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Abstract

Cancer is considered as one of the most dreadful diseases, accounting for a major

share in the incidence of death at the global level and the number of cancer cases are

burgeoning at an alarming rate. The transformation in cancer triggering or cancer

quashing genes leads to cancer. An accurate screening of the cancer subtype helps

in administering the appropriate therapy and speedy recovery, ensuing considerable

increase in the survival rate of cancer patients. Customary procedures for cancer

screening are predominantly influenced by the skill of the oncologist which at best is

subjective. Moreover, cancer screening using biomarkers fails occasionally. Therefore,

it is necessary to develop a method to improve the accuracy of cancer classification

using small number of genes. Microarray technology facilitates the simultaneous

examination of all types of gene mutations in human body for disease identification.

Further, it automizes the process of disease identification. One of the important

utilization of Microarray technology is cancer recognition.

Main objective of this research work is to design an efficient system for microarray

gene expression based cancer classification with optimum number of genes, partic-

ularly at higher malignancy levels at which genes of various cancer classes are less

distinctly expressed. The gene expression data is obtained as a result of microar-

ray experiment, image processing and quantification process. In the proposed work,

the classification of Grade III and Grade IV Glioma is implemented using GDS1975,

GDS1976, GDS1815 and GDS1816 microarray datasets. The dimension reduction

of these Glioma datasets is accomplished by using feature selection method followed

by feature extraction method. Three different gene selection methods applied are

Thresholding method, Ratio method and Fusion of Thresholding and Ratio method.
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Thresholding method is used to select the genes with consistent intensity variation

within the chosen values of threshold. Ratio method is used to choose the genes with

small values of maximum to minimum gene intensity ratio which are more appropri-

ate for classification. The Fusion of Thresholding and Ratio method helps to select

the genes with diminished ratio within the best performing threshold range. The

Fusion of Thresholding and Ratio method provides smaller and more suitable gene

subset for cancer classification as compared to Thresholding and Ratio method ap-

plied individually. The features of the data obtained by feature selection method are

extracted with the help of Discrete Wavelet Transform (DWT). The performance of

Thresholding method, Ratio method and Fusion of Thresholding and Ratio method

in combination with DWT based feature extraction is compared with the help of

various classification algorithms namely, Resilient Back Propagation (RPROP), Lev-

enberg Marquardt (LM), Conjugate Gradient and Stacked Autoencoder (SAEN).

The proposed system outperforms the existing techniques used for classification of

Glioma datasets giving 100% classification accuracy with only five genes. Moreover,

mutations in the obtained optimal gene subset is found to be directly or indirectly

linked with the occurrence of Glioma. Further, testing of this optimal gene subset

for Brain tumor dataset GDS1962 at various level of malignancies delivers 100%

classification accuracy.

ii
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Chapter 1

Introduction

Based on the data published by World Health Organization, cancer is the second

leading reason of death universally. In 2015, about 8.8 million deaths were caused

by cancer. Further, in next two decades, about 70% increase is anticipated in cancer

cases [1].

Therefore it is of utmost importance to improve the techniques to avert, detect and

treat cancer. There are about trillions of cells in a human body viz., skin cells, nerve

cells etc. A gene is an orderly arrangement of nucleotides (Adenine (A), Thymine

(T), Guanine (G) and Cytosine (C)) inside the nucleus of the cell. Genes control the

lifecycle of cells via division, growth and death of the cells. Moreover, it provides the

direction for the cells to generate proteins that are essential for proper functioning of

the human body. For example, red blood cells produce hemoglobin required to carry

oxygen from lungs to other body parts and carbon dioxide from other body parts

to lungs while, skin cells like Melanocytes produce melanin that gives a color to the

skin. Due to various reasons when the genes start mutating, the life cycle of cells

gets disturbed. The mutations in the gene may be germinal (hereditary) or somatic

(acquired). The germinal mutations are passed from generations to generations while,

somatic mutations are due to life style habits such as smoking, diet, excessive exposure

to the radiations, carcinogenic materials, obesity etc. Genetic mutations lead to
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uncontrolled growth of cells which, in turn, affect the amount of the protein produced

by the cells and causes cancer. In other words, cancer develops when certain genes

(cancer causing or cancer suppressing) in the human body start mutating. Because

of its awful impact on human being, it has become one of life′s major threats [2].

There are number of types of cancer such as Brain cancer, Breast cancer, Lung

cancer etc. and every cancer has number of sub-types. As an example the Brain

tumor sub-types are shown in the Figure 1.1

Figure 1.1: Sub-types of Brain tumor

The cancerous and non-cancerous samples of Brain tumor have gene intensities

wide apart from each other, making it easy to differentiate between them.

Figure 1.2 demonstrates the variations in average intensity of 30 genes for Malig-

nant and Benign Brain tumors [3].
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Figure 1.2: Variation in average intensity of 30 genes for Malignant and Benign Brain tumor.

However, with increase in the level of malignancy, genes become less differentially

expressed, making the classification an uphill battle. Grade III and grade IV Glioma

Brain tumors are the sub-types of the Brain tumor at higher malignancy level. Con-

sequently, it is a real challenge to singularize them. Figure 1.3 presents the variation

in average intensity of 30 genes for Glioma Grade III and Grade IV samples [4].

Figure 1.3: Variation in average intensity of 30 genes for Glioma Grade III and Grade IV samples.
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Correct recognition of the sub-type of a cancer is crucial in determining the prog-

nosis and planning of the treatment. The survival rate of the cancer patients can be

enhanced by precise diagnosis of cancer sub-type. Therefore cancer classification has

become one of the most important research areas in the biomedical field. However,

conventional techniques of cancer diagnosis depend largely on the experience and skill

of the physician. Genetic mutations being the basis of occurrence of a disease, detec-

tion of a disease can be efficiently accomplished by monitoring genetic mutations. To

facilitate the monitoring of large number of genes (about 25,000) in a human body

at once, microarray technology is most efficient technique.

1.1 Microarray technology

Introduction of Microarray technology in 1990 has rendered it possible to assess and

analyze the variations in expression levels of entire genome in a single experiment. It

caters varieties of applications in bio-medical field like gene discovery, disease diag-

nosis, drug discovery, human identification etc. Cancer prediction and recognition is

one of the most important applications of Microarray technology. It automizes the

process of cancer identification and assists in accurate cancer diagnosis [5], [6].

Microarray technology has four major steps:

1. Chip fabrication

2. Experiment

3. Image processing

4. Data analysis

The block diagram of Microarray technology is shown in the Figure 1.4.
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Figure 1.4: Block diagram of Microarray technology

The various steps in the Microarray technology are explained below.

1.1.1 Chip fabrication

Microarray technology makes use of a chip that may be either Glass Deoxynucleic

Acid (DNA) microarray or Oligonucleotide microarray. These microarrays differ from

each other with respect to the length of fragments of DNA to be attached to the chip,

the way in which the DNA fragments are to be printed onto the microarray chip and

the format of image to be generated. The fabrication of Glass DNA microarray and

Oligonucleotide microarray is explained below:

Glass DNA microarray

Glass DNA microarrays were first fabricated at Stanford University by Patrick Brown

and his teammates in 1990. Glass DNA microarrays normally use the glass slide with
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some specific characteristics like best mechanical stability, good resistance against

solvents etc. The steps in the fabrication of Glass DNA microarray are described

below:

1. The required genes are collected from the public repositories, public databases

or from corresponding institutions.

2. The glass base is coated with non-florescent material for proper attachment of

the DNA fragments obtained from the genes onto the glass slide.

3. DNA fragments are purified, amplified and finally attached onto the glass slide

in an orderly pattern.

4. The attachment of the DNAs is carried out with the help of inkjet, robotic or

contact printing.

5. Finally, for a proper binding of DNA fragments the microarray chip is cooled

at room temperature and exposed to ultraviolet light to reduce the effect of the

background intensity on the microarray data.

Alternatively, complementary DNA (cDNA) or Polymerase Chain Reaction (PCR)

product can also be used instead of DNA fragments. A typical Glass DNA Microarray

contains 10,000 to 20,000 DNA strands in an area of 3.6 cm2 with the length of the

DNA being about 17-25 mers (orderly arrangement of nucleotides). The typical spot

size for Glass DNA microarray is 10 µm. The fabrication of Glass DNA microarrays

does not require any specialized equipment. They are cheaper and offer greater

detection sensitivity. However, it requires more manpower for synthesis, purification

and storage of DNA solutions prior to chip fabrication [5], [6], [7], [8].

Figure 1.5 demonstrates the fabrication of Glass DNA microarray and a typical

Glass DNA microarray chip is presented in the Figure 1.6.
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Figure 1.5: Fabrication of Glass DNA microarray.

Figure 1.6: Glass DNA microarray.
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In Situ Oligonucleotide DNA microarray

In Situ Oligonucleotide microarrays were first fabricated by Stephen Fodor and team-

mates in 1991. First the strands of DNA are chemically synthesized and subsequently

the nucleotides (A, C, G and T) of the corresponding DNA strand are attached one

by one to the chip using photolithography process. As an example, one of the step

of fabrication assuming the requirement of Thymine in the first position for some of

the spots on the quartz crystal is explained below [5], [6], [7], [8].

1. For attachment of Thymine, the spot positions that require Thymine nucleotide

in the first position are identified.

2. The spot position that does not require Thymine nucleotide in the first position

are protected with the help of mask.

3. The solution that contains Thymine nucleotide is poured on the quartz chip.

4. The quartz crystal is washed in order to remove the residuals.

5. Above procedure is repeated until synthesis of complete DNA strand.

Oligonucleotide DNA microarray typically contains about 50,000 DNA strands in

an area of 1.28 cm2 with the length of DNA strands being about 25 mers. In Situ

Oligonucleotide microarrays offer more fabrication speed and increased reproducibil-

ity as compared to Glass DNA microarrays. However, the requirement of specialized

and costly equipment for hybridization, label staining, washing and quantization

processes, makes the In Situ Oligonucleotide microarrays expensive. Further, it has

decreased detection sensitivity [5], [6].

The fabrication process of In Situ DNA microarray and In Situ DNA microarray

chip are respectively presented in Figure 1.7 and Figure 1.8 [9].
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Figure 1.7: Fabrication of In Situ Oligonucleotide microarray.
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Figure 1.8: In Situ Oligonucleotide microarray

A typical microarray chip is presented in Figure 1.9.

Figure 1.9: Microarray chip
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Microarray chip consists of thousands of spots on it, with each spot corresponding

to one gene and comprises of multiple copies of the DNA strands of the particular

gene.

Some of the commercial microarray chip manufacturers are Affermetrix, Applied

Biosystems, Agilent Technologies, Illumina, Arrayjet etc.

1.1.2 Experiment

The microarray experiment [2] involves the following steps:

1. The Messenger Ribonucleic Acid (mRNA) are extracted from the cancerous cell

and the normal cell.

2. The mRNA are amplified and transformed into cDNA with the help of reverse

transcriptase enzyme.

3. The obtained cDNA of cancerous and noncancerous cells are labelled with dif-

ferent color dyes which is normally fluorescent dyes. Usually cancerous sample is

labelled with red color while, non-cancerous sample is labelled with green color.

4. These dyes are allowed to hybridize onto microarray chip. In the process of

hybridization, the single strands of cDNA from the dyes get attached to its

complementary target cDNA.

5. The microarray chip is washed to remove the un-hybridized cDNA.

6. After incubation the microarray chip is scanned with laser (green and red color)

at appropriate wavelength.

7. The microarray image in .tiff form is obtained by detection of emitted spectra

from microarray image and used for further processing.

The diagrammatic view of a typical microarray experiment is demonstrated in

Figure 1.10
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Figure 1.10: Microarray experiment.

Microarray image contains green, red, yellow and grey colored spots [2]. An ideal

microarray image generated as a result of microarray experiment is shown in Figure

1.11.
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Figure 1.11: Ideal microarray image

The significance of color of the spot (gene) in the generated microarray image is

given below:

1. Yellow- The gene is expressed similarly in non-cancerous and cancerous samples.

2. Red- The gene is expressed more (down regulated) in cancerous samples.

3. Green - The gene is expressed more (upregulated) in non-cancerous samples.

4. Grey - The gene is neither expressed in non-cancerous nor in cancerous samples.

1.1.3 Image processing

During the course of microarray experiment a number of errors are introduced in

the microarray image. As a result, microarray image gets corrupted with variety of

noises. These noises appear in the microarray image during process of chip fabrica-

tion, treatment of the glass slide, amplification of mRNA, scanning, detection and

digitization of microarray chip [10], [11]. The practical microarray image also con-

tains misaligned, irregularly shaped spots. Moreover, the spot intensity is affected by

the back ground intensity. The practical microarray image is shown in Figure 1.12.
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Figure 1.12: Practical microarray image

Hence it is required to process the practical microarray image to obtain insightful

results for cancer classification. The microarray image processing comprises of de-

noising, gridding, segmentation and quantification [12], [13], [14]. The block diagram

for microarray image processing is presented in Figure 1.13.

Figure 1.13: Block diagram for microarray image processing.
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The proper alignment and detection of the spots on the microarray image is

achieved by using gridding and with the help of segmentation the spots are sep-

arated from the background. In the process of quantification, either the median of

spot intensities or logarithmically transformed ratio of red intensity to green intensity

is assigned to the particular spot of corresponding gene.

1.1.4 Data analysis

Microarray gene expression data gets generated as a result of microarray image pro-

cessing. Microarray gene expression data consists of few high dimensional samples.

It includes a matrix of the data, in which, each column of data represents one sample

and each row represents intensity of the spot corresponding to a specific gene [5], [6].

Figure 1.14 shows microarray gene expression data.

Figure 1.14: Microarray gene expression data.
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The gene expression data can be analyzed as per requirement of the application.

Usually, for cancer classification, the high dimension of microarray data is reduced

using feature selection and (or) feature extraction methods and subsequently used

for classification.

1.2 Organization of the thesis

The organization of the remaining part of the thesis is mentioned below,

Chapter 2

Literature review and scope of the present work: This chapter comprises of review of

the research papers associated with processing of the gene expression data for cancer

classification. It mainly includes review of the research papers pertaining to feature

selection, feature extraction and classification of gene expression data for cancer clas-

sification. The objectives and overview of implementation of proposed method are

explained towards the end of the chapter.

Chapter 3

Image de-noising: This chapter presents the different sources noise introduced in

microarray image during the experiment. It includes the details of pixel domain (Me-

dian filter) and transform domain (DWT) microarray image de-noising methods. The

results of implementation of Median filter and DWT based de-noising for Hard and

Soft thresholding (Visushrink, Bayesshrink and Normalshrink) are presented towards

the end of chapter.

Chapter 4

Feature selection: In this chapter, a brief overview of filter, wrapper, embedded and

hybrid feature selection methods is presented. Further, it includes the feature selec-

tion methods namely, Thresholding method, Ratio method and Fusion of Threshold-
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ing and ratio method utilized in the proposed work for the implementation of cancer

classification based on microarray gene expression data.

Chapter 5

Feature extraction: This chapter includes the details of feature extraction meth-

ods viz., Principal Component Analysis (PCA), Discrete Cosine Transform (DCT),

Fourier Transform (FT) and Short Time Fourier Transform (STFT). Further, it in-

cludes DWT based feature extraction method utilized in proposed work. The moti-

vation for using DWT based feature extraction and the various ways of selection of

mother wavelet suitable for a particular application are explained towards the end of

chapter.

Chapter 6

Classification Algorithms: This chapter presents the advantages of using Artificial

Neural Network (ANN) for classification of non-linear data. It includes details of

Error Back Propagation Algorithm (EBPA). Further, it includes details of RPROP

algorithm, LM, Conjugate gradient algorithms and SAEN algorithm utilized in the

proposed work. The advantages of SAEN algorithm are demonstrated towards the

end of chapter.

Chapter 7

Result analysis and conclusion: This chapter demonstrates the results of classification

of microarray gene expression based cancer classification for GDS1962 dataset that

comprises of Brain tumor samples at different levels of malignancy. These results

are obtained with and without using feature selection/extraction methods (DCT and

DWT) in combination with classification algorithms namely, RPROP, Conjugate Gra-

dient and LM. It includes the results of classification of Glioma Grade III and Grade

IV implemented utilizing feature selection (Thresholding method, Ratio method and
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hybrid of Thresholding and Ratio method) and DWT based feature extraction com-

bined with RPROP, LM, Conjugate Gradient and SAEN classification algorithms.

Further, the results of testing of optimal gene subset for GDS1962 dataset at every

level of malignancy are demonstrated. The conclusion and the scope of the future

work are presented towards the end of the chapter.
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Chapter 2

Literature Review and Scope of

the Proposed Work

A detailed review of the research papers related to cancer classification using mi-

croarray gene expression data is reported in this chapter.

2.1 Feature selection methods

2.1.1 Filter methods

J. G. Znang and H. W. Deng [15] applied Bayes Error Filter for feature selection

together with K Nearest Neighbor (KNN) and Support Vector Machine (SVM) clas-

sifiers. The proposed method is implemented for Colon cancer (62 samples, 2000

genes and 2 classes), Diffused Large B Cell Lymphoma (DLBCL) (77 samples, 6285

genes and 2 classes), Leukemia (38 samples, 3051 genes and 2 classes), Prostate (102

samples, 6033 genes and 2 classes) and Lymphoma (47 samples, 4026 genes and 2

classes) datasets. The classification accuracy of 90.32% with 12 genes for Colon cancer

and 92.21% with 6 genes for DLBCL datasets is obtained using KNN classifier. Lin-

ear SVM classifier delivers the classification accuracy of 100% for Leukemia dataset

with 2 genes, 96.08% for Prostate dataset with 13 genes and 100% for Lymphoma
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dataset with 3 genes.

Q. Shen, Z. Mei et al. [16] developed an evolutionary method namely, Simulta-

neous Sample Particle Swarm Optimization (SSPSO) for simultaneous selection of

samples and features combined with SVM classifier for Bipolar Disorder (61 samples,

22283 genes and 2 classes), Glioma (85 samples, 22645 genes and 2 classes) and Sar-

coma (54 samples, 22283 genes and 2 classes) datasets. The performance of SSPSO

using 400 top ranked genes selected by t-test is compared with Naive SVM without

feature selection and PSO-SVM using 400 top ranked genes selected by t-test. SSPSO

outperforms Naive SVM and PSO-SVM and attains the classification accuracy of 98%

for Bipolar Disorder (18 genes and 34 samples), 96.34% for Glioma (41 genes and 43

samples) and 99.48% for Sarcoma (22 genes and 31 samples) datasets. This method

is disadvantageous in terms of usage of limited number of samples for classification.

D. Mishra and B. Sahu [17] implemented classification of Leukemia dataset (72

samples, 7129 genes and 2 classes) using Signal to Noise Ratio (SNR) feature selection

method. In the first approach, SNR is applied to the clustered genes and classifica-

tion is implemented for top 5 genes using SVM and KNN classifiers. In the second

approach, SNR is calculated for entire gene set and classification is implemented for

top 20 genes using SVM and KNN classifiers. The usage of K-means and SNR with

SVM as well as KNN algorithm delivers a classification accuracy of 99% for Leukemia

dataset.

B. Chandra and M. Gupta [18] suggested a non-iterative Effective Range based

Feature Selection (ERGS) method in combination with Naive Bayes (NB) and SVM

classifier for Acute Lymphoblastic Leukemia/ Acute Myeloid Leukemia (ALL/AML)

(72 samples, 7192 genes and 2 classes), Colon cancer (62 samples, 2000 genes and

2 classes), Lung cancer (181 samples, 12533 genes and 2 classes), Mixed Lineage

Leukemia (MLL) (102 samples, 12600 genes and 2 classes) and DLBCL (96 samples,

4026 genes and 2 classes) datasets. The performance of ERGS is compared with Re-

lief Feature (ReliefF), Minimum Redundancy Maximum Relevance-F Test Distance
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Multiplicative (MRMR-FDM), MRMR-F Test Similarity Quotient (MRMR-FSQ),

T-Statistics (TS), Information Gain (IG) and Chi Square Statistics method. ERGS

together with NB classifier delivers classification accuracy of 98.61% for ALL dataset,

94.79% for DLBCL, 94.79% for Prostate and 94.44% for MLL dataset. ERGS com-

bined with SVM classifier delivers classification accuracy of 82.26% for Colon cancer

and 98.34% for Lung cancer dataset. These results are obtained using 10 genes se-

lected by ERGS for every dataset.

A. Sharma, S. Imoto et al. [19] implemented Successive Feature Selection (SFS)

method and block reduction for the selection of the genes together with Linear dis-

criminant analysis (LDA), Nearest Centroid, NB and KNN classifiers. This method

is implemented for Small Round Blood Cell Tumor (SRBCT) (83 samples, 2308 genes

and 4 classes), MLL (72 samples, 12582 genes and 3 classes) and Prostate cancer (102

samples, 12600 genes and 2 classes) datasets. The classification accuracy of 100% is

achieved for all three datasets using Nearest Centroid classifier and four genes selected

by SFS method.

M. Mandal and A. Mukhopadhyay [20] proposed a method in which, the maxi-

mum relevant and minimum redundant gene subset is selected using MRMR technique

and its performance is compared with Mutual Information Quotient and Mutual In-

formation Difference methods for Prostate cancer (102 samples, 12533 genes and 2

classes), Childhood ALL (110 samples, 8280 genes and 2 classes), Ovarian cancer (253

samples, 15154 genes and 2 classes) and ALL/AML (72 samples, 7192 genes and 2

classes) datasets. The classification accuracy of 96% for Prostate cancer, 88% Child-

hood ALL, 99.8% for Ovarian cancer and 100% for ALL/AML datasets is obtained

using 100 genes for every dataset.

M. Hajiloo, B. Damavandi et al. [21] implemented the Breast cancer (696 sam-

ples) classification using EIGENSTRAT population stratification correction method

followed by mean difference feature selection and KNN classifier and classification

accuracy of 60.25% is obtained for Breast cancer dataset.
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J. C. Rajapakse and P. A. Mundra [22] presented F-score and Kruskal Wallis

(KW) - score to select the features and Pareto Font Analysis (PFA) to evaluate the

selected gene subsets. The technique is implemented for Global Cancer Map (GCM)

(198 samples, 14122 genes and 14 classes), MLL (72 samples, 10930 genes and 3

classes), Ross National Cancer Institute (NCI) (58 samples, 5643 genes and 8 classes),

Staunton NCI (58 samples, 3144 genes and 8 classes), Lung cancer (203 samples, 5345

genes and 5 classes) and 11 Tumor (174 samples, 9700 genes and 11 classes) datasets.

The performance of F-Score, F-PFA, KW Score, KW-PFA and Gene Dominant and

Gene Dormant Indices (GDI) is compared for the cancer datasets. A classification

accuracy of 70.80% for Ross NCI (386 genes) dataset is obtained using F-PFA. KW-

PFA delivers classification accuracy of 76.65 % for GCM (327 genes) dataset. GDI

delivers 99.65% for MLL (30 genes) dataset. KW-Score delivers 93.73% (397 genes)

for 11 Tumor and 95.59% (189 genes) for Lung cancer dataset.

Heba Abusamra [23] presented eight feature selection method such as IG, Twoing

rule (TR), Sum Minority (SM), Max Minority (MM), Gini Index (GI), Sum Variances

(SV), TS and one dimensional SVM along with KNN, SVM and Random Forest (RF)

classifiers for Glioma datasets (85 samples, 22283 genes and 2 classes) generated by

Freije and Phillip. Without feature selection SVM performed better giving 91.89%

and 86.73 % classification accuracy for Phillip and Freije datasets, respectively. With

20 genes selected using SM, GI, IG and TS gene selection methods, SVM classifier

performed best with 91.89% and 88.77% , respectively, for Phillip and Freije datasets.

As a result of usage of 20 most frequently appearing genes from all eight feature

selection methods, classification accuracy of 94.59% and 84.69 % is obtained for

Phillip (linear SVM, radial SVM, sigmoidal SVM and KNN) and Freije datasets

(sigmoidal SVM), respectively. As common genes are not found in shortlisted gene

subsets of both the datasets, the performance is evaluated using both the subsets of

genes and classification accuracy of 94.59% and 90.81% is obtained for Phillip and

Freije datasets, respectively using linear SVM, radial SVM and sigmoidal SVM .
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S. Tarek, R.A. Elwahab et al. [24] implemented ensemble classification for Colon

cancer (62 samples, 2000 genes and 14 classes), Leukemia (72 samples, 3751 genes

and 3 classes) and Breast cancer (78 samples, 22481 genes and 8 classes) datasets.

The feature selection is implemented by using Extreme Value Distribution (EVD)

based gene selection, Backward Elimination Hillbert Schmidt Criterion (BAHSIC)

and Singular Value Decomposition Entropy (SVDE) gene selection while classifica-

tion is implemented using neural network algorithms. A classification accuracy of

72.42% for Colon cancer (5 genes), 72.64% for Leukemia (5 genes) and 62.24% for

Breast cancer (5 genes) datasets is obtained using BHASIC. A classification accuracy

of 89.68% for Colon cancer (49 genes), 98.61% for Leukemia (224 genes) and 100%

for Breast cancer (5727 genes) datasets is obtained using EVD. SVDE based ensem-

ble classifier delivers classification accuracy of 90.47% for Colon cancer (240 genes),

97.36% for Leukemia (187 genes) and 98.28% for Breast cancer (1236 genes) datasets.

W. Zhong, X. Lu et al. [25] proposed a method to perform feature selection us-

ing Bhattacharyya distance and classification using SVM classifier for Colon cancer

(62 samples, 2000 genes and 2 classes) and Leukemia (72 samples, 3571 genes and 2

classes) datasets. For Colon cancer classification accuracy of 90.5% is obtained using

Bhattacharyya distance combined with SVM classifier (7 genes). For Leukemia clas-

sification accuracy of 97.42% is obtained using SVM- Recursive Feature Elimination

(SVM-RFE) (10 genes).

2.1.2 Wrapper methods

L. Yu and M. E. Berens [26] proposed gene selection using Sample Weighing (SW)

for Colon cancer (62 samples, 2000 genes and 2 classes), Leukemia (72 samples,

7129 genes and 2 classes), Lung cancer (181 samples, 12533 genes and 2 classes)

and Prostate cancer (102 samples, 6034 genes and 2 classes) datasets. The perfor-

mance of SVM-RFE, SW-SVM, Ensemble-SVM, ReliefF, Ensemble ReliefF and SW

ReliefF algorithms is compared. SVM-RFE algorithm delivers 80.3% (10 genes) and
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97.2% (100 genes) classification accuracy for Colon cancer and Leukemia datasets,

respectively, while Ensemble ReliefF and SW SVM-RFE algorithm delivers 93.4% (10

genes) classification accuracy for Prostate cancer. SW-ReliefF delivers 98.8% (200

genes) classification accuracy for Lung cancer dataset.

Q. Liu, Z. Zhao et al. [27] suggested the Fuzzy logic based feature methods

such as Feature Selection based on Clustering (FS-Cluster), Feature selection based

on Sample Selection (FS-SSM) along with SVM and KNN classifier for Multiple

Myeloma (105 samples, 7129 genes and 2 classes), Acute Leukemia (72 samples,

7129 genes and 2 classes), Colon cancer (62 samples, 2000 genes and 2 classes),

DLBCL (77 samples, 7129 genes and 2 classes) and Prostate cancer (102 samples,

12600 genes and 2 classes) datasets. For Myeloma dataset the combination of all

suggested feature selection methods together with SVM gives 100% classification

accuracy. For Leukemia and DLBCL datasets the FS-SSM combined with SVM

algorithm delivers 94.6% and 86.1% classification accuracy, respectively. For Colon

and Prostate cancer datasets FS-SSM together with KNN algorithm delivers 84.5%

and 93.3% classification accuracy, respectively.

2.1.3 Embedded methods

S. Niijima and Y. Okuno [28] proposed feature selection based on Laplacian LDA

(LLDA) for Leukemia (38 samples, 7129 genes and 2 classes), Colon cancer (62 sam-

ples, 2000 genes and 2 classes), Medulloblastoma (60 samples, 7129 genes and 2

classes), Breast cancer (76 samples, 4918 genes and 2 classes) , Lung cancer (86 sam-

ples, 7129 genes and 2 classes), MLL(57 samples,12582 genes and 3 classes) and SR-

BCT (63 samples, 2308 genes and 4 classes) datasets. The performance of LLDA-RFE

is compared with Laplacian Score, SVDE and Fisher Score (FS). LLDA-RFE delivers

99.4% (50 genes), 65.9% (20 genes), 67.2% (100 genes) and 96.2% (100 genes) classi-

fication accuracy for Leukemia, Medulloblastoma, Breast cancer and MLL datasets,

respectively. FS delivers 64.9% (100 genes) and 97.4% (100 genes) classification ac-
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curacy for Lung cancer and SRBCT datasets, respectively. SVDE delivers 88.5% (50

genes) classification accuracy for Colon cancer dataset.

S. Maldonado, R. Weber et al. [29] implemented Kernal Penalised SVM (KP-SVM)

for the classification of Diabetes (768 samples, 8 genes and 2 classes), Wisconsin

Breast cancer (569 samples, 30 genes and 2 classes), Colorectal (62 samples, 2000

genes and 2 classes) and Lymphoma (96 samples, 4026 genes and 2 classes) datasets.

For these datasets the performance of KP-SVM is compared with SVM and SVM-

RFE in combination with Fisher Score and Concave feature selection methods. KP-

SVM is proved to be beneficial giving 76.74% (5 genes), 97.55% (15 genes), 96.57%

(20 genes) and 99.73% (8 genes) for Diabetes, Wisconsion Breast, Colorectal and

Lymphoma datasets, respectively.

A. Anaissi, M. Goyal et al. [30] introduced Balanced Iterative RF (BIRF) algo-

rithm for Childhood Leukemia (110 samples, 22678 genes and 3 classes), NCI (61

samples, 5244 genes and 82 classes), Colon cancer (72 samples, 2000 genes and 2

classes) and Lung cancer (181 samples, 12533 genes and 2 classes) datasets. The

performance of BIRF is compared with various methods such as SVM-RFE, RF, NB

classifiers. BIRF is proved to be advantageous in terms of providing classification

accuracy of 96% (19 genes), 97% (57 genes), 99.83% (100 genes) and 99.83 % (112

genes) for Colon cancer, Lung cancer, Leukemia and NCI datasets, respectively.

2.1.4 Hybrid methods

Y. Leung and Y. Hung [31] proposed Multiple Filter and Multiple Wrapper method

(MFMW) for cancer classification. The performance of various feature selection meth-

ods along with various algorithms is compared. This method is implemented for

Leukemia (38 samples, 7129 genes and 2 classes), Breast cancer (49 samples, 6817

genes and 2 classes), Colon cancer (62 samples, 6500 genes and 2 classes), Lymphoma

(77 samples, 6817 genes and 2 classes), Prostate cancer (102 samples, 12600 genes and

2 classes) and Lung cancer (181 samples, 12600 genes and 2 classes) datasets. With
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MFMW model, the maximum classification accuracy obtained is 100%for Leukemia

datasets with IG, C4.5 classifier and 4 genes, 100% for Breast cancer with Mutual

Information and KNN classifier, 100% for Lymphoma with Multi object Evolutionary

algorithm, Weighing Votes and 6 genes, 98.04% for Prostate cancer with TS, SVM

and 6 genes and 98.34% for Lung cancer dataset with Redundancy based Filter, C4.5

Classifier and 6 genes.

C. Lee, Y. Leu [32] suggested combination of Genetic Algorithm with Dynamic

Parameter Setting for feature selection, Chi Square based homogeneity test in com-

bination with SVM classifier. The proposed method is implemented for Colon can-

cer (62 samples, 2000 genes and 2 classes), SRBCT (83 samples, 2308 genes and 4

classes), Breast cancer (22 samples, 3226 genes and 2 classes), ALL/AML (72 sam-

ples, 7129 genes and 2 classes), DLBCL (47 samples, 4026 genes and 2 classes) and

GCM (198 samples, 16306 genes and 14 classes) datasets. With this method clas-

sification accuracy of 100% (8 genes), 100% (8 genes), 100% (5 genes), 100% (6

genes) and 87.04% (26 genes) for Colon cancer, SRBCT, ALL/AML , DLBCL and

GCM datasets, respectively, are obtained.

M. Hajiloo, H. R. Rabiee et al. [33] implemented Fuzzy SVM (FSVM) for clas-

sification of Leukemia (72 samples, 6817 genes and 2 classes), Prostate cancer (102

samples, 12600 genes and 2 classes) and Colon cancer (62 samples, 2000 genes and 2

classes) datasets. The performance of FSVM without feature selection, FSVM with

SVM-RFE, FSVM with SNR and FSVM with SVM-REF is compared. FSVM with

SVM-REF delivers the best performance with classification accuracy of 98.57% (10

genes) and 96.77% (50 genes) for Leukemia and Colon cancer datasets, respectively.

FSVM with SNR delivers 95.18 % (5 genes) classification accuracy for Prostate cancer

dataset.

2.1.5 Ensemble methods

P. Yang, B. B. Zhou et al. [34] developed the Genetic Ensemble System with Multi fil-

ter (MF-GE) for the classification of Leukemia (72 samples, 7129 genes and 2 classes),
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Colon cancer (62 samples, 2000 genes and 2 classes), Liver cancer (157 samples, 20983

genes and 2 classes) and MLL (72 samples, 12582 genes and 3 classes) datasets. The

performance of various feature selection methods like Gain Ratio (GR), Genetic Al-

gorithm (GA)/KNN, GE, MF-GE combined with the classifiers such as C4.5, RF,

3-NN, 7 NN and NB is compared. Combination of MF-GE and NB algorithm results

into classification accuracy of 96.27% and 91.50% for Leukemia and MLL datasets

while, the classification accuracy of 77.01% is obtained for Colon cancer dataset using

combination of MF-MG and 3-NN algorithm. MF-GE together with Majority Voting

delivers 93.80% classification accuracy for Liver cancer dataset.

H. Liu, L. Liu et al. [35] suggested Ensemble Gene Selection by Grouping (EGSG)

method for Breast cancer (97 samples, 24481 genes and 2 classes), CNS cancer (7129

samples, 60 genes and 2 classes), Colon cancer (62 samples, 6000 genes and 2 classes),

Leukemia (72 samples, 7129 genes and 2 classes) and Prostate cancer (102 samples,

12600 genes and 2 classes) datasets. The classification accuracy obtained by EGSG

is compared with classification accuracy obtained by MRMR, Fast Correlation Based

Filter and Ensemble Classification with Random Partitioning in combination with

3-NN and NB classifiers. NB classifier outperforms with classification accuracy of

100% , 100% , 93.55% , 100% and 98.02% for Breast, CNS, Colon, Leukemia and

Prostate cancer datasets with 30 genes.

2.2 Feature extraction methods

S. Li, C. Liao et al. [36] proposed the combination of DWT and SVM for classifi-

cation of Colon (72 samples, 7129 genes and 2 classes) and ALL/AML (62 samples,

2000 genes and 2 classes). The approximation as well as thresholded detailed co-

efficients are used for classification. Thresholding is implemented using Maximum

Modulus method and accuracy obtained by wavelets such as Daubecies (Db1 and

Db8), Coiflets (Coif1 and Coif3), Symlet (Sym2 and Sym15) and Bio-orthogonal

(Bior1.1 and Bior2.6) is compared. For ALL/AML dataset 100% classification is
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achieved using Bior2.6 (level 3) and 100 genes while, for Colon cancer dataset 93.55

% classification accuracy is obtained using Db8 (level 4) and 250 genes.

R. Mahapatra, B. Majhi et al. [37] performed feature extraction using DCT and

PCA while classification using Functional Link Neural Network (FLNN) classifiers

for Lung cancer ( 197 samples, 581 genes and 2 classes) and Breast cancer datasets

( 981 samples,1213 genes and 2 classes). The FLNN classifier with Chebyshev Ex-

pansion delivers better accuracy for both the datasets. Using PCA, the classification

accuracy of 83 % (24 genes) is obtained for Breast cancer and Usage of DCT gives

the classification accuracy of 90% (187 genes) for Lung cancer dataset.

M. Vimaladevi and B. Kalaavathi [38] implemented classification of SRBCT (83

samples, 2308 genes and 4 classes), Leukemia (124 samples, 7129 genes and 2 classes)

and Lymphoma (98 samples and 4 classes) datasets using hybrid combination of GA

and EBPA algorithm. The performance of this method is compared with Error Back

Propagation Algorithm (EBPA). The hybrid combination of GA and EBPA gives

better performance as compared to EBPA, with classification accuracy of 85.65%

(2 genes) for Lymphoma, 89.33% (3 genes) for Leukemia and 91.7% (4 genes) for

SRBCT datasets.

2.3 Fusion of feature selection and extraction methods

Z. Zainuddin and O. Pauline [39] made use of Improved Wavelet Neural Network

(WNN) together with conditional TS for classification of SRBCT (63 samples, 2308

genes, 4 classes), Leukemia (72 samples, 7129 genes and 2 classes), Glioma (50 sam-

ples, 12625 genes and 2 classes) and CNS (40 samples, 7129 genes and 2 classes)

datasets. The comparison of accuracy obtained using different wavelets such as Mex-

ican hat, Gaussian wavelet, Morlet and number of classifiers is presented. The usage

of WNN results into the classification accuracy of 98.61% ( Gaussian wavelet) for

Leukemia dataset, 95% (Gaussian and Mexican hat) for CNS dataset, 100% (Gaus-

sian, Morlet and Mexican hat) for SRBCT dataset and 92% (Gaussian wavelet) for
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Glioma dataset.

S. Rashid and G. M. Maruf [40] implemented the classification for Ovarian cancer

(225 samples, 15154 genes and 2 classes), ALL/AML (128 samples, 12625 genes and 2

classes) and Pancreatic cancer (181 samples, 6771 genes and 2 classes) datasets using

combination of t-test, Db1 wavelet and SVM classifier. The classification accuracy

of 99.92% (327 genes), 78.26% (59 genes) and 99.84 % (302 genes) is obtained for

Ovarian cancer, Pancreatic cancer and ALL/AML datasets, respectively.

J. Bennet, C.A. Ganaprakasam et al. [41] extracted the features of the genes

chosen by Moving Window followed by TS for wavelet coefficient selection and hybrid

of KNN, NB and SVM classifier. The proposed method is implemented for Breast

cancer (97 samples, 22481 genes and 2 classes), Colon cancer (62 samples, 1909 genes

and 2 classes), Ovarian cancer (253 samples, 15154 genes and 2 classes), CNS cancer

(60 samples, 7129 genes and 2 classes) and Leukemia (72 samples, 7129 genes and

2 classes) datasets. Various wavelets used for analysis are Db7, Sym2, Bior2.2 and

Reverse Bio-orthogonal (Rbio2.2). The classification accuracy achieved with this

method is 100% (512 window size, Db7 wavelet at level 4 and 24 genes) for Breast

cancer, 100% (512 window size, Db7 wavelet at level 1 and 4 genes) for Colon cancer,

100% (64 window size, Sym2, Bior2.2, Rbio2.2 wavelets at level 2 and 237 genes) for

Ovarian cancer, 100% (64 window size, Rbio2.2 wavelet at level 1 and 14 genes) for

CNS cancer and 100% (64 window size, Rbio2.2 wavelet at level 3 and 14 genes) for

Leukemia dataset.

Many a times the cancer marker genes are used for screening of the cancer but

there are evidences of failure of this method [42].

2.4 Scope of the proposed work

Researchers implemented plenteous ways for diminishing the size of the microarray

data, however, there are many open prospects for further improvement in terms of

achieving 100% classification accuracy for less number of genes [43]. Therefore the
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proposed work is implemented with the following research objectives.

2.4.1 Research objectives

1. To improve the accuracy and speed of cancer classification by using various

feature selection, feature extraction techniques and neural network classifiers.

2. To compare performance of various feature selection techniques and arrive at an

efficient method for cancer classification.

3. To compare performance of various classification algorithms namely, RPROP,

Conjugate Gradient, LM, SAEN and suggest the most suitable algorithm for

cancer classification.

2.4.2 Proposed system

To accomplish the research objectives, the proposed system is designed to obtain

100% classification accuracy with optimum number of genes. The Wrapper, Embed-

ded, Hybrid and Ensemble methods are complex and also computationally expensive

as compared to filter methods. Therefore, in the proposed system the selection of

features is implemented using computationally efficient filter methods such as Thresh-

olding method and Ratio method individually as well as conjointly (hybrid method).

The implementation of the feature selection methods is followed by the transfor-

mation of the signal using DWT. The performance of Thresholding method, Ratio

method and fusion of Thresholding and Ratio method along with DWT is compared

for various classification algorithms such as RPROP, LM, Conjugate Gradient and

SAEN. The proposed system is implemented using MATLAB R2017a software.

Databases

In the proposed work, classification is implemented for Glioma Grade III and Grade

IV datasets- GDS1975, GDS1976, GDS1815 and GDS1816 from Gene Expression

Omnibus Database [44], [4], [45]. Originally, Phillip and Freije obtained the datasets
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using Affymetrix Human Genome U133 Array. GDS1975, GDS1976 datasets contain

26 samples of Glioma Grade III and 59 samples of Glioma Grade IV while GDS1815,

GDS1816 contain 24 samples of Glioma Grade III and 76 samples of Glioma Grade

IV. Every dataset contains 22283 features. From every dataset 70% samples are used

for training and 15% are used for testing and validation each.

System flow chart

Before using the datasets the duplicate features are eliminated by averaging and the

data is normalized to have zero mean and unit standard deviation. Figure 2.1 shows

the system flow chart for individual Glioma dataset.

Figure 2.1: System flow chart.
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Finally, to derive the identical gene subset across Glioma datasets, considering

optimal gene subsets, the genes common to all Glioma datasets are mined. The clas-

sification of Grade III and Grade IV Glioma is implemented using obtained common

gene subset. The performance of this common gene subset is tested for Brain tumor

dataset GDS1962 at various malignancy levels.

32



Chapter 3

Image De-Noising

Practical microarray image is degraded due to various noises viz., sample preparation

noise, scanning noise and hybridization noise. De-noising of the microarray image is

one of the major steps to attain accurate gene expression data. Various types of noises

present in the practical microarray image are described in the following section.

3.1 Types of the noises in microarray image

1. Sample preparation noise

The sample preparation noise appears in the microarray image due to amplifi-

cation of mRNA in the process of conversion of mRNA to cDNA and chemical

processes employed during the course of sample preparation.

2. Scanning noise

Noise during scanning comes into picture as a result of photon noise, electron

noise in the equipment involved in the scanning. Further, it may also appear

due to laser light leakage, dust particles, laser light reflection, quantization in

the digitization process etc.

3. Hybridization noise

Hybridization noise in the microarray image is due to variation in binding of the
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target molecules and cross hybridization.

Usually, the hybridization noise is more significant as compared to sample prepa-

ration and scanning noise [11],[46],[47], [48].

The diagrammatic representation of the noises introduced in the microarray image

during the microarray experiment is presented in Figure 3.1.

Figure 3.1: Types of noises introduced in the microarray image during microarray experiment.

3.2 Methods of noise reduction

Microarray image de-noising is usually accomplished by,

1. Precise adjustment of the fluorescent machine, fabrication machine and stan-
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dardization of the experimental conditions.

2. Design of an appropriate filter.

Improvement in the experimental conditions diminishes the noise in the microar-

ray image to some extent. Therefore, the most effective way to reduce the noise is

by designing appropriate filter such as pixel/spatial domain filter [49], [50], [51] or

transform domain filters [36], [52], [53].

The block diagram for microarray image de-noising is shown in the Figure 3.2

Figure 3.2: Block diagram for microarray image de-noising

The steps in the microarray image de-noising are described below:

3.2.1 Generation of microarray reference image

To measure the effectiveness of the designed filter, it is essential to generate the

reference microarray image with the help of microarray image simulators available on

the internet.
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3.2.2 Addition of the noise

The hybridization noise at higher intensity of the spots and sample preparation noise

in the image appears to be closer to a Poisson noise while the hybridization noise

that appears at low intensity is complex in nature [1]. According to Central Limit

Theorem Gaussian noise is more appropriate model for representation of overall noise

in the image. Therefore Gaussian noise (with zero mean and known variance) and

Poisson′s noise are introduced in the microarray image [54].

3.2.3 Application of pixel domain or transform domain filter

Pixel and transform domain filters are most widely used for microarray image de-

noising explained in the following sections.

Pixel domain filter

To de-noise the microarray image using pixel domain filter, the filter template is made

to move over the image from point to point. The central pixel of the mask is altered

in number of ways for different filters.

Median filter is a non-linear pixel domain filter. In this case, the pixels in the filter

template of an image portion are arranged based on some ranking method [54]. Me-

dian filter performs better for salt and pepper noise [54]. The steps in implementation

of microarray image de-noising using Median filter are described below:

1. The Median filter mask is placed at the first location of the microarray image.

2. The pixels of an image of corresponding mask are arranged in an increasing

order.

3. The median of these pixel values is computed.

4. The central pixel is replaced with the median of the pixel values in the image

part.
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5. The mask moved from pixel to pixel.

6. The above mentioned procedure is repeated for each pixel in the image.

Transform domain filter

Wavelet transform is one of the most extensively recognized transform domain filter

for image de-noising. DWT is an indispensable tool for image de-noising due to its

ability to provide multiresolution analysis, ease of selection of necessary wavelet basis

function and higher energy compaction [55], [56]. The block diagram of DWT based

image de-noising is demonstrated in the Figure 3.3

Figure 3.3: Block diagram of DWT based image de-noising

Image decomposition Image decomposition, deconstructs the noisy image to level

N using DWT. It is accomplished by application of DWT using two separate single

dimensional transforms [56]. The major steps in the image decomposition using DWT

are listed below:

1. Initially, low pass filter (LPF) and high pass filter (HPF) are applied to an
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image along the x-dimension of an image. To get rid of the redundant wavelet

coefficients, the resultant coefficients are down sampled by a factor of two (DS2).

The coefficients of low pass filtered image are stored on the left half section of

an image matrix while the coefficients of the high pass filtered image are stored

on the right half section of an image matrix.

2. Subsequently, LPF and HPF is applied to an image obtained in step1 along

the y-dimension of an image. The resultant coefficients are down sampled by

a factor of two. Finally, image is divided into four bands LL1, HL1, LH1 and

HH1 at the end of first level of decomposition.

Figure 3.4 and Figure 3.5 demonstrates the process of microarray image decom-

position at level 1.

Figure 3.4: Process of applying dwt to an image

In the image,

LL1- signifies wavelet approximation coefficients at decomposition level 1

LH1- signifies wavelet detailed vertical coefficients at decomposition level 1

HL1- signifies wavelet detailed horizontal coefficients at decomposition level 1

HH1 signifies wavelet detailed diagonal coefficients at decomposition level 1.

38



Figure 3.5: Application of wavelet transform to an image

Usually, the wavelet approximation (LPF) coefficients constitute the information

signal while the detailed (HPF) coefficients constitute noise and edges in an image

[55], [56], [57].

Thresholding Thresholding of the detailed wavelet coefficients helps to separate the

edges in the microarray image from the noise so as to diminish the noise in the

microarray image while retaining the edges. The different methods of thresholding

namely, Hard thresholding and Soft thresholding are described below.

In the case of Hard thresholding, the wavelet coefficients smaller than threshold

(thd) are made zero while, the coefficients larger than threshold are retained using

Equation 3.1,

M =

wd, if |wd| ≥ thd

0, otherwise.
(3.1)

Where,
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M = thresholded wavelet detailed coefficients,

wd = wavelet detailed coefficients before thresholding.

In the case of Soft thresholding, the wavelet coefficients less than threshold are

made zero and coefficients larger than threshold are altered using Equation 3.2

M = sgn(wd) max(0, (|wd| − thd)) (3.2)

The digramatic representation of Hard and Soft thresholding is demonstrated in Fig-

ure 3.6

Figure 3.6: Hard and Soft thresholding

Some of the measures of the threshold value for Hard or Soft thresholding are

given below, [55], [56], [57]:

1. Visushrink: For Visushrink the ‘thd’ is defined using Equation 3.3,

thd = σ
√

2log(me) (3.3)

where,

σ = standard deviation of noise in an image
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= median (abs(detailed coefficients))/0.6745

m× e = number of image pixels.

Visushrink decides the threshold based on the number of image pixels and leads

to smooth image. However, it does not consider the intensity of image pixels

while choosing the threshold.

2. Bayesshrink: For Bayesshrink ‘thd’ is defined using Equation 3.4,

thd = σ2/(σx
2) (3.4)

where,

σx
2 = reference image intensity variance = max((σ2

y − σ2), 0)

σy
2 = noisy image intensity variance = (1/2)

∑
(horizontal coefficients)2

For Small value of σ/σx (signal being stronger than the noise signal) it is required

to select small value of thd/σ and vice-versa.

3. Normalshrink: It is a level based thresholding method. For Normalshrink ‘thd’

is defined using Equation 3.5,

thd = β(σ2/σy) (3.5)

where,

β = scale parameter for thresholding = (log(jk/l))
0.5

jk = number of wavelet coefficients

l = wavelet decomposition level.

Image reconstruction The de-noised microarray image is reconstructed by up sam-

pling (UP2) the approximate and thresholded detailed wavelet coefficients followed

by filtering using reconstruction filters (LFP−1 and HPF−1 ) as shown in Figure 3.7.
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Figure 3.7: Image reconstruction

3.3 Quality assessment of de-noised image

The quality of de-noised image is assessed with the parameters like Mean Square

Error (MSE) and Peak Signal to Noise Ratio (PSNR).

1. Mean Square Error: It denotes the error between reference microarray image

and noisy image. It is defined using Equation 3.6,

MSE =
e∑

j=1

m∑
i=1

(I(i, j)−K(i, j)) (3.6)

where,

K(i, j) = De-noised microarray image of size (m, e)

I(i, j) = Reference microarray image of size (m, e).

Lower the value of MSE, better will be the quality of de-noised image. Ideally

MSE is expected to be zero.

2. Peak Signal to Noise Ratio: The PSNR of de-noised microarray image is given
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using Equation 3.7,

PSNR = 10log10

(
(max(I))2

MSE

)
(3.7)

where,

max(I) = maximum intensity in the image matrix = 65,535 (16 bit image).

PSNR is usually expressed in decibels. Higher the value of PSNR, better will be

the quality of de-noised image.

3.4 Results of microarray image de-noising

Microarray image generated using Microarray Scan Simulator [58] is presented in the

Figure 3.8

Figure 3.8: Simulated microarray image

The microarray image de-noising is implemented using Image Processing and

Wavelet Toolbox of Matlab2017a. Image de-noising is applied individually for the

red and green plane of microarray image and upon completion of de-noising process,

the image is reformed using de-noised red and green plane of an image.
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Figure 3.9 demonstrates the red plane and green plane of the reference image

before and after addition of noise.

Figure 3.9: Reference and noisy microarray image
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The microarray image obtained as a result de-noising using Median filter, wavelet

Hard thresholding and Soft thresholding is presented in Figure 3.10.

Figure 3.10: Result of microarray image de-noising
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The SNR and PSNR (in decibels) values for de-noised microarray image using

Median filter are presented in Table 3.1.

Table 3.1: Result of Median filtering

Sr. No. Variance
Median filter

MSE PSNR

1 0.5 41.5635 31.9438

2 2.5 42.9435 31.8026

3 3.5 44.4479 31.6529

4 5 47.7892 31.3377

5 25 166.5944 25.9151

6 35 266.9120 23.8673

SNR and PSNR (in decibels) values for de-noised microarray image Hard thresh-

olding are presented in Table 3.2.

Table 3.2: Result of Hard thresholding

Sr. No. Variance
Visushrink Bayesshrink Normalshrink

MSE PSNR MSE PSNR MSE PSNR

1 0.5 36.9526 32.4548 26.6915 33.8672 26.0688 33.9715

2 2.5 41.8776 31.9110 32.0815 33.0745 31.4003 33.1615

3 3.5 45.8200 31.5206 37.4338 32.3989 36.1042 32.5559

4 5 54.8082 30.7423 46.6837 31.4411 45.3549 31.5653

5 25 273.024 23.7688 443.944 21.6577 380.170 22.3314

6 35 448.583 21.6125 806.824 19.0637 666.683 19.8902

Table 3.3 demonstrates SNR and PSNR (in decibels) values obtained for microar-

ray image de-noising using Soft thresholding and the best of the SNR and PSNR (in
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decibels) values obtained as a result of microarray image de-noising are presented in

Table 3.4.

Table 3.3: Result of Soft thresholding

Sr. No. Variance
Visushrink Bayesshrink Normalshrink

MSE PSNR MSE PSNR MSE PSNR

1 0.5 62.7249 30.2864 42.2523 32.2240 39.8600 32.3879

2 2.5 67.8803 29.9108 45.4607 31.7384 42.7701 32.0483

3 3.5 71.9939 29.6445 50.3006 31.2591 46.3786 31.6687

4 5 81.1672 29.1023 59.5512 30.4623 53.1157 30.9866

5 25 272.291 23.7823 406.157 22.0485 276.554 23.7169

6 35 421.735 21.8804 717.674 19.5780 463.101 21.4931

Table 3.4: Best of the result of microarray image de-noising

Sr. No Variance Filter MSE PSNR

1 0.5 Hard thresholding, Normalshrink, level1 26.0688 33.9715

2 2.5 Hard thresholding, Normalshrink, level1 31.4003 33.1615

3 3.5 Hard thresholding, Normalshrink, level1 36.1042 33.5559

4 5 Hard thresholding, Normalshrink, level1 45.3549 31.5653

5 25 Median filter 166.594 25.9151

6 35 Median filter 266.912 23.8673

In the case of image de-noising, the Soft thresholding tends to give smooth im-

age while Hard thresholding preserves the edges in the image. On account of large

number of edges in the microarray image, Hard thresholding (Normalshrink) outper-

forms Soft thresholding and Median filter for lower noise variance. At higher noise

variance Gaussian noise appears like a salt and pepper noise. As a result, Median

filter outperforms Hard and Soft thresholding.
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Further, Stationary Wavelet Transform, Complex Wavelet transform can be used

for image de-noising to obtain better performance than DWT based image de-noising.

Most of the techniques involved in Microarray technology namely, image gridding,

image de-noising, image segmentation and gene expression data processing being inde-

pendent research topics, the further part of this thesis is dedicated to gene expression

data processing.
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Chapter 4

Feature Selection

The microarray gene expression data usually comprises of considerably small number

of samples (approximately 100 to 200) involving multitude of gene expressions values

(approximately 50,000 to 60,000) [59]. However, many genes involved in gene expres-

sion data may not be useful in the classification of cancer. Therefore, it is imperative

that the size of microarray data to be reduced before using it for cancer classification

[60], [61]. Feature selection helps in dimension reduction of gene expression data.

In this method, based on certain criteria few informative genes are mined from the

original microarray data.

4.1 Feature selection methods

Different means of feature selection namely, Filter, Wrapper, Embedded, Hybrid and

Ensemble [43], [62] method for labelled, unlabelled or semi-labelled data are explained

in the following sub-topics.

4.1.1 Filter method

In Filter method, every gene is assigned a rank based on the inherent properties

of the gene expression values such as correlation, distance, consistency and IG [61],
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[63]. The subset of informative genes is selected on the basis of the gene rank and

subsequently used for classification as demonstrated in the Figure 4.1.

Figure 4.1: Block diagram for the cancer classification based on the Filter method

The filter methods may be univariate or multivariate [61], [43], [64].

1. Univariate filter method (UF)

Univariate method assigns rank to the individual gene at a time using GR [65],

IG [63], Euclidean Distance [66], Correlation based Feature Selection (CFS) [66],

[67], Pearson Correlation Coefficient [68], TS [69] etc. Parametric UF method is

based on the assumption that input data follows Gaussian or normal distribution.

T-test [70], Gamma and Bayesian [71] are few examples of parametric feature

selection method. Nonparametric UF method is usually applied, when the data

does not follow normal distribution and/or when the number of input samples

are small in number and not equal to the classes of input data. Few examples of

the non-parametric method are Random Permutations [72], Rank Products [73]

and Wilcoxon Rank Sum [74]. While revealing the statistical difference between
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the classes of input data, parametric test is more viable than the non-parametric

test.

UF methods offer higher speed of feature selection but fails to consider the varia-

tion of a particular gene intensity with respect to that of other genes. Moreover,

the obtained gene subset may not be optimum as it does not act together with

classifier [64].

2. Multivariate filter method (MF)

While assigning the rank to the features, MF method considers the intensity

variation of genes with respect to one another. Most popular methods for multi-

variate feature selection are MRMR [63], Fast CFS, Markov Blanket Filter [75]

etc.

Due to lack of interaction with the classifier, there is no considerable improve-

ment in gene subset. Since this method involves all the genes in the process of

assignment of gene rank, the computational complexity increases which, in turn

reduces the speed of feature selection [64].

4.1.2 Wrapper method

Wrapper method is an iterative method which, involves the modification of initially

generated gene subset and its performance evaluation till the desired classification ac-

curacy is achieved. Feature subset is generated by using methods such as Sequential

Backward Elimination, Sequential Forward Selection [43] etc. or chosen randomly

using GA [76], Stimulated Annealing [77] etc. This generated gene subset is used for

cancer classification. It is a simple method but tends to get stuck into local mini-

mum during the training. Consideration of the variation of the gene intensities with

respect to one another and the interaction with the classifier, makes the Wrapper

method outperforms the Filter method. However, Wrapper method is computation-

ally more expensive than the Filter method [60], [64]. The block diagram of the
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cancer classification based on the Wrapper method is presented in Figure 4.2.

Figure 4.2: Block diagram for the cancer classification based on the Wrapper method

4.1.3 Embedded method

In this method, the gene selection is embedded within classification algorithm. With

the help of iterative training of algorithm the genes from the initially generated subset

that are useful for classification are retrained. Some of the examples of Embedded

feature selection are SVM-RFE [78], RF [30] algorithms etc. While selecting the

features, Embedded methods consider variation in gene intensities with respect to

one another. However, they are specific to the classifier and many a time tend to

have over-fitting problem [60], [64]. The block diagram of the cancer classification

based on the Embedded method is demonstrated in Figure 4.3
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Figure 4.3: Block diagram of the cancer classification based on the Embedded method

4.1.4 Hybrid method

Hybrid method is the fusion of the feature selection methods. Usually, a reduced gene

subset is obtained using Filter method and subsequently Wrapper method is used to

optimize the obtained gene subset. Finally, cancer classification is implemented using

the obtained gene subset. Few examples of Hybrid feature selection are MFMW [31],

GADP [32] and FSVM [33] It gives better accuracy as compared to Filter method

and reduces computational complexity in comparison with Wrapper method. Further,

Hybrid method is specific to classification algorithm and has less tendency of over-

fitting [43].

4.1.5 Ensemble method

Ensemble feature selection method involves selection and evaluation of various gene

subsets based on certain criteria. Some of the examples of Ensemble feature selection

are MF-GE [34] and EGSG [35]. This method has less tendency of over-fitting.

However, it is complex, hard to comprehend and computationally expensive [43],

[35]. Block diagram of cancer classification based on Hybrid and Ensemble gene
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selection method is presented in Figure 4.4 and Figure 4.5, respectively.

Figure 4.4: Block diagram for the cancer classification based on the Hybrid method

Figure 4.5: Block diagram for the cancer classification based on the Ensemble method
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4.2 Feature selection methods in the proposed system.

4.2.1 Thresholding method

Thresholding method is a simple UF method which, confines the search space by

discarding the genes with inconsistent intensity variation within the selected threshold

range across the dataset samples. The flow chart for cancer classification based on

Thresholding method is illustrated in Figure 4.6.

Figure 4.6: Flow chart of cancer classification based on Thresholding method

For the Glioma datasets utilized in the proposed work, the microarray gene ex-

pression data is generated from 16 bit microarray image. Therefore the threshold

ranges considered as per the standard 1-2-5 sequence are 500-1000, 1000-2000, 2000-

5000 and 5000-10000. Since many of the threshold ranges did not include any genes

or very less number of genes, two consecutive threshold ranges are combined to form

the threshold ranges as THD1 (500, 2000), THD2 (2000, 10000) and THD3 (10000,
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100000). The gene intensities below 500 are neglected seeing that they mostly involve

noise. The number of gene subsets obtained are same as that of number of threshold

ranges for cancer dataset.

4.2.2 Ratio method

Ratio method limits the search space by eliminating the genes with inconsistent

intensity variation across the dataset samples. The flow chart for the implementation

of cancer classification based on Ratio method is demonstrated in Figure 7.14.

Figure 4.7: Flow chart of cancer classification based on Ratio method

Number of ratios chosen for Glioma datasets utilized in the proposed work are

ratio <= 4, ratio <= 3.5, ratio <= 3, ratio <= 2.5.

4.2.3 Fusion of Thresholding and Ratio method

The fusion of Threshold and Ratio method is used to pool the advantages of both

the methods. It augments the possibility of obtaining subset of genes with less ratio

56



within the specific range of threshold. The flow chart for the implementation of

cancer classification based on Fusion of Threshold and Ratio method is presented in

Figure 4.8

Figure 4.8: Flow Chart of cancer classification based on Fusion of Thresholding and Ratio method

The best performing threshold range and ratio is the one which gives the classifi-

cation accuracy of 100% using almost all classification algorithms.

57



Chapter 5

Feature Extraction

Feature extraction is used independently or combined with feature selection for di-

minishing the size of gene expression data. In the process of dimension reduction

of the gene expression data, feature extraction transforms it into a different domain,

for example frequency domain [60]. Usage of feature extraction leads to substantial

amount of dimension reduction for microarray data. However, during the process of

feature extraction gene identity is lost.

5.1 Feature extraction methods

Feature extraction methods namely, PCA, DCT, FT, STFT and the proposed DWT

based method are described in the following subsections.

5.1.1 Principal Component Analysis

PCA is a statistical method for diminishing the size of gene expression data [79].

It is an orthogonal transform which, converts the gene expression data to a set of

uncorrelated variables known as principal components. Implementation steps of PCA

are explained below [80], [81]

1. The matrix of gene expression data is organized in such way that rows signify
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the samples and columns signify the variables.

2. The matrix of gene expression data is transformed to have zero mean and unit

standard deviation.

3. Covariance matrix of resultant data is computed.

4. Eigen vectors and values of the covariance matrix are calculated.

5. Eigen vectors and values are reorganized to derive new transformed signal.

Reconstructed gene expression data using inverse PCA may not be same as original

data. Further, the performance of PCA varies depending on the scaling factor [79].

5.1.2 Discrete Cosine Transform

DCT converts a sample of gene expression data into the linear combination of orthog-

onal cosine basis functions. These weighted basis functions represent the frequency

components of a sample of the gene expression data [82]. Subsequently, DCT is ap-

plied to all the samples of gene expression data. DCT is applied to a sample of gene

expression data with length P using Equation 5.1

A(s) = α(s)
P−1∑
b=0

y(b) cos
(π(2b+ 1)s

2P

)
; s = 0, 1, 2, ....P − 1 (5.1)

where,

A(s) = DCT coefficient.

y(b) = gene expression data sample

b = gene number.

and α(s) is defined by Equation 5.2

α(s) =


√

1
P
, if s = 0√

2
P
, otherwise

(5.2)
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For a specific sample, DCT coefficients comprises of DC coefficient (first coeffi-

cients) and AC coefficients organized with increase in frequency [82]. DCT has less

energy compaction ability and it is computationally less expensive as compared to

DWT.

5.1.3 Fourier Transform

FT converts the gene expression data samples into complex exponentials of various

frequencies, one at a time. The FT of a sample of gene expression data is calculated

using Equation 5.3 [83].

Y (f) =

∫ +∞

−∞
y(b) exp(−2jftπ)db (5.3)

where,

Y (f) = FT coefficient of frequency f.

FT gives precise information about the frequency contents of samples of the gene

expression data. However, it does not work well for non-stationary signals (the signals

whose frequency content varies with time) [83].

5.1.4 Short Time Fourier Transform

In order to efficiently deal with non-stationary signals like microarray data, Short

Time Fourier Transform (STFT) is introduced. It separates the individual sample

of gene expression data into small portions and considers the separated portions to

be stationary. It uses the window function with the size same as that of the every

portion of the sample considered [84]. The STFT of a sample of gene expression data

is calculated using Equation 5.4.

Y (τ,W ) =

∫ +∞

−∞
y(b)W (b− τ) exp(−j2pifb)db (5.4)

where,

Y (τ,W ) = STFT coefficient of frequency f

W = window function
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In the case of STFT, the window size is considered finite. As a result the band

of frequencies that exists in the gene expression data samples are known rather than

exact frequencies. Choice of the appropriate window size for a particular application

is critical task which, limits the usage of STFT [84] [85].

5.1.5 Feature extraction method in proposed work-Wavelet Transform

Wavelet Transform works effectively in detection of the characteristics of data such as

break points, disruptions in higher derivatives and self-similarity etc. Hence, in last

few decades Wavelet transform has gained immense importance in the field of signal

and image processing (for compression, de-noising, enhancement etc.). The wavelet

transform efficiently analyzes stationary as well as non- stationary signals [86]. Gene

expression data being non-stationary in nature [87], [88] wavelet transform appears

to be most suitable transform for its analysis. It is a linear transformation method

used to convert the time domain signal to the frequency domain signal. The details

of Continuous Wavelet Transform (CWT) and DWT are explained below.

Continuous Wavelet Transform

The steps in implementation of CWT are given below

1. At a particular scale, a sample of gene expression data is compared with shifted

versions of mother wavelet function and the correlation coefficient between the

signal under consideration and the wavelet function is calculated for every value

of time shift.

2. The above process is repeated for every value of the scale.

3. Step 2 and Step 3 is repeated for all microarray data samples.

It gives number of wavelet coefficients as a frequency domain representation of

samples of gene expression data. The scale parameter is inversely proportional to

frequency. The small value of scale parameter (high frequency) represents the coarse
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information in the signal while, large value of scale parameter (low frequency) repre-

sents the detailed information of the signal. Since CWT is calculated with continuous

variation in values of shifting and scaling parameter, the large number of CWT co-

efficients are generated. The CWT output is redundant in nature [86]. Further, it is

computationally expensive.

The CWT of a sample of gene expression data is calculated using Equation 5.5.

Y (sc, si) =

(
1

| sc |

) 1
2 ∫ +∞

−∞
y(b)ψ

(b− si
sc

)
db (5.5)

where,

Y (sc, si) = CWT coefficient

ψ
(

b−si
sc

)
= mother wavelet

sc = wavelet scale parameter

si = wavelet time shift parameter.

Discrete Wavelet Transform

In the case of DWT, non-redundant output is obtained with the use of scaling pa-

rameter and the shifting parameter that is varied by the factor of two (2, 4, 6 etc.)

[89]. To facilitate the same, DWT has a set of functions known as scaling (LPF)

and wavelet function (HPF). According to Mallat′s algorithm, to compute DWT of a

sample of the gene expression data, it is successively passed through HPF and LPF.

Every time the sample is passed through the filters, approximate and detailed co-

efficients are generated. In order to diminish the redundancy, the resultant wavelet

coefficients are down sampled by two (DS2) [55].This process is repeated for all the

samples of gene expression data.

The approximate and detailed coefficients of a sample of gene expression data are

given by Equation 5.6 and Equation 5.7 [56]

ql(si) =
2si+N−1∑
m−2si

r(m− 2si)ql+1(m) (5.6)
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pl(si) =
2si+N−1∑
m−2si

s(m− 2si)pl+1(m) (5.7)

where,

s(n) = impulse response of HPF

r(n) = impulse response of LPF

N = number of wavelet coefficients.

The process of application of DWT to a sample of gene expression data is demon-

strated in the Figure 5.1 .

Figure 5.1: DWT process.

The down sampled approximate and/or detailed coefficients are used for cancer

classification. Due to its ability of providing multiresolution analysis and localized

time-frequency information wavelet transform outperforms the other transforms. Also

wavelet transform provides higher energy compaction as compared to other trans-

forms. Varieties of mother wavelets such as Haar, Daubechies, Symlets, Coiflets,

Bio-orthogonal, Meyer, Mexican Hat etc. are available [56]. The mother wavelets are

different from each other with respect to characteristics such as regularity, symmetry,

number of vanishing moments etc [56]. The varieties of available mother wavelet

allows the researcher to compare their results using number of wavelets and in turn

to choose the mother wavelet suitable for a particular application. There is no one

common mother wavelet that is suitable for every applications [90]. The optimal
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mother wavelet function suitable for a particular application depends on the nature

of variation of the input data under consideration.

To determine such a wavelet, it is necessary to consider one of the following pa-

rameter [90].

1. Properties of mother wavelet

2. Degree of matching of the mother wavelet with the signal under consideration

3. Cross correlation between approximate wavelet coefficients and signal under con-

sideration

4. In the case of classifier, classification accuracy

5. MSE

Of all the parameters, degree of matching between mother wavelet and signal under

consideration and MSE are the most commonly used measures for the selection of

the optimal wavelet [90], [91], [92], [93], [94].

In the proposed work, the wavelets used for the feature extraction of gene expres-

sion data are namely, Db2, Db4, Sym2, Sym4, Bior1.3 and Bior2.4.
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Chapter 6

Classification Algorithms

ANN efficiently processes large volume, non-linear and chaotic data such as gene

expression data. Pattern recognition, classification, control and time series prediction

are some of the important applications of ANN. An artificial neuron modeled to get

all benefits of biological neuron is the basic building block of ANN. It learns with

examples and offers several advantages such as

1. Adaptive learning ability

2. Self-organizing nature

3. Faster information processing ability due to parallel processing

4. An ability to handle inconsistent and random information

5. An ability to handle missing and faulty data

6. An ability to process nonlinear data efficiently.

Various ANN classification algorithms namely EBPA, RPROP, Conjugate Gradi-

ent, LM, SAEN are explained in the following sub-sections.
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6.1 Error Back Propagation algorithm

EBPA is one of the most common supervised algorithm for training of the multi-layer

neural network which, is applicable only for the continuous neuron. The multilayer

neural network has input layer, one or more hidden layers and an output layer. In

EBPA, the sigmoid and linear activation function is usually used for hidden and

output layer neurons, respectively. The multi-layer neural network with I inputs, one

hidden layer, J hidden neurons and K output neurons is as shown in the Figure 6.1.

Figure 6.1: Multilayer neural network.

In the case of EBPA, initially, the output of the hidden layer neurons and output

layer neurons is computed. Subsequently, the difference between actual and expected

output of final layer neurons is back propagated to update the weights of output layer

neurons and hidden layer neurons.

The flowchart for EBPA is shown in Figure 6.2
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Figure 6.2: Flow chart for EBPA.

The weight update rule for output layer neurons is described using Equation A.3.

vkj(t+ 1) = vkj(t) + c(ek − zk)zk
′
yj (6.1)

Where,

vkj(t+ 1) = weight that connects output of jth neuron in the hidden layer to kth
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neuron in the output layer at (t+1)

vkj(t) = weight that connects output of jth neuron in the hidden layer to kth neuron

in the output layer at t

c = learning constant

ek = expected output of kth output layer neuron

zk = actual output of kth neuron in the output layer

zk
′

= derivative of actual output of kth neuron in the output layer

yj = output of jth neuron in hidden layer.

The weight update rule for hidden layer neurons is described using Equation A.7.

uji(t+ 1) = uji(t) + cyj
′
ai

K∑
k=0

(ek − zk)zk
′
vkj(6.2)

where,

uji(t+ 1) =weight that connects ith input to jth neuron in the hidden layer at (t+1)

uji(t) = weight that connects ith input to jth neuron in the hidden layer at t

yj
′

= derivative of output of jth neuron in the hidden layer

ai = ith input to neural network.

EBPA makes the individual weight change proportional to the slope of error curve.

The slope of error curve is proportional to the learning constant, difference between

input and output and the derivative of the output of corresponding neuron. For

larger inputs, as the actual output of neuron increases, derivative of the error drops

off. As a consequence of reduction in weight change, the classification accuracy gets

affected with increased difference between input and output. Further, the chosen

value of learning constant aggravates the effect of derivative. Smaller learning con-

stant diminishes the speed of convergence while, larger learning constant reduces the

possibility of reaching the convergence. To overcome this problem, EBPA with mo-

mentum is introduced but choice of appropriate momentum parameter is crucial [95],

[96], [57].
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6.2 Resilient Back Propagation algorithm

To eliminate the effect of magnitude of derivative of error on the convergence, RPROP

algorithm makes the weight update proportional to sign of the error derivative instead

of its magnitude. The RPROP algorithm is explained in Figure 6.3.

Figure 6.3: RPROP algorithm.

In the Figure 6.3 ∂E
∂vkj

(t− 1), ∂E
∂vkj

(t) and ∂E
∂vkj

(t+ 1) indicates the partial derivative

of error with respect to vkj at instance t − 1, t and t + 1, respectively. Further,

∆vkj(t− 1), ∆vkj(t) and ∆vkj(t+ 1) indicates change in weight vkj at instance t −
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1, t and t + 1, respectively. In two consecutive iterations if the sign of the error

derivative remains same, then the amount of weight update,which is controlled by ∆,

is increased in order to attain the global minimum of the error curve faster. In two

subsequent iterations, the change in sign of the gradient point to larger weight update

at the previous instance. Therefore, the ∆ is reduced. Also, if the product of error

derivatives in two consecutive iterations becomes zero, the weights are retained to the

previous values. Usually, for RPROP algorithm, the default values of the parameters

are 0.1, e−6, 50, 1.2 and 0.5 for ∆0, ∆min, ∆max, c+ and c−, respectively. RPROP

algorithm does not require any critical parameter setting. Further, it is more complex

and requires more memory as compared to EBPA. However, convergence speed of

RPROP is faster than EBPA [97], [57].

6.3 Levenberg Marquardt algorithm

In practical applications error curve is complex in nature. For such complex error

curves, EBPA works efficiently. The EBPA has very slow convergence as its speed

depends on various parameters namely, learning constant, number of training sam-

ples, complexity of activation function etc. The speed of EBPA is increased to some

extent by using adaptable learning constant. Significant increase in the speed of con-

vergence is obtained using Newton’s method. Newton’s method makes use of Hessian

matrix which, is formed using double differentiation of the error. With Newton’s

method, there is considerable improvement in the speed of convergence but it does

not work well for complex error curve. Further, the computation of double differen-

tiation of error, makes the Newton’s method computationally expensive. To increase

convergence speed with less computational complexity Gauss Newton algorithm is

introduced. Gauss Newton algorithm uses Jacobian matrix that is formed by using

the first differentiation of error as opposed to Newton’s method. Gauss Newton algo-

rithm offers higher speed and less computational complexity but fails while dealing

with non-quadratic error curve. LM algorithm is one of the most competent algo-
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rithms for training multilayer perceptron network which, is introduced to combine

the advantage of EBPA as well as Gauss Newton algorithm. It operates like an EBPA

closer to the complex section of error curve while during the quadratic section of the

error curve, it operates like Gauss Newton algorithm [57], [98] . The weight update

rule for LM algorithm is given by Equation 6.3

vkj(t+ 1) = vkj(t)− (Jk
TJk + µB)JT

k bk (6.3)

Where,

Jk = Jacobian matrix

B = Identity matrix

µ = fusion coefficient

bk = error vector.

In the case µ is very small the algorithm tends to approach Gauss Newtons algo-

rithm while, larger µ causes the algorithm to behave like EBPA.LM algorithm turns

out to be very efficient for small and moderate size multilayer neural network. The

increased memory requirement, for large size multilayer neural network makes LM

algorithm very sluggish.

6.4 Conjugate Gradient algorithms

In order to attain the global minimum of quadratic error curve, EBPA performs a

linear search and makes the successive search path orthogonal to the former search

direction. In the case of Conjugate Gradient algorithms, the successive search path

is A-orthogonal to just preceding search path [99], [57]. It leads to increase in the

speed of convergence of Conjugate Gradient algorithms. The new search direction is

determined by Equation 6.4.

F = g ∗ h+ d (6.4)
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where,

F = new search direction

g = multiplicative factor

h = previous search direction

d = direction of steepest descent.

The multiplicative constant ‘g’ is calculated in number of ways for various Conju-

gate Gradient algorithms. For Conjugate Gradient Back Propagation with Fletcher-

Reeves Update (CGFR) algorithm, ‘g’ is calculated using Equation 6.5 [100], [57],

g = EC/EP (6.5)

where,

EC = energy in the current gradient

EP = energy in the previous gradient.

For Conjugate Gradient Back propagation with Polak-Ribire Update (CGPR) al-

gorithm, ‘g’ is calculated using Equation 6.6 [101], [57].

g = (EC − EP )/EP (6.6)

Usually, when the number of iterations becomes same as the number of network pa-

rameters, Conjugate Gradient algorithms converge. If the algorithms do not converge

within the number of iterations equaling number of neural network parameters, the

search direction is usually reset.

In Conjugate Gradient Back Propagation with Powell-Beale Restarts (CGPB)

algorithm, the search path resets for very small orthogonality between two succeeding

gradients [102], [103], [57].

The flow chart of Conjugate Gradient algorithms shown in the Figure 6.4
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Figure 6.4: Conjugate Gradient Back Propagation algorithm.
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6.5 Stacked Autoencoder algorithm

An Autoencoder type of neural network makes use of an unsupervised back propa-

gation training algorithm. It comprises of an encoder and a decoder as illustrated in

Figure 6.5.

Figure 6.5: Autoencoder.

To extract the features from the input data, an encoder transforms the input data

into a hidden representation with the help of Equation 6.7.

Y = UD (6.7)

where,

Y = transformed input at the output of hidden layer of an autoencoder
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U = weight vector of encoder

D = input to an autoencoder.

The decoder transforms the hidden representation back to the input data using

Equation 6.8.

Y ′ = V Y (6.8)

where,

Y ′ = reconstructed input

V = weight vector of decoder

Y = input to decoder.

To get the best promising representation of the input, the difference between the

initial input and reconstructed input is used to update the weights. The SAEN

network [104], [104] is made up of one or more Autoencoders followed by the Softmax

layer. The SAEN network is shown in Figure 6.6

Figure 6.6: Stacked Autoencoder network.

SAEN network training is accomplished by unsupervised prior-training of Autoen-

coders followed by supervised training of Softmax Layer and finally fine tuning of all
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the stages of SAEN. The detailed steps in training the SAEN are explained below:

1. The first Autoencoder is trained to diminish the difference between the initial

input and reconstructed input.

2. Neglecting the reconstructed input and considering the output of hidden layer

of first Autoencoder as input to second Autoencoder, the training of the second

Autoencoder is accomplished using unsupervised learning.

3. This process is repeated for following Autoencoders.

4. Considering output of hidden layer of final Autoencoder as input to Softmax

layer, it is trained using the supervised Back Propagation training algorithm.

5. Finally, the entire SAEN network is trained using supervised Back Propagation

training algorithm for fine tuning of the weights and biases.

Due to unsupervised pre-training of Autoencoders, supervised training of Softmax

layer and fine tuning of entire network, SAEN algorithm delivers high classification

accuracy for less number of inputs.

In the proposed system cancer classification is implemented using RPROP, LM,

Conjugate Gradient and SAEN algorithm.
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Chapter 7

Results, Conclusion and Future

Scope

7.1 Results

In this section, the classification results of Brain tumor dataset GDS1962 with and

without use of DCT and DWT (traditional methods) are presented. It includes the

comparative results of classification implemented using Thresholding method, Ratio

method and Fusion of Thresholding and Ratio methods followed by DWT based

feature extraction for Glioma Grade III/ Grade IV datasets viz., GDS1975, GDS1976,

GDS1815 and GDS1816. The classification is implemented using RPROP, Conjugate

Gradient, LM and SAEN algorithms. Further, the comparative results of proposed

system with the methods suggested by Abusamra H et al. [23] and Shen Q et al. [16]

for GDS1975 and GDS1976 datasets as well as results of testing of effectiveness of

the resultant optimal gene subset for GDS1962 dataset are presented.

7.1.1 GDS1962 results

For GDS1962 dataset the classification of sub-types of Brain tumor is implemented

for four different levels of malignancy namely,
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1. Malignant and Benign Brain Tumor

2. Lymphoma and Glioma Brain Tumor

3. Low Oligodendroglioma, High Oligodendroglioma and Astrocytoma

4. Astrocytoma Grade II, Grade III and Grade IV.

Malignant and Benign Brain tumor

The Benign and Malignant Brain tumor gene intensity values are far apart from each

other which makes it easy to differentiate between them without using feature ex-

traction method. The classification accuracy of 100 % is achieved using all the DCT

coefficients while, with DWT based feature extraction method the 100% classifica-

tion accuracy is obtained by using less than five wavelet coefficients. The result of

classification for Malignant and Benign Brain tumor is presented in Table 7.1

Table 7.1: Result of classification for Malignant and Benign Brain tumor

Sr. No. Algorithm Feature Extraction Wavelet Accuracy

1 RPROP — — 100%

2 RPROP DWT Db2, Db4, Sym2,

Sym4, Bior1.3 and

Bior2.4 (level 16)

100%

3 RPROP DCT — 100%

Lymphoma and Glioma Brain tumor.

For Lymphoma and Glioma Brain tumors, the large difference in the gene intensity

values makes it easy to distinguish them without using feature extraction method.

The classification accuracy of 97 % is achieved using all the DCT coefficients while,
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with DWT based feature extraction method the 100% classification accuracy is ob-

tained by using less than five wavelet coefficients. The result of classification for

Lymphoma and Glioma Brain tumor is demonstrated in Table 7.2.

Table 7.2: Result of classification for Lymphoma and Glioma Brain tumor

Sr. No. Algorithm Feature Extraction Wavelet Accuracy

1 RPROP — — 100%

2 RPROP DWT Db2, Db4, Sym2,

Sym4, Bior1.3 and

Bior2.4 (level 16)

100%

3 RPROP DCT — 97%

Low Oligodendroglioma, High Oligodendroglioma and Astrocytoma.

As the level of malignancy goes on increasing, genes intensity values of cancer sub-

types appear to be closer to each other making it difficult to differentiate between

them. The classification accuracy obtained with and without DCT and DWT for

different types of Glioma such as Low Oligodendroglioma, High Oligodendroglioma

and Astrocytoma is illustrated in Table 7.3 and Table 7.4.

Table 7.3: Result of classification for sub-types of Glioma using DCT.

Sr. No. Algorithm Accuracy

1 RPROP 65%

2 CGPR 81%

3 CGPB 84%

4 CGFR 81%
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Table 7.4: Result of classification for types of Glioma using DWT.

Sr. No. Algorithm Wavelet Level Accuracy

1 RPROP Db4 1 89%

2 CGPR Db4 1 97%

3 CGPB Db4 1 94%

4 CGFR Sym4 4 91%

Table 7.5 presents comparison of DCT and DWT results for sub-types of Glioma.

Table 7.5: DCT vs. DWT for classification of sub-types of Glioma.

Sr. No. Feature Extraction Algorithm Wavelet Level Accuracy

1 – RPROP — — 85.9%

2 DCT CGPB — — 84%

3 DWT CGPR Db4 1 97%

The custom made filters, higher energy compaction and flexibility of choosing the

wavelet function makes DWT outperform DCT for the classification of various types

of Glioma as demonstrated in Table 7.5.

Astrocytoma Grade II, Grade III and Grade IV.

The malignancy level of Astrocytoma subtypes is higher than that of Glioma sub-

types. As a result, the gene intensity values of Astrocytoma subtypes are closer to

each other as compared to Glioma subtypes, making the classification a difficult task.

The classification accuracy obtained with and without DCT, DWT for different types

of Astrocytoma such as Grade II, Grade III and Grade IV is illustrated in Table 7.6

and Table 7.7.
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Table 7.6: Result of classification for sub-types of Astrocytoma using DCT.

Sr. No. Algorithm Accuracy

1 RPROP 49%

2 CGPR 68%

3 CGPB 81%

4 CGFR 68%

Table 7.7: Result of classification for sub-types of Astrocytoma DWT.

Sr. No. Algorithm Wavelet Level Accuracy

1 RPROP Bior2.4 4 87%

2 CGPR Bior2.4 4 92%

3 CGPB Db2 1 87%

4 CGFR Sym4 4 89%

The comparison of DCT and DWT results for sub-types of Astrocytoma is illus-

trated in Table 7.8 .

Table 7.8: DCT Vs. DWT for the classification of sub-types of Astrocytoma.

Sr. No. Feature Extraction Algorithm Wavelet Level Accuracy

1 — RPROP – – 91.89%

2 DCT CGPB – – 81%

3 DWT CGPR Bior2.4 4 92%

7.1.2 Thresholding method

The classification results of Glioma Grade III and Grade IV datasets namely, GDS1975,

GDS1976, GDS1815 and GDS1816 for various threshold ranges viz., THD1 (500-
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2000), THD2 (2000-10000) and THD3 (10000-100000) are presented in this sec-

tion. With THD1 (500-2000), the number of genes selected are 574, 330, 493 and

521 for GDS1975, GDS1976, GDS1815 and GDS1816 datasets, respectively. With

THD2 (2000-10000), the number of genes selected are 1301, 1413, 147 and 118 for

GDS1975, GDS1976, GDS1815 and GDS1816 datasets, respectively. With THD3

(10000-100000), the number of genes selected are 274, 185, 32 and 41 for GDS1975,

GDS1976, GDS1815 and GDS1816 datasets, respectively.

Figure 7.1 demonstrates the result of Thresholding method for GDS1975, GDS1976,

GDS1815 and GDS1816 datasets, respectively.

Figure 7.1: Result of Thresholding method for GDS1975 dataset.

Figure 7.2, Figure 7.3 and Figure 7.4 demonstrates the result of Thresholding

method for GDS1975, GDS1976, GDS1815 and GDS1816 datasets, respectively.

82



Figure 7.2: Result of Thresholding method for GDS1976 dataset.

Figure 7.3: Result of Thresholding method for GDS1815 dataset.
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Figure 7.4: Result of Thresholding method for GDS1816 dataset.

The comparison of results of Thresholding method for GDS1975, GDS1976, GDS1815

and GDS1816 datasets is presented in Figure 7.5.

Figure 7.5: Comparison of result of Thresholding method for Glioma datasets.
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From the results of Thresholding method, few observation drawn are mentioned

below.

1. The threshold range THD2 (2000, 10000) gives 100% classification accuracy

with/without wavelet transform for GDS1975, GDS1976 and GDS1815 dataset

while, THD1 (500, 2000) performs better for GDS1816 dataset using RPROP,

Conjugate Gradient and SAEN algorithm.

2. Threshold range THD1 (500, 2000) at times delivers 100% classification accuracy

with wavelet transform for GDS1975, GDS1976 and GDS1815 datasets.

3. For Threshold range THD3 (10000, 100000), SAEN algorithm gives 100% clas-

sification accuracy without wavelet transform for all above mentioned datasets.

7.1.3 Ratio method

This section demonstrates the classification results of Ratio method for GDS1975,

GDS1976, GDS1815 and GDS1816 datasets using various ratios viz., ratio <= 4,

ratio <= 3.5, ratio <= 3 and ratio <= 2.5. With ratio <= 4, the number of genes

selected are 2791, 1885, 877 and 717 for GDS1975, GDS1976, GDS1815 and GDS1816

datasets, respectively. With ratio <= 3.5, the number of genes selected are 1929,

1187, 436 and 336 for GDS1975, GDS1976, GDS1815 and GDS1816 datasets, respec-

tively. With ratio <= 3, the number of genes selected are 1030, 588, 144 and 104 for

GDS1975, GDS1976, GDS1815 and GDS1816 datasets, respectively. With ratio <=

2.5, the number of genes selected are 314, 165, 16 and 48 for GDS1975, GDS1976,

GDS1815 and GDS1816 datasets, respectively.

Figure 7.6 demonstrates the result of Ratio method for ratio <= 4 and ratio <=

3.5 while, Figure 7.7 demonstrates the result of the Ratio method for ratio <= 3 and

ratio <= 2.5, respectively.
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Figure 7.6: Result of Ratio method (ratio <= 4 and ratio <= 3.5 ) for GDS1975 dataset

Figure 7.7: Result of Ratio method (ratio <= 3 and ratio <= 2.5) for GDS1975 dataset

For GDS1976 dataset, Figure 7.8 demonstrates the result of Ratio method for

ratio <= 4 and ratio <= 3.5 while, Figure 7.9 demonstrates the result of the Ratio

method for ratio <= 3 and ratio <= 2.5, respectively.
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Figure 7.8: Result of Ratio method (ratio <= 4 and ratio <= 3.5) for GDS1976 dataset

Figure 7.9: Result of Ratio method (ratio <= 3 and ratio <= 2.5) for GDS1976 dataset

For GDS1815 dataset, Figure 7.10 demonstrates the result of Ratio method for

ratio <= 4 and ratio <= 3.5 while, Figure 7.11 demonstrates the result of the Ratio

method for ratio <= 3 and ratio <= 2.5, respectively.
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Figure 7.10: Result of Ratio method (ratio <= 4 and ratio <= 3.5) for GDS1815 dataset

Figure 7.11: Result of Ratio method (ratio <= 3 and ratio <= 2.5) for GDS1815 dataset

For GDS1816 dataset, Figure 7.12 demonstrates the result of Ratio method for

ratio <= 4 and ratio <= 3.5 while, Figure 7.13 demonstrates the result of the Ratio

method for ratio <= 3 and ratio <= 2.5, respectively.
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Figure 7.12: Result of Ratio method (ratio <= 4 and ratio <= 3.5) for GDS1816 dataset

Figure 7.13: Result of Ratio method (ratio <= 3 and ratio <= 2.5) for GDS1816 dataset

The best performance of Ratio method is achieved for ratio <= 2.5, ratio <=

4, ratio <= 3.5 and ratio <= 3.5 for GDS1975, GDS1976, GDS1815 and GDS1816

datasets, respectively. The best of the results of Ratio method for GDS1975, GDS1976,

GDS1815 and GDS1816 are shown in the Figure 7.14
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Figure 7.14: Comparison of results of Ratio method for GDS1975, GDS1976, GDS1815 and GDS1816

datasets.

7.1.4 Fusion of Thresholding and Ratio method

The classification results of the fusion of Thresholding and Ratio method in combi-

nation with the mean intensity difference between the two classes of Glioma datasets,

GDS1975, GDS1976, GDS1815 and GDS1816 datasets are presented in this section.

For GDS1975 dataset, 10 and 8 genes are selected for difference in the mean inten-

sity values (u1-u2) of the Glioma classes 870 and 1000, respectively. For GDS1976

dataset, 15 and 5 genes are selected for u1-u2 1000 and 1500, respectively. For

GDS1815 dataset, 7 and 5 genes are selected for difference in the mean intensity

values of the glioma classes 800 and 1000, respectively. For GDS1816 dataset, 12 and

5 genes are selected for difference in the mean intensity values of the glioma classes

170 and 250, respectively.

Figure 7.15 and Figure 7.16 shows two of the best results of fusion of Thresholding

and Ratio method for GDS1975 and GDS1976 datasets, respectively.
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Figure 7.15: Result of Fusion of Thresholding and Ratio method for GDS1975 dataset.

Figure 7.16: Results of Fusion of Thresholding and Ratio method for GDS1976 dataset.

Figure 7.17 and Figure 7.18 shows two of the best results of fusion of Thresholding

and Ratio method for GDS1815 and GDS1816 datasets, respectively.
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Figure 7.17: Results of Fusion of Thresholding and Ratio method for GDS1815 dataset.

Figure 7.18: Results Fusion of Thresholding and Ratio method for GDS1816 dataset.

Figure 7.19 demonstrates the comparison of best of the results of Fusion of Thresh-

olding and Ratio method for GDS1975, GDS1976, GDS1815 and GDS1816 datasets.
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Figure 7.19: Results of Fusion of Thresholding and Ratio method for GDS1975, GDS1976, GDS1815

and GDS1816 datasets.

The comparative analysis of four datasets in proposed study utilizes commonly

transcribed genes, such as Protein Kinase B3 (PKB3), Mortality Factor 4 Like 2

(MORF4L2), Ankyrin Repeat Domain 17 (ANKRD17), Signal Recognition Parti-

cle 14 (SRP14) and Zinc Finger Protein (ZNF550). PKB3 gene coding for ser-

ine/threonine protein kinase is involved in cell proliferation, differentiation and apop-

tosis. Further, PKB3 gene expression gets down regulated from grade III to grade IV

[105]. It may be noted that, MORF4L2 is a vital component of NuA4 HAT and has

significant role in transcriptional activation of several genes including oncogenes and

proto-oncogenes [106]. An alteration in the gene expression of ANKRD17 observed

from glioma grade III to grade IV may be attributed to G1/S transition [107]. SRP14

along with SRP9 and Alu RNA constitute elongation arrest domain signal recognition

particle and plays a crucial role in targeting secretary protein to endoplasmic retic-

ulum. Down regulation of SRP14 would alter signal recognition particle mediated

vernacular protein transport system leading to cancer progression [108]. The uniport
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KB database has reviewed and annotated ZNF550 to be involved in transcriptional

regulation. An Alteration in ZNF550 expression may lead to remodeling in expression

pattern of cancer related genes promoting oncogenesis. The common transcriptions

among four datasets and related functions of these genes leads to direct or indirect

correlation of mutations in the above genes with the development of glioma grade III

and IV.

The comparison of the best of results of fusion of Thresholding and Ratio method

obtained using five common genes across Glioma datasets GDS1975, GDS1976, GDS1815

and GDS1816 is demonstrated in Figure 7.20.

Figure 7.20: Results of Fusion of Thresholding and Ratio method for GDS1975, GDS1976, GDS1815

and GDS1816 datasets.

7.1.5 Comparison of proposed system with existing system

Cancer classifications reported in the literature vary widely in respect of microarray

datasets as well as methods employed to measure parameters defining and evaluating
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types of cancers. Therefore, classification accuracy and optimum number of genes

obtained are compared with the results of the authors Abusamra H et al. [23] and

Shen Q et al. [16], who employed some of the same dataset as ours. The comparative

results of the proposed system with the existing methods are presented in Figure

7.21.

Figure 7.21: Comparative results of the proposed system with existing systems for GDS1975 and

GDS1976 datasets.

The proposed system delivers higher classification accuracy with less number of

genes as compared to method implemented by Abusamra H et al. [23] and Shen Q

et al. [16] for GDS1975 and GDS1976 datasets.

In the proposed system, the classification of GDS1975, GDS1976, GDS1815 and

GDS1816 datasets is implemented using Intel(r) Core(TM) i3 CPU M380 @2.53 GHz

processor and MATLAB R2017a software.

Table 7.9 presents the comparison of computational time of proposed method with

to method suggested by Abusamra H et al. [23] and Shen Q et al. [16] for GDS1975
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and GDS1976 datasets.

Table 7.9: Comparison of computational time of proposed system with existing systems

Sr. No. Method Computational Time (Sec.)

1 Abusamra H et al. 3

2 Shen Q et al. 258

3 Proposed System 17

The computational time of the proposed system is moderate as compared to

method suggested by Abusamra H et al. [23] and Shen Q et al. [16] for GDS1975

and GDS1976 datasets.

7.1.6 Testing of optimal gene subset for GDS1962 dataset.

The effectiveness of optimal gene subset chosen using the fusion of Thresholding and

Ratio method is tested for GDS1962 dataset at every level of malignancy using SAEN

algorithm. Classification accuracy of 100 % is obtained by using the optimal gene

subset at every level of malignancy of GDS1962 dataset as illustrated in Table 7.10.

Table 7.10: Result of classification for GDS1962 dataset using genes from optimal gene Subset.

Sr. No. Brain tumor Classes Accuracy.

1 Benign and Malignant 100%

2 Lymphoma and Glioma 100%

3 Low Oligodendroglioma, High Oligoden-

droglioma and Astrocytoma

100%

4 Astrocytoma Grade II, Grade III and Grade

IV

100%
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7.2 Conclusion and Future scope

7.2.1 Conclusion

An alarming increase in cancer deaths every year, existence of more complex methods

for cancer classification and occasional failure of biomarkers to identify the cancer

type, makes it essential to design an efficient cancer classification system so as to

increase the survival rate of cancer patients. In this thesis, a simple and computa-

tionally less expensive cancer classification system is designed to obtain 100% classifi-

cation accuracy for less number of genes using gene expression data obtained by using

Microarray technology. Microarray technology is a proven tool for global analysis of

gene expression that allows simultaneous investigation of thousands of genes in a sam-

ple. The proposed method is implemented for microarray Glioma datasets namely,

GDS1975, GDS1976, GDS1815 and GDS1815 and tested for GDS1962 dataset.

Initially, the classification of Brain tumor at different level of malignancy is im-

plemented for GDS1962 dataset with and without using feature extraction (DCT,

DWT) method in combination with RPROP and Conjugate Gradient algorithms.

The conclusions drawn from these results are discussed below

1. The divergently expressed genes of Benign, Malignant and Glioma, Lymphoma

Brain tumors (GDS1962 dataset) makes the classification process effortless and

deliver 100% classification accuracy.

2. However, the results of classification of Low Oligodendroglioma, High Oligo-

dendroglioma, Astrocytoma and Astrocytoma Grade II, Grade III, Grade IV

(GDS1962 dataset) illustrates the difficulty of attaining 100% classification ac-

curacy (with and without DCT, DWT) on account of less distinctly expressed

genes at higher level of malignancy.

3. In absence of feature extraction method, the huge size of the input of the classi-

fier which mostly includes redundant data tends to slow down the classification

process.
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Therefore, in order to improve the classification accuracy at higher level of ma-

lignancy and to increase the speed of classification, cancer classification system is

designed using feature selection methods, feature extraction methods and neural net-

work classifiers. The feature selection is implemented using Thresholding method,

Ratio method and Fusion of Thresholding and Ratio method. The feature extraction

is implemented using DWT while the classification is implemented using RPROP,

Conjugate Gradient, LM and SAEN algorithms. The designed cancer classification

system is implemented for GDS1975, GDS1976, GDS1815, GDS1816 Glioma datasets

and tested for GDS1962 Brain tumor dataset.

The conclusions drawn from the results of implementation are given below

1. Thresholding method

(a) Thresholding method excludes genes with inconsistent intensity variation

across the Glioma samples.

(b) The number and the range of thresholds needs to be decided based on the

intensity variation in a particular cancer dataset. As Glioma datasets in

the proposed study are obtained from 16 bit microarray image and majority

of the intensities lie below 10000, the thresholds are chosen as THD1 (500-

2000), THD2 (2000-10000) and THD3 (10000-100000). The gene intensity

values below 500 are not reliable owing likely cross hybridization of genes.

(c) The threshold range that gives best performance depends on the gene inten-

sity variation for different classes of the dataset. The threshold range THD2

(2000, 10000) delivers 100% classification accuracy with/without wavelet

transform for GDS1975, GDS1976 and GDS1815 dataset while, THD1 (500,

2000) performs better for GDS1816 dataset.

(d) On account of less differentially expressed genes in the Threshold range

THD1 (500, 2000) of GDS1975, GDS1976 and GDS1815 datasets, occasion-

ally 100% classification accuracy is obtained with wavelet transform.
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(e) THD3 (10000, 100000) contains lesser number of genes with higher values of

intensity. Since intensity values are very large, a small change often makes

the task of classification difficult. However, SAEN algorithm, delivers 100%

classification accuracy without wavelet transform for THD3 (10000, 100000)

of all the above mentioned datasets.

(f) Thresholding method appears to have an edge, in the sense, it provides an

alternative subset of genes for obtaining 100% classification accuracy.

2. Ratio method

(a) Ratio method eliminates genes with large maximum to minimum intensity

ratio across the dataset samples of a particular class.

(b) The results of Ratio method depends on the difference in the mean inten-

sity values of classes of Glioma. The ratios of maximum to minimum gene

intensity considered for a classification of Glioma are ratio <= 4, ratio <=

3.5, ratio <= 3 and ratio <= 2.5. The best performance of Ratio method

is achieved for ratio <= 2.5, ratio <= 4, ratio <= 3.5 and ratio <= 3.5 for

GDS1975, GDS1976, GDS1815 and GDS1816 datasets, respectively.

3. Fusion of Thresholding and Ratio method

(a) Fusion of Thresholding method and Ratio method gives a small subset of

genes in comparison with Thresholding method and Ratio method, imple-

mented independently.

(b) In this method, genes common to best performing thresholding and ratio

are mined from the Glioma dataset and classification is performed. Further,

filtering of genes on the basis of difference in the average gene intensity with

or without wavelet transform leads to 100% classification accuracy with less

number of genes.

(c) Alternatively, ratio can be chosen first and thresholding can be applied later,

yielding the same subset of genes.
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4. Feature extraction

(a) The custom made filters of DWT, ability to detect the discontinuity in the

signal, various types of mother wavelet functions makes it most efficient for

feature extraction.

(b) There is no universal function that works well for all microarray datasets.

A blend of the type of wavelet and neural network algorithm that gives the

best result rely on the nature of variation of classification data and network

parameters. Based on the classification accuracy, the most suitable wavelet

for the datasets under consideration are found to be Db2 and Sym2.

5. Classification algorithms

(a) Conjugate Gradient algorithms are designed to restart in case of failure to

reach the convergence wherein, the number of neural network parameters

become equal to the number of iterations. Hence, Conjugate Gradient al-

gorithms are found to be faster than RPROP, LM algorithms.

(b) For larger data size, the prerequisite of extensive memory in LM algorithm

makes the classification process inefficient and sluggish. On account of

less number of genes obtained by the Fusion of Thresholding and Ratio

method combined with the mean intensity difference between genes of dif-

ferent classes, LM algorithm performed better in comparison with Conjugate

Gradient algorithms.

(c) Stacked Autoencoder network trained with Back Propagation algorithm de-

livers the best result as compared to RPROP, Conjugate Gradient algo-

rithms and LM algorithm owing to the prior training of Autoencoder stages,

fine tuning of Softmax layer and Stacked Autoencoder network.

6. Optimal gene subset

(a) Optimal gene subset obtained using the Fusion of Thresholding and Ratio
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Method comprises of genes viz., PKB3, MORF4L2, ANKRD17, SRP14 and

ZNF550.

(b) The mutations in the genes selected by the Fusion of Thresholding and Ratio

method are directly or indirectly associated to the occurrence of Glioma

Grade III and Grade IV.

(c) Testing of this optimal gene subset for GDS1962 at different level of malig-

nancies gives 100% classification accuracy.

7. Comparison with existing systems

(a) The implementation of the proposed system with Intel(r) Core(TM) i3 CPU

M380 @2.53 GHz processor and MATLAB R2017a software requires mod-

erate computational time of about 17 sec as compared to 3 sec and 258 sec

using the methods suggested by Abusamra H et al. [23] and Shen Q et

al. [16], respectively. Considering the state of art, the computational time

appears to be insignificant.

(b) The proposed system uses simple and computationally less expensive feature

selection method.

(c) The SAEN network along with a combination of Thresholding and Ratio

method outperforms the methods suggested by Abusamra H et al. [23]

and Shen Q et al. [16] giving 100% classification accuracy using only five

common genes for GDS1975, GDS1976, GDS1815 and GDS1816 datasets.

(d) Proposed system facilitates the easy selection and precise classification of

Cancer at higher malignancy level with highest accuracy in moderate time

as compared to the existing methods.

7.2.2 Future scope

1. The gene expression data from the different resources, experiments does not

follow standard format. Gene expression data is available in various forms such
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as intensity values, ratio of red to green intensity of genes, logarithm of the

ratio of red to green intensity of genes etc. The proposed system is designed for

classification of Glioma using gene intensities obtained from 16 bit microarray

image. It can be modified to be applicable to all forms of gene expression

data. It can be extended to few of such kind of datasets namely, Colon cancer,

ALL/AML, DLBCL, Prostate cancer, Leukemia, Breast cancer etc.

2. The gene selection methods utilized in proposed study do not consider interde-

pendency between the genes. These methods do not interact with the classifier.

Therefore, the proposed system may be modified to consider the interdependency

between the genes and to automatically interact with the classifier.

3. At times, these gene selection methods may select the genes, whose mutations

may not be directly or indirectly related to the occurrence of Grade III and

Grade IV Glioma. It can be modified to select the genes whose mutations are

directly related with the occurrence of Grade III and Grade IV Glioma.

4. As yet, no method of cancer classification gives the stable subset of genes for the

classification of Grade III and Grade IV Glioma. The proposed method may be

modified to get more stable gene subset to be used for cancer classification.
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Appendix A

Weight update rules for EBPA

A.1 Weight update calculation of hidden layer and output

layer of EBPA

A.1.1 Weight update calculation for output layer neuron

The weight change for individual weight of hidden layer neuron in the direction of

negative gradient is given as,

∆vkj = −c ∂E
∂vkj

(A.1)

∂E / ∂vkj is given as,

∂E

∂vkj
=

(
∂E

∂zk

)(
∂zk
∂netk

)(
∂netk
∂vkj

)
(A.2)

The Root Mean Square Error between expected ouput and actual output of output

layer neuron is given by equation

E =
1

2

(
ek − zk

)2
The equation for ouput of ouput layer neuron is given as

zk = f
(
netk

)
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The net value of output layer neuron is given as

netk =
K∑
k=0

vkjyj

Therefore, Equation A.2 becomes

∂E

∂vkj
= −

(
ek − zk

)
zk

′
yj

Therefore Equation A.1 becomes

∆vkj = c
(
ek − zk

)
zk

′
yj

Hence, the weight update rule for output layer neuron is given as

vkj
′
= vkj + c(ek − zk)zk

′
yj (A.3)

A.1.2 Weight update calculation for hidden layer neuron

The weight change for individual weight of hidden layer neuron in the direction of

negative gradient is given as

∆uji = −c ∂E
∂uji

(A.4)

∂E / ∂uji is given as,

∂E

∂uji
=

(
∂E

∂yj

)(
∂yj
∂netj

)(
∂netj
∂uji

)
(A.5)

∂E / ∂yj is given as,

∂E

∂yj
=

(
∂E

∂zk

)(
∂zk
∂netk

)(
∂netk
∂yj

)
(A.6)

For weight updation of hidden layer neuron the error at the ouput of every ouput

layer neuron is utilised and it is given as,

E =
1

2

K∑
k=0

(
ek − zk

)2
Threrfore, Equation A.6 is given as,

∂E

∂yj
= −

K∑
k=0

(
ek − zk

)
zk

′
vkj
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The ouput of hidden layer neuron and net value of its ouput is given as,

yj = f
(
netj

)

netj =
J∑

j=0

ujiai

Therefore Equation A.5 becomes,

∂E

∂vji
= −aiyj

′
K∑
k=0

(
ek − zk

)
zk

′
vkj

Therefore Equation A.4 becomes,

∆uji = caiyj
′
K∑
k=0

(
ek − zk

)
zk

′
vkj

Hence, the weight update rule for hidden layer neuron is given as,

uji
′
= uji + cyj

′
ai

K∑
k=0

(ek − zk)zk
′
vkj (A.7)
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