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Abstract: donor–acceptorDonor–acceptor–π–acceptor–donor (D1-A1-π-A2/A3-D2)-type small
molecules, such TPA-MC-2 and TPA-MC-3, were designed and synthesized starting from
donor-substituted alkynes (TPA-MC-1) via [2 + 2] cycloaddition−retroelectrocyclization reaction
with tetracyanoethylene (TCNE) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) units, respectively.
TPA-MC-2 and TPA-MC-3 chromophores differ on the A2/A3 acceptor subunit, which is
1,1,4,4-tetracyanobutadiene (TCBD) and a dicyanoquinodicyanomethane (DCQDCM), respectively.
Both the derivative bearing same donors D1 (triphenylamine) and D2 (trimethylindolinm) and also
same A1 (monocyano) as an acceptor, tetracyano with an aryl rings as the π-bridging moiety. The
incorporation of TCNE and TCNQ as strong electron withdrawing units led to strong intramolecular
charge-transfer (ICT) interactions, resulting in lower LUMO energy levels. Comparative UV–Vis
absorption, fluorescence emission, and electrochemical and computational studies were performed
to understand the effects of the TCNE and TCNQ subunits incorporated on TPA-MC-2 and
TPA-MC-3, respectively.

Keywords: donor–acceptor; cyclic voltammograms; triphenylamine; tetracyanoethylene;
7,7,8,8-tetracyanoquinodimethane

1. Introduction

The fabrication of low-cost electronic devices such as bulk heterojunction (BHJ) and organic
solar cells (OSCs) has become important in commercial applications because of their light-absorbing
characteristics. Therefore, the band gap engineering of such chromophores aims to improve the
efficiency of the devices through the manipulation of highest occupied molecular orbitals (HOMO) and
lowest unoccupied molecular orbitals (LUMO), thus, has attracted wide attention of researchers [1,2].
From literature study it is clear that OSCs will lead to build promising next generation clean and
renewable energy devices [3]. The optoelectronic properties of chromophore could be altered by
varying the strength of donor (D) or acceptor (A) subunits [4–10]. To achieve this researcher employed
the cross-conjugation reaction to tune the LUMO energy level of chromophores [11–15]. To fulfill this
requirement, [2 + 2] cycloaddition–retroelectrocyclization reaction of electron withdrawing moieties
such as tetracyanoethene (TCNE) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) with π-conjugated
system comprised of activated alkynes were used [11,16–22]. Nevertheless, the chromophores bearing
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TCBD and dicyanoquinodicyanomethane (DCQDCM) in backbone display low LUMO, which is
necessary to improve the OSCs device performance because strong intramolecular charge-transfer
(ICT) interaction observed in D and TCNQ and DCQDCM acceptors [11,12]. The literature search
revealed that TCBD and DCQDCM incorporated D-A chromophores and polymers were employed to
fabricate the nonlinear, molecular batteries, and also optoelectronic materials [10,22–25].

Merocyanine (MC) dyes are the traditional colorant exhibits high absorption coefficient, tunable
absorption properties and applied as textile colorant. They are attractive dyes for high technological
applications such as nonlinear optics and photorefractive materials due to their polarizabilities and
dipole moments [26–29]. Merocyanine dyes are also promising candidates for dye-sensitized solar
cells (DSSCs) [30–35], photorefractive applications [36–38], and solution-processed BHJ OSCs [39,40].
Würthner and coworkers extensively investigated bulk heterojunction (BHJ) OSCs application of
merocyanine dyes [41–43].

On the other hand, triphenylamine (TPA) has been recognized as a very promising electron-donor
unit due to its charge transport characteristics [44–49]. TPA and its derivatives were used in various
fields such as electrochromism, organic electronics, two-photon absorption, DSSCs, and organic
photovoltaics [50–55].

Considering the above properties of MC and TPA, herein, we report synthesis of two
chromophores, TPA-MC-2 and TPA-MC-3, prepared by the Sonogashira–Hagihara coupling reaction
followed by [2 + 2] cycloaddition–retroelectrocyclization click chemistry reaction [56]. The thermal,
absorption, photoluminescence, electrochemical, and theoretical studies of these derivatives were
investigated in detail. Furthermore, we also examined the effect of enhanced π-conjugation on these
properties to find out energy band gaps.

2. Results and Discussion

2.1. Design

We designed and synthesized small molecule conjugates D1-A1-π-A2/A3-D2 composed
of electron donor and acceptor moieties. Here we presume that the designed molecule
D1-A1-π-A2/A3-D2 will display broad range absorption and electron accepting characteristics,
thus, such a design strategy comprising alternate donor–acceptor subunits is useful to improve
the photovoltaic performance and could reduce the energy band gap [57–59]. The designed
D1-A1-π-A2-D2 systems are rarely explored, which is made up of four different subunits, i.e., the MC
donor unit at one terminal end and the TPA donor subunit at another end, and both the donor moieties
are covalently linked at center with two different acceptor subunits, such as –CN and either of TCBD
or DCQDCM chromophore via an aromatic π-system, respectively.

2.2. Synthesis and Characterization

The synthesis of the designed target molecules TPA-MC-2 and TPA-MC-3 is shown in
Scheme 1 and synthesis of starting material TPA-MC-1 as shown is Scheme 2. The intermediate
4-ethynyl-N,N-diphenylaniline 3 was synthesized from triphenylamine in three steps as shown in
Scheme 2 [60], whereas (2E,4E)-2-(4-iodophenyl)-4-(1,3,3-trimethylindolin-2-ylidene)but-2-enenitrile 6
was prepared from 4-iodo phenyl acetonitrile 4 and 2-(1, 3, 3-trimethylindolin-2-ylidene) acetaldehyde
5 via Knoevenagel condensation reaction [61]. The Sonogashira–Hagihara coupling method was used
to prepare starting TPA-MC-1 derivative from compound 3 and 6 [62–64]. The obtained TPA-MC-1
was further subject to react with TCNE and TCNQ through [2+2] cycloaddition–retroelectrocyclization
click chemistry to yield TPA-MC-2 and TPA-MC-3, respectively (Scheme 1). The chemical structures of
TPA-MC-1, TPA-MC-2, and TPA-MC-3 were confirmed by modern spectroscopic techniques, such as
FT-IR, 1H NMR, 13C NMR spectroscopy, and mass and high-resolution mass spectrometry (HRMS)
(Figures S8–S29).
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Scheme 1. Synthesis of target donor–acceptordonor–acceptor–π–acceptor–donor systems. 

Scheme 2. Reagents and conditions: (i) NIS, CHCl3+CH3COOH (1:1), rt, 12 h; (ii) PdCl2 (PPh3)2/CuI, 
Et3N, dry THF, TMSA, rt, 12 h; (iii) K2CO3, MeOH+THF (1:1), rt, 4 h; (iv) piperidine, dry THF, 12 h; 
and (v) Pd(PPh3)4 /CuI, DIPEA, dry THF, reflux , 12 h. 

The thermal stability of the three synthesized compounds—TPA-MC-1, TPA-MC-2 and TPA-
MC-3—were determined using thermogravimetric analysis (TGA) (Figures S1–S3). The samples were 
heated up to 600 °C at a rate of 10 °C/min under nitrogen atmosphere. TPA-MC-1 exhibits the wt. 
loss of 5% at 331.88 °C (Figure S1), whereas TPA-MC-2 and TPA-MC-3 display the 5% wt. loss at 
257.66 °C (Figure S2) and 185.40 °C (Figure S3), respectively. These TGA results revealed that all three 
compounds—TPA-MC-1, TPA-MC-2, and TPA-MC-3—are thermally stable. 
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Scheme 2. Reagents and conditions: (i) NIS, CHCl3+CH3COOH (1:1), rt, 12 h; (ii) PdCl2 (PPh3)2/CuI,
Et3N, dry THF, TMSA, rt, 12 h; (iii) K2CO3, MeOH+THF (1:1), rt, 4 h; (iv) piperidine, dry THF, 12 h;
and (v) Pd(PPh3)4 /CuI, DIPEA, dry THF, reflux, 12 h.

The thermal stability of the three synthesized compounds—TPA-MC-1, TPA-MC-2 and
TPA-MC-3—were determined using thermogravimetric analysis (TGA) (Figures S1–S3). The samples
were heated up to 600 ◦C at a rate of 10 ◦C/min under nitrogen atmosphere. TPA-MC-1 exhibits the
wt. loss of 5% at 331.88 ◦C (Figure S1), whereas TPA-MC-2 and TPA-MC-3 display the 5% wt. loss at
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257.66 ◦C (Figure S2) and 185.40 ◦C (Figure S3), respectively. These TGA results revealed that all three
compounds—TPA-MC-1, TPA-MC-2, and TPA-MC-3—are thermally stable.

2.3. Theoretical Calculations

The Gaussian 09 ab initio/DFT quantum chemical calculations were employed to examine the
electronic properties of molecular structures [65]. The B3LYP/6-31G(d) level of theory and frequency
calculations were carried out to optimize the geometry of TPA-MC-1, TPA-MC-2, and TPA-MC-3
molecules, respectively. The obtained geometries of TPA-MC-1, TPA-MC-2, and TPA-MC-3 via
B3LYP/6-31G(d) were further investigated for the better treatment of charge-transfer excitations
through time-dependent density functional theory (TD-DFT) and the results are illustrated in
Table S1 [66,67]. The effect of dichloromethane was included by means of the polarizable continuum
model (PCM). The TD-DFT results show that TPA-MC-1 gives an absorption band at 480 nm (Figure S5);
TPA-MC-2 shows three absorption bands at 677 nm, 541 nm, and 468 nm (Figure S6); and TPA-MC-3
shows absorption bands at 853 nm, 542 nm, and 462 nm (Figure S7). The frontier molecular orbitals
(FMO) calculated at B3LYP/6-31G(d) level of theory and generated by using Avogadro as shown
in Figure 1 [56,67]. The calculated electronic-density distribution of the highest occupied molecular
(HOMO) orbital of TPA-MC-1 is located on the entire molecule. The lowest unoccupied molecular
(LUMO) orbital level of TPA-MC-1 is distributed over MC and acetylene bond. The HOMO of
TPA-MC-2 distributed over the tetracyanobutadiene (TCBD) and MC subunits, whereas the LUMO is
located at TCBD subunit only. The electronic distribution of the HOMO and of TPA-MC-3 is distributed
on DCQDCM and MC subunits. The LUMO of TPA-MC-3 is located only on DCQDCM unit. The
HOMO and LUMO of TPA-MC-2 and TPA-MC-3 are lower than that of TPA-MC-1 and are attributed to
the incorporation of TCBD and DCQDCM subunits, respectively; which, in turn, resulted in a decrease
of the energy band gap (Eg) from 2.91301 eV of TPA-MC-1 to 2.10564 eV of TPA-MC-2 to 1.60603 eV of
TPA-MC-3. Thus, the energy levels and band gaps can be tuned by incorporating electron acceptor
subunit in the backbone of TPA-MC-1 (D-A-π-D).Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  5 of 16 
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2.4. Optical and Emission Properties

The UV–Vis absorption spectra of TPA-MC-1, TPA-MC-2, and TPA-MC-3 molecules in chloroform
solution as well as in thin film are depicted (Figure 2). The TPA-MC-1 molecule exhibits strong
absorption spectra at 442 nm along with two more less intense peaks at 364 and 313 nm. The spectrum
of TPA-MC-1 in thin film shows an absorption peaks at 445 nm and 315 nm. The peaks of thin film
spectrum broadened with slight red shift. The chloroform solution of TPA-MC-2 displays a strong
absorption peak at 595 nm along with two shoulder peaks at 481 nm and 282 nm, and its thin film
spectrum is broadened and appeared with a bathochromic shift at 631 nm with shoulder peaks at 498
nm and 300 nm. The spectra of TPA-MC-3 show strong absorption peaks at 663 nm, 483 nm, and a
less intense peak at 291 nm. The thin film spectrum of TPA-MC-3 appears at 670 nm, 485 nm, and 300
nm, indicating that the molecules pack tightly in solid-state. The absorption peaks of TPA-MC-2 and
TPA-MC-3 in solution and thin films are greatly broadened as compare to TPA-MC-1, this is due to
the stronger intermolecular interactions and stronger ICT effect in solid-state. The optical band gaps,
Eg, of TPA-MC-1, TPA-MC-2, and TPA-MC-3 were calculated from their absorption onsets 776 nm,
986 nm, and 1083 nm of the thin film, and are 1.59 eV, 1.25 eV, and 1.14 eV, respectively (Table 1).
These results indicate that the incorporation of TCBD and DCQDCM chromophores at the backbone of
the TPA-MC-1 displays significant influence on the optical band gaps and light harvesting ability of
TPA-MC-2 and TPA-MC-3.Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  6 of 16 
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Figure 2. UV–Vis spectra of TPA-MC-1, TPA-MC-2, and TPA-MC-3 in solution (solid lined) and thin
film (dashed lines).

Table 1. Optical properties of TPA-MC-1, TPA-MC-2 and TPA-MC-3.

Acceptor λmax Solution
(nm)

λmax Film
(nm)

λonset Value Film
(nm)

Optical
Bandgap Eg (eV) a

TPA-MC-1 442, 364, 313 445, 315 776 1.59

TPA-MC-2 595,
481, 282 (Shoulder) 631, 498, 300 986 1.25

TPA-MC-3 663, 483, 291 670, 485, 300 1083 1.14
a Optical band gap estimated from onset wavelength of film (λedge) of the absorption spectra of thin film: Eg

opt =
1240/λedge.
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We also investigated fluorescence spectroscopy of TPA-MC-1, TPA-MC-2, and TPA-MC-3 in
chloroform solution upon excitation at 350 nm, as shown in Figure 3. TPA-MC-1 displays the emission
main peak at 407 nm along with three smaller peaks at 434, 469, and 501 nm. The significant strong
emission peaks of TPA-MC-2 appeared at 412 nm, along with two additional peaks at 434 nm and
466 nm. The solution of TPA-MC-3 showed emission peaks at 412, 433, and 468 nm, respectively.
This indicates that all three molecules TPA-MC-1, TPA-MC-2, and TPA-MC-3 are light emissive.
However, neither of these derivatives produced any emission in the solid thin film; this may be due to
overlapping of donor–acceptor system and cause fluorescence.Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  7 of 16 
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Figure 3. Fluorescence emission spectra of TPA-MC-1, TPA-MC-2, and TPA-MC-3 in chloroform
solution (λex = 350 nm).

2.5. Electrochemical Properties

To investigate the electron affinity, semiconductor properties and energy levels of TPA-MC-1,
TPA-MC-2, and TPA-MC-3, cyclic voltammetry (CV) measurements [68] in dichlorobenzene were
carried out and are depicted in Figure 4; the electrochemical data are summarized in Table 2. The
TPA-MC-1 showed the onset oxidation potential at 0.81 V and the onset reduction potential at −0.89 V,
which corresponds to the subunits present in the molecular backbone. The first onset oxidation and
reduction potentials at 0.82 V and −0.39 V are observed for TPA-MC-2-bearing TCBD, and can be
ascribed to donor and acceptor subunits, respectively. For TPA-MC-3, the onset oxidation potential
and reduction potential are observed at 0.79 V and −0.24 V, respectively. Relative to TPA-MC-1,
the less-negative onset reduction potentials of TPA-MC-2 and TPA-MC-3 are due to the presence of
the electron withdrawing TCBD and DCQDCM subunits in the molecular backbone, respectively.
The HOMO and LUMO energy levels of TPA-MC-1, TPA-MC-2, and TPA-MC-3 are calculated
from the corresponding onset oxidation and reduction potentials. The estimated HOMO/LUMO
energy levels of TPA-MC-1, TPA-MC-2, and TPA-MC-3 are −5.21/−3.47 eV, −5.22/−4.01 eV, and
−5.19/−4.16 eV, respectively. As compared to TPA-MC-1 the incorporation of TCBD and DCQDCM
subunits in backbone of TPA-MC-1, this resulted in a reduction in energy band gap of TPA-MC-2
and TPA-MC-3. The electrochemical properties of TPA-MC-2 and TPA-MC-3 are matches with energy
levels of conventional PC71BM (−4.20 eV) acceptor. Moreover, the energy difference between the
conventional donor P3HT and the designed acceptors TPA-MC-1, TPA-MC-2, and TPA-MC-3 (Figure 5)
is more than 0.3 eV, suggesting the strong electron-withdrawing ability of these new acceptors.
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Figure 4. The respective cyclic voltammograms (CV’s) of TPA-MC-1, TPA-MC-2, and TPA-MC-3
recorded from dichlorobenzene solution at a scan rate of 50 µV/s.

Table 2. Electrochemical properties of TPA-MC-1, TPA-MC-2 and TPA-MC-3.

Acceptor Eox
onset

(V)
Ered

onset

(V)
HOMO = [Ered

onset + 4.8]
(eV)

LUMO = [Ered
onset + 4.8]

(eV)
Eg = (HOMO-LUMO)

eV

TPA-MC-1 0.81 −0.89 −5.21 −3.47 1.74
TPA-MC-2 0.82 −0.39 −5.22 −4.01 1.21
TPA-MC-3 0.79 −0.24 −5.19 −4.16 1.03

2.6. Discussion

Photophysical properties of TPA-MC-1, TPA-MC-2, and TPA-MC-3 were analyzed using UV–Vis
electronic absorption and photoluminescence (PL) spectroscopy. All three compounds displayed strong
electronic absorption bands at 300–370 nm, which are attributed to the π–π* transition of donor and
acceptor units. TPA-MC-1, TPA-MC-2, and TPA-MC-3 compounds showed structured PL spectra at
400–500 nm, suggesting that their excited states exhibit some charge-transfer characteristics. The band
gap energies calculated from the onset absorption spectra of TPA-MC-1, TPA-MC-2, and TPA-MC-3
are 1.59 eV, 1.25 eV, and 1.14 eV, respectively. Whereas the band gap energies calculated from DFT
calculations showed the same trend: that the energy gap is higher than that of calculated absorption
values. The DFT calculation showed in TPA-MC-3, LUMO is completely localized over acceptor units,
indicating separated charge HOMO and LUMO charge distributions. The separated HOMO and
LUMO electron distribution resulted from the strong electron-donating ability of triphenylamine and
strong electron-withdrawing nature of DCQDCM. Furthermore, the HOMO and LUMO measured by
CV are 1.74 eV, 1.21 eV, and 1.03 eV for TPA-MC-1, TPA-MC-2, and TPA-MC-3, respectively. UV–Vis
and CV results reveal presence of DCQDCM in backbone of the chromophore is more efficient than
TCBD for lowering the LUMO level and energy gap. These measured CV energy gap values are
comparable with estimated energy gap values by UV–Vis absorption spectroscopy, which confirm
their ability to confine as acceptors.

The UV–Vis, PL, CV, and DFT calculation results suggest that TPA-MC-1, TPA-MC-2, and
TPA-MC-3 are potential acceptors in for BHJ applications.
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3. Conclusions

In summary, we designed and synthesized donor–acceptor chromophores TPA-MC-2 and
TPA-MC-3 by [2 + 2] cycloaddition–retroelectrocyclization reaction of TPA-MC-1 and TCBD and
a DCQDCM, respectively. The LUMO energy level of the TPA-MC-2 and TPA-MC-3 is lowered by
incorporation of TCBD and a DCQDCM as strong electron acceptor subunit. The electrochemical
properties of TPA-MC-1, TPA-MC-2, and TPA-MC-3 are matches with energy levels of the conventional
PC71BM (−4.20 eV) acceptor. Due to the presence of strong electron acceptors in TPA-MC-2, TPA-MC-3
exhibits strong intramolecular charge-transfer (ICT) interactions, which results in lowering of the
LUMO energy level. Thus, we believe these along with similar structures will be good candidates for
BHJ devices.

4. Experimental Section

4.1. Materials and Methods

All the chemicals were purchased from Sigma Aldrich, Bengaluru, Karnataka, India.
Triphenylamine, 2-(1,3,3-(Trimethylindoline-2-ylidene)acetaldehyde, 4-iodophenyl acetonitrile,
triethylamine, copper iodide, (trimethylsilyl)acetylene, bis(triphenylphosphine) palladium (II) chloride,
K2CO3, MgSO4, DIPEA, tetrakis (triphenylphosphine) palladium (0), tetracyanoethylene (TCNE), and
7,7,8,8-tetracyanoquinodimethane (TCNQ) were used as-received without further purification unless
otherwise mentioned. The moisture sensitized reactions were carried out under nitrogen atmosphere
using freeze-thaw-pump cycle method. Solvents were purchased from SD Fine, India and are AR
grade. The solvents were distilled before use. The structure of prepared compounds was confirmed by
using modern spectroscopic techniques. The progress of reactions was monitored by TLC. The TLC
results were visualized by a UV light (254 or 356 nm). IR spectra were recorded on Thermo Nicolet
Nexus 670. 1H NMR (300 MHz and 400 MHz) spectra and 13C NMR (75 MHz and 100 MHz) were
measured at 298 K using CDCl3 as a solvent. Tetramethylsilane (δ = 0 ppm) was used as an internal
standard. ESI-MS data were taken on Shimadzu lab solution mass spectrometer. High-resolution mass
spectra (HRMS) spectrometry (Thermofisher Exactive Orbitrap) and atmospheric-pressure chemical
ionization (APCI) experiments were carried out on Fourier-transform mass spectroscopy (FTMS).
UV–Vis absorption was recorded on a UV–Vis-1800 spectrometer (Shimadzu, Japan) in CHCl3 solvent
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and thin film on quartz surface at room temperature. Florescence spectra were recorded on R-6000
spectrofluorophotometer (Shimadzu, Japan) in CHCl3 solvent. Thermal stability was analyzed by
thermogravimetric analysis (TGA) at the heating rate 10 ◦C per min under nitrogen atmosphere. The
cyclic voltammograms were measured on Power Lab ML160 potentiostat interfaced via a Power Lab
4/20 controller to a PC running E-Chem for Windows version 1.5.2 electrochemical analyzer. The cyclic
voltammetry experiments were performed using tetra butyl ammonium hexaflurophospate (TBAPF6,
1.0 M) as supporting electrolyte, Pt as a working electrode, Pt wire used as a counter electrode and
saturated calomel electrode (SCE) (Ag/AgCl in saturated KCl) used as a reference electrode.

4.2. Synthetic Procedure of Compound 1

In a 250-mL round bottom flask, triphenylamine (3.00 g, 12.2 mmoL) was dissolved in the
mixture of chloroform (60 mL) and acetic acid (60 mL) in the same equimolar ratio (1:1, v/v). The
N-iodosuccinamide (2.75 g, 12.2 mmoL) was added and then reaction mixture was stirred at room
temperature about 12 h under dark condition. The completion of reaction was confirmed by TLC. The
reaction mixture was poured into water and extracted with CHCl3. The organic layer was washed
with water. The excess iodine was quenched with saturated Na2S2O3. The obtained colorless organic
layer was dried over sodium sulfate. The combined organic layer was concentrated under reduced
pressure. The residue, colorless oily liquid, was dried under vacuum. The crude product was washed
with hexane (2–3 times) to yield white powder as 1 (4.17 g, 92%). 1H NMR (400 MHz, CDCl3) δ 7.51 (d,
J = 8.8 Hz, 2H), 7.24 (t, J = 8.4 Hz, 4H), 7.106.99 (m, 4H), 6.82 (d, J = 8.9 Hz, 2H).

4.3. Synthetic Procedure of Compound 2

(a) A mixture of compound 1 (3 g, 8.08 mmoL), ethynyltrimethylsilane (3.36 mL, 24.2 mmoL),
and CuI (76 mg, 0.40 mmol) were dissolved in mixture of triethylamine (30 mL) and dry THF (30 mL).
The Pd(PPh3)2Cl2 (ca. 5mol%) was added to the reaction mixture under nitrogen atmosphere. The
resulting mixture was refluxed for 12 h under nitrogen atmosphere. The progress of reaction was
monitored by TLC. After completion of reaction, the reaction mixture was poured into 200 mL of water
and extracted with DCM (2–3 times). The combined organic layer was dried over anhydrous Na2SO4.
The solvent was concentrated under reduced pressure to yield 2 as yellow oil. The obtained crude
product was used in next step without purification.

(b) Compound 2 was dissolved in the mixture of 30 mL of THF and 30 mL of methanol. The dry
fine powder of K2CO3 (2.6 g) was added to the reaction mixture. The resulting mixture was stirred
for 4 h at room temperature. The completion of reaction was monitored by TLC. The solvent was
evaporated under reduced pressure. The obtained crude product was diluted with DCM and filtered
off. The organic solvent was concentrated under reduced pressure. The obtained crude product was
purified by column chromatography on silica gel to afford light yellow solid 3 (yield, 70%). 1H NMR
(400 MHz, CDCl3) δ 7.34–7.30 (m, 2H), 7.297.24 (m, 4H), 7.107.03 (m, 6H), 7.986.94 (m, 2H), 3.01 (s, 1H);
13C NMR (125 MHz, CDCl3) δ 148.33, 147.09, 133.03, 129.38, 125.02, 123.60, 122.02, 114.72, 76.14.

4.4. Synthetic Procedure of Compound 6

4-Iodo phenyl acetonitrile 4 (1 g, 4.1 mmoL) was dissolved in freshly prepared dry THF (20 mL).
Piperidine (1 mL) was added to this reaction mixture under nitrogen atmosphere. The resulting
reaction mixture was refluxed for 1 h. The 2-(1, 3, 3-trimethylindolin-2-ylidene) acetaldehyde 5 (1 g,
4.9 mmoL) was added to the reaction mixture at refluxed temperature and continued the reaction
for 12 h. The progress of reaction was monitored with TLC. After completion of reaction, the excess
aldehyde was washed with chilled methanol. This process was performed till the complete removal
of aldehyde. The obtained product was dried over vacuum to yield shiny dark yellow compound 6
(1.50 g, yield: 86%). FT-IR (in KBr, cm−1): 3050.13, 2966.11, 2192.35, 1589.82, 1564.09, 14484.37, 1334.73,
1203.73, 1120.90, 981.30, 746.59, 706.20 cm−1; 1H NMR (400 MHz, CDCl3) δ 7.82 (d, J = 12.7 Hz, 1H),
7.68 (d, J = 8.6 Hz, 2H), 7.27–7.20 (m, 4H), 6.98 (t, J = 7.4, 6.7 Hz, 1H), 6.79 (d, J = 7.9 Hz, 1H), 5.87 (d,
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J = 12.7 Hz, 1H), 3.29 (s, 3H), 1.63 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 164.86, 144.05, 138.90, 137.89,
135.06, 128.15, 125.98, 121.62, 121.40, 118.49, 107.32, 99.40, 94.40, 91.25, 46.65, 29.57, 28.83. ESI–Mass
m/z 427 [M+H]+; HRMS: Chemical Formula: C21H19IN2 m/z calculated 427.0646 [M+H]+, found:
427.0665 [M+H]+.

4.5. Synthetic Procedure of TPA-MC-1

The mixture of dry THF (10 mL) and dry DIPEA (10 mL) was deoxygenated under nitrogen
atmosphere for 30 min. Compound 6 (500 mg, 1.17 mmoL) and compound 3 (347 mg, 1.29 mmoL) were
added to the reaction mixture. The resulting reaction mixture was carefully degassed and recharged
with N2 gas. A catalytic amount of tetrakis (triphenylphosphine)palladium (0) (ca. 5 moL %) and
copper iodide (12 mg, 0.05 mmoL) were added simultaneously. The resulting reaction mixture was
stirred under reflux for 12 h. The completion of reaction was monitored with TLC. The reaction
mixture was cooled to room temperature. The solvent was removed under reduced pressure. The
obtained residue was dissolved in excess DCM and passed through celite. The obtained filtrate was
concentrated under reduced pressure. The crude product was purified by column chromatography
on silica gel (60/120 mesh) with dichloromethane/hexane (3: 6) as an eluent to afford TPA-MC-1 as
a dark orange solid (546 mg, yield: 82%). FT-IR (in KBr, cm−1): 3447.42, 3031.13, 2923.17, 2195.35,
1572.15, 1510.82, 1487.41, 1386.64, 1332.91, 1273.40, 1199.75, 1120.04, 1075.10, 924.71, 814.64, 746.63,
694.14, 514.69 cm−1; 1H NMR (400 MHz, CDCl3) δ 7.86 (d, J = 12.7 Hz, 1H), 7.507.45 (m, 4H), 7.397.36
(m, 2H), 7.297.20 (m, 7H), 7.136.96 (m, 9H), 6.79 (d, J = 7.9 Hz, 1H), 5.91 (d, J = 12.7 Hz, 1H), 3.30 (s, 3H),
1.65(s, 6H); 13C NMR (100 MHz, CDCl3) δ 164.64, 147.88, 147.15, 144.13, 139.02, 138.64, 134.57, 132.47,
131.91, 131.63, 129.36, 128.54, 128.08, 124.95, 124.00, 123.52, 122.28, 121.67, 121.37, 118.63, 116.04, 107.34,
100.11, 94.61, 90.66, 88.70, 46.65, 29.59, 28.87, 28.36; ESI–Mass m/z 568 [M+H]+; HRMS: Chemical
Formula: C41H33N3 calculated m/z 567.2666 [M]+, found: 567.2669 [M]+.

4.6. Synthetic Procedure of TPA-MC-2

The compound TPA-MC-1 (100 mg, 0.17 mmoL) was dissolved in dry dichloromethane (5 mL). To
this reaction mixture, tetracyanoethylene (33 mg, 0.26 mmoL) was added. After addition of TCNE,
immediate color change of reaction mixture was observed. The progress of reaction was monitored
by TLC. After 2 h, the starting material was completely consumed. The solvent was concentrated
under reduced pressure and the residue was purified by column chromatography on silica gel with
DCM/hexane (8:2) as eluent to get dark purple color solid TPA-MC-2 (116 mg, 95%). FT-IR (in KBr,
cm−1): 2923.82, 22, 2218.20, 2197.17, 1587.61, 1562.93, 1485.71, 1426.26, 1338.47, 1288.33, 1256.41, 1203.32,
1175.43, 1118.93, 1049.24, 930.55, 816.00, 749.34, 698.03, 522.2 cm−1; 1H NMR (400 MHz, CDCl3) δ 8.05
(d, J = 12.9 Hz, 1H), 7.79 (d, J = 8.9 Hz, 2H), 7.68 (d, J = 9.2 Hz, 2H), 7.62 (d, 8.9 Hz, 2H), 7.427.38 (m,
4H), 7.327.27 (m, 4H), 7.247.21 (m, 5H), 7.097.05 (m, 1H), 6.94 (d, J = 9.2 Hz, 2H), 6.89 (d, J = 7.9 Hz, 1H),
3.38 (s, 3H), 1.66 (s, 6H).13C NMR (100 MHz, CDCl3) δ 167.89, 166.44, 164.20, 153.73, 144.48, 143.50,
141.64, 139.36, 131.85, 130.46, 130.06, 128.33, 126.92, 126.68, 124.51, 122.68, 121.86, 121.54, 118.04, 117.81,
113.58, 112.76, 112.95, 108.26, 97.40, 95.49, 83.11, 47.43, 29.95, 29.67, 28.88; ESI–Mass m/z 696 [M]+;
HRMS: Chemical Formula: C47H33N7 calculated m/z 696.2906 [M+H]+, found: 696.2870 [M+H]+.

4.7. Synthetic Procedure of TPA-MC-3

To a solution of TPA-MC-1 (100 mg, 0.17 mmoL) in dry THF (5 mL), TCNQ (53 mg, 0.26 mmol) was
added. The resulting reaction mixture was refluxed for 24 h. The progress of reaction was monitored by
TLC. After completion of reaction, the solvent was evaporated under reduced pressure. The obtained
crude product was purified by column chromatography on silica to yield black solid TPA-MC-3 (121
mg, 89%). FT-IR (in KBr, cm−1): 2923.08, 2205.44, 1556.92, 1488.49, 1413.25, 1386.02, 1317.82, 1178.999,
1119.71, 1019.22, 923.54, 835.07, 809.83, 748.78, 697.30, 522.86 cm−1; 1H NMR (400 MHz, CDCl3) δ
8.02–7.96 (m, 1 H), 7.71–7.70 (m, 2 H), 7.62–7.53 (m, 4 H), 7.39–7.35 (m, 5 H), 7.31–7.17 (m, 11 H),
7.08–7.03(m, 1H), 6.89–6.84 (m, 2 H), 5.98 (d, J = 12.9 Hz, 1 H), 3.37–3.36 (m, 3 H), 1.66–1.65 (m, 6 H); 13C
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NMR (100 MHz, CDCl3) δ 170.08, 167.56, 166.71, 154.02, 151.54, 151.01, 145.32, 144.69, 143.54, 141.72,
141.27, 140.43, 139.26, 135.23, 134.24, 133.33, 132.69, 132.12, 131.08, 130.67, 129.87, 128.33, 126.86, 126.55,
125.83, 125.53, 124.43, 122.58, 121.82, 119.28, 117.91, 114.08, 113.52, 112.78, 108.19, 97.79, 95.33, 84.00,
74.21, 47.34, 29.92, 28.89, 14.10; ESI–Mass m/z 772 [M+H]+; HRMS: Chemical Formula: C47H33N7

calculated m/z 772.3212 [M+H]+, found: 772.3183 [M+H]+.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/7/
1621/s1.
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Abbreviations

CV Cyclic Voltammetry
DCQDCM Dicyanoquinodicyanomethane
HOMO Highest occupied molecular orbital
ICT Intramolecular charge-transfer
LUMO Lowest unoccupied molecular orbital
MC Merocyanine
TCBD 1,1,4,4-tetracyanobutadiene
TCNE Tetracyanoethene
TCNQ 7.7.8,8-tetracyanoquinodimethane
TPA Triphenylamine
UV–Vis Ultraviolet Visible
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