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Abstract 
 

As reported in the WHO Media Centre, congenital anomalies affect approximately 1 in 33 

infants and result in approximately 3.2 million birth defect related disabilities every year. 

The Infant Mortality Rate in India is 11 deaths per 1000 live births. Medical reports in the 

hospitals in the state of Goa also showed that the total infant deaths that occurred were due 

to congenital anomalies, birth asphyxia, etc giving rise to the need for monitoring fetal 

health early in pregnancy. Monitoring of fetal heart rate may help clinicians to recognize 

pathological conditions so as to enable doctors for proper intervention that could result in 

irreversible neurological damage or even fetal death. 

Among various fetal monitoring techniques, the non-invasive fetal electrocardiogram 

(FECG) can be used to monitor fetal heart rates by placing the standard 12 lead surface 

ECG electrodes over the maternal abdomen. The maternal thoracic ECG can be taken as a 

reference signal along with the abdominal ECG. The non-invasive FECG contains 

potentially valuable information that assists clinicians to make appropriate and timely 

decisions, especially during the last weeks of the 3rd trimester of pregnancy or during labor. 

Due to the limitation of perfectly monitoring fetal heart rates, such as improving the signal 

to noise ratio of the abdominal ECG, researchers in the biomedical signal processing field 

have developed advanced FECG detection, extraction, and analysis methods. Among the 

number of detection and extraction techniques to separate the fetal ECG from the maternal 

ECG, this research work implemented and simulated techniques like independent 

component analysis, adaptive-network-based fuzzy inference system, template matching 

and correlation. Some of these mentioned methods for extracting non-invasive FECG have 

their own drawbacks.  

In this thesis, we have proposed a linear phase sharp transition (LPST) FIR band pass 

filter (BPF) design of various filter orders with an arbitrary passband. Firstly, we apply the 



 

ii 
 

single lead, non-invasive aECG signal to the LPST FIR BPF using the designated fiduciary 

edges with a sharp transition width. In the second stage, a QRS detector based on Pan 

Tomkins QRS detector algorithm is used to compute fetal or maternal heart rates. Our 

design allows the user to set the cut off frequencies for a narrow pass band width for any 

filter order. It also incorporates a very linear, sharp transition region while reducing the 

effects due to Gibb’s phenomenon, thereby reducing the passband ripple of the filter. To 

study the merits of our filter design, the magnitude response of our proposed filter 

performance was compared to that of the Parks-McClellan (PM) filter for a range of filter 

orders.  

In this research work, three LPST FIR BPF models were presented. The accuracy and 

failed detections were computed to evaluate the performance of the three LPST FIR BPF 

Models:  I, II and III using the Physionet databases. LPST FIR BPF Model I employed a 

BPF containing a tandem of high pass and low pass FIR filters. LPST FIR BPF Model II 

described a technique of implementing an integrated BPF. The FIR BPF Model III used a 

novel technique to reduce Gibb’s phenomenon at the fiduciary band edges of the band pass 

filter. In this method, equations are derived for slopes of the frequency response of the filters 

at the edges of the transition region and these slopes are matched. This reduces the effects 

due to Gibb’s phenomenon, thereby reducing ripples at the edges of the transition region of 

the filter and hence reduces passband ripple and improves stopband attenuation of the filter. 

In an aECG signal, it is also observed that our designed LPST FIR BPFs were able to 

compute precise single fetus R-peaks and maternal R-peaks even when the FQRS and 

MQRS signals overlapped in the time domain or existed in very close proximity. Our filter 

designs are simple, versatile and analytical without extensive computations. Our method is 

helpful for implementing a mini health care unit, making it suitable for ambulatory and 

long-term monitoring for the maternal and fetal well-being. 
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                      1 
Introduction 

  

1.1   Background and Motivation  
 

Five years after Einthoven’s first discovery of electrical activity in a human heart, Cremer 

identified the fetal electrocardiogram (FECG) from the abdominal and vaginal set of electrodes. 

Winkler discovered six years hence that a fetal heart rate (FHR) higher than 160 beats per 

minute (bpm) and less than 120 bpm indicated fetal distress [1]. Decelerations of the FHR 

predicts fetal hypoxia. It is reported in the World Health Organization (WHO) Media Centre 

2012 that birth defects referred to as congenital anomalies affect approximately 1 in 33 infants 

and results in approximately 3.2 million birth defect related disabilities every year [2]. The 

infant Mortality Rate (IMR) of 2012 among the Indian states was 43.8 deaths per 1000 live 

births [3]. Madhya Pradesh, the central state in India scored the highest IMR of 62 while Goa 

scored the lowest IMR of 11 as shown in Figure 1.1. The Population Reference Bureau (PRB) 

which informs the world about health, population and the environment shows the region wise 

2015 IMR as shown in Figure 1.2a [4] . The highest IMR in the world is in African countries. 

Among the South Asian countries, India displayed an IMR of 42 in 2015, slightly lower than 

recorded in 2012 as shown in Figure 1.2b. Reports in the local newspapers in the year 2012 

showed that the total infant deaths at birth that occurred at the hospitals in the state of Goa, 

India were 249. The infant deaths were mainly due to congenital anomalies (35.7%), low birth 

weight (26.7%), sepsis (25.5%), birth asphyxia (5%) and others (8%) as shown in Figure 1.3 

[5]. Also, all over the world, approximately 2.65 million stillbirths occur during pregnancy or 
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labor, especially in developing countries [6].The occurrence of birth defects leading to death in 

infants is prevalent till today.  

 

 

Figure 1.1:   Infant Mortality Rate statistics of the Indian states in the year 2012 [3]. 

 

 

 

  

                                            1.2 (a)                                                               1.2 (b) 

 

Figure 1.2: Population Reference Bureau 2015 data displaying (a) IMR of all countries 

(b) IMR of South Asia (India) [4]. 
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Figure 1.3: Cause of death in Infants at birth due to birth asphyxia at the hospitals in 

Goa, India (Newspaper report, Heraldo (Insight) Friday, May 17 2013) [5]. 

 

1.2   Need for fetal monitoring 

The World Health Organisation released the antenatal care (ANC) model on 7th November 

2016. This model envisions and promotes critical healthcare for diagnosis and prevention of all 

maternal and fetal diseases [7]. The model promises timely maternal and fetal assessment, 

health support by the clinicians which will further enhance the successful pregnancy outcomes. 

Ban Ki-Moon, the Ex-United Nations Secretary-General said in 2016, “To achieve the Every 

Woman Every Child vision and the Global Strategy for Women's, Children's and Adolescents' 

Health, we need innovative, evidence-based approaches to antenatal care. I welcome these 

guidelines, which aim to put women at the centre of care, enhancing their experience of 

pregnancy and ensuring that babies have the best possible start in life” 

FHR monitoring is important to recognize pathologic conditions, typically asphyxia, 

with sufficient warning so as to enable intervention by the clinician [8]. It is a screening 

modulus of the fetus to detect problems in advance that could result in irreversible neurological 

damage or even fetal death [9]. More than 85 percent of all live births in the United States 

undergo electronic fetal monitoring (EFM) [10]. Indeed fetal health monitoring is of significant 

importance in obstetrical procedures and is now widely accepted as the need of the hour.With 

EFM came the following expectations – provision of accurate FECG information, information 

of value in diagnosing fetal distress, prevention of fetal death or morbidity and superiority over 
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many methods. The fetus can be monitored electronically by two methods: direct (invasive) and 

indirect (non-invasive). In the direct invasive method, the FHR is measured by a scalp electrode 

which is attached to the fetal scalp by means of a coiled electrode [11]. In the indirect electronic 

monitoring method, such as using ultrasound Doppler principle with uterine contractions, FHR 

can be monitored, but not as precisely as the direct invasive FECG [8]. The ultrasound 

transducer with the coupling gel is applied to the mother’s abdomen where the fetal heart 

response is best detected. During this measurement, the pulsations of the maternal aorta could 

be detected and erroneously considered as FHR [12]. The non-invasive FECG (NIFECG) by 

indirect method can therefore be used to overcome all these limitations by placing surface 

electrodes such as the 12 lead ECG electrodes over the maternal abdomen [13]. The maternal 

thoracic ECG can also be taken as a reference signal along with the abdominal ECG (aECG). 

A study was conducted during labour of about 75 pregnant mothers using non- invasive fetal 

monitor AN24 monitor and was compared with external methods, to check the accuracy and 

reliability of the FECG [14]. It was found that the direct scalp FECG gave the most accurate 

FHR than the conventional external methods, however this method could be used only during 

labor else it would cause risk and infection to the fetus. Therefore EFM using NIFECG 

recordings are most suitable for long term ambulatory use [15].  

 

1.3   Economics to deal with fetal health care  

The Indian government doesn’t spend a lot low on antenatal care (ANC) as compared to other 

nations having similar poverty levels and per-capita income. WHO in its updates in the Global 

Health Expenditure database shows that the percentage of gross domestic product (GDP) is 

1.407 % unlike countries like Sri Lanka, China and Brazil who spend 2 %, 3 % and 3.8 % on 

its GDP, respectively [16]. Detection of NIFECG signal and associated analysis as part of ANC 

is a very powerful and advanced method today in clinical diagnosis and biomedical 

applications. The NIFECG contains potentially valuable information that assists clinicians to 

make appropriate and timely decisions, especially during the last weeks of the 3rd trimester or 
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at full term. There is a limitation to perfectly monitor fetal heart rates, improving the signal to 

noise ratio (SNR) of the NIFECG.  

Researchers in the biomedical signal processing field have done extensive work in the 

last two decades towards advanced NIFECG detection, extraction, and analysis methods. A 

large number of detection and extraction techniques are used to separate the maternal ECG 

(MECG) from the FECG either by using single or multichannel signal sources. A single or 

multi- channel signal source can be used to extract the NIFECG from the aECG. The signals 

are processed by adaptive and non-adaptive methods that extract NIFECG. The drawback of 

non-adaptive techniques include it being time invariant. This is overcome by adaptive methods 

[17]. Researchers in this field have reinforced the extraction algorithms and improved the 

detection techniques, thereby leading to reduction in noise and acquisition of reliable NIFECG 

signals assuring fetal health during pregnancy and labor. Extensive work has been done to 

effectively and efficiently separate NIFECG from MECG using single and multichannel signal 

sources. Kalman filtering [18], combination of LMS (least mean square) algorithm and RLS 

(recursive least square) algorithm [19] are methods of linear adaptive processing while non-

adaptive techniques include like artificial neural networks [20] and ANFIS (adaptive-network-

based fuzzy inference system)[21]. Non-adaptive multi-channel techniques are BSS (blind 

source separation) and its variants such as ICA [22], PCA (principle component analysis) and 

SVD (singular value decomposition) [23]. Single channel signal sources processing uses non-

adaptive methods such as correlation methods [24], subtraction [25], averaging techniques [26], 

finite impulse response (FIR) and infinite impulse response (IIR) filtering [27] and wavelet 

transform based techniques[28]. A literature review of the various techniques to extract FECG 

from the maternal abdominal ECG recordings are compiled well in [8, 11, 17] and most recently 

by Behar et al [6]. (For more details see section 2.8). 
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1.4   Physiology of the adult heart versus the fetal heart 

The adult heart is a muscular organ that consists of two-chamber pumps, composed of an atrium 

and a ventricle. The atrium helps to move the blood into the ventricle. The ventricle, in turn, 

thrusts the blood either into the pulmonary or peripheral circulation. The Sinoatrial (SA) node 

which is the natural pacemaker in the heart is responsible for generating rhythmic impulses 

which cause rhythmical contractions of the heart muscle thereby conducting these impulses 

rapidly throughout the heart [29]. The SA node therefore controls the rate of contractions of the 

complete heart. The nodal fibres of the SA node propagate an action potential to both atria and 

from there through the atrioventricular (AV) bundle into the ventricles [30]. The bundle of His 

further delays the action potentials, allowing the atria to empty itself into the ventricles before 

the contraction of the ventricles. The Purkinje fibres which are relatively large fibres, transmit 

the action potential up to the apex of the heart to allow the ventricles to contract simultaneously. 

The fetal heart has a few differences with respect to the adult heart as shown in Figure 

1.4. For the fetus, the gas exchange takes place in the placenta which functions like fetal lungs 

and both the ventricles pump the blood throughout the body [31]. This is accomplished by the 

two shunts, namely, the foramen ovale (a gap in the septum dividing both sides of the heart) 

and the ductus arteriosus (a shunt between the pulmonary artery and the aorta) that link the 

outgoing vessels of both ventricles as shown in Figure 1.5. This allows the blood to enter the 

right atrium and to bypass the pulmonary circulation. Similarly, the ductus venosus which is a 

vessel that allows blood to bypass the liver. It carries blood with oxygen and nutrients from the 

umbilical cord straight to the right side of the fetal heart [32]. After birth, the foramen ovale 

closes with the first breaths and the ductus arteriosus partially closes in 10 to 15 hours after 

birth and takes up to three weeks for complete closure. The ductus venosus also closes shortly 

after birth, when the umbilical cord is cut and blood flow between the mother and fetus stops 

[32]. There are other minor changes that takes place in the baby’s heart within the first year 

after birth. 



 

7 
 

                        

Figure 1.4:   Anatomy of the fetal heart; adopted with permission from [11]. 

 

                  
 

Figure 1.5: Organization of the fetal circulation involving the ductus venous, ductus 

arterious and foramen ovale [29]. 

 

1.5   Characteristics of the Fetal Electrocardiogram  
 

The potential difference between two electrodes as a function of time (bipolar ECG recording) 

measured on the body surface results in the so called PQRST complex. Figure 1.6 shows a 

typical FECG waveform with its important features. 
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Figure 1.6:   Representation of a fetal ECG waveform and its important features [58] 

 

The depolarization of the atria is represented by the P-wave [29]. As the atria depolarizes 

completely, the ECG goes to zero amplitude. This period is represented by the PR interval. The 

ventricular depolarization is represented by the QRS (Central part of heart beat morphology) 

complex [29, 30]. The atrial repolarization coincides with the ventricular depolarization. The 

amplitude of the QRS complex is larger than the P wave because of the large muscle fibers in 

the ventricular walls which are responsible for the propagation of large amount of blood into 

the peripheral circulation. After the ventricles are depolarized completely the ECG again has a 

zero amplitude. The T wave is associated with the repolarization wave of the ventricles [30].  

 

1.6   Differences between fetal and adult ECG 
 

The direction of the electrical axis in the adult and fetal hearts are not the same. In the adult 

heart, the left ventricle has a larger muscular mass and hence the electrical axis points towards 

the left ventricle. In the fetal heart, the mass of the right ventricle is 60% larger than that of the 

left one (40%) [33]. Hence, the electrical axis of the fetal heart is expected to point towards the 

right ventricle [34]. Hence, each ECG representation for the fetus differs from the same ECG 

representation for the adult. The other differences in their RR-interval and morphology are: (i) 

The fetal heartbeat is almost twice as fast as an adult heartbeat with considerable changes in 

different stages of fetal cardiac development [35] as seen in figure 1.7. 
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Figure 1.7: Representation of an FECG interleaved between MECG signals [35,39].  
[F – fetal R-peak, M- maternal R-peak]  

 

(ii) The heart-rate variability (HRV) of the fetus is also known to be simpler (less dynamic) 

than an adult. However, as the fetal autonomic nervous systems evolves, the HRV patterns also 

become more complex [36]. (iii) Morphologically, adult and fetal ECGs have rather similar 

patterns; but the relative amplitudes of the fetal complexes undergo considerable changes 

throughout gestation and even after birth. The most considerable change concerns the T-waves, 

which are rather weak for fetuses and newborns [37]. Table 1.1 lists the values of the various 

physiological parameters of MECG and FECG. 

 

Table 1.1   Summary of the physiological parameters of MECG and FECG signals. 

Physiological parameters MECG FECG 

Heart rate range  [38] 50 - 210  BPM 60 - 240 BPM 

Expected heart rate (HR) [38] 80 BPM 140 BPM 

QRS spectral energy [38] 10-30 Hz 20-60 Hz 

Peak -to- peak amp. range [39] 100- 150 µ V 3 - 25 µ V 

Bandwidth [39] 0.05 to 100Hz 0.1 to 100Hz 

 

 

1.7   Clinical significance of the fetal ECG 

Fetal development which lasts for 40 weeks begins with the heart beating at the 4th week of 

pregnancy with the beat to beat frequency of 65 BPM and increases to about 140 BPM before 

delivery [15]. FECG allows for a deeper interpretation of the heart’s electrical activity than 

merely assessing its rhythmic changes. This is achieved by performing a morphological analysis 
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over the PQRST complex (see Figure 1.6). FECG analysis is rarely used in clinical practice, 

however many research studies have been done using the width and shape of the QRS complex, 

PR interval, QT interval and ST segment. A detailed overview can be read on available 

morphological features in [6]. Fetal distress and fetal asphyxia are too broad and vague to be 

applied with any precision to clinical situations (American College of Obstetricians and 

Gynecologists, 2005). Uncertainty regarding the diagnosis based on interpretation of FHR 

patterns has given rise to reassuring or non-reassuring patterns. Reassuring FHR patterns 

include the normal baseline FHR, moderate accelerations and variability with fetal movement, 

assuring the wellbeing of the fetus. Non-reassuring FHR patterns include tachycardia, 

bradycardia, absent variability, late decelerations, variable decelerations falling to less than 70 

bpm for longer than 60 seconds, and prolonged decelerations. The baseline FHR decreases by 

24 bpm between 16 weeks and term, or 1 beat/min per week. This slowing of the heart rate 

corresponds to maturation of parasympathetic heart control [40]. If the baseline fetal heart rate 

is less than 110 bpm, it is termed as bradycardia. The severe and prolonged hypoxia induces a 

prolonged fall in heart rate [41]. Bradycardia within the range of 80 to 120 bpm with good 

variability is reassuring while rates below 80 bpm is problematic and non-reassuring [42]. 

Causes of fetal bradycardia include congenital heart block [43].The baseline fetal heart rate 

greater than 160 bpm, is termed as tachycardia. Infections such as chorioamnionitis which 

causes maternal fever induces fetal tachycardia [44]. Beat-to-beat variability is affected by 

various pathological and physiological mechanisms. It is reported that the fetal body 

movements affect variability [45], while the baseline variability increases with advancing 

gestation [46]. The reduced beat-to-beat variability is a sign to indicate a seriously compromised 

fetus. It is also reported that reduced variability with decelerations is associated with fetal 

academia [47]. A consistently flat fetal heart rate baseline with absent variability and without 

decelerations within the normal baseline rate range may reflect a neurological damage in the 

fetus [42]. It is important that we understand the parameters of the fetal ECG signal which 

further aids the analysis of the fetal status and the EFM. As fetal hypoxia worsens, there are 
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changes in the T wave and the ST segment of the fetal ECG. It is postulated that increasing 

T:QRS ratios reflect fetal cardiac ability to adapt to hypoxia and appears before neurological 

damage. Worsening hypoxia results in negative ST segment [48].  

Many complications during antenatal and intrapartum periods may also lead to fetal 

hypoxia. Despite the various fetal compensatory mechanisms that take place, if hypoxia is 

prolonged, it can lead to acidosis (i.e. an increased acidity in the body fluids). Severe and acute 

acidosis are associated with significant morbidity and mortality [49, 50]. Hypoxia effectively 

reduces the energy storage available for repolarization of the myocardial cells, resulting in 

changes in the fetal heart rate variability (FHRV) and FECG waveforms [51]. Excessive uterine 

contractions are the leading cause of hypoxia, since they may decrease placental perfusion as 

well as compress the umbilical cord [52]. 

The fetus attempts to maintain the functioning of central organs as long as possible. The 

final stage of asphyxia is the collapse of the system with brain and heart failure. Asphyxia that 

lasts only for a few minutes might cause irrecoverable damage. In adults changes in the QT-

interval are associated with myocardial ischemia [53], sudden cardiac death [54] amongst 

several other conditions. Thus, the fetal QT interval which can be recovered from the non-

invasive FECG is of much interest in the monitoring of fetal hypoxia resulting in metabolic 

acidosis. The reliable assessment and diagnosis of changes in fetus condition is of major 

importance. Using diagnostic tools we can detect and evaluate these changes.  

 

1.8   Organization of the thesis  

The thesis is divided into five chapters. In Chapter One, An Overview of the need for 

monitoring and assessment of maternal and fetal Electrocardiogram for positive pregnancy is 

discussed. The chapter also includes the economics of the antenatal health care and a brief 

background to the physiology of the adult heart with comparison with the fetal heart. A clinical 

significance of the fetal ECG signal is also discussed in detail. 
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In Chapter Two, a comparison of the various fetal heart rate monitoring techniques are 

explained. It also includes a brief write up of the challenges in acquiring real time non-invasive 

fetal ECG using surface ECG electrodes from the maternal abdomen. The various electrode 

configurations are listed which includes our proposed optimum electrode placement schemes 

(an experimental case study is listed in Appendix A). A list of online public abdominal ECG 

databases available which have been used in this thesis is included in this chapter. Also, in this 

chapter a detailed literature survey is given of the various techniques used to extract the fetal 

ECG from the abdominal ECG signals. Some of the methods such as Independent Component 

Analysis (ICA), Adaptive neuro-fuzzy inference system (ANFIS), Correlations and our 

proposed synthesized template method were implemented to extract and compare the methods 

as listed in Appendix B. The chapter ends with the research objectives and the proposed linear 

phase FIR filter design.  

Chapter Three in its introduction has the background on linear phase sharp transition 

FIR filters, their features, comparisons and problems encountered in implementation. The 

chapter then explains the proposed three design models of the linear phase sharp transition FIR 

filters namely, Model I: Composite band pass FIR filter using High pass – Low pass FIR filters 

in Tandem. Model II: an Integrated LPST FIR BPF and Model III, which deals with the novel 

technique of slope matching which is applied to the linear phase sharp transition FIR integrated 

band pass filter design. This chapter includes expressions for all the filter model parameters, 

impulse response coefficients and the magnitude responses of each of the filters. The results of 

the filter design are tabulated and compared. Similarly, the band pass FIR filter with and without 

slope matching are further compared with the Parks-McClellan algorithm (optimum FIR filter 

design). 

Chapter Four describes the QRS detection algorithm for maternal and fetal R-peak 

detections and thereby the maternal and fetal heart rate variability.The performance parameters, 

sensitivity and positive predictive values including the accuracy and failed detections are 
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computed to evaluate the performance of the three linear phase sharp transition (LPST) FIR 

filter Models I, II and III using the three Physionet databases.  

Chapter Five gives the conclusions of the work done and future work proposed in this 

research. The thesis has appendices:  Our proposed optimum electrode placement schemes with 

an experimental case study is listed in Appendix A. The implementation of FECG extraction 

techniques such as synthesized QRS template, ICA and ANFIS are explained in Appendix B. 

Displaying aECG signals and maternal and fetal heart rates using Matlab Mobile are given in 

Appendix C. The conventional three FIR design methods are reviewed, the filter design steps 

for the proposed LPST FIR filters, Model I and Model II are listed in Appendix D.  
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2  
 

Literature survey of Extraction of Maternal 

and Fetal ECG  

 

2.1  Techniques in monitoring fetal heart rate 

Auscultation is one of the most primitive methods to monitor the fetus heart rate. The 

monitoring can be done either by using an ultrasound device or a fetoscope. However, a better 

option of using electronic monitoring was proposed when abnormal patterns were detected 

using auscultation technique [8]. This EFM system allowed the clinicians to record the fetal 

heart signals and later even analyse the readings to diagnose the fetal’s health status. EFM can 

be categorized into two types namely, internal and external monitoring methods. 

2.1.1   Invasive FECG monitoring  

In the internal monitoring method, the invasive direct fetal scalp electrode is inserted just 

beneath the skin of the fetal’s scalp as shown in Figure 2.1(c). The ECG readings of the 

electrode are recorded which are stored for future analysis. This is done to obtain accurate fetal 

ECG measurements during labour which may pose a slight risk of infection to the fetus [55]. 

The external electronic fetal monitoring can be done by various methods such as fetal 

phonocardiography (PCG), cardiotography (CTG), fetal magnetocardiogram (FMCG) and 

NIFECG as shown in Figure 2.1. 
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2.1.2   Phonocardiography (PCG) 

Phonocardiography was first available as a clinically useful fetal monitor which is rarely used 

for clinical practice today. The microphone which is placed on the abdomen detects harmonic 

content of fetal heart sounds between 70 Hz and 110Hz as shown in the Figure 2.1(a). It also 

detects ambient noises. During contractions, the detection of fetal heart sounds are hampered 

by excessive abdominal wall movement. Fetal phonocardiography is also susceptible to 

movement artifacts effects [56]. The signal quality is also affected by the quantity of amniotic 

fluid, abdominal wall thickness and the maternal and fetal positions.  

 

  

Figure 2.1: Various techniques of EFM [39] (a) Phonocardiography (b) Ultrasound 

transducer (c) Invasive Direct FECG (d) Non-invasive FECG. 

 

2.1.3 Fetal magnetocardiogram (FMCG) 

Magnetocardiograms are recordings of the magnetic fields generated by the currents flowing 

within the fetal heart. The only sensor that is sensitive enough to monitor such weak fields is a 

SQUID (superconductive quantum interference device) [57]. A major advantage of using fetal 

MCG for FHR derivation is that it is possible to obtain true beat-to beat data. FMCG can also 

be recorded reliably from the 20th week onward and can be used to classify arrhythmias such 

as heart blocks and atrial flutters [6]. While providing higher quality FHR, the major 

disadvantage of fetal MCG is the size and complexity of the instrumentation required (although 

smaller devices may become available). FMCG is very expensive to be widely used clinically 

[15].  
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2.1.3 Cardiotography (CTG) 

We distinguish two types of CTG monitoring based on different stages of labour. Before the 

rupture of the membranes the external ultrasound probe and transducer are used to acquire FHR 

and uterine pressures, respectively [58]. After the rupture of membranes the electrode is 

attached to the fetus’ scalp and the FHR is computed directly from the ECG’s R-R intervals. 

The uterine pressures are obtained using an internal electrode placed in the vagina. The record 

is called intrauterine pressure (IUP). The external and internal monitoring is shown in Figure 

2.2. 

 

Figure 2.2:   External and internal monitoring using Cardiotography [58]. 

The Doppler ultrasound principle uses a hand held device that is placed against the mother’s 

abdomen that uses sound waves to indicate signals of fetal heartbeat as shown in Figure 2.1 

(b). The Doppler ultrasound may help diagnose heart valve defects and congenital heart 

disease. Although the Doppler ultrasound technique displays a recording of FHR it requires an 

experienced midwife to skilfully place and reposition the transducer to insonate a 1.5 - 2 MHz 

signal towards the fetus [39]. Besides, it’s not been proved that this high frequency signal is 

completely safe for the fetus. The Doppler procedure can be quite uncomfortable and 

problematic for the pregnant mother as it is not suitable for long periods of FHR recordings 

[59, 60]. Another major disadvantage of Ultrasound method is its sensitivity to movement. Due 
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to the mother’s movement during recordings and the misorientation of the transducer, the 

maternal heart rates can be misinterpreted as FHR [61]. As this method depends upon the 

movement of the heart valves which corresponds to the fetal heartbeat, it does not really give 

us accurate beat to beat analysis [8]. To add to the drawback, the Doppler uses an averaging 

system to calculate the FHR data which may not give us reliable data.  

 

2.1.5 Non-invasive FECG (NIFECG) 

By placing the surface ECG electrodes on the maternal abdomen, abdominal NIFECG is 

recorded as shown in Figure 2.1(d). This procedure is called non-invasive method which can 

be performed right from the 20th week of pregnancy. NIFECG extraction from the abdominal 

ECG can be carried out by suitable signal processing and appropriate filtering techniques. 

NIFECG carries vital information about the cardiac function of the fetus which is important in 

determining the fetal life, fetal development, fetal maturity, and existence of fetal distress or 

congenital heart disease. The morphology of the extracted NIFECG contains diagnostic 

information which can assist the clinician to take timely decisions during pregnancy or labour. 

The parameters from the NIFECG signal can be useful for most biomedical researchers and 

clinicians who are researching to make this technique a reliable method.  

The other advantages of using NIFECG are that it provides FHR data with beat-to-beat 

accuracy, unobtrusive, risk-free ambulatory monitoring while now-a-days the mother herself 

can monitor the fetus status via the attached low power fetal monitor. One of the biggest 

challenges is the acquisition of the aECG signals in which the fetal ECG is buried among 

various noise signals, wherein the maternal ECG is the most significant noise among others. 

Due to this, NIFECG displays a low SNR. The amplitude of the NIFECG increases over the 

gestation periods but sees a dip in FECG during the 28th to 32nd week due to the layer called 

the vernix caseosa that surrounds the fetus [62]. Due to the uncertainty of the acquisition 

method and further to the beat to beat morphological analysis, the long term uninterrupted FHR 
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monitoring for 24 hours a day is desirable. Additionally the maternal heart rate can also be 

recorded from the aECG along with the FHR. 

Table 2.1:  Internal and external FHR monitoring techniques [6,8,9,11,13]. 

 

Technique Gestational 

age 

Merits Demerits Accuracy 

Direct 

scalp 

electrode  

(invasive)  

At delivery 

only 

 100% accurate 

FHR. 

 Morphological 

analysis  possible 

 High SNR 

 Single channel  

 Invasive. 

 Risk to fetus. 

 Can only be used at delivery 

and not    daily monitoring. 

 

   100% 

PCG 28 weeks 

delivery 

 Cheapest method.  Lowest SNR among all 

methods. 

 Requires skilful clinician to 

locate fetus. 

 Susceptible to movement 

artifacts effects. 

 Not routinely employed for 

FHR monitoring by doctors. 

   60% 

CTG 20 weeks 

delivery 

 Cheap and easy to 

handle, useful   

during labour. 

 Obtains smooth 

heart rate. 

 

 

 

 Beat-to-beat analysis not 

possible. 

 High frequency ultrasound 

radiation. 

 Prone to maternal/fetal HR 

confusion. 

 Fails during fetal or maternal 

movements. 

 Used only for short term 

monitoring and depends on 

the quality images. 

90% 

FMCG  20 weeks 

delivery 

 Gives accurate 

FHR. 

 Beat to beat 

morphological 

analysis possible. 

 Higher SNR. 

 Costly.  

 Requires skilled clinician. 

 No long term monitoring 

possible to due to the 

apparatus size and cost. 

 Observed as average signal. 

100% 

NIFECG 20 weeks   

delivery 

 Easy to use and 

does not require 

skilled personnel.  

 low cost 

 Long term 

monitoring 

possible. 

 Beat to beat 

morphological 

analysis possible. 

 Low SNR, with potential 

drop in the FECG signal  

from 28th to 32nd week 

 

 

90% 

 

An overview of the merits and demerits for the internal and external techniques for fetal heart 

monitoring are discussed in Table 2.1. Although the CTG or Doppler method gives high 
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success, it fails to give beat to beat accuracy due to its averaging procedure [63] and does not 

extend any help in monitoring fetal arrhythmia and also the future morphological research 

work. Phonocardiography is susceptible to movement artifacts and is hardly used today by 

clinicians. Therefore, the Doppler ultrasound and the abdominal FECG together are the most 

viable options for the monitoring of FHR.  

 

2.2.   Noise in abdominal ECG affecting FECG 
 

The major drawback of using NIFECG is the low SNR because FECG is corrupted by the 

presence of noise elements such as MECG, power line interference (PLI), low frequency noise 

due to baseline wander, Electromyogram (EMG), Electrohysterogram (EHG) due to 

contractions, motion artifacts, noise due to surface electrode contact, noise due to the 

instrument etc [11, 64]. The morphology of the fetal signal can depend on certain parameters 

such as gestation age, presentation of the fetus and the configuration of the ECG electrodes 

applied to the maternal abdomen. To be familiar with the noise affecting the FECG, some of 

the prominent noise sources are listed below. Figure 2.3 shows the frequency spectrum versus 

amplitude of FECG with the associated noise sources. 

        

Figure 2.3: Frequency spectrum versus amplitude of various biosignals and some noise 

sources which interfere with FECG [11]. Note that, the amplitude of these 

signals depends on the site from which the data is recorded. 
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 MECG is the most predominant interfering signal with FECG in the aECG. The 

frequency spectrum of maternal ECG partially overlaps with the FECG as seen in 

Figure 2.3 [8]. It is evident that the amplitude of the MECG is almost 5-10 times that 

of FECG [6].  

 PLI consists of the 50/60Hz noise signal and its harmonics which can alter the peak-to-

peak ECG amplitude which can affect the fetal R-peak detection. 

 Baseline wander is a low frequency noise which represents the maternal respiration. 

When this noise is added to aECG, the amplitude of the ECG varies by 15% [8]. 

 EMG is a maternal muscle noise due to the movement of the abdominal muscles and 

EHG is the noise associated with contractions of the maternal uterine muscle. 

 Electrode contact noise is caused by loss of contact between the electrode and the 

maternal abdominal skin. These transitions may normally occur at the beginning of the 

recording and fades off over few seconds. 

 Motion artifact which is due to the electrode interface /cable and inherent noise in 

monitoring instruments can be reduced or eliminated with proper design of the fetal 

monitors. 

2.3    Challenges in extracting NIFECG using surface electrodes 

With advanced signal processing techniques and biomedical engineering research, the SNR of 

the FECG can be enhanced by carefully acquiring the aECG from the maternal abdomen along 

with the maternal thoracic as reference MECG. After using appropriate filtering techniques to 

remove the above noise elements, the NIFECG can be obtained by efficient detection and 

extraction methods. The extracted FECG from the aECG is very small, about 5 times less in 

amplitude compared to the MECG and is sometimes embedded in the noise signals [25]. The 

maximum amplitude for FECG can record 60 μV while the MECG ranges from 100 to 150 μV 

[8]. Although the frequency bandwidth range of the FECG is 0.05–100 Hz it interestingly 
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overlaps with the MECG [9].While FECG has been estimated to be ¼ of the total signal energy 

[8], the normal FHR ranges from 120 – 140 bpm and comparatively the maternal heart rate 

(MHR) ranges from 70 – 100bpm [17]. Figure 2.4  illustrates the invasive scalp FECG along 

with one of the aECG channels from the Physionet Abdominal and Direct Fetal 

Electrocardiogram Database (adfecgdb) [65,66] while Figure 2.5(a) shows the maternal 

thoracic channel of the Physionet Non-Invasive Fetal Electrocardiogram Database (nifecgdb) 

[67] along with one of the non-invasive aECG channel. The above signals clearly show the 

amplitude and frequency of the maternal and fetal signals.  

 

Figure 2.4:   Physionet signals from adfecgdb database [66] a) Invasive fetal scalp ECG 

(the red dots indicate the fetal R peaks) b) One of the abdominal ECG channel 

(the green dots indicate the maternal R peaks). The FECG signal amplitude in 

this database is relatively good. 
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Figure 2.5:   Physionet signals from nifecgdb database [67] a) Maternal thoracic ECG (the 

green dots indicate the maternal R-peaks). b) One of the abdominal ECG 

channel. The FECG and noise amplitude is very small compared to MECG 

signal. 

 

Besides the noise sources stated in section 2.2 which corrupts the aECG and the required 

FECG, there are other reasons also that we need to take into consideration while acquiring 

FECG using surface electrodes. Changes in the volume conductor between the fetal heart and 

the abdominal electrodes change the FECG [62, 68, 69, 70]. In general, these changes are due 

to the (i) movement of the fetus (ii) development of the vernix caseosa [62, 71] or (iii) 

movement of the mother.  

(i) In case of the fetal movement, it causes the distance between the heart and a 

particular electrode placed on the maternal abdomen to either decrease or amplify 

the corresponding FECG signal. During the first two trimesters of gestation (week 

1 to week 27) the fetus moves a lot in the uterus and the orientation of the fetus is 

unknown. By the beginning of the third trimester of gestation (week 28), it 

commonly settles in a head-down position known as the vertex presentation 



 

23 
 

(96.8%), which is more appropriate for birth [6]. However the fetus may also settle 

in other presentations (see Figure 2.6).The orientation of the fetus influences the 

FECG recorded from the maternal abdomen using different ECG lead 

configurations [12]. 

   

Figure 2.6: Different fetal presentations and their percentage of incidence 

at the end of third trimester [6]. 

 

(ii) At about the 28th week of gestation (see Figure 2.7), the fetus develops a protective 

non conducting layer called the vernix caseosa as shown in Figure 2.8 .The vernix 

caseosa insulates the fetus electrically from its surroundings, making it virtually 

impossible to record an FECG from the maternal abdomen. However, from about 

32 weeks of gestation this protective layer starts to break down and from the 37th 

week of gestation the vernix caseosa dissolves in the amniotic fluid restoring the 

uniform conduction characteristics of the volume conductor [62].  

 

            Figure 2.7: Prenatal development with respect to fetal monitoring (w = week) [13]. 
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 Figure 2.8:  The vernix caseosa formed over the fetal skin that influences the FECG [6] 

 

(iii) The third reason for the changes in the volume conductor is due to the movement 

of the mother who in turn causes a movement of the recording electrodes. The 

movement of the electrodes causes the conductive layer between the skin and the 

electrodes to change and hence causes a change in the properties of the volume 

conductor. This conductive layer is generated by the thermal excitation of metallic 

ions in the electrode [68]. These ions spread through the electrolyte, forming a layer 

balancing the electrode charge. Although the ions can move freely through the 

electrolyte, the speed of movement is limited and hence electrode movement is 

likely to disturb the balancing layer and hence the electrode-skin bias [68], 

resulting in artifacts in the recorded fetal ECG. 

As seen in the Figures 2.4 and 2.5, the SNR of the NIFECG is quite low as compared to the 

MECG due to the size of the fetal heart and the conducting media between the fetal heart and 

the surface electrodes [9]. The maternal skin and muscle tissue acts as a volume conductor 

whose conductivity changes with the gestation age [6]. Another challenge for the biomedical 

signal processing engineers and researchers is to avoid confusion between FHR and MHR 

computation after extracting the aECG signal. Today the biggest boon is to derive significant 
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fetal morphological parameters from the NIFECG signals to extract various fetal parameters 

such as fetal QRS (FQRS) morphology, shortening of QT, ST intervals [69] etc, that will enable 

fetal diagnosis at an early stage in pregnancy. In the market there are already various FHR 

monitors which detect FHR recordings such as, Monica AN24 monitor, Nottingham, United 

Kingdom, Meridian M100/M1000 monitors from MindChild Medical, Nemo Healthcare, 

Netherlands and PregSense, Israel [6]. The motivation to research and to build efficient FHR 

monitors to provide a complete set of fetal information to the clinician has not ended. This area 

of biomedical study is an ongoing process among many researchers today. 

 

2.4    Placement of ECG electrodes over maternal abdomen 

              

 

Figure 2.9:   NIFECG acquisition process. 

 

A few pointers were considered before setting up the configuration of the electrode placement 

over the surface of the maternal abdomen as seen in Figure 2.9. An ultrasound of the maternal 

abdomen can be done to investigate the presentation of the fetus in the womb as it varies with 

the gestation age right up to labor. Knowing the position of the fetus would enhance the chances 
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of extracting better FECG waveforms. Care should be taken that at least one strong maternal 

thoracic signal can be recorded from the mother as a reference MECG signal to be used for 

certain extraction algorithms synced with other aECG channels. Abdominal ECG signals from 

one channel to multichannel can be used as per the requirement for the fetal detection 

techniques such as ANFIS [72, 73], ICA [74] etc. The aECG database can be sampled at 1 KHz 

with an ADC resolution of 16 bits and the recording time can range from 18 minutes 

(antepartum) to at least 30 minutes (at labor). These durations will be able to capture the various 

fetal conditions especially as the FECG is quasiperiodic in nature and the fetus is constantly 

moving in the uterus during labor. The aECG recordings can be taken from a group of subjects 

over a known gestation period starting at the 20th week and follow up till labor. These 

measurements can be compared with the patient’s clinical information using other methods 

such as CTG and ultrasound. Proper electrode placement on the maternal abdomen determines 

the measured signal quality to a large extent, but much consensus has not been reached on 

standard electrode placement. For long monitoring periods, comfort in placing and wearing the 

sensors is important to the mother, thus imposing additional requirements on the electrode 

spacing and number of sensors used.  

It is important to first observe the orientation of the fetus, size of the fetus and position 

of the placenta using the ultrasound. It is found that the largest fetal R wave can be accomplished 

when the active electrodes are perpendicular to the trunk of the fetus on the mother’s abdominal 

wall. So in this position the electrodes are located according to the electric axis of the fetal heart. 

After the ultrasound is done, an optimum electrode placement configuration or grid can be used 

to extract FHR from the aECG till the end of the third gestation.  

The procedure used here is to locate bipolar ECG electrodes on the surface of the 

pregnant mother’s abdomen. The concept used here is based on the single dipole vector 

described in [75]. The combination of all cardiac vectors emitting from the maternal or fetal 
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heart is considered to be a single source dipole vector represented by Pm and Pf, respectively. 

The vector r is the distance between the two source vectors Pm and Pf  as shown in the Figure 

2.10. A good quality FECG signal largely depends upon the configuration and placement of 

the electrodes on the mother’s abdomen. Although a set standard of the electrode configuration 

is not yet derived [6], few authors in this biomedical field proposed various procedures and 

measurements to derive good quality aECG signals. 

                                                  

Figure 2.10:   Maternal and fetal dipole vector represented by Pm and Pf respectively. The 

vector r is the distance between the two source vectors Pm and Pf  [75]. 

 

2.5   ECG Electrode configurations  

Some researchers would depend on prior knowledge of the position of the fetus using 

ultrasound, some would go by the normal position of the fetus as vertex (head down) which is 

at the end of the third trimester. Some authors would cover the entire abdomen area with 

electrodes so as to pick the maximum fetal cardiac signals or some would use a proper strategy 

to locate and place the ECG electrodes. Configurations by different authors are listed and 

reviewed in [6, 76] in Figure 2.11, where GND is considered as the inactive electrode 

representing common ground.  
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Scheme 1: [5 electrodes] The four active bipolar ECG electrodes are placed in a circular 

fashion keeping the reference electrode at the pubic area as shown in Figure 2.11a. This 

configuration is used by the fetal monitor device, Monica Healthcare Ltd AN24 (Nottingham, 

United Kingdom) [77].  

Scheme 2: [8-10 electrodes] There are two configurations using 8 electrodes, in Figure 2.11b 

a triangular shape structure covers the lower area of the abdomen [75] while in Figure 2.11c, 

two smaller circles are used above and below the navel and at the lower part of the abdomen 

for better FECG and uterine measurements [78].The aECG recordings were taken from 8 

women at labor. 

Scheme 3: [11 -12 electrodes] The authors used three placement schemes in this configuration 

to record each measure for a duration of 24 seconds using the standard 12-lead ECG machine, 

made by Nihon Kohden Corporation [79]. In all the three configurations, six active electrodes 

were placed in a hexagonal structure keeping the navel at the centre with a radius of 10 cm as 

shown in Figure 2.11d. Two of the limb electrodes F and R were placed at the uterus fundus 

and pubic respectively for all the three configurations. The remaining two limb electrodes L 

and N (reference) were changed for the three configurations, namely (i) configuration 1: L = 

right flank; N = below the navel (ii) configuration 2: L = left flank; N = below the navel (iii) 

configuration 3: N = right flank; L = below the navel. 

Scheme 4: [14 electrodes] The authors used AD Instruments, New Zealand to collect 20 minute 

data from 10 different subjects aged between 21 to 33 with gestational periods ranging from 

20 to 28 weeks [80].Channel 1 was set for the thoracic reference MECG while from the active 

electrodes 2 to 8 which are placed on the circumference, only 6 to 8 abdominal leads were used 

for fetal signal processing as seen in Figure 2.11e. 
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Scheme 5: [32 electrodes] The authors used MindChild Meridian fetal monitoring System, 

USA [81] which uses a configuration using 32 electrodes as shown in Figure 2.11f. The 

electrodes cover the entire abdomen, sides and back. Electrodes marked in blue show the 

corresponding good signal quality while active electrodes in red have low signal quality [82]. 

Although the coverage of the fetal cardiac signal is maximum the subjects may find it 

uncomfortable to use the electrode belt array for daily monitoring. In the case when a belt array 

of 72 electrodes is used for monitoring, the extracted information can be redundant and time 

consuming [83]. A smaller set of electrodes of 8 to 10 sensor electrodes is sufficient to obtain 

the required fetal information. We proposed three placement configurations based on the 

standard 12-lead ECG machine. An experiment was performed on a single pregnant woman 

with single fetus to obtain the maternal and fetal heart rate. The details of the measurement in 

given in Appendix A. 

            

  

Figure 2.11: Various electrode configurations used by authors [6, 77] (a) Scheme 1: [5 

electrodes] Monica Healthcare Ltd AN24 [78] (b) and (c) Scheme 2: [8 -10 

electrodes] [75, 78] (d) Scheme 3: [11-12 electrodes] [79, 84] (e) Scheme 4: 

[14 electrodes] [80] (f) Scheme 5: [32 electrodes] [82]. 
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2.6   Review of ECG electrode placement configurations for fetal monitoring. 

The Table 2.2 shows the comparison of some of the electrode placement configurations or grid 

set up over the maternal abdomen to monitor the FECG non-invasively. Comparisons have 

been made on the basis of the number of electrodes placed on the maternal abdomen, the filter 

design parameters used for pre-processing such as Bandwidth (B), Sampling Frequency (fs), 

Resolution (Res) of the ADC and the Gain. Some of the authors did specify the number of 

pregnant women as subjects with its recordings and gestation periods in weeks. The method 

used by various authors to extract FECG is also listed. 

Table 2.2:   Comparison of various electrode placement configurations for FECG monitoring [76]. 

Author Number 

of 

Electrodes 

Electrode 

Placement  

B , fs,  Res and 

Gain 

Subjects  & 

Records  

Gestation 

Period 

Method 

used 

for FECG 

Extraction 
Bergveld et 
al., 1986 [65]  

4 
electrodes 

   
            side view 

B =  0.2 to 120 Hz 37 subjects 20 – 37 
weeks 

Measurement 
Principle 

method  

Oostendorp et 
al.,1989  [70] 

32 
electrodes 

       

fs = 500Hz 6 subjects with 
37 recordings 

20 – 40 
weeks 

Homogeneous 
volume 

conduction 

model 

Callaerts et 

al., 1994 [87] 

32 

electrodes 

 

 

Filters : 

FH (1st Order) = 20Hz 
to 50Hz 

FL ( 2nd Order) 70Hz 

fs =500Hz , 
Res = 12 bits  

14 records:  

7/8 signals per 
subject :  

3 thoracic , 4/5 

abdomen for 
12 subjects. 

- Singular Value 

Decomposition 
(SVD) 

Taylor et al., 

2003 [88] 

12 to 16 

electrodes 

    

fs = 512Hz 

res = 12 bits  

multichannel  

241 subjects 

with 250 

recordings 

241 singleton 

(15–41 

weeks), 58 
twin (16–35 

weeks) and 5 

triplet (20 – 
33 weeks) 

Linear 

regression to 

analyse QRS 
intervals and 

construct time 

specific 
reference ranges 

Peddaneni et 

al., 2004 [89]  

8 channels 

and 2 
reference 

(central & 

ground ) 

 

Filter:  

 B = 0.1Hz – 100Hz 
(60 Hz  Notch) 

fs = 400Hz ; Res = 

16 bits, Gain =  6500 

11 subjects - Blind Source 

Separation 
(BSS) 

Ungureanu et 

al.,2005 [60] 

12 

electrodes 

(Portis-
32/ASD) 

Unipolar leads 

 

fs = 400 Hz 

Res = 22 bits  

(LSB res. = 7.52 mv)  
 

- - Correlation 

functions 

Chia et al., 
2005 [90]  

3 
electrodes 

3M Red 

Dot 2237 

Three electrodes placed in 
an equilateral triangle 

formation on the maternal 

abdomen. 

- Recording of 
100 subjects 

for 10 minutes 

each. 

18 weeks to 
full term 

Cancellation of 
maternal 

template in 1st 

and 2nd 
derivative of 

abdominal 

signals. 
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Vullings et 

al.,2006 [91] 

12 

abdominal 

leads  and 

2 shoulder 

leads 
( Portis- 

6/ASD) 

 

fs = 400 Hz ; 

 Res = 22 bits 

 

 

- - Extension of 

linear prediction 

method 

Karvounis et 

al.,2007 [39] 

4 

electrodes 

1st –Symphysis pubis 

and  3 other bipolar leads 
 

      
 

Filter :  

FH = 100Hz 
FL = 4 Hz 

 

fs = 300 Hz ;  
Res = 12 bits 

Gain  = 7800 

i) 8 records of 

60s for 8 
subjects. 

 

ii) 10 records 
of 15 minutes 

for 5 subjects 

20 – 41 

weeks 

3 stage method: 

time frequency 
analysis, 

complex wavelet 

and Heuristic 
algorithm 

Martens et al., 

2007 [92] 

13 

electrodes 

(Porti5-
24/ASD) 

 

Gain =20 20 subjects 

 

20 records 
(30 min/s) 

19 weeks to 

early labour 

Sequential 

estimation 

method 

Graatsma et 

al., 2008 [93] 

5 

electrodes 

AN24 
fetal ECG 

monitor 

Two electrodes along the 

midline (at the side of the 

uterine fundus and above the 

symphysis), one at each side 

of the uterus, and the ground 

electrode on the left flank. 

B = 1-70 Hz 

fs = 300 Hz 

15 hour 

recordings of 

150 subjects 

20-40 weeks Improved fetal 

monitoring 

using external 
FECG 

Vullings et 
al., 2009 [94] 

8 
electrodes 

(HP8040 ) 

            

FH =  1.5Hz ( FIR) 
FIR notch filter 

(50Hz)  

fs = 1KHz 
Gain = 500 

7 records of 10 
minutes each 

37 - 41 weeks Weighted 
Averaging of 

mECG 

segements 
(WAMES) 

Ravindrakum

ar et al.,2010 
[95] 

Electrodes 

less than 
71 

           
Electrodes as a Spiral belt  

- - - Modified 

Independent 
Component 

Analysis (ICA) 

Algorithm. 

Clifford et al 

., 2011 [82]  

32 

electrodes 

( E-Trolz) 
/ Red = 

High 

Black = 
low ( 

signal  

Quality) 

Arbitrarily chosen for 

max. coverage. 

        

fs = 1KHz - 35-41 weeks Comparison of 

FHR variation 

and ST levels 
with Fetal Scalp 

Electrode (FSE) 

data. 

Algunaidi et 

al., 2011 [96] 

 

4 

electrodes 

(BIOPAC
-MP-

100A)  

fs = 256 Hz 

Res = 12 bits 

30 records of 

60 seconds 

each 

36 – 38 

weeks 

Peak detection 

Algorithm 

Rooijakkers 

et al.,2012 
[78]  

 
 

8 

electrodes 

4 bipolar leads 

 

fs = 1KHz 20 records : 8 

subject:  
(9.5 hours total 

time) 

40 week 

During 
labour 

( full term)  

ECG R peak 

detection 
algorithm. 

Rooijakkers 

et al.,2014 

[38]  

6 

electrodes 

      

- 5 abdominal 

measurement 

of 20 minutes 
each 

39 week 

(cephalic  

Presentation) 

Electrode grid 

used for various 

test 
measurements. 

Zhang et al., 

2014 [79], 

2015[84] 

1350P-

ECG- a 

12-lead 
 10 

electrodes

ECG 

3 schemes 

 

FH = 75Hz 

500 Hz 

 

78 subjects 

(24 seconds) 

3rd trimester Adaptive R 

wave detection 

Algorithm  
 

 

 

Andreotti et 

al., 2014  [80] 

8 

electrodes 

ADI 
ML138 

Octal Bio 

Amp 
&Power 

Lab 16/30  

FH = 1KHz 10 subjects 

 20 minutes  

20 to 28 

weeks 

MECG 

estimation 

techniques & 
principles of 

evolutionary 

computing to 
detect fetal 

peaks. 
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2.7 Public abdominal ECG databases 

The increasing interest in the NIFECG extraction and research work created a need for database 

where biomedical researchers could compare their extraction/detection results. Few freely 

available online databases emerged over the last one decade, are summarized below: 

2.7.1 Abdominal and Direct Fetal Electrocardiogram Database (adfecgdb)  

The adfecgdb database [66] provides four abdominal ECG recordings (channel 2 to 5) for 5 

minutes each from five different subjects during the 38-41 week gestation period. In addition, 

for each subject, a simultaneously recorded scalp or direct fetal ECG record (channel 1) is a 

golden reference in the evaluations to be made on the respective records.  

 

2.7.2 Non-Invasive Fetal Electrocardiogram Database (nifecgdb)  

The nifecgdb database [67] provides 55 records of different lengths from a single subject taken 

from the 20th week of pregnancy. Channels 1 and 2 represent maternal thoracic ECG signals 

while channels 3 to 6 are abdominal ECG recordings with only maternal QRS reference 

annotations.  

2.7.3 Physionet/Computing in Cardiology Challenge (Phy C) 2013 Database  

The Physionet /Computing in Cardiology Challenge database [97] includes 447 minutes of 

data, with up to 4 channels, resampled at 1 KHz. We used for our simulation a database with 

75 records (set a) with 3 to 4 channels each with FQRS annotations for reference. This is the 

largest publicly available FECG dataset to date, available on Physionet.   

A summary of the above three databases are given in Table 2.3. However, the present databases 

are still very limited in i) Number and duration of the recordings ii) Variety of weeks of 

gestation iii) Information on the subject’s pathophysiological background iv) Expert’s 

annotations of the FQRS locations v) Events such as fetal movement and presence of ectopic 

beats and vi) Standard database for future FECG morphology. Hence, there is a demand for a 

more complete database, which may allow FHRV and morphological analysis of the FECG. 
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Table 2.3:  Comparison of the three online Physionet databases [66, 67, 97] . 

Database parameter nifecgdb adfecgdb Phy C 2013 (set a) 

Number of Electrodes 6 

(2 : maternal 

thoracic 

4 : abdominal 

channels) 

4-5 

(1 : Direct fetal 

scalp 

3-4 : abdominal 

channels) 

 

4 

(4: abdominal 

channels) 

Bandwidth 0.01- 100Hz 1 to 150Hz * 

 

Sampling frequency 1 KHz 1 KHz 1 KHz 

 

ADC resolution 16 bits 16 bits 16 bits 

 

Gestation age (weeks) 21- 40 38-41 * 

 

Number of records 55 5 75 

 

FQRS annotation 

Available 

No Yes Yes 

 
*Data not Known 

 

2.8    Techniques for NIFECG Extraction 

This section briefly explains the taxonomy of the various techniques of extraction of the non-

invasive FECG as shown in Figure 2.12. Three of the techniques are implemented and 

simulated in Appendix B using Matlab.  

2.8.1 Adaptive Processing Technique 

Adaptive filters are self-adjusting filters whose transfer function acts according to an 

optimization algorithm driven by an error signal. The adaptive noise canceller requires a 

reference input that should be uncorrelated with the signal of interest and closely correlated 

with the interference. The adaptive filter learns and adapts the characteristics of the reference 

signal and modifies it so that it is similar to the influencing interference. Various adaptive filters 

have been used in the past for MECG noise cancellation and to extract FECG. These methods 

train an adaptive or matched filter to remove the MECG using one or more maternal thoracic 

signals as reference channels to extract the FECG. The adaptive filtering methods more 
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importantly require a reference MECG channel. These methodologies include least mean 

square (LMS) algorithms, recursive least square (RLS) algorithms, artificial intelligence 

techniques, fuzzy inference systems, genetic algorithms and Kalman filters [17]. 

      

 

Figure 2.12:  Taxonomy of Techniques for NIFECG Extraction.  

 

2.8.1.1    Adaptive noise cancellation 

R. Swarnalatha et al. [98], used multistage adaptive filtering for FECG extraction in which the 
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were not the best for clinical practice as they failed to extract FECG when the maternal and 

fetal signals overlapped each other. Widrow et al. [100] used the adaptive noise cancellation 

system to cancel periodic interferences in aECG to produce a clear FECG signal. Later Widrow 

et al. [101] again used adaptive noise cancellation to reduce periodic or stationary random 

interference in periodic and random signals using LMS adaptive filter. Martens et al. in his 

research works in 2004 [102] and 2006 [103] proposed an improved adaptive canceller for 

decreasing the fundamental PLI. M. Ungureanu et al. [104] proposed an adaptive subtraction 

technique to subtract MECG after detecting and removing aECG signal segments with high 

amplitude variations due to uterine contractions. M. Z. U. Rahman et al. [105] also developed 

adaptive filtering techniques for noise elimination with various algorithms for the removal of 

noise from ECG signals 

2.8.1.2    Artificial Intelligence (AI) 

Some AI techniques mainly based on neural networks have been very useful for real-time 

applications like FECG signal recording and analysis. Marques et al., 1994 [106] used artificial 

neural networks (ANN) for FHR baseline determination. Selvan et al., 2000 [107] proposed 

that the two popular techniques, namely adaptive noise cancellation and adaptive signal 

enhancement were efficient techniques for processing of aECG by using neural networks. Reaz 

et al., 2004 [108] and Amin et al., 2011[109] described FECG extraction through an adaptive 

linear (adaline) neural network filter. The adaline neural network was trained to eliminate the 

MECG component in the aECG signal. In 1999, Giovanni Magenes et al. [110] proposed neural 

and fuzzy classifiers to distinguish between normal and pathological fetal states. Azad 2000 

[111] developed a fuzzy-based approach to extract the FHR by detecting the QRS complex in 

the FECG signal. Kezi S.V. et al., 2005 [21] proposed an adaptive neuro fuzzy logic technique 

for the elicitation of FECG signal by eliminating the MECG signal from the aECG signal. 

According to G. Camps et al. [112] in 2001, FECG can be extracted using FIR neural network 
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in order to provide highly nonlinear dynamic capabilities. Warrick et al. [113] described the 

signal processing tools and neural networks which were used to develop an automated 

technique to detect the FHR pattern of baseline, acceleration and decelerations.  

Amalgamation of different adaptive techniques and training algorithms are replaced to 

overcome limitations of individual techniques giving rise to a large number of new intelligent 

systems. Assaleh et al [114] used ANFIS to nonlinearly align the maternal ECG signal with the 

components of maternal ECG in the aECG signal. Identified maternal components were 

cancelled from the aECG signal and finally FECG signal was extracted. In Nasiri et al. [115], 

Genetic Algorithm (GA) acts as a tool for training the ANFIS structure, which identifies the 

non-linear transformation. M. Ahmed et al. [116] proposed a technique for FECG extraction 

based on GA working with an adaptive filter. T. M. Nazmy et al. [117] classified ECG signals 

using adaptive neuro-fuzzy inference system. A. Sargolzaei et al. [118] developed ANFIS 

trained with particle swarm optimization (PSO) methodology using four different techniques 

for the extraction of FECG signal.  

2.8.1.3    Adaptive Kalman Filtering  

R. Vullings et al. [119] proposed an adaptive Kalman Filter for enhancing the SNR of ECG 

signal. The Kalman filter, a general class of adaptive filter uses only an arbitrary MECG as 

reference for MECG cancellation and FECG extraction. The Bayesian filter framework was 

used by Sameni [120] to extract FECG from single channel aECG. However, as mentioned in 

[120], the filter fails to discriminate between the maternal and fetal components when the 

MECG and FECG overlap in time. V. P. Oikonomou et al. [121] developed a Bayesian method 

for FECG signal extraction integrated with PCA technique. Y. Yin et al. [122] Extracted FECG 

signal by using Bayesian inference with Neural Networks. The drawbacks of Bayesian 

modelling and Kalman filtering are that it involves mathematical complexity and computation 

is time consuming. 



 

37 
 

2.8.2 Non adaptive processing technique 

2.8.2.1     Single channel non adaptive processing technique 

2.8.2.1.1 Correlation Technique 

In this technique a correlation function is subtracted from the aECG to yield the desired FECG. 

However, correlation techniques are not very efficient and effective in the detection of non-

stationary signals like ECG. Van Bemmel [24] proposed a method using auto correlation and 

cross correlation techniques for detecting the presence of a fetal heart signal in an aECG signal 

corrupted by noise. Z. Shi and C. Zhang [123] combined non-Gaussianity and time-correlation 

of the source signals for FECG extraction. The correlation coefficients of the estimated FECG 

that were higher than 0.9 were considered to be a good extraction.  

2.8.2.1.2    Averaging Technique  

It is one of the commonly used methods to extract the waveform of the MECG using only the 

abdominal lead. Due to the large amplitude in the aECG signal, the R-waves of the MECG 

signal are easily detected by threshold detectors. Hon et al. [26] proposed the averaging 

methodology for FECG signal enhancement. The negative aspect of signal averaging is that it 

removed short term changes in the ECG waveform and moreover, the presence of significant 

low frequency noise components reduced the effectiveness of averaging [17].  

2.8.2.1.3    Subtraction Technique 

The method of subtraction of the MECG signal from the aECG signal is one of the most 

primitive methods. The resulting FECG signal with noise is obtained, while the noise is filtered 

out. Bergveld et al. [25] proposed a subtraction method but the major challenge was that the 

amplitude of the thoracic MECG rarely matched the scale of the MECG present in the aECG 

signal. As a result correct FECG is hardly ever obtained. C. Levkov et al. [124] used this 



 

38 
 

subtraction methodology for power line interference elimination from ECG signals without 

degrading the signal spectrum. 

2.8.2.1.4     Filtering Techniques  

Since FECG is our signal of interest, all other noise including MECG is considered as artifact. 

The FECG signals are filtered by using various filtering methodologies like linear time domain 

filters, frequency domain filters, FIR filters, IIR filters and Wiener filters. Frequency domain 

filters can also be used such as, low pass, high pass, band pass and notch filtering features 

[125]. Kam. A and Cohen. A [27] proposed two different techniques. One method used IIR 

filter with genetic algorithm adaptation. The other method used IIR filters with genetic 

algorithm without adaptation. The extracted FECG was good compared to the one obtained 

using methods that employ genetic algorithm alone. Alcaraz et al. [126] implemented different 

filters for filtering baseline wandering, high frequency noise and the power line interference 

was eliminated by notch filtering. L. Chmelka and J. Kozumpl [127] used Wiener filtering for 

ECG denoising. The limitations of the Wiener filter [128] are the requirements of 

autocorrelation matrix, cross-correlation vector and matrix inversion, which also lead to a time 

consuming process [17]. 

2.8.2.1.5    Wavelet transform based method. 

The Wavelet transform (WT) is a time scale representation and efficient mathematical tool for 

analyzing non-stationary and fast transient signals. One of the main properties of WT is that it 

can be implemented by means of a discrete time filter bank [17]. Wavelet transform based 

approach proposed in Papadimitriou et al. [129] efficiently eliminates transient spikes and 

reduces both Gaussian and coloured noise without affecting or destroying the information 

content of the signal. The method developed by Echeverria et al. in [130] used multi-resolution 

wavelet decomposition for FECG acquisition. The wavelet analysis and pattern matching were 

used in the pre-processing stage to suppress noise and then maternal QRS complexes were 
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cancelled by means of pattern matching and template subtraction. Again in 1998, Echeverria 

et al., [131] developed a reliable procedure for off-line processing of aECG called Wavelet 

Analysis and Pattern Matching (WA-PM). Mochimaru et al. [132] used wavelet based methods 

to detect the FECG. To remove the large baseline fluctuations in the signal as well as to remove 

the noise, multiresolution analysis (MRA) was used. Complex Continuous Wavelet Transform 

(CCWT) based technique was implemented by Karvounis et al. [133] along with modulus 

maxima theory to detect fetal QRS complexes from multichannel MECG recordings. Also 

Karvounis et al. [134] described a three stage method which was used to extract FHR based on 

time frequency analysis and complex wavelets and pattern matching techniques. A 

combination of Wavelet and ICA was proposed by [135]. Using this method, FHR was detected 

and the Q, R, and S waves were visible without any signal amplification. An algorithm was 

proposed by Almagro et al. [136] to design a new Mother Wavelet (MW) called abdominal 

ECG Mother Wavelet (aECG MW) for effective extraction of FECG. A way for detecting QRS 

complex based on dyadic wavelet transform was represented by Kadambe et al. in [137]. They 

have designed a Spline wavelet for detecting QRS complex which was the transient part in the 

ECG signal. Real time FECG feature extraction system was developed by Desai et al., 2012 in 

[138] based on multi-scale Discrete Wavelet Transform (DWT). Wavelet based peak detection 

detects QRS complex more accurately for identifying peaks and valleys of noisy FECG signal 

[139]. Ye Datian et al. [28] implemented a wavelet analysis method to effectively detect FECG. 

Khamene et al. [140] also efficiently developed a wavelet transform based method to extract 

the FECG from the composite abdominal signal. 

2.8.2.2    Multichannel non adaptive processing technique 

BSS and ICA have become promising tools for developing work in recent biomedical signal 

processing research works. There are different techniques of BSS methodologies, ICA, PCA 

and signal decomposition techniques. In 2004, Chareonsak et al. [141] proposed a real time 
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BSS method that can be used to separate the FECG from the aECG effectively. Jafari et al. 

[142] have addressed the problem of FECG extraction using BSS in the wavelet domain. Blind 

source separation methods can also be combined with wavelet decomposition methods [143] 

for denoising and extracting FECG from composite abdominal ECG signal. Karvounis et al. 

[144] proposed a three stage methodology adopting BSS technique. The extracted FECG was 

compared with real FECG signal and was found to be correlated with the true FECG.  

2.8.2.2.1    Independent Component Analysis  

In 2000, de Lathauwer et al. [145] proposed the technique of ICA, to extract FECG from 

multilead potential recordings on the mother’s abdomen. ICA aims at the direct reconstruction 

of the different statistically independent bioelectric source signals, as well as the characteristics 

of their propagation to the electrodes. D. E. Marossero et al. [146] proposed an efficient method 

using the mermaid algorithm for ICA method, where the performance of the Mermaid 

algorithm, based on minimizing Renyi’s mutual information, was evaluated.  ICA, using higher 

order statistics to decompose the signal into statistically independent components, has already 

been used in single pregnancies to distinguish between MECG and FECG signals [147]. 

Najafabadi et al. [148] also applied the ICA for the separation of FECG and MECG signal from 

the aECG. It is concluded that ICA works magnificently in order to extract FECG. Y. Ye et al., 

2008 [74] proposed a neural network based ICA algorithm, called Fast Adaptive orthogonal 

group algorithm to separate mixtures of sub Gaussian and super Gaussian source signals. D. 

Luo [149] discussed the nonlinear blind mixed ECG signals separation technology and 

introduced the model of the ICA algorithm and the implementation methods. Martın-Clemente 

[150] described a fast and simple algorithm that was developed based on ICA but 

computationally demanding calculations were substituted to make it simpler in FECG 

extraction. Camargo-Olivares et al. [151] described multidimension ICA based approach 

extraction method was presented which was more appropriate than ICA in FECG extraction. 



 

41 
 

Estimated maternal signals were subtracted from the aECG, however this approach fails when 

the FECG is weaker than the residual noise. A method presented in [152] was based on non-

stationary ICA and wavelet de-noising. Due to low amplitude and poor SNR of the FECG 

recorded at the abdominal region of a pregnant woman, the proposed algorithm removed the 

maternal ECG, reduced motion artifact and enhanced the FECG signal. Here due to the non-

stationary nature of the FECG signal, non-stationary ICA method was used to eliminate 

maternal complex. In [153], ICA based BSS methods were used for extracting FECG, which 

showed that reconstruction of FECG could be possible by means of higher order statistical 

tools. Hyvarinen [154] proposed the fast and robust fixed point algorithms for ICA, which can 

be used efficiently to extract FECG. I. Romero [155] investigated the performance of principle 

component analysis in denoising ECG signals recorded in ambulatory conditions.  

2.8.2.2.2    Singular Value Decomposition  

Spatial filtering techniques such as singular value decomposition (SVD), blind and semi-blind 

source separation, can be considered as decomposition methods that are driven by data, which 

creates the required basis functions from the data itself, by maximizing several statistical 

quantities of signal segregation. Gao et al. [156], described a method which was employed with 

the combination of SVD and ICA for FECG signal separation from aECG. This method uses 

SVD of the spectrogram followed by an iterative application of ICA. Barros et al. [157] 

proposed a semi blind source separation algorithm which has been developed and requires prior 

information about the auto correlation function of the primary sources to extract the FECG 

signal.  

De Lathauwer et al. [158] have discussed the pros and cons of techniques relying on 

the ordinary SVD, quotient SVD and multilinear SVD for the elicitation of the FECG from 

multilead cutaneous potential recordings. The multilinear SVD approach has the advantage that 

the mixing matrix can be estimated in an unsupervised way. In addition, the separation of the 
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measurements into statistically independent source signals is easier to interpret than 

decomposition in time-orthogonal principal components. On the other hand, the algorithm is 

computationally more complex. Table 2.4 presents several methods proposed in the literature 

for the extraction of FECG. Due to the fact that there is no benchmark database for this area, 

therefore, each approach is evaluated and performed using different approaches by authors. 

The FECG extraction techniques such as synthesized template method, ICA and ANFIS are 

implemented and compared using Matlab in Appendix B. 

2.9    Discussion and summary 

The experimental recordings were conducted to collect an aECG signal from a single pregnant 

woman to access the best electrode position configuration (see Appendix A). It was noted in 

our experiment that the fetus was too small and the small heart was extremely weak and thus 

the FECG signals were very small compared to the maternal signals picked through the aECG. 

This maternal-fetal amplitude ratio is almost the same in the case of the nifecgdb records 

wherein the MECG amplitude is very large compared to the fetal amplitude. Moreover the 

noise overrides the aECG signals, making it even more difficult for the separation of fetal 

signals from the aECG. The best recordings would be of a near full time mother with a normal 

size baby. It was observed that the scheme 2 gave the best results whose average FHR value 

was closer to the average FHR taken using CTG, while the schemes 1 and 3 gave MHR values. 

This could have been because the leads may have been placed very close to each other. In our 

next experiment, the distance of leads (inter electrode distance) from WCT can be varied and 

also around the abdominal circumference. More positions can be researched so that we get 

equivalent height to the baby’s ECG peak in our database before processing the raw 

measurements so as to isolate FECG from the MECG. In the future, a larger database for 

various subjects having different gestation ages can be planned with recordings of more clinical 

reports for each subject. 
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Table 2.4: Summary of existing FECG extraction techniques. 

Author Technique Database Accuracy (%) 

Mooney et al.,1995 [159 ] Adaptive 

algorithm 
5 abdominal leads  

(several records) 
85 

Azad et al., 2000 [111 ]   Fuzzy approach 3 abdominal leads 

(5 records) 
89 

Khamene et al.,2000 [140 ] 

 

Quadratic spline 

wavelet 
5 abdominal & 3 

thoracic 
100 

Pieri et al., 2001 [160]   Matched Filter 3 abdominal leads 65 

Camps et al.,2001 [112] 

 

FIR neutral 

network 
Synthetic & real 

Registers 

 

91 

Ibrahimy et al.,2003 [161]   

 

Statistical 

Analysis 

 

One abdominal lead 

5 records, 20 minute 
89 

Karvounis et al., 2004 [133] Complex wavelets 3 abdominal leads 

15 records,1 minute 

99.5 

Karvounis et al., 2006 [134]  Time Frequency 

methods 
4 long records 

15 minutes 

96 

Karvounis et al., 2007 [39 ] 

 

Time frequency 

Analysis 

3 abdominal leads 

8 short records 

99.19 

Karvounis et al., 2007 [39 ] 

 

Time frequency 

Analysis 
3 abdominal leads 

10 short records 

97.35 

Swarnalatha et al.,2009  [162 ] Wavelet adaptive 

filter 
SISTA/DAISY &               

Physionet data 
90 

Swarnalatha et al.,2010 [98] Multistage 

Adaptive Filter 
SISTA/DAISY &               

Physionet data 
89 

Swarnalatha et al.,2010  [163 ] ANFIS & Wavelet 

method 

5 different subjects 100 

 

The three proposed FECG extraction algorithms namely, Synthesized QRS template method, 

ICA and ANFIS have been evaluated to extract FHR and the results are compared using the 

records of Physionet abdominal and direct fetal ECG database (see Appendix B).  

In the proposed synthesized QRS template algorithm, the filtered aECG was multiplied 

with the respective synthesized pulse trains having QRS (tau) = 100ms for maternal and QRS 
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(tau) = 45ms for fetal. Further the FHR was computed giving us accurate heart rates except for 

some sections of the record r04 and r07 of the adfecgdb as the original signal was corrupted 

with noise. However since both the MECG and FECG are quasi periodic and non-stationary 

signals, a large QRS peak can be missed if the beat per minute (k) is altered. Also since we 

need to know the rate (beat per minute) in advance of both the MECG and FECG signals, this 

method cannot be used in the unsupervised mode and hence may not be efficient to extract 

accurate maternal and fetal heart rates. 

The proposed ICA method is a statistical technique and its accuracy is based on using 

a large number of noise free maternal abdominal input channels. The following conditions must 

be met for ICA to function correctly: i) the number of measured signals should be equal to or 

greater than the number of input sources ii) it should possess an instantaneous linear time 

invariant mixing matrix iii) the input sources should be statistically independent and iv) the 

sources should be non-gaussian and/or auto correlated sources [164]. In our application of 

maternal and fetal QRS separations, the first two do not fully satisfy because the artifacts 

increase the number of sources and fetal movement leads to a non-invariant mixing matrix. The 

maternal ECG is the strongest independent source of the four measured abdominal signals. 

Hence, it would result in at least one independent component. For records, where clean ECG 

signals and an invariant mixing matrix exist, ICA would also be able to separate the fetal ECG. 

This method is also based on the supervised selection of channels to be given to stage 2 and 

hence is not efficient. Our objective was to obtain fetal R-peaks from single channels. 

ANFIS is an adaptive noise cancellation system which may have advantages over some 

methods. It is suitable for nonlinear applications, and has less mathematical analysis and 

requires less inputs to extract FECG due to the neutral network. ANFIS requires an additional 

maternal thoracic ECG signal as reference signal for adaptive cancellation of the maternal 

ECG. This method depends on how well one trains the ANFIS structure to compute the 
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estimated output FECG signal. However this technique may not be very useful to be 

implemented in real time applications in embedded systems and DSP cores. The ANFIS 

module estimated the FECG output which was given to the modified QRS detector for fetal 

heart rate calculations. The failed detections for the records r04 and r07 were large and the 

adaptive threshold could not detect some of its fetal R-peaks (see Appendix B). We connected 

our Android smartphone to Matlab via the Matlab Mobile [165] as shown in Appendix C. The 

Matlab simulation plots and FHR values were viewed on the smartphones using MATLAB 

Mobile [72]. 

Correlation techniques are not very efficient and effective in the detection of non-

stationary signals like ECG. Subtraction method is a simple technique, but the major challenge 

is that the amplitude of the thoracic MECG rarely matches the scale of the MECG present in 

the aECG signal. As a result correct FECG is hardly ever obtained. Wavelet transform method 

can be used for the pre-processing stage to suppress noise and maternal cancellation can be 

done by template subtraction. As IIR filtering being a nonlinear method, our technique of using 

linear phase sharp transition FIR filter is less complex and does not involve many iterations as 

the filter response is specified precisely over the entire band. With the knowledge of the 

fiduciary edges and the fair estimate of the spectral overlap of maternal and fetal ECG, accurate 

FHR and maternal heart rate can be obtained.  

The Fourier transform is a simple technique which can play a very important role to detect 

FECG signals, however if the aECG is contaminated with noise then it may be difficult to 

locate the fetal peaks. Our main objective is to separate the MECG and FECG particularly, the 

QRS complex of each and detect the FHR and missing beats, if any, which will indicate the 

fetal health status. The aim is also to improve the signal processing aspects of FECG by 

developing a new and simple technique by filtering FECG signals extracted from the aECG 

Physionet database. The basic idea behind the method is to use such quasi-periodic cardiac 
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signals, to design filtering technique and evaluate the output QRS complexes which obtain the 

fetal heart rate variability. The two main concerns in the separation of the mother-fetal QRS 

are (i) The aECG has a low SNR due to the interferences from MECG and other noise signals 

such as electromyogram (EMG) and motion artifacts [9]. (ii) The MECG and FECG almost 

share the same frequency band [6] and overlap in time and partly in frequency domain [24]. 

Due to these inherent problems, it is challenging to successfully extract FQRS from aECG, 

which contains MECG which is the major noise signal. Moreover, the FECG has an amplitude 

less than 20% of the MECG [8] and each of the two ECG signals have distinct cardiac beat to 

beat ranges. The fetal’s cardiac beats/minute is faster than that of the mother’s which ranges 

from 120 – 160 bpm compared to the MHR which is approximately 70 – 100 bpm [166].  

2.10  Goal of this study  

2.10.1  Research Objectives  

The objective of the research is to design and synthesize linear phase sharp transition FIR band 

pass filters with designated fiduciary edges in the light of the literature cited above. Further, 

the synthesized filters were required to possess the following desirable features: 

a. Sharp transition with low passband ripple and large stopband attenuation. 

b. Well behaved function to model filter frequency response. 

c. Impulse response coefficients related to designated fiduciary edges. 

d. Finite transition width with well-defined stopband, transition band and passband 

regions unlike the classical designs. 

e. FIR filter design for lower filter orders (N) with arbitrary passband and not necessary 

an equiripple filter. 

f. Simple design with less complex computations. 
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2.10.2  Proposed Methodology : Linear phase sharp transition FIR filter design 

In pursuant to the stated objective, the method of the filter synthesis proposed by us is as 

follows.  

The salient points of our synthesis are given below: 

i. The entire range [0,π] of the frequency variable ω is split into three main regions, 

namely stopband, transition and passband for either of the low pass, high pass or 

band pass filters. 

ii. Each region of the magnitude response is defined in terms of a cosine/sine function 

of ω, conforming to the filter specifications.  

iii. The magnitude response function is assumed to be in the form given by Eq. (2.1) 

for N odd and Eq. (2.2) for N even respectively. 
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where, n = time index ; N = order of the filter. 

iv. Applying cosine transformation to the magnitude response H(ω) in Eq. (2.1) and 

(2.2), we obtain the impulse response sequence as given in Eq. (2.3) 
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v. The integral in (2.3) is similar to the inverse Fourier transform integral. The 

impulse response is extracted from Eq. (2.1) and Eq. (2.2) using the orthogonal 

property of the cosine /sine functions. 
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vi. The design parameters ks, kt and kp are used in the sine/cosine functions defining 

the stopband, transition and passband, respectively. These parameters control the 

shape of the magnitude response function H (ω) in the three referred regions. 

vii. The discontinuity present at the fiduciary band edges of the passband-transition 

and transition – stopband regions due to Gibb’s phenomenon are minimal in the 

magnitude response. 

viii. To further reduce the ripples on either side of the discontinuities in the magnitude 

response, a technique known as slope matching is used.  

ix. A sharp transition width is realized using the user based fiduciary band edges ωs1, 

ωp1, ωp2 and ωs2 such that we get a variable, almost flat passband with minimum 

passband loss and appreciable stopband attenuation with least ripples. 

 

In summary, the filters proposed by us: 

 Have minimum passband loss and large stopband attenuation. 

 Have minimum discontinuities at band edges, with slope matching technique. 

 Have a finite width in the transition region. 

 Have reduced ripples in the passband and stop band regions due to Gibb’s phenomenon. 

 Do not involve optimization steps but use simple computations involving trigonometric 

functions with low filter order to closely match the desired response.  

 Have derived closed form expression for the impulse response sequence by formulating 

a magnitude response that is practically realizable as in Equations (2.1) and (2.2). 
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                                     3 
Design of Linear Phase Sharp Transition 

FIR Filters 

3.1   Background theory of FIR filters 

A filter is a system or a network that is designed to selectively alter the spectral content of the 

input wave shape, amplitude or the phase in a specified manner. The most common filtering 

objectives include improving the signal to noise ratio, separate frequency components or extract 

certain information from signals for applications in biomedical, speech or image signal 

processing and other areas. 

 Digital filter design is a process of deriving the filter transfer function H(z) which 

satisfies the set of given specifications. The linear time invariant frequency selective filters can 

be classified in two categories, namely infinite impulse response and finite impulse response 

filters [167] and are represented by Eq. 3.1 and 3.2 respectively. 
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The distinct difference between the two is that the impulse response of IIR has infinite length, 

whereas FIR has fixed duration of length N. Additionally the Eq. 3.1 for IIR filters can be 

expanded as, 
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                    (3.3) 
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where, ak and bk are the filter coefficients of IIR filters and from Eq. 3.3 we can conclude that 

y(n) is a function of past outputs as well as present and past inputs. However an FIR system 

only depends upon the present and past input values. If we set ak = 0 in Eq. 3.3, we obtain the 

original FIR Eq. 3.2.  

We chose to use FIR filters for our application having the following advantages: 

i. FIR filters have linear phase response with no phase distortion and are suitable for our 

application unlike the IIR filters that display the non-linearity at band edges. 

ii. Non recursive FIR filters are stable while the stability of IIR is not assured. 

iii. In our application of designing linear phase filter with sharp transition width more 

coefficients may be required as compared to IIR filters. However, this limitation of more 

processing time with memory storage, longer delays and more computations can be 

overcome today by using fast computers and DSP processors for real time 

implementations. 

 

Figure 3.1:   Frequency response of a low pass filter. 
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Filters, in practice, may not exhibit a flat passband, and a deviation of H (ω) from 0 dB is called 

magnitude distortion while, changes in the linear phase is called phase distortion [167]. With 

reference to the magnitude response of a low pass filter in Figure 3.1, the magnitude is unity 

with a passband ripple error of ± δp such that, 

1   ( )   1             0    p p pH                         (3.4) 

The magnitude approximates 0 with a stopband attenuation error δs such that, 

( )                 s sH                         (3.5) 

Eq. 3.5, describes the stopband ripple to have maximum gain or minimum attenuation in the 

stopband region. Ap is the passband ripple given by, 10
1  

20log  
1

p
dB

p





 
 

 
 

While the stopband attenuation is given by 10 20log   s dB , the deviations are expressed in 

decibels and the magnitude response is normalized to 1 (0 dB) [168]. 

To summarize causality aspects while designing the FIR digital filter, we need to see that the 

filter is causal wherein the output of the filter at time n0 depends on the input applied at and 

before no and not after no. 

a. As per Paley - Weiner theorem [169], the magnitude response H (ω) can be zero at some 

frequencies but cannot be zero over finite band of frequencies since the integral in [169] 

then will become infinite as per Eq. 3.6. 

b. The desired frequency response is given by ,   

( ) ( ) .j j n
d d

n

H e h n e 






                   (3.6) 

To achieve FIR filter, we can truncate the impulse response for a finite duration sequence of 

length N. 

  
( )     0 -1,

( )
0          .

dh n n N
h n

otherwise

 
 


               (3.7) 
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The frequency response for this finite duration will be, 

1

0

( ) ( ) ,

            ( ) .

j j n

n

N
j n

d

n

H e h n e

h n e

 



















                   (4.8) 

A causal FIR filter obtained by simply truncating the impulse response of the ideal filter exhibits 

an oscillatory behavior in its magnitude response which is more commonly referred to as Gibb’s 

phenomenon [170]. The oscillatory behavior of the magnitude response is on both sides of the 

cutoff frequency at which the ideal response is discontinuous and the peak ripple moves closer 

to the discontinuity. As the order of the filter is increased, the number of ripples in both passband 

and stopband increases and the ripples are squeezed into a narrower interval about the 

discontinuity. However the overshoots which occur on both sides of the transition region remain 

the same independent of the filter order and are approximately 18% of the difference between 

the passband and stopband magnitudes of the ideal filter [171]. 

 

3.2   Types of linear phase FIR filters 

Due to their simplicity, linear phase FIR filters have many applications in the speech and 

biomedical signal processing research area as well due to their guaranteed stability, negligible 

phase distortion and low coefficient sensitivity. Depending upon the number of coefficients (N) 

being odd or even and the impulse response h (n) being symmetrical or anti-symmetrical, linear 

phase FIR filters can be of four types and have the property of having a linear phase [167,168]. 

However the signal passing through a filter having nonlinear characteristics will have phase 

distortion. The frequency components in the output signal will each be delayed by an amount 

not proportional to the frequency thereby alternating their harmonic relationships. 
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Table 3.1:  Linear phase FIR filters types [167,168]. 

Filter type 

(unit sample response) 

Impulse response 

h(n) and number of  

filter coefficients 

Frequency response 

Hr(ω) 

Remark 

 

Type 1 : Symmetric  

     - -1 /2
  

j N

rH H e


   

N = odd  

      1   h n h N n   ; 

(N-1)/2 

3

2

 

0

1 1
( )  2 ( )cos    

2 2

N

r

n

N N
H h h n n 





    
     

   


 

- 

Type 2 : Symmetric

     1 /2
  

j N

rH H e


 
 



N = even 

      1   h n h N n   ; 

N/2  

1
2

0

1
  2 ( ) cos  

2

N

r

n

N
H h n n 

 
 

 



 
  

 


 

Hr (0) gives  

maximum 

value, while  

Hr (π) = 0 

Type 3 :  Anti Symmetric  

      1 /2  ]/[ 2
  

j N

rH H e
 

 
  



 

N = odd 

     -  1   h n h N n   ; 

 

(N-1)/2 

3

2

0

1
( ) 2 ( ) si

2
n  

N

r

n

N
H h nn 





 
 

 
 

 

Hr (0) = 0  and  

Hr (π) = 0 

Type 4 :  Anti Symmetric 

      1 /2  ]/[ 2
  

j N

rH H e
 

 
  

  

N = even 

     -  1   h n h N n   ; 

                N/2 

 
 

1
2

0

1
  2 ( ) sin  

2

N

r

n

N
H h n n 

 
 

 



 
  

 
  

Hr (0) = 0 and 

 Hr (π) gives 

out a 

maximum 

value 

 

With reference to the listed four types as seen in Table 3.1, it can be analyzed that for filter Type 

2, Hr (0) gives a maximum value while Hr (π) = 0 makes it suitable for low pass filter. In Type 

3, since Hr (0) = 0 and Hr (π) = 0, this is not suitable for either low pass nor high pass, but is 

most suitable for band pass filter. For Type 4 filter, Hr (0) and Hr (π) gives maximum value, 

thus is suitable for a high pass filter. Type 1 is the most preferred of the four when symmetric h 

(n) is concerned and the center of symmetry for all types is given as (N-1)/2. The main objective 

of the FIR coefficient’s calculation is to obtain values of h (n) so that the resultant filter meets 

the designed specifications. Several methods are available for obtaining h (n) such as window 

method, frequency sampling and optimal methods and all three lead to linear phase FIR filters. 

 

3.3   Linear phase filters using window method 

Let us take Hd (ω) and hd (n) as the desired frequency and desired impulse response respectively, 

of an FIR filter where, Hd (ω) is the Fourier transform of hd (n), both given by the Eq. 3.9 and 

Eq. 3.10, respectively.  
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0

( ) ( ) ,j n
d d

n

H h n e 






                  (3.9) 

where, 
1

( ) ( )  .
2

j n
d dh n H e d







 




                   (3.10) 

Note that, hd (n) is infinite in duration and must be truncated say, at n = N-1 to yield a filter of 

length N. Truncation of Hd (n) of length N-1 is the same as multiplying hd (n) by a rectangular 

window as defined in Eq. 3.11. 

1  ,        0,1..... -1,
( ) 

0        .

n N
w n

otherwise


 


               (3.11) 

Therefore, the impulse response for the FIR filter turns out to be, 

h (n) = hd (n) ω(n)                     (3.12)

 
( )          0,1..... -1,

( )
0 ,               .

dh n n N
h n

otherwise


 


                          (3.13) 

Also, convolution of Hd (ω) with W(ω), the Fourier transform of ω (n) gives us the frequency 

response of the FIR filter , H (ω). 

Thus , 
1

( ) ( ) (w ) .
2

dH H v W v dv










   (v being the dummy frequency variable)       (3.14) 

And where, Fourier transform of the window function is given by, 

1

0

( ) ( ) .
N

j n

n

W w n e 






                 (3.15) 

For rectangular function replace ω (n) = 1 in Eq. 3.15 we get Eq. 3.16, 

1
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( 1)/2

1
( )      

1

sin( N/ 2)
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sin( / 2)
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                        (3.16) 
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This window function has a magnitude response, 

sin( N/ 2)
   ( ) =            -

sin( / 2)
W


   


                        (3.17) 

The width of the transition region between the passband and stopband in H (ω) reduces with the 

width of the main lobe of W (ω), with increase in the length of the filter order (N) [168]. 

However the area under the side lobes remains constant. The rectangular window has large side 

lobes in W (ω) and causes large passband ripple related to Gibb’s phenomenon. These side lobes 

are caused by the abrupt discontinuity at the edge of the window [167]. The demerits of the 

rectangular window  is overcome by the use of various other window functions such as 

Hamming, Hanning, Blackmann, Barlett,Kaiser,Tukey and others. All of these have lower side 

lobes than of rectangular and hence less passband ripple. Figure 3.2 compares the time and 

frequency domain of various window types for N = 1001 simulated in Matlab. Table 3.2 lists 

the window types with its main lobe width and stopband attenuation [167,168]. 

 

 

3.2 (a)                                                                                          3.2 (b) 

 

Figure 3.2: Comparisons of various window types for filter order (N) = 1001 (a) time and 

(b) frequency domain. 
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Table 3.2:   Various Window types with its main lobe width and stopband attenuation [167,168]. 

Window type Main lobe width Stop band attenuation 

peak (20 log10 δs) 

Rectangular 4π/N -21 dB 

Hanning 8π/N -44 dB 

Hamming 8π/N -53 dB 

Blackman 12π/N -74 dB 

Barlett 8π/N -25 dB 

Kaiser variable variable 

 

There are lesser ripples for the Hanning window as compared to the rectangular window but the 

transition width increases which can be compensated by increase of N. There is a fundamental 

tradeoff between the main lobe width and the side lobe amplitude.  

3.4   Linear phase filters using frequency sampling method (FSM) 

This method allows recursive implementation of FIR filters leading to computationally efficient 

filters [167]. The method is accomplished in a two stage process. In the first stage, the magnitude 

response from the user Hd (e
jw) is frequency sampled by at ω = (2πk)/N samples, where N is the 

order of the filter to obtain the desired frequency response Hd (k). By applying inverse discrete 

Fourier transform to Hd (k) in the 2nd stage, we obtain impulse response h (n) which will have a 

total number of N samples of FIR filter impulse response. The impulse response h (n) is given 

by, 

-1
-

0

1
( ) ( )           0,1..... -1

N
nk

d N

k

h n H k W n N
N 

  , where WN = 

2
- j

Ne



                      (3.18) 

It has two methods, depending on when ω = 0 (Method I of FSM) or ω ≠ 0 (Method II of FSM). 

In Method I of FSM which is preferred, we sample at ω = (2πk)/N for k =0,1….N-1 to obtain 

Hd (k) = Hd (e
jw)| ω = (2πk)/N . If we want h (n) to be real coefficients (real values), then we have to 

put a condition on the Hd (k) to ensure h (n) is real. 
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For real value h (n), the filter coefficients can then be written as, `  

 

( 1)/2
2 / N

1

1
( ) (0)  2 Re (k) 

N
j kn

d d

k

h n H H e
N






 
    

 
  N is odd          (3.19) 

All the complex terms shall appear in complex conjugate pairs. The terms can be matched by 

comparing the exponentials in Eq. 3.18. The term Hd (k) 
2 /Nj kne 

should be matched by the term 

that has the exponential 
2 /Nj ke 

as a factor. This requires that Hd (0) is real and Hd (N-k) 

= Hd*(k) , k = 1,2 …(N-1)/2 , N is Odd and if Hd (N-k) = Hd*(k) , k = 1,2 …(N-1)/2 and Hd 

(N/2) = 0, N is even [5]. 
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d d
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h n H H e
N






 
    

 
  N is even           (3.20) 

3.5   Optimal linear phase FIR filters 

As seen in Eq. 3.4, the actual frequency response oscillates between 1-δp and 1- δp in the 

passband while it oscillates between 0 and δs in the stopband. This filter design is based on a 

Chebyshev approximation problem, wherein the weighted approximation error between the 

desired response, Hd (ω) and actual frequency response, H (ω) is equally spread across the 

stopband and passband of the filter minimizing the maximum error. The resultant filter may 

have similar amplitude ripples in both the bands which are called equiripple [167,168]. The 

error function can be expressed as, 

E (ω) = W(ω)  [Hd (ω) – H (ω)]                  (3.21) 

where, W(ω) is the weighing function. 

 

The main objective is to find the h (n), such that the value of the maximum weighted error            

|E (ω)| is minimum in the stop and pass bands expressed as min [max |E (ω)|] [170]. The ripples 

will alternate in sign between the two equal amplitude levels. These minima and maxima points 

are known as extremal frequencies which are not known in advance like those of the band 
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edges. An iterative process known as Remez algorithm is used which locates the extremal 

frequencies. This process step relies on the alternation theorem which specifies the number of 

extremal frequencies that can exist for a given filter order. After locating the optimal set of 

extremal frequencies the actual h (ω) and h (n) of the filter are easily obtained. Parks McClellan 

(PM) routines can be used for designing the LP FIR filters based on Chebyshev approximation 

criterion and implemented with the Remez exchange algorithm [168]. FIRPM() routine in the 

Signal toolbox of Matlab implements the Parks-McClellan (PM) algorithm  which  uses the 

Remez exchange algorithm and Chebyshev approximation theory to design linear phase FIR 

filters with an optimal fit between the desired and actual frequency responses. 

The most advantageous aspect of using the window method is its simplicity, it involves 

the least amount of computations for almost all the window types. The only demerit of this 

type is its lack of flexibility. Due to the effect of convolution of the frequency spectrum of the 

desired response and the window function, the passband and stopband edge frequencies cannot 

be precisely specified. The frequency sampling method can be chosen when the arbitrary 

amplitude response is required. However this method lacks control of the passband ripples and 

the band edge frequencies. The optimal method scores over the other two as it is efficient and 

yields good magnitude responses and is based on the concept of equiripple passband and 

stopband. 

3.6   Background of linear phase FIR filter designs  

For many digital signal processing applications, FIR filters are preferred over their infinite 

impulse response counterparts as the former can be designed with exact linear phase, 

guaranteed stability, free of phase distortion, absence of limit cycles and low coefficient 

sensitivity. However, FIR filters used in applications demanding narrow transition bandwidth 

require considerably more arithmetic operations than their IIR equivalents. Since the FIR filter 

length is inversely proportional to transition bandwidth, its complexity becomes prohibitively 
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high for sharp filters, which causes serious implementation problems [167]. First, a very large 

number of multipliers render real time high speed implementation impractical. Second, the 

round off noise power generated by a filter with a large number of nontrivial coefficients will 

be unacceptable unless the word length of the registers and arithmetic units are sufficiently 

high. Finally, filters with a large number of nontrivial coefficients have a high coefficient 

sensitivity. As a consequence, very sharp filters will have high hardware complexity, high 

coefficient sensitivity and high round off noise unless the filter coefficient vector is sparse. 

Several methods have been proposed for reducing the arithmetic complexity of sharp transition 

FIR digital filters, some of the methods and techniques are listed below: 

Charalambous et al., [172] presented a program for over 400 design examples for FIR 

linear phase symmetric and symmetric fan 2D digital filter design. The technique is convergent 

and did not suffer from degeneracy. Pei et al., [173] proposed a method of designing equiripple 

linear phase FIR phase with linear constraint by carrying out the Remez exchange technique 

and the design is optimal in the minimax sense. Yim Yong [174] says that if the frequency 

response of the original band filter and its complementary filter are masked and recombined, a 

narrow transition band filter can be achieved. Jing Z. et al., [175] say that a low pass filter with 

narrow transition band can be realized by a structure mainly composed by few FIR filters used 

for implementation of a fast convolution algorithm. Principe et al., [176] presented the design 

and implementation of linear phase FIR filter mainly for low frequency EEG signals which uses 

loose frequency response characteristics and good time resolution. Rabiner et al., [177] in his 

paper, discusses a novel implementation for narrow band FIR filter using the technique of 

decimation and interpolation. The filter can be realized with a large reduction of number of 

multiplication per sec over standard direct form implementation. Also the design has less round 

off noise and less severe coefficient sensitivity problems. In another paper, Rabiner et al., [178] 
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describes in detail the designing of linear phase FIR filters based on the Chebyshev 

approximation. The paper uses special techniques to obtain optimal low pass or bandpass filters.  

Lim Y.C et al., [179], using frequency response masking (FRM) approach presented an 

algorithm for the h (n) up sampling ratio techniques to select the optimal k value for a K stage 

design and algorithm for H (ω) ripple compensation. The design was compared with Remez 

exchange algorithm. Saramaki et al., [180,181] described how FRM can be used to reduce the 

number of arithmetic hardware to implement low pass FIR filters and further in addition of using 

the Matlab Remez routine which will simplify the designing of sub filters rather than using 

linear programming. Zhang et al., [182] uses a modified FRM approach to design sharp FIR 

filters using a new technique called Interpolated FIR. This method is designed for one of the sub 

filters which saves 24% of the number of multipliers as compared to the FRM approach. Neuvo 

et al., [183] designed a narrow band symmetrical FIR BPF. This method is applicable to linear 

and nonlinear cases with the multipliers and adders in this case to be 1/√ΔF, where ΔF is the 

required narrow transition bandwidth, the designed structure allows simple tuning of the centre 

frequency. Rodrigues et al., [184] describes a modified FRM method using low pass and 

bandpass sub filters which are designed as linear phase equiripple FIR filters. It further uses 

trigonometric functions to obtain h (n) to reduce Gibb’s phenomenon. The filter model is 

formulated using sinusoidal functions of frequency to evaluate the impulse response coefficients 

in closed form. The band pass filter (BPF) uses a centre frequency for fixed passband widths. 

The BPF eliminates one masking filter thereby reducing the complexity of FRM technique. 

 Rodrigues et al., in [185] proposes a low pass sharp FIR filter with low complexity with 

less filter order. The design transition parameter kt can be varied for narrow to wideband filters. 

The obtained filter length and delays are less than the FRM technique. Mintzer et al., [186] 

describes a computer program by Park McClellan to design an optimal FIR band pass filter. 

Here the order of the filter is the input to the program. The task was to find the lowest order 
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filter which satisfies certain maximum ripple requirement. Rajan et al., [187] designed a sharp 

cut off wide band FIR filter where the interpolating factors L (optimal value) are derived. This 

reduces the multiplier and adders in the overall realization. The authors claim that the two branch 

realization is more efficient than the direct form technique with a slight increase in delays and 

in the noise performance. Saramaki at el., [188] present two methods - the first one uses Remez 

multiple exchange and optimizes the shaping filter and the interpolator of the IFIR filter. This 

method being efficient reduces the arithmetic hardware and delays. In the second method the 

interpolator was derived based on the recursive running sums which further reduced the number 

of multiplier and adders in the implementation.  

Vaidyanathan et al., [189] presented an optimal design of linear phase FIR filter for flat 

passband and equiripple stopbands using Remez algorithm for the design of weighted 

Chebyshev FIR filters. The flatness of the passbands is to a prescribed degree. The overall filter 

is designed for order N even. Sheikh et al., [190] describes the technique for designing narrow 

band and wideband linear phase FIR filter band on FRM method. It uses sparse FIR design and 

masking filter using fixed integer linear programming optimization. Alam et al., [191] presents 

a low power narrow transition FIR method using FRM implemented using a field programmable 

gate array (FPGA). This hardware was used for narrow band filters and could be extended for 

wideband filters. Yang et al., [192] presents a new structural design of sharp transition FIR filter 

using FRM method using several simple sub filters achieving a significant saving of 20% in 

arithmetic hardware. Henzel et al., [193] describes an FIR filter design based on the desired H 

(ω) and the iteratively reweighted Chebyshev error minimization. It is suitable for a high filter 

order. Alkhairy et al., [194] presents in detail the design of an optimal FIR filters based on the 

Chebyshev approximation. The algorithm converges and requires 0 (M2) computations per 

iteration, where M is the filter length. 
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3.7   Proposed Methodology:  Linear phase sharp transition FIR filters 

In this section, we have proposed a simple design of linear phase sharp transition FIR filters 

for lower orders with arbitrary passband and not necessarily an equiripple filter. The designs 

are categorized into three models namely - Model I, a composite band pass filter comprised of 

individual high pass and low pass filter designs, Model II is an integrated band pass filter and  

Model III consisting of the improvised version of the band pass filter with a proposed slope 

matching technique. 

To evaluate each of the filter designs we first apply the single lead non-invasive aECG signal 

to the LPST FIR band pass filter using the designated fiduciary edges with a sharp transition 

width. Later in chapter 4, an FQRS detector based on Pan Tomkins QRS detector algorithm 

[195] detects the R-peaks to compute FHR for a single fetus. This method is also extended to 

obtain simultaneously the MHR of the adult mother [196]. In all processing we are not unduly 

concerned with any distortion that can occur at the output of the filter (not being optimum). It 

is sufficient to identify the QRS complex precisely. The detection of the FQRS is evaluated 

using each of the filter designs in chapter 4. Our proposed technique eliminates the need for a 

centre frequency nor the fixed passband width as it is used in [184]. Our design allows the user 

to set the cut off frequencies for a narrow pass band width for any filter order. It also 

incorporates a very linear sharp transition width while reducing the effects due to Gibb’s 

phenomenon thereby reducing the passband ripple of the filter [171]. To study the merits of 

our filter design, the magnitude response of our proposed filter design was compared with the 

PM algorithm for a range of filter orders. These filters have many applications in the speech 

and biomedical signal processing research. Our technique being single channel lead makes it 

very convenient and comfortable for a maternal home care for long term monitoring. 
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3.7.1   Maternal and fetal frequency spectrum 

Depending on the gestation age the FHR changes. After four weeks of pregnancy the FHR 

is around 70 bpm [197]. It rises to 175 bpm by the end of the first trimester. The FHR 

thereafter decreases to around 110 – 160 bpm at the average childbirth (around 42 weeks) 

[198].  

To obtain the maternal QRS (MQRS) and FQRS frequency spectrum, a literature survey 

was compiled. The recorded values for the following parameters, namely, maternal QRS 

amplitude (MQRSA), fetal QRS amplitude (FQRSA), maternal QRS width (MQRSW), fetal 

QRS width (FQRSW), MQRS frequency bandwidth (MQRSBW) and FQRS frequency 

bandwidth (FQRSBW) are as shown in Figure 3.3. However just knowing the QRS width 

does not tell us the frequency spectrum of that ECG signal. 

 

 

Figure 3.3:   Bandwidth and amplitude of maternal- fetal ECG signals [35]. 

 

Table 3.3 and Table 3.4 summarize the maternal and fetal parameters in time and frequency 

domain, respectively. Maternal beats per minute (bpm) normally ranges from 50 to 210 

bpm with an average of 80 or 89 bpm [75, 166]. While the FECG bandwidth ranges from 

0.05 – 100 Hz [8] , the fetal beats per minute are recorded by various authors such as 60-

240 bpm [75] , 120 – 160 bpm [166] and 110 – 160 bpm [199] where mostly all have taken 

the average value as 140 bpm.  
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Table 3.3: Maternal and Fetal parameters: QRS amplitude, QRS width and QRS 

frequency bandwidth. 

      

 

Table 3.4:   Maternal and Fetal parameters: QRS frequency bandwidth. 

 

Frequency domain 

MQRS bandwidth (MQRSBW) FQRS bandwidth (FQRSBW) 

18 – 35 Hz  [166] 27-53 Hz  [166] 

10 - 40 Hz  [201],  10 - 25Hz [202], 

10 – 30 Hz [75] 

Starts at 20 Hz  [201] 

5 – 15 Hz  [195] ,  2 - 20 Hz  [203] 15 – 40 Hz  [204] 

1-30 Hz  [205] 20 – 60 Hz  [75] 

 

To compare the MQRS and FQRS band pass frequencies for the maternal thoracic and fetal 

scalp ECG signals, we marked the Q-R-S fiducial edges for MECG and FECG of the 

Physionet databases. The Fast Fourier Transform (FFT) was obtained for the above records 

and average frequency range for the records is shown below: 

a) Maternal and fetal QRS band pass frequency spectrum from the two Physionet databases 

[65] is: MQRSBW ~ (10 – 34 Hz) and FQRSBW ~ (20 – 56 Hz). We estimated the frequency 

range for the MQRSBW to be 18 – 32 Hz. 

b) Our proposal for the maternal and fetal QRS band pass frequencies: From the above 

literature, we estimated the maternal beats per minute range to be 70 – 100 BPM (1.166min 

– 1.666max bps) and the fetal beats per minute range to be 110 – 140 BPM (1.833min – 

2.333max bps). 

bps
min

bps

fetal 1.833
Minimum frequency ratio= = = 1.572 

maternal 1.166

 
 
 

 

bps
max

bps

fetal 2.333
Maximum frequency ratio= = = 1.400 

maternal 1.666

 
 
 

 

Time domain 

MQRSA FQRSA MQRSW FQRSW 

100 - 150 µv [8] 60 µv [8] 120 ms [166] 80 ms [166] 

150 µv [17] 30 µv [17] 100 ms [17] 50 ms [17], 53 ms [200] 

300 µv [201] 10-20 µv [201] 100 ms [75] 3- 25ms [75] 



 

65 
 

1.572 + 1.4
Average frequency ratio =  = 1.486    

2

 
 
 

    

We can obtain fetal QRS lower fiduciary (FQRS Lower fiduciary edge) and Upper fiduciary   

(FQRS Upper fiduciary edge) frequencies from the average frequency ratio and the maternal 

frequency range. 

FQRS Lower fiduciary edge = MQRS Lower fiduciary edge   x Average frequency ratio = 18 x 1.486 ~ 27 Hz 

FQRS Upper fiduciary edge = MQRS Upper fiduciary edge   x Average frequency ratio = 32 x 1.486 ~ 48 Hz 

We can conclude that, we can design an LPST high pass FIR filter with a cut-off of 

27Hz which is the lower fiduciary edge of the fetal spectrum that will remove all the 

artifacts, low frequency noise including baseline wander frequencies. This is followed by 

a low pass FIR filter with a cut-off of 48Hz which is the upper fiduciary edge of the 

spectrum of FECG. This cut off frequency will remove the PLI frequency at 50Hz and the 

PLI harmonics and other high frequency noise. To effectively extract the required fetal 

information from the aECG following, LPST FIR filters were designed. 

 

3.8   Design of composite LPST FIR BPF Model I 
 

3.8.1  Design and model for LPST FIR high pass filter 

In this section, the design of the high pass with a sharp transition and a linear phase FIR filter 

is presented. For the proposed high pass filter model, the three regions of the filter response    

H (ω) are modelled using trigonometric functions of frequency as shown in Figure 3.4. (See 

Annexure D1 for more details).        

.

 

 

Region 1 (stopband) :   ( )  1  cos  (  )                             

Region 2 (transition) :  ( )  (1 ) sin   ( )       

Region 3 (passband) :  

0 

(

   

   

)  (1 ) 

s sh

s p s th sh

sh

p

sh ch

H k

H k

H

  

     

 

 

 



 

    

 

 

 

 

 .

  sin   ( )           chp ph chk     





 



     (3.22) 
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Figure 3.4:   LPST FIR HPF Model I magnitude response H (ω) showing the three regions 

 

Using the Eq. (3.22), the filter design parameters ksh , kth and kph for the three regions of the 

high pass filter are evaluated and listed in Eq. (3.23). 

   
2

  
2 (   )     

        
2( )

sh

sh

th

ch sh

ph

ch

k

k

k







 



 


 


 

 


 
 




                  (3.23) 

where, ωsh is the stopband edge frequency while ωch is the cut off frequency in the passband. 

δs and δp are the stopband attenuation and passband ripple, respectively. 

 

3.8.2   Expressions for the impulse response coefficients for a LPST FIR HPF 

The impulse response coefficients h(n) for the high pass FIR filter are obtained by computing 

the weighted integrals of the magnitude response over the three regions shown in the filter 

model magnitude response in Figure 3.4. (See Annexure D1.1 for more details).  
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0

1
( )  ( ) sin( )   h n H k d



  


 
  

 
                (3.24) 

 

1
( )   ( ) sin( )   ( ) sin( )    ( ) sin( ) 

0

sh ch

ch
sh

h n H k H k H k

  

        
 

 
 

      
  

            (3.25) 

 

The Eq. (3.25) is evaluated to obtain the expression for the high pass filter model impulse 

response h (n) given by Eq. (3.26). 

 

                    

 

 

 

(3.26) 

   

3.8.3 Design and model for LPST FIR low pass filter 

As before, the design of the LPST low pass FIR filter starts with the three regions of the filter 

response modelled using trigonometric functions of frequency shown in Figure 3.5. (See 

Annexure D2 for more details).  

 
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  Figure 3.5:   LPST FIR LPF Model I magnitude response H (ω) showing the three regions 

 

Using the Eq. (3.27), the filter design parameters kpl, ktl and ksl for the three regions of the low 

pass filter are evaluated and listed in Eq. (3.28), where, ωsl is the stopband edge frequency 

while ωcl is the cut off frequency in the passband. 
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2( )

pl
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sl
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                                      (3.28) 

3.8.4 Expressions for impulse response coefficients for the LPST FIR LPF 

 

Proceeding as in the development of Eq. (3.26), the impulse response coefficients h (n) for the 

low pass FIR filter is obtained in Eq. (3.29). (See Annexure D2.1 for more details). 
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where k ≠ (ktl, kpl and ksl ). 

 

3.8.5   Expression for the frequency response of the composite LPST FIR filter Model I 

Let h (n) be the impulse response coefficients of an N point LPST filter where, 0 ≤ n ≤ N-1 and 

where, 

N - 1 N - 3
k = - n  and n = 0,1,2,..,  for N Odd  

2 2

    
    
    

                                  (3.30) 

and  

N - 1 N
k = - n  and n = 0,1,2,..,  - 1  for N Even   

2 2

    
    
    

                                             (3.31) 

From Table 3.1, we selected the appropriate type of impulse response for the high pass and low 

pass linear FIR filters listed below. 

Type 2: Symmetric Even: Symmetric Impulse response, h (n) = h (N-1-n) for N Even.   

 

1
2

0

1
  2 ( ) cos               

2

N

r

n

N
H h n n 

 
 

 



   
   

  
                      (3.32) 

This filter design is not suitable for high pass filters as the H (0) gives a maximum value, while 

H (π) = 0.  Hence the filter design is most suitable for low pass filters. 
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Type 4:  Anti Symmetric Even: Anti Symmetric Impulse response, h (n) = - h (N-1-n) for N 

Even.   

 

1
2

0

1
  2 ( ) sin    

2

N

r

n

N
H h n n 

 
 

 



   
   

  
                                  (3.33) 

This filter design has H (0) = 0 while H (π) gives out a maximum value. The condition is most 

appropriate for high pass filters only and not for low pass filters. The LPST FIR filters used 

in tandem were high pass filters using Type 4 from Eq. 3.33 while the low pass filters used 

Type 2 from Eq. 3.32. As per the literature review and the assumptions made for FQRS 

band frequencies the following fiduciary frequencies for the FIR filters were substituted. 

For HP filter: ωsh = 27 Hz and ωch = 28Hz, while LP FIR filter: ωcl = 48Hz and ωsl = 49Hz.   

3.8.6   Synthesis results of composite LPST FIR BPF Model I  

The LPST high pass and low pass filters are designed for the desired filter specifications as 

shown in Table 3.5 and 3.6 respectively. The measurement of the magnitude response of these 

filters are also compared in Table 3.5 and 3.6 with the filter design specifications. 

 

Table 3.5:   LPST HPF specifications along with measured magnitude response values.  

 

LPST filter 

(filter order  

(N) = 1000) 

Passband 

edge 

(ωch) rad/s 

Stopband 

edge 

(ωsh) rad/s 

Transition 

bandwidth 

(ωch - ωsh ) 

rad/s 

Max. 

passband 

loss (dB) 

Min. 

stopband 

attenuation 

(dB) 

Design 

specifications 

56 π 54π 2π ±0.873 40 

Measured 

specifications 

57.3π 52π 5.3π +0.284 , 

-0.183 

38 

 

 

Table 3.6:   LPST LPF specifications along with measured magnitude response values. 
 

LPST filter 

(filter order  

(N) = 1000) 

Pass 

band edge 

(ωcl) rad/s 

Stop 

band edge 

(ωsl) rad/s 

Transition 

bandwidth 

(ωsl - ωcl) 

rad/s 

Max. 

passband 

loss (dB) 

Min. 

stopband 

attenuation 

(dB) 

Design 

specifications 

96 π 98 π 2 π ± 0.873 40 

Measured 

specifications 

95.5π 99.86 π 4.36π -0.132 37.16 
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Table 3.7:   Variations of passband loss and stopband attenuation for HPF with various 

filter orders (N). 

 

Filter order (N) 200 500 1000 1500 2000 

Passband loss (dB) 0.534 0.164 0.284 0.044 0.076 

Stopband attenuation (dB) 21.04 30.56 38 39.44 39.67 

  

Table 3.8: Variations of passband loss and stopband attenuation for LPF with various 

filter orders (N). 
 

Filter order (N) 200 500 1000 1500 2000 

Passband loss 

(dB) 

0.569 0.442 0.132 0.1277 0.1264 

Stopband 

attenuation (dB) 

25.59 32.46 37.16 38.6 39.5 

 

 

3.8.7 Discussions for composite LPST FIR BPF Model I  
 

Tables 3.7 and 3.8 depict the performance of the filter for various filter orders (N). There 

is a reduction of Gibb’s phenomenon with these filter designs. For conventional FIR sharp 

transition filters, the peak passband ripple due to Gibb’s phenomenon is about 18%. Using 

our proposed LPST high pass and low pass FIR filters, we observed from Tables 3.7 and 

3.8 the following : i) The passband losses are quite low and ii) The ripple decreases for 

higher filter order. The sampling rate, N = 1000 is much higher than the Nyquist rate 

(approximately 200Hz) and is chosen to improve the quality of the extracted FECG.  
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                                                                       3.6 (a) 

          

                                               3.6 (b) 

Figure 3.6:     Magnitude response of LPST FIR filters for various filter orders (a) HPF 

(b) LPF. 
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Various filter orders (N = 200, 500, 1000, 1500, 2000) were also implemented to check the 

performance of the filters as shown in Figure 3.6a and 3.6b. These filters are unlike the 

classical filters in that they possess a narrow stopband and/or passband and also sharp 

transition regions. We designed both the FIR filters such that the magnitude H (ω) in the 

passband and stopband are not constant but inserted a small amount of ripple of 0.01 in 

the stopband as well as passband so that, Paley-Wiener criterion is not violated. Both the 

FIR filters were designed for sharp transition width (ωs - ωc) of 1Hz or 2π rad/s.The 

magnitude response, the linear plot and the magnified view of the pass band for both HPF and 

LPF are shown in Figures 3.7a to 3.7f respectively with the filter order N equal to 1000. 

  

                   
      3.7 (a) 
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                                               3.7 (b)                  
                  

 
                                      

                 

                3.7 (c) 
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                                3.7 (d) 

 

                  

               3.7 (e) 
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                                                                         3.7 (f) 

Figure 3.7: (a) Magnitude response of the proposed LPST FIR HPF with filter order N = 

1000 (b) Linear plot (c) Magnified view of the passband (d) Magnitude 

response of the proposed LPST FIR LPF with filter order N = 1000 (e) Linear 

plot (f) Magnified view of the passband. 

 

3.9   Design of LPST FIR BPF Model II 
 

 

Figure 3.8:   LPST FIR BPF Model II magnitude response H (ω) showing the five regions. 
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3.9.1  Design and model of LPST FIR BPF Model II 

 

For the proposed LPST FIR BPF model II, the five regions of the filter response are modelled 

using trigonometric functions of frequency. The filter model magnitude response H (ω) is 

shown in Figure 3.8 (See Annexure D3 for more details). 

 

The frequency response for the five regions are listed in Eq. (3.34). 
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Using Eq. (3.34), the filter design parameters k1, k2, k3, k4 and k5 for the five regions of the band 

pass filter are evaluated and listed in Eq. (3.35). 
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where, ωs1 and ωs2 are the stopband edge frequencies while ωp1 and ωp2 are the passband edge 

frequencies. δs and δp are the stopband and passband ripple respectively, while m1, m3 and m5 

are integers.  
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3.9.2 Expression for impulse response coefficients for the  LPST FIR BPF Model II  

 

The impulse response coefficients h (n) for the band pass FIR filter is obtained in Eq. 3.36, 

based on the procedure outlined in section 3.7 (See Annexure D3.1 for more details). 
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              (3.36)   

We can choose the effective pass band width (ωp2 ~ ωp1) such that (ωs1 ~ ωp1) = (ωs2 ~ ωp2), is 

as small as possible for sharp transition of passband edge. Once ωp1, ωp2, ωs1 and ωs2 are chosen 

k1, k2, k3, k4 and k5 are determined. 

3.9.3 Expression for the frequency response of the LPST FIR BPF Model II   
 

Let h (n) given by Eq. (3.36) be the impulse response coefficients of an N point linear phase 

FIR filter where, 0 ≤ n ≤ N-1 and  

  1 3
     0,1,2,...........,       

2 2

N N
k n and n for N Odd

      
      

    
                       (3.37)    

      

and  
1

     0,1,2,..........., 1       .
2 2

N N
k n and n for N Even

     
       

    
                       (3.38) 
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In the case of anti-symmetric response with N Odd (Type 3) from Table 3.1, the frequency 

response of the band pass FIR filter is given by Eq. 3.39, 

3

2

0

( ) 2 ( ) sin  
1

.
2

N

r

n

N
nH h n 





   
  

  
                          (3.39) 

This response is most suitable for the proposed band pass filter as H (0) = 0 and H (π) = 0. If 

we refer to Eq. 3.37, k is an integer for N odd. Other constraints are as follows: (i) In Eq. 3.35, 

k ≠ k1, k ≠ k3 and k ≠ k5 and (ii) k1, k3 and k5 should not be integers. However k2 and k4 do not 

have any constraints. 

3.9.4 Synthesis results of LPST FIR BPF Model II   
 

The LPST FIR BPF was implemented using Eq. 3.36. The following FQRS band pass fiduciary 

edge cut off frequencies (rad/s) were substituted as per Figure 3.8:  ωs1 = 70π, ωp1 = 72π, ωp2 = 

96π and ωs2 = 98π. Also stop band and passband ripples are δs = δp = 0.01. Equal transition 

width at both ends were chosen for the pass band to be 2π rad/s or 1 Hz. The measurement of 

the magnitude response of the band pass filters are compared in Tables 3.9 and 3.10 along with 

the filter design specifications. 

 

Table 3.9: 

LPST FIR BPF Model II specifications of passband and stopband edges along 

with measured magnitude response values (filter order N =1001). 

Band pass LPST 

filter 

 

Stopband 

edge 

(ωs1) rad/s 

Passband edge 

(ωp1) rad/s 

Passband 

edge 

(ωp2) rad/s 

Stopband edge 

(ωs2) rad/s 

Design 

specifications 

70π 72π 96π 98π 

Measured 

specifications 

64.68π 73.22π 92.3π 100.08π 
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Table 3.10: LPST FIR BPF Model II specifications of transition bandwidth, passband 

ripple and stopband attenuation along with measured magnitude response 

values. 

LPST filter 

(filter order  

(N) = 1001) 

Transition 

bandwidth 

(ωp1 – ωs1) rad/s 

Transition 

bandwidth 

(ωs2 – ωp2) rad/s 

Max. 

passband loss 

(dB) 

Min. stopband 

attenuation 

(dB) 

Design 

specifications 

2π 2π ±0.873 40  

Measured 

specifications 

8.54π 7.78π + 0.47, - 0.13 40 

 

Table 3.11: Variations of passband loss and stopband attenuation for LPST BPF Model II 

with various filter orders (N). 

Filter order (N) 201 501 1001 1501 2001 5001 

Passband loss (dB) 1.5 ±0.5 ±0.13 ±0.1 ±0.04 ±0.03 

Stopband attenuation (dB) 23.5 35.8 40 43 46 46 

 

3.9.5 Discussions of LPST FIR BPF Model II   
 

We designed a LPST FIR BPF such that the magnitude H (ω) in the passband and stopband are 

not constant but inserted a small amount of ripple of 0.01 in the stopband as well as passband 

so that, Paley- Wiener criterion is not violated. The FIR filter was designed for sharp transition 

width (ωs - ωc) of 1Hz or 2π rad/s. Table 3.11 depicts the performance of the filter for various 

filter orders (N). There is a reduction of Gibb’s phenomenon with these filter designs. In our 

proposed band pass LPST FIR filters, the passband losses are quite low as can be seen from 

Table 3.10. It can also be seen that the stopband attenuation surpasses the design specification 

at higher orders and the passband ripple decreases for higher filter order as seen from Table 

3.11. The sampling rate, N = 1001 is much higher than the Nyquist rate (approximately 200Hz) 

and is chosen to improve the quality of the extracted FECG. Various filter orders (N = 201, 

501, 1001, 1501, 2001 and 5001) were implemented to check the performance of the filters as 

shown in Figure 3.9d. These filters are unlike the classical filters in that they possess a narrow 

stopband and/or passband and also sharp transition regions. The magnitude response, the linear 

plot and the magnified view of the BPF are shown in Figures 3.9a to 3.9c, respectively with 



 

81 
 

the filter order N equal to 1001. As seen from Figure 3.10, the average transition width 

approaches the design specifications at higher orders. 

                 

                   3.9 (a) 

                 

                                         3.9 (b)                                                                       



 

82 
 

 

                                                        3.9   (c)     

                                           

Figure 3.9: (a) Magnitude response of the proposed LPST FIR BPF Model II with filter 

order N = 1001 (b) Linear plot (c)  Magnitude response of the LPST FIR BPF 

Model II for various filter order (N). 

 

 

Figure 3.10: Average LPST FIR BPF Model II transition width (ωs - ωc) and stopband 

attenuation for various filter order.  
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3.10 Design of LPST FIR BPF Model II with Slope Matching Technique  

    (Model III)  

3.10.1  Introduction to Slope Matching Technique 

 

Figure 3.11: Illustrates the novel slope matching technique with the aid of the 

expanded views (from Figure 3.8) of the passband and stopbands for all 

four points of discontinuity with the slopes at their fiduciary edges. (a) 

Fiduciary edge at ωs1 (b) Fiduciary edge at ωp1 (c) Fiduciary edge at ωp2 

(d) Fiduciary edge at ωs2.  

 

The filter response functions of a filter design are discontinuous at the passband edge which 

leads to ripples at the points of discontinuity. Normally the points of discontinuity for the band 

pass filter will be at four points, they are (a) at the end of the stopband region and start of the 

transition region (ωs1) (b) at the end of transition region and start of the passband region (ωp1) 

(c) at the end of the passband region and start of the transition region (ωp2) (d) at the end of the 

transition region and start of the stopband region (ωs2). In this model III, a slope matching 

technique is proposed wherein, the slopes of the magnitude response are equalized at these 

points of discontinuity or fiduciary edges of fetal frequency spectrum. Figure 3.11 illustrates 
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the novel slope matching technique for all four points of discontinuity. The slopes are equalized 

at the following fiduciary edges: ωs1, ωp1, ωp2, and ωs2 (slopes are the derivatives of H (ω) with 

reference to ω at each fiduciary edge).  The slopes are equalized at these fiduciary edges with 

reference to Eq. (3.34) and (3.35) as shown in Figure 3.11. The proposed technique makes the 

function continuous at these points reducing the overshoots due to Gibb’s phenomenon. The 

slope matching will have an impact on the peak ripple by reducing it at the points of 

discontinuity. Additionally, there is an improvement in the filter response wherein the passband 

loss is reduced and the stopband attenuation is increased.  

3.10.2 Slope matching technique at five regions of the LPST FIR BPF Model II 

In this section the design of the LPST FIR BPF with slope matching technique is presented. 

The BPF is modelled over the same five regions for Type 3. The parameters of the model are 

evaluated by equalizing the slopes of the pseudo-magnitude response function at ωs1, ωp1, ωp2, 

and ωs2. This allows the proposed function to be continuous at the extremes of the transition 

region thus reducing the effects due to Gibb’s phenomenon. 

    3.10.2 (a)  Slope at stopband region 1, ω = ωs1 (see Figure 3.11a). 

From Eq. (3.34) we have, 1( ) c  . os 
2

s
H k


    

Differentiating Eq. (3.34), we obtain 
 s1 1 1 s1

( ( ))
=  = .  sin  

2

sd H
k k

d

 
  

    

From Eq. (3.35) we have, 11   2 m1  
2

s k


   . Using this relation in the above we  

  obtain ,  = s1 1
( ( ))

  
2

sd H
k

d
 

 


 .                                    (3.40) 
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    3.10.2 (b)  Slope at transition region 2, ω = ωs1 (see Figure 3.11a). 

        From Eq. (3.34) we get, 2 1( )    ( ) sH k    . Differentiating at ω = ωs1 we obtain, 

 = s1 2
( ( ))

  = 
d H

k
d

 



.                                                (3.41) 

Equating Eqs. (3.40) and (3.41) to equalise the slopes at ωs1 for slope matching we get ,

2 1

2

s
k k


 .                                       (3.42) 

3.10.2 (c)  Slope at transition region 2, ω = ωp1 (see Figure 3.11b) 

          From Eq. (3.34) we get, 2 1( )   ( ) sH k    . Differentiating at ω = ωp1 we obtain, 

  = 1 2  
( ( ))

  = p
d H

k
d

 



.                                                (3.43) 

3.10.2 (d)  Slope at passband region 3, ω = ωp1  (see Figure 3.11b) 

From Eq. (3.34) we get, 3 1( ) 1  sin(  ( )) 
2

p
pH k


     . Differentiating at ω = ωp1 we 

obtain,     = p1 3
( ( ))

 =   
2

pd H
k

d
 

 


.                         (3.44) 

  Equating Eqs. (3.43) and (3.44) to equalise the slopes at ωp1  we get, 

2 3

2

p
k k


 .                            (3.45) 

3.10.2 (e) Slope at passband region 3, ω = ωp2   (see Figure 3.11c)          

From Eq. (3.34) we get, 3 1( )  1  sin(  ( )) 
2

p
pH k


     . Differentiating at ω = ωp2  

we obtain, 3 3 2 1( )   k cos (  ( )) 
2

p
p pH k


    .From Eq. (3.35) we have,           

3 2 1  ( )  2 m3  p pk       . Using this relation in the above we  

  obtain ,  = p2 3
( ( ))

 = -  
2

pd H
k

d
 

 


.                         (3.46) 
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3.10.2 (f) Slope at transition region 4, ω = ωp2   (see Figure 3.11c)  

From Eq. (3.34) we get, 4 2( )  1   ( )pH k     . Differentiating at ω = ωp2 we obtain, 

  = p2 4
( ( ))

  = - 
d H

k
d

 



.                                     (3.47) 

Equating Eqs. (3.46) and (3.47) to equalise the slopes at ωp2 we get, 

4 3

2

p
k k


 .                                       (3.48) 

3.10.2 (h) Slope at transition region 4, ω = ωs2   (see Figure 3.11d)     

From Eq. (3.34) we get, 4 2( )  1   ( )pH k     . Differentiating at ω = ωs2 we obtain, 

 = s2 4
( ( ))

 = -  
d H

k
d

 



.                                  (3.49) 

3.10.2 (i) Slope at stopband region 5, ω = ωs2   (see Figure 3.11d)  

From Eq. (3.34) we get, 5 2 ( )   -  sin  (  ( )) 
2

s
sH k


    . Differentiating at ω = ωs2 we 

obtain, 

 = s2 5
( ( ))

 = -  
2

sd H
k

d
 

 


.                                   (3.50) 

Equating Eqs. (3.49) and (3.50) to equalise the slopes at ωp2 for slope matching we get, 

  4 5

2

s
k k


                                        

(3.51)From Eqs. (3.42), (3.45), (3.48) and (3.51), a new relationship between the band pass 

filter design parameters for equalisation slope matching technique is finally obtained in Eq. 

(3.52) as,  

        2 3 4 5 1

2 2 2

p s s
k k k k k

  
             .                                      (3.52) 
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 Expression for frequency response of an LPST FIR BPF Model III  

As before, let h (n) be the impulse response coefficients of an N point linear phase FIR 

filter where, 0 ≤ n ≤ N-1 and 

 

   
1 3

  and   0,1,2,...........,    for  N Odd 
2 2

N N
k n n
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                     (3.53) 

                           

and     
1

  and   0,1,2,..........., 1     for N Even.
2 2

N N
k n n
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       

    
           (3.54) 

The expression for the frequency response is identical to the one given by Eq. (3.39). Thus, 
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In the case of anti-symmetric response with N Odd as given in Eq. (3.55), the response is most 

suitable for the proposed band pass filter as H (0) = 0 and H (π) = 0. If we refer to Eq. (3.53), 

k is an integer for N odd. Other constraints are as follows: (i) k ≠ k1, k ≠ k3 and k ≠ k5 and (ii) 

k1, k3 and k5 should not be integers. However k2 and k4 do not have any constraints. 

3.11 Synthesis of FIR BPF Model II (LPST BPF) versus FIR BPF Model 

III (LPST  BPFslope) 

The two LPST BPF Models II and III, with and without slope matching respectively are 

subjected to the following FQRS band pass fiduciary edge cut off frequencies (rad/sec) : ωs1 = 

70π, ωp1 = 72π, ωp2 = 96π and ωs2 = 98π and the stop band (δs) and passband ripple (δp) were 

each equal to 0.01. Equal transition width at both ends were chosen for the pass band to be 2π 

rad/sec or 1 Hz. It is found that the filter model LPST BPFslope reduces the amount of 

discontinuity at the pass band edges and reduces Gibb’s phenomenon. The experimental results 

closely matched the design values and yielded stopband attenuation to be 80 dB which 
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surpassed the expected design value. Table 3.12 and Table 3.13 list filter specifications 

obtained for various filter orders (N). The magnitude response of the BPF with their magnified 

views of the passband and stopband with and without slope matching techniques are shown in 

Figures 3.12.The filter specifications obtained with and without slope matching are 

summarized in Figures 3.13 and Figure 3.14. It is seen that, there is a marginal improvement 

in the transition region width at both the fiduciary edges using slope matching technique; 

however, there is a substantial improvement in the stopband attenuation.  The filter model 

proposed in this paper achieved a trade-off between the transition region width and Gibb’s 

phenomenon. In addition, emphasis is laid upon a good passband i.e low passband attenuation 

and good stopband i.e large stopband attenuation. Thus a threefold compromise is needed for 

the satisfactory performance of the filter in all the five bands in addition to a trade-off between 

Gibb’s phenomenon and sharpness of the transition of the filter. All the five regions of the 

response are formulated in terms of sinusoidal function to achieve the twin objectives of 

reducing Gibb’s phenomenon and ease of evaluating the closed form expression for the impulse 

response coefficients.  

The band pass filter model with the proposed slope equalization is similar to the basic 

model of LPST BPF but is refined further by applying the slope matching technique. This 

proposed technique avoids a discontinuity at the edges of the passband and stopbands reducing 

the effects of Gibb’s phenomenon and thus further improving the filter performance. Table 

3.14 displays the percentage change in the peak passband for the filter Models II and III. It is 

seen that the percentage change in the peak passband for Model II of 4.35% is improved to 

1.5% using Model III. The peak passband in conventional FIR designs is about 18% which is 

reduced to around 1.5 % with the use of trigonometric functions in the proposed filter model 

III combined with slope equalization technique. 
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         3.12 (a)  

                                                                        

 

                     

          3.12  (b) 
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                                  3.12 (c) 

Figure 3.12:   Magnitude responses of the LPST FIR band pass filters for with and without 

slope matching for N= 5001 (a) Magnitude response (b) Magnified view of 

the passband (c) Magnified view of the stopband. 

 

 

Table 3.12:    LPST FIR BPF Models specifications of passband and stopband edges along 

with measured magnitude response values. (N= 1001). 

LPST BPFs Stopband 

edge 

(ωs1) rad/s 

Passband 

edge 

(ωp1) rad/s 

Passband edge 

(ωp2) rad/s 

Stopband 

edge 

(ωs2) rad/s 

 

Design specifications 70π 72π 96π 98π  

LPST BPF 66.84 π 73.22 π 95.5 π 100.44 π  

LPST BPFslope  67.28 π 73.22 π 95.5 π 99.48 π  
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Table 3.13:    LPST FIR BPF Models specifications of transition bandwidth, passband 

ripple and stopband attenuation along with measured magnitude response 

values (N= 1001). 

LPST BPFs Transition 

bandwidth 

(ωp1 – ωs1) rad/s 

Transition 

bandwidth 

(ωs2 – ωp2) 

rad/s 

Max. 

passband 

loss (dB) 

Min. 

stopband 

attenuation 

(dB) 

Design specifications 2 π 2 π ±0.873 40  

LPST BPF 6.38 π 4.94 π + 0.37, - 0.15 40.6 

LPST BPFslope 5.94 π 3.98 π ±0.13 42 

 

 

Table 3.14: LPST FIR BPF Models peak passband change in percentage for with and 

without slope matching technique (N = 1000). 

LPST BPFs Max. passband 

loss (dB) 

Peak passband 

Change (%) 

LPST BPF + 0.37 4.35% 

LPST BPF - 0.15 1.715% 

LPST BPFslope  + 0.13 1.5% 

LPST BPFslope - 0.13 1.48% 

    

 

Figure 3.13:    Average LPST FIR BPF transition width for various filter order (N). 
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Figure 3.14:   Stopband attenuation for various filter order (N). 

 

 

 

 

3.12 Results and Synthesis of LPST FIR BPF Model III and Optimal FIR filter design 

(Parks McClellan algorithm) 

Comparisons of the variations of passband loss and stopband attenuation of our method are 

compared with the PM algorithm in Figures 3.15 and 3.16, respectively. Using our method the 

passband loss gives minimum values as compared to the PM algorithm, especially at lower 

filter orders. At filter order 2001, the two algorithms have almost equal values. Similarly, PM 

algorithm stages a low stopband attenuation for all filter orders (N) from 101 to 2001. 

Comparison of the magnitude responses of PM algorithm versus our proposed LPST FIR 

Model III filter is seen in Figure 3.17. It is observed that Gibb’s phenomenon is reduced 

completely at the transition edges of our proposed filter and is negligible at higher filter orders. 
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Figure 3.15: Comparisons of the variations of passband loss of our LPST FIR BPF   

Model III compared with the PM algorithm for various filter order (N). 

 

 

 

 

 

Figure 3.16: Comparisons of the variations of stopband attenuation of our LPST FIR BPF 

Model III compared with the Parks-McClellan algorithm for various filter 

order (N). 
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          3.17 (a) 

 

 
                   3.17 (b)  

 

 Figure 3.17: Comparisons of LPST FIR BPF Model III with PM algorithm. (a) Linear 

magnitude plot (b) Magnitude response. 
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3.13  Summary   

This chapter presented the design of three models of linear phase sharp transition FIR filters 

with the required fiduciary band edges for maternal and fetal ECGs.  

The LPST FIR BPF Model I employed a band pass filter containing a tandem of 

high pass and low pass FIR filters. We designed both the FIR filters such that the transition 

region width of each is 1 Hz. The passband losses are quite low and the ripple decreases 

for a higher filter order.  

The LPST FIR BPF Model II described a technique of implementing an integrated 

LPST BPF. It is found that increasing the filter order (N) to 5001 has improved the filtering 

with respect to average transition bandwidth, passband ripple and stop band attenuation. 

The third technique, LPST FIR BPF Model III, used a novel technique to reduce 

Gibb’s phenomenon at the fiduciary band edges of the BP filter. The principle underlining this 

technique is to reduce the amount of discontinuity at the fiduciary edges of the magnitude 

response of the band pass FIR filter employed. This is achieved by matching the slopes of the 

magnitude response at the stopband/passband edges. It is observed that the stopband 

attenuation using this method is substantial compared to that obtained without slope matching. 

Additionally it is seen that, the proposed technique yields a marginal improvement in the 

transition region width at both the fiduciary edges. The LPST FIR BPF Model III with slope 

matching technique for lower orders obtained a fairly good magnitude response in all passband, 

stopband and transition regions with very little computation time and thus is suitable for real 

time processing of numerous records at a time compared to the bench marked Parks-McClellan 

algorithm. Almost all FIR filters have very low passband attenuation except those based on 

equiripple designs of lower order. All these equiripple designs are more focussed on reducing 

the transitions regions than improving the passband or stopbands. In our processing we are not 



 

96 
 

unduly concerned with any distortion that can occur at the output of the filter (not being 

optimum). For lower orders, PM algorithm response is not optimum for both passband and 

stopband. It was found that the passband loss using our method gave minimum values as 

compared to the PM algorithm, especially at lower filter orders. However, at filter order 2001, 

the two algorithms had almost equal values. Similarly, the PM algorithm displayed low stop 

band attenuation for all filter orders from N= 101 to 2001. It is observed that Gibb’s 

phenomenon is reduced completely at the transition edges of the proposed filter and is 

negligible at higher filter orders. The transition width is reasonably sharp enough for our 

application to detect precise fetal R-peaks and thus the fetal health condition. 
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4  
Maternal and fetal QRS detection  

 

4.1   Introduction 

The HRV has direct clinical significance and is, in fact, the most widely used fetal health 

parameter currently used in clinical practice. Moreover, when using Doppler ultrasound to 

determine the fetal heart rate non-invasively, the fetal HRV is basically the only source of 

information available. Since HRV is regulated by the autonomous nervous system, analysis of 

the HRV can provide information on the functioning and stage of development of this nervous 

system. This, in turn, can provide clinicians with information to assess fetal distress. To ensure 

accurate and reliable spectral analysis, however, the HRV information needs to be determined 

on a beat-to-beat basis and should essentially be artifact free. Doppler ultrasound devices 

generally provide a heart rate that is averaged over several beats and hence obscures HRV 

[206]. HRV determined with Doppler ultrasound typically also suffers from substantial 

artifacts (e.g. movement of the fetus often leads to the need of repositioning the ultrasound 

probe; in the time between repositioning, no heart rate data can be recorded) and hence provides 

inaccurate and unreliable spectral analysis results. Both the aforementioned problems (i.e. 

HRV not available on beat-to-beat basis and artifacts in the data) can be solved when 

determining the HRV from the FECG. The approach adopted in this chapter operates as an 

adaptive threshold and is chosen for its mathematical simplicity and low computational 

complexity.  
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This chapter is organized as follows. In Section 4.2 the detection of the QRS complexes is 

discussed based on Pan Tomkins algorithm [195] and in Sections 4.3 and 4.4, the performance 

of this detection method is briefly evaluated. Finally, Sections 4.5 to 4.7 provides the results of 

the FHRV using various Physionet database records. 

 

4.2   QRS detection algorithm 

The detection of QRS complexes is performed through a series of signal processing steps, 

illustrated in Figure 4.1. Each of the blocks in Figure 4.1 is discussed in more detail below.  

 

 

Figure 4.1:  Block diagram of QRS detector to detect R-peaks [195]. 

 

4.2.1 LPST BPF pre-processing stage 

In this stage, the aECG signal is filtered for noise and also the fiduciary band edges are set to 

filter the required signals for either maternal or fetal R waves. The design of the three Model 

LPST FIR filters are explained in detail in Chapter 3. The band pass filtered signal is given to 

the next stage, which is a differentiator.   

 

4.2.2 Differentiator  

In this stage, it provides information about the slope of the QRS complex. The slow varying P 

and T waves are attenuated while the peak-to-peak R wave signal corresponding to the QRS 

complex is further enhanced as seen in Figure 4.2. We used the 5 point derivative with the 

transfer function given in Eq. 4.1, which gives a linear range between 0 to 30Hz [195]. The 

difference Eq. of the differentiator is shown in Eq. (4.2). 
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The transfer function of the differentiator is, 

   1 3 4 ( )
  0.1 2  –  –  2    ,

(z)

  

Y z
H z z z z

X

    
                                (4.1) 

where, Y(z) and X(z) are the output and input of the differentiator, respectively.  

 

 
   ( ) ( )2.    1  –    3 –  2   4

ˆˆ        ( ) *  ( )
8

x nT x n T x n T x n T
y nT h n x n

     
                          (4.2) 

             (where, ˆ( )h n is the appropriate expression for h(n) ) 

The fraction 1/8 is the approximation of the original gain fraction of 1/10. 

 

                          

 

Figure 4.2:   Differentiation of the band pass aECG signal. 
 

 

4.2.3 Squaring  

 

In this stage, the nonlinear processing of the signal obtains all positive values obtained by 

squaring the larger amplitudes and minimizing the smaller amplitudes as seen in Figure 4.3. 

Higher frequencies (R-peak) are normally characteristic of the QRS complex. After 

         
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  
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differentiation in the previous stage, point by point squaring the signal is done as given by Eq. 

4.3.  

   
2

ˆ        q nT y nT                                          (4.3) 

 

           

Figure 4.3:   Squaring of the differentiated signal. 

 

 

4.2.4 Moving Window Integration  

The slope of the R wave alone is not the only way to detect a QRS event. This integrator sums 

the area under the squared waveform over a fixed interval, advances one sample interval, and 

integrates the new fixed window. The width of the moving window should be approximately 

the same as the widest possible QRS complex. For our sample rate of 1000 samples/s, the 

window is 152 samples wide (152ms). The width is long enough to include the time duration 

of extended abnormal QRS complexes. If the window is too large the integration waveform 

will merge the QRS and T complexes together, else if window is too small, a QRS complex 

could produce several peaks at the output of the stage. 

 
        (nT   (N 1)   –  2   .. 

     ,
mi mi mi

mi

x T x nT N T x nT
y nT

N

      
 

            (4.4) 

where, ymi(n) and xmi(n) are respectively, the output and input of the moving window block. 
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4.2.5 Moving Average Filter (MAF) 
 

MAF is a simple low pass FIR filter commonly used for smoothing an array of sampled data or 

signal.  It takes M samples of input at a time, takes the average of those M-samples and produces 

a single output point shown in Eq. 4.5 

 
1

 0

1
 ( )

M

maf maf

j

y i x i j
M





    ,                                                  (4.5) 

Where, ymaf and xmaf are respectively , the output and input of the moving average filter block. 

 

4.2.6 Adaptive threshold 

The integrated signal is passed through a moving average filter and is subjected to an adpative 

threshold value to obtain signal and noise peaks. The signal peaks (maternal or fetal) are 

defined as those of R waves while the noise peaks are the T waves, muscles noise etc. The 

average value of the maxima index is taken as the R-peak. The threshold generated is 

automatically adjusted to float over the signal noise peaks. Low thresholds are possible because 

of the improvement of the signal-to-noise ratio by the band pass filter. The peak value and peak 

index are obtained from the integration output. The signal peak is adjusted as per the amplitude 

of each record. Below is the simple algorithm to detect the R-peak value (above the threshold 

value) based on the Pan Tomkins QRS detector algorithm [195]. 

noise_peak = 0.1 signal_peak ;                          

signal_peak = 0.6 peak_value + 0.4 signal_peak;                  

noise_peak = 0.4 peak_value + 0.6 noise_peak;                     

ATHD = noise_peak + 0.25 (signal_peak – noise_peak);    

IF signal peak value ≥ ATHD; 

“Display R_peak_value, R_peak_ index and threshold value”; 

ELSE peak_value = noise_peak; 
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where, ATHD is the Adpative threshold, R_peak_value and R_peak_index are the 

detected R-peak and R-peak index values, respectively of the maternal or fetal QRS. 

 

                        
 

Figure 4.4: Moving window integrator and moving average filter with the adaptive 

threshold to detect R-peaks. 

 
 

4.3  Performance evaluation of the QRS detector  

The fetal and maternal R-peaks generated by our algorithms were compared with their true 

reference annotations, for example, for the Physionet database adfecgdb, the scalp fetal peak 

annotations from the website is the true reference. We used the distance based measure to assess 

the error for the fetal detection between the true R-peak location and the detected fetal R-peak 

using our algorithm (see Figure 4.5). As per ANSI/AAMI guidelines (ANSI/AAMI/ISO EC57 

1998/(R) 2008) [6, 207], sensitivity (Se), positive predictive value (PPV), F1 (accuracy) and  

failed detections (FD) are the classical statistics for evaluating QRS detectors as shown in Eq. 

4.6, 4.7, 4.8 and 4.9 respectively.  
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 Sensitivity (Se) of the algorithm is the number of True Positive (TP) as a percentage of the 

total peaks that really exist.  

) %   * 100 %
 

(Sensi
TP

Se
TP FN

tivity 
                           (4.6) 

 Positive Predictivity Value (PPV) is the number of TPs as a percentage of the number of 

peaks  detected by the algorithm.  

   ( ) %   * 100 %
 

TP
PPPositive Predic V

TP FP
tive Value 

                         (4.7)  

 Accuracy (F1) is the measure of how accurately has the algorithm detected the R-peaks for 

that record. It is the average of Se and PPV. 

1
 . 2.TP

 ( ) = 2 .    
2.TP + FP + FN

Se PPV
Accuracy F

Se PPV

   
   

   
                        (4.8)  

 

 Failed detections is the total number of beats missed in FP and FN, considered to be failed 

detections given by, 

  

(  )
) %   * 100 %  (Failed Detections

FP FN
FD

TP




                   (4.9) 

Where,  

FP ( False Positive) are beats identified by the algorithm when the clinician has not scored one. 

FN ( False negative) are beats missed by the algorithm when the clinician has scored one. ( for 

example, missed the R index peak value  more than +/- 20ms). 

TP (True Positive), where both annotations agree on the time of the event. 
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Figure 4.5:   Performance of the aECG QRS detector. 
 

In this section, the fetal R-R interval (Δn) is calculated as ( ni+1 – ni)  where, ni is the time index 

corresponding to the ith  computed R fetal peak at the output of the FQRS detector ( i = 1,2… i 

an integer) and fs = sampling frequency. The fetal or maternal heart rate is obtained for each 

record by computing using the Eq. (4.10).  

 
 fs x 60

/      Fetal Maternal Heart Rate bpm
n




                                  (4.10) 

4.4   Fetal and maternal fiduciary band edges 

To streamline and test an individual frequency band edge for fetal and maternal spectrum, we 

assigned various frequency ranges to verify the detection of heart rates for each of the ECG 

signals. As discussed in section 3.7.1 of Chapter 3, it is assumed that the beat frequency of the 

fetus is approximately 1.5 times that of the mother. A frequency overlap between the two ECG 

signals can be avoided if their individual band edges can be known in advance. It was computed 

that the fiduciary band edges for the fetal were: fs1/fp1 [27/28] Hz and fp2/fs2 [48/49] Hz 

keeping the frequency below the 50Hz to remove PLI. The average maternal fiduciary band 
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edges were assumed to be fs1/fp1 [10/11 Hz] and fp2/fs2 [33/34] Hz. It is illustrated using 

LPST FIR filter that the fetal R-peaks are best detected between the range 35 Hz – 49 Hz as 

seen in Figure 4.6. The lower frequency range of 5 Hz – 49 Hz exhibits maximum false              

R-peaks. A similar trend is seen in Figure 4.7, where the maternal R-peaks were best detected 

between the frequency range of 5 - 21 Hz. At higher frequencies above 21 Hz, the QRS detector 

detected maximum false R-peaks. The filter Models can be compared for their accuracy (F1) 

and failed detections using the following fiduciary band edges for fetal and maternal HR 

detection. 

  

       Fetal fiduciary band edges = fs1/fp1 [35/36] Hz and fp2/fs2 [48/49] Hz. 

       Maternal fiduciary band edges = fs1/fp1 [5/6] Hz and fp2/fs2 [19/20] Hz. 

 

   

 

Figure 4.6: Failed fetal R-peak detections for various bandwidth ranges of adfecgdb 

database for record r01 (channel 4). 
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Figure 4.7: Failed maternal R-peak detections for various bandwidth ranges of adfecgdb 

database for record r01 (channel 4). 

 

 

4.5 QRS detection using composite LPST FIR BPF Model I 

The LPST FIR filters used in tandem were high pass filters followed by the low pass filters. 

These composite filters formed the pre-processing module in the QRS detector as explained in 

section 4.2. This is illustrated using the Physionet adfecgdb database (see chapter 2, section 

2.7.1). The direct fetal scalp ECG is the true reference FECG signal (channel one) as shown in 

Figure 4.8a. The raw aECG signals are taken from the record r01 (channel four) as shown in 

Figure 4.8b.   
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                     4.8 (a) 

 

                                                                  4.8 (b)                                                                                           

Figure 4.8: Physionet adfecgdb database (record r01).  (a) Direct fetal scalp ECG signal 

as true reference FECG (channel one) (b) Raw maternal aECG (channel four).  

 

The composite LPST BPF FIR Model I is designed such that, the cut off frequency of the HPF 

is 35 Hz and the cut off frequency of the LPF is 49 Hz. When the aECG signal is passed through 

HPF, it effectively filters the lower frequencies up to 35 Hz. The high pass filtered signal is 

shown in Figure 4.9a along with the filtered aECG signal in Figure 4.9b. Similarly the 

frequency spectrum of the aECG signal passed subsequently through LPF indicates the filtering 

of the frequencies up to the designated frequency of 49Hz as shown in Figure 4.9c. The serial 

filtering of HP and LP combination effectively gives us the required frequency spectrum of the 

FECG, which can be seen in the time domain plot in Figure 4.9d.  
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                4.9 (a) 

            

                             4.9 (b) 
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         4.9 (c) 

                 

                                        4.9 (d) 

Figure 4.9: Filtering of the aECG signal using LPST FIR filter Model I (a) Frequency 

spectrum of the high pass filtered aECG signal (b) aECG signal after high 

pass filtering (c) Frequency spectrum of the signal passed through a 

subsequent low pass filter (d) FQRS signal after low pass filtering. 
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The filtered FECG signal as shown in Figure 4.9d is further given to the amplitude squaring 

stage which enables the desired peak signals to be further enlarged and the smaller noise peaks 

to be reduced as shown in Figure 4.10a. As shown in Figure 4.10b, we used a moving window 

integration which used a sampling frequency of 1 KHz and a 75 samples wide window. 

Additionally, a moving average filter smoothened the integrated signal and an adaptive 

threshold computed fetal R-peaks to display FHRV as seen in Figure 4.10c.  

                          

        4.10 (a)  

                       

                                                                     4.10 (b)         
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                                                                      4.10 (c) 

Figure 4.10: NIFHR (Non-invasive fetal heart rate) detector (a) Amplitude squaring of 

fetal R-peaks (b) Moving window integration and adaptive threshold (c) 

FHRV (ni is the time index corresponding to the ith computed R-fetal peak 

at the output of the FQRS detector). 

 

4.5.1 Performance evaluation of the QRS detector to obtain fetal and maternal R-peaks 

using LPST FIR BPF Model I 

 

The modified QRS detector was used to compute the fetal and maternal R-peaks for the three 

Physionet databases. Table 4.1 displays the performance evaluation of the FQRS detection 

using LPST FIR BPF Model I for five adfecgdb records with four channels each. The algorithm 

fetal R-peaks were compared with the Physionet FQRS annotations. Similarly, the maternal R-

peak index values computed from the modified QRS detector are compared with the Physionet 

lightwave annotation viewer for a) Abdominal and direct fetal ECG database (see Table 4.2) 

and b)  Physionet Challenge 2013 database (set a) for channel four. However nifecgdb database 

has the MQRS annotations which we used to compare with our extracted maternal R-peaks. 

The nifecgdb and Physionet Challenge (Phy C) 2013 records displayed in Table 4.3 and Table 
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4.4 respectively computed FN and FP values. The rest of the other nifecgdb and Phy C records 

scored 100% accuracy and hence are not displayed in the Tables. (For more details about the 

databases, see chapter 2, section 2.7). Additionally, the FD are computed for each Phy C record 

using Eq. 4.9 and are shown in Table 4.4 

Figure 4.11 illustrates the true reference FHR bpm plotted with our LPST FIR filter 

based FHR for the Physionet adfecgdb record r01 (channel four). The dotted lines indicate the 

± 10 bpm trace with respect to the true reference FHR trace. It was seen that the difference 

between the reference FHR and LPST FIR filter FHR was less than the ± 10 bpm. 

    

Figure 4.11: Illustration of the true reference FHR (direct scalp ECG) plotted with our 

algorithm based LPST FIR BPF Model I computed FHR, for record r01 of 

adfecgdb (channel four) for one minute trace. Blue dotted lines indicate the 

±10 bpm limits with respect to the reference FHR trace. 

 

 

 



 

113 
 

Table 4.1: Performance evaluation of the FQRS detection using LPST FIR BPF Model I 

for adfecgdb database. 

Record 

[channel] TP FN FP Se PPV F1 

r01 [1] 129 32 7 80.12 94.85 86.87 

r01[2] 129 5 0 96.27 100.00 98.10 

r01[3] 129 3 0 97.73 100.00 98.85 

r01[4] 129 0 0 100.00 100.00 100.00 

r04[1] 125 17 5 88.03 96.15 91.91 

r04[2] 125 20 2 86.21 98.43 91.91 

r04[3] 125 22 6 85.03 95.42 89.93 

r04[4] 125 22 7 85.03 94.70 89.61 

r07 [1] 132 45 13 74.58 91.03 81.99 

r07[2] 132 22 0 85.71 100.00 92.31 

r07[3] 132 20 2 86.84 98.51 92.31 

r07[4] 132 14 5 90.41 96.35 93.29 

r08 [1] 132 28 10 82.50 92.96 87.42 

r08[2] 132 4 0 97.06 100.00 98.51 

r08[3] 132 2 0 98.51 100.00 99.25 

r08[4] 132 0 0 100.00 100.00 100.00 

r10 [1] 132 32 9 80.49 93.62 86.56 

r10[2] 132 7 2 94.96 98.51 96.70 

r10[3] 132 65 4 67.01 97.06 79.28 

r10[4] 132 26 5 83.54 96.35 89.49 

 

 

 Figure 4.12: Graphical representation of the evaluation of the FQRS detection using 

LPST FIR BPF Model I for adfecgdb database. 
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Table 4.2: Performance evaluation of the MQRS detection using LPST FIR BPF Model I 

for adfecgdb database. 
 

 

Figure 4.13: Graphical representation of the evaluation of the MQRS detection using 

LPST FIR BPF Model I for adfecgdb database. 

 

 

Record 

[channel] TP FN FP Se PPV  F1 

r01 [1] 89 0 2 100.00 97.80 98.89 

r01[2] 89 65 11 57.79 89.00 70.08 

r01[3] 89 3 1 96.74 98.89 97.80 

r01[4] 89 0 1 100.00 98.89 99.44 

r04[1] 82 0 0 100.00 100.00 100.00 

r04[2] 82 0 1 100.00 98.80 99.39 

r04[3] 82 0 0 100.00 100.00 100.00 

r04[4] 82 4 2 95.35 97.62 96.47 

r07 [1] 77 4 4 95.06 95.06 95.06 

r07[2] 77 0 0 100.00 100.00 100.00 

r07[3] 77 4 4 95.06 95.06 95.06 

r07[4] 77 0 4 100.00 95.06 97.47 

r08 [1] 92 0 1 100.00 98.92 99.46 

r08[2] 92 0 0 100.00 100.00 100.00 

r08[3] 92 2 0 97.87 100.00 98.92 

r08[4] 92 0 0 100.00 100.00 100.00 

r10 [1] 105 0 0 100.00 100.00 100.00 

r10[2] 105 1 1 99.06 99.06 99.06 

r10[3] 105 4 1 96.33 99.06 97.67 

r10[4] 105 0 0 100.00 100.00 100.00 
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Table 4.3:   Performance evaluation of the MQRS detection using LPST FIR BPF 

Model I for nifecgdb database. 

 

Record 

[channel] TP FN FP Se  PPV  F1  

ecgca154[01] 50 0 0 100.00 100.00 100.00 

ecgca154[02] 50 1 15 98.04 76.92 86.21 

ecgca154[03] 50 0 0 100.00 100.00 100.00 

ecgca224[01] 49 0 0 100.00 100.00 100.00 

ecgca224[02] 49 0 0 100.00 100.00 100.00 

ecgca224[03] 49 0 0 100.00 100.00 100.00 

ecgca224[04] 49 1 5 98.00 90.74 94.23 

ecgca416[01] 55 0 0 100.00 100.00 100.00 

ecgca416[02] 55 4 7 93.22 88.71 90.91 

ecgca416[03] 55 0 17 100.00 76.39 86.61 

ecgca416[04] 55 0 27 100.00 67.07 80.29 

ecgca436[01] 56 0 0 100.00 100.00 100.00 

ecgca436[02] 56 0 2 100.00 96.55 98.25 

ecgca436[03] 56 0 2 100.00 96.55 98.25 

ecgca436[04] 56 0 2 100.00 96.55 98.25 

ecgca473[01] 51 0 0 100.00 100.00 100.00 

ecgca473[02] 51 0 0 100.00 100.00 100.00 

ecgca473[03] 51 0 35 100.00 59.30 74.45 

ecgca473[04] 51 0 0 100.00 100.00 100.00 

ecgca515[01] 57 0 0 100.00 100.00 100.00 

ecgca515[02] 57 0 0 100.00 100.00 100.00 

ecgca515[03] 57 0 4 100.00 93.44 96.61 

ecgca515[04] 57 0 0 100.00 100.00 100.00 

ecgca597[01] 53 0 0 100.00 100.00 100.00 

ecgca597[02] 53 0 0 100.00 100.00 100.00 

ecgca597[03] 53 2 2 96.36 96.36 96.36 

ecgca597[04] 53 2 26 96.36 67.09 79.10 

ecgca649[01] 53 0 0 100.00 100.00 100.00 

ecgca649[02] 53 2 28 96.36 65.43 77.94 

ecgca649[03] 53 0 5 100.00 91.38 95.50 

ecgca771[01] 47 0 0 100.00 100.00 100.00 

ecgca771[02] 47 0 45 100.00 51.09 67.63 

ecgca771[03] 47 0 50 100.00 48.45 65.28 

ecgca771[04] 47 0 54 100.00 46.53 63.51 

ecgca811[01] 52 0 0 100.00 100.00 100.00 

ecgca811[02] 52 0 0 100.00 100.00 100.00 
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ecgca811[03] 52 7 19 88.14 73.24 80.00 

ecgca840[01] 47 0 0 100.00 100.00 100.00 

ecgca840[02] 47 0 49 100.00 48.96 65.73 

ecgca840[03] 47 0 0 100.00 100.00 100.00 

ecgca840[04] 47 0 0 100.00 100.00 100.00 

ecgca848[01] 53 0 0 100.00 100.00 100.00 

ecgca848[02] 53 0 0 100.00 100.00 100.00 

ecgca848[03] 53 3 16 94.64 76.81 84.80 

ecgca848[04] 53 2 22 96.36 70.67 81.54 

ecgca876[01] 51 0 3 100.00 94.44 97.14 

ecgca876[02] 51 0 0 100.00 100.00 100.00 

ecgca876[03] 51 0 6 100.00 89.47 94.44 

ecgca902[01] 55 0 0 100.00 100.00 100.00 

ecgca902[02] 55 0 6 100.00 90.16 94.83 

ecgca902[03] 55 0 0 100.00 100.00 100.00 

ecgca906[01] 53 1 3 98.15 94.64 96.36 

ecgca906[02] 53 0 2 100.00 96.36 98.15 

ecgca906[03] 53 1 3 98.15 94.64 96.36 

ecgca906[04] 53 4 2 92.98 96.36 94.64 

ecgca968[01] 54 0 0 100.00 100.00 100.00 

ecgca968[02] 54 2 7 96.43 88.52 92.31 

ecgca968[03] 54 0 8 100.00 87.10 93.10 

ecgca968[04] 54 20 9 72.97 85.71 78.83 
 

 

Figure 4.14: Graphical representation of the evaluation of the MQRS detection using 

LPST FIR BPF Model I for nifecgdb database. 
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Table 4.4: Performance evaluation of the MQRS detection using LPST FIR BPF    

Model I for Phy C 2013 database. 

Record TP FN FP FD Se  PPV F1 

a02 128 0 3 2.34 100.00 97.71 98.84 

a03 140 0 2 1.43 100.00 98.59 99.29 

a07 90 0 2 2.22 100.00 97.83 98.90 

a16 89 0 7 7.87 100.00 92.71 96.22 

a29 62 11 24 56.45 84.93 72.09 77.99 

a31 80 0 1 1.25 100.00 98.77 99.38 

a33 94 0 15 15.96 100.00 86.24 92.61 

a34 76 0 5 6.58 100.00 93.83 96.82 

a38 79 19 8 34.18 80.61 90.80 85.41 

a41 112 0 4 3.57 100.00 96.55 98.25 

a51 86 5 0 5.81 94.51 100.00 97.18 

a53 73 1 0 1.37 98.65 100.00 99.32 

a56 93 0 3 3.23 100.00 96.88 98.41 

a58 108 0 3 2.78 100.00 97.30 98.63 

a66 82 0 17 20.73 100.00 82.83 90.61 

a73 96 0 4 4.17 100.00 96.00 97.96 
 

       *The aECG data was obtained from channel four for all above records. 

 

 

Figure 4.15: Graphical representation of the evaluation of the MQRS detection using 

LPSR FIR BPF Model I for Physionet challenge 2013 (set a) database. 
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4.5.2 Discussion of filter synthesis using LPST FIR BPF Model I 

When we evaluated our algorithm for the one minute record of r01 (channel 4) and r08 (channel 

4) of the adfecgdb database, we found for TP = 129, FN and FP were equal to 0 giving 100% 

accuracy. Most of the records obtained an average accuracy more than 92%. The worst 

accuracy of 79.28% was seen for record r10 (channel 3) as seen in Figure 4.12. Using this 

adfecgdb, it gives relatively better maternal R-peaks for nearly all records and mostly 100% 

accuracy for channel four as seen in Figure 4.13.The record r01 (channel 2) scored a low 70% 

accuracy giving large FN and FP values. Out of the 55 nifecgdb records, sixteen records scored 

FN and FP values in some of its 4 channels. The rest of the 39 records did not miss any R-

peaks and gave 100% accuracy. Among the 16 records, three of the four channels of record 

ecgca771 gave the least accuracy in the range of 63-67% as seen in Figure 4.14. All the seventy- 

five records from the Phy C database were evaluated using our algorithm as shown in Figure 

4.15.  Since all channels for each record displayed a similar aECG signal, we referred to 

channel four for our evaluation. Out of the seventy – five records, fifty-nine records scored 

100% for Se, PPV and F1 as shown in Figure 4.15. Out of the remaining sixteen records only 4 

records scored less than 95% accuracy, while record a29 displayed the worst accuracy of 

77.99%. Records a29, a33, a38 and a66 displayed poor percentage of FD. 

 

4.6 QRS detection using LPST FIR BPF Model II 

4.6.1 Performance evaluation of the QRS detector to obtain fetal and maternal R-peaks 

using LPST FIR BPF Model II  

To illustrate the performance of the FQRS detector we evaluated our LPST algorithm for the 

adfecgdb database for the one minute record r08 (channel 4) and found the TP = 132; FN = 1 

and  FP = 0. The sensitivity, PPV and F1 were obtained to be 99.24 %, 100% and 99.61%, 

respectively. The average FHR values for the true reference and LPST algorithm FHR were 
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computed to be 132.09 bpm and 132.59 bpm, respectively. The Figure 4.16 illustrates the true 

reference FHR bpm plotted with our LPST FIR filter algorithm based FHR for record r08. The 

dotted lines indicate the ± 10 bpm bands with respect to the true reference FHR trace. It was 

seen that the difference between the reference FHR and algorithm FHR for most peaks was 

less than ± 8 bpm.  

 

      

Figure 4.16: Illustration of the true reference FHR (direct scalp ECG) plotted along with 

the LPST FIR BPF Model II algorithm computed FHR for record r08 of 

adfecgdb (channel four) for one minute trace with filter order N = 1001. 

Blue dotted lines indicate the ±10 bpm limits with respect to the reference 

FHR trace. 
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Figure 4.17: Sensitivity (Se), positive predictive value (PPV) and accuracy (F1) of record 

r08 (adfecgdb) for various filter order (N). 

 

The performance curve of Se, PPV and F1 are highly linear in the range of filter orders (N) 

from 2001 to 5001 as seen in Figure 4.17. This improvement may be due to better filtering at 

higher order.  

                

                                                           4.18 (a) 

              
    

 

                                        4.18 (b)                                                                                                      
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           4.18 (c) 

 

                                        4.18 (d)  

Figure 4.18:   Physionet adfecgdb database (record r08) (a) Direct fetal scalp ECG signal 

(channel one) as true reference FECG (b) Raw maternal aECG (channel 4). 

(c) Frequency spectrum of the narrow sharp transition band pass filtered 

signal for filter order N = 5001 (d) FQRS signal after band pass filtering. 

 

The direct fetal scalp ECG is the true reference FECG signal (channel one) as shown in Figure 

4.18a. The raw maternal aECG signals were taken from record r08 (channel 4) of the adfecgdb 
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database as shown in Figure 4.18b.The frequency spectrum of the signal passed through LPST 

BPF Model II (the lower frequencies up to 35Hz and higher frequencies higher than 49Hz) is 

as shown in Figure 4.18c. The band pass filtering effectively gives us the required frequency 

spectrum of the FECG, which can be seen in the time domain plot in Figure 4.18d.  

 

        

                                        4.19 (a) 

 

                             

                                                                       4.19 (b)  
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                      4.19 (c) 

Figure 4.19: Non-invasive FHR detector for adfecgdb database (channel 4 - record 

r08) (a) Amplitude squaring of fetal R-peaks (b) Moving window 

Integration and adaptive threshold (c) FHRV. 

 

When the FQRS signal is passed through an amplitude squarer, the predefined positive peaks 

are prominently amplified as shown in Figure 4.19(a). Figure 4.19(b) shows the moving 

window integrator which integrates this signal with a selected window size effectively picking 

the correct fetal R-peaks indices. An illustration from Figure 4.19(b) shows the time          

indices (n) for the first two detected R fetal peaks to be 3155 and 2709 respectively, which are 

above the adaptive threshold value. As shown in Figure 4.19c, the FHR at these ni = 1 and ni = 2 

are computed to be 134.52 bpm using the Eq. (4.10).  

Among the four cases of fetal frequency fiduciary edges of the BPF, case 1: 27Hz – 

53Hz will absorb some of the PLI in the ECG record, whereas case 2: 27Hz – 48Hz avoids PLI 

unlike case 1 but has a partial overlap spectrum of maternal ECG. Similarly case 3: 35Hz – 

53Hz will have PLI problem but has no maternal spectrum overlap. Finally the case 4: 35 Hz 

to 48 Hz can be considered optimum since the maternal spectrum overlap and PLI is absent. In 

spite of narrowing the spectrum in this case there are no fetal missing beats. The illustration of 
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the true reference FHR plotted with our LPST FIR algorithm computed FHR for the four cases 

of fetal frequency fiduciary edges of the BPF is seen in the Figure 4.20. The dotted lines 

indicate the ±10 bpm limit with respect to the reference FHR trace. 

 
 

  

                                  4.20 (a) 

 

   

       4.20 (b) 
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        4.20 (c) 

 

                  
      

                      4.20 (d) 

 

Figure 4.20: Illustration of the true reference FHR plotted along with LPST FIR BPF 

Model II computed FHR for four sets of fetal frequency fiduciary edges of 

the BPF. The signal used is a one minute trace of record r08, channel 4 of 

adfecgdb (ni is the time index corresponding to the ith computed fetal R-peak 

at the output of the FQRS detector). (a) Case 1: 27Hz – 53Hz (b) Case 2: 

27Hz – 48Hz (c) Case 3:  35Hz – 53Hz (d) Case 4: 35Hz – 48Hz. The dotted 

lines indicate the ±10 bpm limits with respect to the reference FHR trace. 
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The modified QRS detector was used to compute the fetal R-peaks for adfecgdb records 

databases using LPST FIR Model II filter. Table 4.5 displays the performance evaluation of 

the FQRS detection for the five adfecgdb records. The fetal R-peaks generated by the LPST 

FIR BPF algorithm were compared with the Physionet FQRS annotations. Graphical 

representation of the evaluation of the FQRS detection using Model II of adfecgdb database is 

shown in Figure 4.21. 

 

Table 4.5: Performance evaluation of the FQRS detection using LPST FIR BPF       

Model II for adfecgdb database. 

Record 

[channel] TP FN FP Se  PPV  F1 

r01 [1] 129 8 0 94.16 100.00 96.99 

r01[2] 129 13 0 90.85 100.00 95.20 

r01[3] 129 9 0 93.48 100.00 96.63 

r01[4] 129 0 0 100.00 100.00 100.00 

r04[1] 125 43 7 74.40 94.70 83.33 

r04[2] 125 16 7 88.65 94.70 91.58 

r04[3] 125 56 12 69.06 91.24 78.62 

r04[4] 125 70 14 64.10 89.93 74.85 

r07 [1] 132 47 12 73.74 91.67 81.73 

r07[2] 132 17 10 88.59 92.96 90.72 

r07[3] 132 70 18 65.35 88.00 75.00 

r07[4] 132 23 13 85.16 91.03 88.00 

r08 [1] 132 14 4 90.41 97.06 93.62 

r08[2] 132 12 5 91.67 96.35 93.95 

r08[3] 132 6 1 95.65 99.25 97.42 

r08[4] 132 0 0 100.00 100.00 100.00 

r10 [1] 132 17 9 88.59 93.62 91.03 

r10[2] 132 14 13 90.41 91.03 90.72 

r10[3] 132 45 14 74.58 90.41 81.73 

r10[4] 132 20 6 86.84 95.65 91.03 
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Figure 4.21: Graphical representation of the evaluation of the FQRS detection using 

LPST FIR BPF Model II of adfecgdb database. 
 

The extension of this technique of non-invasive heart rate detection to maternal heart rate 

detection is done by merely changing the fiduciary edges of the BPF to ωs1 = 10π and ωs2 = 

40π and is equally effective as in the case of FHR as shown in Figure 4.22(a) to 4.22(d). An 

illustration of the adfecgdb record r01 (channel 3) detected, TP = 89, FN = 3, FP = 0 to 

computed Se, PPV and accuracy of 96.74%, 100% and 98.34% respectively as shown in Figure 

4.22(e) (see Table 4.6). Similarly the QRS detection algorithm was tested for the MHR using 

the Physionet nifecgdb database (see chapter section 2.7.2) for all 55 records with variable 3 to 

4 channels each.  
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           4.22 (a) 

                       
                                                                               4.22 (b)            
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                4.22 (c)  

 

                             

                                                                                 4.22 (d) 
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                      4.22 (e) 

Figure 4.22: LPST BPF for MHR detection with fiduciary edges, ωs1 = 10π and ωs2 = 

40π for record r01 (channel 3) of adfecgdb (a) Frequency spectrum of the 

narrow BPF signal (b) Amplitude squaring of maternal R-peaks (c) 

Moving window Integration and adaptive threshold (d) Histogram of the 

MHR (e) The true reference MHR plotted along with the MHR computed 

with our LPST FIR BPF Model II.  

 

 

The maternal R wave peak index values computed from the modified QRS detector are 

compared with the Physionet lightwave annotation viewer for a) Abdominal and direct fetal 

ECG database (see  Table 4.6) and b)  Physionet Challenge (Phy C) 2013 database (set a) for 

channel four, respectively (see Table 4.8). However nifecgdb database has the MQRS 

annotations which we used to compare with our extracted maternal R-peaks. The nifecgdb and 

Physionet Challenge (Phy C) 2013 records displayed in Table 4.7 and Table 4.8, respectively 

computed FN and FP values. The rest of the other nifecgdb and Phy C records scored 100% 

accuracy and hence are not displayed in the Tables. Additionally, the FD are computed for each 

Phy C record using Eq. 4.9 and are shown in Table 4.8. 
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Table 4.6:   Performance evaluation of the MQRS detection using LPST FIR BPF Model II 

for adfecgdb database. 

 
 

 

 

Figure 4.23: Graphical representation of the evaluation of the MQRS detection using 

LPST FIR BPF Model II for adfecgdb database. 

Record 

[channel] TP FN FP Se  PPV  F1  

r01 [1] 89 0 2 100.00 97.80 98.89 

r01[2] 89 37 5 70.63 94.68 80.91 

r01[3] 89 3 0 96.74 100.00 98.34 

r01[4] 89 0 0 100.00 100.00 100.00 

r04[1] 83 8 0 91.21 100.00 95.40 

r04[2] 83 0 0 100.00 100.00 100.00 

r04[3] 83 9 2 90.22 97.65 93.79 

r04[4] 83 0 2 100.00 97.65 98.81 

r07 [1] 77 6 6 92.77 92.77 92.77 

r07[2] 77 0 0 100.00 100.00 100.00 

r07[3] 77 2 1 97.47 98.72 98.09 

r07[4] 77 0 1 100.00 98.72 99.35 

r08 [1] 92 0 1 100.00 98.92 99.46 

r08[2] 92 42 6 68.66 93.88 79.31 

r08[3] 92 2 0 97.87 100.00 98.92 

r08[4] 92 1 2 98.92 97.87 98.40 

r10 [1] 105 0 6 100.00 94.59 97.22 

r10[2] 105 0 3 100.00 97.22 98.59 

r10[3] 105 7 6 93.75 94.59 94.17 

r10[4] 105 0 0 100.00 100.00 100.00 
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Table 4.7: Performance evaluation of the MQRS detection using LPST FIR BPF Model II 

for nifecgdb database. 

Record 

[channel] TP FN FP Se  PPV       F1 

ecgca416[01] 55 0 0 100.00 100.00 100.00 

ecgca416[02] 55 3 7 94.83 88.71 91.67 

ecgca416[03] 55 0 4 100.00 93.22 96.49 

ecgca416[04] 55 0 27 100.00 67.07 80.29 

ecgca436[01] 56 0 0 100.00 100.00 100.00 

ecgca436[02] 56 0 2 100.00 96.55 98.25 

ecgca436[03] 56 0 2 100.00 96.55 98.25 

ecgca436[04] 56 0 2 100.00 96.55 98.25 

ecgca597[01] 53 0 0 100.00 100.00 100.00 

ecgca597[02] 53 0 0 100.00 100.00 100.00 

ecgca597[03] 53 0 2 100.00 96.36 98.15 

ecgca597[04] 53 0 8 100.00 86.89 92.98 

ecgca649[01] 53 0 0 100.00 100.00 100.00 

ecgca649[02] 53 2 7 96.36 88.33 92.17 

ecgca649[03] 53 0 1 100.00 98.15 99.07 

ecgca771[01] 47 0 0 100.00 100.00 100.00 

ecgca771[02] 47 1 0 97.92 100.00 98.95 

ecgca771[03] 47 0 1 100.00 97.92 98.95 

ecgca771[04] 47 0 1 100.00 97.92 98.95 

ecgca811[01] 52 0 0 100.00 100.00 100.00 

ecgca811[02] 52 0 0 100.00 100.00 100.00 

ecgca811[03] 52 0 1 100.00 98.11 99.05 

ecgca848[01] 53 0 0 100.00 100.00 100.00 

ecgca848[02] 53 0 0 100.00 100.00 100.00 

ecgca848[03] 53 3 16 94.64 76.81 84.80 

ecgca848[04] 53 2 22 96.36 70.67 81.54 

ecgca902[01] 55 0 0 100.00 100.00 100.00 

ecgca902[02] 55 0 6 100.00 90.16 94.83 

ecgca902[03] 55 0 0 100.00 100.00 100.00 

ecgca906[01] 53 0 2 100.00 96.36 98.15 

ecgca906[02] 53 0 2 100.00 96.36 98.15 

ecgca906[03] 53 1 3 98.15 94.64 96.36 

ecgca906[04] 53 0 2 100.00 96.36 98.15 

ecgca968[01] 54 0 0 100.00 100.00 100.00 

ecgca968[02] 54 1 7 98.18 88.52 93.10 

ecgca968[03] 54 0 8 100.00 87.10 93.10 

ecgca968[04] 54 20 9 72.97 85.71 78.83 
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Figure 4.24: Graphical representation of the evaluation of the MQRS detection using 

LPST FIR BPF Model II for nifecgdb database. 
 

Table 4.8:   Performance evaluation of the MQRS detection using LPST FIR BPF      

Model II for Phy C 2013 database. 

Record 

[channel] TP FN FP FD Se PPV F1 

a29 62 8 24 51.61 88.57 72.09 79.49 

a33 94 0 1 1.06 100.00 98.95 99.47 

a34 76 0 14 18.42 100.00 84.44 91.57 

a38 79 4 21 31.65 95.18 79.00 86.34 

a41 112 0 33 29.46 100.00 77.24 87.16 

a53 73 1 34 47.95 98.65 68.22 80.66 

a56 93 4 3 7.53 95.88 96.88 96.37 

a66 82 65 2 81.71 55.78 97.62 71.00 

a73 96 0 5 5.21 100.00 95.05 97.46 
*The aECG data was obtained from channel four for all records. 

 

 

Figure 4.25: Graphical representation of the evaluation of the MQRS detection using 

LPST FIR BPF Model II for Phy C database. 
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4.6.2 Discussion of filter synthesis using  LPST FIR BPF Model II 

The accuracy for detecting fetal R-peaks of adfecgdb was more than 93% for records r01 and 

r08 for channels 1 to 3 and scored 100% accuracy only for channel 4 as shown in Figure 4.21 

and Table 4.5. Poor accuracy of 74.85% was scored by channel 4 of r04. Using the same 

database, the maternal R-peaks were well detected by using this filter Model giving an accuracy 

of more than 95% for most records (see Table 4.6). However, the worst scoring for FN was 

seen for channel 2 for the records r01 and r08 as shown in Figure 4.23. Out of the 55 nifecgdb 

records, 10 records displayed an accuracy of less than 100% for some of its channels to detect 

maternal R-peaks (see Table 4.7). It was observed that channel 1 of almost all records gave an 

accuracy of 100% except record ecgca906 which computed 98.15%. The record ecgca968 

(channel 4) scored FN equal to 20 , while record ecgca416 scored a poor 27 for FP value as 

seen in Table 4.7. The nine records (channel 4) of Phy C database displayed accuracy of less 

than 100% as shown in Figure 4.25 (see Table 4.8). However, 66 records of the total 75 Phy C 

records displayed 100% accuracy to detect the maternal R-peaks and hence are not listed in the 

Table. Records a29, a34, a38, a41, a53 and a66 displayed a considerable percentage of FD (see 

Table 4.8). 

 

4.7   QRS detection results using LPST FIR BPF Model II with Slope 

        Matching technique (Model III) 

4.7.1  Performance evaluation of the QRS detector to obtain fetal and maternal R-peaks    

           using LPST FIR BPF Model III 

We evaluated our LPST FIR BPF algorithm to compute the fetal R-peaks for adfecgdb records 

for all the five Physionet adfecgdb records (all 4 channels) for a duration of one minute each. 

The raw aECG signals are applied to the proposed LPST BPFslope (Model III) with the specified 
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fiduciary band edges. Each filtered signal is subjected to the FQRS detector. As illustrated in 

Figure 4.26 (record r01), the direct scalp FHR bpm closely matches the FHR based on our 

algorithm for filter orders ranging from 101 to 2001.Figure 4.27 shows the accuracy of the fetal 

R-peak detected and it was computed for all the four channels of the five aECG records. Table 

4.9 displays the performance evaluation of the FQRS detection for the five adfecgdb records. 

The fetal R-peaks generated by the LPST FIR filter algorithm were compared with the 

Physionet FQRS annotations. 

 

Figure 4.26:   Illustration of the true reference FHR (direct scalp ECG) plotted along with 

the MHR computed with LPST FIR BPF Model III for record r01 of 

adfecgdb (channel four) for one minute trace. Blue dotted lines indicate the 

±10 bpm limits with respect to the reference FHR trace. (ni is the time index 

corresponding to the ith  computed R-fetal peak at the output of the FQRS 

detector). 

 

The maternal R-peak index values computed from the modified QRS detector are compared 

with the Physionet lightwave annotation viewer for a) afecgdb database (see  Table 4.10) and 

b)  Physionet Challenge (Phy C) 2013 database (set a) for channel four respectively. However 

nifecgdb database has the MQRS annotations which we used to compare with our extracted 

maternal R-peak. The nifecgdb and Physionet Challenge (Phy C) 2013 records displayed in 
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Table 4.11 and Table 4.12 respectively computed FN and FP values. The rest of the other 

nifecgdb and Phy C records scored 100% accuracy and hence are not displayed in the Tables. 

Additionally, the FD are computed for each Phy C record using Eq. 4.9 and are shown in Table 

4.12. 

Table 4.9:   Performance evaluation of the FQRS detection using LPST FIR BPF Model III 

for adfecgdb database. 

Record 

[channel] Channel TP FN FP Se PPV  F1  

r01 [1] 1 129 4 0 96.99 100.00 98.47 

r01[2] 2 129 9 0 93.48 100.00 96.63 

r01[3] 3 129 3 0 97.73 100.00 98.85 

r01[4] 4 129 0 0 100.00 100.00 100.00 

r04[1] 1 125 30 6 80.65 95.42 87.41 

r04[2] 2 125 8 1 93.98 99.21 96.53 

r04[3] 3 125 34 10 78.62 92.59 85.03 

r04[4] 4 125 15 4 89.29 96.90 92.94 

r07 [1] 1 132 63 9 67.69 93.62 78.57 

r07[2] 2 132 22 2 85.71 98.51 91.67 

r07[3] 3 132 22 4 85.71 97.06 91.03 

r07[4] 4 132 9 3 93.62 97.78 95.65 

r08 [1] 1 132 8 0 94.29 100.00 97.06 

r08[2] 2 132 11 0 92.31 100.00 96.00 

r08[3] 3 132 6 0 95.65 100.00 97.78 

r08[4] 4 132 0 0 100.00 100.00 100.00 

r10 [1] 1 132 26 0 83.54 100.00 91.03 

r10[2] 2 132 22 4 85.71 97.06 91.03 

r10[3] 3 132 43 4 75.43 97.06 84.89 

r10[4] 4 132 20 0 86.84 100.00 92.96 
 

 

Figure 4.27: Graphical representation of the evaluation of the FQRS detection using 

LPST FIR BPF Model III for adfecgdb database. 
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Table 4.10: Performance evaluation of the MQRS detection using LPST FIR BPF     

Model III for adfecgdb database. 

Record 

[Channel] TP FN FP Se  PPV  F1 

r01 [1] 89 0 1 100.00 98.89 99.44 

r01[2] 89 29 7 75.42 92.71 83.18 

r01[3] 89 4 2 95.70 97.80 96.74 

r01[4] 89 0 0 100.00 100.00 100.00 

r04[1] 83 0 4 100.00 95.40 97.65 

r04[2] 83 0 0 100.00 100.00 100.00 

r04[3] 83 0 0 100.00 100.00 100.00 

r04[4] 83 0 5 100.00 94.32 97.08 

r07 [1] 77 0 4 100.00 95.06 97.47 

r07[2] 77 18 0 81.05 100.00 89.53 

r07[3] 77 0 2 100.00 97.47 98.72 

r07[4] 77 0 0 100.00 100.00 100.00 

r08 [1] 89 53 7 62.68 92.71 74.79 

r08[2] 89 6 10 93.68 89.90 91.75 

r08[3] 89 0 4 100.00 95.70 97.80 

r08[4] 89 0 3 100.00 96.74 98.34 

r10 [1] 105 0 0 100.00 100.00 100.00 

r10[2] 105 0 2 100.00 98.13 99.06 

r10[3] 105 6 3 94.59 97.22 95.89 

r10[4] 105 0 13 100.00 88.98 94.17 

 

Figure 4.28: Graphical representation of the evaluation of the MQRS detection using 

LPST FIR BPF Model III for adfecgdb database. 
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Table 4.11: Performance evaluation of the MQRS detection using LPST FIR BPF filter     

Model III for nifecgdb database. 

Record 

[channel] 

TP 

 

FN 

 

FP 

 

Se 

 

PPV 

  

F1  

 

ecgca416[01] 55 0 0 100.00 100.00 100.00 

ecgca416[02] 55 3 7 94.83 88.71 91.67 

ecgca416[03] 55 0 2 100.00 96.49 98.21 

ecgca416[04] 55 0 27 100.00 67.07 80.29 

ecgca436[01] 56 0 0 100.00 100.00 100.00 

ecgca436[02] 56 0 2 100.00 96.55 98.25 

ecgca436[03] 56 0 2 100.00 96.55 98.25 

ecgca436[04] 56 0 2 100.00 96.55 98.25 

ecgca597[01] 53 0 0 100.00 100.00 100.00 

ecgca597[02] 53 0 0 100.00 100.00 100.00 

ecgca597[03] 53 0 2 100.00 96.36 98.15 

ecgca597[04] 53 0 4 100.00 92.98 96.36 

ecgca649[01] 53 0 0 100.00 100.00 100.00 

ecgca649[02] 53 1 3 98.15 94.64 96.36 

ecgca649[03] 53 0 0 100.00 100.00 100.00 

ecgca848[01] 53 0 0 100.00 100.00 100.00 

ecgca848[02] 53 0 0 100.00 100.00 100.00 

ecgca848[03] 53 3 10 94.64 84.13 89.08 

ecgca848[04] 53 2 22 96.36 70.67 81.54 

ecgca902[01] 55 0 0 100.00 100.00 100.00 

ecgca902[02] 55 0 6 100.00 90.16 94.83 

ecgca902[03] 55 0 0 100.00 100.00 100.00 

ecgca906[01] 53 0 2 100.00 96.36 98.15 

ecgca906[02] 53 0 2 100.00 96.36 98.15 

ecgca906[03] 53 1 1 98.15 98.15 98.15 

ecgca906[04] 53 0 4 100.00 92.98 96.36 

ecgca968[01] 54 0 0 100.00 100.00 100.00 

ecgca968[02] 54 2 10 96.43 84.38 90.00 

ecgca968[03] 54 3 4 94.74 93.10 93.91 

ecgca968[04] 54 20 7 72.97 88.52 80.00 
 

 

Figure 4.29: Graphical representation of the evaluation of the MQRS detection using 

LPST FIR BPF Model III for nifecgdb database. 
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Table 4.12: Performance evaluation of the MQRS detection using LPST FIR BPF Model 

III for Physionet Challenge 2013 (set a) database. 

Record TP FN FP FD Se  PPV F1 

a29 62 11 18 46.77 84.93 77.50 81.05 

a33 94 0 5 5.32 100.00 94.95 97.41 

a34 76 0 2 2.63 100.00 97.44 98.70 

a38 79 8 16 30.38 90.80 83.16 86.81 

a41 112 0 0 0.00 100.00 100.00 100.00 

a53 73 0 0 0.00 100.00 100.00 100.00 

a56 93 0 2 2.15 100.00 97.89 98.94 

a66 82 1 0 1.22 98.80 100.00 99.39 

a73 96 0 0 0.00 100.00 100.00 100.00 
 

 

 

Figure 4.30: Graphical representation of the evaluation of the MQRS detection using 

LPST FIR BPF Model III of Physionet Challenge 2013 (set a) database. 

 

 

4.7.2 Discussion of filter synthesis using LPST FIR BPF Model III  

 

It is seen that for most adfecgdb records when compared to the direct fetal scalp recordings, 

our obtained FHR variability values almost match the reference FHR. Records r04 and r07 

showed a few missing fetal peaks, while records r01[4] and r08[4] had fetal beats that were 

neither falsely identified nor missed, giving 100% accuracy as shown in Figure 4.27. Mostly 

all channels of the adfecgdb records gave accuracy more than 95% to detect maternal R-peaks 
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except from certain channels of r01 and r08 as shown in Figure 4.28. Eight of the 55 records 

displayed measure of accuracy between 80 - 100%, record ecg968 (channel 4) having the 

lowest accuracy of 80% as seen in Figure 4.29. Out of the total 75 Phy C records, only 8% of 

the records scored an accuracy of less than 100% to detect the maternal R-peaks. The two 

records a29 and a38, scored FD of 46.77% and 30.38% respectively as shown in Figure 4.30 

(see Table 4.12). 

4.8 Discussion and conclusion  

 

The accuracy was computed to evaluate the performance of the three LPST FIR filter Models 

I, II and III for the five adfecgdb records. The average values of accuracy for each record for 

each of the FIR filter Models are seen in Figure 4.31. It is observed that the accuracy increases 

from Model I to Model III for some of the records such as r01, r08 and r10.  

          

 

Figure 4.31:   Accuracy of FHR detection using LPST FIR BPF Models I, II and IIII for 

adfecgdb records. 

 

In the abdominal ECG signal, it is observed that the FECG and MECG signals overlap in time 

domain or exist in very close proximity as shown in Figure 4.32 (a). With our designed LPST 

FIR filters, it is possible to compute the FHR and MHR with these above constraints. The 

difference in the FHR and MHR between the LPST FIR filter algorithm HR and reference HR 
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is minimal for the six occurrences of the FQRS-MQRS signals overlap for the adfecgdb record 

r01, channel four  (one minute duration) as shown in Figure 4.33. Similarly, the eleven 

occurrences where a fetal and maternal QRS exist in close proximity as shown in Figure 4.32 

(b) and also have minimal difference in the time index between fetal and maternal R-peaks are 

shown in Figure 4.34. The use of our LPST FIR filter Models to filter out our designated fetal 

and maternal fiduciary band edges are not affected by the two above constraints. The same is 

seen in Figure 4.35 and Figure 4.36, wherein the FHR and MHR for the record r01, channel 

four gives 100% accuracy and detects all the fetal and maternal R-peaks. It is observed that due 

to noise corrupted sections in the abdominal ECG (see Figure 4.33(c)) the accuracy for 

detecting R-peaks is lowered as seen in the record r01 (channel two) of the adfecgdb (see FN 

value in Table 4.9 and Table 4.10) 

 

 

 

Figure 4.32: FQRS and MQRS signals in time domain (a) Overlap fetal and maternal 

QRS signals (green dashes) (b) Close proximity of the fetal and maternal 

QRS signals in time (red dashes). (c) Corrupted abdominal ECG signal 

(channel 2) scores low measure of accuracy for fetal and maternal QRS 

detection. Raw abdominal ECG signal record r01 taken from Physionet 

adfecgdb database. 
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Figure 4.33: Difference in heart rate between fetal and maternal R-peaks when the two 

signals overlap in time domain. 
 

 

 

 

Figure 4.34: Difference in the index between fetal and maternal R-peaks when the two 

signals are in close proximity in time domain. 
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Figure 4.35: 

 

Comparison of FHR between direct fetal scalp and LPST FIR band pass 

filtered signal of adfecgdb database (record r01). 

 

 

 
 

Figure 4.36: Comparison of MHR between Physionet Lightwave and LPST FIR band 

pass filtered signal of adfecgdb database (record r01). 

 

The LPST FIR filter Models I, II and III for filter order N = 101 exhibit an average accuracy 

for each channel of adfecgdb to be either higher or equal to the high filter order such as                  

N = 5000 as shown in Figure 4.37. Using this database, we can obtain our objective for 

detecting FHR using low FIR filter orders. 
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Figure 4.37: Accuracy of FHR detection using LPST FIR filter Models I, II and III for 

filter order N = 100 and N = 5000 for adfecgdb (record r01).  

 

 

The scatter plots shown in Figure 4.38 indicate that the filter Model III for r01 (channel) is 

more efficient to detect MHR than Model I and II. However from the graph shown in Figure 

4.39, the average accuracy is almost similar to the three Models. It is also seen earlier in Table 

4.2, that at least one channel of the five records displays 100% accuracy to detect the maternal 

R-peaks. A similar trend is seen for the maternal QRS detection, filter Models I, II and III for 

filter order N = 101 also exhibit an average measure of accuracy for each channel of adfecgdb 

to be either higher or equal to the high filter order such as N = 5000 as shown in Figure 4.40.  
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                         (a)                                           (b)                                         (c)                      

Figure 4.38: Scatterplots between the references MHR versus calibrated MHR of the r01 

record (channel 4) of adfecgdb database. (a) Scatterplot using filter Model I 

(b) scatterplot using filter Model II (c) scatterplot using filter Model III. 

  

 

 

 

Figure 4.39: Accuracy of MHR detection using LPST FIR BPF Models I, II and III for 

adfecgdb records. 
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Figure 4.40: Accuracy of MHR detection using LPST FIR BPF Models I, II and III for 

filter order N = 100 and N = 5000 for adfecgdb (record r01). 

  

The measure of accuracy to detect MHR using our algorithm LPST FIR filter Models I, II and 

III for nifecgdb is shown with four columns in Figure 4.41 which indicates four stages of 

filtering. It is observed that the average accuracy for 16 of the 55 records gives less than 100% 

for filter Model I for N = 100 (refer to column 1 in figure 4.41). After applying these 16 records 

to filter Model II for N = 101, six records show a 100% mark of accuracy (refer to column 2 in 

figure 4.41). The remaining 10 records were filtered by the filter Model III for N = 101, out of 

which two records showed 100% accuracy (refer to column 3 in figure 4.41). In the last phase 

these 8 records were subjected to the Model III with an increase in the filter order to 5000. Four 

of the eight records computed 100% accuracy (refer to column 4 in figure 4.41). The remaining 

four records of ecgca416, ecgca848, and ecgca906 and ecgca968 exhibit FD of 17.73%, 16.98, 

3.77% and 20.37% respectively as shown in Figure 4.42. The records shown in Figures 4.43 
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(a) to (d) show a dip in accuracy from channels 2, 3 and 4. These signals are corrupted by noise 

in some sections while acquiring the abdominal ECG signal from the mother’s abdomen. 

 

Figure 4.41: Accuracy of MHR detection using LPST FIR BPF Models I, II and III for 

nifecgdb records. 

 

 

 

 

Figure 4.42: Performance evaluation of the MHR detection using LPST FIR BPF Model 

III of filter order (N = 5001) for four noise corrupted nifecgdb records. 
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                 4.43 (a) 

 

 

  

                4.43 (b) 
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    4.43 (c) 

 

 

 

        4.43 (d) 

Figure 4.43: Noise corrupted aECG records of nifecgdb database (a) ecgca416                  

(b) ecgca848 (c) ecgca906 (d) ecgca968.  
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The measure of accuracy to detect MHR was also tested using our LPST FIR filter Models I, 

II and III for the Physionet Challenge (set a) 75 records. It is observed from Figure 4.44, that 

the average accuracy for 16 of the 75 records gives less than 100% for Model I for N = 100 

(refer to column 1 in figure 4.44). After applying these 16 records to Model II for N = 101, 

seven records show a 100% mark of accuracy (refer to column 2 in figure 4.44). The remaining 

nine records were subjected to filter Model III for N = 101, out of which three records showed 

100% accuracy (refer to column 3 in figure 4.44). In the last phase, these 6 records having an 

accuracy of less than 100% were subjected to the filter Model III with an increase in the filter 

order to 5000. Four of the six records computed 100% accuracy (refer to column 4 in figure 

4.44). The remaining two records of a29 and a38 exhibited failed detections of 45.16% and 

24.04%, respectively.  

 

Figure 4.44:   Accuracy of MHR detection using LPST FIR BPF Models I, II and III for 

Phy C (set a) records. 
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The records shown in Figures 4.45 (a) and (b) shows a dip in accuracy as these two signals are 

severely corrupted by noise in some sections of its signal. This signal corruption may be due 

to some electrodes which may have not picked up very good abdominal signals during 

abdominal electrode placements. In such situations the HR computations become an impossible 

task. 

 

      4.45 (a) 

 

 

        4.45 (b) 

Figure 4.45: Noise corrupted aECG records of Phy C 2013 (set a) database (a) a29 (b) a38.
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5 
              Conclusions and Future work 

 

5.1  Conclusions 

Three linear phase sharp transition FIR band pass filter models are formulated and their designs 

are implemented with least passband ripple, good stopband attenuation for any filter order (N). 

Various regions of the filter response in the frequency domain are approximated using 

trigonometric functions of frequency, making it convenient to evaluate the impulse response 

coefficients in closed form. The filter models proposed lay stress on achieving a sharp 

transition. Sharper the transition, more oscillatory becomes the frequency response near the 

transition, say at the edge of the passband, a trait described as Gibb’s phenomenon. The filter 

models proposed, achieve a trade-off between the transition bandwidth and Gibb’s 

phenomenon. In addition, emphasis is laid upon a low passband ripple and a large stopband 

attenuation. Thus a threefold compromise for the satisfactory performance in all the three bands 

namely passband, transition and stopband is essential in addition to a trade-off between Gibb’s 

phenomenon and sharpness of transition of the filter. 

  A novel technique is devised to reduce Gibb’s phenomenon in the FIR band pass filter. 

Equations are derived for slopes of the frequency response of the filters at the edges of the 

transition region and these slopes are matched. The filter design parameters of the model are 

evaluated by equalizing the slopes of the magnitude response function at both the ends of the 

transition region. It is found that equalizing the slopes at the edges of the transition region 

makes the proposed magnitude response of frequency continuous between a pair of adjoining 

regions that bridge the transition region defined by the model equations. This reduces the 
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effects due to Gibb’s phenomenon, thereby reducing ripples at the edges of the transition region 

of the filter and hence reduces passband ripple and improves stopband attenuation of the filter. 

Our research work presented the design of three models of linear phase sharp transition 

FIR filters which can be used to filter with specified fiduciary band edges in the frequency 

response and extract maternal and fetal R-peaks from aECG signals, thereby computing the 

MHR and FHR, respectively. LPST FIR filter Model I employed a BPF containing a tandem 

of high pass and low pass FIR filters which gave low passband losses and the ripple decreased 

for a higher filter order. LPST FIR filter Model II described a technique of implementing an 

integrated LPST BPF. It is found that increasing the filter order (N) to 5001 has improved the 

average transition bandwidth, passband ripple and stop band attenuation. The FIR BPF Model 

III used a novel technique to reduce Gibb’s phenomenon at the fiduciary band edges of the 

BPF. The principle underlining this technique is to reduce the amount of discontinuity at the 

fiduciary edges of the magnitude response of the LPST FIR BPF. It is observed that the 

stopband attenuation using this method is substantial compared to that obtained without slope 

matching. Additionally it is seen that, the proposed technique yields a marginal improvement 

in the transition region width at both the fiduciary edges. This FIR BPF Model III, for lower 

orders obtained a fairly good magnitude response in all passband, stopband and transition 

regions with very little computation time and thus is suitable for real time processing of 

numerous records at a time compared to the Parks-McClellan (PM) algorithm. For lower 

orders, PM algorithm response is not optimum for both passband and stopband. It was found 

that the passband loss using our method gave minimum values as compared to the PM 

algorithm, especially at lower filter orders. However, at filter order 2001, the two algorithms 

had almost equal values of passband loss and stopband attentuation. Similarly, the PM 

algorithm displayed low stop band attenuation for all filter orders from N = 101 to 2001. It is 

observed that Gibb’s phenomenon is reduced considerably at the transition edges of the 
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proposed filter and is negligible at higher filter orders. The transition width is reasonably sharp 

enough for our application to detect precise fetal R-peaks and thus the fetal health condition. 

The accuracy and failed detections were computed to evaluate the performance of the 

three LPST FIR filter Models I, II and III using the three Physionet databases. Using adfecgdb 

database, it is observed that the accuracy increases from filter Model I to Model III. The filter 

Model III with slope matching technique shows higher accuracy to detect FHR. In the aECG 

signal, it is observed that the FQRS and MQRS ECG signals overlap in the time domain or 

exist in very close proximity. With our designed LPST FIR filters, it is possible to precisely 

compute the FHR and MHR with these above constraints. Similarly it is seen for the MQRS 

detection, filter Models I, II and III for filter order N = 101 also exhibits an average accuracy 

for each channel of adfecgdb to be either higher or equal to the high filter order such as                  

N = 5000. For the database nifecgdb, it is observed that the average channel accuracy for 51 of 

the 55 records gave 100% for either of the filter Models I, II or III with low filter order such as    

(N = 100). The remaining four records exhibited large failed detection rates in spite of 

increasing the filter order. These signals are corrupted by noise in some sections while 

acquiring the abdominal ECG signal from the mother’s abdomen. The accuracy to detect MHR 

was also tested using our LPST FIR filter Models I, II and III for the Physionet Challenge (set 

a) database. It is observed that out of the 75 records, only two records scored less than 100% 

accuracy. These two signals are severely corrupted by noise in some sections of its signal.  

A well-researched abdominal ECG electrode placement configuration is desired to 

obtain the raw aECG signal which is relatively free from artifacts and a fetal ECG signal 

amplitude which is at least 1/4 of the MECG signal. This will ease the procedure to detect and 

separate the FECG from the MECG using our method 
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In the proposed technique, filter transfer function is evolved both in frequency and time 

domain. The approach is simple, versatile and analytical without extensive computations. Our 

LPST FIR filter results show that the proposed filters have sharp transition, good stopband 

attenuation and less passband ripple with least filter order. This approach is better than the 

conventional FIR design methods of window and frequency sampling techniques. The peak 

passband in conventional FIR designs is about 18% which is reduced to around 1.5 % with the 

use of trigonometric functions in the proposed filter model combined with slope equalization 

technique.  

5.2  Suggestions for future Work 

Proposed FIR filters can be used as initial filters to obtain better filter performance with reduced 

filter order. For a suitable filter structure, the hardware details like number of multipliers and 

delays etc. required to realize the filter can be carried out. The proposed filters can be 

implemented on a FPGA / ASIC and DSP processor and the performance can be studied. Using 

the proposed approach, filter models with any desired magnitude response can be developed 

for any specific signal processing application. In this current research work, the proposed LPST 

FIR filters precisely computed FHR for a single fetus. After a study of twin pregnancies and 

the associated frequency spectrum of the two fetuses, our proposed filters could be tested for 

real time aECG signals. A noise free aECG signal with good resolution fetal and maternal 

signals are desired for signal processing and future fetal morphological analysis. From a real 

time extracted FECG, we can detect for any fetal tachycardia or bradycardia among other 

congential diseases.  

Extraction of real time ECG signals from the maternal abdomen can be acquired with 

more research work done on the different configurations and schemes using the standard 12 

lead surface ECG electrodes. A large and complete database can be generated so that any 

existing and novel non-invasive fetal extraction algorithms can be evaluated on it. The aECG 
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database must have at least one reference maternal thoracic ECG recording along with at least 

6-8 abdominal ECG signals. The duration of the recordings have to be large enough, of at least 

30 minutes at delivery to capture the mild contractions that occur. Recordings can be done at 

various gestation ages ranging from the 28th week to full term for a mother’s age group of 20-

41 years. Clinical Information such as maternal history, outcome of delivery should be recorded 

to assess whether the non-invasive FECG obtained is predictive of the delivery outcomes. Fetal 

and maternal heart rate computation can be implemented in real time on a fetal and maternal 

HR monitor having higher resolution. This low power smart phone based monitor can then 

transmit the fetal and maternal HRV to the mother and the doctor wirelessly, thus providing a 

complete and regular health status of the fetus and mother to the clinicians. This health service 

can be very useful in rural clinics and in areas where high powered systems such as ultrasound 

machines may not be able to be used. The proposed LPST FIR filters could be also used in 

various other biomedical applications such as speech or image processing,etc.  
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     Appendix A 

Proposed electrode configurations to acquire 

FECG 
 

We proposed three schemes for the electrode placements using the standard 12-lead ECG machine, 

made by Kallows Engineering, Goa India [85]. This configuration is based on the lead configuration 

for a commercial 5 lead fetal ECG as per the IEC 60601-2-51 standard [86] wherein the right leg lead 

(black) is placed on the right thigh and the other four leads are arrayed around the fetus. With proper 

consent from the subject, it was reported that the young mother was 24 years old with the gestational 

age of 34 weeks, 5 days and as per the clinical impression: a live fetus in cephalic presentation. At the 

clinic, the nurses cleaned the abdominal skin with alcohol to avoid dry skin around the area where the 

surface electrodes would be placed. The removal of grease would further enhance the conductivity of 

the electrodes. We placed the limb leads around the fetus to get good strength differential leads (I, II 

and III) as well as placing four of the precordial leads whose voltages will be with respect to the spot 

we have labelled as Wilson’s Central Terminal (WCT). Finally, we placed V5 and V6 on the mother's 

upper arms to get some strong maternal ECG references as seen in Figure A.1 for scheme 1. We inverted 

this configuration for the scheme 2 (so that RA, LA are shifted down and LL is at the top) for the 

difference in fetus orientation (head up vs. head down).The scheme 3 is similar to scheme 2 except that 

the V5 and V6 are placed at the maternal thoracic area to compare the MECG signals from both the 

schemes. An eighteen minute recording was done for each of the electrode positions. 

Measurements were performed on a single pregnant woman with single fetus, with a gestation 

period of 34 weeks. The experiment was conducted in three modes by using the standard 12 lead resting 

ECG recorder called Mobmon. The device had the capability to send live ECG streams to the remote 

doctor’s phone. Initially we tested the scheme 1 thoroughly for few minutes before we could set to 

record each scheme for 18 minutes each (as shown in Figure A.2a). The largest fetal ECG amplitudes 

are recorded during the 2nd scheme giving an average FHR value as 132 bpm which was similar to the 

CTG recordings taken an hour before. The maternal signals were stronger than the FECG for the other 

two schemes which displayed the mother’s heart rate values only. The recordings of the three schemes 

are displayed in Figure A.2, while the CTG reading of the subject is seen in Figure A.3. 
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Figure A.1: Proposed electrode placement schemes based on the schemes refered in Fig 2.11 (a) 

scheme 1 (b) scheme 2 (c) scheme 3. The schemes are based on the positions of the 

pre cordial active electrodes (V1 –V6) and the four limb electrodes (RA, LA, LL. 

RL is placed on the right thigh as a reference electrode. WCT is the virtual reference 

point for the V1-V6 leads. 

 

 

      (a) 
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 (b) 

 

            

      (c) 

Figure A.2: Recordings of the three schemes using the Mobmon 12 lead resting ECG 

recorder (a) Scheme 1 (b) Scheme 2 and (c) Scheme 3. 

 

Figure A.3:   CTG recording of the subject taken earlier to the aECG recording
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Appendix B 

Implementation of FECG extraction Techniques 

 

B.1 Proposed Synthesized QRS Template  

In this method we propose a two-step approach for maternal and fetal QRS extraction described as 

follows: a) Pre-processing from the raw abdominal ECG signal b) Generation of the synthesized QRS 

template (maternal and fetal) to be convoluted with of one of the filtered abdominal channels. 

 

a. Pre-processing (baseline wandering removal) 

The baseline signal was computed applying a low pass first order Butterworth filter in forward and 

backward direction to avoid phase distortion with a frequency cut off of 3.17 Hz [6]. Figure 3.3 shows 

the channel 4 abdominal ECG after pre-processing. 

                      

 

Figure B.1: Pre-processing stage for syntheszised QRS template method (adfecgdb 

aECG record r01). 
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b. Proposed Synthesized QRS template 

The synthesized QRS template waveforms for both maternal and fetal ECG signals were computed for 

the three online Physionet database. The following six slopes for the QRS waveform were generated: 

zero-Q, Q-zero, zero-R, R-zero, zero-S and S-zero as shown in Figure B.2. 

  

Figure B.2:   Proposed synthesized QRS template for MQRS and FQRS. 

 

A typical synthesized MQRS waveform can be computed for the following parameters: QRS 

(amplitude) = 211 µv; QRS (width) = 115ms and from Figure 3.4, the amplitudes at Q = -37 µv,                 

R = 211 µv and S = -163 µv. (assume no = 1)  

 

MQRS   = -1.21(n - no)                  no < n < no+33        (point a) 

         = -37 + 5.28 (n - no - 33)          no+33 < n < no+40   (point b) 

         = 11.72 (n - no - 40)                  no+40 < n < no+58   (point c) 

         = 211 - (11.72) (n - no - 58)     no+58 < n < no+76   (point d) 

        = -9.58 (n - no - 76)                no+76 < n < no+93   (point e) 

         = -163+ 7.76 (n - no - 93)          no+93 < n < no+114 (point f) 

 

Similarly using the above method, the synthesized FQRS can also be computed for the same database 

with QRS (amplitude) = 192 µv and QRS (width) = 58ms. The Q-R-S amplitudes will vary for each 

record. 

In order to extract the MQRS and FQRS, we have taken the abdominal and direct fetal 

electrocardiogram database signals. To determine the correlations and convolutions between the 

original maternal and synthesized MQRS, the following two operations were simulated using Matlab 

2013a for the entire database. 
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i) A train of synthesized MQRS signal x1 (n) (with average beats per minute assumed to be equal to 

88) is cross-correlated with the filtered aECG signal x2 (n + j) as per Eq. (B.1) and shown in Figure 

B.3. 
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Figure B.3:   Cross correlation and convolution of synthesized MQRS with filtered aECG. 

 

ii) A multiplication of the pulse train of synthesized signals x1(k) with the filtered aECG signal x2(n - 

k) as per Eq. (B.2) is shown in Figure B.4. 
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Figure B.4: Multiplication of synthesized pulses with filtered aECG to obtain MQRS 

and FQRS signals. 

 

B.2 Proposed ICA method 

In this section, we present an approach for detection of FQRS signals and FHR from non-invasive 

abdominal multi-channel signal using a three stage ICA method. The technique is based on two steps: 

a) Pre-processing of the channels and b) two stage ICA for fetal and maternal separations.  

 

a) Pre-processing stage of all channels 

The pre-filtering step is crucial for this method using ICA. The baseline wander is caused by the patient's 

breathing or movements during recording. The frequency of the baseline wander due to breathing is in 

the range of 1 Hz [8], hence the recorded signals were filtered by an FIR high pass filter with frequencies 

fs = 1 Hz and fc = 3 Hz. This is followed by a low pass filter with fc = 25 Hz and fs = 40 Hz which will 

eliminate EMG noise (artifacts of muscular contractions) characterized by relatively high frequency 

noise and the power line interference at 50Hz. The pre-processed abdominal channels are shown in 

Figure B.5.  
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Figure B.5:   Pre-processing the four adfecgdb abdominal channels for ICA method. 

b) Two stage ICA for fetal and maternal separations. 

After the filtering sequence, the ICA was applied to the four abdominal channels to separate 

maternal ECG from the other components. After the first stage application of ICA, channel 1 

contains a strong MECG, channel 2 displays a mixture of FECG and MECG signals while, 

channel 3 and 4 contains the noise components shown by Figure B.6. 

           

Figure B.6:   Application of ICA to the 4 pre-processed abdominal channels (stage I).  
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After zeroing the noisy channels 3 and 4, four new channels are generated from the two valid 

channels 1 and 2 as shown in Figure B.7. The 2nd stage ICA is applied to these four generated 

channels, thus obtaining stronger MECG on channel 1, a prominent fetal signal on channel 2 

with smaller amplitude traces of maternal ECG while channel 3 and 4 contain no noise signals 

as shown in Figure B.7. EEGLAB, an interactive Matlab toolbox was used for processing 

continuous and event-related EEG, and other electrophysiological data incorporating ICA. 

   

Figure B.7: Generation of four new abdominal channels from stage I. 

  

          Figure B.8: Application of ICA to the four pre-processed abdominal channels (stage II). 

(The R –peaks with red dots indicate the fetal R-peaks). 
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The channel 2 from the ICA stage 2 is processed for reliable detection of fetal R-peaks which is 

the important task in computing the fetal heart rates. In the presence of noise, the performance 

of the QRS detector is greatly degraded.  

 

B.3  Adaptive Neuro-Fuzzy Inference System (ANFIS)  

In this section, we propose a technique to cancel the maternal ECG from the aECG using 

adaptive neuro-fuzzy inference system (ANFIS) based on Takagi–Sugeno fuzzy inference 

system [208].  

 In our case, MECG is the main noise source which needs to be eliminated from the abdominal 

composite signal. Since ANFIS is an adaptive noise cancellation system, it adjusts itself to filter 

the maternal ECG giving the estimated fetal ECG signal. Figure B.9, shows the proposed fetal 

extraction method which extracts fetal R peaks using a fetal QRS detector to obtain FHRs. 

 

 

         Figure  B.9: Schematic diagram of ANFIS with QRS detector for extracting fetal R-peaks. 

 

In this technique, the abdominal ECG signal is represented by a(k) while, the signal y(k) 

represents the fetal ECG information, which needs to be obtained from the abdominal signal 

a(k). The signal m(k) is the MECG signal and n(k) is the composite of all other noise signals. 

The aim is to extract y(k) from the composite maternal abdominal signal a(k) which contains 

the desired FECG signal y(k) plus e(k), where e(k) is m(k) + n(k). To estimate the m(k) and n(k) 

signals, we need to first obtain a filtered MECG m (k) estimate signal as a reference signal. This 

is done by a band pass filter with 3Hz and 15Hz as the cut-off frequencies as shown in Figure 

B.9. Our method is useful to compute the ê(k). When the two signals e(k) and the estimated ê(k) 

are identical, the signals cancel each other and we get the estimated fetal ECG output signal ŷ(k) 

which is identical to the fetal scalp ECG signal. 
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The estimated maternal ECG m(k) is fed to the ANFIS as a reference signal along with the 

MECG signal a(k) shown in Figure B.10 (a). The ANFIS tries to estimate the MECG present 

in the composite abdominal signal. When the desired epoch is obtained, ANFIS will stop 

training and output the new estimated MECG ê(k).Once the estimated ê(k) is computed using 

the Matlab command “evalfis”, the estimated FECG is easily obtained by subtracting the 

estimated MECG ê(k) from the composite MECG a(k). The estimated FECG signal shown in 

Figure B.10 (d), is approximately the same as the direct fetal scalp ECG as show in Figure B.10 

(b). The five records from the abfecgdb were evaluated for the fetal R-peaks and FHR.  

 

The basic ANFIS algorithm used to compute the estimated output FECG signal ŷ (k) using 

Matlab is given below: 

 

                        % Generating the initial FIS 

Set the number of membership functions (mf) to 2 

Set the number of step size (ss) to 0.2 

 

% Band pass filtered Abdominal ECG 

d = m (k) estimate 

 

% Abdominal ECG (aecg) = MECG + FECG + (Noise)  

delayed_d = [0; d (1: length (d)-1)] 

train_data = [delayed_d d aecg] 

 

% Generate the initial fuzzy network 

in_fismat = genfis1 (train_data, mf, mftype) 

 

% Using ANFIS for fine tuning the FIS for 20 epochs 

out_fismat = anfis (train_data, in_fismat, [20 nan ss]) 

 

% Testing the tuned model with training data 

Ê (k) = evalfis (train_data (: , 1:2), out_fismat) 

 Estimated FECG [ŷ (k)] = aECG - estimate [ê (k)] 
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          Figure B.10: ANFIS computations for fetal R-peaks (a) aECG a(k).  (b) Direct scalp 

FECG. (c) Filtered aECG and (d) Estimated FQRS ŷ (k) shown by red dots 

are the fetal R-peaks. 
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Appendix C 

Connecting to a smart phone using 

MATLAB Mobile  
 

MATLAB Mobile is an application on your smartphone device which connects to a 

MATLAB session that is running on your laptop or desktop [165]. On the smartphone 

we can create a username and configure the IP address, while at the desktop or laptop 

we can use the command “connector on” to directly connect to the smartphone. This 

allows remote access to your scripts and also allows you to view the simulation plots, 

figures and results. Connecting to a Matlab session on your computer requires that you 

have the Matlab Connector running on that session. Additionally, the mobile device 

requires network access to the computer you are connecting it to. We connected our 

Android smartphone to Matlab via the Matlab Mobile as shown in Figure C.1 to view 

the Matlab files of the QRS detector. ANFIS extracted FECG and the fetal heart rate. 

Figure C.2 (a) and (b) show the Matlab mobile screenshots of the FHR variability and 

the average FHR value respectively. 

 

 

Figure C.1:   Matlab Mobile set up to display FHR on smart phones. 
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                                       C.2 (a)                                                                                C.2 (b) 

 

          Figure C.2: Display of FHR on a smart phone using Matlab Mobile (a) Histogram 

of the FHR variability. (b) Matlab command prompt showing the FHR 

value for the record r01 of adfecgdb database (channel 4). 
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Appendix D 

Linear phase sharp transition FIR filter designs 

 

D1.  Model I (a):  LPST high pass FIR filter model and design 

In this section, the design of the high pass with a LPST FIR filter is presented. For the proposed 

high pass filter model, the three regions of the filter response H (ω) are modelled using 

trigonometric functions of frequency as shown in Figure 3.4 of Chapter 3. The filter design 

parameters ksh, kth and kph for the three regions of the high pass filter are evaluated below: 

(i) In the stopband region, for 0 ≤ ω ≤ ωsh ,the frequency response  
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In Eq. (D1.1), ω is the frequency variable, H (ω) is the magnitude of the filter response, δs  is the 

stopband attenuation, ksh is the stopband filter design parameter and ωsh is the stopband edge frequency. 

ii)  In the sharp transition region for ωsh ≤ ω ≤ ωch, the frequency response is  
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where, δp is the passband ripple, kth is the transition filter design parameter and ωch is the cut off 

frequency in the passband. 
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iii) In the passband region for ωch ≤ ω ≤ π, the frequency response is 
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where, kph is the passband filter design parameter. 

D1.1   Expressions for Impulse Response Coefficients for the high pass FIR Filter. 

The impulse response coefficients h (n) for the high pass FIR filter are obtained by computing the 

integral limits of the three regions as shown in the filter model magnitude response in Figure 3.4. 
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Substituting Eq.s (D1.1) to (D1.6) in Eq. (D1.8) we get, 
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Solving the 1st term from Eq. (D1.9) we get, 
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Solving the 2nd term from Eq. (D1.9) we get, 
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Solving the 3rd term from Eq. (D1.9) we get, 
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The Eq. (D1.10) to (D1.12) are evaluated to obtain the expression for the high pass filter model impulse 

response h (n). 
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The Eq. (D1.13) is the expression for the high pass filter model impulse response h (n). 
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D2.  Model I (b):  LPST low pass FIR filter model and design 

In this section, the design of the LPST low pass FIR filter is presented. For the proposed low pass filter 

model, the three regions of the filter response are modelled using trigonometric functions of frequency. 

As in high pass filter design, ω is the frequency variable, H (ω) is the magnitude of the filter response, 

δs is the stopband attenuation and δp is the passband ripple. kpl, ktl and ksl are the passband, transition and 

stopband filter design parameters respectively. The filter model magnitude response H (ω) is shown in 

Figure 3.5 in chapter 3. The filter design parameters kpl, ktl and ksl for the three regions of the low pass 

filter are evaluated below: 

In the passband region of 0 ≤ ω ≤ ωcl , the frequency response is 
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(i) In the sharp transition region for ωcl ≤ ω ≤ ωsl , the frequency response is, 
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(ii) In the stop band region for ωsl ≤ ω ≤ π , the frequency response is, 
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D2.1 Expressions for Impulse Response Coefficients for the low pass FIR Filter. 

The impulse response coefficients h (n) for the low pass FIR filter are obtained by computing the 

weighted integral of the magnitude response over three regions shown in the filter model magnitude 

response in Figure 3.5. 
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Solving the 1st term from Eq. (D2.8) 
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Solving the 2nd term from Eq. (D2.8) 
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By substituting Eq.s (D2.9) to (D2.11) in Eq. (D2.8) we obtain the expression for the low pass filter 

impulse response h (n). Where k ≠ ktl, kpl and ksl. 

Thus,  
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Eq. (D2.14) is further simplified to obtain Eq. (D2.15)  
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Where k ≠ ktl, kpl and ksl. 

 

The Eq. (D2.15) is the simplified expression for the low pass filter model impulse response h (n). 

 

 

D3. Model II: LPST BPF Model and Design 

In this section, the design of the integrated LPST band pass FIR filter is presented. For the proposed 

filter model, the five regions of the filter response are modelled using trigonometric functions of 

frequency. The filter model magnitude response H(ω) is shown in Figure 3.8. The filter design 

parameters k1, k2 , k3, k4 and k5  for the five regions of the band pass filter are evaluated below: 

(i) In the region 1 (stopband), for 0 ≤ ω ≤ ωs1 ,the frequency response  

1                                                                                                                                                                         ( )   -  cos  (  ) ,       
2

s
H k


                                    

1 1

1 1

(D3.1)

          0 ;                (0)     -   
2

                        ( )   0 

                   -  cos  (  )  0  
2

                         

s

s s

s
s

At H

At H

k




  




 

 

 

1 1 1

1

1 1

1

1
                     m  +  2

4

2 m  
2                                                             m  is an integer.                                          (D3.2)

s

s

k

k where

 






 
  

 



 

 

In Eq. (D3.1), ω is the frequency variable, H (ω) is the magnitude of the filter response, δs  is the 

stopband attenuation, k1 is the stopband filter design parameter , m1 is an integer , ωs1 is the stopband 

edge frequency. 

ii)  In the region 2 (sharp transition) for ωs1 ≤ ω ≤ ωp1, the frequency response is  
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where, k2 is the transition filter design parameter and ωp1 is the cut off frequency in the passband. 

iii) In the region 3 (passband) for ωp1 ≤ ω ≤ ωp2, the frequency response is 
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where, k3 is the passband filter design parameter, δp is the passband ripple and m3 is an integer. 

iv) In the region 4 (sharp transition) for ωp2 ≤ ω ≤ ωs2, the frequency response is 
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where, k4 is the transition region filter design parameter. 

v) In the region 5 (stopband) for ωs2 ≤ ω ≤ π, the frequency response is 

5 2                                                                                                                                                                     ( )   -  sin  (  ( ))      
2

s
sH k


                             

2 2

5 2

(D3.9)

           ;             ( )     0

                           ( )     -  sin  (  ( )) = - , as shown in Figure 3.8
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 where, k5 is the stopband region filter design parameter and m5 is an integer. 

D3.1 Expressions for Impulse Response Coefficients of the LPST BPF FIR. 

The impulse response coefficients hbp(n) for the integrated band pass FIR filter are obtained from, 
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 Substituting Eq.s (D3.1) to (D3.10) in Eq. (D3.12) we get, 



 

196 
 

 

1 1

1 2 1

1

2 2

3 1 4 2

1 2

5 2

1
( )    -  cos( ) sin( )   k ( ) sin( )  

2
0

1  sin  (  ( ))  sin( )   1  ( )  sin( )  
2

+ -  sin(  ( )) sin( ) 
2

s p
s

bp s

s

p s
p

p p

p p

s
s

h n k k k

k k k k

k k

 


      




 


       

 


   






    


 
        

 

 
  

 

 

 

2

                                                                                                (D3.13)
s

 






  

Solving the 1st term from Eq. (D3.13) 
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Solving the 2nd term from Eq. (D3.13) 
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Solving the 3rd term from Eq. (D3.13) 
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Solving the 4th term from Eq. (D3.13) 
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Solving the 5th term from Eq. (D3.13) 
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The Eq. (D3.12) is evaluated to obtain the expression for the band pass filter model impulse response   

h (n), using equations (D3.13 to D3.18) 
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The Eq. (D3.19) is the expression for the band pass filter model impulse response h (n). We can choose 

the effective pass band width (ωp2 ~ ωp1) such that (ωs1 ~ ωp1) = (ωs2 ~ ωp2), as small as possible for sharp 

transition of passband edge. Once ωp1, ωp2, ωs1 and ωs2 are chosen k1, k2, k3, k4 and k5 are determined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


