee. Incremental updates of closed

frequent itemsets over continuous data streams. Expert Systems with Appli-

cations, 36(2):2451–2458, 2009.

[14] Shankar B Naik and Jyoti D Pawar. Finding frequent item sets from data

streams with supports estimated using trends. Journal of Information and

Operations Management, 3(1):153, 2012.

79

BIBLIOGRAPHY

[15] Matthijs Van Leeuwen and Arno Siebes. Streamkrimp: Detecting change

in data streams. In Joint European Conference on Machine Learning and

Knowledge Discovery in Databases, pages 672–687. Springer, 2008.

[16] Huang Xu, Zhiwen Yu, Jingyuan Yang, Hui Xiong, and Hengshu Zhu. Tal-

ent circle detection in job transition networks. In Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 655–664. ACM, 2016.

[17] Xintian Yang, Amol Ghoting, Yiye Ruan, and Srinivasan Parthasarathy. A

framework for summarizing and analyzing twitter feeds. In Proceedings of the

18th ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 370–378. ACM, 2012.

80

	Title
	Statement
	Certificate
	Acknowledgments
	Abstract
	Table of Contents

	List of Figures
	List of Tables
	Introduction
	Background
	Frequent itemset mining
	Data stream processing

	Motivation
	Thesis Contribution
	Thesis Outline

	Related Work
	Frequent Itemset Mining
	Closed Frequent Itemset Mining in Data Streams
	High utility itemset mining
	Attribute Value Clustering

	Frequent Itemset mining using Support Trends
	Introduction
	Related Work
	Problem Definition
	Preliminaries
	Problem Statement

	Framework for Frequent Itemset Mining Using Support Trends
	The Intermediate Summary Data Structure
	Algorithm FIMUST-Frequent Itemset Minimg Using Support Trends

	Experimental Study
	Error calculation
	Average error versus minimum support
	Support error versus number of partitions

	Conclusion

	Incremental Closed Frequent Itemset Mining using Single Pass Algorithms
	Introduction
	Related Work and Motivation
	Problem Definition
	Preliminaries
	Problem Statement

	Framework for Incremental Mining of Closed Frequent Itemsets from Data Streams
	The Intermediate Summary Data Structure
	Algorithm SPAIM-CFI-Single Pass Algorithm for Incremental Mining of Closed Frequent Itemsets

	Experimental Study
	Conclusion

	Framework for High Utility Pattern Mining using Closed Frequent Itemsets
	Introduction
	Related Work
	Problem Definition
	Preliminaries
	 Utility of an itemset

	Framework forHigh Utility Itemset Mining using Closed Frequent Itemsets
	The Intermediate Summary Data Structure
	The approach
	Automatic generation of the minimum support threshold s0
	Detection of frequent events in the sliding window

	Experiments
	Frequent Itemset Mining using Itemset Utility
	Frequent pattern generation using dynamically generated s0

	Conclusion

	Clustering Values of Single Attribute in Transitional Data Streams
	Introduction
	Background and Motivation
	Problem Definition
	Preliminaries
	Significance of s0
	Problem Statement

	The Proposed Approach
	The intermediate summary data structure
	The Algorithm

	Experimental Analysis
	Conclusion

	Mining Associations between Clusters of Values of Multiple Attributes in a Data Stream
	Introduction
	Background and Motivation
	Problem Definition
	Preliminaries
	Problem Statement

	The Approach
	The Algorithm
	Experimental Analysis
	Conclusion

	Conclusion
	Future Work

