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Purification and characterisation of a sulphur rich melanin from edible
mushroom Termitomyces albuminosus Heim
Rosy Agnes De Souza a, Nandkumar Mukund Kamat a and Vishnu S. Nadkarni b

aMycological Laboratory, Department of Botany, Goa University, Taleigao, Goa, India; bDepartment of Chemistry, Goa University, Taleigao,
Goa, India

ABSTRACT
Production, purification and characterisation of a black pigment from Termitomyces albuminosus
as melanin is reported, for the first time, from shaken submerged culture condition using
scanning electron microscopy (SEM), elemental analysis, ultraviolet–visible (UV-VIS), and Fourier
transformed infrared spectroscopy (FTIR), electron paramagnetic resonance (EPR) and 13C (CP/
MAS) NMR spectra. SEM results on T. albuminosus revealed nanogranular nature of melanin
nanoparticles within size range of 400–100 nm with fractal dimension D = 1.195–1.73.
Elemental analysis of melanin indicated 54.6% C, 3.5% H, 2.4% N, 26.9% O, and 12% S. UV-VIS
and FTIR spectra confirmed to the characteristic of melanin and were identical to the reference
commercial sepia melanin. Further validation of the identity of pigment as melanin was achieved
by EPR analysis. Termitomyces albuminosus melanin is postulated to be DOPA-type melanin
confirmed by 13C (CP/MAS) NMR spectral analysis showing chemical shift at 200–170 ppm
carbonyl, 160–110 ppm aromatic region, and with high 40–30 ppm open chain aliphatic region.
Chemical modification through oxidation and cysteinylation (Pheomelanin) is implied as indi-
cated by relatively high sulphur content (12%).
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Introduction

Melanin biosynthesis is a common feature in king-
dom fungi. The pigment not essential for hyphal
growth appears as secondary metabolite. Melanins
are most stable, amorphous polymers of phenolic
compounds and can be classified into the following
three types: eumelanins, pheomelanins and allome-
lanins. Melanin production helps in protection from
extreme environmental conditions such as UV light,
ionising radiation, resistance to heat or cold, phago-
cytosis, heavy metals, and oxidants and provides cell
wall rigidity (Money et al. 1998; Plonka and Grabacka
2006; Pal et al. 2013; Casadevall et al. 2017). Despite
its importance and ubiquity, many fundamental
questions remain unanswered like details of its che-
mical structure and insolubility (Eisenman and
Casadevall 2012). Some fungi undergo melanogen-
esis in response to certain environmental stress con-
ditions such as extreme temperatures, dessiccation,
hyperosmotic conditions, limited nutrients, pH
changes, metal toxcicity, UV or ionisation stress,
action of antagonistic microbes. Melanisation in
fungi mostly seen in hyaline hyphae, sclerotia,

appressoria, reproductive structures or conidia
(Cordero and Casadevall 2017). Hyphal melanin is
often found to be deposited as the outermost layer
or internal layer in cell wall only with age or other
stress (Bell and Wheeler 1986; Henson et al. 1999;
Butler et al. 2001). Melanogenesis in pathogenic
fungi plays a key role in pathogenesis in species
such as Cryptococcus neoformans (Polacheck and
Kwon-Chung 1988), Gaeumannomyces graminis var.
tritici, Magnaporthe grisea, Alternaria alternata,
Colletotrichum lagenarium, Cochliobolus heterostro-
phus (Henson et al. 1999), Paecilomyces variotti
(Babitskaya et al. 2000a), Rhizoctonia solani (Chen
et al. 2015) and Aspergillus spp. (Babitskaya et al.
2000a; Schmaler-Ripcke et al. 2009; Gonçalves et al.
2012; Pal et al. 2013). Melanins are reported from
mushrooms such as Agaricus bisporus (Mendoza
et al. 1979), Inonotus obliquus (Babitskaia et al.
2000b; Babitskaya et al. 2002), and Schizophyllum
commune (Arun et al. 2015). Plant-associated symbio-
tic ectomycorrhizal fungus, Cenococcum geophilum,
produces melanin under dehydrated conditions
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(Fernandez and Koide 2013). Fungi synthesise mela-
nin by one of the two synthetic pathways: 1,8-dihy-
droxynaphthalene (DHN) intermediate and l-3,4-
dihydroxyphenylanine (L-DOPA). Melanin synthesis
involves copper containing metalloenzymes such as
laccase and tyrosinase and in fungi also shows invol-
vement of chitin cross-links to other cell wall poly-
saccharides and proteins (Eisenman and Casadevall
2012). Studies on melanins in mushrooms are limited
to edible mushrooms such as Pleurotus cystidious var.
formosensis, P. australis, and P. purpureoolivaceus
from which darkly pigmented arthroconidia forming
black pigment on mycelium or basidiomata has been
characterised (Selvakumar et al. 2008). According to
Mendoza et al. (1979), the spore wall of Agaricus
bisporous and Agaricus campestris contain 26–28%
and 24–26% crude (dry weright cell wall) melanin.
Mushroom fruitbody decolourisation is very common
due to oxidation of phenolic substrates into qui-
nones leading to the formation of brown-coloured
melanin in species such as A. bisporous, thus decreas-
ing its commercial value (Weijn et al. 2013). Exo- and
endomelanin complex of Inonotus obliquus and
Phellinus robustus in submerged conditions demon-
strate high-antioxidant and genoprotective proper-
ties (Bisko et al. 2002, 2007). Melanin in Auricularia
auricula has been studied extensively (Zou et al.
2010; Bin et al. 2012; Zhang et al. 2015; Sun et al.
2016a). Melanin is found useful in the field of mate-
rial science as coating material in electronic/bioelec-
tronics, drug delivery and cosmetics as sunscreens,
emphasising the importance of finding good, non-
toxic melanin sources (Blumenberg 2017).

Symbiotic fungal species in Termitomyces Heim
are found in Asian and African continents as exosym-
bionts cultivated by fungus growing termites
belonging to subfamily – Macrotermitinae in their
nest as food (Wood and Sands 1978). During tropical
monsoon, fruitbodies from subterranean fungus
combs emerge by forcing their way through very
hard layer of inert matter using a hard, melanised
perforatorium (Heim 1977; Kendrick 2001).
Traditionally, these species are known to be most
popular and highly prized edible mushrooms in
Asia and Africa. Taxonomists have reported dark pig-
mentation in fruitbodies especially in organs like
hypogeal pseudorrhiza and epigeal smooth or
pointed umbo exhibiting brownish to greyish-black
colouration, without commenting on chemical

nature and role of such dark pigmentation, thus
leaving the issue of its chemical identification and
characterisation open (Otieno 1968; Pegler and
Rayner 1969, 1969; Natarajan 1979; Van Der
Westhuizen and Eicker 1990; Pegler and Vanhaecke
1994; Abdullah and Rusea 2009; De Kesel 2011;
Srivastava et al. 2011; Tibuhwa 2012; Karun and
Sridhar 2013; Aryal et al. 2016).

In spite of extraction of melanin from several
edible mushroom species, there is no knowledge
regarding edible melanin obtained from a symbio-
tic mushroom which can provide better source of
mushroom melanin as this Termitomyces species is
well consumed in entire Asian and African conti-
nent for its delicacy. The present study thus aimed
to produce the dark melanin-like pigment from
pure culture under controlled conditions, purify it
and verify its chemical identity as melanin and
characterise it structurally.

Materials and methods

Source and growth conditions of melanic culture

Fresh, healthy Termitomyces albuminosus fruitbo-
dies were collected from Mardol, Goa during mon-
soon season and taxonomically identified using
standard published Termitomyces keys (Heim
1942, 1977). Several pure cultures were obtained
from sterile context tissue explants of pileus on 2%
Malt Extract Agar (MEA) medium (Malt extract
refined bacteriological grade 2% and Agar bacter-
iological grade 2%) with 0.01 mg/mL concentration
of nalidixic acid and neomycin (HiMedia Chemicals
Ltd., Mumbai, India). Growth, morphology, and pig-
mentation in colonies were monitored and a pro-
mising strain showing dark melanin like
pigmentation was selected and microscopically
checked for purity. The melanic strain was depos-
ited in Goa University Fungus Culture Collection
(WFCC Reg. no. 946) bearing GUFCC No. 20002
and maintained on Czapek Dox Agar (CDA) med-
ium (0.5% sucrose, 0.2% sodium nitrate, 0.1% dipo-
tassium phosphate, 0.05% magnesium sulphate
heptahydrate, 0.05% potassium chloride, 0.001%
ferrous sulphate heptahydrate, and 2% agar bac-
teriological grade), pH 5.5 and was incubated in
incubator (Modern Industrial Corporation, Mumbai,
India) at 28 ± 1 °C in dark.
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Production of melanin in shaken submerged
culture condition

Ten identical culture plugs were inoculated into 250 mL
Erlenmeyer flasks containing 100 mL of Czapek Dox
Solution (CDS) and were incubated on rotary shaker
(Scigenics Biotech, Orbitek model LETT-A, Tamil Nadu,
India) at 28 ± 1 °C, pH 5.5 for 1 week in dark with shaking
at 150 rpm. Mycelial suspensions were obtained from
pellets (Kalisz et al. 1986). Inoculum (10% v/v) was trans-
ferred into 2000 mL Erlenmeyer flasks containing 1000
mL of CDS having 5 g/L sucrose, pH 5.5 and incubated at
28 ± 1 °C for 20 days on rotary shaker at 150 rpm. Flasks
were incubated at room temperature for 20 days.
Insoluble melanin bound to mycelial biomass was
extracted after 20 days.

Melanin extraction and purification

Termitomyces albuminosus pellet biomass was harvested
using sterile stainless steel sieve of 100 µm mesh size,
washed with sterile double distilled water three times,
and oven dried at 70 °C overnight to a constant weight
for estimation of mycelial dry weight. Melanin was
extracted from the dry powdered fungal biomass using
modification in previously described method (Sun et al.
2016b). Dry biomass powdered using mortar and pestle
was subjected for melanin extraction in 100 mL 2 mol/L
NaOH, in autoclave at 120 °C for 20 min. Extracts
obtainedwere centrifuged at 5000 rpm for 5min., super-
natant was adjusted to pH 1.5 with 7 mol/L HCl, then
kept at room temperature (RT) for 2 h and centrifuged at
8000 rpm for 20 min to collect the precipitate. The
precipitate was washed three times with milliQ water,
and dried and redisloved in 2 mol/L NaOH and surper-
natent was collected after centrifugation at 8000 for 20
min. The supernatent pHwas readjusted to pH 1.5with 7
mol/LHCl and thenkept at RT for 2h. Theprecipitatewas
collected by centrifugation at 8000 rpm for 20 min. The
precipitates obtained of crude mealnin were hydrolysed
with 7 mol/L HCl at 100 °C for 2 h in order to remove
bound carbohydrates and proteins. Then contents were
cooled at RT and precipitatewas collected by centrifuga-
tion at 8000 rpm for 20min. The precipitate was washed
three times with milliQ water to remove chloridion fol-
lowed by drying at RT. The dried melanin was sequen-
tially washed with chloroform, ethyl acetate and
absolute ethanol in order to remove bound lipids,
dried at RT and was transferred to a desiccator.

Subsequently, the dried melanin was redissolved in 2.0
mol/L NaOH, followed by centrifugation at 8000 rpm for
20 min. The supernatant was adjusted to pH 1.5 and
centrifuged at 8000 rpm for 20 min. The pure melanin
was obtained after repeated washing of the precipitate
withmilliQwater and thendrying to a constantweight in
an oven at 60 °C. Purified melanin was stored in an air
tight, moisture free amber bottle at −20 °C.

Morphology of melanin particles

Bright field microscopy
Culture from dark pigmented colonies of T. albumi-
nosus and smaller melanised pellets were mounted
in plain lactophenol. Pure melanin particles obtained
by purification process were mounted in DPX on
slides and examined using Nikon Eclipse E200 micro-
scope with Nikon DS-fi2 camera and NIS element
microscope imaging software.

Scanning electro microscopy (SEM)
Pure dried powdered melanin particles were fixed on
carbon tape on aluminium stub and sputter coated
with Palladium for 10 s (Quorum SC7620 Sputter
Coater, UK) and examined by SEM at 5 kV (Vega 3
SB, TeScan, Advanced Scientific Equipment Pvt. Ltd.,
Bangalore, India).

Fractal analysis
SEM images of 10000× magnification were subjected
to 11 different mathematical methods to compute
fractal dimension using CMEIAS JFrad version 1.0 soft-
ware freely available at http://cme.msu.edu/cmeias/ (Ji
et al. 2015). The output data of melanin fractal dimen-
sions were saved as *csv files and analysed statistically
using the SYSTAT 13.

Elemental composition of melanin

The elemental composition CHN (O) of pure T. albumi-
nosus melanin was determined with approximately 5
mg solid samples using elemental analyser (Thermo
Finnigan, Italy model FLASH EA 1112 series, SAIF–IIT
Bombay analytical laboratory, India) dispersed in
water. The sulphur content was computed after addi-
tion of C, H, N, O percentages and qualitatively
detected using Lassaigne’s test (Harki et al. 1997).
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Ultraviolet–visible (UV-VIS) and Fourier transform
infrared spectroscopy (FTIR)

UV-VIS spectrum was obtained in the range 190–750
nm using UV–VIS spectrophotometer (Shimadzu UV-
2400) 0.1 mol/L NaOH as reference (Suryanarayanan
et al. 2004; Selvakumar et al. 2008). A standard mel-
anin spectrum was also obtained using Sepia offici-
nalis melanin (Sigma, Aldrich Chemicals, India). For
FTIR spectral analysis, the purified T. albuminosus
melanin sample was mixed with KBr (1:10) and
pressed into a 1 mm thin pellets. FTIR spectra were
recorded between 4000 and 500 cm−1 in transmis-
sion/absorbance mode on FTIR spectrometer
(Shimadzu IR Prestige 21, Japan) averaging of 40
scans. Spectral resolution was 4 cm−1, encoding
interval 1 cm−1, Happ–Genzel apodisation and scan-
ning speed 2.8 mm s−1 (Mbonyiryivuze et al. 2015).

Electron paramagnetic resonance (EPR)
spectroscopy

EPR spectra were recorded using 25 mg samples at 77 K
using ESR–JEOL, Japan model JES–FA200 ESR spectro-
meter for x band (SAIF–IIT Bombay analytical laboratory,
India). Parameters used to acquire the spectra were as
follows: modulation amplitude, 0.16 mT; modulation
frequency 100 KHz; centre field, 325 mT; sweep width,
25 mT; sweep time, 2 min; microwave frequency, 9.1
GHz; microwave power, 0.1 mW; and temperature 77 K
(Enochs et al. 1993).

NMR studies

Solid-state 13C (CP/MAS) NMR spectra were acquired on
a Bruker Avance II 500 MHz spectrometer at Central Salt
and Marine Chemicals Research Institute (CSMCRI) ana-
lytical laboratory, India.

Results

Cultural growth and melanin production

Termitomyces albuminosus colonies on CDA after 8 days
showed 7.9 ± 0.17 cm diameter, initially cottony white
but after 7–8 days of incubation, exhibited brownish to
black pigmentation from central and older region.
Termitomyces albuminosus hyphal growth characters
were as per standard pure Termitomyces cultural descrip-
tions (Botha andEicker 1991). Thepigmentation radiated

towards themargin (Figure 1(a,b)). Repeated subcultures
of melanogenic strain produced same results. In shaken
submerged condition, T. albuminosus culture
consistently produced spiky brown to black pellets
(Figure 1(c,d)). Melanin yield from T. albuminosus in pre-
sent study was found to be 0.0142 ± 0.005 g/L from
pelletized biomass.

Melanin deposition sites and morphology of
melanin granules

Micromorphologically T. albuminosus culture mat
showed uniform deposition of brown–black pigment in
hyphal cellwall and septa consistentwithpresent knowl-
edge (Figure 2(a)). Pellets showed central zone as dense
black with brown peripheral spiky appendages (Figure 2
(b)). Direct mount of purified melanin granules under
bright field showed their polymorphic nature forming
very thin, opaque amorphous black plates (Figure 2(c)).
SEM images of purified sample showed the ultrafine
structure of these thin amorphous plates comprising
large clusters of almost spherical, compacted nanogra-
nules. The plates show interesting but complex micro-
topography of nanogranules having 400–100 nm size
(Figure 2(d,e,f)). Table 1 indicates the fractal analysis of
pure melanin with fractal dimension D = 1.195–1.733.

Figure 1. Melanin production in Termitomyces albuminosus
Culture. (a) T. albuminosus colony surface view. (b) T. albumi-
nosus colony reverse view. (c) T. albuminosus pellets production
in submerged shaken condition. (d) Single-pellet morphology.
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Elemental composition

Elemental analysis of Termitomyces melanin mainly
indicated C:H:N:O:S composition percentage as
54.679%, 3.544%, 2.492%, 26.924%, and 12.361% as
listed in Table 2. The sulphur content was not
directly estimated due to lack of S detection probe
but derived stoichiometrically which is an alternative
method and presence of S was confirmed by the
positive Lassaigne’s test.

UV -VIS and FTIR studies

UV-VIS spectrum showed absorption profile identical
to standard sepia melanin. The absorption spectra of
T. albuminosus melanin showed characteristic peak in
the ultraviolet region at 233 nm and not in visible
region (Figure 3(a)). Melanin from T. albuminosus
culture also produced a linear form with a negative
slope of −0.0026.

The infrared spectrum of melanin exhibited absorp-
tion band at 2964 cm−1 and 2891 cm−1, indicating the
presence of CH3, CH2 aliphatic group. The 1724 cm−1,
1585 cm−1 and 1442 cm−1 bands indicate C = O, C = C
and C = N / N–H group, whereas 1263 cm−1 indicates
phenolic C–O–H band (Figure 3(b)). Table 3 provides a
comparative view of FTIR spectral band analysis of T.
albuminosus melanin with other fungal melanins.
Termitomyces albuminosus melanin showed character-
istic bands for aromatic rings and sulphur at 800 cm−1

and 678 cm−1.

EPR spectroscopy

In the present study, EPR spectrum showed the peak
at 2.00968 (G-value) for T. albuminosus melanin
(Figure 3(c)).

NMR spectroscopy

13C (CP/MAS) NMR spectra are shown in Figure 3(d).
Its spectral band assignments along with other

Table 1. Fractal analysis of Melanin.
Fractal dimensions methods Mean ± SD

Dilation 1.357 ± 0.050
Euclidean distance map 1.315 ± 0.048
Box counting 1.350 ± 0.081
Fast 1.155 ± 0.027
Fast (hybrid) 1.195 ± 0.034
Parallel lines 1.224 ± 0.032
Cumulative intersection 1.733 ± 0.084
Mass radius (long) 1.230 ± 0.051
Mass radius (short) 1.232 ± 0.050
Corner (count) 1.610 ± 0.078
Corner (perimeter) 1.616 ± 0.050

Note. Values are mean of (n = 3), ± SD (standard deviation).

Table 2. Elemental composition of melanin.

Sample

Content %

C H N O S

Pure Termitomyces albuminosus
melanin

54.679 3.544 2.492 26.924 12.361

Note. The sulphur content was calculated from the equation (Harki et al.
1997).

S%= (100)–(∑ C %+ H % + N %+ O %).

Figure 3. Spectral analysis of Termitomyces albuminosus mela-
nin. (a) UV–VIS spectra of melanin. (b) FTIR spectrum of T.
albuminosus melanin. (c) EPR of melanin. (d) 13C (CP/MAS)
NMR spectra of melanin.

Figure 2. Microscopic analysis of Termitomyces melanin. (a)
Cultural melanin with melanised hyphae showing cell wall
bound and septal bound melanin under bright field view. (b)
Pellet with spiky appendages cross section showing dark brown
to black central core. (c) Pure dry melanin powder under bright
field view. (d–f) Pure melanin granules at different magnifica-
tions under SEM view.
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reported melanins are summarised in Table 4.
Characteristic chemical shift at 70–30 ppm
representing =C–S and C–H carbon of open-chain
aliphatic carbons present in cysteine/DOPA was
observed in 13C NMR spectrum of Termitomyces.

Discussion

This is first report on formation of a dark melanin like
pigment in Termitomyces colonies, a phenomenon
noticed in natural fruitbodies and confirmation of
the pigment as melanin. Despite taxonomic knowl-
edge about universal occurrence of dark pigmenta-
tion in Termitomyces fruitbodies, no attention has
been paid to establish its chemical identity as mela-
nin. In addition, no reports have been found on
melanogenesis in pure cultures of Termitomyces spe-
cies. This may be due to availability of very few pure
cultures available in world culture collections for
scientific community to work. In spite of 90 total
taxa recorded pending systematic revision and
found listed in Index Fungorum mycological data-
base (www.indexfungorum.org) indicating high
diversity of Termitomyces species in Asia and Africa,
the catalogues in World Federation for culture collec-
tion have only 11 Termitomyces strains listed globally.
This may be due to relative lack of interest in high-
frequency culturing of wild-edible Termitomyces spe-
cies or failure to get healthy fruitbodies and viable

spores for isolating mycelial cultures. The present
study overcame the problem by obtaining several
mycelial cultures from different Termitomyces species
and zeroing down on a stable melanogenic strain of
T. albuminosus able to show excellent growth on
solid medium as well as under submerged culture
conditions. Previously (Siddiquee et al. 2012, 2015)
reported dark grey to black colouration in T. heimii
and T. aurantiacus culture grown on Potato Dextrose
Agar medium after 7 days but failed to identify the
melanogenesis process. Zhang et al. (2015) reported
melanin from culture free filtrate of Auricularia aur-
icula in submerged culture conditions yielding
0.124–0.558 g/L. However, Sun et al. (2016b)
reported yield of 2.22 g/L melanin in culture filtrate
of A. auricula in complete medium containing lac-
tose, yeast extract, tyrosine, calcium chloride and
sodium chloride, but not estimated melanin bound
to cultural biomass. In the present study, the final
product of melanin accounted for about 0.012% (w/
w) of dry biomass. Relatively T. albuminosus strain
used in the present study yielded less melanin prob-
ably due to choice of the medium, being a symbiotic
mushroom or many other physiological parameters
which need to tested in future.

In melanised fungi, pigment is known to be loca-
lised in the cell wall, in the outermost layer or
embedded within the wall as granules, layered in
fibrils, or bound to cell wall chitin (Butler and Day

Table 3. FTIR spectroscopic characteristics of melanin.
Fungus Bands (cm−1) Assignments References

Phyllosticta capitalensis 3352.5
1639.8

–OH, N–H bonds
Conjugated carbonyl bonds

Suryanarayanan et al. (2004)

Auricularia auricula 1627.76
3422

2923.99
2853.83

Aromatic C=C & COO−group
O–H stretching & NH2 groups
Aliphathic group CH3 &
CH2

Zhang et al. (2015)

Pleurotus cystidiosus 3445.05 OH group Selvakumar et al. (2008)

Auricularia auricula 3287.6
2925.8
2851.2
1702.3
1619.4
1378.8

OH & NH group
CH3 group
CH2 group
C=O & COO– group

Bin et al. (2012)

Termitomyces albuminosus 2964
2891
1724

1585, 1442
1263
800

730, 710, 678

CH3 Aliphathic group
CH2 group
C=O stretching
Overlapping O–H (def.) of C=C ring stretching
C–O stretching due to phenol
C–H (def.) of C=C–H (o.o.p.) from aromatic rings
Weak absorption indicating C-S stretching

Present study
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1998). In this study, Termitomyces melanin was micro-
scopically detected to be present in cell wall or septa.
Nanoparticle nature of melanin has been studied
(Beltrán-García et al. 2014) and our results are con-
sistent with the same. Consistent with the latest
development in understanding the properties of
such complex surfaces in topological quantum
chemistry it would be interesting to see whether
melanin nanogranules could also be subjected to
topochemical studies (Bradlyn et al. 2017; Fiete
2017) which might explain some interesting proper-
ties. Melanins fractal dimensions results clearly imply-
ing that assembly of melanin nanogranules may
occur in fractal pattern (Bridelli 1998; Eom et al.
2017). It has been known that melanin purification
steps lead to dehydration thus making the polymer
more aggregated and it results in loss of capacity for
physiological interactions (Nicolaus 1968; Prota
1992). The aggregated structure of melanin is

postulated to prevent reactive oxygen species forma-
tion because photoactive residues are less exposed
(Beltrán-García et al. 2014) however the function of T.
albuminosus melanin may be more complex as it is a
mutualistic species with hypogeal anamorph and
epigeal teleomorph (Piearce 1987) .

Melanin produced by DHN pathway contains car-
bon and oxygen only, while the L-DOPA pathway
melanins also contain nitrogen. Melanin synthesised
via the L-DOPA pathway is referred to as eumelanin.
DOPA melanins in presence of oxygen and tyrosi-
nase are also known to undergo cysteinylation
(incorporation of cysteine in the polymer). These
melanins, red or yellow-coloured pigments are
termed as pheomelanins initially synthesised just
like eumelanins and contain sulphur (El-Naggar
and El-Ewasy 2017). Termitomyces melanin could be
a form of sulphur-rich pheomelanin as this group
mainly consists of sulphur-containing benzothiazine

Table 4. 13C NMR spectroscopic characteristics of melanin.
Source and type of melanin Chemical shift range (ppm) Possible assignments References

Oidiodendron tenuissimum,
Trichoderma harzianum,
Ulocladium atrum, Hendersonula
toruloidea, Eurotium echinulatum

220–160 Carboxyl/carbonyl groups Knicker et al. (1995)
160–140 Aromatic COR or CNR groups
140–110 Aromatic C–H carbons, guaiacyl C-2/C-6

Olefinic carbons
110–90 Anomeric carbon of carbohydrates, C-2/C-6

of Syringyl
90–60 Carbohydrate- derived structures (C-2 to C-5)

in hexoses, C-2 of some amino acids &
higher alcohols

60–45 Methoxyl groups, C-6 of carbohydrates, C-2
of most amino acids

45–0 Methylene groups in aliphatic rings & chains,
methyl groups bound to carbon

Dopa melanin 172 Carbonyl carbon Duff et al. (1988)
143, 118 Aromatic carbons
55, 35 Aliphatic carbons

Melanoma melanin 173 Carbonyl carbon
125 Aromatic carbons
53,33 Aliphatic carbons

Sepia melanin 173 Carbonyl carbon
140–110 Aromatic carbons
70–30 Aliphatic carbons

Sepia melanin 200–160 Carbonyl carbon Adhyaru et al. (2003)
160–135 Aromatic & Indolic Cq (non-protonated)
135–90 Aromatic & Indolic CH (protonated)
95–10 Aliphatic carbons

Sepia melanin Free acid (MFA) 200–160 Carbonyl carbon
165–135 Aromatic & Indolic Cq (non-protonated)
135–100 Aromatic & Indolic CH (protonated)

95–10, 50–0 Aliphatic carbons
Sepia melanin 200–187, 167, 164 Carbonyl carbon Hervé et al. (1994)

147–110 Aromatic & ethylenic Cq (non-protonated)
131–127, 119–95 Aromatic & ethylenic CH (protonated)

75–15 Aliphatic carbons
T. albuminosus melanin 200–170 Carbonyl carbon Present study

160–110 Aromatic carbons
45–40 =C–S

71, 56, 52, 33, 30 Aliphatic carbons in cysteine/DOPA
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and benzathiozol derivatives. Generally, pheomela-
nins or DOPA melanin chemically modified by
amino acids such as cys–DOPA melanins are
known to have approx. 9–16% sulphur content.
These findings are in accordance with those
reported by Harki et al. (1997; Costa et al. 2015;
Sun et al. 2016b). According to Ye et al. (2014),
about 14.83% sulphur content was determined by
elemental analysis from Lachnum YM404 strain. Also
the effect of medium composition on melanin com-
position is known. According to Bull (1970), in
Aspergillus nidulans melanin pigment varied in com-
position with response to growth medium and the
most significant finding was the widely varying
nitrogen content of the melanin in response to the
growth medium. Bull (1970) reported percentage
composition of melanin in Czapek Dox Medium as
C = 56.40%, H = 6.55%, and N = 3.92–1.78% (on
addition of DOPA & Catechol), indicating that mela-
nin composition can vary from medium to medium.
High sulphur content of melanin in Termitomyces is
possible due to availability of sulphur-containing
amino acids and sulphite reductase enzymes.
Previously, Alofe (1991; Botha and Eicker 1992; Ijeh
et al. 2016; Sun et al. 2017) reported sulphur-con-
taining (methionine, cysteine) amino acids from
Termitomyces umkowaani, T. sagittaeformis T. reticu-
latus, T. robustus, and T. microcarpus fruitbodies.
These amino-acid compositions vary from one geo-
graphic region to another. Laccase enzyme which is
known to play a key role in biosynthesis of melanin
has been also reported from Termitomyces (Bose
et al. 2007; Gangwar et al. 2016). Rahmad et al.
(2014) identified sulphite reductase enzyme from T.
heimii which plays a key role in sulphur assimilation.
Our results indicate that Termitomyces species may
have efficient sulphur metabolism involving an uni-
dentified pathway linked to O-acetylserine to form
cysteine (Leustek et al. 2000; Kopriva and Koprivova
2003). According to Plonka and Grabacka (2006), the
possible melanin synthesis pathway in Termitomyces
using laccase enzyme and source of sulphur pool as
amino acids can be written as

DOPA→DOPAquinone→CysteinylDOPA→1,4-
Benzothiazinylalanine→pheomalanin.

which is required to be tested in future as the
present study only aimed at the characterisation of
melanin pigment from genus Termitomyces.

The linear decrease in the absorption with increasing
wavelength was observed for Termitomyces melanin
similar to that reported by (Zhang et al. 2015).
Absorption peaks in UV regions occur due to the pre-
sence of many conjugated structures in melanin mole-
cule (Ou-Yang et al. 2004). The log of optical density of a
melanin solution when plotted against wavelength pro-
duces a linear curve with negative slopes. Such charac-
teristic straight lines with negative slopes have been
obtained from some melanogenic fungi such as
Phyllosticta capitalensis and Auricularia auricula with
slope ranging −0.0015 to −0.0030 (Ellis and Griffiths
1974; Suryanarayanan et al. 2004; Bin et al. 2012; Zhang
et al. 2015). The slopes of linear plots are often used to
identify melanins and matching spectral features in the
present work confirms the identity of T. albuminosus
melanin.

TFTIR studies carried out by Sava et al. (2001) reported
that absorption is reduced at 3450 cm−1 and 1650 cm−1,
after acid hydrolysis treatment undertaken during pur-
ification step due to formation of reactions between
phenolic and carboxylic groups to form lactones. Also
treatment with chloroform and ethyl acetate could have
reduced absorption at 2900–2850 cm−1 in spectra.

Melanin polymers are known to have paramag-
netic character and o-semiquinone free radical with
spin (S = 1/2). These unpaired electrons of free radi-
cals obey EPR effect (Pilawa et al. 2017). Enochs et al.
(1993) described a standardised and effective test for
the identification of melanin pigment by identifying
the presence of stable population of organic free
radical signal. The G-value of fungal melanin is
reported to be 2.0012 (Selvakumar et al. 2008).
Termitomyces albuminosus melanin G-value is found
to be somewhat higher which could be due to
O-semiquinone free radicals. Bin et al. (2012) also
showed higher G-value of 2.0042 for Auricularia aur-
icula melanin. It has been known that sulphur-con-
taining radicals show high G-value (Bolman et al.
1970); therefore, incorporation of a sulphur-rich scaf-
fold in melanin of T. albuminosus may result in a high
G-value.

TAliphatic amine structural elements are proposed to
arise in 13C NMR spectrum from coupling of dopamine/
quinone structural units which are unique to dopamine
melanins (Della Vecchia et al. 2013; Chatterjee et al.
2014). Tian et al. (2003) reported that carbon-near sul-
phur shows chemical shift at 45–40 ppm and CH2
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carbon–CH2–CH(NH2)–COOH of tyrosine/DOPA can also
be seen around 40–35 ppm in 13C NMR spectrum which
is consistent with our sulphur-containing melanin claim.

Conclusions

The present study successfully established the chemical
identity of the dark pigment as a unique form of fungal
melanin with high sulphur content. The exact structure
of melanin polymers is difficult to elucidate and the
benefit of incorporation of a sulphur scaffold in
Termitomyces melanin needs further exploration as it
may play functionally important roles at crucial and
critical stages in the natural life cycle of Termitomyces
holomorph in protecting the species from injury and
damage.
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