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Abstract. In this paper, we analyze superfluid, insulator and various magnetic phases of ultracold spin-1 bosonic atoms in 
two-dimensional optical superlattices. Our studies have been performed using Cluster Mean Field Theory. Calculations 
have been carried out for a wide range of densities and the energy shifts due to the superlattice potential. We find 
superlattice potential do not change the symmetry of the polar superfluid phases. Superlattice potentials induce Mott 
insulator phases with half-integer densities. The phase diagram is obtained using superfluid density, nematic order and 
singlet density. Second order Rényi entanglement entropy is also calculated in different phases. The results show that 
Rényi entanglement entropy is large in the nematic Mott insulator phase. 

INTRODUCTION 

Ultracold atoms in optical lattices and superlattices provide us with the realization of engineered quantum 
many-body lattice models [1]. One remarkable development in this context is the realization of Bose gases in 
the optical lattices. Superfluid (SF) to Mott Insulator (MI) quantum phase transition in cold bosonic atoms has 
received great scientific attention since its theoretical prediction in the context of Bose Hubbard model 
(BHM), and followed by its experimental realization [2-4]. When traps are purely optical, Alkali atoms like 
87Rb, 23Na and 30K, with hyperfine spin F=1, have spin degrees of freedom and thus, the interaction between 
bosons is spin-dependent [5]. The interaction is ferromagnetic (e.g. 87Rb) or anti-ferromagnetic (e.g. 23Na), 
depending upon scattering lengths of singlet and quintuplet channels [6]. The spin-dependent interaction in 
spinor gases exhibits richer quantum effects than their single-component counterparts and it not only modifies 
the nature of phase diagrams but also allows the study of superfluidity and magnetism. 
 
The optical superlattices are obtained by super-imposition of two monochromatic lattices with slightly 
different wavelengths [7]. Manipulating the relative phase between the two standing waves and their respective 
depths independently, a periodic pattern of potential wells with two different depths at two adjacent sites is 
obtained. This difference in the depth of two adjacent sites is the measure of superlattice potential. In this 
report, we investigate spin-1 ultracold bosons loaded into 2-dimensional bi-chromatic optical superlattices.  

MODEL AND METHOD 

The spin-1 Bose–Hubbard model, which describes spin full bosons in an optical superlattice, is given by 

                 	 	 ∑ , , , ,〈 , 〉, ∑ 1 	 ∑ 2 	∑ ,                (1) 

where first term represents hopping of bosons between nearest neighbour sites 〈 , 〉 with an amplitude t. Here 

, 	 ,  represents annihilation (creation) operator at site i with spin projection	 1, 0, 1 , number operator 

, , ,  and ∑ , . Spin operator , ,  where ∑ ,, , ,  with , ,  
and ,  are standard spin-1 matrices. Spin independent (dependent) interaction  arises due to the 
difference in the scattering length  and  in the spin S=0 and S=2 channels respectively. The spin dependent 
interaction  can be positive (anti-ferromagnetic) or negative (ferromagnetic) depending on the values of  and 

	[5]. The site dependent chemical potential 1  where  controls the bosons density and  is the 
shift in energy due to superlattice potential. Here, we consider a bi-chromatic superlattice and thus, the whole 
lattice is bipartite into A and B sub-lattices with  and	 . 
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In the cluster mean-field theory [8], the entire lattice is divided into clusters with  number of sites. In this 
calculation we take 2 and thus, each cluster consists of one site each from A and B sub-lattices. Decoupling 
each cluster from its nearest neighbor clusters using standard mean-field procedure [6,8,9], the model (1) is given 
by 

 

, , , , 	3 , , , , , , 2 , ,  

                        ∑ 1, 	 ∑ 2, ∑ , , .                                       (2) 

 
Here , 〈 , 〉	 , 〈 , 〉  is the A (B) sub-lattice superfluid order parameter with spin component	 . 
We determine , 	and	 ,  self-consistently using the method described in Ref. [8]. Sub-lattice superfluid 

densities	 ∑ , and densities of bosons	 〈 〉 are calculated from this self-consistently 

determined ground state. We also calculate the average density of bosons  and the density wave 

order parameter	 | |. We can characterize the ground state of model (1) from these quantities. The 
ground state is a superfluid (Mott insulator) if  is non-zero (zero). The magnetic properties of the superfluid 

and Mott insulator phases are determined from Nematic order parameter , 〈 〈 〉 〉[10] 

and singlet pair density		 〈 〉, where the singlet creation operator	 2 , ,

, , . In addition to these quantities, we also investigate entanglement properties [10] of different ground 

states by calculating Rényi entanglement entropy (EE) [11] given by  where  

is the reduced density matrix for sub-lattice A (B). 
 

RESULTS 

We now present the results of the Cluster Mean Field Theory applied to 2-dimensional spin-1 Bose Hubbard 
model in bi-chromatic superlattice, with cluster size 2. Here we restrict ourselves to the anti-ferromagnetic 
case	 0. We set our energy scale by choosing t=1 and thus all parameters are dimensionless. It is known from 
the earlier studies that, for the anti-ferromagnetic case ( 0), the symmetry the superfluid phase is polar (PSF) 
[8] and in the mean-field level symmetry restricts values of the superfluid order parameters such that 
either		 , , 	 	0, , 0 or  , , 0 and  , 	 0 [8]. Superfluid order 
parameters are plotted in the Fig. 1(a) for 30, 0.03  and superlattice potential	 6. It is evident 
from the Fig. 1(a) that the superfluid phases have polar symmetry: we find  , , 	 	0 and ,

0 and thus, superlattice potential do not change this symmetry. There are four regions in the chemical potentials 
where , 0 thus, correspond to four insulator phases. The sublattice bosons densities  and	 , the 

average boson density 		and the density wave order parameter 	are plotted in the Fig. 1(b). 

The four insulator regions have average densities , 1,  and 2 with sublattice densities ,
1, 0 , 1, 1 , 2, 1 	and (2, 2), respectively. Insulators with the density 1	and 2 are the normal Mott insulators 

where the density is uniform across whole lattice and		 0. However, insulators with 	 	 and 	 		have 

finite  and are called density wave insulators. Thus, the superlattice potential introduces additional insulator 
phases with half-integer bosons densities. The sublattice bosons densities with different spin component	 ,  
are plotted in the Fig. 1(c). In general, we find , , ,  except in the Mott insulator region, i.e., for 

1	and 2, we find		 , , , , 	. It should be noted here that the symmetry of the polar 
superfluid phase is such that , , 	 	0 and , 0. This imply that the bosons with spin 
component 0, though present in the system are not in the superfluid phase. Only bosons with spin component 

1 form superfluid. This leads to a situation where we have a two-fluid model with bosons with 1 are 
in superfluid phase while bosons with 0 are in the normal fluid phase. Magnetic properties of the superfluid 
and the insulating phases are given in the Fig. 1(d) where we plot Nematic order parameter		 ,  and singlet pair 

density	 . We find that density 2 Mott insulator phase is a singlet phase with 	 1	and		 ,

, 0. The density 1 Mott insulator phase, however, is nematic , , 0 and 0. In 
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	 	 density wave insulator, the sublattice boson densities are		 , 1,0 . In this phase we find		 ,

0,	 , 0 and		 0. In the  density wave insulator, however, , 0,	 , 0 and 1,

0. So, in the  density wave insulator, A-sublattice is in the singlet phase and B-sublattice is in the 

nematic phase, whereas in the  density wave insulator, A-sublattice is in the nematic phase. We present the 

results for Rényi EE in Fig. 2. In general, we find  and are very small except in the 1 Mott 
insulator where 	is two orders of magnitude larger.  is constant in insulating phases and vary with chemical 
potential in polar superfluid phases.   
 
We plot the phase diagram of model (1) for 6 and 10 in Fig. 3(a) and (b) respectively. There are four 
insulating phases represented by lobes. The dotted lines represent phase diagram for 0 where there are only 
two lobes correspond to 1 and 2 Mott insulator phases. As we introduce the superlattice potential, these two 

Mott phases shrink and two additional density wave insulating phases form with average density	  and  . We 

also observed that these density wave insulator lobes enlarge with superlattice potential.  
 

 

FIGURE 1. (Colour online) (a) Superfluid order parameters, (b) densities and density wave order parameters, (c) densities 
with spin component  and (d) nematic order and singlet pair density are plotted as a function of chemical potential µ for 

30, 0.03  and 6.  

 
 

FIGURE 2. (Colour online) Rényi EE		 	and superfluid density 	are plotted as a function of chemical potential µ for 
U0=30, U2=0.03U0 and δ=6. 
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CONCLUSION 

In our present work, we use the cluster mean field theory to study the behavior of spin-1 bosons in the optical 
superlattices. Since intra-site fluctuations are treated exactly in CMFT, it permits us to study the magnetic and the 
superfluid properties of the system simultaneously. Our investigation primarily focused on the anti ferromagnetic 
case ( 0). We conclude that, in bi-chromatic superlattices, the introduction of superlattice potential favours 
the localisation of the bosons and this leads to density wave Mott insulators. When		 0, we have uniform 
superfluid and Mott insulator phases. As  increases, the uniform Mott insulator lobes shrink while the half 
integer density wave insulator lobes enlarge. The symmetry of the superfluid phase remains unaffected by the 
superlattice potential. We have also studied the magnetic properties of insulating phases as well as calculated 
Rényi EE. We found that the 1 Mott lobe is nematic, and 2 lobe a singlet. The magnetic property of the 
density wave insulator, however, depends on the sub-lattice density. Rényi EE remains mostly small except at 
density 1 Mott insulator and could be used as a marker of the transition. 

 

FIGURE 3. (Colour online) Phase diagram of model (1) for (a) 6 and (b) 10. The coloured lobes are insulating 
phases and rest of the region is polar superfluid. The dashed line represent the phase diagram for 0. 
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