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GENERAL INTRODUCTION 
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1.1 Introduction 

When viewed from space, it is evident why our planet would be better named "Ocean" 

than "Earth." More than 70 % of the planet's surface is covered by interconnected bodies of 

water that include lagoons, salt marshes, intertidal zones, estuaries, mangroves, coral reefs, 

the deep sea, sediments, hydrothermal vents among others. The open ocean, all its water 

columns and all basins -shallow to deep hadal- provide the largest habitable opportunity in 

particular for microbes, and adoptable biota, in general.  

Simply stated, the marine ecosystem is complex, confluent and composite. This 

continuum of water body encompasses the neritic to offshore, pelagic to abyssal, intertidal to 

hadal habitats. The Earth‘s largest ecosystem is complex in its physical (physiography, 

temperature, pressure, color, light) and chemical (elemental, gaseous and isotopic) 

characteristics. Seawater, with over 95 known elements dissolved in it, is chemically the most 

complex fluid. Within this exist myriad, teeming and thriving life forms adapted to inhabit a 

variety of ecotypes. The inhabitant biota of immense diversity spanning from lysogenic 

virions to gigantic blue whales has evolved, adopted and existed from early millennia and, is 

striving to live on in the face adversities including those resulting from Climate Change and 

anthropogenic alterations.  

Marine microbes flourish from the top millimeter of the ocean surface to several 

kilometers below the seafloor. A few microliter of seawater contains more bacteria than the 

people on this planet. In addition to being copious, the numerous different types of marine 

bacteria carry out many different types of metabolism, supplying oxygen, are the major 

processors of the world's greenhouse gases and have the potential to ease the effects of 

climate change. The metabolic processes that they carry out in the transformation of elements, 



2 
 

degradation of organic matter, and recycling of nutrients play a central role in innumerable 

activities that affect the support and maintenance of all other forms of life.  

Oxygen is the favored electron acceptor for the respiration of organic matter allowing 

marine bacteria to lead an oxic mode of life. Deoxygenation of Marine Ecosystems in the 

recent past is an example of Changing Oceans. Deoxygenation is loss or reduction of 

dissolved oxygen consequentially leading to hypoxia, suboxia and anoxia. However, in 

certain parts of the ocean such as the eastern tropical North Pacific (ETNP) and South Pacific 

(ETSP) in the Pacific Ocean, the Arabian Sea and the Bay of Bengal in the Indian Ocean, the 

eastern tropical South Atlantic (ETSA) in the Atlantic Ocean, oxygen drops to 4.5 μmol kg−1 

such that oxic respiration can hardly be sustained (Naqvi et al. 2000; Karstensen et al. 2008; 

Keeling et al. 2010). Even though most life avoids such low oxygen conditions, those bacteria 

that can exploit alternative electron acceptors for respiration thrive in these suboxic waters 

forming unique communities distinct from those living in oxic waters.  

Nitrate (NO3
−) is the next preferred electron acceptor in the electrochemical series of 

reductants, for respiration after oxygen and can yield similar amounts of free energy as that 

from oxic respiration of organic matter (Froelich et al. 1979). The expected energy yield of 

the reaction NO3 → N2 is followed by manganese and iodate reduction, while the energy yield 

from iron and sulfate respiration is significantly lower (Lam and Kupers, 2011). Nitrate and 

iodate occur at relatively high concentrations (~30 μM and 0.2–0.5 μM, respectively) in 

typical seawater, compared with only (sub) nanomolar levels of both manganese and iron. 

Therefore, nitrate reduction is significant in suboxic respiration in seawater.  

Marine nitrogen cycle is possibly the most complex and the most interesting among all 

the biogeochemical cycles in the sea. Nitrogen is the limiting element for biological 
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productivity, occupying a central role in ocean biogeochemistry; nitrogen exerts significant 

influence on biogeochemical cycles of many other elements. Nitrogen with a myriad of 

unique chemical transformations in various oxidation states, ranging from −3 (ammonium and 

amino-nitrogen) to +5 (nitrate) is a vital element for biological functioning. All these 

transformations are mediated by marine-organisms as part of their metabolism, either to gain 

energy for their growth or to synthesize structural components viz, peptides, amino acids, 

enzymes and structural proteins.  

With the advent of molecular tools in microbial ecology, it's easier to study bacterial 

community composition and obtain essential information on the significance of specific 

species/genus/groups of bacteria. The discovery that these tiny microbes are present large 

numbers, and are largely responsible for the biogeochemical processes that shape our planet 

can be viewed as one of the most important advances in science.  

The principle of ecosystem ecology is to understand how the ecosystems maintain 

functional stability and predicting how ecosystems respond to environmental changes 

(Rastogi et al. 2011). In any ecosystem interacting biological entities with their physical 

environment, three fundamental questions that arise while discovering and characterizing any 

ecosystem are: 

(1) What type of microorganisms are present? 

(2) What do these microorganisms do?  

(3) How are the activities of these microorganisms related to ecosystem functions (e.g., 

energy flow, biogeochemical cycling, and ecological resilience?)  

Marine microbial ecology aims to answer these questions and deals with the study of 

microorganisms, their interactions with each other and within their marine environment. It is 
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an emerging field of science as the abundance and diversity of marine microbes are now 

appreciated as essential in mediating various biochemical cycles and other processes that 

influence the Earth‘s climate. Understanding how microbes adapt rapidly to changes in their 

external environment with continued high growth rates is one of the major research 

challenges. In this regard, deoxygenation (loss or reduction of dissolved oxygen) of marine 

ecosystems in the recent past is an example of Changing Oceans. Deoxygenation is 

consequentially leading to hypoxia, suboxia and anoxia. Owing to their resilience to thrive, 

the microbial communities extant in the low oxic marine zones are of vital biogeoche mical 

and ecological significance. Exploring the mechanisms underlying their diversity and their 

role in ecosystem functioning will continue to be of pertinence, times to come.  

Marine microbiology focuses majorly to recognize how bacterial assemblages vary in 

space and time along environmental gradients, among geographic locations and among time-

scales. The present study deals with bacterial communities from the coastal ecosystem in 

response to changing the environment, in particular to the seasonal intensification of coastal 

hypoxia. For this, three geographically separated coastal environs off marine water columns: 

Goa, Mangalore, and Kochi along the west coast of India were chosen. These locations are 

characterized by seasonal upwelling conditions leading to hypoxia. Therefore, it was 

hypothesized that the bacterial diversity in these locations ought to respond to temporal 

changes as well as to reduced oxygen concentrations. This study also aimed at identifying the 

phylogenetic differences of bacterial communities between different periods of the year from 

these locations. 
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The following objectives were outlined for this study 

 To analyze the spatiotemporal variations in bacterial communities by culture-

dependent and culture- independent approach in the west coast of India. 

The basis of this objective was to introduce the various types of bacterial 

assemblages found in this marine environment, i.e., "Who is there?". 

Describing the bacterial community structure, we can deduce what they could 

be doing. Spatiotemporal variability was conceived with the idea to realize the 

community structure-differences/similarities within the west coast which 

experience seasonal variability in its physical and chemical settings. Therefore, 

to obtain a complete idea of the extant bacterial community, the study resorted 

to having an idea of culture amenable bacteria as well as to clone and sequence 

the 16S rRNA gene amplicons as to obtain information on the operational 

taxonomic units of Bacteria.  

 Through metagenomic analyses document the spatiotemporal variations of 

nitrogen metabolizing phylogenetic assemblages along the west coast of India.  

Molecular screening for functional gene fragments in metagenomic DNA helps 

to understand the ecological functions of bacteria under adverse conditions in 

response to the changing environmental conditions. This would answer ―What 

do they do?‖. Sequencing and annotation of functional gene markers are useful 

for describing the hitherto uncharacterized majority of environmental 

microorganisms. Besides aiding in the detection of new microbial lineages and 

these approaches are well known for enabling the description of genetic and 

functional diversity. 
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 To elucidate the role of certain culturable strain/s in utilization and 

transformation of N species.  

To comprehend the physiology and ecology of bacterial species, their isolation 

in pure culture remains an essential step in microbial ecology. Culture-based 

studies provide information on the physiological characteristics of the 

organisms and their activity to the functioning of the ecosystem.  



 

Chapter 2 
 

 

 

 

 

 

 

 

 

REVIEW OF LITERATURE 
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2.1. Introduction 

Coastal oceans within 200 m isobaths and covering 7% of the total oceanic area are 

variously important. Being biologically highly productive compared to any other part of the 

ocean, they are more directly affected by human activity. Located between the land and the 

main sea, the coastal ocean plays a significant role in biogeochemical cycling; exchanges 

energy and matter with Open Ocean, assimilates or accumulates terrestrial inputs of 

freshwater, dissolved/particulate nutrients, sediments, and organic matter. Even the 

groundwater flow and surface runoff have to pass through it (Gattuso et al. 1998; Gattuso and 

Smith, 2007). Close to 90% of the world fish catch is supported by this swath of the ocean. As 

much as half of the world population lives within 100 km of the coastlines, making the coastal 

ocean extremely vulnerable to anthropogenic impingement and deterioration. Thus, coastal 

ecosystems are facing several perturbations including losing the dissolved oxygen 

concentration what the modern chemists term severally as coastal hypoxia, suboxia or 

deoxygenation. 

 

2.1.1 The coastal hypoxia 

Oxygen is the preferred electron acceptor for the respiration of organic matter in the 

marine environment enabling marine organisms to lead an oxic mode of life. However, certain 

regions of the marine ecosystem experience shortage of oxygen called as hypoxia. Marine 

hypoxic regions are the regions of the world in which the dissolved oxygen of the sub-surface 

waters fall to near zero levels (≤ 1.4 ml L-1); due to the high demand of oxygen in degradation 

of organic matter by microbes, caused either human-induced (anthropogenic activities) or due 

to natural events like upwelling (Diaz and Rosenberg, 2008; Levin et al. 2009). Such regions 
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are hotspots forcing the habitual microbes to utilize an alternate mode of electron acceptors, 

preferably nitrate for their survival and making a significant contribution to the global cycling 

of nitrogen through denitrification. Thus, such oxygen-deficient regions being a medium for 

the biochemical transformation of nitrogen species, i.e., nitrate exerts a direct control on the 

climate through nitrous oxide produced (Codispoti and Christensen, 1885). 

 

2.1.2 Global scenario of coastal hypoxia 

The oxygen depletion is known occur to naturally along the coastal regions of Atlantic 

and Pacific oceans, in response to upwelling. Upwelling involves wind-driven motion of 

dense, cooler and usually nutrient-rich water towards the ocean surface replacing the warmer 

usually nutrient-depleted water, resulting in intense biological productivity and the higher 

oxygen demand for degradation of organic matter leads to oxygen depletion. Hypoxia 

develops at irregular intervals greater than a year (aperiodic); at regular intervals shorter than 

a year (periodic); yearly due to summer or autumnal stratification (seasonal) or year-round 

hypoxia (persistent) (Diaz, 2001). The coastal hypoxic system globally is listed in Table 1. 

Ocean indeed is a large source of potent greenhouse gas nitrous oxide (N2O) to the 

atmosphere, accounting for a one-third of all emissions (Bange, 2007). Because of 

dentrification beginning from nitrate reduction, formation of different gaseous species of 

nitrogen including nitrous oxide, the potent greenhouse gas is through catabolic processes of 

certain microbes. On a per molecule basis, nitrous oxide is ~25 times more potent than carbon 

dioxide (CO2) in trapping heat, which influences the Earth‘s climate. In the troposphere it 

traps the heat and, in the stratosphere (Montzka et al. 2003; Prather et al. 2015), it is involved 

in affecting the ozone cycling. 
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Off Southwest Africa (Eastern Atlantic Ocean) 

The highest primary productivity is supported by upwelling off Nambia along 

Southwest Africa) in the south eastern Atlantic Ocean (Carr, 2002), and respiration of the 

abundant organic matter produced in the water column and shelf sediments terminates in 

anoxia. Sulphidic condition is observed in the near bottom layers extending offshore to the 

shelf off the Walvis Bay (Br¨uchert et al. 2006, 2009). Off Cape Frio in the north and off 

Luderitz in the south are the two main upwelling sites in this region. The intermediate water is 

upwelled off Cape Frio and off Luderitz by the hypoxic Angola Basin Central Water and 

oxygenated Cape Basin South Atlantic Central Water respectively. The seasonal plus inter-

annual variability of oxygen deficiency at these sites is regulated by the movement of these 

waters northward from Luderitz or southward from Cape Frio (Monteiro et al. 2008). Kuypers 

et al. (2005) reports the significance of this region for redox nitrogen transformations.  

 

Eastern Tropical North Pacific 

The surface current (California Current) flow equatorward at the same time as the 

northwesterly winds cause intense upwelling along the west coast of the United States and the 

northwest coast of Mexico. Low oxygen waters < 0.2 ml L-1 extends offshore from the coast 

and the area is reported for nitrogen cycling (Cline and Richards, 1972).  

 

Eastern Tropical South Pacific 

The surface Humboldt Current carries low-salinity and oxygenated Subantarctic Water 

equatorward and, the subsurface Peru-Chile Undercurrent transports high nutrient, high-

salinity, and low-oxygen Equatorial Subsurface Water poleward. Upwelling along the 
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Peruvian Chilean coast brings cold, nutrient-rich, oxygen-poor waters to the surface. The 

subsequent high biological productivity is responsible for the intense oxygen depletion 

worldwide that extends from very shallow depths far offshore into the open ocean. Oxygen 

deficiency, complete denitrification and associated sulphidic conditions occur near Peru, and 

Chile is reported to observe oxygen depletion during spring and summer (Dugdale 1977; Lam 

et al. 2009, Paulmier 2006). 

 

European coastal water hypoxia 

The major seasonally-occurring hypoxia has been reported from the coastal Caspian 

Sea (Djakovac et al. 2015) Adriatic Sea (Justić, 1991; Druon et al. 2004), Baltic Sea (Conley 

et al. 2011), Black Sea north western shelf (Daskalov, 2003).  

Coastal hypoxic zones formed due to anthropogenic activities are mainly located in 

nearshore waters and estuaries that receive copious discharge of nutrients or organic matter 

through river runoff. In addition to this, the freshwater stratification makes these regions 

vulnerable to oxygen depletion. The coastal region off Changjiang and Mississippi rivers 

located in the East China Sea and the Gulf of Mexico respectively, the Chesapeake Bay and 

Tokyo Bay are few examples of hypoxic regions formed due to human-induced activities. 

Deoxygenation in such systems depends on the solar radiation as well as changes in river 

runoff and is known to maximize in summer (Rabalais and Turner, 2006; Zhang et al. 2008, 

Kodama et al. 2011). 
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Table 2.1: The global coastal hypoxic regions (Modified from Diaz, 2001, Kim et al. 2005a, 

Lee et al. 2018) 

Loch Creran, Scotland Persistent  
Byfjord, Sweden   

ldefjord, Sweden—Norway   
Baltic Sea, Central   

Fosa de Cariaco, Venezuela   
Gulf of Finland   
Black Sea(except North Western shelf)   

Caspian Sea   

New York Bight, New Jersey Aperiodic  
Shallow Texas Shelf   

Deep Texas Shelf   
German Bight, North Sea   
Sommone Bay, France   

North Sea, W. Denmark   

York River, Virginia Periodic  
Rappahannock River, Virginia 

Chenosu Bay, West Coast of Korea 

  

Long Island Sound, New York Seasonal   
Main Chesapeake Bay, Maryland   

Pamlico River, North Carolina    
Mobile Bay, Alabama   
Hillsborough Bay, Florida   

Louisiana Shelf   
Bomholm Basin, S. Baltic   

Oslolord, Norway   
Kattegat, Sweden—Denmark   
German Bight, North Sea   

Laholm Bay, Sweden   
Gullmars fjord, Sweden   

Swedish west coast fjords, Sweden   
Limqord, Denmark   
Kiel Bay,  Germany   

Lough Ina, Scotland   
Gulf of Trieste, Adriatic   

Elefsis Bay, Aegean Sea   
Arhus Bay, Denmark   
Seto Inland Sea, Japan   

Saanich Inlet, British Columbia   
Port Hacking, Australia   
Tolo Harbor, Hong Kong   

Japan, all major harbors, Japan    
Tome Cove, Japan   
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Black Sea, North Western Shelf    

 

Table 2.1 contd... 

Gulf of Mexico Seasonal   
Jinhae Bay, Southern Coast, South Korea   

Gamak Bay, Southern Coast, South Korea   

 

2.2 Bacterial community composition in oxygen deficient regions 

 As has been understood these days, in all of the marine ecotypes, bacteria are of great 

ecological importance playing many vital roles in the cycling of most biologically essential 

elements (Azam et al. 1994) and many other processes in the marine ecosystem. Their role in 

the structuring of marine trophic web networks and, remineralization of organic matter (Azam 

et al. 1983; Azam and Long, 2001; Ducklow et al. 2002) is paramount. Therefore it is a 

requisite to study the phylogenetic groups of bacterial communities dominating in the marine 

environment as the abundant groups may have different roles in biogeochemical processes 

(Cottrell and Kirchman, 2000). Though most life does not tolerate low oxygen conditions, 

those microbes that can exploit alternative electron acceptors to support respiration, flourish 

in low oxygenated waters and form unique microbial communities distinct from those living 

in oxic waters. Several authors have reported bacterial community from low oxygen marine 

environments worldwide. Wright et al. (2012) reviewed the bacterial community composition 

in open-ocean and coastal oxygen deficient zones and enclosed or semi-enclosed euxinic 

basins including the Northeast subarctic Pacific (NESAP), the eastern tropical South Pacific 

(ETSP), the Namibian upwelling, and Saanich Inlet, based on taxonomic surveys of 16S 

rRNA gene sequences. Major groups found in order of abundance included Proteobacteria, 

Bacteroidetes, candidate division Marine Group A, Actinobacteria, Planctomycetes, 
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Cyanobacteria, Firmicutes, Verrucomicrobia, Gemmatimonadetes, Lentisphaerae, 

Chloroflexi and some candidate divisions. Ye et al. (2016) reported the presence of 

Gammaproteobacteria, Bacteroidetes, and Planctomycetes from a hypoxic zone in the East 

China Sea. Investigations in the Arabian Sea from the oxygen minimum zone sediment and 

water column by Divya et al. (2010) and Jain et al. (2014) reported the presence of 

Gammaproteobacteria, Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, 

Planctomycetes, Verrucomicrobia, Spirochetes, and Bacteroidetes. These recurring bacterial 

community compositions within the oxygen deficient zones stress the significance of oxygen 

concentration as an organizing principle in pelagic bacterial communities.  

Due to ongoing changes in oxygen distribution all over the world oceans that include 

the appearance of numerous hypoxic zones due to eutrophication, and/or, in some cases, 

changes in circulation (Diaz and Rosenberg, 2008; Stramma et al. 2008) such environments 

have drawn attention to study the key players involved in regulating the stability of the 

ecosystem in response to changing environmental conditions. The high abundance of bacteria 

inhabiting such ecosystems are capable of degrading the organic matter, multiple functions in 

the nitrogen and other elemental cycles. Their easy adaptability to changing environmental 

conditions versus actual activities presents a challenge to ecophysiological and 

biogeochemical measurements.  

 

2.3 The Process of Marine Denitrification  

Denitrification is the important component of nitrogen cycling in the west coast of 

India. Nitrogen being a polyvalent element, its transformation is greatly affected by the 

surrounding oxygen concentration in the marine environment. As seawater is generally 
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oxygenated, fixed nitrogen in the ocean largely ends up in the most oxidized (+5) state, viz. 

nitrate ions (NO3
-), and only in sediments and in parts of the water column in a few well-

demarcated regions like the west coast of India, the dissolved O2 gets almost completely 

depleted to allow microbial conversion of NO3
- to molecular nitrogen (N2); this process, 

denitrification, is the most important pathway of losses of fixed nitrogen.  

 

2.3.1 Factors governing denitrification  

Denitrification refers to the microbially mediated sequential reduction of soluble 

nitrogen forms nitrate (NO3
-) and nirite (NO2

-) to the gaseous products nitrous oxide (N2O) 

and/or nitrogen (N2) via nitrite and nitric oxide termed as heterotrophic denitrification, as 

organic matter is respired in the process, the water-soluble nitrate is converted into gaseous 

nitrogen containing gases. These are  

(i) The cytotoxic and ozone-depleting nitric oxide (NO),  

(ii) Potent and long- lived greenhouse gas nitrous oxide (N2O) and  

(iii) The relatively inert dinitrogen gas (N2). 

It is a facultative anaerobic and one of the most important processes in the nitrogen 

cycle as it refluxes back to the atmosphere some of the N2 added to the ocean. Almost all 

heterotrophic denitrifiers are facultative anaerobes (Tiedje, 1989). Normally, denitrification 

occurs when these conditions are satisfied:  

i) Nitrogen sources for denitrification are available  

ii) Oxygen concentrations are reduced 

iii) Electron donors are available (Seitzinger et al. 2006).  
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Denitrification requires an input of electron acceptors (oxidized N) from advection 

(presumably deep, nitrate-rich water) in suboxic waters. Upwelling centered around May to 

October along the west coast of India induces nutrient-rich waters from the bottom to the 

surface. The upwelled water reaches the surface layer in May and intensifies during June–July 

but withdraws completely and abruptly by October. Initially, the region is hypoxic (≤ 1.4 ml 

L-1); however, as it moves up the shelf, it loses O2 due to the degradation of organic matter 

sinking from productive surface waters. As the O2 levels decline fall below a value of ~1–5 

µM (0.02–0.11 mL L-1), there occurs a shift to what is often referred to as the suboxic 

ecosystem. Under these conditions, facultative heterotrophs switch over to alternate 

respiratory oxidants (electron acceptors) (Bange et al. 2005; Jayakumar et al. 2009a, Gupta et 

al. 2016). 

Owing to the oxidizing nature of the Earth‘s surface environment, including most of 

the oceanic water column, nitrate (NO3
-) is undoubtedly the most abundant combined nitrogen 

species in aquatic systems and occurs at a relatively high concentration (30 μM) in seawater. 

Nitrate (NO3
−) being the next favored electron acceptor for respiration after oxygen 

(considering the reduction to dinitrogen, N2) and can yield similar amounts of free energy as 

that from oxic respiration of organic matter (Froelich et al. 1979, Bange, 2005). 

Denitrification occurs where nitrate is present in congruence to reduced oxygen 

concentrations. This occurs in specific habitats, such as the oxic-anoxic interface of benthic 

sediments, and in the water column at the edge of hypoxic, suboxic or anoxic water masses in 

Oxygen Minimum Zones and upwelling regions. The poor availability of oxygen in the water 

column forces the microbes to utilize nitrate as the next terminal electron acceptor to support 

respiration resulting in denitrification.  
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2.3.2 Bacterial mediated denitrification and genes involved 

Denitrification constitutes one of the main branches of the global nitrogen cycle 

sustained by bacteria, as it uses NO3
−, NO2

−, and nitrogen oxides (NO, N2O) as terminal 

electron acceptors to support respiration in low concentration/absence of oxygen. The process  

involves four enzymatically catalyzed reaction steps: nitrate reduction, nitrite reduction, nitric 

oxide reduction, and nitrous oxide reduction (Knowles, 1982). The end product is generally 

N2, although a few bacterial species terminate at N2O production (Payne, 1981). The genes 

involved in denitrification are indicated by italics.  

 

 

                                                                                              (Modified from Alvarez et al. 2014) 

 

The ability to denitrify has been identified among bacteria, fungi, and archaea. 

However, fungal and archaeal denitrification is not the focus of this research. A very diverse 

group of phylogenetically unrelated bacteria, including members of the Aquificae, 

Deinococcus-Thermus, Bacteroidetes, Firmicutes (Bacillus sp.), Actinobacteria (Streptomyces 

sp.) and Proteobacteria (Pseudomonas, Ralstonia, Alcaligenes, Paracoccus, Rhodobacter, 

Marinobacter, Rubrivivax, Thauera, Burkholderia sp.) are known to have the ability to 

denitrify (Shoun et al. 1992; Zumft 1997; Philippot 2002).  
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Denitrification is considered to be a community process, as many denitrifying 

organisms do not possess the complete set of enzymes to complete the reaction, and could, 

therefore, work together to complete the process (Zumft 1997). Taxonomically diverse groups 

of bacteria are capable of reducing nitrate to nitrite carried out by two types of enzymes, 

membrane-bound and periplasmic-bound nitrate reductases encoded by nar and nap genes 

respectively. narG is expressed predominately under anaerobic denitrifying conditions, and 

napA under aerobic conditions (Bell et al. 1990). Nitrite reduction is carried out by two types 

of the nitrite reductases (nir), either a copper-containing enzyme encoded by nirK or a 

cytochrome cd1 encoded by nirS gene. A bacterium can have one of the two nitrite 

reductases, but not both. As reported by Jayakumar et al. (2009a), the nirS gene is found 

nearly exclusively in Proteobacteria, but Strous et al. (2006) reported this gene from 

Planctomycetes, while nirK gene has been reported from many diverse taxa (Zumft, 1997). 

The reduction of nitrogen oxides, i.e., NO, N2O are carried out by norB and nosZ genes 

respectively. The nosZ gene, encoding for nitrous oxide reductase, it regulates the 

consumption of N2O. The reduction of N2O to N2 by this enzyme is the only known 

mechanism to remove N2O from the atmosphere, other than photolysis and oxidative reactions 

in the stratosphere (Montzka et al. 2011).  

Over 60 genera of bacteria, widespread across many taxonomic groups can denitrify 

but rarely are they strict anaerobes (Zumft, 1997). In fact, most of them can switch between 

oxic and NO3
− dependent modes of respiration. The transcription and subsequent build-up of 

denitrifying enzymes occur when their mode switch, which is mainly regulated by oxygen and 

NO3
− availability. Each step in denitrification is mediated by different enzymes.  The 

transcription and activities of each enzyme respond differently to oxygen, NO3
−, NO2

−, NO 
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and N2O and their activities are not necessarily coordinated with considerable interspecies 

variations (Ferguson, 1994). For example, except for the reaction of membrane-bound nitrate 

reductase (nar) that occurs in the cytoplasm, enzymatic reactions of the next three steps of 

denitrification all take place in the periplasm, which means that, following its production, 

NO2
− must be transported across the membrane back to the periplasm for subsequent 

reduction (Zumft, 1997). 

As nitrous oxide (NO) is a free radical and, thus, very reactive, and highly toxic to 

most bacteria including denitrifiers (Zumft, 1997), nitrite reductase and nitric oxide reductase 

are controlled interdependently at both the transcriptional and enzyme activity levels in order 

to minimize the accumulation of NO (Ferguson, 1994; Zumft, 1997). Although the 

distribution of NO in the environment has not been well-studied, it is generally undetectable 

in aerobic water columns, but it has been detected at low levels (≤ 0.5 nM) in oxygen 

deficient waters (Ward and Zafario, 1988).  

 

2.3.3. Molecular markers for characterizing denitrifying bacteria  

The advancement in molecular microbiology has swept through the various fields of 

marine microbial ecology. Studies on diversity and distribution of marine phylotypes and the  

distribution of specific functional genes are now a large component of research in this field. 

The target functional genes are amplified using PCR; where the primers are specifically 

designed to target the gene of interest based on sequence alignments found in the GenBank 

databases. For each denitrification gene, there are very few full- length sequences, as these are 

typically obtained from genome sequencing of cultured microbes. Therefore, the extent to 

which these primers target all variants of these genes is difficult to assess.  
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The physiological trait such as denitrification is not limited to specific microbial taxa 

and is therefore studied independently of culture through the relevant functional genes 

designed for the same. The genes encoding the catalytic subunits have extensively been used 

as signature genes to characterize the composition of denitrifier communities in past decade 

and have been extensively studied in various environments such as sludge, soils, sediments, 

etc. The ability to denitrify at irregular intervals is distributed both within and between 

different genera and cannot be associated with any specific taxonomic group. Therefore, 

existing techniques to study the ecology of denitrifiers are based on the use of the functional 

genes in the denitrification pathway or their transcripts as molecular markers of this 

community. DNA extraction followed by PCR amplification of denitrification genes has been 

the most common way to start-off the analysis of denitrifier communities.  

Over the past decades, primer pairs and PCR protocols have been developed for the 

amplification of narG, nirS and nosZ genes to describe denitrifier communities (Braker et al. 

1998; Gregory et al. 2000; Bru et al. 2007; Lee at al. 2009; Zhang et al. 2016). Amplifications 

directly from environmental DNA tend to reveal a greater degree of sequence diversity in 

nitrite and nitrous oxide reductase genes than is apparent in the same genes from cultured 

isolates (Braker et al. 2000; Scala and Kerkhof, 1998). 

Of the two nitrate reductases (membrane and periplasmic), the membrane-associated 

enzyme (narG) is typically involved with nitrate respiration under hypoxic conditions and 

probably has a greater role to play in the environmental nitrogen cycle (Richardson et al. 

2001). Hence, this study has focused on the membrane-associated nitrate reductase and makes 

use of previously developed PCR primer systems that successfully amplify fragments of the 

http://mic.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.25849-0#R4
http://mic.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.25849-0#R23
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narG gene that encodes the catalytic molybdenum-cofactor-containing subunit of the enzyme. 

Taxonomically diverse group of bacteria can reduce nitrate to nitrite.  

Genes coding for nitrite reductase (nir) were the first to be used for studies of 

denitrifier diversity and have subsequently been the most common molecular marker for 

denitrifier community studies (Braker et al. 1998; Jayakumar et al. 2004). These genes were 

used as nitrite reduction is the first step in the denitrification reaction that results in the 

production of a gaseous product. Braker et al. (2000, 2001), Liu et al. (2003) and Scala et al. 

(1999) explored marine denitrifier communities from sediments and Castro-González et al. 

(2005), Hannig et al. (2006) reported at oxic–anoxic interfaces in the water column. Sequence 

identity levels as low as 45% (Braker et al. 2000), were detected from marine sediments with 

nirS gene primers.  

Not many studies have focused on nitric oxide reductase (nor) using norB as a gene 

target (Braker and Tiedje, 2003). Nitrous oxide reductase (nosZ) has been quite extensively 

used to describe denitrifier communities because this enzyme reduces a potent greenhouse gas 

N2O, to N2 which is relatively inert in the atmosphere. The application of extraction of DNA 

from environmental matrices in combination with PCR routed the development of culture-

independent approaches in microbial ecology. Since the early 1990s (Giovannoni et al. 1990), 

these methods, have been applied allowing the total microbial community analysis present 

within environmental systems, have revolutionized our understanding of microbial 

community structure and diversity within the environment.  

Quantitative-PCR or qPCR is now widely used in microbial ecology to determine gene 

numbers present within environmental samples, allowing quantification o f functional gene 

markers present within a community from the domain level down to the quantification of 
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phylotypes or individual species. It is the highly reproducible, robust and sensitive method to 

quantitatively track phylogenetic and functional gene changes across spatiotemporal scales 

under varying environmental conditions. The quantitative data obtained can be used to relate 

disparity or variation in gene abundances in comparison with variation in biotic or abiotic 

factors and/or biological activities and process rates (Smith and Osborn, 2009). The 

abundance of denitrification genes by qPCR encoding the nitrate, nitrite, and nitrous oxide 

reductases have been used to study denitrifiers from volcanic soils, glacier foreland, 

wastewater, deep sea sediments etc (Chon et al. 2011; Li et al. 2013; Wyman et al. 2013; Yu 

et al. 2014; Yi et al. 2015; Carvajal et al. 2016).  

 

2.4. Exploring bacterial diversity by 16SrRNA gene 

The great plate count anomaly coined by Stanley and Konopka (1985), that is, the 

variability in bacterial abundance between the number of cells that could be grown as colonies 

on agar plates and the number of bacterial cells enumerated in seawater by epifluorescence 

microscopy, concluded that a very large portion of bacteria cannot be currently grown under 

laboratory conditions, some are non-viable, while some may be viable but non-culturable. The 

bacterial isolates that were obtained for use in laboratory experimentation were typically 

microbes that grew well at high substrate concentration. Microbiological culture techniques 

have been significantly improved ever since the discovery of bacterial pure culture techniques 

by Robert Koch. Traditionally bacteria were identified based on its morphological and 

physiological properties using Bergey‘s manual systems of classification based on 

morphology, Gram stain, spore stain, motility, biochemical characterization, enzyme 

activities, and utilization of several substrates as sole carbon and energy sources which 



22 
 

allowed the grouping of bacterial isolates into genera and species. These approaches have 

been used to identify and characterize the culturable bacteria. However, a majority of bacterial 

species in any environment are still uncultivable in the laboratory, due to the lack of 

knowledge of the real conditions under which these bacteria are growing in their natural 

environment. Because of this limitation, bacterial diversity can only be accurately determined 

using molecular taxonomic tools that preclude the need for laboratory cultivation.  

The use of smaller subunit ribosomal RNA (rRNA) sequencing established by Carl 

Woese in the 1970s provided the foundation for determining the evolutionary relationship 

between organisms and thereby quantifying diversity as sequences-divergence on a 

phylogenetic tree, improved the view of microbial diversity. Norman Pace and colleagues 

(Pace et al. 1986; Olson et al. 1986) proposed the outline of a molecular approach to identify 

the 16S rRNA gene (16S rDNA) of microbes without their cultivation. In this method, DNA 

is extracted from environmental samples and the 16S rRNA gene amplified via PCR (using 

universal primers for 16S rDNA), and PCR amplicons were cloned into competent cells and 

subjected to DNA sequencing. The 16S rDNA sequences obtained are then compared with 

sequences in the NCBI database using Basic Local Alignment Search Tool (BLAST). These 

sequences are then compared with known sequences to find their position in a phylogenetic 

tree. 

Microbiologists have primarily depended on 16S rRNA gene sequencing for 

identification and classification of isolated pure cultures and 16S rDNA-based metagenomic 

analysis of bacterial diversity (Stevens and Ulloa, 2008; Alonso-Gutiérrez et al. 2009; Cury et 

al. 2011; Divya et al. 2011; Da‘ Silva et al. 2013; Ye et al. 2016). This gene has several 

conserved regions which are common to a large number of bacterial species, and variable 
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regions, which are shared by fewer species. Primers are designed to bind the conserved 

regions and amplify variable regions. The 16S rRNA gene sequences used to study taxonomy 

and bacterial phylogeny has been by far the most common genetic marker used for some 

reasons that include: 

I. Its presence in almost all bacteria they contain variable and highly conserved 

regions which allow distinguishing between organisms on all phylogenetic 

levels  

II. The 16S rRNA gene over time is the same and has not changed, suggesting 

that random sequence changes are a more accurate measure of time 

(evolution); 

III. A lot of data exist in the databases such as BLAST 

(http://www.ncbi.nlm.nih.gov) which can be used to compare the DNA-

sequences of unknown microorganisms and allow a phylogenetic 

identification. Species are identified based on the closest match obtained from 

the existing database. 

 

Because of the significance of bacteria in the marine environment, it is important to 

understand the full extent of bacterial diversity and the role of the most abundant species. 

Comparisons between classical culture-dependent and 16S rDNA-based metagenomic 

analysis of bacterial diversity have revealed that only about 1% of the total microbes are 

amenable to culture. To comprehend the physiology and ecology of bacterial species, their 

isolation in pure culture remains an essential step in microbial ecology. Using both 16S rDNA 

phylogenetic analysis and culture techniques, it is possible to characterize the microbial 

http://www.ncbi.nlm.nih.gov/
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diversity and culture characteristics of the isolated microorganisms in different environments, 

allowing a complete picture. 

 

 

2.4.1. Phylogenetic and statistical analyses of bacterial diversity  

The culture-independent studies of the microbial diversity are mostly based on 16S 

rDNA/functional gene sequences. A number of statistical models are used to compare the 

bacterial community richness that depends on the operational taxonomic units (OTUs). OTUs 

are a cluster of similar variants of the 16S rRNA/functional marker gene sequences. Each of 

these clusters represents a taxonomic unit of bacterial genus depending on the sequence 

similarity threshold. Usually, OTU cluster is defined by a 97 % identity threshold of the 

desired gene sequence variants at the genus level. From each OTU, a single sequence is 

selected as a representative. This representative sequence is annotated, and that annotation is 

applied to all remaining sequences within that OTU.  

Once OTUs are defined it is possible to compare and estimate species richness. A 

commonly applied procedure is the rarefaction analysis, which compares observed richness in 

environments that have not been sampled equally (Hughes et al. 2001). In any sampling 

regimen, the number of types increases with the effort until all types are observed. This 

relationship allows accumulation or rank abundance curves to be plotted, the shape of which 

provides information on how well the community has been sampled relative to its total 

diversity (Kemp and Aller, 2004).  

The nonparametric species richness estimator Chao 1 (Chao, 1987) and Goods‘s 

coverage (Good, 1953) has been applied to microbial data sets in ecological studies. Species 

http://www.metagenomics.wiki/pdf/definition/16s-ribosomal-sequences
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richness estimators are used to estimate the total number of species present in a community. 

The Chao 1 index is commonly used and is based upon the number of rare classes (i.e., 

OTUs) found in a sample (Chao, 1984). Goods coverage estimates the percentage of the total 

species represented in a sample. The combination of species richness and diversity estimates 

provide information that enables a deeper understanding of microbial diversity. The software 

program MOTHUR is very helpful for the statistical analysis of microbial diversity (Schloss 

et al. 2009). 

 

2.5 West coast of India: Studies on its circulation pattern and Biogeochemistry  

The contribution of the Indian west coast to biogeochemical cycling of nitrogen is 

disproportionately large. It is one of the major sites where fixed nitrogen, i.e., nitrate, is 

transformed in the water column to dissolved gaseous nitrogen (Bange et al. 2005). This  

process is called pelagic denitrification (to distinguish it from sedimentary denitrification). 

The Arabian Sea accounts for 15% of oceanic primary production (Prasannakumar et al. 

1995), 80% of organic burial (Paropkari et al. 1992), 50% of calcium carbo nate deposition 

(Naidu, 1991; Paropkari et al. 1992; Pattan et al. 2003), 90% of sedimentary mineralization 

(Nair et al. 1989), and 75–90% of oceanic sink of suspended material carried by rivers.  

 

2.5.1. Circulation pattern along west coast of India 

In coastal regions, winds and currents are the primary driving forces which determine 

the physical processes of the system. The co-existence of physical processes and their 

interaction with each other has a significant influence on ecology and coastal geomorphology. 

In the west coast of India, strong winds blowing parallel to the coast during the southwest 

monsoon (June-October), force the surface waters embracing the coastal regions to move 
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away from the shore resulting in a net movement of surface water at right angles to the 

direction of the wind (45º at surface to total shift of 90° for the water column), which is 

termed as Ekman transport (Rao et al. 2008). When Ekman transport occurs along the coast, 

the surface waters are replaced by drawing those from intermediate depths to surface, this 

process is known as upwelling (Fig 1). In the reverse process, Ekman transport moves the 

surface waters toward the coast, which piles up and eventually sinks, this process referred to 

as downwelling (Fig 2) occurs during the northeast monsoon (November to March).  

Deep waters are enriched with nutrients such as nitrate, silicate, and phosphate due to 

the decomposition of sinking organic matter and lack of biological uptake. These nutrients 

when brought to the surface results in intense biological productivity. Coastal upwelling 

systems are highly active and exhibit wide variations in the hydrographic, nutrient and 

phytoplankton characteristics controlled by remote forcing on longer timescales and local 

meteorology on short timescales. Upwelling regions in comparison to other areas of the ocean 

are therefore significant for very high levels of primary production. Though the upwelling 

phenomenon is less in intensity along the south west coast of India in comparison to the other 

thoroughly studied upwelling regimes of the Arabian Sea (like those at Somalia and Oman), it 

has profound impacts on the coastal fisheries of India. While the west coast of India accounts 

for 70 % fish yield of the total Arabian Sea production, the southwest coast alone accounts for 

53 % hence this region is of considerable importance in the Indian context (Priya et al. 2016).  
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Fig 1: Upwelling 

 

 

 

 

 

Fig 2: Downwelling 

(Adapted from DataStreme Ocean) 
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2.5.2. The evolution of seasonal hypoxia along the west coast of India 

The existence of permanent hypoxia in the Indian Ocean (Arabian Sea) was 

discovered during the first major scientific expedition—the John Murray Expedition in 1933–

1934. The thickest oxygen (O2) deficient zone in the open-ocean was first discovered (Sewell 

and Fage, 1948) and thereby nitrogen cycling investigated (Gilson, 1937). Sen Gupta et al. 

(1976) investigated nitrogen cycle processes in the region. Since then a lot of research has 

been conducted on the northwestern Indian Ocean. In addition to the oxygen deficient zone in 

the open-ocean, the Arabian Sea, on the other hand, houses one of the major upwelling zones 

of the world: the west coast of India, during the southwest monsoon (June-October) (Banse, 

1959; Carruthers et al. 1959). The first time series measurement was made by Banse off 

Kochi (latitude 10oN) during 1958–1960 (Banse, 1959; 1968) observing the decline of oxygen 

in near-bottom waters during April as the water column began to get stratified with the peak 

oxygen depletion occurring during September–October. A similar pattern was also seen in 

waters off Goa at a fixed regular sampling site the Candolim Time Series (CaTS) since 1997 

(Naqvi et al. 2000, 2006). 

The surface currents in the Arabian Sea flow clockwise during the southwest monsoon 

and anti-clockwise during the northeast monsoon (Naqvi, 2008). The temporal evolution of 

hypoxic conditions over the west coast of India is linked to the seasonal reversal of surface 

circulation; the southward or clockwise flowing West India CoastalCurrent (WICC) that 

induces upwelling. The oxygen deficiency begins with the initiation of upwelling, sometimes 
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April–May and intensifies gradually with time (Naqvi, 2006; Naqvi and Unnikrishnan, 2009). 

The intense biological productivity as a result of upwelling results in a greater demand for 

oxygen by bacteria to decompose bulk organic matter produced. Higher consumption rates of 

dissolved oxygen lead to oxygen deficient conditions: hypoxia (O2 ≤ 1.4 ml L−1; 62.5 µM) or 

suboxia (O2 ≤ 0.1 ml L−1; 4.5 µM) (Levin et al. 2009) in the water column. Additionally, the 

prevalence of freshwater layer at the surface waters as a result of intense rainfall results in 

strong surface stratification and acts as a barrier layer for atmospheric oxygen diffusion or 

supply to coastal waters contributes to oxygen depletion. Therefore, restricted replenishment 

from atmosphere makes the low oxygen organic-rich waters turn hypoxic. Such seasonal 

oxygen deficiency following the southwest monsoon upwelling, have been found along the 

west coast of India. The area covering oxygen levels < 0.5 ml-1 (or < 25 μM) is estimated to 

be ~1.8 x 105 km2 where the upwelling intensity decreases from south to north (Fig 3) (Naqvi 

et al. 2000). High biological production during and following southwest monsoon could be 

due to the influx of atmospheric and river/groundwater discharges of nitrogen released by 

human activities, primarily agriculture.  

With the collapse of this circulation, the water column becomes oxygenated in 

November. During the northeast monsoon (November to March), the WICC carries warmer, 

fresher waters of equatorial origin toward the north. The low concentrations of nutrients 

coupled with downwelling associated with this flow result in low productivity and relatively 

deep mixed layers so that the waters are well oxygenated.  
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Fig 3: Shaded regions experience oxygen deficiency during the southwest monsoon 

(Adapted from Naqvi et al. 2000) 

 

2.5.3. West coast of India as a source of nitrous oxide (N2O) 

The upwelling-dominated, west coast of India is a ‗‗hot spot‘‘ for N2O emissions that 

might make a substantial contribution to the atmospheric budget of N2O. N2O levels of ~765 

nM (Naqvi et al. 2001; 2006) have been observed in the west coast of India. Time series 

observations in the last few years off Goa have clearly documented the annual occurrence of 

hypoxia in September-October. Thus, coastal waters are considered to be a significant source 

of green house gases, contributing to more than 60% of the global oceanic flux (Bange et al. 

1996; Naqvi et al. 2000; 2006; 2009).   
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As reviewed by Naqvi et al. (2010) the west coast of India during the northeast 

monsoon and spring intermonsoon periods is well oxygenated, and N2O concentration is 

found to be < 10 nM. As the southwest monsoon upwelling commences in June, the apparent 

utilization of oxygen in response to upwelling leads to an increase of NO3
−. in the subsurface 

layers. The concentration of N2O begins to amass and persists as the water column turns 

suboxic (< 0.5 ml L−1). With the rapid drop of nitrate, N2O steeply increases thus denoting the 

N2O production through denitrification. 

Although bacteria are abundant and ubiquitous in marine ecosystems, relatively little 

is known about their diversity and composition, affected by various environmental 

parameters. The interaction between bacterial assemblages with their living environments 

shapes the bacterial community structure and affects the function of various bacterial groups. 

Therefore it is vital to understand the microbial ecology and its role in this eco-system. 
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3.1 Introduction 

Coastal ecosystems are biogeochemically important regions, where organic matter 

undergoes intense chemical transformations. In these and all other marine ecotypes, 

heterotrophic bacteria are important components playing many vital roles in the cycling of 

most or all biologically essential elements (Cole et al. 1988). Their role is vital in the 

structuring of marine trophic web networks and, remineralization of organic matter (Azam et 

al. 1983; Azam and Long, 2001; Ducklow et al. 2002). Characterized by strong seasonal 

oscillations in physical forcing and biological production, the Arabian Sea is a recognized 

productive tropical oceanic region. Intense upwelling during south-west monsoon months of 

June-October results in intense biological productivity (Prasannakumar et al. 1995; Haugen et 

al. 2002; Prakash et al. 2007). Higher biological production during and following southwest 

monsoon could also be supported by the influx of atmospheric (Singh et al. 2015) and 

river/groundwater discharges (Shetye, 2007) of nitrogen and other nutrients brought in due to 

a variety of human activities.  

The great demand for oxygen by bacteria to decompose the organic matter produced 

as a result of upwelling lead to oxygen deficient conditions with dissolved oxygen 

concentrations <1.42 ml L−1 termed as hypoxia in the water column (Wright et al. 2012). 

Depletion of oxygen necessitates bacteria to utilize nitrate via the denitrification process. In 

the denitrifying zone off the southwest coast of India, high concentrations of nitrite (>15 μM) 

and nitrous oxide (>500 nM) have been reported (Naqvi et al. 2000). It is this paradox that 

results in massive loss of fixed nitrogen effluxing nitrous oxide to the atmosphere (Bange et 

al. 2001; Babbin et al. 2015) which is a potent greenhouse gas that is involved in the 

destruction of the ozone layer. Thus, such ecosystems are hotspots for nitrogen 
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transformations, where due to deficiency of oxygen, nitrate serves as the main electron 

acceptor in organic matter remineralization.  

Thus such ecotypes ought to harbor unique, diverse microbial communities in 

particular of heterotrophic bacteria whose metabolism controls key steps in marine 

biogeochemical cycling (Zehr and Ward, 2002). Because of the hydrographical and 

physicochemical changes along the south-west coast of India with respect to seasons, 

knowledge of bacterial community structure may offer required information as to understand 

how bacterial community differs with the changing environmental conditions. Analyses 

focusing on documenting bacterial community structure are essential to realize their possible 

functional role. Though cultivation-based methods alone cannot explore the entire microbial 

community, they offer the basis for elaborating the possible metabolic activities of extant 

microbial communities in biogeochemical cycling. 

Therefore the goal of this chapter was to elucidate the Phylogenetic analyses of culture 

amenable bacterial communities. Following the isolation and purification of a large number of 

isolates the 16S rRNA gene sequencing approach was adopted to decipher the diversity and 

phylogenetic relatedness of culture amenable heterotrophic bacteria from the south-west coast 

of India which experiences seasonal hypoxia. This was done to gain an overall understanding 

of the culturable bacterial diversity during hypoxic and non-hypoxic periods. 

 

3.2 Materials and methods 

3.2.1 Study area 

Differential solar heating across the Indian Ocean and Eurasian land mass leads the 

Arabian Sea to undergo seasonal reversal of wind called as the Southwest (SW) monsoon 
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from June to October and Northeast (NE) monsoon from November to March. The seasonal 

reversal of winds and currents in the west coast of India (Shetye et al. 1990) results in the 

mixed layer dynamics making it highly productive. Seasonal upwelling occurring along the 

West Coast of India (WCI) during the southwest monsoon season enriches the surface waters 

with nutrients (Banse, 1968) leading to increased biological production. Following this 

production, the degradation of the organic matter most often results in denitrification (Naqvi 

et al. 1994).  

One of the important aspects of the south-west coast of India is the seasonal 

hypoxia/anoxia arising from enhanced oxygen demand for mineralization of organic matter 

following high surface biological production in response to upwelling. It is this feature that 

makes the western continental shelf of India a ‗‗hot spot‘‘ for N2O (nitrous oxide) production 

(Naqvi et al. 2000). The West India Coastal Current which reverses seasonally (Shetye et al. 

1990) being northward (November-May) and southward (June-October). These authors state 

that the biogeochemistry is thus different during these seasons. During summer monsoon, the 

upwelling- induced nutrient enrichment leads to high biological production along the south-

west coast of India. Muraleedharan and Prasannakumar (1996) characterized the vertical 

thermal and density structures from the coastal waters Off Goa to Kochi. Their study 

elucidates that Off Goa, there is gentle upsloping of isotherms towards the coast bringing 

deeper colder waters to surface. Off Mangalore, the remarkable shoaling of thermocline 

towards the coast is related to active upwelling, and Off Kochi, there is pronounced deepening 

of isopycnals and isotherms in the sub-thermocline region. 
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3.2.2 Sample Collection 

Water samples were collected during cruises R V Sindhu Sankalp (SSK 056 and SSK 

079) and R V Sindhu Sadhana (SSD tr-008) under SIBER (Sustained Indian Ocean 

Biogeochemistry and Ecological Research) during October 2013, June-July 2014 and March 

2015, representing the fall intermonsoon (FIM), summer monsoon (SuM) and spring 

intermonsoon (SIM) respectively. Sampling was carried out Off Goa, Off Mangalore and Off 

Kochi at three different depths (surface, mid-depth and bottom) as shown in Fig 1. Sampling 

locations are Off Goa: G9-0, 35, 66 m (15º37´N, 73º49´E); Off Mangalore: M8-0, 50 and 100 

m (12º84´N, 74º30´E) and Off Kochi: K3-0, 40, 100m (9º96´N, 75º63´E). Water samples 

were collected using pre-cleaned Niskin samplers (washed with tap water and rinsed with 

distilled water after each sampling).  

 

3.2.3 Measurements of nitrite, nitrate and dissolved oxygen concentrations  

For each sample, dissolved oxygen (DO) was measured by the classical Winkler 

titration method modified by Carpenter (1965). The nutrients (nitrate and nitrite) were 

measured using a Skalar autoanalyser (Skalar Analytical) following standard methods 

(Grasshoff et al. 1983). 

3.2.4 Enumeration of total bacterial counts  

Subsamples of 50 ml volumes from each depth were preserved with buffered 

formaldehyde (2% final concentration). 2 ml of the sample was incubated with 4‘, 6-

diamidino-2-phenylindole (DAPI; 20 μl of 1 mg ml−1 working solution) for 20 min and 

filtered onto black 0.22 μm pore-size polycarbonate membrane filters (Millipore) (Porter and 

Feig, 1980). Epifluorescence microscopic counts were made using a microscope (Olympus 
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BX-51). From each sample, 20 random microscopic fields were chosen to obtain a reliable 

mean.

 

Fig. 3.1: Map of sampling locations, dots marked represents the sampling stations 

along the south-west coast of India 
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3.2.5 Isolation of culturable heterotrophic bacteria 

Zobell Marine Agar (ZMA; consisting of 5 g peptic digest of animal tissue, 1 g yeast 

extract, 0.1 g ferric citrate, 19.45 g NaCl, 8.8 g MgCl2, 3.24 g of Na2SO4, 1.8 g CaCl2, 0.55g 

KCl, 0.16 g NaHCO3, 0.08 g KBr, 0.034 g SrCl2, 0.022 g H3BO3, 0.004) was used to isolate the 

culturable populations of aerobic, heterotrophic bacteria. Briefly, 100µl of the seawater 

sample was spread plated onto the ZMA plates and incubated at 28°C in an incubator on-

board until visible bacterial colonies were seen. The bacterial cultures were purified by 

streaking well-separated colonies onto several fresh ZMA plates. Single, well- isolated 

colonies were picked out using a sterile microbiological loop for obtaining single colony 

based pure cultures. These plates were wrapped using cling-wrap, stored at 4°C, and brought 

back to the laboratory for their identification based on 16S rRNA sequencing technique. 

Morphologically distinct colonies were chosen for purification from each sample plated on to 

ZMA. 

 

3.2.6 Extraction of genomic DNA from bacterial cultures 

DNA was extracted from a total of 360 (Off Goa), 270 (Off Mangalore) and 270 (Off 

Kochi) purified cultures obtained from each season, using the modified method of DNA 

extraction by CTAB method as described by (William et al. 2012). The steps followed were: 

1. The bacterial strains were grown overnight at 28ºC in 5 ml Zobell Marine Broth 

(ZMB) for 24 hours. 

2. An aliquot of 1.5 ml culture was centrifuged at 10,000 rpm for 10 min in a microfuge 

tube. The supernatant was discarded and resuspended in 500 µl Tris-EDTA buffer. 
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3. To this, 40 µl of 100 mg mlˉ lysozyme was added and incubated at 37°C for 30 min.  

4. ProteinaseK (100 µl of 10 mg mlˉ), Sodium dodecyl sulfate (50 µl of 10% solution) 

and RNase (10 µl of 20 mg mlˉ) were added, and the tubes were incubated for 2 hours 

at 55°C. 

5. Following this incubation, 100µl each of 5M NaCl and CTAB/NaCl was added, mixed 

well and incubated at 65°C for 10 min. 

6. An approximately equal volume (0.7 to 0.8 ml) of chloroform/isoamyl alcohol (24:1) 

was added to the above, mixed thoroughly, and centrifuged for 10 min. A white 

interface was visible after centrifugation.  

7. The aqueous phase was collected in a fresh microfuge tube, leaving the interface 

behind and an equal volume of phenol-chloroform-isoamyl alcohol (25:24:1) was 

added and centrifuged for 10 min. 

8. The aqueous phase was transferred in a fresh microfuge tube, 0.6 vol isopropanol was 

added and incubated overnight at -20°C. 

9. The precipitated DNA was washed with 70% ethanol, spun at max speed for 5 min at 

4°C. 

10. The supernatant 

discarded and the pellet was allowed to dry at room temp.  

11. The pellet was 

dissolved in 50 µl TE buffer. 

12. The integrity of the total DNA was checked by agarose (0.8 %) gel electrophoresis.  

 

 

3.2.7 PCR amplification of 16S rRNA gene from DNA extracts 
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Bacterial 16S rRNA gene from the extracted DNA  was amplified by following 

standard polymerase chain reaction (PCR) method using universal primer set, 27F (5´-

AGAGTTTGATCCTGGCTCAG-3´) and 1492R (5´-GGTTACCTTGTTACGACTT-3´) of 

Weisburg et al. (1991). The PCR mixture (50 µl) contained 1 µl of extracted DNA (5-50 ng 

µl-1), forward and reverse primer (1 µl each) at a concentration of 0.5 µM, 25 µl of Ready 

Mix Taq PCR mix (Sigma-Aldrich, USA) [1.5 U Taq DNA polymerase; 10 mM Tris-HCl, 50 

mM KCl, 1.5 mM MgCl2, 0.001% gelatin, 0.2 mM deoxynucleoside triphosphate (dNTP), 

stabilizers], and 22 µl of milliQ water. The amplification steps were as follows: initial 

denaturation for 10 min at 95 °C, followed by 35 cycles each for 1 min at 94 °C, at 55 °C and 

at 72 °C and, a final extension step for 10 min at 72 °C via Thermocycler (Applied 

Biosystems, USA). The PCR products thus obtained were checked by agarose gel (1.5%) 

electrophoresis. 

 

3.2.8 16S rRNA gene sequencing, phylogenetic and statistical analysis 

The purified PCR products of bacterial cultures containing the inserts of 

approximately 1500 base pairs were then sequenced by using an ABI 3130XL genetic 

analyzer (Applied Bio-systems). Databases (GenBank) were searched for sequences similarity 

analysis of the sequences obtained and compared with the NCBI database through BLAST 

searches (http://blast.ncbi.nlm.nih.gov). In this comparison, sequences of type strains most 

closely related to the sequences of the isolates were searched and checked for the chimera 

using DECIPHER‘s (http://decipher.cee.wisc.edu/) before submission. Sequences were 

grouped as operational taxonomic units (OTUs) by 97% or greater sequence similarity, in the 

MOTHUR program (Schloss et al. 2009). Representative sequences from each OTU were 

http://decipher.cee.wisc.edu/
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aligned using the software MUSCLE (Edgar, 2004), and phylogenetic trees were constructed 

by the software MEGA6 using the neighbor-joining algorithm (Tamura et al. 2013). The 

topology of the phylogenetic tree was assessed by bootstrap analysis with 1,000 replications. 

Diversity indices (Coverage, Chao, Shannon, and Simpson) were calculated using MOTHUR 

at the cutoff level of 3% using Mothur‘s summary.single routine.  

 

3.2.9 Nucleotide sequence accession numbers 

Sequences obtained were submitted to GenBank and accession numbers assigned are 

KY742460 to KY742549, KX284748 to KX284837, KM041176 to KM041238, KT247563 to 

KT247589, KU878756 to KU878845, KT361410 to KT361456, KT361457 to KT361499, 

KY742370 to KY742459, KM041114 to KM041175, KT247505 to KT247562, KT936717 to 

KT936836, and KT907063 to KT907182. 

 

3.3 Results 

3.3.1 Environmental parameters during different seasons and locations 

The environmental parameters varied widely between locations, seasons, and depths. 

The temperature at locations Off Goa, Off Mangalore and Off Kochi was constant (28 ºC) 

throughout the water column during SIM. Briefly, seasonal differences in temperature ranges 

were minimal with the temperature ranging from 29-30 °C at the surface, 21-28 °C in the 

mid-depth and 17-22 °C in the bottom in SuM. FIM observed 29 °C in the surface, 22 °C in 

the mid-depth and 19 °C in the close to bottom water layers, While a constant temperature of 

28 °C throughout the water column during SIM. Dissolved oxygen (DO) varied between 

194.33-252.38 µM in the surface, 27.76-150.42 µM in the mid-depth and < 70.31 µM to 
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undetectable levels in the samples close to the bottom in SuM. During FIM the DO ranged 

from 198-203.46 µM in the surface, < 50.84 µM in the mid-depth and < 27 µM to 

undetectable levels in the samples close to the bottom. During SIM, the entire water column 

was well oxygenated throughout the water column. In SuM, the nitrate concentrations ranged 

from an undetectable level in the surface, 2-23 µM in mid-depth to 17-26 µM in the near 

bottom samples. The nitrate concentration was significantly high during FIM ranging from 

20-30 µM in the bottom waters, 9-30 µM in the mid-depth and negligible in the surface. Its 

concentrations were undetectable during SIM. Similarly, nitrite was higher in the bottom 

waters ranging from < 2-4 µM during FIM and undetectable levels in the surface and mid-

depths. However, the nitrite values were unnoticeable during SuM and SIM. No significant 

difference was seen between the seasons for the TBC counts, but vertically the count was 

higher at the surface and low at the close to bottom depth (Table 3.1).  

 

 

.
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Table 3.1: Season wise variations in different environmental parameters at sampling locations along the west coast of India  

  SuM FIM SIM 

 Depths Goa Mangalore Kochi Goa Mangalore Kochi Goa Mangalore Kochi 

           
 Surface 30.18 29.46 26.99 29.10 29.00 29.12 29.13 28.6 28.6 
Temperature(°C) Mid 28.64 26.25 21.28 21.45 21.09 22.92 28.51 28.1 28.7 

 Bottom 22.06 20.54 17.45 19.69 19.54 21.27 28.08 28.4 26.9 
           

 Surface 194.33 199.03 252.38 203.46 206.10 198.87 198.06 186.59 187.48 
DO(µM ) Mid 150.42 105.63   27.76 28.65    19.91   50.84 161.77 168.29 145.08 
 Bottom 70.31   24.81    9.24 6.16      8.71   26.47 152.71 127.76 122.31 

           
 Surface 0.08 1.50 0.09 0.29 0.00 0.16 0.28 0.20 0.19 

Nitrate (µM) Mid 0.15 2.10 23.00 29.35 30.88 9.49 0.34 0.14 0.32 
 Bottom 17.01 23.04 26.82 24.86 30.79 20.67 0.00 0.00 0.00 
           

 Surface 0.00 0.00 0.00 0.56 0.00 0.03 0.01 0.01 0.02 
Nitrite(µM) Mid 0.04 0.59 0.03 0.22 0.00 0.18 0.14 0.12 0.10 

 Bottom 0.11 0.04 0.05 3.70 0.01 0.19 0.00 0.00 0.00 
           
 Surface 10.8 11.4 10.9 11.3 10.3 11.3 10.8 9.4 9.7 

TBCx109 cells L-1 Mid 8.1 9.4 7.1 6.2 7.7 6.2 6.4 7.9 7.2 
 Bottom 4.2 5.6 6.9 5.9 6.3 5.9 4.9 4.6 8.9 
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3.3.2 16S rRNA gene-based bacterial diversity 

3.3.2.1. a Off Goa 

To cover as much phylogenetic diversity of culturable bacteria as possible, over 360 

cultures, at least 120 of them from each season and 40 from each sampling depth were 

subjected to 16S rRNA gene sequencing. From these analyses, 24 different genera were 

identified that belonged to five bacterial domains: Gammaproteobacteria, 

Alphaproteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. Seasonal comparisons 

were useful to recognize the variations in culturable bacterial species composition with 

respect to different seasons. Species of Vibrio, Alteromonas, Marinobacter, and Bacillus were 

found during all three seasons. However, Bacillus spp. was the dominant group during SIM,  

Alteromonas sp. dominated during SuM and those of Vibrio spp. dominated during FIM. 

Species of Idiomarina, Sufflavibacter, Thalassospira, and Zunongwangia were the major 

types during SIM and FIM.  

Photobacterium and Pseudoalteromonas spp. were found during SuM and FIM. 

Marinomonas sp. was observed only during SuM. The species found exclusively during SIM 

were Gordonia, Kocuria, Microbacterium, Erythrobacter, Psychrobacter, Chromohalobacter, 

Exiguobacterium, and Staphylococcus. While, Pseudomonas, Kosakonia, Salinicola, 

Janibacter and Halomonas species were exclusively found during FIM (Fig. 3.2a). Vertical 

differences in the bacterial community structure between surface, mid-depth and near-bottom 

were also observed (Fig. 3.2b).  
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Fig.3.2a: Temporal variations in culturable bacterial community structure Off Goa  
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Fig.3.2b: Bacterial community structure at different sampled depths during different seasons 

Off Goa 

3.3.2.1. b Phylogenetic analyses 

As many as 21 OTUs were formed from the 120 cultures analyzed during SIM. 10 

OTUs belonged to Gammaproteobacteria, 4 OTUs related to Firmicutes, 3 OTUs related to 

Actinobacteria, 2 OTUs each representing Alphaproteobacteria and Bacteroidetes. During 

SuM, the 120 cultures grouped into 11 OTUs, with 9 OTUs representing 

Gammaproteobacteria and 2 belonging to Firmicutes. The 120 cultures analyzed during SIM 

grouped into 24 OTUs with 19 OTUs belonging to Gammaproteobacteria, 2 OTUs related to 

Bacteroidetes, and 1 OTU each representing Alphaproteobacteria, Actinobacteria and 

Firmicutes. A phylogenetic tree was constructed using the neighbor-joining method using 

MEGA 6 to show relationships between the dominant OTUs in each season and their closest 

neighbors (Fig 3.3 a, b and c). 

3.3.2.1. c Statistical analysis 

The Chao1 estimator of species richness, Shannon diversity index, Simpson diversity 

and Good‘s coverage for each sampling site were calculated across the three seasons. The 

Shannon diversity index was the highest during FIM and lowest during SuM with values 2.96 

and 2.05 respectively. While coverage values ranged from 93% to 97% (Table 3.2). The 

rarefaction analysis was done for the comparing the sampling effort and phylotype obtained, 

indicated that more ribogroups were found during FIM and the least during SuM at equal 

sampling effort (Fig 3.4).  
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Fig 3.3a: Phylogenetic tree of culturable bacterial isolates generated from a lignments of 16S 

rRNA gene sequences from the coastal Arabian Sea samples Off Goa during SIM and 
representative references retrieved from Genbank. In the bootstrap test of 1000 replicates, the 
percentage of the replicate trees wherein the associated taxa that clustered together is shown 

next to the branches. Bootstrap values > 50% is shown at each node. Scale bars represent the 
nucleotide substitution percentage.  
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Fig 3.3b: Phylogenetic tree of culturable bacterial isolates generated from alignments of 16S  

rRNA gene sequences from the coastal Arabian Sea samples Off Goa during SuM and 
representative references retrieved from Genbank. In the bootstrap test of 1000 replicates, the 
percentage of the replicate trees wherein the associated taxa that clustered to gether is shown 

next to the branches. Bootstrap values > 50% is shown at each node. Scale bars represent the 
nucleotide substitution percentage.  
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Fig 3.3c: Phylogenetic tree of culturable bacterial isolates generated from alignments of 16S 
rRNA gene sequences from the coastal Arabian Sea samples Off Goa during FIM and 
representative references retrieved from Genbank. In the bootstrap test of 1000 replicates, the 

percentage of the replicate trees wherein the associated taxa that clustered together is shown 
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next to the branches. Bootstrap values > 50% is shown at each node. Scale bars represent the 
nucleotide substitution percentage.  

Table 3.2: Distribution of ribogroups, diversity indices and coverage of OTUs during 
different seasons from coastal waters of the eastern Arabian Sea Off Goa 

Diagnostic SIM SuM FIM 

No. of cultures 120 120 120 

No. of OTUs 20 11 24 
Shannon‘s index 2.90 2.05 2.96 

Simpson‘s index 0.05 0.21 0.06 
Chao1 24.5 16 32.5 
Good‘s coverage (%) 97 97 93 

 

 

 

 

 

 

Fig 3.4: Rarefaction curves of operational taxonomic units (OTUs) of culturable bacteria 

obtained during different seasons. 
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3.3.2.2. a Off Mangalore 

From the 270 cultures (at least 90 of them from each season) subjected to 16S rRNA gene 

sequencing, 17 different genera were identified that belonged to five bacterial domains: 

Gammaproteobacteria, Alphaproteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. 

Unlike Off Goa, Alteromonas sp. and Vibrio spp. were dominant during all three seasons. 

However, Photobacterium sp. was observed during SIM and SuM, while Marinobacter sp. 

was observed only during SuM and FIM. Species of Sufflavibacter, Zunongwangia, 

Staphylococcus, and Bacillus were found during SIM and FIM. Whereas, the minor groups of 

bacteria such as species of Micrococcus, Grimontia, Shewanella, Macrococcus, and 

Acinetobacter were found exclusively during SIM. Thalassospira, Idiomarina and 

Pseudoalteromonas sp. was observed only during FIM (Fig. 3.5a). Depth pattern of the 

bacterial community showed invariability between the depths. During SIM, more phylotypes 

were seen at the surface, while in FIM more phylotypes were seen at the mid-depth, but SuM 

showed a consistent pattern throughout the water column (Fig. 3.5b).  

3.3.2.2. b Phylogenetic analyses  

As many as 19 OTUs were formed from the 90 cultures analyzed during SIM. 10 

OTUs belonged to class Gammaproteobacteria, 7 OTUs related to Firmicutes, 1 OTU each 

related to Actinobacteria, and Bacteroidetes. During SuM, the 90 cultures grouped into 9 

OTUs representing class Gammaproteobacteria. The 90 cultures analyzed during FIM 

grouped into 14 OTUs with 10 OTUs belonging to class Gammaproteobacteria, 2 OTUs 

related to Firmicutes and 1 OTU each representing Alphaproteobacteria and Bacteroidetes. A 

phylogenetic tree was constructed using the neighbor-joining method using MEGA 6 to show 
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relationships between the dominant OTUs in each season and their closest neighbors (Fig 3.6 

a, b and c).  

 

Fig.3.5a: Temporal variations in bacterial community structure Off Mangalore  
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Fig.3.5b: Bacterial community structure at different depth sampled during different seasons 

Off Mangalore 
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3.3.2.2. c Statistical analysis 

Species richness, diversity indices, and the percentage of coverage in each library 

were determined across the three seasons. The Shannon diversity index was the highest during 

SIM and lowest during SuM with values 2.51 and 1.71 respectively. While coverage values 

ranged from 94% to 97% (Table 3.3). At equal sampling effort, the rarefaction analysis 

showed that more ribogroups were found during SIM and the least during SuM (Fig 3.7).  
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Fig 3.6a: Phylogenetic tree of culturable bacterial isolates generated from alignments of 16S 
rRNA gene sequences from the coastal Arabian Sea samples Off Mangalore during SIM and 

representative references retrieved from Genbank. In the bootstrap test of 1000 replicates, the 
percentage of the replicate trees wherein the associated taxa that clustered together is shown 

next to the branches. Bootstrap values > 50% is shown at each node. Scale bars represent the 
nucleotide substitution percentage.  
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Fig 3.6b: Phylogenetic tree of culturable bacterial isolates generated from alignments of 16S 

rRNA gene sequences from the coastal Arabian Sea samples Off Mangalore during SuM and 
representative references retrieved from Genbank. In the bootstrap test of 1000 replicates, the 
percentage of the replicate trees wherein the associated taxa that clustered together is shown 

next to the branches. Bootstrap values > 50% is shown at each node. Scale bars represent the 
nucleotide substitution percentage.  
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Fig 3.6c: Phylogenetic tree of culturable bacterial isolates generated from alignments of 16S 

rRNA gene sequences from the coastal Arabian Sea samples Off Mangalore during FIM and 
representative references retrieved from Genbank. In the bootstrap test of 1000 replicates, the 

percentage of the replicate trees wherein the associated taxa that clustered together is shown 
next to the branches. Bootstrap values > 50% is shown at each node. Scale bars represent the 
nucleotide substitution percentage.  
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Table 3.3: Distribution of ribogroups, diversity indices and coverage of OTUs during 

different seasons from coastal waters of the Arabian Sea Off Mangalore  

Diagnostic SIM SuM FIM 

No. of cultures 90 90 90 

No. of OTUs 19 9 14 
Shannon‘s index 2.51 1.71 1.96 

Simpson‘s index 0.10 0.24 0.18 
Chao1 22.5 10 16.5 
Good‘s coverage (%) 97 97 94 

 

 

 

 

 

Fig 3.7: Rarefaction curves of operational taxonomic units (OTUs) of culturable bacteria 

during different seasons. 
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3.3.2.3. a Off Kochi 

Based on the partial sequencing of 16S rRNA gene, 270 bacterial cultures (90 of them 

from each season), were identified as belonging to 13 different genera within five 

phylogenetic domains: Gammaproteobacteria, Alphaproteobacteria, Firmicutes, 

Bacteroidetes, and Actinobacteria. 

Similar to Off Goa or Mangalore, Alteromonas sp. and Vibrio spp. were the major groups 

found during all the three seasons, followed by Bacillus spp. and Photobacterium sp. The 

species exclusively found during SIM were Sufflavibacter, Micrococcus, Grimontia, 

Brevibacterium, Anaerobacillus, and Staphylococcus, while Marinomonas, 

Pseudoalteromonas, and Halomonas sp. were observed only during FIM (Fig. 3.8a).  

Vertical differences in the bacterial community structure between surface, mid-depth and 

near-bottom in the water column were also observed. The dominant bacterial groups 

(Alteromonas sp. and Vibrio spp.) were found throughout the water column Bacillus spp. were 

found to increase towards the bottom, on the contrary Alteromonas sp. were found to 

decrease.  On the other hand, inconsistent partitioning of bacteria was observed during SIM 

and FIM (Fig. 3.8b).  

3.3.2.3. b Phylogenetic analyses 

16 different OTUs were defined among the 90 isolated strains during SIM. 7 OTUs were 

identified in the class Gammaproteobacteria, 6 OTUs were identified in Firmicutes, 2 OTUs 

related to Actinobacteria and 1 OTU related to Alphaproteobacteria. During SuM, the 90 

cultures grouped into 11 OTUs, with 9 OTUs representing class Gammaproteobacteria and 2 

OTUs representing Firmicutes. The 90 cultures analyzed during FIM grouped into 16 OTUs, 
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with 14 OTUs belonging to Gammaproteobacteria and 2 OTUs related to Firmicutes. The 

phylogenetic tree of dominant OTUs in each season and their closest neighbors was 

constructed using the neighbor-joining method using MEGA. Bootstrap tests were performed 

1000 times (Fig 3.9 a, b and c).  

 

3.3.2.3. c Statistical analysis 

The community parameters: Chao1 estimator of species richness, Shannon diversity 

index, Simpson diversity and Good‘s coverage for each sampling site were calculated across 

the three seasons. It was seen that Shannon diversity index was lowest during SuM (1.71) and 

no significant difference was seen in the diversity indices during SIM and FIM. While 

coverage values ranged from 93% to 98% (Table 3.4). The rarefaction analysis indicated that 

more ribogroups were found during FIM and least during SuM at equal sampling effort (Fig 

3.10). 
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Fig.3.8a: Temporal variations in culturable bacterial community structure Off Kochi 
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Fig.3.8 b: Bacterial community structure at different sampled depths during different seasons 

Off Kochi 
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Fig 3.9a: Phylogenetic tree of culturable bacterial isolates generated from alignments of 16S 
rRNA gene sequences from the coastal Arabian Sea samples Off Kochi during SIM and 

representative references retrieved from Genbank. In the bootstrap test of 1000 replicates, the 
percentage of the replicate trees wherein the associated taxa that clustered together is shown 
next to the branches. Bootstrap values > 50% is shown at each node. Scale bars represent the 

nucleotide substitution percentage.  
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Fig 3.9b: Phylogenetic tree of culturable bacterial isolates generated from alignments of 16S 

rRNA gene sequences from the coastal Arabian Sea samples Off Kochi during SuM and 
representative references retrieved from Genbank. In the bootstrap test of 1000 replicates, the 

percentage of the replicate trees wherein the associated taxa that clustered together is shown 
next to the branches. Bootstrap values > 50% is shown at each node. Scale bars represent the 
nucleotide substitution percentage.  
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Fig 3.9c: Phylogenetic tree of culturable bacterial isolates generated from alignments of 16S 

rRNA gene sequences from the coastal Arabian Sea samples Off Kochi during FIM and 
representative references retrieved from Genbank. In the bootstrap test of 1000 replicates, the 
percentage of the replicate trees wherein the associated taxa that clustered together is shown 

next to the branches. Bootstrap values > 50% is shown at each node. Scale bars represent the 
nucleotide substitution percentage.  
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Table 3.4: Distribution of ribogroups, diversity indices and coverage of OTUs during 

different seasons from coastal waters of the Arabian Sea Off Kochi 

Diagnostic SIM SuM FIM 

No. of cultures 90 90 90 

No. of OTUs 16 10 16 
Shannon‘s index 2.20 1.75 2.24 

Simpson‘s index 0.18 0.24 0.14 
Chao1 21 10 18 
Good‘s coverage (%) 93 98 95 

 

 

 

 

Fig 3.10: Rarefaction curves of operational taxonomic units (OTUs) of culturable bacteria 

obtained during different seasons.  
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3.4 Discussion 

3.4.1 Physical and biogeochemical characteristics of West coast of India  

In this study, it was observed that during summer monsoon (SuM: June-August) and 

Fall Intermonsoon (FIM: September-October) seasons, the temperature and dissolved oxygen 

concentrations steeply decrease in the mid-depth and bottom layers. Corresponding to this 

decrease, the nitrate and nitrite concentrations increase. However, constant temperature and 

Dissolved Oxygen (DO) was constant throughout the water column during Spring 

Intermonsoon (SIM: March-May); and concentration of nitrogen species was close to 

zero/undetectable. This is because, during SuM and FIM the mid and bottom water 

temperature dropped significantly due to the upwelling of cold water. However, the presence 

of a freshwater layer over the subsurface layer following rainfall prevented further vertical 

migration of this upwelled water. During the southwest monsoon upwelling pumps nitrate rich 

waters into the photic layers leading to intense biological productivity, the degradation of 

organic matter sinking from productive surface waters depletes oxygen during SuM leading to 

hypoxia in the subsurface water (O2 ≤ 1.4ml-1; 62.5 µM) and the low oxygen conditions 

further intensifies during FIM resulting in suboxia (O2 ≤ 0.1ml-1; 4.5 µM). This necessitates 

bacteria to use alternative electron acceptor thereby leading to denitrification. The upwelling 

collapses by late October and downwelling that occurs off the WCI during SIM, the water 

column is observed to be well-mixed and hence constant temperature was found throughout 

the water column. The DO was uniformly high at all depths during the SIM which was 

because of the well mixed water column. During these 7-8 months, the concentrations of 

nitrate are generally low (Pratihary, 2008) as a result of higher photosynthetic uptake under 

favorable hydrochemical conditions.  
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3.4.2 Comparison of bacterial communities in oxygen minimum zones 

Studies have widely reported the presence of unculturable fractions from hypoxic 

regions and oxygen minimum zones. Divya et al. (2011) studied the culturable bacteria by 

16S rRNA gene sequencing from the sediments of oxygen minimum zones in the Arabian sea 

and reported the presence of three phylogenetic groups: Firmicutes (Bacillus sp., Virgibacillus 

sp., Paenibacillus sp., Halobacillus sp., Marinilactibacillus sp.), Gammaproteobacteria 

(Halomonas sp. and Alteromonas sp., Actinobacteria (Kytococcus sp. and Micrococcus sp.), 

low G+C bacteria and unidentified bacteria.  

In contrast, the culturable bacteria by 16S rRNA gene sequencing in this study 

reported the presence of five bacterial lineages: Gamma proteobacteria (Species of Vibrio, 

Alteromonas, Pseudoalteromonas, Marinobacter, Idiomarina, Photobacterium, 

Marinomonas, Halomonas, Pseudomonas,  Psychrobacter, Salinicola, Kosakonia, 

Chromohalobacter, Grimontia, Shewanella and Acinetobacter), Alpha-proteobacteria 

(Thalassospira and Erythrobacter sp.), Bacteroidetes (Sufflavibacter and Zunongwangia sp.), 

Actinobacteria (Species of Janibacter, Gordonia, Microbacterium, Kocuria, Micrococcus) 

and Firmicutes (Species of Bacillus, Anaerobacillus, Macrococcus and Staphylococcus). 

 

3.4.3 Bacterial community differences between off Goa, Mangalore and Kochi 

 The major phylotypes comprised of Altermonas and Vibrio sp. were found at all the 

three locations (Off Goa, Off Mangalore and Off Kochi), followed by species of 

Photobacterium, Sufflavibacter, Pseudoalteromonas, Staphylococcus and Bacillus. 

Zunongwangia, Thalassospira, Salinicola, Marinobacter and Idiomarina sp. were found only 

off Goa and off Mangalore while Marinomonas and Halomonas sp. were found only off Goa 
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and off Kochi. Grimontia and Micrococcus sp. were observed only off Mangalore and off 

Kochi.  

Certain minor bacterial strains sharing no spatial commonness were as follows:  

Off Goa: Psychrobacter sp., Exiguobacterium sp., Microbacterium sp., Chromohalobacter 

sp., Kocuria sp., Gordonia sp., Erythrobacter sp., Janibacter sp., Kosakonia and 

Pseudomonas sp. 

Off Mangalore: Shewanella sp., Macrococcus sp. and Acinetobacter sp. 

Off Kochi: Brevibacterium sp. and Anaerobacillus sp. 

 

3.4.4 Roles of different bacterial domains  

The chimera free 16S rRNA gene sequences of cultures in the WCI bacteria belonged to five 

bacterial lineages: Gamma- and Alpha-proteobacteria, Bacteroidetes, Actinobacteria, and 

Firmicutes. 

 

Gammaproteobacteria 

Cultures belonging to Gammaproteobacteria were predominant and most were closely 

related to genera such as Vibrio, Alteromonas, Pseudoalteromonas, Marinobacter, 

Idiomarina, Photobacterium, Marinomonas, Halomonas, Pseudomonas, Psychrobacter, 

Salinicola, Kosakonia, Chromohalobacter, Grimontia, Shewanella and Acinetobacter. 

Bacteria from this phylogenetic group are among the most recognized and readily 

cultivable microorganisms from the marine environment (Fuhrman and Hagström, 2008), and 

this result is in agreement with reports from other studies on diverse marine environments 

experiencing oxygen deficiency as well as coastal waters (Stevens and Ullao, 2008; Wietz  et 

https://springerplus.springeropen.com/articles/10.1186/2193-1801-2-127#CR7
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al. 2010; Divya et al. 2011; Ghiglione and Murray, 2012). Widely distributed throughout the 

marine environment, Alteromonas macleodii are copiotrophs involved in the processing of 

dissolved organic matter was found to be dominant in this study. As reported by López-Pérez 

et al. (2012) the upwelling rich waters and convective mixing favor the growth of A. 

macleodii, this was evident in this study throughout the three seasons. Also, its 

microaerophilic adaptation to use nitrate reductase sustains its growth when oxygen is 

limiting.  

The next dominant bacteria in this study were Vibrio spp. Vibrio species are normal 

residents in coastal waters playing an important role in biodegradation, nutrient regeneration 

and biogeochemical cycling (Thompson et al. 2004). They are significant in remineralization 

of organic matter in the sea (Fukami et al. 1985) and occur mainly in warmer waters (Wright 

et al. 1996). Increasing seawater temperature associated with global climate change is known 

to promote proliferation of Vibrio thereby causing Vibrio-associated diseases (Harvell et al. 

2002, Vezzulli et al. 2012, Baker-Austin et al. 2013, Tout et al. 2015). In addition to this, the 

intense productivity in the Arabian Sea also favors the proliferation of Vibrio (Hsieh et al. 

2007) The broad metabolic range of Vibrio and its ability to use different available nutrient 

resources by producing variety of enzymes (Thompson and Polz, 2006) enables them to 

survive in any extreme conditions in response to changing environment by switching from an 

active stage to a dormant, viable but not culturable (VBNC) stage; yet they may still be very 

potent opportunists if favorable conditions recur (Colwell et al. 1985, McDougald and 

Kjelleberg 2006). McCarren et al. (2010) found Idiomarina sp. and Alteromonas macleodii in 

metabolizing semilabile high molecular weight dissolved organic matter to methanol or 

formaldehyde, and carbon dioxide. Pseudoalteromonas sp. are reported to be in association 
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with marine eukaryotes (Skovhus et al. 2007) and are known to produce agarolytic enzymes. 

Pseudoalteromonas and Idiomarina were reported from the oxygen minimum zone in the 

central Arabian Sea (Jain et al. 2014). Studies carried out on culturable bacteria isolated from 

the Arabian Sea sediments also reported the presence of Vibrio, Alteromonas, Pseudomonas, 

Halomonas, Photobacterium, Psychrobacter species (Divya et al. 2011; Mendez et al. 2013; 

Ramya et al. 2013). Marinobacter hydrocarbonoclasticus is reported to degrade the 

hydrocarbons and can use nitrate as the terminal electron acceptor (Gauthier et al. 1992). 

Further, Pseudomonas stutzeri, the common denitrifying bacterium as reported by Carlson 

and Ingraham, (1983) and Deng et al. (2014) are capable of degrading a number of organic 

pollutants.  

Other minor groups included species of Psychrobacter, Chromohalobacter, 

Shewanella, Grimontia, Halomonas, Acinetobacter, Kosakonia, Marinomonas, and 

Salinicola. Transcriptomics of psychrophilic bacteria Psychrobacter revealed its adaptation to 

significant variations of temperature (Bergholz et al. 2009), thereby adapting to environmental 

warming. Global warming is reducing the degree of cold habitats thus affecting the evolution 

of psychrophiles. Psychrobacter spp. are found in aquatic environments contaminated with 

hydrocarbon (Harwati et al. 2007; Azevedo et al. 2013). Also, this genus is known to denitrify 

(Zhang et al. 2011). Studies have reported the denitrifying genes to be present in Halomonas 

sp. (González-Domenech et al. 2010). Chromohalobacter, Grimontia and Shewanella sp. have 

been found to reduce nitrate (Sanchez-Porro et al. 2007; Shnit-Orland et al. 2010; Choi et al. 

2012). As reported by Su et al. (2015) Acinetobacter sp. capable of nitrification as well as 

denitrification was also observed in this study.  
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Alphaproteobacteria 

Thalassospira and Erythrobacter sp. belonging to Alphaproteobacteria were isolated 

in this study. The low frequency of cultured Alphaproteobacteria was reported earlier (Basu 

et al. 2013) in Northern Arabian Sea. Kodama et al. (2008) observed that Thalassospira sp. 

could grow facultatively anaerobically using nitrate as the final electron acceptor and 

degraded polycyclic aromatic hydrocarbon. Erythrobacter is a known anoxygenic 

phototrophic bacterium contributing to the marine carbon cycling (Kolber et al. 2001). 

Beazley et al. (2012) presumed it to be contributing to aromatic hydrocarbon degradation.  

 

Bacteroidetes 

Members of the phylum Bacteroidetes are important heterotrophs involved in cycling 

organic carbon in aquatic habitats (O'Sullivan et al. 2006) and are often abundant in nutrient-

rich waters. Sufflavibacter and Zunongwangia sp. belonging to Flavobacteriaceae were 

cultivable in this study. The family Flavobacteriaceae within this phylum has been 

considered to have a positive correlation with the organic matters and play an important role 

for the degradation of polymeric substances derived from algal biomass (Bauer et al. 2006). 

Qin et al. (2010) reported Zunongwangia sp. from sediments to degrade organic nitrogen.  

 

Actinobacteria 

Bacterial species belonging to the phylum Actinobacteria (Janibacter, Gordonia, 

Microbacterium, Kocuria, and Micrococcus) were also found in this study. Actinobacteria are 

the substantial part of the bacterial community in the coastal waters in the Arabian Sea (Singh 

et al. 2011, Basu et al. 2013). Ahmed et al. (2010) and Khessairi et al. (2014) reported 

http://onlinelibrary.wiley.com/doi/10.1002/mbo3.89/full#mbo389-bib-0033
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biodegradation of recalcitrant compounds and toxic polycyclic aromatic hydrocarbons by 

species of Kocuria and Janibacter. Qin et al. (2017) reported the degradation of polycyclic 

aromatic hydrocarbon by Microbacterium sp. under denitrifying conditions. Zhang et al. 

(2015) reported the presence of denitrifying genes in Microbacterium sp. Kocuria and 

Micrococcus sp. have been found to reduce nitrate (Zhou et al. 2008; Chen et al. 2009). 

 

Firmicutes 

Firmicutes reported in this study were Bacillus, Anaerobacillus, Macrococcus and 

Staphylococcus species respectively. Bacillus sp. were more abundant in the sediments of the 

Arabian Sea responsible for organic matter mineralization; thereby playing important role in 

in situ biogeochemical processes (Divya et al. 2011). The great metabolic and physiological 

diversity of Bacillus sp. in addition to producing endospores allows their distribution in all 

environment of our planet (Priest, 1993). Denitrification is reported to be a common feature 

among members of genus Bacillus (Verbaendert et al. 2011; Saïd et al. 2014). Macrococcus 

caseolysticus observed in this study is reported to possess genome for nitrate reduction (Baba 

et al. 2009). 

Da Silva et al. (2013) noted that phylotypes of Firmicutes and Actinobacteria largely 

comprise the gram-positive bacteria and, they are mainly reported in marine sediments. The 

presence of hydrocarbons in the continental margin areas of the WCI has already been the 

attention of many of the geochemical investigations (Paropkari et al. 1993). Hydrocarbons in 

the environment bring about adaptive responses in microbial communities resulting in a net 

increase in the number of hydrocarbon-utilizing organisms. The ability to utilize hydrocarbon 

substrates is exhibited by a wide variety of bacterial and fungal genera. However, in the 
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marine environment, bacteria are generally considered to represent the predominant 

hydrocarbon-degrading element of the microbial community.  

 

3.4.5 Relevance of the community to hypoxia and denitrification 

This study adds to the knowledge of culturable heterotrophic bacteria along the WCI 

in terms of their community variations occurring in a spatiotemporal scale. This study shows 

that the bacterial community structure of coastal hypoxic ecosystems is phylogenetically quite 

diverse and distinct spatiotemporally. The ability of bacteria to respond to seasonal variations 

could allow them to adapt efficiently to changing environmental conditions. Many of the 

strains are reported as denitrifiers in the terrestrial environments. The high diversity of 

culturable bacteria in low oxygen conditions reflect their important ecolo gical role in 

biogeochemical cycling in the coastal ecosystem. The bacterial community structure seems to 

be significantly impacted by the environmental variables which experience monsoon induced 

hydrographic changes. Indeed, as reflected by the rarefaction curves tending to plateau during 

all three seasons, the coverage of culturable diversity is quite adequate.  

 

3.4.6 Conclusion 

The presence of hydrocarbons as well as the organic matter produced in the WCI in 

response to upwelling and convective overturning is degraded by the bacteria found in the 

study area, the shortage of oxygen that follows forces these microbes to utilize nitrate to 

sustain growth thereby leading to denitrification. This explains that bacteria can adapt 

themselves well with the changing environment. There was no consistency in the diversity of 

marine bacterial populations and in their spatiotemporal distribution pattern. This may be due 
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to the physicochemical parameters that affect the occurrence and diversity of marine bacteria. 

The temporal changes in the bacterial population are found to be more pronounced in the 

coastal environment than the Open Ocean or deep sea (Chandrika and Nair, 1994; Jain et al. 

2014). Statistical analyses showed that diversity was in the order of Goa>Mangalore>Kochi. 

This might be due to the bacterial preferences in accordance to their habitat choice or on the 

physicochemical and nutritional requirements. Low diversity during SuM may be attributed to 

the rainfall in the study area, as it is reported that bacterial dormancy is induced by the 

adverse environmental conditions (Lennon and Jones, 2011). Studies have reported that 

alterations in environmental conditions are important drivers of changes in microbial diversity 

(Castro et al. 2016). Murray et al. (1998) confirmed that stratification may result in more 

pronounced differences between different depths. The observations of this first work on the 

phylogenetics of culturable bacteria in the WCI experiencing seasonal hypoxia are useful to 

not only highlight the existence of plentitude of Phylogenetic diversity but also its dynamic  

shift during different seasons. 
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4.1 Introduction 

The biogeochemical transformation of biologically essential elements is performed by 

diverse microbial communities. Among such functions, the ability to denitrify (removal of 

fixed nitrogen) occurs widely in many taxonomic groups of bacteria (Braker et al. 2000; 

Jayakumar et al. 2004). Fixed nitrogen is used as an alternative electron acceptor to support 

respiration when oxygen is limiting. Denitrifiers are heterotrophic bacteria (most of them are 

facultative anaerobic) (Zumft, 1997; Yu et al. 2014) that pair the oxidation of organic 

substrates to the reduction of NO3
− to either N2O or N2; not necessarily under strict anaerobic 

condition. Most bacteria can switch between oxic and nitrate dependent modes of respiration. 

The nitrous oxide produced in the process in turn yield a highly reactive free oxygen radical 

producing nitrogen oxides (NOX) which is involved in stratospheric ozone depletion 

(Portmann et al. 2012) and global warming.  

Besides its impact on the nitrogen cycle, a very important role of conventional 

denitrification is the degradation of organic carbon in the deficiency of oxygen.  It was 

believed that denitrification would not occur in the presence of oxygen since there seems to be 

no energetic advantage to using nitrate as an oxidant when oxygen is accessible (Goreau et 

al.1980; Zehr et al. 2002; Jayakumar et al. 2009b). Experiments have since proven that 

denitrifiers are often facultative anaerobes (Schlesinger, 1997). Denitrifying species have 

been isolated from canals, ponds, soils, and activated sludge that can simultaneously utilize 

oxygen and nitrate as electron acceptors. These include Paracoccus (Lukow and Diekmann, 

1997), Pseudomonas (Kesserű et al. 2003), Bacillus (Kim et al. 2005b), Alcaligenes 

(Robertson and Kuenen, 1983) etc.  
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The response and adaptability of microbial communities to climate change and other 

environmental change is an important component of ecosystem response, and several studies 

have investigated the response of denitrifiers to environmental change (Fenn et al. 1998; 

Erisman and Vries, 2000; Barnard et al. 2005). Due to the acknowledged significance of the 

Arabian Sea in the fixed nitrogen loss, and the reported intense denitrification in the eastern 

Arabian Sea (Jayakumar et al. 2004, Naqvi et al. 2000, 2006), it is important to study the 

contribution of bacterial communities to denitrification. This chapter focused on the selected 

set of culturable fractions involved in the utilization of transformation of nitrogen species in 

the environment. 

 

4.2 Materials and Methods 

4.2.1 Nitrate reduction test 

To check the ability of nitrate reduction, all the cultures obtained in Chapter 3, 

checked for their capability to reduce nitrate to nitrite (or beyond) according to the protocol 

by Clarke and Cowan (1952). Briefly, the cultures were grown in nitrate broth consisting of 

(5g peptic digest animal tissue, 3 g meat extract, 1 g KNO3, 30 g NaCl per litre and final pH 

7.6) for 24 hours, and checked for nitrate reduction by adding a few drops of Griess reagents 

(sulfanilic acid and α-naphthylamine). Nitrate reduction was indicated by broth forming pink 

and no change in color on addition of Griess reagents indicated no reduction of nitrate or 

reduction beyond nitrite. To check if nitrate is either reduced beyond nitrite or not at all, a 

pinch of zinc dust added to those tubes in which there was no color change after addition of 

Griess reagents. Broth turning to red after adding zinc dust was taken to indicate no reduction 

of nitrate. 
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From this test, out of 900 cultures, 673 were found to be nitrate reducers that further 

grouped into 42 different species and these 42 representatives were chosen for further 

analysis. 

4.2.2 Determination of nitrate and nitrite 

Preparation of reagents: Grasshoff et al. (1983) 

1. Ammonium chloride (NH4Cl) buffer: 10g ammonium chloride was dissolved in 1 L of 

distilled water and the pH adjusted to 8.5 with 1.5 mL of 25 % ammonia solution.  

2. Sulphanilamide solution: 10g sulphanilamide was dissolved in 100mL C. HCl and 500mL 

of distilled water and made up to 1 L.  

3. N-(1-naphthy1)-ethylenediamine dihydrochloride (NED): 0.5 g of the amine 

dihydrochloride was dissolved in 500mL of distilled water.  

4. Reductor filling: Commercially available granulated cadmium (e.g., Merck) was sieved and 

the fraction between 40 and 60 mesh was retained and used.  

5. Copper sulphate (CuSO4): 1g of copper sulphate pentahydrate (CuS04.SH20i) was 

dissolved in 100 mL of distilled water. 

6. Nitrate standard solution: 1.011 g of dry potassium nitrate (KN03) was dissolved and made 

up to 1 L with distilled water. The stock solution contains 10 mmol/L nitrate. 

7. Nitrite standard solution: Anhydrous sodium nitrite (NaN02) was dried at 100 ºC for 1 h 

and 0.690 g is dissolved in 1 L of distilled water. The stock solution contains 10mmol/L 

nitrite. 

8. Nitrate broth: 5 g peptic digest of animal tissue, 3 g meat extract, 1 g KNO3, 30g NaCl was 

added to 1 L of distilled water at pH 7. 
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 The cell- free extracts of cultures positive for the nitrate reduction test were further 

analyzed. The cell- free extracts were then determined for nitrate and nitrite as described by 

Grasshoff et al. (1983).  

For the determination of nitrate, the cadmium granules were washed with 5% HCI and 

subsequently with distilled water until the pH was adjusted to 7. The granules were incubated 

overnight in 2% CuSo4 and washed several times with NH4Cl buffer. A small glass wool plug 

was inserted into the bottom of reduction column of 20 cm long and 4 mm diameter and filled 

with distilled water, followed by gently adding the Copper-Cadmium granules. A glass wool 

plug was inserted in the upper end of the tube and the column was rinsed thoroughly with 

NH4Cl buffer. 0.5 ml of the cell- free extract of individual cultures were then made up to 50 ml 

volume with distilled water and passed through the reductor column allowing flow rates of 

about 7 ml/min. The first 25 ml was used to flush the reductor and the remaining 25 ml 

collected. 1 ml sulphanilamide was added to the sample and mixed. Subsequently, 1 ml of 

NED was added and allowed to react for 15 min and the absorbance was measured 

spectrophotometrically at 540 nm. The nitrate was reduced to nitrite in the Cd column and the 

total nitrite (nitrate plus nitrite) was determined spectrophotometrically and substituting the 

values in the standard graph. 

   Nitrite was determined by reaction with sulfanilamide and NED to 0.5 ml of the cell-

free extract of individual cultures made up to 50 ml and the measurement of absorption at 

540 nm and substituting the values in the standard graph.  
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4.2.3 Estimation of nitrate reduction rate (NRR) 

In addition to testing the nitrate reduction in nitrate broth, 42 representative nitrate 

reducing cultures listed in Table 4.1 recognized through phylogenetic analyses were grown in 

Zobell marine broth for 24 hours and 5µl each of these 42 cultures was added into nitrate 

broth. The cultures were grown in nitrate broth for 24 hours and denitrification rate was 

calculated as follows: 

NRR=A-B/V X 24 

NRR= Nitrate reduction rate day-1 

A= Initial concentration of NO3 in broth 

B= Final concentration of NO3 in broth 

V=Volume of broth 

 

4.2.4 Quantification of nitrous oxide production 

 To quantify the nitrous oxide production, the 42 representative nitrate reducing 

cultures were grown in nitrate broth for 24 hours and their growth stopped by adding 0.3 ml 

saturated mercuric chloride. The cultures were centrifuged at 12000 rpm for 10 min to collect 

the supernatant for measuring N2O production as described by Sudheesh et al. (2016). Briefly, 

25 ml of sample was equilibrated successively with an equal volume of ultrapure helium in an 

air-tight syringe by vigorously shaking the syringe at room temperature for 5 min using a 

wrist action shaker. After attaining equilibrium, the gas mixture from the headspace was 

injected through a 5 ml sampling loop into a gas chromatograph (Shimadzu) and separated 

over a Chromosorb column (80/100 mesh) at 40°C. The detection of N2O was done in a 63Ni 

Electron Capture Detector (ECD). The Precision of the analysis was ~4%. Calibration was 
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achieved using a gas mixture of N2O in nitrogen (Alltech Associated Inc., IL, USA). The 

percentage saturation of N2O was calculated as  

N2O saturation= (Cw/Ca) x 100 

 Where, Cw is the measured concentration of N2O and  

Ca is the equilibrium concentration  

 

The per unit OD 600 and per unit cell of NRR and nitrous oxide produced was calculated  

NRR per unit OD 600 = NRRµM day -1 / OD 600 

N2O per unit OD 600 = N2O nM day -1 / OD 600 

NRR 10 -14 mol cell -1 = NRRµM day -1 / Viable counts 

 

4.2.5 Nitrate reductase enzyme assay 

Nitrate reductase activity in cell- free extracts from all 42 representative nitrate 

reducing cultures was assayed by Smarrelli and Campbell (1983), Redinbaugh and Campbell 

(1985). The reaction mixture for nitrate reductase (final volume, 2 ml) contained 24 mM 

potassium phosphate buffer with 9.5 mM potassium nitrate and 0.05 mM EDTA at pH 7.3, 

and 100 µl of the supernatant that contained the enzyme β-NADH(electron donor). The nitrite 

produced was determined by adding 1 ml each of diazo coupling reagent (58mM 

sulfanilamide in 3M HCl solution and 0.77 mM N-(1-napthyl)-ethylenediamine) and 

absorbance was measured at 540 nm. The enzyme activity was deduced by drawing the 

standard graph of nitrite prepared by using known concentrations of nitrite. Nitrate reductase 

activities expressed as U ml-1. One unit of NR activity is defined as 1 μmol of nitrite produced 

per min at pH 7.3 at 30°C. 
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4.2.6 PCR amplification of narG, nirS and nosZ gene and sequencing 

PCR amplification of denitrifying genes was performed in 50 µl volume using Taq 

PCR reaction mix as per manufacturer‘s instructions (Sigma-Aldrich). Amplicons of narG 

and nirS and were obtained according to the protocol of Bru et al. (2007) and Throbäck et al. 

(2004). After the initial denaturation at 95 °C for 10 min, 6 cycles of 95 °C for 15 s, 63 °C for 

30 s, and 72 °C for 30 s of touchdown was carried out, with a 1 °C step down in annealing 

temperature of each cycle. Followed by 35 cycles of 95 °C for 15 s, 58 °C for 30 s, 72 °C for 

90 s and a final extension at 72 °C for 10 min, the nosZ gene was amplified using the primer 

set NosZ1840-F and NosZ2090-R (Henry et al. 2006). After an initial denaturing step at 95 

°C for 10 min, 6 cycles of 95 °C for 15 s, 65 °C for 30 s, and 72 °C for 30 s of touchdown was 

carried out, with a 1°C step down in annealing temperature of each cycle. This was followed 

by 35 cycles of 95 °C for 15 s, 60 °C for 30 s, and 72 °C for 90 s and a final extension at 72 

°C for 10 min. The PCR products were observed on 1.5 % (w/v) ethidium bromide-stained 

agarose gel to ensure that the correct size fragment were amplified. The purified PCR 

products were then sequenced by using an ABI 3130XL genetic analyzer (Applied Bio-

Systems). Sequences were checked for their similarity with sequences in GenBank using 

BLAST (http://blast.ncbi.nlm.nih.gov). 

 

4.3 Results 

4.3.1 Nitrate reduction test and nitrate reduction rate (NRR)  

Of the 900 cultures obtained from the study area as described in chapter 3, 673 

cultures were nitrate reducers accounting for 75% of the total bacterial population in this 

http://blast.ncbi.nlm.nih.gov/
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study. Out of these, 42 different individual cultures representing the 673 nitrate reducers were 

obtained. The 42 representative nitrate reducers were chosen for further analysis.  

NRR ranged from 0.04–0.27 µMd-1 among the 42 cultures. The per cell NRR ranged 

from 0.41-2.40 (X 10-14) mol cell-1. It was seen that Halomonas axialensis recorded the 

highest NRR of 2.40 (X 10-14) mol cell-1. NRR was the least [0.41-0.57 (X 10-14) mol cell-1] by 

Salinicola salarius and Microbacterium aquimaris (Table 4.1). 

 

4.3.2 Nitrous oxide production from the bacterial cultures  

Selected 42 representative nitrate reducing cultures were checked for nitrous oxide 

(N2O) production. N2O production ranged from 7.00-119.32 nMd-1 among all 42 cultures. The 

per cell N2O ranged from 0.29-5.54 (X 10-15) mole cell-1. Maximum N2O production was by 

Idiomarina sediminium and Marinobacter salsuginis in the range of 5.18-5.54 (X 10-15) mole 

cell-1, followed by Halomonas axialensis [3.36 (X 10-15) mole) cell-1]. Bacillus aryabhattai 

produced the least N2O [0.29 (X 10-15) mole cell-1] (Table 4.2). 

 

4.3.3 Nitrate reductase enzyme activity assay 

The nitrate reductase activities ranged among the tested cultures (Table 4.1) was low 

as 0.012-0.037 Uml-1 by Micrococcus endophyticus, Vibrio tubiashii and Bacillus 

vietnamensis. Notably, the highest activity of 0.084 and 0.119 U ml-1 was by Idiomarina 

sediminium and Halomonas xianhensis respectively. 
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4.3.4 Nucleotide sequence accession numbers 

Sequences for nosZ gene were submitted to GenBank and accession numbers assigned are 

MG948595-MG948604; MG958092-MG958111; MG983072-MG983083, MG997038-

MG997079, MH025494-MH025535. 
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Table 4.1: Viable cell counts, optical density, nitrate reductase activity (NRA) and nitrate reduction rate (NRR) production by 

different bacterial cultures grown in nitrate broth 

Sr. no. Culture Viable cells 

(No.X107ml-1) 

OD 600 NRA 

(U ml-1) 

NRR 

(µM d-1) 

NRR 

(µM) per unit 
OD 

NRR 

(10-14 mol cell-1) 

1 Salinicola salarius 1.7 1.10 0.054 0.07 0.06 0.41 
2 Microbacterium aquimaris 1.4 1.50 0.071 0.08 0.05 0.57 

3 Grimontia marina 2.0 1.23 0.059 0.12 0.09 0.60 
4 Anaerobacillus alkalilacustris 2.3 0.65 0.055 0.14 0.21 0.61 

5 Kocuria flava  2.9 1.70 0.071 0.19 0.11 0.65 
6 Bacillus aryabhattai 2.7 1.13 0.057 0.18 0.16 0.66 
7 Staphylococcus arlettae 0.6 0.89 0.054 0.04 0.04 0.67 

8 Vibrio alginolyticus 2.8 0.32 0.068 0.19 0.60 0.67 
9 Schwanella coralli 1.6 1.25 0.072 0.11 0.08 0.68 

10 Marinobacter salsuginis 2.1 1.60 0.070 0.16 0.10 0.70 
11 Staphylococcus haemolyticus 0.7 0.92 0.053 0.05 0.05 0.71 
12 Vibrio fortis 2.3 1.35 0.068 0.17 0.13 0.73 

13 Idiomarina seosinensis 2.6 1.80 0.070 0.20 0.11 0.76 
14 Zunongwangia profunda  2.9 0.75 0.068 0.23 0.31 0.79 

15 Marinomonas communis 1.7 1.18 0.075 0.14 0.12 0.82 
16 Alteromonas macleodii 2.8 1.77 0.070 0.23 0.13 0.82 
17 Janibacter melonis 2.0 0.90 0.062 0.17 0.19 0.85 

18 Acinetobacter seohaensis 1.4 1.52 0.061 0.12 0.07 0.85 
19 Sufflavibacter maritimus 2.9 1.60 0.066 0.25 0.16 0.86 

20 Micrococcus endophyticus 0.8 1.42 0.012 0.25 0.17 0.86 
21 Kosakonia cowanii 2.6 1.30 0.072 0.23 0.18 0.88 
22 Psychrobacter maritimus 2.7 1.30 0.054 0.24 0.18 0.88 

23 Halomonas xianhensis 2.8 1.00 0.119 0.27 0.27 0.90 
24 Pseudomonas stutzeri  2.8 1.60 0.072 0.27 0.17 0.90 

25 Bacillus cereus 2.6 1.60 0.057 0.24 0.15 0.92 
26 Bacillus subtilis  2.5 0.93 0.066 0.23 0.25 0.92 
27 Marinobacter hydrocarbonoclasticus 2.9 1.50 0.074 0.27 0.18 0.93 
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Table 4.1 continues 

Sr. no. Culture Viable cells 
(No.X107ml-1) 

OD 600 NRA 
(U ml-1) 

NRR 
(µM d-1) 

NRR 
(µM) per unit 

OD 

NRR 
(10-14 mol cell-1) 

28 Idiomarina zobellii 2.1 0.90 0.066 0.20 0.22 0.95 
29 Idiomarina sediminium 2.3 1.00 0.084 0.25 0.25 1.00 

30 Vibrio rotiferanus 1.3 1.35 0.058 0.13 0.09 1.00 
31 Bacillus  vietnamensis 1.8 1.75 0.037 0.19 0.10 1.06 

32 Vibrio brasiliensis 1.4 0.23 0.061 0.19 0.82 1.30 
33 Vibrio campbellii 1.2 0.70 0.069 0.17 0.24 1.41 
34 Bacillus firmus  1.3 0.53 0.073 0.20 0.38 1.53 

35 Bacillus circulans 1.5 1.55 0.058 0.23 0.14 1.53 
36 Vibrio tubiashii 1.1 1.22 0.025 0.18 0.15 1.64 
37 Thalassospira tepidiphila 1.5 1.00 0.061 0.26 0.26 1.70 

38 Vibrio caribbeanicus 0.8 0.36 0.062 0.14 0.39 1.70 
39 Chromohalobacter israelensis 0.9 0.54 0.054 0.18 0.33 1.80 

40 Vibrio chagasii 1.1 1.56 0.062 0.24 0.15 2.18 
41 Marinobacter gudaonensis 1.0 1.48 0.075 0.22 0.15 2.20 
42 Halomonas axialensis 0.9 0.66 0.068 0.24 0.36 2.40 
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Table 4.2: Nitrous oxide (N2O) production by different bacterial cultures grown in nitrate 
broth 

Sr. no. Culture N2O 

(nM d-1) 

N2O 

(nM) per unit OD 

N2O 

(10-15 mol cell-1) 

1 Bacillus aryabhattai 7.92 7.00 0.29 
2 Staphylococcus arlettae 5.54 6.22 0.05 

3 Bacillus  vietnamensis 6.23 3.56 0.34 
4 Grimontia marina 7.22 5.86 0.36 

5 Anaerobacillus alkalilacustris 8.56 13.16 0.37 
6 Staphylococcus haemolyticus 4.95 5.38 0.38 
7 Schwanella coralli 6.23 4.98 0.38 

8 Vibrio alginolyticus 11.47 35.84 0.40 
9 Pseudomonas stutzeri  11.73 7.33 0.41 

10 Psychrobacter maritimus 12.35 9.50 0.45 
11 Acinetobacter seohaensis 6.32 4.15 0.45 
12 Kosakonia cowanii 12.20 9.38 0.46 

13 Alteromonas macleodii 13.84 7.81 0.41 
14 Bacillus cereus 13.51 8.44 0.51 

15 Vibrio fortis 12.18 9.02 0.52 
16 Idiomarina seosinensis 14.52 8.06 0.55 

17 Janibacter melonis 11.65 12.94 0.58 
18 Kocuria flava  13.48 7.92 0.64 
19 Micrococcus endophyticus 5.25 3.69 0.65 

20 Bacillus circulans 11.21 7.23 0.74 
21 Salinicola salarius 13.36 12.14 0.78 

22 Idiomarina zobellii 16.91 18.78 0.80 
23 Microbacterium aquimaris 11.63 7.75 0.83 
24 Vibrio brasiliensis 12.84 55.82 0.91 

25 Marinobacter hydrocarbonoclasticus 29.28 19.52 1.00 
26 Halomonas xianhensis 28.91 28.91 1.06 

27 Bacillus subtilis  28.72 30.88 1.14 
28 Vibrio chagasii 12.79 8.19 1.16 

29 Zunongwangia profunda  35.98 47.97 1.24 

30 Sufflavibacter maritimus 38.38 23.98 1.32 
31 Chromohalobacter israelensis 12.89 23.87 1.43 

32 Vibrio caribbeanicus 12.35 34.30 1.45 

33 Vibrio rotiferanus 11.24 8.32 1.60 
34 Vibrio tubiashii 10.21 8.36 1.70 

35 Marinomonas communis 30.19 25.58 1.77 

36 Marinobacter gudaonensis 22.11 14.93 2.20 
37 Vibrio campbellii 27.22 38.88 2.26 

38 Bacillus firmus  30.32 57.20 2.33 

39 Thalassospira tepidiphila 35.48 35.48 2.36 
40 Halomonas axialensis 30.30 45.90 3.36 

41 Idiomarina sediminium 119.32 119.32 5.18 

42 Marinobacter salsuginis 116.37 72.73 5.54 
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4.4 Discussion 

The most important question to be addressed in microbial ecology is which members 

of bacterial communities are responsible for the overall activity, and what factors control the 

activity or inactivity, of in situ populations. Culture-based studies provide information on the 

physiological characteristics of the organisms and their activity to the functioning of this 

ecosystem. Heterotrophic bacteria play a significant role in the biogeochemical cycling in the 

ocean because of their high abundance and ubiquity. In the study area, both aerobic and 

facultative anaerobic heterotrophic denitrifying bacteria apparently are important functional 

groups in the nitrogen cycle, due to their ability to respire anaerobically using nitrogen oxides 

as electron acceptors, which are reduced to nitrous oxide and dinitrogen (Gomes et al. 2017).  

Denitrifiers are mostly heterotrophic, capable of, and perhaps preferring, aerobic 

respiration, although the thermodynamic yield of growth using nitrate compares quite 

analogously to that of oxygen (Ward et al. 2007). As mentioned earlier Kesserű et al. (2003), 

Kim et al. (2005b) and Li et al. (2013) have isolated aerobic denitrifying species from canals, 

ponds, soils, activated sludge that are known to simultaneously utilize oxygen and nitrate as 

electron acceptors. Though this appears to contradict the fact that denitrification is an 

anaerobic process, these reports effectively demonstrate proving that denitrification is not 

necessarily or exclusively anaerobic. An important role of bacterial denitrification, in addition 

to its impact on the nitrogen cycle, is the degradation of organic carbon in deoxygenated 

oceanic realms, as Ward et al. (2007) observed when obligately aerobic heterotrophs cannot 

function. 

Metabolically versatile heterotrophic bacterial assemblages adapted to seasonally 

fluctuating oxygen concentrations are very likely to perform a great deal of nitrate respiration 
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which, with its very high oxidation state, is an ideal electron acceptor. Thus, nitrate reduction 

is an ecologically vital process carried out by phylogenetically diverse bacteria (Lavermann, 

2006; Correa-Galeote et al. 2013). While there are no earlier experimental data on NRR from 

individual bacterial cultures, reports of sedimentary NRR in the range of 0.03 to 1.5 µM 

cm−3 h−1 (Hordijk et al. 1987) and 0.274–0.933 µM cm−3 h−1 (Laverman et al. 2006). Naik and 

Naqvi (2002) reported nitrite formation rates of 0.17–1.33 mmol N m−2 d−1 from the Arabian 

Sea continental shelf along the west coast of India.  

Nitrous oxide production was demonstrated to be a very reliable and reproducible 

feature of the cultures. The highest concentration of in situ nitrous oxide in the study area 

recorded earlier by Naqvi et al. (2006) was 765 nm. However, this study on N2O production 

from culturable bacteria might come handy to work out the global marine N2O production 

from the well known denitrifying oxygen minimum zones, despite the large differences in 

N2O production by different tested cultures. For instance, one of the most active denitrifying 

heterotrophic bacterium Pseudomonas stutzeri, is considered as a model organism for 

studying denitrification process (Zumft, 1997; Lalucat, 2006). Takaya et al. (2003) reported 

N2O production from Pseudomonas stutzeri to be in the range of 1.5 x 10-2 to 6.75 x 10-5 

(µmol min-1 OD540 
-1), whereas the same bacterium in our study produced N2O of 7.81 nM 

OD600
-1. Both Marinobacter hydrocarbonoclasticus (Li et al. 2013) and many different 

species of Bacillus (Verbaendert et al. 2011) are reported to be efficient denitrifiers. Assays 

involving nitrate reductases of marine bacteria are useful to note rates of nitrate utilization. 

The first step in denitrification is the reduction of nitrate to nitrite is catalyzed by nitrate 

reductase. Nitrate reductase assay from the marine origin was earlier reported in 

phytoplankton (Hurd et al. 1995) and microalgae (Chow et al. 2007). 
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Results from this study prove useful in recognizing the contribution to denitrification 

by culture amenable heterotrophic bacterial species examined. It is worthwhile to note from 

our study that the rate of nitrate reduction/nitrite formation/nitrous oxide production is quite 

different among the strains we tested. Most of these facultative anaerobes grew on Zobell 

medium aerobically implying that the ability of nitrate reduction is widely distributed among 

the culture amenable bacterial genera. Another result worthy to note from this study is the 

observed wide difference both in NRR and N2O production amongst the representatives of 42 

different denitrifying species these denitrifying coastal waters. The 42 representative species 

were also checked for the denitrification genes and the accession numbers were obtained.  

Conclusion 

The utilization and transformation of nitrate to nitrous oxide by many bacterial 

cultures indicate their potential role in the nitrogen cycle in the coasta l regions experiencing 

temporal differences in dissolved oxygen concentrations sometimes reaching hypoxic levels.  

Diverse and high percentage of culturable bacteria reducing nitrate in low oxygen conditions 

reflect their important ecological role in denitrification processes in the coastal ecosystem. 

The efforts of examining individual cultures capable of reducing nitrate to nitrite and 

examining their nitrate reduction rate (NRR), nitrous oxide (N2O) production under laboratory 

conditions would prove useful in assessing the range of possible denitrification potential.
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5a.1 Introduction 

 Bacteria are composed of different taxonomic groups with potentially different 

phenotypic properties, physiological activities, and ecological functions although they are 

unicellular and similar in cell size. More interestingly, as Azam et al. (1983; 1994) stated 

bacterial community structure and environmental variables are the driving fo rces leading to 

specialized ecological functions bacteria perform within marine carbon and nutrient cycles.  

Of the total bacterial diversity existing in nature, only a small fraction of bacteria can 

be brought into cultures in the laboratory. With the advent of molecular-based techniques, 

studies have focused on the diversity of microbial communities. The culture-based approach 

is useful for understanding the physiological potential of isolated organisms, but the drawback 

is that it does not provide the complete composition of microbial communities. The results 

obtained by culture-dependent techniques cover only those few organisms that could be 

cultivated. Various studies have employed culture- independent techniques to show that 

cultivated microorganisms from diverse environments often may represent a minor 

component of the microbial community as a whole. It is accepted that cultivation methods 

recover less than 1% of the total microorganisms present in environmental samples (Amann et 

al. 1995; Ward et al. 1990). Therefore, microbial investigations based only on cultivation 

strategies cannot be regarded as reliable in terms of reflecting the microbial diversity presents.  

 At all levels of bacterial phylogeny, uncultured clades are known to play critical roles 

in cycling carbon, nitrogen, and other elements, synthesizing novel natural products, and 

impacting the surrounding organisms and environment. Our ability to extract DNA from the 

environmental sample and obtain sequence information by PCR amplification followed by 

cloning or direct sequencing allow classification of bacteria on the basis of 16S rRNA gene 
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sequences, irrespective of organism‘s viability. Through such analyses, a hidden ‗ocean of 

diversity‘ that had never been seen by cultivation (Amann et al. 1995; Stewart, 2012) is 

revealed. 

5a.2 Materials and methods 

5.2.1 Sample Collection 

Details on the location of the study area are provided in Chapter 3 (Section 3.2.2). For 

phylogenetic analyses, seawater samples collected from G9 (Off Goa) during all three seasons 

were used. 

 

5a.2.2 Extraction of Metagenomic DNA 

Volumes of 2.5 L of seawater from each depth were passed peristaltically through 

Sterivex cartridge fitted with 0.22 µm pore size membrane filter (Millipore, USA) to retain 

microbial cells for DNA extraction. The cartridges were then filled with 1.8 ml lysis buffer 

(Tris pH 8.3, 40 mM EDTA and 0.75 M Sucrose), sealed and stored at -80 °C until DNA 

extraction was carried out in the laboratory following Ferrari and Hollibaugh (1999). 40 µl of 

lysozyme (50 mg m1-1) was added to each cartridge and then incubated for 60 min at 37 °C. 

100 µl of proteinase K (20 mg m1-1) and 100 µl of sodium dodecyl sulfate (SDS; 20 % 

wt/vol) were added to each cartridge, and the cartridges were further incubated at 55 °C for 2 

hours. The DNA from the lysate was purified by sequential extraction with equal volumes (2 

m1) of phenol-chloroform-isoamyl alcohol (25:24:1) and chloroform-isoamyl alcohol (24:1) 

by centrifuging at 12000 rpm for 10 min. The aqueous phase was separated and precipitated 

overnight at -20 °C with 500 µl isopropanol and centrifuged at 12000 rpm for 15 min. The 

precipitated DNA was washed with 70 % chilled ethanol. It was finally dissolved in 40 µl TE 
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buffer (10 mM Tris and 1 mM EDTA, pH 8.0) and its integrity was checked by agarose (0.8 

%) gel electrophoresis. 

 

5a.2.3 PCR amplification of 16S rRNA gene from DNA extracts 

Details of PCR amplification is described in section 3.2.7. 

 

5a.2.4 Clone library construction 

PCR products were purified using UltraClean® PCR Clean-Up Kit. The PCR product 

was ligated into a pCR® 4-TOPO plasmid vector and cloned into TOP10 One Shot competent 

Escherichia coli cells as per manufacturer‘s instructions (Invitrogen). The cloning reaction 

consisted of 2 μl of purified PCR product, 1 μl of Salt solution (1.2 M NaCl; 0.06 M MgCl2), 

2 μl of sterile distilled water and 1 μl of TOPO® vector. The reaction mixture was incubated 

for 30 min on ice and 3 μl of the reaction mixture was added to a vial of competent cells for 

30 min. The cells were given heat shock at 42 °C for 30 seconds without shaking and 

immediately transferred to ice. After 5 min of incubation on ice, 250 μl of sterile S.O.C 

medium was added to this mixture and shaken horizontally (200 rpm) at 37 °C for 1 h and 

plated on LB plates containing X-Gal and incubated at 37 °C for 24 hours. Transformants 

were selected on Luria-Bertani agar plates containing ampicillin (100 µg ml-1) and X-Gal (5-

bromo-4-chloro-3-indolyl-D-galactopyranoside) (20 µg ml-1). White colonies were picked up 

from each sample and screened by PCR using the vector primers M13F (5' GTAAA ACGAC 

GGCCA GT3') and M13R (5' CAGGA AACAG CTATG AC3'). The amplification was 

performed as follows: 10 min initial heating for 95 °C, 35 cycles each of 1 min at 94 °C, at 55 

°C and at 72 °C and, a final 10 min extension step at 72 °C. The PCR products were 
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electrophoresed in 1% agarose gel for checking and selecting the positive clones with DNA 

inserts.  

5a.2.5 DNA sequencing, phylogenetic tree construction and statistical analysis  

The PCR products were purified and sequenced using ABI 3130XL genetic analyzer 

(Applied Bio-Systems) available in-house. Obtained partial sequences were trimmed using 

DNA baser software version 3.0 and vectors were removed using NCBI online program 

VecScreen (http://www.ncbi.nlm.nih.gov/tools/vecscreen/) and checked for the chimera using 

DECIPHER‘s (http://decipher.cee.wisc.edu/). Sequences were searched for similarity and 

compared with the NCBI database through BLAST searches (http://blast.ncbi.nlm.nih.gov). 

Sequences were grouped as operational taxonomic units (OTUs) by 97 % or greater sequence 

similarity, using the MOTHUR program (Schloss et al. 2009). Representative sequences from 

each OTU were aligned using the software MUSCLE (Edgar, 2004), and phylogenetic trees 

were constructed by the software MEGA6 using the neighbor-joining algorithm (Tamura et al. 

2013). Bootstrap analysis was conducted using 1000 replicates. Rarefaction analysis and 

diversity indices (Shannon and Simpson), non-parametric diversity index (Chao I) as well as 

coverage for each season and depths were calculated using MOTHUR at the cut-off level of 

3% using Mothur‘s summary.single routine.  

5a.2.6 Nucleotide sequence accession numbers 

Sequences were submitted to GenBank and accession numbers assigned are 

KX179919 to KX179927, KP076438 to KP076559, KT361318 to KT361395, KU498049 to 

KU498248, KX179928 to KX180027, KX238959 to KX260224, MF480560 to MF480649, 

MF540159 to MF540248 and MF588563 to MF588652. 

 

http://www.ncbi.nlm.nih.gov/tools/vecscreen/
http://decipher.cee.wisc.edu/
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5a.3 Results 

5a.3.1 Bacterial community structure Off Goa 

A total of 870 clones, at least 290 each from each season and 96 from each sampling 

depth were subjected to 16S rRNA gene sequencing. The sequences so obtained could be 

categorized into 14 lineages: Gammaproteobacteria, Alphaproteobacteria, Cyanobacteria, 

Deltaproteobacteria, Firmicutes, Betaproteobacteria, Acidobacteria, Actinobacteria, 

Marinimicrobia, Verrucomicrobia, Bacteroidetes, Planctomycetes, Chloroflexi and 

Omnitrophica bacterium.  

5a.3.1.1 Seasonal variations in bacterial community 

Seasonal comparisons were useful to make out that the bacteria were diverse during 

FIM followed by SIM and less diverse during SuM. Proteobacteria was the major phylum 

extant in all the seasons. Cyanobacteria, Acidobacteria, Actinobacteria, Marinimicrobia and 

Verrucomicrobia were also found to be consistently present during all three seasons. Clones 

of Cyanobacteria were the most abundant in the oxygenated surface layers during all three 

seasons. Clones of   Deltaproteobacteria were found mainly during FIM and SuM. 

Bacteroidetes and Firmicutes were observed during FIM and SIM. Planctomycetes, 

Chloroflexi and Omnitrophica bacterium were found exclusively during FIM.  

5a.3.1.2 Major Phylogenetic groups during SIM 

Ten different Phylogenetic groups were obtained during SIM. Gammaproteobacteria 

was the dominant group observed during SIM, followed by Cyanobacteria. Pronounced 

vertical difference in the structure of bacterial community was observed. Cyanobacteria and 

Betaproteobacteria were found at the oxygenated surface, while Gammaproteobacteria, 

Alphaproteobacteria and Actinobacteria were observed throughout the water column. Minor 
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groups of bacteria like Firmicutes, Bacteroidetes, Marinimicrobia, Acidobacteria and 

Verrucomicrobia were observed at sub-surface waters (Fig. 5a.1a). The bacterial groups 

increased vertically from surface to bottom depth.  

5a.3.1.3 Major Phylogenetic groups during SuM 

As seen in SIM, Cyanobacteria and Betaproteobacteria was also observed during 

SuM with major dominant groups being Gammaproteobacteria and Cyanobacteria. 

Gammaproteobacteria was found to be increasing towards the bottom. Alphaproteobacteria  

was more prominent at the mid layer. The relative abundance of Alphaproteobacteria  

substantially decreased towards the bottom with the increase of Gammaproteobacteria with 

water depth. Minor groups of bacteria like Deltaproteobacteria Marinimicrobia, 

Acidobacteria, Actinobacteria and Verrucomicrobia were observed at the bottom layer (Fig. 

5a.1a). 

5a.3.1.4 Major Phylogenetic groups during FIM 

As compared to SIM and SuM, FIM witnessed more number of bacterial groups. 14 

different Phylogenetic groups were obtained during SIM. Planctomycetes, Chloroflexi and 

Omnitrophica bacterium were evidenced during FIM Gammaproteobacteria was once again 

observed to the dominant group, followed by Alphaproteobacteria. Unlike SuM, 

Deltaproteobacteria was found to be increasing towards the bottom. Unlike SIM and SuM, 

the minor groups of bacteria like Acidobacteria, Betaproteobacteria, Actinobacteria and 

Marinimicrobia were found all through the water column, with the exception of Chloroflexi 

and Firmicutes being found at the mid layers (Fig. 5a.1a). 
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Fig.5a.1a: Bacterial community structure during different seasons off Goa  
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5a.3.2 Phylogenetic analysis of bacterial 16SrRNA genes across all three seasons 

Phylogenetic trees were built to show relationships between the dominant OTUs in 

each season and their closest neighbors taken after grouping with MOTHUR.  

5a.3.2.1 SIM: As many as 86 OTUs (or phylogroups) formed from the 290 clones, of which, 

28 OTUs (109 clones) represented Gammaproteobacteria affiliating to Alteromonas, 

Colwellia, Vibrio, SAR86 cluster, Idiomarina, Oceanobacter, Halomonas, Marinobacter, 

Pseudomonas sp. respectively and uncultured Gammaproteobacteria. (20 OTUs; 35 

sequences) belonged to Alphaproteobacteria with clones affiliating to SAR11 cluster, 

Rhodospirillales, Rhodobacteraceae and uncultured Alphaproteobacteria, Cyanobacteria (21 

OTUs; 77 sequences), Firmicutes (4 OTUs; 19 sequences) belonged to Bacillus sp., 

Marinimicrobia (3 OTUs; 8 sequences) belonging to Deferribacteres sp. and uncultured 

Marinimicrobia sp., Betaproteobacteria (1 OTU; 3 sequences) belonged to Burkholderia sp., 

Actinobacteria (3 OTUs; 31 sequences), Acidobacteria (3 OTUs; 4 sequences), 

Verrucomicrobia and Bacteroidetes (1 OTU; 2 sequences each) (Fig 5a.2a, 5a.2b and 5a.2c).  
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Figure 5a.2: Neighbor joining tree of 16S rRNA gene sequences obtained from the water 

samples collected off Goa during SIM: Spring Inter-Monsoon, Sequences are aligned with the 

best matches available in the Genbank. Tree topology was inferred by using 1000 bootstrap 

iterations. Bootstrap values above 50% at each node. Scale bar represents the nucleotide 

substitution percentage. 

a) Gammaproteobacteria 

b) Alphaproteobacteria and Betaproteobacteria  

c) Cyanobacteria, Acidobacteria, Bacteroidetes, Marinimicrobia, Firmicutes, 

Verrucomicrobia and Actinobacteria  

 

5a.3.2.2 SuM: The 290 clones sequenced made up 73 OTUs. 33 OTUs (79 clones)  belonged 

to Alphaproteobacteria, w ith clones affiliating to SAR11 cluster, Marivita roseacus, 

Loktanella hongkongensis, Nitratireductor aquibiodomus, Rhodospirillaceae, 

Rhodobacteraceae, Erythrobacter, Sphingomonas,  Donghicola, Roseobacter sp. respectively 

and uncultured alphaproteobacterium. Gammaproteobacteria (18 OTUs; 107 sequences) 

belonged to Oceanospirillaceae, Alteromonas, SAR86 cluster, Sinobacteraceae, 

Aestuariibacter, Thalassomonas, Vibrio, Oceanobacter sp. respectively and uncultured 

gamma proteobacterium, Betaproteobacteria (2 OTUs; 9 sequences) belonged to 

Burkholderia sp.,  Deltaproteobacteria (6 OTUs; 8 sequences), Actinobacteria (4 OTUs; 13 

sequences) and Acidobacteria (4 OTUs; 5 sequences), Cyanobacteria (3 OTUs; 65 

sequences), Marinimicrobia (2 OTUs; 2 sequences) and Verrucomicrobia (1 OTU; 2 

sequences) (Fig 5a.3a, 5a.3b and 5a.3c).  
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Fig 5a.3c 

Figure 5a.3: Neighbor joining tree of 16S rRNA gene sequences obtained from the water 

samples collected off Goa during SuM: Summer Monsoon. Sequences are aligned with the 

best matches available in the Genbank. Tree topology was inferred by using 1000 bootstrap 

iterations. Bootstrap values above 50% at each node. Scale bar represents the nucleotide 

substitution percentage. 

a) Alphaproteobacteria and Betaproteobacteria  

b) Gammaproteobacteria and Deltaproteobacteria 

c) Acidobacteria, Marinimicrobia, Actinobacteria Verrucomicrobia and Cyanobacteria  
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5a.3.2.3 FIM: 103 OTUs were formed from the 290 clones analyzed during FIM. (30 OTUs; 

74 clones) belonged to Alphaproteobacteria affiliating to Roseibacterium elongatum, 

Loktanella hongkongensis, Rhodobacteraceae, Rhodospirillaceae Donghicola, 

Nitratireductor, Maricaulis, Erythrobacter, Sphingomonas sp., SAR11 cluster and uncultured 

Alphaproteobacterium. (28 OTUs; 107 sequences) belonged to Gammaproteobacteria with 

clones affiliating to Idiomarina baltica, Oleibacter marinus, Pseudomonas aeruginosa, 

Oceanospirillales, Marinobacter, Halomonas,  Alteromonas, Pseudolteromonas, 

Methylophaga, Vibrio sp., and uncultured Gammaproteobacteria. Deltaproteobacteria (10 

OTUs; 22 sequences) belonged to SAR324 cluster and uncultured Deltaproteobacterium, 

Marinimicrobia (5 OTUs; 6 sequences), affiliating to Deferribacteres sp. and uncultured 

Marinimicrobia sp.,  Firmicutes (4 OTUs; 4 sequences) belonged to Bacillus sp., 

Betaproteobacteria (1 OTU; 3 sequences) belonged to Burkolderia ambifaria, Acidobacteria 

(6 OTUs; 9 sequences), Cyanobacteria (6 OTUs; 36 sequences), Bacteroidetes (2 OTUs; 3 

sequences), Chloroflexi and Omnitrophica bacterium (1 OTU; 4 sequences),  Planctomycetes 

(1 OTU; 4 sequences), Actinobacteria (5 OTUs; 15 sequences) and Verrucomicrobia (3 

OTUs; 3 sequences) (Fig 5a.4a, 5a.4b, 5a.4c, 5a.4d and 5a.4e).  
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Fig 5a.4 a 
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Fig 5a.4 e 

Figure 5a.4: Neighbor joining tree of 16S rRNA gene sequences obtained from the water 

samples collected off Goa during FIM: Fall Inter-Monsoon. Sequences are aligned with the 

best matches available in the Genbank. Tree topology was inferred by using 1000 bootstrap 

iterations. Bootstrap values above 50% at each node. Scale bar represents the nucleotide 

substitution percentage. 

a) Alphaproteobacteria  

b) Gammaproteobacteria  

c) Deltaproteobacteria and Betaproteobacteria 

d) Acidobacteria, Omnitrophica bacterium,Planctomycetes, Cyanobacteria, Chloroflexi 

and Bacteroidetes 
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e) Marinimicrobia, Firmicutes, Actinobacteria and Verrucomicrobia  

5a.3.3 Statistical analysis of 16S rRNA clone libraries  

The Chao1 estimator of species diversity, Shannon diversity index, Simpson diversity 

and Good‘s coverage for each sampling site were calculated (Table 5a.1). The Shannon and 

Simpson diversity indices were the highest during FIM (4.2 and 0.01, respectively) followed 

by SIM (3.8 and 0.06, respectively) and the lowest during SuM (3.22 and 0.10, respectively). 

The estimated coverage values ranged from 84% to 90%. The rarefaction analysis was done 

for the comparing the sampling effort and phylotype obtained (Fig 5a.5) indicated that more 

ribogroups were found during FIM and the least during SuM at equal sampling effort.  

Table 5a.1: Distribution of ribogroups, diversity indices and coverage of OTUs during 

different seasons from coastal waters of the central Arabian Sea off Goa  

Diagnostic SIM SuM FIM 

No. of sequences 290 290 290 

No. of OTUs 86 73 103 
Shannon‘s index 3.84 3.22 4.2 

Simpson‘s index 0.06 0.10 0.01 
Chao1 97.68 94.66 135.62 
Good‘s coverage (%) 90 88 84 
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Fig. 5a.5: Rarefaction curves of operational taxonomic units (OTU) of 16SrRNA gene 

sequences obtained in each season.
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5b.1 Introduction 

Coastal waters harbor a tremendous diversity of microbes able to transform C-, N-,P- 

and S-containing compounds. The metabolism of marine microbes plays significant roles in 

the functioning of the ecosystem and maintains the biogeochemical cycles on the Earth. 

Understanding the relation between the distribution of microbial diversity and ecosystem 

functioning is necessary to predict the responses of the ecosystem to the changing 

environment.  

5b.2 Materials and methods 

5b.2.1 Sample Collection 

Details on the location of the study area and its details are specified in Chapter 3, 

section 3.2.2. For phylogenetic analyses, sea water collected from M8 (Off Mangalore) during 

all three seasons was used. 

5b.2.2 Extraction of Metagenomic DNA 

 The methodology for is described in Section 5a.2.2  

5b.2.3 PCR amplification of 16S rRNA gene from DNA extracts 

Details of PCR amplification is described in section 3.2.7 

5b.2.4 Clone library construction; DNA sequencing, phylogenetic tree construction and 

statistical analysis 

The methodology for is already described in Section 5a.2.4 and 5a.2.5  

5b.2.5 Nucleotide sequence accession numbers 

Sequences were submitted to GenBank and accession numbers assigned are 

KP076560 to KP076645, KT361396 to KT361409, KX987400 to KX987499 and KY561386- 

KY561585. 
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5b.3 Results 

5b.3.1 Bacterial community structure Off Mangalore 

A total of 300 clones obtained from each season were subjected to 16S rRNA gene 

sequencing. The sequences could be categorized into Gammaproteobacteria, 

Alphaproteobacteria, Deltaproteobacteria, Betaproteobacteria, Acidobacteria, 

Actinobacteria, Bacteroidetes, Cyanobacteria, Marinimicrobia, Verrucomicrobia and 

Planctomycetes.  

5b.3.1.1 Seasonal variations in bacterial community 

Seasonal comparisons discerned the fact that bacteria were diverse during FIM 

followed by SuM and less diverse during SIM. Gammaproteobacteria, Alphaproteobacteria 

and Cyanobacteria were found during all three seasons. Clones of Marinimicrobia and 

Bacteroidetes were observed during SIM and FIM, while Acidobacteria, Verrucomicrobia  

and Actinobacteria were found mainly during SuM and FIM. Betaproteobacteria and 

Deltaproteobacteria were found exclusively during FIM. 

5b.3.1.2 Major Phylogenetic groups during SIM 

Five different Phylogenetic groups were found during SIM: Gammaproteobacteria, 

Alphaproteobacteria, Bacteroidetes, Cyanobacteria and Marinimicrobia. 

Gammaproteobacteria was the major group observed during SIM found throughout the water 

column, particularly at the surface. Cyanobacteria was evident at the surface along with 

Gammaproteobacteria. It was observed that bacterial groups were found to be diverse 

towards the bottom. Alphaproteobacteria, Marinimicrobia and Bacteroidetes were mainly 

observed at the near bottom depth (Fig. 5b.1a). 
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5b.3.1.3 Major Phylogenetic groups during SuM 

During SuM, six different Phylogenetic groups were identified: 

Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, Acidobacteria, Cyanobacteria  

and Verrucomicrobia. Gammaproteobacteria and Alphaproteobacteria were the dominant 

groups. Alphaproteobacteria was observed throughout the water column.  

Gammaproteobacteria, Actinobacteria and Acidobacteria were found in the subsurface 

waters. Minor group Verrucomicrobia was observed only at the bottom depth (Fig. 5b.1a). 

 

5b.3.1.4 Major Phylogenetic groups during SIM  

In total, Eleven bacterial phyla were evident during FIM with Proteobacteria being 

the major prominent group, followed by Cyanobacteria (Fig. 5b.1a). Phyla of Acidobacteria, 

Actinobacteria, Bacteroidetes, Marinimicrobia, Verrucomicrobia and Planctomycetes were 

also detected, but with much less abundance. Bacteroidetes and Cyanobacteria were 

particularly found at the surface. Alphaproteobacteria and Gammaproteobacteria were 

present at all the depths. Moving towards the bottom layers Deltaproteobacteria and 

Gammaproteobacteria intensified. The relative abundance of Alphaproteobacteria decreased 

at the bottom layer with the increase of relative abundance of Gammaproteobacteria (Fig. 

5b.1a). 
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Fig.5b.1a: Depth profile of bacterial community structure Off Mangalore  
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5b.3.2 Phylogenetic analysis of bacterial 16SrRNA genes across all three seasons 

Relationships between the dominant OTUs in each season and their closest neighbors 

were shown by Phylogenetic analyses, after grouping the sequences with MOTHUR.  

5b.3.2.1 SIM: Phylogenetic analysis showed that 31 OTUs (or phylogroups) were obtained in 

all. A total of 17 OTUs; 84 clones represented Gammaproteobacteria with clones affiliating 

to Pseudomonas aeruginosa, Photobacterium, Alteromonas, Pseudoalteromonas, Colwellia, 

Oceanobacter, Halomonas sp. respectively and uncultured gamma proteobacterium. 

Alphaproteobacteria (6 OTUs; 7 sequences) affiliated to Rhodospirillaceae, SAR11 cluster,  

Rhodobacteraceae and uncultured alpha proteobacterium, Cyanobacteria (5 OTUs; 6 

sequences), Marinimicrobia (2 OTUs) and one OTU belonged to Bacteroidetes (Fig. 5b.2a 

and 5b.2b). 
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 Fig. 5b.2b 

Figure 5b.2: Neighbor joining phylogenetic tree inferred from 16S rRNA gene sequences 

obtained off Mangalore during SIM; Spring Inter-Monsoon. Values at nodes are the percent 

occurrence of the sequences in the same cluster (Bootstrap values <50 are not shown). Scale 

bar represents the nucleotide substitution percentage.  

a) Gammaproteobacteria  

b) Cyanobacteria,  Marinimicrobia, Alphaproteobacteria and  Bacteroidetes  

 

5b.3.2.2 SuM: A total of 37 OTUs were obtained, Phylogenetic analyses showed that 15 

OTUs out of 42 clones belonged to Gammaproteobacteria with the dominant OTUs 

belonging to Alteromonas, Thalassomonas, Methylophaga, Colwellia, Pseudomonas sp. 
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respectively and uncultured gamma proteobacterium. 16 OTUs out of 29 sequences belonged 

to Alphaproteobacteria with sequences affiliating to Rhodobacteraceae, Rhodospirillales, 

SAR11 cluster, Erythrobacter, Sphingobium, Donghicola Nitratireductor sp. respectively and 

uncultured alpha proteobacterium. Cyanobacteria (2 OTUs; 21 sequences), Actinobacteria (2 

OTUs; 3 sequences), Acidobacteria (1 OTU; 4 sequences) and one OTU belonged to 

Verrucomicrobia sp. (Fig. 5b.3a and 5b.3b). 
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Figure 5b.3: Neighbor joining phylogenetic tree inferred from 16S rRNA gene sequences 

obtained off Mangalore during SuM; Summer Monsoon. Values at nodes are the percent 



121 
 

occurrence of the sequences in the same cluster (Bootstrap values <50 are not shown). Scale 

bar represents the nucleotide substitution percentage.  

a) Gammaproteobacteria  and  Actinobacteria 

b) Alphaproteobacteria, Acidobacteria, Verrucomicrobia and Cyanobacteria  

 

5b.3.2.3 FIM: During FIM 49 OTUs were obtained overall. 12 OTUs; 33 clones belonged to 

Gammaproteobacteria with clones affiliating to Alteromonas, Vibrio, Halomonas, Colwellia 

and Oceanobacter sp. respectively and uncultured gamma proteobacterium. 16 OTUs out of 

30 clones were divided among Alphaproteobacteria with clones belonging to SAR11 cluster, 

Rhodospirillaceae, Erythrobacter, Sphingomonas, Mesorhizobium, Loktanella, Nautella and 

Roseobacter sp. respectively and uncultured alpha proteobacterium,  Cyanobacteria (6 

OTUs; 16 sequences), Deltaproteobacteria (6 OTUs; 10 sequences), Actinobacteria (3 OTUs; 

3  sequences), Acidobacteria and Verrucomicrobia (1 OTU ; 2  sequences each) and one OTU 

each belonging to  Betaproteobacteria affiliating to Burkholderia ambifaria, Planctomycetes, 

Bacteroidetes and Marinimicrobia (Fig 5b.4a and 5b.4b). 
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 Fig. 5b.4b 

Figure 5b.4: Neighbor joining phylogenetic tree inferred from 16S rRNA gene sequences 

obtained off Mangalore during FIM; Fall Inter-monsoon. Values at nodes are the percent 

occurrence of the sequences in the same cluster (Bootstrap values <50 are not shown). Scale 

bar represents the nucleotide substitution percentage. 

a) Alphaproteobacteria and Gammaproteobacteria 



124 
 

b) Deltaproteobacteria, Acidobacteria, Planctomycetes, Marinimicrobia, 

Betaproteobacteria, Bacteroidetes, Cyanobacteria,   Verrucomicrobia and 

Actinobacteria 

 

5b.3.3 Statistical analysis of 16S rRNA clone libraries  

Both Shannon and Simpson diversity indices were the highest during FIM (3.59 and 

0.02, respectively) followed by SuM (2.84 and 0.11, respectively) and the lowest during SIM 

(2.35 and 0.19, respectively). The estimated coverage values ranged from 72% to 76% (Table 

5b.). The rarefaction analysis indicated that more ribogroups were found during FIM and the 

least during SIM at equal sampling effort (Fig 5b.5). 

Table 5b.1: Distribution of ribogroups, diversity indices and coverage of OTUs during 

different seasons from coastal waters of the eastern Arabian Sea off Mangalore  

Diagnostic SIM SuM FIM 

No. of sequences 100 100 100 

No. of OTUs 31 37 49 
Shannon‘s index 2.35 2.84 3.59 

Simpson‘s index 0.19 0.11 0.02 
Chao1 128.5 76.42 74.07 
Good‘s coverage (%) 72 76 73 

 

 

Fig. 5b.5: Rarefaction curves of operational taxonomic units (OTU) of 16SrRNA gene 

sequences obtained in each season.  
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5c.1 Introduction 

The west coast of India known for intense productivity in response to upwelling 

harbors microbes that cannot be cultivated. Such microbes are of great significance to the 

environment and respond rather shortly to changing environmental conditions. Culture-

independent studies based on 16S rRNA gene sequencing is useful to discern the vast and 

uncharacterized bacterial diversity (Alonso‐Gutiérrez et al. 2009; Cury et al. 2011). The 

coastal ecosystem experiencing seasonal hypoxia are influenced by seasonal upwelling and 

nutrients brought in from the adjacent terrestrial ecosystems.  

5c.2 Materials and methods  

5c.2.1 Sample Collection 

Details of location of the study area and its details are specified in Chapter 3, section 

3.2.2. For phylogenetic analyses, sea water collected from K3 (Off Kochi) during all three 

seasons was used. 

5c.2.2 Extraction of Metagenomic DNA 

 The methodology for is described in Section 5a.2.2  

5c.2.3 PCR amplification of 16S rRNA gene from DNA extracts  

Details of PCR amplification is described in section 3.2.7 

5c.2.4 Clone library construction; DNA sequencing, phylogenetic tree construction and 

statistical analysis 

The methodology for is already described in Section 5a.2.4 and 5a.2.5  

5c.2.5 Nucleotide sequence accession numbers 

Sequences were submitted to GenBank and accession numbers assigned are  

KY561486 to KY561585, KX987500 to KX987599 and KT361218 to KT361317.  
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5c.3 Results 

5c.3.1 Bacterial community structure Off Kochi 

After chimera removal a total of 300 clones obtained during SIM, SuM and FIM were 

subjected to 16S rRNA gene sequencing following which the sequences could be categorized 

into 13 types: Gammaproteobacteria, Alphaproteobacteria, Deltaproteobacteria, 

Betaproteobacteria, Acidobacteria, Actinobacteria, Firmicutes, Bacteroidetes, 

Cyanobacteria, Marinimicrobia, Verrucomicrobia, Planctomycetes and Chloroflexi. 

5c.3.1.1 Seasonal variations in bacterial community 

Seasonal comparisons were useful to make out that the bacteria were diverse during 

FIM followed by SIM and less diverse during SuM. Gammaproteobacteria, 

Alphaproteobacteria, Betaproteobacteria, Marinimicrobia and Cyanobacteria were found 

during all three seasons. Clones of Firmicutes, Actinobacteria, Acidobacteria and 

Verrucomicrobia were observed during SIM and FIM, while, Deltaproteobacteria and 

Chloroflexi were found mainly during SuM and FIM. Bacteroidetes and Planctomycetes were 

found exclusively during FIM.  Gammaproteobacteria was the major group observed in all 

three seasons. 

5c.3.1.2 Major Phylogenetic groups during SIM 

Nine distinct Phylogenetic groups were found during SIM: Gammaproteobacteria, 

Alphaproteobacteria, Betaproteobacteria, Cyanobacteria, Firmicutes, Bacteroidetes, 

Marinimicrobia, Actinobacteria, Acidobacteria and Verrucomicrobia. Cyanobacteria being 

the major group at the surface, along with Betaproteobacteria were seen at the surface. It was 

observed that bacterial groups were found to be diverse towards the bottom.  Firmicutes 

showed an increasing trend moving towards the bottom. Marinimicrobia, Acidobacteria and 
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Actinobacteria were found at the subsurface waters and intensified at the bottom.  

Alphaproteobacteria was evident exclusively at the mid layer (Fig. 5c.1a). 

5c.3.1.3 Major Phylogenetic groups during SuM 

The Phylogenetic groups were found during SuM were Gammaproteobacteria, 

Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, Cyanobacteria,  

Marinimicrobia and Chloroflexi. Cyanobacteria was the exclusive group observed at the 

oxygenated surface layer. Gammaproteobacteria and Alphaproteobacteria were evident the 

subsurface waters. Betaproteobacteria and Chloroflexi were seen at the mid layer, 

Deltaproteobacteria and Marinimicrobia were found only at the bottom waters (Fig. 5c.1a). 

5c.3.1.4 Major Phylogenetic groups during FIM 

As compared to SIM and SuM, more bacterial group were found during FIM. 13 

distinct Phylogenetic groups were found during FIM: Gammaproteobacteria, 

Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, Cyanobacteria, Firmicutes, 

Bacteroidetes, Marinimicrobia, Planctomycetes, Chloroflexi, Actinobacteria, Acidobacteria 

and Verrucomicrobia. The bacterial flora intensified at the subsurface layer as compared to 

the surface layers. Gammaproteobacteria and Alphaproteobacteria were found at all depths.  

Deltaproteobacteria, Betaproteobacteria, Actinobacteria, Acidobacteria, Firmicutes, 

Marinimicrobia, Verrucomicrobia and Chloroflexi were observed only at the bottom layer, 

except Bacteroidetes found at the mid layer (Fig. 5c.1a). 
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Fig.5c.1a: Bacterial community structure during different seasons Off Kochi 
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5c.3.2 Phylogenetic analysis of bacterial 16SrRNA genes across all three seasons 

 After grouping the dominant OTUs of each season in MOTHUR, the relationships 

between the obtained OTUs and their closest neighbors were deduced by constructing 

Phylogenetic trees. 

SIM: Phylogenetic analyses showed that 37 OTUs were divided among 

Gammaproteobacteria (12 OTUs; 37 clones) with clones affiliated to Marinobacter 

hydrocarbonoclasticus, Alteromonas, Pseudoalteromonas, Colwellia, Oceanobacter, 

Halomonas sp. respectively and uncultured gamma proteobacterium. Alphaproteobacteria (3 

OTUs; 3 sequences) affiliated to SAR11 cluster, Rhodospirillaceae and Rhodobacteraceae. 

Cyanobacteria (8 OTUs; 27 sequences), Actinobacteria (5 OTUs; 6 sequences), 

Marinimicrobia (3 OTUs; 7 sequences), Firmicutes (2 OTUs; 13 sequences) to Bacillus sp., 

Acidobacteria (2 OTUs each; 6 sequences), one OTU each belonged to Betaproteobacteria 

and Verrucomicrobia sp. respectively (Fig 5c.2a and 5c.2b). 
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Fig 5c.2a 
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Fig 5c.2b 

Figure 5c.2: Neighbor joining phylogenetic tree showing evolutionary relationship of 

phylotypes based on 16S rRNA gene sequences off Kochi during SIM: Spring Inter-

Monsoon. Bootstrap analysis was performed with 1000 replicates and values > 50 % are 

indicated at the nodes. Scale bar represents the nucleotide substitution percentage.  

a) Gammaproteobacteria, Alphaproteobacteria and Marinimicrobia  

b) Cyanobacteria, Firmicutes, Betaproteobacteria, Acidobacteria, Verrucomicrobia and 

Actinobacteria 
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SuM: 25 OTUs were comprised of Gammaproteobacteria (10 OTUs; 38 clones) 

belonging to Pseudomonas aeruginosa, Alteromonas, Idiomarina, Thalassomonas, 

Oceanobacter, Halomonas sp. respectively and uncultured gamma proteobacterium. 

Alphaproteobacteria (5 OTUs; 11 sequences) belonged to Rhodospirillales, Nitratireductor 

Sphingobium and Erythrobacter. Deltaproteobacteria (3 OTUs; 6 sequences) belonging to 

SAR 324 cluster and uncultured delta proteobacterium, Cyanobacteria (1 OTU; 33 

sequences), Marinimicrobia (3 OTUs; 4 sequences), Chloroflexi (2 OTUs; 5 sequences) and 

Betaproteobacteria (1 OTU; 3 sequences) belonging to Burkholderia sp.  (Fig 5c.3). 

 

FIM: Phylogenetic analyses showed that 58 OTUs were comprised of 20 OTUs out of 

35 clones belonged to Gammaproteobacteria affiliated to SAR86 cluster, Alteromonas, 

Pseudoalteromonas, Thalassomonas, Vibrio, Idiomarina, Methylophaga and Halomonas sp. 

respectively. 15 OTUs; 20 sequences belonged to Alphaproteobacteria affiliated to SAR11 

cluster, Rhodobacteraceae, Donghicola eburneus, Sphingobium yanoikuyae, Nautella, 

Mesorhizobium and Erythrobacter, Deltaproteobacteria (2 OTUs; 3 sequences) belonging to 

SAR324 cluster, Betaproteobacteria  (3 OTUs; 9 sequences) each belonging to Burkholderia 

sp., Cyanobacteria (6 OTUs; 16 sequences) Marinimicrobia (3 OTUs; 3 sequences), 

Acidobacteria (2 OTUs; 3 sequences), Firmicutes (2 OTUs; 2 sequences) belonging to 

Bacillus sp., Actinobacteria, Chloroflexi and Verrucomicrobia (1 OTU; 2 sequences each), 

and one OTU each belonging to, Planctomycetes and Bacteroidetes (Fig 5c.4a, 5c.4b and 

5c.4c). 
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Fig 5c.3: Neighbor joining phylogenetic tree showing evolutionary relationship of phylotypes 

based on 16S rRNA gene sequences off Kochi during SuM: Summner monsoon. Bootstrap 

analysis was performed with 1000 replicates and values > 50 % are indicated at the nodes. 

Scale bar represents the nucleotide substitution percentage.  
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Fig 5c.4c 

Figure 5c.4: Neighbor joining phylogenetic tree showing evolutionary relationship of 

phylotypes based on 16S rRNA gene sequences off Kochi during FIM: Fall Inter-Monsoon. 

Bootstrap analysis was performed with 1000 replicates and values > 50 %are indicated at the 

nodes. Scale bar represents the nucleotide substitution percentage.  

a) Gammaproteobacteria 

b) Alphaproteobacteria, Deltaproteobacteria and Cyanobacteria  
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c) Acidobacteria, Chloroflexi, Firmicutes, Actinobacteria, Verrucomicrobia, 

Planctomycetes, Marinimicrobia, Bacteroidetes and Betaproteobacteria  

 

5c.3.3 Statistical analysis of 16S rRNA clone libraries  

The Shannon and Simpson diversity indices were the highest during FIM (3.81 and 

0.02, respectively) followed by SIM (3.33 and 0.04, respectively) and the lowest during SuM 

(2.73 and 0.09, respectively). Chao index also was higher in FIM in comparison to SIM and 

SuM. The estimated coverage values ranged from 63% to 87% (Table 5c.1). At equal 

sampling effort the rarefaction analysis showed that more ribogroups were found during FIM 

and reached near to saturation during SIM and SuM (Fig 5c.5). 

 

Table 5c.1: Distribution of ribogroups, diversity indices and coverage of OTUs during 

different seasons from coastal waters of the eastern Arabian Sea Off Kochi  

Diagnostic SIM SuM FIM 

No. of sequences 100 100 100 
No. of OTUs 37 25 58 

Shannon‘s index 3.33 2.73 3.81 
Simpson‘s index 0.04 0.09 0.02 
Chao1 98 46.5 102.4 

Good‘s coverage (%) 72 87 63 

 

 

Fig 5c.5: Rarefaction curves of operational taxonomic units (OTU) of 16SrRNA sequences 

obtained in each season. 
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5.4 Discussion 

The physical and biogeochemical characteristic of West coast of India (WCI) is 

described in Chapter 3. The culture- independent phylogenetic analyses undertaken for this 

study is useful for understanding the bacterial roles in marine environments. 

Alphaproteobacteria, Gammaproteobacteria and Cyanobacteria were the predominant 

phylum observed along the WCI, besides these groups, members of Betaproteobacteria, 

Deltaproteobacteria, Acidobacteria, Actinobacteria, Firmicutes, Bacteroidetes, 

Verrucomicrobia, Planctomycetes, Chloroflexi and Marinimicrobia were also present. 

Culture-dependent analysis from the WCI (Chapter 3) revealed that the presence of 

Gammaproteobacteria, Alphaproteobacteria, Bacteroidetes, Firmicutes and Actinobacteria. 

Former five phylogenetic groups were also obtained in bacterial 16S rRNA gene 

metagenomic clone library analysis. However, many uncultured bacteria recovered from the 

same regions belonged to more number of phyla.  

5.4.1 Comparison of 16S rRNA gene clones with other oxygen deficient/minimum zones 

Analysis of 16S rRNA gene clones in this study revealed that the bacterial community 

found in the study area resembled bacterial community composition in open-ocean and 

coastal oxygen minimum zones, enclosed or semi-enclosed euxinic basins (including the 

Northeast subarctic Pacific, the eastern tropical South Pacific, the Namibian upwelling, 

Saanich Inlet), glacial fjords and hypoxic estuaries (Stevens and Ullao, 2008; Divya et al. 

2011; Jain et al. 2014; Wright et al. 2012; Spietz et al. 2015). 
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5.4.2 Bacterial community differences between off Goa, Mangalore and Kochi 

 No discernable difference was seen in the bacterial domains between off Goa, off 

Mangalore and off Kochi except for Omnitrophica bacterium found exclusively off Goa. 

Seasonal differences were quite distinct among the locations mentioned in results.  

 

5.4.3 Roles of different bacterial domains  

With the exception of few, most of the 16S rRNA gene sequences obtained from the 

clone libraries was closely related with the uncultured neighbours in the GenBank database.  

 

Alphaproteobacteria 

Rhodobacteraceae and SAR11 cluster were the dominant groups of the class 

Alphaproteobacteria, also reported from the ETSP OMZ (Stevens and Ulloa, 2008). SAR11  

cluster are found to be abundant in OMZs and adapt to low oxygen, including genes for 

respiratory nitrate reductases (Tsementzi et al. 2016). Dimethylsulphoniopropionate (DMSP), 

an osmolyte produced by phytoplankton is considered as the major precursor of DMS in 

seawater,  the oxidization of which leads to the formation of sulphate aerosols in the 

atmosphere that reflects solar radiation, and acts as cloud condensation nuclei upon which 

water vapour condenses and form cloud droplets (Shenoy et al. 2012). SAR11  cluster and 

members of the Rhodobacteraceae such as Loktanella, Roseobacter sp. are found to oxidize 

DMSP to DMS, which play a significant role in controlling the amount of incident radiation 

reaching the Earth‘s surface (Howard et al. 2006; Curson et al. 2008; Zeng et al. 2016) 

signifying their role in climate regulation. Rhodospirillaceae are mainly found in anaerobic 

environments and are reported to possess dsrAB gene involved in both the reductive and the 
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oxidative steps of the biogeochemical sulfur cycle (Thrash et al. 2016). Members of 

Phyllobacteriaceae such as Nitratireductor aquibiodomus and Mesorhizobium sp. are known 

to be denitrifiers (Labbé et al. 2004). Sphingomonadales has been recognized to have broad 

metabolic capacity (Miller et al. 2010) and are known to degrade aromatic compounds 

(Fredrickson et al. 1995). Erythrobacter is a known anoxygenic phototrophic bacterium 

contributing to the marine carbon cycling (Kolber et al. 2001). 

 

Gammaproteobacteria 

Alteromonas sp. was the dominant group of this class followed by Vibrio sp.  

Alteromonas are copiotrophic bacteria widely distributed throughout the marine environment, 

where they can play a notable role in the processing of d issolved organic carbon pools 

(López-Pérez et al. 2012), therefore it is present abundantly in organic rich waters. McCarren 

et al. (2010) indicated the involvement of Idiomarina sp. and Alteromonas macleodii in 

metabolizing semilabile high molecular weight dissolved organic matter to methanol or 

formaldehyde, and carbon dioxide. The methanol and/or formaldehyde produced could be 

further oxidized and incorporated by Methylophaga sp. Further, Vibrio sp. are normal 

residents in coastal waters and play an important role in biodegradation, nutrient regeneration 

and biogeochemical cycling (Cavallo and Stabili, 2004). Recent study by Li et al. (2013) 

demonstrated efficient denitrifying ability by Marinobacter sp., likewise, Pseudomonas sp. is 

one of the widely reported denitrifying heterotrophic bacteria, and it has been considered as a 

model system for the denitrification process (Lalucat, 2006; Rezaee et al. 2010).  

Methylophaga and Pseudomonas sp. are found to oxidize DMSP to DMS (Reisch et al. 2011; 

Zeng et al. 2016). Marinobacter sp. is reported to degrade the hydrocarbons and can use 

http://onlinelibrary.wiley.com/doi/10.1002/mbo3.89/full#mbo389-bib-0033
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nitrate as the terminal electron acceptor (Gauthier et al. 1992). Thalassomonas is involved in 

nitrate reduction (Jean et al. 2006). SAR 86 cluster have the capacity to utilize a range of 

polysaccharides and lipids (Dupont et al. 2012). Halomonas are reported to denitrify 

(González-Domenech et al. 2010). 

 

Betaproteobacteria 

The members of this phylum are reported to be predominant in the freshwater systems 

(Mueller-Spitz et al. 2009). Sequences related to Burkholderia sp were found in this study. 

They were reported earlier by Divya et al. (2011) from the organic–rich sediments underlying 

the oxygen-deficient waters in the eastern Arabian Sea. 16S rRNA gene clones affiliated to 

this phylum is common in coastal samples (Yeo et al. 2013). These findings imply that this 

group of bacteria have a freshwater origin and adapt to the coastal marine environment and 

the representative phylotype could transit between freshwater and marine habitats (Rappé and 

Giovannoni, 2003).  

 

Deltaproteobacteria 

These are reported to be abundant in OMZs, where they are implied to play important 

roles in linking the sulfur and nitrogen cycles (Canfield et al. 2010; Stewart et al. 2012; 

Wright et al. 2012). Sulfur oxidation was recently suggested to be a key physiological feature 

of SAR 324 (Sheik et al., 2014). 

 

 

 

http://www.sciencedirect.com/science/article/pii/S1874778714000282#bb0155
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Marinimicrobia 

 Marinimicrobia bacteria are abundant in the oxygen minimum zones and are involved 

in partial denitrification (nitrate reduction) (Bertagnolli et al. 2017).  

 

Cyanobacteria  

Oxygen that is produced by Cyanobacteria as a result of oxygenic photosynthesis 

plays fundamental roles in the global biogeochemical cycling of nitrogen, sulphur, carbon 

(Sanchez-Baracaldo et al. 2005).  

 

 Actinobacteria 

These are the substantial part of the bacterial community in the coastal waters of the 

Arabian Sea (Singh and Ramaiah, 2011).  

 

Acidobacteria 

These have been reported to be capable of nitrate and nitrite reduction in soils (Ward 

et al. 2009a; Kielak et. al. 2016) and in degradation of recalcitrant organic carbon sources 

(Quaiser et al. 2008). Their actual diversity, relative abundance, and ecological role in the 

oceans remain unknown. 

 

Firmicutes 

The members belonged to genus Bacillus was also reported from OMZ sediments 

Divya et al. (2011). Many different species of Bacillus (Verbaendert et al. 2011) are reported 

to be efficient denitrifiers. 

 

http://journal.frontiersin.org/article/10.3389/fmicb.2015.01524/full#B141
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Bacteroidetes  

These contribute to <10 % of the community structure in marine environments and the 

family Flavobacteraceae is observed in oceans. These are abundant in nutrient-rich waters 

and are major utilizers of high-molecular-mass dissolved organic matter in marine ecosystems 

(Kirchman, 2002). 

 

Verrucomicrobia 

This group appears to be lower in marine environments compared with soil and are 

known to play significant ecophysiological and biogeochemical roles (Bergmann et al. 2011). 

 

Planctomycetes  

These which are also reported in marine hypoxic regions, are known to breakdown of 

sulfated heteropolysaccharides (Ye et al. 2015) 

 

Chloroflexi  

These are involved denitrification and carbon fixation (Yilmaz et al. 2015).  

 

5.4.4 Relevance of the community to hypoxia and denitrification 

Assessment of bacterial community composition is a requirement to recognize their 

possible functional roles. The present study is useful to recognize that bacterial community 

undergoes shifts temporally in response to environmental variables (temperature, dissolved 

oxygen, nitrate and nitrite). Bacteria were more diverse during FIM when suboxia is evident. 

As such, diverse groups of bacteria proliferate with the availability of higher quantities of 

http://www.nature.com/ismej/journal/v6/n8/full/ismej20123a.html#bib4
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organic matter as a consequence of increased primary production due to elevated nitrate 

concentrations in particular during FIM (Singh and Ramaiah, 2011; Du et al. 2013). The high 

nutrient inputs from anthropogenic activities could also alter the taxonomic composition of 

bacterial community (Simonato et al. 2010). Dissolved oxygen (DO) has been proved to be 

capable of altering bacterial communities in many marine systems (Stevens and Ulloa, 2008; 

Zaikova et al. 2010). The low DO concentration could compress the habitat available to 

aerobic organisms forcing them to exploit alternative electron acceptors leading to 

denitrification resulting in changes of biogeochemical cycles (Naqvi et al. 2000; Rabalais et 

al. 2010). 

 

5.4.5 Conclusion 

Along the west coast of India, the bacterial communities respond rather strongly to 

changing seasonal environmental conditions with physiological adaptation or by shifts in the 

community composition. It is possible that these seasonal hydrographic conditions, in 

particular reduced oxygen, and their influence on bacteria, contributed significantly to the 

observed shifts both in diversity, type and predominance. These observations on the 

distribution of bacterioplankton in the seasonally hypoxic coastal waters are useful to 

recognize their importance in denitrification process in particular during hypoxic periods. A 

common observation was that the bacterial communities in the bottom waters were quite 

diverse from those at the surface, implying that the bacterial populations were affected by the 

prevailing physicochemical conditions in the water column.  

 

 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322608/#B50
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322608/#B51
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322608/#B62
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322608/#B41
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322608/#B45
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6.1 Introduction 

 Diverse microbial communities perform the biogeochemical transformation of 

biologically essential elements. Among such functions, the microbial ability to denitrify (i.e., 

removal of fixed nitrogen) is possessed by many taxonomic groups of bacteria (Braker et al. 

2000; Jayakumar et al. 2004). Fixed nitrogen in its oxidized forms is used as an alternative 

electron acceptor to support respiration when oxygen is limiting. Denitrification is the 

sequential reduction of nitrate (NO3
-) to nitrite (NO2

-), to nitric (NO), to nitrous oxide (N2O), 

and subsequently to dinitrogen gas N2. In general, marine denitrification is widely reported 

from -and understood to occur in- low oxygen regions of the water column (Stevens and 

Ulloa, 2008; Ward et al. 2009; Bristow et al. 2017). The Arabian Sea oxygen minimum zone 

(OMZ), which covers only ~2 % of the global oceanic area, accounts for ~20 % of oceanic 

denitrification and, hence, has a significant role in marine nitrogen budget (Bange et al. 2005; 

Ward et al. 2009b). The oxygen deficiency in the intermediate layer of ~150-1000 m water 

column of this region (Bange et al. 2005; Jayakumar et al. 2009b), results from a high oxygen 

demand and poor reach of oxygen-rich Antarctic bottom water to these intermediate waters. 

In addition to the perennial open-ocean OMZ, pronounced oxygen deficient conditions 

do develop seasonally along the southwest coast of India, in particular during the southwest 

monsoon season (June to October). The source of upwelled water is the poleward 

undercurrent. Intense upwelling due to local and remote forcing by monsoon winds entrain 

low-oxic and high nutrient waters to the photic layers (Shetye et al. 1990). During this period, 

increased respiration of locally produced organic matter in conjunction with strong 

stratification (Shetye and Gouveia, 1998) lead to intense denitrification (Jayakumar et al. 

2004), which in turn leads to production and accumulation of the potent greenhouse gas, N2O. 
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Seasonal oxygen deficiency is acknowledged to be detrimental to coastal ecosystems 

adversely affecting fish, benthic fauna, and crustaceans through altered trophic 

efficiency/energy transfer (Levin et al. 2009; Rabalais et al. 2010; D‘Silva et al. 2012). In the 

overall, the Arabian Sea denitrification is reported to account for about 30% of the oceanic 

fixed nitrogen loss. This region is also known to contribute to the highest N2O flux to the 

atmosphere (Naqvi et al. 2000; Bange et al. 2005). With the reversal of coastal circulation, the 

water column becomes oxygenated again in November and oxidation of organic matter, 

apparently is oxygen/aerobic respiration dominated (Codispoti et al. 2001). Denitrifiers 

comprise a polyphyletic group of mostly heterotrophic microorganisms which share the 

ability to denitrify among distantly related genera. Whether perennial as in the Arabian Sea 

OMZ or seasonal as is along the west coast of India, the process of denitrification is reported 

to be performed by such diverse groups of bacteria capable of denitrifying by switching 

between aerobic and NO3
- dependent modes of respiration (Zumft, 1997; Yu et al. 2014). The 

enzymes involved in denitrification are reductases of nitrate, nitrite and nitrous oxide encoded 

respectively by nar, nir and nos genes. 

The first step in the microbially mediated denitrification process is the reduction of 

NO3
− to NO2

− catalyzed by a membrane-bound NO3
− reductase (nar) or periplasmic NO3

− 

reductase (nap), encoded by the narG or the napA genes. Denitrifying bacteria are known to 

possess one or both of these reductases (i.e., narG and napA), wherein narG is considered to 

be more extensive and representative (Deiglmayr et al. 2004; Smith et al. 2007; Reyna et al. 

2010). In the second step, NO2
− reduces to NO catalyzed by two functionally and 

physiologically equivalent types of NO2
− reductases, either a cytochrome cd1 (encoded by 

nirS) or a Cu-containing enzyme (encoded by nirK; Glockner et al. 1993). NO reduces to the 
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intermediate N2O some of which ultimately escapes to the atmosphere. The reduction of N2O 

to N2 is the last step, which, as reported by Throbäck et al. (2004), is catalyzed by N2O 

reductase encoded by the nosZ gene present in the periplasm. As Ferguson (1994) suggested, 

it is likely that the transcription and subsequent elaboration/build-up of denitrifying enzymes 

do not begin until oxygen levels drop down and, there is adequate availability of NO3
−/ NO2. 

The polyphyletic origin of denitrification makes 16S rRNA gene-based approach impossible 

to study the denitrifiers present; therefore research has focused on targeting functional marker 

genes for recognizing the denitrification process (Jones et al. 2008). Over the past decade, 

narG, nirS, and nosZ genes have been widely used to describe denitrifier communities 

(Braker et al. 2000; Scala and Kerkhof et al. 1998; Throbäck et al. 2004; Henry et al. 2006; 

Bru et al. 2007). 

The present study aimed to detect and quantify three genes (nar, nir, and nos) 

involved in denitrification. As Ward et al. (2009b) and Lam et al. (2011) highlight, estimation 

of qPCR-based abundances of denitrifying bacteria ought to yield reliable estimates of their 

contributions to the total microbial abundance. Such essential knowledge would prove useful 

in understanding the response of microbial communities due to seasonally changing 

environmental conditions, in regions such as the west coast of India which experiences 

seasonal hypoxia. The overall objectives were i) to quantify the abundance of denitrifying 

functional genes (narG, nirS, and nosZ) in the water column of the coastal region of the 

Arabian Sea and ii) to investigate the bacterial diversity of these denitrifying functional genes. 
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6.2 Materials and methods 

6.2.1 Sample Collection 

Location of the study area and its details are specified in Chapter 3, section 3.2.2. For 

phylogenetic analyses, seawater collected from G9, M8 and K3 during all three seasons was 

used. 

 

6.2.2 Extraction of Metagenomic DNA 

 Extraction of metagenomic DNA is described in section 5.2.2. The same DNA 

samples were used for this study as well.  

 

6.2.3 PCR amplification of denitrifying functional genes narG, nirS, and nosZ  

PCR amplification of denitrifying genes was performed in 50 µl volume using Taq 

PCR reaction mix as per manufacturer‘s instructions (Sigma-Aldrich) using primers listed in 

Table 6.1. Amplicons of narG and nirS and were obtained according to the protocol of Bru et 

al. (2007) and Throbäck et al. (2004). After the initial denaturation at 95 °C for 10 min, 6 

cycles of 95 °C for 15 s, 63 °C for 30 s, and 72 °C for 30 s of touchdown was carried out, 

with a 1 °C step down in annealing temperature of each cycle. Followed by 35 cycles of 95 °C 

for 15 s, 58 °C for 30 s, and 72 °C for 90 s and a final extension at 72 °C for 10 min, nosZ 

amplicons were obtained using primer sets developed by Kloos et al. (2001). The reaction was 

initially denatured at 94 °C for 2 min; followed by 34 cycles of 94 °C for 40 s, 57 °C for 40 s, 

and 72 °C for 40 s and a final extension step at 72 °C for 8 min. The PCR products were 

analyzed on 1.5 % (w/v) ethidium bromide-stained agarose gel to ensure that the correct size 

fragment was amplified. 
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6.2.4 Construction of clone libraries 

The amplicons of each three above functional gene products were purified using 

UltraClean® PCR Clean-Up Kit. They were then ligated and cloned using a TOPO TA 

cloning kit.  The PCR product was ligated into a pCR® 4-TOPO plasmid vector and cloned 

into TOP10 competent Escherichia coli cells (Invitrogen) according to the manufacturer‘s 

instructions. Transformants were selected on Luria-Bertani agar plates containing ampicillin 

(100 µg ml-1) and X-Gal (5-Bromo-4-chloro-3-indolyl-D-galactopyranoside) (20 µg ml-1). 

White colonies were screened by colony PCR using the vector primers M13F (5' GTAAA 

ACGAC GGCCA GT3') and M13R (5' CAGGA AACAG CTATG AC3') for checking the 

positive transformants. 

 

6.2.5 Sequencing, phylogenetic tree construction and statistical analysis 

The clones were sequenced by using an ABI 3130XL genetic analyzer (Applied Bio-

Systems). The sequences obtained were edited with the software Vecscreen 

(http://www.ncbi.nlm.nih.gov/tools/vecscreen/), and checked for chimeras using 

DECIPHER‘s (http://decipher.cee.wisc.edu/). Gene sequences were aligned and grouped 

using the MOTHUR program at a 97 % cut-off level. Only one representative sequence from 

each OTU was taken for phylogenetic analyses. These representative sequences were checked 

for their similarity with sequences in GenBank using BLAST (http://blast.ncbi.nlm.nih.gov). 

Sequences from this study were aligned with matching ones in the GenBank database using 

ClustalX 1.83 (Thompson et al. 1994). The Neighbor-joining method was followed to 

construct the tree using the software, MEGA4 and the maximum likelihood method was used 

for calculating the evolutionary distance (Tamura et al. 2007). Bootstrap analysis (1000 

http://www.ncbi.nlm.nih.gov/tools/vecscreen/
http://decipher.cee.wisc.edu/
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replicates) was done to confirm the reliability of the phylogenetic tree. From all libraries, the 

rarefaction analysis, richness and non-parametric diversity index (Chao I) and coverage were 

carried out using the MOTHUR program (Schloss et al. 2009).  

 

6.2.6 Nucleotide sequence accession numbers 

Sequences were submitted to GenBank and accession numbers assigned to our 

submission are KX034220-KX260230, KX303594-KX303723, KX907784-KX907837, 

KY354437-KY354512, KU862040-KU862166, KX982367-KX982499, KY465775-

KY465814, KX290694-KX290695, KX344419-KX344426, KX354182-KX354201, 

KX387811-KX387840, KX398618-KX398647, KX495676-KX495685, KX581699-

KX581718, KX639726-KX639736, KX655567-KX655573, KX768016-KX768029, 

KX832794-KX832813 and KX871698-KX871705 
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Table 6.1: Primers used for PCR amplification of denitrification genes 

Target gene Primer Primer sequence(5´-3´) Product size (bp) Reference 

NarG NarG-F TCGCCSATYCCGGCSATGTC  174 Bru et al. (2007) 

 NarG-R GAGTTGTACCAGTCRGCSGAYTCSG   

NirS NirScd3aF-F AACGYSAAGGARACSGG 425 Throback et al. (2004) 

 NirSR3cd-R GASTTCGGRTGSGTCTTSAYGAA   

NosZ NosZ1840-F CGCRACGGCAASAAGGTSMSSGT 267 Henry et al. (2006) 

 NosZ2090-R CAKRTGCAKSGCRTGGCAGAA   

 NosZ-F CG(CT)TGTTCMTCGACAGCCAG 700 Kloos et al.(2001) 

 NosZ-R CATGTGCAGNGCRTGGCAGAA   
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6.2.7 Quantitative analysis of narG, nirS and nosZ genes  

For quantitative analyses, the DNA standards used consisted of plasmids carrying the 

appropriate target genes that were previously sequenced to confirm the ir identity. Serial 

dilutions (Ten-fold) of a known copy number of the plasmid DNA containing the desired gene 

were subjected to qPCR assay in triplicate to generate an external standard curve. Standard 

curves for narG, nirS and nosZ assays were generated by plotting the threshold cycle values 

versus log10 of the gene copy numbers. For each standard curve, the slope, y-intercept, and 

coefficient of determination (r2) were determined. The amplification efficiency (E) was 

calculated using the equation E= (101/slope_ 1) x 100 

The abundance of narG, nirS and nosZ genes was quantified in triplicate by using the 

ABI 7500 Real-Time PCR system (Applied Biosystems, USA). The same primers used to 

construct the clone libraries were used to quantify narG and nirS, whereas nosZ abundance 

was quantified using primer set NosZ 1840-F and NosZ 2090-R developed by Henry et al. 

(2006) (Table 1). Each reaction was performed in 20-μl volume containing 4 μl of DNA 

template having concentration of 12-15 ng/µl, 0.5 μl 10 pm of each primer and 12.5 μl of 

5×qARTA Green qPCR Mix (AXYGEN, USA). The PCR temperature program begun with 

an initial denaturation for 15 min at 95°C, followed by a total of 40 cycles of 15 s at 95°C, 

and annealing/extension for 1 min at 60°C. The copy number of the target genes (narG, nirS 

and nosZ) was calculated via comparison to standard curves.  
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6.3 Results 

6.3.1 PCR amplification and abundance of narG, nirS and nosZ genes 

All the DNA samples were PCR amplified using the 16S rRNA primers to confirm the 

presence of amplifiable DNA from all samples. Amplification of narG gene was positive at 

near bottom waters during SuM and FIM at the three locations, while subsurface 

amplification was evident off Kochi. A Similar pattern was observed in case of nirS gene 

during SuM and FIM, except for no amplification off Mangalore during FIM. However, nosZ 

gene amplification was evident only in bottom depths during SuM and FIM. There was no 

amplification using the above genes during SIM. 

All the standard curves, generated using plasmid containing the cloned narG, nirS, and 

nosZ genes, correlated strongly with efficiencies of r2 > 0.99. They were used as the 

references to calculate the concentrations of these genes in the environmental DNA samples. 

The efficiency of PCR amplification of narG, nirS, and nosZ genes was 92%, 80%, and 85%, 

respectively. The abundance of these functional genes was different and widely varying 

between the sampling locations. The highest abundance was of narG gene. The abundance of 

narG, nirS, and nosZ genes was more in the low oxygen-waters near-bottom as well as with 

the intensifying suboxia during FIM.  

The range of narG copy numbers off Goa during the times of low oxygen 

concentrations was 3.9 to 7.9 x 107 copies L-1. Similarly, the narG copy numbers were in the 

range of 1.5 to 3.9 x 107 copies L-1 off Mangalore and 1.5 to 3.9 x 107 copies L-1 off Kochi. 

The range of nirS copy numbers off Goa during the times of low oxygen concentrations was 

0.14 to 0.21 x 106 copies L-1. Likewise, the nirS copy numbers were in the range of 0.001 to 

0.23 x 106 copies L-1 off Mangalore and 0.006 to 0.30 x 106 copies L-1 off Kochi. The range of 
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nosZ copy numbers off Goa during the times of low oxygen concentrations was 2.80 to 2.90 x 

106 copies L-1. Likewise, the nosZ copy numbers were in the range of 0.75 to 1.70 x 106 

copies L-1 off Mangalore and 0.30 to 0.45 x 106 copies L-1 off Kochi (Fig 6.1). 

 

Fig.6.1: Seasonal variation in Copy numbers (L-1) of denitrifying genes at sampling locations 

along the west coast of India 

 

 

 

 



155 
 

 

6.3.2 Phylogenetic analysis of denitrifying functional genes 

Clone libraries were constructed from all the DNA extracts showing positive 

amplification for the functional genes (narG, nirS, and nosZ) from Goa, Mangalore, and 

Kochi. All three genes were mostly detected from low oxygen near bottom samples during 

SuM and FIM. 

 narG: A total of 300 non chimeric sequences obtained during SuM (120 sequences) 

and FIM (180 sequences) split into three clusters in the phylogenetic tree. 86.3% sequences 

grouped into Cluster I with clones affiliating to Marinobacter, Shewanella, Halomonas, 

Pseudomonas, Pectobacterium, Stenotrophomonas sp. belonging to Gammaproteobacteria 

and uncultured representatives from paddy soil and saline alkaline soil. Cluster II (10% 

sequences) were related to Burkholderia, Delftia and Alicycliphilus sp. belonging to 

Betaproteobacteria. Cluster III (2% sequences) belonged to Brucella, Methylobacterium and 

Ochrobactrum sp. affiliating to Alphaproteobacteria (Fig.6.2). 

nirS: 270  sequences obtained in SuM and FIM (120 and 150 each) categorized into 

two clusters in the phylogenetic tree. Cluster I (90% sequences) related to cultured 

representatives Pseudomonas stutzeri, Alcaligenes faecalis, Kocuria varians, Herbaspirillum 

and Pseudogulbenkiania sp. While cluster II (10% sequences) comprised of environmental 

samples (Fig 6.3).  

nosZ: In total 200 sequences, 100 each from FIM and SuM could be classified into 

three clusters in the phylogenetic tree. I (3% sequences) was related to Pseudomonas 

aeruginosa belonging to Gammaproteobacteria. II (4% sequences) clustered were related to 

Achromobacter cycloclastes, Rhodoferax ferrireducans and Herbaspirillum sp. affiliating to 
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Betaproteobacteria. III (93% sequences) contained clones related to Bradyrhizobiaceae, 

Shinella zoogloeoides, Rhodopseudomonas palustris, Dinoroseobacter shibae, Ruegeria 

pomeroyi, Rhodobacter sphaeroides f. sp. denitrificans, Paracoccus Mesorhizobium, 

Azospirillum and Sinorhizobium sp. belonging to Alphaproteobacteria (Fig 6.4). 
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 G-FIM-Bottom-165 (198)

 M-SuM-Bottom-33 (22)

 Marinobacter hydrocarbonoclasticus(FO203363.1)

 Marinobacter sp.(JQ745300.1)

 G-FIM-Bottom-164(3)

 Shewanella woodyi (CP000961.1)

 M-SuM-Bottom-48(4)

 K-FIM-Mid-298(4)

 Halomonas halodenitrificans(AB076402.2)

 Halomonas chromatireducens (CP014226.1)

 G-FIM-Bottom-175 (10)

 Pseudomonas denitrificans (CP004143.1)

 K-SuM-Bottom-118(7)

 Pseudomonas stutzeri(CP003725.1)

 G-SuM-Bottom-183(5)

 Pectobacterium wasabiae (CP015750.1)

 saline alkaline soil(EU495777.1)

 M-FIM-Mid-181 (2)

 K-SuM-Bottom-253(1)

 Stenotrophomonas maltophilia (CP002986.1)

 Paddy soil(FJ209573.1)

 M-FIM-Mid-200 (1)

 K-SuM-Mid-70(1)

 K-FIM-Mid-241(1)

Cluster I

 K-FIM-Mid-128 (2)

 M-SuM-Bottom-223 (3)

 Alicycliphilus denitrificans(CP002657.1)

 K-FIM-Mid-143 (2)

 K-FIM-Bottom-176 (6)

 Delftia sp.(CP018101.1)

 K-FIM-Bottom-158 (6)

 Burkholderia ambifaria (CP009800.1)

 K-FIM-Bottom-157 (4)

 Burkholderia pseudomallei (CP016912.1)

 Burkholderia sp (CP013387.1)

 Burkholderia fungorum(CP010027.1)

 G-SuM-Bottom-184 (6)

 Burkholderia glumae(CP009434.1)

Cluster II

 G-FIM-Bottom-56(5)

 Methylobacterium nodulans (CP001349.1)

 K-FIM-Mid-135(2)

 Ochrobactrum anthropi (CP008819.1)

 G-SuM-Bottom-198 (5)

 Brucella sp.(LN998034.1)
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Fig.6.2: Neighbor joining tree generated from alignments of narG sequences from the three 

different locations during SuM and FIM, and their representative references derived from the 
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Genbank. Tree topology was inferred by using 1000 bootstrap iterations.  Accessions numbers 

are shown in parentheses. Bootstrap values >50% are shown at each node. Scale bars 

represent the nucleotide substitution percentage. Clone designations are shown by symbols: 

●SuM , ■FIM and letters as G, M and K corresponding to the locations (Goa, Mangalore and 

Kochi) from where the clones were derived.  

 

 

 

 

 Alcaligenes faecalis(AJ224913.1)

 Pseudomonas stutzeri (GU474546.1)

 Pseudomonas stutzeri (JX826514.1)

 Pseudomonas stutzeri (JQ319505.1)

 G-FIM-Bottom-156 (4)

 G-SuM-Bottom-12 (20)

 Herbaspirillum sp.(FN555558.1)

 Pseudogulbenkiania sp.(AB937714.1)

 Pseudogulbenkiania sp.(KU175478.1)

 G-SuM-Bottom-9 (203)

  Kocuria varians (AY345246.1)

 K-SuM-Bottom-4 (8)  

  G-FIM-Mid-138 (2)

 G-FIM-Bottom-151 (2)

 K-FIM-Bottom-250 (3)

 G-FIM-Bottom-163 (2)
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 nirS clone in sediment in Yangtze lakes (MF959244.1)

 nirS clone in sediment in Yangtze lakes (MF959223.1)
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 M-SuM-Mid-27 (19)
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 Fig.6.3: Neighbor joining tree generated from alignments of nirS sequences from the three 

different locations during SuM and FIM, and their representative references derived from the 

Genbank.Tree topology was inferred by using 1000 bootstrap iterations. Accessions numbers 

are shown in parentheses. Bootstrap values > 50% are shown at each node. Scale bars 

represent the nucleotide substitution percentage. Clone designations are shown by symbols: 

●SuM , ■FIM and letters as G, M and K corresponding to the locations (Goa, Mangalore and 

Kochi) from where the clones were derived.  
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 (CP022526.1) Pseudomonas aeruginosa
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 G-SuM-Bottom-15 (2)
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Fig.6.4: Neighbor joining tree generated from alignments of nosZ sequences from the three 

different locations during SuM and FIM, and their representative references derived from the 

Genbank. Tree topology was inferred by using 1000 bootstrap iterations.  Accessions numbers 

are shown in parentheses. Bootstrap values > 50% are shown at each node. Scale bars 

represent the nucleotide substitution percentage. Clone designations are shown by symbols: 

●SuM , ■FIM and letters as G, M and K corresponding to the locations (Goa, Mangalore and 

Kochi) from where the clones were derived.  
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6.3.3 Statistical analyses of functional genes 

The Chao1 estimator of species diversity, Shannon diversity index and Simpson 

diversity index and Goods coverage for each gene was calculated (Table 6.2). The order of 

richness of functional genes (number of estimated genotypes based on the Chao1 index) was 

narG>nosZ>nirS in SuM and FIM. The coverage of these clone libraries was 95 %, 98 % and 

93 % for narG, nosZ, and nirS genes respectively. Rarefaction analysis also showed that nirS 

and nosZ reached saturation indicating better coverage during SuM and FIM. In general, narG 

was more in the number of bacterial types (Fig 6.5a and b).  

 

 

Table 6.2: Spatiotemporal distribution of denitrifying functional genes, diversity indices and 

coverage of OTUs 

Gene No. of 

clones 

No. of 

OTUs 

Shannon‘s 

index 

Simpson‘s 

index 

Chao1 

index 

Good 

coverage (%) 

       
SuM       

NarG 120 19 2.23 0.17 24 95 
NirS 120 10 1.51 0.34 10 98 
NosZ 100 11 1.13 0.52 16 93 

       
FIM       

NarG 180 24 1.44 0.51 25.90 96 
NirS 150 5 0.43 0.82 5.00 98 
NosZ 100 12 1.12 0.55 17.00 93 
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Fig.6.5a: Rarefaction curves of operational taxonomic units (OTU) of denitrifying genes 

(nar,nir and nos) obtained during SuM. 

 

 

 

Fig.6.5b: Rarefaction curves of operational taxonomic units (OTU) of denitrifying genes 

(nar,nir and nos) obtained during FIM. 
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6.4 Discussion 

From the cooler (19-22°C) waters in the mid and near bottom depths, it is apparent 

that monsoon time (June-October) upwelled waters persisted during SuM and FIM. With the 

surface temperature in the range of 28-30°C during these periods, it can be suggested that the 

low saline freshwater cap as a result of intense rainfall (Pant and Rupa Kumar, 1977; 

DileepKumar, 2006) seems to prevent surfacing of upwelled water. During SuM the surface 

was well oxygenated, unlike the mid-depth and near-bottom waters. This is because hypoxia 

(with O2 < 1.4 ml L-1 or 62.5 µM; 2 mg L-1) (Levin et al. 2009) developed in the subsurface 

was due to upwelling (consumption of O2 for degradation of organic matter as a result of 

higher biological productivity) and poor ventilation. The DO further reduced during FIM 

leading to suboxia because of stratification in addition to low oxic upwelled waters. With the 

collapse of upwelling, the water column is reported to become oxygenated during SIM 

(Jayakumar et al. 2004; Pratihary, 2007; Naqvi et al. 2010). Following the decline in DO 

concentrations, nitrate being the next abundant electron acceptor mediates the organic matter 

transformation. Observations in the Indian coastal waters since 1997 (Naqvi et al. 2000; 

Jayakumar et al. 2004) have shown that high nitrite concentrations (>1 μM) occur when the 

water is completely depleted of dissolved oxygen.  

The DNA extracts from the low oxygen mid-depth and near-bottom waters containing 

high nitrate and nitrite concentrations could be amplified using the narG and nirS primers 

during SuM and FIM. But, nosZ amplification was positive only in the DNA extracts from 

samples collected from close to bottom during SuM and FIM. The failure to obtain nirS 

sequences from the oxygenated surface waters is perhaps an indicatio n that denitrifying 

bacteria possessing nirS gene are rare in such layers (Jayakumar et al. 2013). There are no 

primer sets as yet for nirS gene displaying both complete coverage and specificity together. 
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Continuous addition of novel sequences would increase the repertoire on the diversity from 

the deoxygenated or oxygen losing regions. The fact that no novel target regions exist for nirS 

gene, it may not be possible to obtain a single ideal universal primer pair for each of the nir 

genes as reported by a recent study by Bonilla-Rosso et al. (2016). 

Results of this study bring forth the fact that each denitrifying gene is specific to 

certain taxonomic groups. The 16s rRNA gene diversity of culturable as well as non-

culturable bacteria (unpublished data) in this region is dominated by the phylum 

Proteobacteria. The same was evidenced in this study dominated by bacteria belonging to 

phylum Proteobacteria, indicating their significance in water column denitrification. This 

observation is consistent with previous studies of Heylen et al. (2006); Bru et al. (2007); 

Wyman et al. (2013) and Yu et al. (2014). Gene encoding for the membrane-bound nitrate 

reductase narG was distributed among taxonomically diverse bacteria, from Alpha-, Beta- and 

Gamma-Proteobacteria. The nitrate-reducing community is phylogenetically diverse and 

related to species of Marinobacter, Halomonas, Shewanella, Pseudomonas, Pectobacterium, 

Stenotrophomonas, Alicycliphilus, Burkholderia, Delftia, Methylobacterium, Ochrobactrum, 

Brucella as well as clones from soil were previously reported for nitrate reduction (Lee at al. 

2009; Zhang et al. 2016). Also, the clones of nirS gene were closely related to Pseudomonas 

stutzeri, Kocuria, Herbaspirillum and Alcaligenes sp. This was consistent as also observed 

earlier in OMZs by Jayakumar et al. (2004) and Yu et al. (2014). Some of nirS were distantly 

related to the identified denitrifiers suggesting that denitrifiers possessing these gene 

sequences are yet to be isolated. In contrast to narG OTUs, the nirS OTUs decreased from 

SuM (hypoxic periods) to FIM (suboxic periods). Since it is likely that competition for carbon 

substrates and nitrate intensifies among denitrifiers themselves, the nutritionally versatile 
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groups become differentially abundant leading to decreased diversity at OTU levels. Thus, as 

also noted by Jayakumar et al. (2009, 2013), the observed dominance of a few types of 

denitrifying organisms, the denitrifier diversity decreased as denitrification progressed from 

initially low-oxygen-high-nitrate waters to low-oxygen-high-nitrite conditions. Bacteria 

harboring nosZ gene included Pseudomonas, Herbaspirillum, Azospirillum, Bradyrhizobium, 

Sinorhizobium, Mesorhizobium, Shinella, Rhodopseudomonas, Rhodobacter, Paracoccus sp. 

were also previously reported in paddy soil, wastewater and OMZ (Ishii et al. 2011; Hou et al. 

2012; Yi et al. 2015). 

In the present study, it was evidenced that the copy numbers of narG genes (107 L-1) 

were higher than those of nirS and nosZ genes (106 L-1) which were within the ranges reported 

by Wyman et al. (2013), Yu et al. (2014) and, Yi et al. (2015). Studies have reported the 

presence of narG, in order of 104  to109 copies/ L, nirS genes as low as 103 copies/µl to 109 

copies/L, and nosZ from 104 to 105 copies/L (Chon et al. 2011; Wyman et al. 2013; Jayakumar 

et al. 2013; Bourbonnais et al. 2014; Yu et al. 2014). The abundance of nosZ gene increasing 

northward from Kochi to Goa could be due to the receding upwelling intensity as has been 

reported by Naqvi et al. (2006; 2010). The qPCR data suggest seasonal differences in the 

abundance of denitrification communities in these coastal locations with the narG possessing 

assemblages being predominant during SuM and FIM. 

Conclusion 

Results of this study provide information on bacterial communities possessing genes 

for the denitrification. Quantitative data on the diversity, distribution, and abundance of 

nitrate, nitrite, and nitrous oxide reductase marker genes (narG, nirS, and nosZ) are key for 

evaluating their involvement in the removal of fixed nitrogen from the seasonal coastal 
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denitrifying region of the Arabian Sea. The distribution of these functional genes was 

consistent with the environmental conditions that define this coastal region. In essence, 

bacterial community structure varied seasonally in diversity and the composition of the 

assemblage reflecting the shift from hypoxia to suboxia. These results contribute to the 

understanding relationships between the abundance of genes, denitrifier community and their 

possible co-functioning in the nitrate, nitrite and nitrous oxide reduction (denitrification) 

process.  
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Coastal upwelling systems are the most productive areas in the world's oceans. The west 

coast of India is located at the Eastern Arabian Sea upwelling system. Characterized by strong 

seasonal oscillations in physical forcing and biological production, the Arabian Sea is 

recognized as very productive of tropical oceanic regions. It is a region where the along-shore 

winds interact with the coastal topography to generate upwelling–downwelling dynamics 

(cross-shore Ekman transport) on the continental shelf. Strong south-west monsoon during 

summer months of June-October causes intense upwelling in its south eastern borders. 

Whereas, during the winter months (December-March), enhanced vertical mixing leads to 

surface cooling. Thus, the photic zone is replete with nutrients from subsurface layers during 

both these periods leading to generally high biological productivity anthropogenic and 

atmospheric input of nitrogenous and other nutrients. Higher consumption rates of dissolved 

organic matter lead to oxygen deficient conditions with dissolved oxygen concentrations 

reaching <1.42 ml L−1 (hypoxia or deoxygenation in the water column. In essence, depletion 

of oxygen necessitates bacteria to utilize nitrate via the denitrification process. In the 

denitrifying zone off the southwest coast of India, high concentrations of nitrite (> 15 μM) 

and nitrous oxide (> 500 nM) have been reported. 

In the face of deoxygenation that induces enhanced denitrification, the hypoxic 

ecosystems would harbor unique, diverse communities of heterotrophic bacteria. Thus, such 

ecosystems are hotspots for oxygen-sensitive nitrogen transformations, where nitrate serves as 

the main terminal electron acceptor in the process of organic matter oxidation. In such cases, 

denitrification contributes to the removal of fixed nitrogen as N2, with resulting impacts 

governing global nutrient cycles and in general, the climate system.  
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The following is an account of important observations/findings from this study.  

 Sampling was carried out based on the oceanographic conditions as Spring 

Intermonsoon (SIM; March-May); summer monsoon (SuM; June-August) and Fall 

Intermonsoon (FIM; September-October) at the surface, mid-depth and bottom water 

Off Goa, Off Mangalore and Off Kochi.  It was observed that during SuM and FIM 

seasons, the temperature and dissolved oxygen concentrations steep ly decrease in the 

mid depth and bottom layers. Corresponding to this decrease, the nitrate and nitrite 

concentrations increase. However, constant temperature, and Dissolved Oxygen (DO) 

was constant throughout the water column during SIM and concentration of nitrogen 

species was null.  

 Culture-dependent bacterial diversity by 16S rRNA gene sequencing from this study 

resulted in a total of 31 genera belonging to 5 phyla. Alteromonas and Vibrio spp. was 

predominant among the culturable bacteria. Distinct spatiotemporal variations in 

bacterial communities were observed. 24 different bacterial genera were observed Off 

Goa, 17 different bacterial genera were observed Off Mangalore and 13 different 

bacterial genera were observed Off Kochi. The diversity was in the order of 

Goa>Mangalore>Kochi. Low diversity was observed only during SuM.  

 Culture- independent bacterial diversity was investigated based on 16S rDNA clone 

library approach and the clones were affiliated with Proteobacteria (includes Alpha, 

Gamma, Beta and Delta subdivisions), Acidobacteria, Actinobacteria, Firmicutes, 

Bacteroidetes, Cyanobacteria, Marinimicrobia, Verrucomicrobia., Chloroflexi, 
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Planctomycetes and Omnitrophica bacterium. Among the Proteobacteria, γ-

Proteobacteria was predominant in this study area followed by Cyanobacteria. 

 Both culture-dependent and culture- independent studies (i.e. 16S rRNA gene-based) 

have indicated that the phylum Gammaproteobacteria is the dominant phylum in all 

three sampled locations, independent of seasons.  

 Phylogenetic groups viz., Proteobacteria (Beta and Delta subdivisions), 

Acidobacteria, Cyanobacteria, Marinimicrobia, Verrucomicrobia., Chloroflexi, 

Planctomycetesand Omnitrophicabacteriumobtained from non-culturable diversity 

were not detected in culture-dependent analysis. 

 Alteromonas, Idiomarina, Vibrio, Marinobacter, Pseudoalteromonas, 

Photobacterium, Halomonas, Pseudomonas, Erythrobacter and Bacillus were the 

common genera observed in both culture-dependent and culture- independent analyses.  

 Bacterial diversity was the least by both culture-dependent and culture-independent 

methods during Summer Monsoon 

 Of the 900 cultures obtained from the study area, 673 cultures were nitrate reducers 

accounting for 75% of the total bacterial population in this study, which grouped into 

42 different species. 

 NRR ranged from 0.04–0.27 µMd-1 among all 42 cultures. The per cell NRR ranged 

from 0.41-2.40 (X 10-14) mol cell-1. It was seen that Halomonas axialensis recorded 

the highest NRR of 2.40 (X 10-14) mol cell-1. NRR was the least [0.41-0.57 (X 10-14) 

mol cell-1] by Salinicola salarius and Microbacterium aquimaris 

 Selected 42 representative nitrate reducing cultures were checked for nitrous oxide 

(N2O) production. N2O production ranged from 7.00-119.32 nMd-1 among all 30 



169 
 

cultures. The per cell N2O ranged from 0.29-5.54 (X 10-15) mole cell-1. Maximum N2O 

production was by Idiomarina sediminium and Marinobacter salsuginis in the range 

of 5.18-5.54 (X 10-15) mole cell-1, followed by Halomonas axialensis [3.36 (X 10-15) 

mole) cell-1]. Bacillus aryabhattai produced the least N2O [0.29 (X 10-15) mole cell-1. 

 The nitrate reductase activities ranged among the tested cultures was low as 0.012-

0.037 Uml-1 by Micrococcus endophyticus, Vibrio tubiashii and Bacillus vietnamensis. 

Notably, the highest activity of 0.084 and 0.119 U ml-1 was by Idiomarina sediminium 

and Halomonas xianhensis respectively. 

 The 42 representative nitrate reducing cultures were checked for presence of 

denitrifying genes (narG, nirS and nosZ). 

 The DNA extracts from the low oxygen mid-depth and near-bottom waters containing 

high nitrate and nitrite concentrations could be amplified using the narG and nirS 

primers during SuM and FIM. But, nosZ amplification was positive only in the DNA 

extracts from samples collected from close to bottom during SuM and FIM.  

 Assemblages of bacteria possessing narG, nirS and nosZ indicated that complete 

denitrification could occur, particularly in the samples collected close to the bottom.  

 Functional gene sequencing of bacterial communities brought out the fact that strains 

possessing these reductases were diverse and, dominated by members of Alpha-, Beta- 

and Gamma-proteobacteria, including taxonomic groups containing well known 

denitrifiers such as Pseudogulbenkiania, Kocuria, Pseudomonas, Herbaspirillum, 

Achromobacter, Rhodoferax, Mesorhizobium, Sinorhizobium, Shinella, 

Bradyrhizobiaceae, Rhodopseudomonas, Dinoroseobacter, Paracoccus, Rhodobacter, 

Ruegeria and Azospirillum sp. 
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 Besides the distinct spatiotemporal differences, the overall ranges of these three 

functional genes across the sampling sites ranged from 1.9 x 107 to 7.9 x 107 copies L-1 

(narG), from 0.001 x 106 to 0.30 x 106 copies L-1 (nirS) and from 0.30 x 106 to 2.9 x 

106 copies L-1 (nosZ). 

 

FUTURE PROSPECTS 

 To study the total bacterial diversity is a persisting challenge in any environment. To 

avoid the cloning bias, next generation sequencing (NGS) could reveal the total 

diversity in the coastal environment.  

 Since various environmental factors regulate denitrification, analysis of mRNAs as an 

indicator of gene expression would determine the active population of bacteria 

performing denitrification. 

 Improved isolation techniques to obtain bacterial cultures from oxygen depleted 

environment in anaerobic conditions. 

 Microarray hybridization analyses of denitrifying genes.  
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