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Chapter 21

Role of nanoparticles in
advanced biomedical research

R.K. Kunkalekar1, Umesh B. Gawas2
1Department of Chemistry, Goa University, Taleigao Plateau, Goa, India; 2Department of

Chemistry, Dnyanprassarak Mandal’s College and Research Centre, Assagao, Goa, India

21.1 Introduction

Nanotechnology refers to the branch of science and engineering dedicated to
materials with dimensions in the range 1e100 nm. Nanoparticles (NPs) are of
great scientific interest as they are effectively a bridge between bulk materials
and atomic or molecular structures. Morphological and topographical features
of NPs play important roles in their potential applications in various fields like
biomedical, optical, storage system, magnetic separation, targeted drug de-
livery, electronics, etc. Consequently, with a wide range of applications
available, NPs have the potential to make a significant impact on society. The
characteristic feature of NPs is that the physical and chemical properties are
significantly different from bulk counterparts [1]. In the case of magnetic
nanomaterials, the quantum size effects and large surface area dramatically
changes their magnetic behavior and they exhibit superparamagnetic
phenomena with quantum tunneling of magnetization because at nano-
dimensions below a critical size each particle behaves as a single magnetic
domain [2]. The research associated with nanomaterials in the biological field
is mostly directed toward their use in medical diagnosis and treatment of
cancer-related ailments. The potential for drug delivery systems involving NPs
offers several advantages such as (1) the ability to target specific locations in
the body; (2) reduction of the drug quantity needed to attain a particular
concentration in the vicinity of the target cells; and (3) reduction of the con-
centration of the drug in the normal cells to minimize the severity of size
effects [3]. This chapter gives an overview of NPs in advanced biomedical
research. The biomedical roles of metallic, nonmetallic (metal oxide NPs), and
carbon-based nanomaterials with special reference to cancer diagnosis and
treatment have been discussed.
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21.2 Cancer therapy

Cancer refers to a group of diseases characterized by abnormal cell growth
with the potential to invade or spread to other parts of the body with the
exception of benign tumors which do not spread to other parts of the body.
With severe health consequences, cancers are a major cause of death world-
wide [4,5]. According to the World Health Organization, worldwide deaths
due to cancer are estimated to be 8.2 million, which is about 13% of the total
deaths, and this is expected to rise to 22 million by 2030 [6,7]. In the United
States alone, 1,735,350 new cancer cases and 609,640 deaths due to different
types of cancers are projected to occur in 2018. In India, the estimated number
of people living with cancer is around 2.5 million, and every year over seven
lakhs are diagnosed for cancer out of which 5,56,400 deaths occur due to
cancer-related diseases [8]. The most common types of cancer include breast
cancer affecting females, which is the leading cause of cancer mortality next to
lung cancer [9]. There is no single cause for cancer; it is caused due to the
interaction of many factors together, which may be genetic, environmental, or
constitutional characteristics of individuals. The treatments for cancer depend
on its type, advancement in the body, all of which have some limitations and
side effects [10]. The commonly used cancer treatments include: surgery,
radiation therapy, chemotherapy, immunotherapy, hormone therapy, stem cell
transplant, and precision medicine. The major disadvantage of the existing
cancer therapies is their inability to deliver specific drugs to the target, causing
drugs to act on both cancerous and healthy cells, leading to systemic toxicity,
which also prevents sufficient drug concentration to be delivered to tumor
sites, thus making the cancer treatment deemed to be ineffective. Most of
anticancer agents used in conventional methods for cancer treatment are
hydrophobic with low solubility and high metabolism, consequently, the
bioavailability of drug decreases [11]. Furthermore, the available conventional
chemotherapeutic treatments are limited in their solubility, selectivity toward
tumor cells and are increasingly multidrug resistant (MDR), and hence, the
resistance of tumors against anticancer drug increases [12]. This has generated
the necessity for alternative methods for cancer treatment, and one approach
that has evolved in the recent past is targeted drug delivery. It works selec-
tively on cancer cells with minimum side effects on normal cells, tissues, and
the body as a whole. For an effective cancer treatment, it is desirable to
increase the efficacy of anticancer drugs, which can be achieved by specific
targeted drug delivery, thereby minimizing the side effects. The recent
development of nanomedicines offers tremendous opportunities in specific
targeted drug delivery for anticancer therapy. The binding ability and speci-
ficity of NPs to bind malignant tumor cells can be enhanced by conjugation
with suitable biomolecular ligands and high surface area that may be utilized
as carriers for therapeutic and diagnostic agents [13]. Among metallic NPs,
colloidal silver, in addition to its antitumor activity exhibits excellent in vivo
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distribution and very low toxicity [14,15]. The in vitro antiproliferative activity
of silver NPs (AgNPs) is reported on breast cancer cell lines (MCF-7,
MDA-MB-231) [16]. Gold NPs (AuNPs) display unique physicochemical
properties that can be utilized in building multifunctional platforms for
transport of low solubility and poor pharmacokinetic profile therapeutics to the
tumor target as well as to sensitize cells and tissues to the treatment [17].
Superparamagnetic iron oxide nanoparticles (SPIONs), due to their low in vivo
toxicity and high tolerability, offer great advantage in cancer diagnosis as well
as anticancer therapy by hyperthermia [18]. Carbon-based nanomaterials such
as graphene oxide (GO), reduced graphene oxide (rGO), and carbon nanotubes
(CNTs) have been explored as promising drug carriers for targeted drug de-
livery systems [19]. GO has attracted more attention due to its effective
endocytosis, biocompatibility, and large surface area for drug loading.
Furthermore, GO and rGO display good dispersing capability in water and
physiological environments because of the surface functionalities that may
help in forming hydrogen bonds with the associated drug molecules [20,21].
This hydrogen bonding, in addition to the p-p stacking and hydrophobic
interaction, can assist drug loading on the nanocarriers [22]. Physicochemical
properties of various nanomaterials are illustrated in Fig. 21.1.

21.3 Metal nanoparticles as drug delivery and
anticancer agents

Metal nanoparticles (MNPs) have enthralled researchers for over a century and
are now profoundly utilized in material science, catalysis, fuel cells,
biomedical sciences, electrochemical sensors, and biosensors. MNPs’ surface
can be suitably modified with different functional groups that help them to

FIGURE 21.1 Physicochemical properties of nanomaterials.
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conjugate with antibodies, ligands, and drugs of interest and thus open a wide
range of potential biomedical applications. The size- and shape-controlled
synthesis of MNPs with high surface area is important in present-day
cutting-edge materials. NPs of noble metals such as Pt, Au, Ag, and Cu
have potential applications in catalysis and other fields [23e27]. Biomedical
functions and applications of noble metals like Au and Ag are presented in the
following section.

21.3.1 Gold nanoparticles

Gold nanoparticles are being looked upon as an ideal candidate for various
biomedical applications because of their characteristic properties such as small
size, unique photophysical features, easy surface functionalization, and
biocompatibility (Fig. 21.2). These properties render AuNPs as a versatile
nanoplatform for emerging biomedical applications like cell imaging, ultra-
sensitive detection, transfection, drug transport and delivery system, antiviral
agent, efficient material for photothermal ablation, etc. [28,29]. X. Zheng et al.
[30] have obtained the renal clearable w2 nm glutathione-coated AuNPs. The
zwitterionic coating was found to minimize nonspecific MPS uptake in balb/c
mice. Further, the pharmacokinetic measurements in animal model have
indicated rapid distribution and circulation with a blood-elimination half-life

FIGURE 21.2 Schematic representation of AuNP characteristics in biomedical research.
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of 12.7 hr. The long blood retention time signifies the ability of these coated
AuNPs to passively target tumor-bearing nude mice [31]. K. Huang et al. [32]
observed superior cancer cell penetration and in vivo tumor accumulation for
N-(2-mercatopropionyl)glycine-coated ultrasmall AuNPs (2 nm) as compared
with 6 and 15 nm particles. P. Xu et al. [33] have studied remote control drug
release employing supramolecular assembly system and synergistic chemo-
photothermal therapy for cancer treatment. They have used cucurbit (CB) [7]
uril-stabilized gold nanostar (GNS) to encapsulate anticancer drug campto-
thecin (CPT) via host-guest chemistry. Importantly, the drug release was
triggered using near infrared (NIR) light and CB [7] performs a dual role, that
is, acting as surfactant to improve stability of GNS in aqueous solution and as
cage for intermolecular assembly of CPT molecules. S. Gulla et al. [34] have
evaluated the bioactivity of novel tumor vasculature targeting noncytotoxic
Au-CGKRK nanoconjugates. They observed >70% enhancement in overall
survivability in melanoma-bearing mice by intraperitoneal administration of
the Au-CGKRK NPs complexed with both PD-L1siRNA and STAT3siRNA;
while, the biodistribution study using NIR dye-loaded Au-CGKRK nano-
conjugates has revealed the accumulation of dye in tumor site in the mice. S.
Ke et al. [35] have observed higher potency in promoting apoptosis for AuNPs
combined with tumor necrosis factorerelated apoptosis-inducing ligand
(TRAIL) in nonsmall-cell lung cancer cells. The AuNPs-TRAIL combination
causes excessive mitochondrial fragmentation in cancer cells, which is
accompanied by dramatic increase in mitochondrial recruitment of dynamin-
related protein 1 (Drp1), mitochondrial dysfunction, and enhancement of
autophagy induction resulting in increased apoptosis in exposed cells.

21.3.2 Silver nanoparticles

Silver NPs are one of the most vital and fascinating nanomaterials extensively
explored in biological and medical research. AgNPs are being employed in
various fields such as medical, food, health care, consumer, as well as
industrial purposes due to their unique optical, electrical, thermal, and bio-
logical properties [36]. Commercially, AgNPs find use as antibacterial agents
in industrial, household, health careerelated products, in consumer products,
medical device coatings, optical sensors, and cosmetics. As well, AgNPs also
find biomedical applications such as drug delivery and anticancer agents in
targeted drug therapy [37,38]. P. Roychoudhary et al. [39] investigated
the antiproliferative activity of AgNPs against leukemic cell lines (K562,
MOLT-3, REH) through MTT assay. AgNPs synthesized by Lyngbya
majuscula displayed dose- and time-dependent activity in REH cells and 40,6-
diamidino-2-phenylindole (DAPI) staining clearly revealed the fragmentation
of cancer cells due to treatment of AgNPs. J. Blanco et al. [40] have inves-
tigated effects of AgNPs on a human lung carcinoma cell line (A549). They
have observed decrease in p53, p21, MDM2, and caspase-3 expression after
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low dosage daily and high single dosage exposure to AgNPs; the opposite
effect was noticed with changed frequency of doses/administration, which
clearly indicate time- and dose-dependent antiproliferative activity. M. Khan
et al. [41] observed smallest IC50 values for A549 with higher cytotoxic
activity than the reference tamoxifen for AgNPs decorated with highly reduced
graphene oxide. Further, the cytotoxic effect was found to be proportional to
the concentration of AgNPs and cell death mechanism due to cell cycle arrest
at G0/G1 phase and apoptosis induction. P. Yuan et al. [42] reported the
synthesis and cytotoxic studies of GO-AgNPs nanocomposite against human
neuroblastoma cancer cells (SH-SY5Y). The GO-AgNPs nanocomposite dis-
played significant cytotoxicity at lower concentrations. Further, they have
established the molecular mechanism of cytotoxicity. P. Netchareonsirisuk
et al. [43] have reported the antiproliferative activity of AgNPs capped with
sodium alginate and poly(4-styrensulfonic acid-comaleic acid) sodium salt
(PSSMA) against human normal skin fibroblast (CCD-986SK) and malignant
melanoma (A375). The sodium alginateecapped AgNPs displayed high
selectivity against A375 cell line through apoptosis and necrosis, while
PSSMA-capped AgNPs exhibited nonselective toxicity. R. Bhanumathi et al.
[44] investigated drug discharge capacity and anticancer effect of folic acid
(FA) and berberine (BBR), an isoquinoline alkaloideloaded AgNPs. They
have used BBR encapsulated on citrate-capped AgNPs in conjugation with
polyethylene glycol (PEG)-functionalized FA. The in vivo antitumor efficiency
of NP-encapsulated drug showed significant restraint of tumor progression.
The toxicities behavior of FA-PEG@BBR-AgNPs against different organs was
established by histopathological observations.

21.4 Metal oxide nanoparticles as drug delivery and
anticancer agent

Metal oxide nanoparticles (MONPs) are important compounds in the materials
chemistry field, attracting considerable interest due to the potential techno-
logical applications of these compounds. The importance of these materials in
different areas such as medicine, information technology, catalysis, energy
storage, piezoelectric devices, corrosion protection coatings, and sensing, etc.
has driven much research in developing synthetic pathways to such nano-
structures. MONPs with different morphological features such as nanorods,
nanotubes, nanospheres, nano-hollow spheres, and nanofibrous materials can
be conveniently synthesized using different techniques such as hydrothermal,
precursor, sol-gel, etc. MONPs have a unique structure, high surface area,
unusual redox properties, good mechanical stability, and biocompatibility. For
these reasons, MONPs have attracted considerable interest in the fields of
biomedical therapeutics, bioimaging, and biosensing and are important
components in medical implants, cancer diagnosis and therapy, and in
neurochemical monitoring [45e50].
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21.4.1 Iron oxide nanoparticles

Iron oxide NPs (IONPs) have been investigated for magnetic properties, which
find several important applications such as magnetically mediated hyperther-
mia for cancer treatment [51], contrast agent MRI [52], treatment of anemia
[53], etc. However, the recent studies have indicated that the ability of NPs to
generate reactive oxygen species (ROS) can be used in cancer therapy [54,55].
Among iron-based NPs, SPIONs are being explored extensively, especially for
their therapeutic and diagnostic applications. SPIONs, in particular magnetite
(Fe3O4) and maghemite (g-Fe2O3), are considered as means of transport for
targeted drug delivery as they can be guided to the tumor site through an
external magnetic field and this prevents drug diffusion to the rest of the body.
Due to their superparamagnetic nature, SPIONs lose their magnetism and enter
the blood circulation when the external magnetic field ceases [56,57]. The
effectiveness of NPs in diagnostic or therapeutic applications can be increased
by surface coating, which enhances the physicochemical and biological
properties of nanomaterials by providing protection against corrosion and
environmental degradation. Also, the biocompatibility and colloidal stability
of NPs increases, thereby enhancing the drug release at therapeutic site [58].
N. Mallick et al. [59] have investigated the chondroitin-4-sulphate (CS)-
capped SPIONs for loading of the anticancer agent doxorubicin hydrochloride
(DOX). The in vitro drug release profile indicated 96.77% of DOX release
within 24 hr and MTT assay in MCF7 cells has revealed significantly higher
toxicity for CS-SPIONs-DOX with IC50 value 6.294 � 0.4169. S. Mondal
et al. [60] have investigated hydroxyapatite (HAp)-coated IONPs synthesized
using solvothermal and chemical precipitation for magnetic hyperthermia-
mediated cancer therapy. The nontoxic nature of IONPs-HAp was estab-
lished by trypan blue and MTT assay. The hyperthermia study performed on
osteosarcoma cells (MG-63) displayed excellent hyperthermia effect with
specific absorbance rate value 85 W/g. They have achieved hyperthermia
temperature of about 45�C within 3 min, which could kill nearly all the studied
cancer cells within 30 min. C. Saikia et al. [61] have studied FA-tagged
aminated starch/ZnO-coated SPIONs for targeted delivery of anticancer
drug, curcumin. The cytotoxicity study of the drug-loaded NPs was analyzed
by MTT assay in human lymphocytes, liver cancer cells (HepG2), and MCF7,
wherein NPs were found to be compatible with human lymphocyte cells and
reduce the cell viability up to 61% with 0.5% ZnO concentration in HepG2
and MCF7 cells. The cell uptake efficiency and ROS generation was studied
using HepG2 cell lines. The ROS generation was found to enhance with
increasing ZnO concentration in the system. N. Moghadam et al. [62] reported
improved antiproliferative effect of the nevirapine (Nev) on cancer cell line
(Hela) by loading onto chitosan-coated magnetic iron oxide nanoparticles
(MIONPs). The in vitro ct-DNA-binding study has revealed DNA aggregation
on Nev-loaded MIONPs through groove-binding mode.
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21.4.2 Miscellaneous

Photocatalyzed titanium dioxide NPs (TiO2NPs) have been shown to eradicate
cancer cells. However, the required in situ introduction of UV light limits the
use of such therapy in humans. Hydrophilized TiO2 NPs (HTiO2NPs) produce
ROS in vivo when activated by ultrasound to eradicate tumor. HTiO2 NPs-
based sonodynamic therapy generates a high level of ROS both in vitro and
in vivo that can cause destruction of the tumor [63]. Cerium oxide NPs
(CONPs) are a novel and very interesting material for radiation therapy,
possessing the “smart” capacity to selectively induce the death of irradiated
cancer cells by increasing oxidative stress and apoptosis, while protecting the
surrounding tissue from radiation-induced damage and oxidative stress.
Therefore, CONPs have the unique feature of acting as radio-protecting, as
well as radio-sensitizing agents simultaneously [64]. Application of zinc oxide
NPs (ZnONPs) has shown that they are most efficacious on cancer cells
(T98G), moderately effective on tumor cell line (KB), and least toxic on
normal human (HEK) cells. These results demonstrated that treatment with
ZnONPs sensitizes T98G cells by increasing both mitotic (linked to cytoge-
netic damage) and interphase (apoptosis) death [65]. Copper oxide NPs can be
used to kill human liver cancer cells. The small spherical NPs generate ROS
(such as superoxide anions, hydroxyl radical, and hydrogen peroxide) that
damages the membranes and the DNA of the cancer cells, eventually inducing
their death. ROS also turned on several death-triggering genes, driving the
cancer cells to commit mass suicide. Also, these NPs have shown cytotoxic
effects on A549 cells [66]. A. Wani et al. [67] reported that PEGylation of
mesoporous silica nanorods (MSNRs) prevented dose-dependent hemolysis in
concentration range 0e10 mg/L, improved colloidal stability of MSNR, and
increased mitoxantrone (MTX) release. Also, decrease in the IC50 of MTX and
MTX-loaded MSNR was observed under hypoxic conditions.

21.5 Carbon-based nanoparticles as drug delivery and
anticancer agents

Graphene, carbon nanotubes, and fullerenes are important classes of carbon-
based nanoparticles. They have a unique pore structure, adsorptive capacity,
electronic properties, and acidity. This has generated tremendous interest in
these nanomaterials for applications in fields such as physics, chemistry,
biology, and medicine. The basic building blocks of all the carbon nano-
structures are a single layer of graphite that consists of hexagonally aligned sp2

hybridized carbon atoms forming a hexagonal honeycomb-like lattice.
Graphene is the thinnest two-dimensional single layer of hexagonal packed
carbon atoms that has attracted researchers all over the world [68e71].
Graphene oxide is a product of chemical exfoliation of graphite. It is typically
synthesized by reacting graphite powders with strong oxidizing agents such as
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KMnO4 in concentrated sulfuric acid. GO is described as a graphene sheet
modified with different types of organic functionalities such as carboxyl
(-COOH), carbonyl (-CO), hydroxyl (-OH), and epoxy (CeOeC). The pres-
ence of these functionalities renders GO hydrophilicity and the potential to
improve the solubility of some water-insoluble drugs. Hence, GO is preferred
over pristine graphene for drug delivery application [72]. Reduced GO is
another most commonly explored graphene material for biomedical applica-
tions. It is generally obtained by chemical, thermal, and electrochemical
reduction of GO [73]. Both GO and rGO hold great potential in biomedicine
such as polymer composites, biological sensors, bioimaging, targeted drug
delivery, and photothermal therapy (PTT) [74]. CNTs are allotropes of carbon,
which consist of hexagonally aligned sp2 hybridized carbon atoms interlinked
with each other to form a tubular shape with an outer diameter ranging from 4
to 30 nm. Structurally, they are similar to graphite sheets that are rolling upon
themselves. The rolled sheets can be single, double, or many walls, and
therefore they are named as single-walled, double-walled, or multiwalled
carbon nanotubes (MWNTs), respectively. Due to their unique physical,
chemical, and mechanical characteristics, these materials have wide applica-
tions in various areas including polymer science, biomedical research, energy
storage, electrodes, gas sensors, catalyst support, etc. [75,76].

21.5.1 Graphene oxide/reduced graphene oxide for drug delivery

Functionalized GO has been extensively investigated for anticancer therapy
because of its high water solubility and biocompatibility. Z. Rao et al. [77]
investigated complex of amino-modified GO with carboxymethycellulose as a
carrier of DOX. A cumulative drug release of 65.2% was observed at pH 5.
The cytotoxicity studies on Hela cell and mouse fibroblasts (NIH-3T3) cells by
MTT assay have indicated good biocompatibility with no cytotoxicity. N.
Duran et al. [78] have developed hybrids by coupling small interfering
RNA (siRNA)-GO-PEG (6ARM-poly(ethylene glycol)amine-PEI (poly-
ethylenimine) as a carrier to administer DOX in nonmuscle invasive bladder
cancer (NMIBC) treatment. In vivo studies revealed 60% normal bladder
diagnosis for the association of GO-COOH-DOX and GO-PEG-PEI/siRNA. A.
Deb et al. [79] demonstrated use of the anticancer drug camptothecin (CPT)
loaded onto GO nanomaterial with PEG and FA against MCF-7 by MTT assay.
They observed higher cytotoxicity to the cancer cell with CPT loaded onto
GO-PEG-FA in comparison with free drug. Also, the nontoxic nature of the
drug composite was confirmed by cell viability assay wherein 95% of cell
count was observed after 24 hr incubation. N. Hussien et al. [80] investigated
aptamer-conjugated magnetic graphene oxide (MGO) nanocarrier for targeted
drug delivery cancer treatment. They used nanosize magnetite particles on GO
layer with aptamer as a targeting moiety and paclitaxel (PAC) as an anticancer
agent. In vitro results have indicated 95.75% entrapment efficiency and
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pH-sensitive drug release. Cytotoxicity studies have shown biocompatibility of
MGO nanocarrier with over 80% cell viability for fibroblast cell line (L-929)
with high cytotoxic effect of PAC-loaded MGO on MCF-7. S. Kiew et al. [81]
studied dextrin-conjugated GO nanocarrier as drug delivery system to respond
to a tumor-associated stimulus, a-amylase. They observed 1.5-fold higher
release and 2-fold increase in the cytotoxic effect of DOX in dextrin-
conjugated GO. Also, higher permeabilities through fenestrated endothelial
barrier were observed for GO-based nanocarrier. R. Sousa et al. [82] developed
hyaluronic acid (HA) functionalized-rGO for cancer PTT. The rGO was
obtained by greener route employing L-ascorbic acid as reducing agent and
functionalized using hyaluronic acidebased amphiphilic polymer. The func-
tionalization with amphiphile improved its thermal stability, cytocompatibility,
and internalization by CD44 overexpressing cells, which indicates its potential
for targeted cancer therapy.

21.6 Conclusions

Nanotechnology has provided novel and powerful materials that may be used
in the treatment and diagnosis of cancer. However, there are still limitations
due to the heterogeneity of the cells used for each tumor model in vitro and/or
in vivo, which make it difficult to do a comparison between the different
studies. Another limitation is the formation of protein corona when NPs reach
the blood and interact with the plasma proteins, affecting in vivo distribution
and clearance. Nonetheless, the majority of products, reagents, and drugs
being used for the development of these nanoscale theranostic agents have still
to be approved by the main supervising agencies, such as the FDA and EMA.
Research continues in this area, and more information about the distribution,
biocompatibility, and low toxicity for normal tissues is necessary prior to
clinical trials. Thus far, there are some questions whose answers still provide
no clear understanding about the design and application of NPs, such as
pharmacokinetics, biodistribution, and side effects of the nanotherapies, and
safety profile of NPs before and after conjugation and toxicity. Even though
there is no general mechanism for making NPs universally “nontoxic” to all
living cells and all organisms, there are important findings that can be applied
for increasing nanoparticle biocompatibility and reducing cytotoxic in-
teractions in vivo and in vitro. Although both metallic and nonmetallic NPs
have shown potential to be powerful tools against cancer, they still need
further optimization and characterization for complete understanding of
therapeutic mechanisms. It is now time to start translating these promising
nanoplatforms to the clinical settings toward widespread effective therapy
strategies in the fight against cancer.
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