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CHAPTER - 1 

INTRODUCTION 

 

 

1.1 Background 

Technological advances in high-frequency based active sonars have extensively 

facilitated seafloor mapping and management of living and non-living resources of the 

seas. SONARs (SOund Navigation and Ranging) are now regularly used for seafloor 

exploration on account of its capabilities for large-scale data coverage and rapid 

acquisition. The evolution of Multi-Beam Echo-Sounder System (MBES) (Mayer, 2006) 

that has revolutionized seafloor mapping along with the advancement in computer 

processor technology is able to deliver voluminous data for analysis. Besides its 

bathymetric capability, the ability to provide spatially co-registered backscatter imagery 

using beam-forming technique has resulted in higher resolution of the MBES bathymetry 

and improved quality of backscatter data. With MBES as a mapping tool and application 

of Artificial Neural Networks (ANN) based architecture Self Organizing Maps (SOM) 

(Kohonen, 1990) together with geostatistical analyses of the data, the classification of 

seafloor types of the surveyed areas can be carried out and mapped. 

The present work focuses on the classification of the seafloor using morphometric 

and soft computational techniques, concentrating on three distinct and discernible areas 

from the multibeam surveyed region along the central Western Continental Margins of 

India (WCMI), (Rao and Wagle, 1997), off Malvan to Malpe, in water depths ranging 

from 30 m to 2000 m. The multibeam data were acquired under the auspices of Exclusive 

Economic Zone (EEZ) mapping program of MoES and CSIR-National Institute of 

Oceanography.  The three areas are a part of 24115.5 km² of the WCMI that has been 

mapped using 15003.5 line km of multibeam data. A sequestered area with a combination 
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of gullies, ridges and slumps along the slope stretching over 5,310 km
2
 offshore Goa, 

(Chakraborty et al., 2014a) has been examined for seafloor characterization. The other 

categorical area dotted with pockmarks and fluid seepage lies in water depth varying 

from 145 m. in the northeast to 330 m covering the southwest region. It extends almost 

72 km
2
 (9.0 km x 8.0 km), revealing a large number of pockmarks that have been 

progenerated by the presence of gas and fluid seepages escaping from the subsurface 

along the faults, especially toward the western end of the area (Chakraborty et al., 2015). 

The third area is the discernible shallow water area with two coralline banks with an 

atypical environmental setting, away from the seepage area (Fig. 1.1). 

 

Fig. 1.1- Location of the study areas 
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The WCMI is a passive and divergent margin in the Indian Ocean, located in the 

eastern Arabian Sea, in the western part of the peninsula shield of India, which is a 

mosaic of various tectonic provinces dating in age from early Archaean to late 

Proterozoic (Kumar et al., 1996; Arora et al., 2012). The general orientation is NNW-SSE 

and parallel to the Dharwarian orogenic trend. The surveyed area is characterized by 

thick Neogene and Palaeogene carbonates with minor shale. The main drainage in the 

coastal area trends in general East-West direction and flows to the Arabian Sea in the 

west. Rivers such as the Gangavali, Sharavati and Netravati flow across the coastal plain 

and have an annual runoff of 1.5x10
13

 m
3
 yr

-1
 of water (Rao, 1972). 

Studies carried out in the WCMI have revealed that the slope region has been 

subjected to extensive slumping during the late Pleistocene Epoch (Stackelberg 1972; 

Shetty 1972; Hussain and Guptha 1985; Rao et al., 1988; Guptha et al., 2002). The 

studies inferred that the slumping in the WCMI was set in motion during the Holocene.  

Although the late Pleistocene paleo-topography appears as a basic factor in controlling 

the areal distribution of Holocene deposits, modern processes have also had a significant 

effect in the area (Karisiddaiah et al., 2002). The Holocene sedimentary processes in the 

area were controlled primarily by bottom topography and dynamics of the current regime. 

Bottom currents play a major role in the continental margin sedimentation. The bottom 

currents in WCMI move northward carrying low-salinity water during the southwest 

monsoon (summer) and move southward carrying high-salinity water during the northeast 

monsoon (winter) (Shetye et al., 1990). This regional circulation characterized by 

seasonal reversal of monsoon-driven surface and bottom currents, summer upwelling and 

winter downwelling (Naqvi et al., 2010), create an unstable oceanographic condition over 

the area, modifying the seafloor morphology resulting in higher deposition or erosion. 

The ADCP deployed off Goa along the continental margin has confirmed that there is a 
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seasonal-based strong poleward and equatorward currents (~30 cm/s) off Goa slope 

(Stow et al., 2009).  However, the main controlling factor of the slumps appears to be due 

to the dissociation of adjacent under-lying gas hydrates deposits as reported by Rao et al., 

(2001).  

Seafloor characterization has a wide range of applications in strategic scientific 

research including defense, marine habitat mapping, and marine protected areas. Seafloor 

mapping is the first step in characterizing the seabed as it provides the foundation for 

scientific studies. More than 71% of the earth’s surface (362 million km
2
) is covered by 

oceans. Oceans contain natural resources both living and nonliving. Much of the 

nonliving resources lie on the seafloor and below it. Therefore understanding the ocean 

seafloor processes is vital (Fox and Hayes, 1985).  For centuries producing maps of the 

seafloor has been a challenging task. Lead lines used to be the primitive method for 

measuring the depth. During the 1920s SONAR was being used for mapping that 

produced depth soundings along the ship track (Chakraborty and Fernandes, 2012).  

The MBES can cost-effectively provide high-resolution bathymetry and backscatter 

data with an almost 100% coverage (de Moustier and Kleinrock, 1986). The application 

of co-registered bathymetry and backscatter datasets facilitates in exploring and 

researching seafloor classification, distribution of sediment types and seafloor features 

small-scale geo-morphological changes and marine habitat mapping studies (Haris et al., 

2012).  

The doctoral research envisaged is aimed at using high resolution MBES sonar data 

(bathymetry and acoustic backscatter image) along with other geological and geophysical 

inputs to quantitatively characterize the seafloor of the Western Continental Margin of 

India (WCMI) employing geomorphometric techniques. The spotlight here is on the 
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characterization of the seafloor of three distinct surveyed areas of the WCMI.  The slope 

morphological characteristics and the related processes along the slope-confined gullies 

and ridges of the WCMI, off Goa, were investigated on a wider perspective on account of 

its role in assessing seabed stability. Both the bathymetry and single-channel seismic data 

has been made use of to explicate the presence of gas-charged sediments, gas-escape 

features in the form of fluid flow systems such as pockmarks, mud volcanoes, enhanced 

reflectors and pockmarked gullies in the area. Taking recourse to morphometry (Pike et 

al., 2009), i.e. characterizing or extracting discrete marine features, the slope parameters 

are used to characterize the profiles of the gullies, ridges and the slump zone, which has 

been well corroborated by the principle component analysis (PCA).  

This thesis contains the original text, figures, and tables of papers that were submitted 

to international peer-reviewed journals that were the contribution of the author.  

1.2 Seafloor classification and characterization 

The seafloor consists of a range of individual landforms of different shapes and sizes 

that are structured by interacting processes operating on a variety of spatio-temporal 

scales (DeBoer, 1992). Seafloor mapping is the first step in characterizing the seabed as it 

provides the foundation for scientific studies. Quantitative characterization of the seafloor 

using geomorphometric techniques involves making use of mathematical and statistical 

processing methods. Quantifying features of the seabed improves the mapping, modeling 

and better understanding of the processes on the seafloor. Applications of 

geomorphometric methods have helped improve the geomorphological analyses in a wide 

range of environment settings (Irvin et al, 1997). The geomorphometric techniques 

enable the comparison between different seafloor surfaces and facilitate the extraction of 

quantitative morphological information objectively. 
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1.2.1 Soft computational approach  

The seafloor characterization can be grouped into two categories, viz., based on 

empirical methods and model-based techniques.  The model-based approach optimizes 

the match between the measured data and the modeled signals to predict the seafloor 

characteristics for a given environmental condition (Jackson et al., 1986; Jackson et al., 

1996; De and Chakraborty, 2011). However, the model-based approach cannot make use 

of the acquired data directly as most models support stationary input data (Chakraborty et 

al., 2015). Thus pre-processing or application of segmentation techniques to partition the 

dataset into stationary data segments becomes essential. Analysis of backscatter data 

using statistical or soft computational techniques like ANN and Fuzzy Logic (FL) can 

help reveal large-scale as well as fine-scale seafloor roughness (at textural level), and has 

been used to determine the number of data classes in the WCMI (De and Chakraborty, 

2009).  

This study espouses the seafloor characterization utilizing MBES data, segmenting it 

into stationary segments and consequent fine-scale roughness parameter estimation to 

provide quantitative information of the seepage-related seafloor along the WCMI 

(Dandapath et al., 2010, 2012).  Using the ANN-based architecture SOM, the number of 

data classes are determined and subsequently validated by the multimodel PDF curve 

fitting to the histogram of backscatter data used. Fuzzy Logic based Fuzzy c-means 

(FCM) is then used to segment the data and thereafter the fine-scale roughness 

parameters are estimated using Power Spectral Density (PSD) function and making use of 

backscatter data. A gridded map is prepared based on the estimated roughness parameter 

that would provide an improved understanding of the seafloor.  

The cogency of utilization of ANN-based SOM techniques experimented in a shallow 

water area sheltering the two coralline banks, with a varied environmental setting       
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well away from the seepage area is compelling. Coralline banks are home to a wide 

variety of marine species and are of importance to ecosystems, fisheries and shoreline 

protection. The ANN application was able to establish the distinct variation in the 

morphology of the two coral banks (Nair and Qasim, 1978), based on the data 

segmentation and roughness estimation technique. The summit of each bank could be 

distinctly identified for its relative higher roughness in relation to its surroundings. The 

distinct seafloor roughness patterns of the two structurally different coralline banks attest 

the capability of the method to detect variable seafloor morphology at finer scales. 

1.3 Research Objectives 

The general objective of this thesis is to achieve a degree of understanding to classify the 

seafloor by applying a quantitative, rather a soft computational approach. The doctoral 

study documented here makes use of the high-resolution MBES data acquired from the 

WCMI. The seafloor characterization technique provides a means to transform high-

resolution multibeam bathymetry and acoustic backscatter data into meaningful 

information to understand the processes in the area (Lurton and Lamarche, 2015). The 

technique can be made use of in other seafloor areas with appropriate modifications in 

relations to the topography of the area. The roughness map prepared of the area can be 

used to study the spatial distribution of geologic material in the area. Roughness is the 

deviation of the depth values about the local linear trend of the data. The research work 

carried out focuses on seafloor characterization and addresses the following scientific and 

technical objectives:  

 To provide detailed bathymetric seafloor models and charts of the multibeam 

surveyed areas that allow for classification of the seafloor, mapping of geological and 

seafloor data classes, and for utilization as background maps or baseline maps to 

monitor future changes in the area; 
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 Characterization of slope-confined gullies, ridges and the slump zone of the WCMI; 

 Development of Artificial Neural Network based technique to generate map based on 

the estimated roughness parameter for an improved understanding of the seafloor; 

 Characterization of seepage area of the WCMI, drawing on ANN based technique and 

multibeam data; 

 Seafloor characterization of two coralline banks in the WCMI using MB data, to 

demonstrate the ability of the ANN approach to detect variable seafloor morphology 

at finer scales. 

The study also demonstrates how the soft computational approach for seafloor 

characterization provides an improved understanding of a variety of characteristics of the 

seabed of WCMI. 

1.4 Overview of the Thesis 

The thesis elucidating the doctoral research carried out has been presented as follows: 

The first chapter provides a brief preface to Seafloor Mapping and the modus adopted to 

address the issues to map and characterize the multibeam surveyed part of the continental 

margins. Apart from providing an insight to the earlier studies carried out in mapping and 

classifying the seafloor, the new approach taken to map and classify the seafloor utilizing 

the acquired data is presented to exemplify the utility of the work that has been carried 

out. There is also a general introduction to the aims and the purpose of the study 

including the regional setting of the passive Western Continental Margins of India. 

Chapter 2 provides the methodological procedures adopted in meeting the needs of 

the research work carried out. The methods used for seafloor classification are described 

therein with special emphasis on bathymetric depth measurement and multibeam angular 

backscatter data. This chapter also provides the background of the importance and 

necessity to classify the seafloor.  
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The study area and its regional setting have been elaborated in Chapter 3. Three 

distinct and discernible areas from the multibeam surveyed region along the central 

WCMI, off Malvan to Malpe, in water depths ranging from 30 m to 2000 m, were 

adopted for seafloor characterization. The three areas are a part of 24115.5 km² of the 

WCMI that has been mapped using 15003.5 line km of multibeam data. A sequestered 

area with a combination of gullies, ridges and slumps along the slope stretching over 

5,310 km
2
 offshore Goa, along the 300 m bathymetric contours with an average slope of 

3.11º was examined for seafloor characterization. The other categorical area dotted with 

pockmarks and fluid seepage lies in water depth varying from 145 m. in the northeast to 

330 m in the southwest region. It covers almost 72 km
2
 (9.0 km x 8.0 km), revealing 

significant numbers of pockmarks that are produced by the presence of gas or fluid 

seepages escaping from the subsurface along the faults (Dandapath et al., 2010). The 

other discernible shallow water area with two coralline banks, Gaveshani bank and an 

unnamed bank, located off the coast of the Indian State of Karnataka has been examined.  

Chapter 4 explicates the slope morphology characterization and discusses the related 

processes through the comprehensive usage of both the bathymetry and seismic data that 

are relevant for the continental margin investigations. Geomorphology has enhanced our 

understanding of the earth's physical changes, particularly the processes on the surface. 

The importance of geomorphology in managing and preventing environmental hazards, 

sustainable development of ecosystems cannot be overemphasized. With the 

advancements in remote sensing and GIS, geomorphometry has become expedient. 

Geomorphometry can be described as the quantitative assessment of terrain morphology 

using geosciences, mathematics and computer sciences. The analysis of slope 

configuration of the submarine gullies, ridges and the adjacent slump zone, off Goa, 

along the western continental margin of India utilizing multibeam bathymetric and 
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single-channel seismic data have been analyzed and presented. The fluid flow migration 

signature in the form of pockmark seepages, traces of mud volcanoes and enhanced 

reflectors have been observed in the area. Altogether thirty-three depth profiles from the 

gully, ridge and slump areas depict downslope progression in gully incision and varying 

gradients in the gullies and ridges, whereas the profiles of the slump zone are 

comparatively steady. The scatter plot of the three slope characteristics, viz., gradient, 

mean depth and root mean square relief, characterizes the profiles of the gullies, ridges 

and slump zone into three distinct clusters. Principal Component Analysis as well as 

corroborates the characterization (Chakraborty et al., 2014a). 

Chapter 5 adduces the utilization of soft computational techniques and artificial 

neural networks (ANN) for seafloor data classification. The basics of ANN relevant to 

the present study are presented.  ANN based SOM, an unsupervised method, is explicated 

for the selection of an optimal subset of echo features to achieve a significant success in 

the classification of seafloor data. The algorithm for seafloor data classification, as well 

as the methodology utilized for segmenting the data, adapted from De and Chakraborty 

(2009) has been explained.  Fuzzy c-means (FCM) method is employed for segmentation 

of the profile data using the number of the data classes determined by SOM.  

In Chapter 6 seafloor characterization technique to determine the number of data 

classes in the pockmarked dotted seepage area, using multibeam echo-sounding 

backscatter data has been elucidated. The application of self-organizing maps (SOM) to 

backscatter profile data, developed to determine the likely number of classes is discussed. 

The fuzzy C-means (FCM) method is employed thereafter, using the number of the 

estimated class information, for backscatter profiles segmentation. The application of the 

soft-computational techniques to seafloor backscatter data for achieving stationary profile 

data sets, suitable for seafloor roughness model application is evaluated. The power 
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spectral density (PSD) function of the segmented profiles that provide the power law 

parameters (β and a') through curve fitting, using power-law expression is computed.  

Chapter 7 presents the adaption of ANN-based SOM techniques with respect to the 

shallow seafloor with coralline banks. The application of ANN could establish a distinct 

difference in the coral bank morphology, employing the data segmentation and roughness 

estimation technique. The successful outcome of this technique in a distinct environment 

validating ANN-SOM capabilities to discrepate the sonar image profiles for classification 

and characterization in a shallow coralline environment is evaluated.  

The last chapter provides a summary of the results from this work. The conclusions 

from the main findings are highlighted.  
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CHAPTER – 2 

METHODOLGY 

 

 

2.1 Multibeam Echo Sounding System (MBES)  

For any contemporary seafloor studies, employment of multibeam data is 

indispensable, mainly for its high resolution and extensive coverage, and the potential use 

of derived data products that can be utilized for various marine applications including 

visualization and spatial modeling (Lucieer et al., 2018). Presently oceanographic surveys 

using Multibeam Echosounder System (MBES) are the main source of bathymetric data 

along with backscatter data. Bathymetry is the science of measuring and charting water 

depths to determine the topography of the seafloor or any water body (Weatherall et al., 

2015). The depth soundings and the backscatter strength measurements are used in 

conjunction for mapping the seafloor. MBES used in marine surveys are designed for two 

purposes: bathymetric mapping of bottom topography (measuring water depth) and 

thematic imaging of the seafloor for bottom characterization (nature of the seafloor/ 

sediment type) (Chakraborty and Fernandes, 2012).  

The MBES consist of two subsystems – sonar and navigation. The sonar subsystem 

typically mounted on the ship’s hull implementing a cross fan beam geometry generated 

by two transducer arrays mounded at right angles to each other. It transmits a fan-shaped 

array-of-sound and records the distinctive echoes from returning beams reflected after 

hitting the seafloor (de Moustier, 1988). The time taken for the returning sound waves to 

reach the receiver after reflecting off the seafloor is used to compute the water depth. The 

navigational subsystem provides ship’s attitude (roll, pitch, heading, and heave) and 

geographic position data. The reflected sonar returns are correlated with the navigational 

data. The horizontal and vertical positioning is precisely measured through the use of 
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Geographical Positioning System (GPS) and Inertial Measurement Unit (IMU). 

Measuring the movement and position of the vessel is imperative to preserve the 

accuracy of the data because the position of the sounding will change as the vessel moves 

in the water due to roll, heave, pitch and yaw. The IMU measures the angular offsets of 

the transducer resulting from vessel movement. It is usually mounted very close to the 

transducer to minimize any variation in the offset between them. These offset 

measurements are incorporated either at the time of collection or in a post-processing 

workflow to improve the accuracy of the sounding position. Usually the vessel attitude is 

integrated at the time of acquisition (Lurton, 2002).  

The multi-beam echo-sounder systems are now the standard technology for marine 

surveys of the seafloor. It has become the mainstay of many marine surveys. MBES are 

active sonars that transmit a distinctive and controlled signal in direction of the seafloor. 

Unlike other sonars, multibeam systems use beamforming technology to obtain 

directional information from the returning acoustic waves, generating a narrow strip of 

depth soundings from a single ping. Spatial filtering or beamforming is a signal 

processing technique used in sensor arrays for separating signals coming from different 

propagation directions. Knowing the speed of sound in water and the two-way travel time 

- the time taken for acoustic waves to travel between the source and the seafloor and back 

to the source again, the range between the target and the sonar [range = (speed of sound 

in water) x (half the travel time)] can be estimated enabling the computation of depth. 

The speed of sound in water however, being greatly affected by temperature, salinity and 

pressure, necessitates undertaking of post-processing corrections (Peyton et al., 2009). 

Modern multibeam echosounding systems are also designed for thematic imaging of the 

seafloor for bottom characterization using the backscatter strength measurements, which 

is the energy retuning to the transducer. The intensity of this return (i.e. backscatter) can 

https://en.wikipedia.org/wiki/Beamforming
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be examined to provide information on the properties of the seafloor (e.g. surficial 

sediment texture or material type). 

The accuracy of sounding data is dependent on the measurement of sound traveling 

through water at the time of acquisition. The speed of sound in water influenced by rising 

temperature, salinity and pressure (depth) (Ali et al., 2001), causes it to vary to some 

extent from less than 1,500 meters per second to more than 1,600 meters per second at 

depths greater than 2,500 meters. The MBES uses sound velocity information received 

from the velocity probe attached to the transducer. Additionally, sound velocity can also 

be integrated form external sound velocity profilers. During surveys, the sound velocity is 

measured as well by deploying an external sound probe that records the sound-velocity 

profile. Such measurements are routinely carried out at pre-defined positions or intervals, 

at least twice a day, or sometimes it may be necessary to have more measurements since 

variations in sound velocity through the water column affect depth calculations via ray 

tracing (Hovem, 2013). The measurement process entails stopping the survey, deploying 

and retrieving the probe, and corroborating the accuracy of the measured sound-velocity 

profiles.  

With fast processing systems the MBES are now well equipped for online computing 

and processing of sonar data for display and recording. The multibeam sonars are being 

effectively used for acquisition of high-resolution bathymetric and acoustic data, in both 

shallow and deep water areas (de Moustier, 1988; Mills and Perry, 1992). Modern 

shallow-water MBESs are well equipped for measurements of shallow bathymetry with a 

spatial resolution of a few centimeters, and are routinely being used for detailed 

investigations of seabed geomorphology (Hughes Clarke et al., 1996; Dandapath et al., 

2018). 
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2.1.1 MBES Description 

MBES used for data acquisition are specialized equipment used for mapping the 

seafloor. Most of the MBES have to meet the performance standards defined by the 

International Hydrographic Organization. The instruments have capabilities of recording 

high resolution sounding data, with great accuracy and a dense pattern of soundings to 

determine the features on the seafloor. Besides acquiring depth data, the MBES also 

record backscatter data that can be used to produce image of the seabed. The backscatter 

data recorded by MBES is utilized for characterizing the sediments and features on the 

seabed. 

In this study Kongsberg Simrad EM 1002 MBES operating at 95 kHz on board the 

CRV Sagar Sukti, was used during the coastal marine surveys (Cruise nos. SaSu-118 and 

SaSu-164) in November 2006 and February 2008 for mapping the study areas (the 

pockmarked seepage area and the coralline bank shallow area). EM 1002 (Anon., 2006) 

can operate in a variety of depths from shallow coastal waters to 1000 m. In shallow 

water the across-track coverage is up to 7.4 times the depth beneath the transducer. The 

survey lines are normally oriented parallel to the coast in N-S direction. A graphical 

representation of the components in the EM 1002 system used for the data collection on 

board (CRV Sagar Sukti) is given in Fig. 2.1. 
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Fig. 2.1 - EM 1002 multibeam echo-sounder system (modified from Anon., 2006) 

For the data acquisition in the WCMI, Kongsberg Simrad EM 302 MBES operating at 

30 kHz on board the R/V Sindhu Sankalp, was used.  Four surveys (Cruise nos. SSK-19, 

SSK-23, SSK-29 and SSK-54) were conducted in 2011, focusing on the shelf break, off 

Mormugao-Vengurla-Malwan. The survey lines were oriented in N-S direction parallel to 

the coast. The graphical representation of EM 302 components (Anon., 2012) on board 

R/V Sindhu Sankalp used for the data acquisition in the WCMI is also given in Fig. 2.2. 
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Fig. 2.2 - EM 302 multibeam echo-sounder system (modified from Anon., 2012) 

2.1.2 MBES Components 

The primary components of EM 1002 and EM 302 MBES (see Fig. 2.1 and Fig. 2.2) 

are the transducer array, transceiver unit, data logger, motion sensor, positioning sensor, 

and sound velocity sensor. They are listed as follows: 

(i) Transducer array: Fixed at the hull of the ship and is used to transmit and receive 

signal. 

(ii) Transceiver unit (TRU): Contains electronics and processor related to signal 

transmission, signal reception, beam forming, signal processing, bottom detection 

etc. and control all parameters with respect to gain, ping rate and transmit angles. 
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(iii) Operator station: High-end computing machine/ workstation, capable to handle 

large volume of data and heavy processing loads. ‘HWS-10’, a specifically 

designed workstation designed for real time gridding, filtering, storing and 

visualization (3D) of sounding data, is used for this purpose. Quality check of 

acquired data can be made at operator station. 

(iv) Motion sensor: ‘Octan’, a gyrocompass and complete motion sensor, is used for 

this purpose to detect true heading (accuracy 0.1° secant latitude, resolution 

0.01°), roll (accuracy 00.1° secant latitude, resolution 0.001°), pitch (accuracy 

00.1° secant latitude, resolution 0.001°), surge, sway, heave (accuracy 5 cm or 5% 

whichever highest), speed, acceleration and rate of turn. 

(v) Positioning sensor: ‘Aquarius 22 DGPS system’ (XY precision 1-2 m and Z 

precision 3 m) used to geo-referenced (including time stamps) the acquired 

sounding data. 

(vi) Sound velocity sensor: Designed to measure sound velocity and temperature at 

the surface of the EM 1002 transducer.  

The technical specification of EM 1002 (Anon., 2006) MBES are: 

Operating frequency    : 95 kHz 

Maximum ping rate    : >10 Hz 

Number of beams per ping   : 111 

Beam width     : 2*2° 

Beam spacing angle               : equi-distance and equi-angle 

Angular coverage    : up to 150° 

Depth range from transducers   : 2 – 1000 m 

Depth resolution    : 8 cm 

Pulse length     : 0.2, 0.7 and 2 ms 

Range sampling rate    : 9 kHz (8 cm) 

Beam forming method   : phase interpolated 

Economic survey speed   : 7 knots 

Working sea state    : 03 
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The technical specification of EM 302 (Anon., 2012) MBES are: 

Operating frequency : 30 kHz 

Soundings per ping : up to 854 

Beam width : 0.5 to 24° 

Depth range from transducers : 10 – 7000 m 

Swath width : 5.5xdepth, to more than 8 km 

Pulse forms  : CW and FM chirp 

Swath profiles per ping : 2 

Motion compensation 

 Yaw : ± 10 degrees 

 Pitch : ± 10 degrees 

 Roll : ± 10 degrees 

Sounding pattern : Equidistant / equiangular 

Range sampling rate  : 3.25 kHz (23 cm) 

High resolution mode : High density processing 

Sidelobe suppression : > 25 dB 

Effective pulse length  : 0.4 ms CW to 200 ms FM 

Suppression of sounding artefacts  : 8 frequency coded transmit sectors per swath  

Beam focusing : On transmit and receive 

Beamforming method : Time delay 

Gain control : Automatic 

Swath width control : Manual or automatic, all soundings intact   

when operated at reduced swath width 

Seabed imagery/sidescan sonar image : Standard 

Water column display               : Standard 

Mammal protection : Standard 

Sub-bottom profiling : Yes, by integration with SBP 300 or Topas 

2.1.3 MBES Calibration 

Calibration of multi-beam echo-sounder is crucial before initiation of the data 

collection operation. It begins with the alignment and static offset of the sensors 

referenced to the centerline of the vessel/ship and the transducer to reduce the static 

corrections of each sensor. After that, a patch test is performed to ascertain the roll offset, 

pitch offset, azimuthal offset and positioning time delay. Testing is essential to verify 
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whether the data meets accuracy requirements for the survey. In addition to testing, a 

proper synchronization of all the components of multi-beam system is also carried out 

(Fernandes, 2007). The sequence of calibration is given below: 

(i)  Alignment and static offsets 

(ii) Motion data (Octans) calibration 

(a)    Roll calibration 

(b) Pitch calibration 

(c)    Heading calibration 

(d) Outer beam calibration 

(iii) Finding sources of errors (if any) and rectification of the same 

2.1.4 MBES Data Acquisition 

Marine Survey is a prerequisite for marine data acquisition. The technique involves 

the use of the acoustic return signal from a multibeam echosounder to estimate the depth 

and to make qualitative estimates of the seabed composition. The marine surveying 

methodology for bathymetric data has gone through sweeping changes, from measuring 

depth with lead lines to single-beam echo sounder, and presently to swath bathymetry 

(using multi-beam echo sounder). To efficiently utilize the information the acquired data 

is stored for sharing.  

Bathymetric surveys provides information about the depths and shapes of the seafloor 

and has a range of uses that includes scientific marine research, nautical charting, harbor 

maintenance, particularly draft for shipping, monitoring dredging operations and for other 

strategic purposes. Each of these operations would have its own demands and 

requirements with regard to the quality of bathymetric data.  The required quality for 

these different functions will be dependent on the design and spacing of the survey track 

lines to optimize the spacing of depth measurements. As the water depth affects the 

spatial resolution of the footprint of the soundings, the distance between transect lines 

https://oceanservice.noaa.gov/facts/bathymetry.html
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need to be prudently chosen to avoid data gaps between the survey lines. This is because 

the size of the beam footprint is dependent on its beam width and water depth. The 

geometric distance between the centers of the footprint in each beam approximates the 

spatial resolution of bathymetric data collected from multibeam echo sounders. A 

narrower beam width will result in a small sonar footprint and produce a finer spatial 

resolution. As such an overlap of 10 to 20 percent is usually considered to compensate for 

any degradation in the data acquired from the outer beams. The overlap factor ensures a 

comprehensive and continuous coverage of the seafloor without data gaps. The spacing 

between the survey lines is reduced in shallower waters while in deeper waters it is 

broadened to reduce the overlapping beams. With increasing water depth, the sonar pulse 

traveling away from the transducer array at each ping is subjected to spherical spreading; 

the intensity and amplitude decreasing with increasing distance from the transducer and 

the acoustic energy spreading out over a larger area. In shallower waters the pinging rate 

is faster as the signal returns much quicker. As a result the acquired data is dense with 

significantly higher spatial resolution. Consequently the bathymetric survey is planned 

according to the water depth, system type, vessel speed, and survey application.  

2.1.5 Data Processing 

Processing of multibeam data consists of cleaning and filtering navigation data, noise 

reduction, data editing and visualization. The multibeam data need to be corrected due to 

the vessel’s attitude characteristics (movements as a result of sea conditions causing 

heave, pitch roll, etc.). After corrections for attitude are calculated, refraction corrections 

are applied based on the measured sound velocity profile and the depth to the seafloor for 

each beam is determined based on the two way time of the acoustic pulse, and the 

inclination angle of the beam (Farr, 1980). The data processing helps generate the 



 

32 

 

bathymetric map, which is the basis for characterization of the sea surface and further 

analysis and interpretations used in seafloor mapping. 

An important aspect of the multibeam data is that the resolution and data density 

decrease with depth as a result of the beam geometry and lower multibeam frequencies 

used (Wilson et al., 2007). Most often positional data corrections are incorporated at the 

time of acquisition reducing post-processing time and improving the workflow. However 

a substantial amount of interactive post-processing, data cleaning, sound-velocity profile 

application, tidal adjustments and other systematic corrections are required to be carried 

out on the data. 

Multibeam echo sounders along with depth data also record backscatter data, which 

can provide information about the nature of the seafloor. The backscatter is characterized 

by the intensity, or strength of the returned signal. The sound energy while propagating 

through the water column loses some energy through attenuation and absorption. More 

energy is lost in the sediment when it hits the seafloor; softer sediments such as mud and 

sand typically absorb more energy than hard or rocky surfaces. A sensor will record a 

stronger intensity from a rocky surface than from sand because more energy is returned 

from a harder surface. Backscatter maps are normally depicted in grey scale format, with 

darker pixels representing low backscatter i.e. weaker returns from softer sediments and 

lighter pixels representing high backscatter i.e. stronger returns from harder sediments.  

The quality of multibeam data is also often reviewed determined from the acquisition 

system perspective; it can vary greatly between different units that collect the data due to 

the corrections that may or may not have been applied at the time of acquisition. Besides 

the multibeam unit collecting the data may have inherent inaccuracies that engender 

artifacts. Post-processing of multibeam data constitutes rectification of these erroneous 

positional data and correction of erroneous depth measurements.  
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2.2 MBES Bathymetry 

Contemporarily, multibeam bathymetry offers the most accurate, cost-effective 

system for obtaining high resolution data of the seafloor. A bathymetric map shows depth 

related information of the seafloor by representing the depth values in color scheme or in 

grey scales. It depicts the rise and fall of the seafloor at horizontal scale and also the 

water depth and shape of the seafloor, which is a fundamental parameter for 

understanding oceanic circulation, tides, tsunami fore-casting, fishing resources, wave 

action, sediment transport, environmental change, underwater geo-hazards, cable and 

pipeline routing, mineral extraction. Bathymetric data has a number of other uses, as in 

studies related to climate change effects, coastal erosion, sea-level rise and subsidence 

2.2.1 Using ‘Neptune’ 

‘Neptune’ is used as a post processing software package for the processing of raw 

multi-beam data of EM1002. Post processing of bathymetry here mainly includes 

removal of tide effects and depth outliers (Mitchell, 1991). After importing the collected 

data in ‘Neptune’ position processing is executed to correct positional errors caused by 

uneven geometry, shadow region etc. At the beginning, the collected raw data was 

converted to survey format by ‘replay’ sub-program, and then imported in main 

‘Neptune’ and post processing was done by making rules including parameters like tide 

data and other distortions. The output was exported as ASCII file (*.xyz) for subsequent 

use in ‘Arc GIS’ and ‘CFLOOR’. ‘Neptune’ is also useful for data cleaning, cross line 

matching, gridding of the raw or processed data etc.  

2.2.2 Using ‘CFLOOR’ 

Primarily ‘CFLOOR 6.3.1’ was used to visualize data by way of 3D image, plot, 

maps etc. (http://www.cfloor.no). ‘CFLOOR’ is also used to create a grid of 10 x 10 m 

resolution. Bathymetric contours and 3D display of seafloor in ‘CFLOOR’ help in 
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identifying the relief variations of seafloor vis-à-vis geomorphic features like pockmarks, 

mounds, faults, reefs etc.. Some of maps shown here are initially generated using 

‘CFLOOR’ software package.  

2.2.3 Using ‘CARIS®’ 

 CARIS is the acronym for Computer-Aided Resource Information System. Data acquired 

using EM 302 was processed using CARIS (HIPS and SIPS) (CARIS, 2007). CARIS (HIPS and 

SIPS) is a software suite offering capabilities and professional grade tools for hydrographic data 

processing. CARIS supports over 40 data formats; the software facilitates simultaneous 

processing of multibeam, backscatter, side scan sonar, single beam and lidar data,. It incorporates 

3D visualization technology for the purpose of hydrography, oceanography and marine science. 

CARIS is used for post-processing of the acquired data that runs with Windows XP operating 

systems. CARIS HIPS (Hydrographic Information Processing System) is used for all 

initial processing of multibeam and vertical beam echosounder bathymetry data, 

including tide, sound velocity, and vessel offset correction and data cleaning. CARIS 

HIPS uses statistical modeling to create Bathymetry with Associated Statistical Error 

(BASE) surfaces in one of three ways: swath-angle weighted grids, uncertainty-weighted 

grids, and Combined Uncertainty and Bathymetry Estimator (CUBE) algorithm grids. 

CARIS SIPS (Side-scan Information Processing System) is used for all processing of 

side-scan sonar imagery, including cable layback correction, slant range correction, 

contact selection, tow point entry, and mosaic generation.  

2.3 MBES Backscatter 

Besides bathymetric data, the EM1002 as also EM 302 bring together backscatter 

data that provides supplementary quantitative data (extraction of classifying features); the 

backscatter is used for qualitative (image mosaics) assessment of seabed properties 

(Davis et al., 1996; Huvenne et al., 2002). The amount of acoustic energy reflected back 
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to the transducer is referred as the backscatter. This backscattered energy is a function of 

a variety of variables, including the grazing angle, the surface roughness of the seafloor 

and the nature of the material type. It is expressed in decibels (dB) and is the logarithmic 

ratio of the intensity of the acoustic energy scattered back by the seafloor and the incident 

intensity. It is sensitive to frequency and incidence/grazing angle, the geometry and 

roughness of the seafloor as well as the composition of the seabed; sediment grain size 

and type including biological coverage. The backscattering process is a cumulative effect 

of the acoustic frequency used, the variation in acoustic impedances between sediment 

and water, layering or sediment volume inhomogeneity and the interface roughness of the 

seafloor. The effect of volume scattering due to heterogeneities in the sediment play an 

important factor on account of acoustic penetration at the frequency used (Blondel, 

2009). The consequence of scattering due to sediment volume inhomogeneity is relatively 

more significant at lower acoustic frequencies, and the scattering due to seafloor interface 

roughness it is relatively more important at higher acoustic frequencies. At lower 

frequencies, more acoustic energy penetrates the sediments (Urban, 2002). On account of 

the subterranean layers and the underlying inhomogeneities (shells, coarse sand particles, 

pebbles, gas bubbles etc.), the acoustic energy is most prone to get scattered. 

Seafloor with sediment characteristics of rocks, gravels, coarse shells, steep slopes or 

hard surface, will exhibit high backscatter. Sandy areas or areas with soft sediments will 

exhibit low backscatter as fine sediments tend to absorb the signals and the reduced 

amount of energy reaching the transducer. Generally slopes facing in the direction of the 

sonar tend to produce more backscatter and rougher surfaces will invariably generate 

more backscatter. Conventionally maps with high backscatter are represented with dark 

shades, while low backscatter is shown as light shades. Gray-scale images from black to 

white are generated based on the strength of the signal within a range of 0-255 (Blondel 
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and Murton, 1997). Using backscatter data is an effective way in obtaining information of 

seafloor properties, however raw application of multibeam backscatter data is limited on 

account of inherent artifacts. Usually on a smooth seafloor, the angular backscatter 

intensity recorded at the normal incidence angles is higher than that of outer beam angles. 

Therefore, off-line corrections are incorporated to compensate for the outer-beam 

backscatter intensity in such a way that the effect of higher angular backscatter strength is 

nullified. The MBES assumes a plane seafloor during acquisition, but the seabed is not 

usually a plane surface. The effect of any online gain functions (Fernandes and 

Chakraborty, 2009) employed has to be neutralized as there may be large scale variations 

in seafloor slope, along and across track directions. Hence, post processing of backscatter 

data is necessitated even for moderately rough seafloor to produce a normalized acoustic 

image of the seabed suitable for carrying out classification studies.  

Backscattering has several important applications. Backscatter data is useful in 

detecting features and the texture of the seafloor that are not discernible by bathymetry 

data. Imaging the seabed using sonar systems is widely used in the marine environment. 

The backscatter mosaic is a geo-referenced grayscale image representing the acoustic 

intensity scattered by the seabed, with different seabed types usually showing different 

levels of intensity. The acoustic image is utilized for obtaining complementary 

information about the reflected intensity of the acoustic signal on the seafloor and is 

useful for classifying the seafloor (Beyer, et al., 2007). 

2.3.1 Using ‘PROBASI II’ 

        The beam pattern effects are present in collected backscatter data caused by 

fluctuations in acoustic intensity among groups of elements of the transducer array. The 

data gets recorded in a packet format called datagram stored for every ping (Hammerstad, 

2000; Fernandes and Chakraborty, 2009). The background of using PROBASI II is 
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explicated in de Moustier and Alexandrou (1991) and Chakraborty et al. (2000). The 

backscatter data is eventually corrected for propagation and other effects (Mitchell and 

Somers, 1989) mainly by PROcessing of BAckscatter Signal II (PROBASI II) algorithm. 

‘PROBASI II’ developed indigenously by the researchers from National Institute of 

Oceanography, Goa.  

       In EM 1002 multi-beam system, online amplifier gain correction is employed 

through use of mean backscattering coefficients such as: BSN and BSO applied at 0º and at 

crossover incidence angles (normally 25º) respectively (Hammerstad,  2000; Fernandes 

and Chakraborty, 2009). Thereafter, the raw backscatter intensities recorded in the raw 

(*.all) files are corrected during data acquisition employing Lambert’s law (Simrad 

Model). However, for lower incidence angles (within the 0-25º) the gain settings require 

a reasonably smooth gain with incidence angle i.e., the gain between BSN and BSo 

changes linearly. The sample amplitudes are also corrected suitably incorporating 

transmitted source level and transducer receiver sensitivity. Further, sonar image 

amplitudes though corrected online needs further improvement to generate normalized 

images for the seafloor area. This is especially needed for incidence beam angles within 

the +/- 10º angles (to remove routine artifacts in the raw backscatter data near normal 

incidence angles). Hence, post processing is essential to be carried out even for 

moderately rough seafloor. In addition to the artifacts close to normal incidence beams, 

the EM1002 multi-beam data show some residual amplitude due to beam pattern effect, 

and thus real-time system algorithm is unable to compensate such routine situation. As 

discussed, the EM1002 multi-beam echo-sounder system automatically carries out 

considerable amount of processing on raw backscatter intensities. Even then, the data 

show some residuals, which are required to be corrected before further studies.  
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2.4 Geographical Information System (GIS) for Seafloor Mapping 

With the enormous increase in the availability of multibeam data and the increased 

perceptibility by which classification can be carried out using GIS there is enough 

impetus for researchers to use geomorphometric techniques for exploration of the marine 

environment (Pike et al, 2008). GIS is now being used in all areas of ocean mapping. 

Scientists and engineers use the software for processing, quality control, and analysis of 

multibeam sonar along with related data. The software has significantly improved the 

efficiency in preparing nautical charts, geological interpretation, assessment of seabed 

habitats, and identification and assessment of geohazards. 

In this study, preparation of bathymetry/ backscatter maps is carried out using GIS 

platform. GIS has expanded the utility of digital maps by providing visualization of depth 

information for any location on the surveyed seafloor at the click of the mouse. It can 

provide exact location of any seabed feature in terms of latitude, longitude, and depth 

values altogether. Multibeam generates two types of data: discrete points representing 

depth and geo-graphical position, and backscatter images. All geospatial data can be 

organized into either vector or raster format. Points are a form of vector data, as are lines 

and polygons, the three basic geospatial data types. Raster data also referred to as image 

data, are a matrix of rectangular cells arranged as rows and columns (Burrough, 1998). 

GIS is now being employed to leverage bathymetric data by using it with other 

databases for a wide range of purposes that require seafloor information. It is now much 

easy to handle bathymetric charts based on new and updated nautical information. 

Preparation of bathymetry map making use of GIS platform has enlarged the scope for 

further utilization of bathymetric data. Taking advantage of faster processors/data loggers 

has further increased the rate with which data can be collected, thus providing greater 

detail to seafloor mapping. The processed multibeam data along with other geophysical 
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data can be used to create a composite surface model. This composite surface model can 

be used as a source to create 3D point data for spatially analysis with the ArcGIS Spatial 

Analyst.  

2.4.1 Geostatistical Analysis  

The geo-referenced data points, containing backscatter strength (dB) and depth 

values (m) are imported to ‘ArcGIS’ (m/s ESRI Inc., USA). In ‘ArcGIS’ the best possible 

raster resolution as per the processed data was set and the generated shape (*.shp) file 

preserved all positional and attribute aspects (longitude, latitude and water depth or 

backscatter) in a defined geographic co-ordinate system (WGS 84). The data were then 

interpolated to raster using cubic convolution methods and subsequently high resolution 

image with distinct color scheme was generated. Cubic convolution tends to sharpen the 

data as compared to other methods such as bilinear interpolation etc. Cubic convolution 

technique employs weighted average values of the sixteen nearest input cell centers, 

whereas bilinear interpolation method uses only four nearest input cell centers to 

determine the value of the output raster. For the first time from the western continental 

margin of India, detailed seafloor morphology was studied with the help of ‘ArcGIS’. 

Spatial analyst extension (a separate module added with ArcGIS) was also used for raster 

based spatial analyses of data. All the measurements were done using ‘ArcGIS’ tools 

(Johnston et al., 2004). 

2.4.2 Contouring 

Bathymetric data is often presented as a contour isobaths representation. Contour 

isobaths are vector data represented as lines connecting depths of equal value. The 

interval between lines is dependent on scale, application, and other factors, but contours 
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that are closer together represent a high variability or steep seafloor; whereas contours 

that are farther apart indicate a very gentle slope or a smooth seafloor. 

Studying the bathymetric contours shape and alignment, morphological features such 

as depression/pockmarks, fault, small mounds, terrace etc. can be identified. Bathymetric 

contours at different intervals generated to superimpose over bathymetry and backscatter 

map helps achieve this. Contouring at very small interval (up to 10 cm) helps measure the 

dimensional characteristics (i.e., length, width, relief, perimeter etc.) of such features. 

Bathymetric profiles provide a cross-sectional perspective of the seafloor. They are 

generated from high-density bathymetric data and provide a ‘skyline view’ of the sea 

floor where the sea mounts are seen as rises and troughs/basins as depressions. They are 

particularly useful for cable and pipeline route analysis and infrastructure installation, and 

are an example complementary representation of the seafloor. 

2.4.3 Digital Elevation Model 

A Digital Elevation Model (DEM) is the simplest form of digital representation of 

topography. It is a digital model or 3D representation of a terrain’s surface. A DEM is 

also referred as a gridded array of elevations. In its raw form it is a high-density data in 

ASCII or text file, transformed into new points, contour lines, triangulated irregular 

networks (TINs), raster products, polygons such as depth areas, or a combination of 

these. DEM has numerous applications in research and practice. Most GIS applications 

use DEMs. The quality of a DEM is a measure of how accurate depth is at each point and 

how accurate the morphology is represented. Several factors play an important role for 

quality of a DEM, including terrain roughness, sampling density (how many beams), the 

depth of water (deeper water provides yields lower resolution), the interpolation 

algorithm and the terrain analysis algorithm (smoothing and extrapolation).  
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Using spatial functionality of GIS can add more value to DEM for modeling 

purposes. A digital elevation model (DEM) is an important part of many geoinformatic/ 

geomorphometric applications. By definition a DEM is a collection of elevation points, 

the points are not related to each other in ways that defines objects. DEM vector files are 

commonly referred to as XYZ files; these store position and elevation information for each 

data point. It is possible to convert a shape file into a point file but processing is required 

for the reverse operation. A shape file generally contains less information that the DEM from 

which it was processed because any data points between the contour lines are discarded. The 

raster format assumes that the elevation data is stored in a regular grid layout. A common 

raster file format stores only one position as a reference point and then it stores the x and y 

size of a raster cell (e.g. pixel) and the total number of x cells and y cells. With this 

information an application can calculate the position of each and every raster cell in a 

raster grid. The raster file then stores a list of elevation values corresponding to the position 

calculated for each raster cell. There are variations on this theme that store slightly different 

information but the general principal of the raster file format is the same. 

2.4.4 Terrain Analyses 

A variety of methods are available combining inverse distance weighting, spline 

functions, kriging and triangulated irregular networks to calculate terrain models of the 

seafloor that can be used for further analysis, presentation, contouring and charting. 

Computers enable users to render seabed terrain using both realistic and highly abstract, 

symbolized methods. While DEMs provide the benefit of computer based analysis, they 

also present an opportunity to those who perform manual (visual) analyses of the seabed 

surface an intuitively comprehensible visual display of the terrain characteristics for 

viewing the surface models and the data derived from them. The human visual system is 

also capable of identifying patterns and relationships between features and their 
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attributes. Symbolized representations make it easy for targeting a particular aspect of the 

seabed terrain to detect hidden patterns that are being obscured by unrelated noise. In 

addition to the analysis, visualization of seabed terrain data assists in the presentation and 

communication of decisive information particularly for those that are not trained to read 

maps. For example, this can be accomplished by composing a hill- shaded image of the 

surface with relevant thematic information for display on a map. Alternatively, a 3-D 

perspective with data overlain on top of a terrain model can improve one’s understanding 

of the problem. Hillshades and other terrain visualization tools can also be used for 

quality control purposes. 

Digital elevation models have proved to be increasingly more important in geological 

and geo-morphological studies. DEMs and their software can be used as a tool in a 

complex analysis of the Earth’s topography and legible data visualization. Quick 

construction of color contour maps or shaded relief maps represents only basic 

application of digital elevation data. Digital models are also helpful in fast construction of 

a number of derivative maps, like those of slope, gradient, aspect, extent of ice-sheet or 

marine transgressions, as well as former extent of dammed lakes. Application of DEMs 

can enhance drawing of geological cross-sections of any orientation. Apart from present-

day topography, it is also possible to digitally analyze buried surfaces basing on welllogs 

and geophysical data. Such models need, however, specially prepared well-log and 

geophysical data bases, and the density of subsurface data points is usually lower than 

that of surface models.  

2.4.5 Geomorphometry 

Geomorphometry or quantitative terrain characterization, has raised interest in its 

employment to investigate the marine environment. Owing to the increasing availability 
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of digital bathymetric data and the ease by which geomorphometry can be investigated 

using geographic information systems (GISs) and spatial analysis software.  

 Over the last decade or so, a multitude of geomorphometric techniques (e.g. terrain 

attributes, feature extraction, automated classification) have been applied to characterize 

seabed terrain from the coastal zone to the deep sea. Nevertheless, applications of 

geomorphometric techniques are limited in the marine environment as compared to the 

terrestrial environments. This is at least partly due to difficulties associated with 

capturing, classifying, and validating terrain characteristics underwater. With common 

ground between terrestrial and marine applications in development for marine 

geomorphometry, we learn from experiences in terrestrial studies. As stated before, not 

all terrestrial solutions can be adopted by marine geomorphometric studies, since the 

dynamic four-dimensional (4-D) nature of the marine environment causes its own issues 

throughout the geomorphometry workflow. For instance, issues with underwater 

positioning, variations in sound velocity in the water column affecting acoustic-based 

mapping, and our inability to directly observe and measure depth and morphological 

features on the seafloor are all issues specific to the application of geomorphometry in the 

marine environment.  

2.4.6 Data Formats 

Most measuring systems use different hardware designs, different processing schema and 

different storage formats. These differences affect accuracy of measured information as well 

as the type and quantity of relevant meta-data. In some cases the elevation and/or position 

information is not measured directly but is instead calculated or modeled based on some 

other measured attribute. Two distinct format categories have emerged, one based on 

representing each elevation data point as a vector and another based on raster representation. 
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Elevation information is often visualized as contour lines, a common version of the vector 

category format is to represent such terrain as data lines rather than data points. The 

contours are defined by sets of points with connecting relationships indicating how the 

contour lines connect the points. Such vector information is stored in shape files where each 

contour is an object, or shape, defined in the file. Data can be represented at its original 

resolution and form without generalization. In vector form no data conversion is required. 

Accuracy of geographic location of data is maintained.  

 For raster data the geographic location of each cell is implied by its position in the cell 

matrix. Accordingly, other than an origin point, no geographic coordinates are stored. Due to the 

nature of the data storage technique data analysis is usually easy to program and quick to 

perform. The inherent nature of raster maps is ideally suited for mathematical modeling and 

quantitative analysis. Discrete data, is accommodated equally well as continuous data like 

elevation data, and facilitates the integration of the two data types. Grid-cell systems are very 

compatible with raster-based output devices, e.g. electrostatic plotters, graphic terminals. Raster 

data however has downsides; the cell size determines the resolution at which the data is 

represented. It is especially difficult to adequately represent linear features depending on the cell 

resolution. Accordingly, network linkages are difficult to establish. Processing of associated 

attribute data may be cumbersome if large amounts of data exist. Raster maps inherently reflect 

only one attribute or characteristic for an area. Since most input data is in vector form, data must 

undergo vector-to-raster conversion. Besides increased processing requirements this may 

introduce data integrity concerns due to generalization and choice of inappropriate cell size. Most 

output maps from grid-cell systems do not conform to high-quality cartographic needs. Raster 

files also have the drawback of needing to store ’no-data’ values for each raster cell 

without an elevation value. Raster files are generally significantly smaller than a corresponding 

vector file because it does not store detailed position information of point to point relations. 

Both vector and raster categories have many different implementations of their respective 
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styles. Specialized applications have been developed just to handle the translation between 

the many formats.  

The Navigation Surface data object represents bathymetry, uncertainty, and methods 

for the manipulation, combination and utilization of such objects. The Bathymetric 

Attributed Grid (BAG) file format stores elevation, uncertainty, and metadata in the same 

raster file. The importance of the format is that it is designed as a universal standard that 

can contain raw survey data to certified navigation DEM in the same file format. The 

uniform file format is designed to allow data to be passed seamlessly between different 

software applications and organizations. Many existing applications that handle DEM are 

incorporating this standard as an optional format. 

2.5 Principal Component Analysis 

PCA is a multivariate technique that can be used for analysis of inter-correlated 

quantitative dependent variables. PCA is a tool for exploratory data analysis and for 

making predictive models. The goal of the analysis is to determine a set of orthogonal 

variables called principal components, (vectors along which the data have the most 

variance), and depict a pattern of similarity of the observations and of the variables as 

points in maps. In the process the dimensionality of the data set, in which there may be a 

large number of interrelated variables, is reduced (Jolliffe, 1986) and the variation present 

in the data can be viewed. The principal components, which are uncorrelated, and are, 

ordered in such a way that the first principal component retains as much of the variability 

in the data as possible, and the succeeding components account for the remaining 

variability. The analysis provides eigenvalue/eigenvector pairs equal to the number of 

components. The eigenvectors provide the direction for each principal component while 

the corresponding eigenvalue provides a number indicating the variance in that 
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dimension.  A comprehensive discussion on PCA can be found in textbooks (Hotelling, 

1933; Duda, 2001) 

The principal components loading can be visualized by a two dimensional biplot. 

Such a biplot can depict the first two components to visualize the principal component 

coefficients and the principal component scores for each observation in a single plot for 

the first two components. 

2.6 Multimodal Probability Density Function  

Curve fitting of the backscatter PDF data was carried out to validate the results with 

ANN-SOM analysis. Fitting distributions consist of finding a mathematical function 

which represents suitable statistical variable. There are three steps in curve fitting of the 

PDF: i) model/function choice, ii) estimate parameters, and iii) evaluate quality of fit i.e., 

goodness of fit tests. Accordingly, individual distribution as a Gaussian function (Le 

Gonidec et al., 2003) was selected. After selecting a function or model, that can 

mathematically represent given data by mixing of more than one model (i.e., Gaussian 

mixtures model), estimation of such model parameters becomes important. There are 

several estimation methods, out of which Maximum Likelihood Estimation (MLE) was 

employed. MLE is used in statistical inference to estimate parameters. MLE begins with 

the mathematical expression known as a likelihood function of the sample data. 

Generally, the likelihood of a set of data is the probability of obtaining that particular set 

of data given the chosen probability model. For MLE, the expression contains unknown 

parameters, and these parameters maximize the sample likelihood. Estimated proportions, 

means and standard deviation without constraints (i.e., floating) are provided after a few 

iterations, and a good fit of overall and component populations are obtained along with 
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their mean and standard deviations. Kolomogorov-Smirnov goodness of fit was used for 

testing the same.  

2.7 Power Spectral Density 

Seafloor bathymetric data of the submerged objects have an extremely wide range 

of spatiotemporal scales, necessitating the application of the power law (Fox and Hayes 

1985). Power Spectral Density shows the strength of the variations/energy as a function 

of frequency. PSD shows at which frequencies variations are strong and at which 

frequencies variations are weak. In the context of seafloor morphology it provides a 

quantitative characterization of feature amplitude or morphological roughness as a 

function of scale, which is important for constraining physical models that attempt to 

predict the relationship between sedimentary processes and seafloor morphology. PSD 

can be computed using FFT or by computing autocorrelation function and then 

transforming it. 

2.8 Single Channel Seismic Reflector Data 

High resolution single channel seismic reflection data was acquired during marine 

geophysical surveys in connection with hydrocarbon related studies. The single channel 

sparker profile generally shows long and complex seismic signatures as black and white 

graphics representing sub-bottom imagery. Sparkers are high-frequency (100–2500 Hz) 

sound source commonly used during marine geophysical seismic surveys to provide 

high-resolution imagery of the shallow sub-bottom (i.e., < 1000 m) (Kluesner et al., 2018).  

Likewise sub-bottom profiler data use the techniques of reflection seismology to 

create a 2D image of shallow (<100m) sub-surface geology i.e., a record of acoustic 

energy reflected by the layers beneath the seafloor (Caress et al., 2008) hence, are 

capable to give an indication about the sediment volume information. The penetration 
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capacity below the seafloor differs based on the operating frequency of the profiler. 

Sparker data along with 3.5 kHz seismic profile provides the best means for interpreting 

neo-tectonic and sedimentary processes hence widely used in geophysical surveys. 

High resolution (4.5 kJ) single channel sparker seismic reflection profile and 3.5 

kHz sub-bottom seismic profiler data in the study area was collected earlier and utilized 

to detect the seismic reflection in the sediments and bedrock over the area. The seismic 

data sets were used as complementary data for to understand the sub-seafloor structures 

of the study area in an earlier study. 
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CHAPTER – 3 

THE STUDY AREA 

 

3.1 Introduction 

The continental margins of India cover an area of more than 2 million km
2
, which is 

roughly equivalent to two-thirds of the terrain of the country. The margins have their 

genesis at the time when India broke and drifted away from East Antarctica, 

Madagascar and Seychelles at various geological times. The Western Continental 

Margin of India (WCMI) seems to have developed in an oblique rift setting with 

elements of strike-slip while the Eastern Continental Margin of India (ECMI) appears 

to have evolved in a complex rift in its northern area and with shear tectonic 

settings in the southern part (Subrahmanyam and Chand, 2006). Tectonically the 

WCMI is the divergent and passive type of margin (Thompson, 1976; Pratsch, 1978) with 

several islands and seamounts characterizing the seafloor. The margin depicts a likeness 

of extensional tectonics that occurred during continental rifting in the early stages of 

passive margin formation (Chaubey and Ajay, 2008).  

The initial phase of rifting resulted in a system of NNW-SSE trending horsts and 

grabens parallel to the margin. The geomorphology of the marginal part of western India 

is mostly controlled by the three principal structural trends of NNW-SSE Dharwar, NE-

SW Aravalli orogenies and west-east Narmada graben, displaying a straight coastline. 

The boundaries of these basins are broadly denned by transverse ridge-type structural 

features. The offshore region along the WCMI correspond to Kutch, Saurashtra, Bombay 

and Konkan-Kerala sedimentary basins which have evolved through the rift and drift 

phases in a passive divergent margin set up. The northern part of WCMI is a geologically 

a complex region and has significant potential for hydrocarbon exploitation (Rastogi et 

al., 1999).   
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The WCMI extends approximately from 07ºN to 23ºN latitudes and 68ºE to 76ºE 

longitudes. The WCMI has an area of about 310 000 km
2
 and can be divided into two 

parts, an inner shelf with modern clayey silt and silty clay sediments with high organic 

matter and low carbonate content, and an outer shelf having relict carbonate sediments, 

coarse sands with low organic matter and high carbonates (Siddique et al., 1987; Rao and 

Murthy, 1990). The mid-shelf has somewhat an uneven topography, and the outer shelf is 

intermittently obtruded by shore-parallel ridges and reefs having a relief of 2 to18 m 

(Faruque and Ramachandran, 2014).  The shape of the continental margin having a shelf 

with varying width (345 km off Daman to 120 km off Goa) and a reduced slope length in 

the north compared to a narrow shelf (60 km off Kochi) and a longer slope length in the 

south is markedly evident  (Mukhopadhyay et al., 2008). A number of deep-seated faults, 

reefs and basement highs and ridge systems abound the western continental margin of 

India.  

The study areas are an integral part of the eastern Arabian Sea and the western part of 

the peninsular shield of India. It fits into the mosaic of various tectonic provinces dating 

in age from early Archaean (between 550 to 2400 m.y.) to late Proterozoic (2400 to 3000 

m.y.) (Kumar et al., 1996; Arora et al., 2012). The general orientation of these structural 

features is NNW-SSE and parallel to the Dharwarian orogenic trend with several flat-

topped bathymetric highs of considerable areal extent, 256 to 1165 km
2
 area each at the 

base. They are interspersed by bathymetric lows, thereby, forming a chain of horst and 

graben structures covered by thick sediments (Rao et al., 2010). The structures are a 

consequence of crustal deformation of the South Indian shield (Katz, 1978).  

The inner section of the continental shelf is represented by recent clayey sediments 

while the outer shelf is covered by relict sands (Rao and Wagle, 1997). The surficial 

sediments of the upper continental slope are clayey sand (50% sand, 31% clay, and 19% 
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silt) (Rao and Veerayya, 2000) and the lower and mid-slope is covered by silty clay with 

an admixture of dominant terrigenous and biogenic components (Rao and Rao 1995) .The 

general slope is in the direction of west-southwest and increases rapidly towards the deep. 

The latitudinal and longitudinal extents of the study area is 15°29'50"N to 15°37'30"N 

and 72°47'13"E to 72°52'27"E respectively. The characteristic of the WCMI, wherein the 

study area is located, is regulated by episodic changes and dynamics related to its tectonic 

evolution, eustatic sea-level fluctuations, prevailing geology and sedimentation, the 

pattern of oceanographic circulation and the biological environment.   

The geomorphology of the seafloor along the WCMI is driven by many global and 

local events that occurred in the past. Tectonically, the WCMI is a part of the Indo-

Australian plate. It can be inferred that the origin and evolution of the margin are the 

resultant of the tectonic and sedimentary processes as evolved before and after the 

collision of the Indo-Australian plate with the Eurasian plate. The WCMI has been 

formed as a consequence of the break-up of India from Madagascar during mid-

cretaceous and from Seychelles during early-tertiary (Bhattacharya and Chaubey, 2001). 

It has been adduced that a larger area along the western offshore region of India has been 

submerged in the Arabian Sea thereby impacting the shape and dynamics of the margin. 

The present-day crustal structures along the western continental margin reflect the pre-

existing geology of the region. The WCMI has also been markedly impacted by the 

eustatic sea level changes over glacial and inter-glacial periods (Rao, 2003) as 

encountered across the globe. This is evident in form of various submerged geomorphic 

features (e.g., submerged reefs, terraces, buried channels etc.) formed during the 

respective tectonic, hydrodynamic and sedimentological regimes (Dandapath et al., 2018)  
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3.2 Geological set-up 

The WCMI is a typical passive (Atlantic type) and dissected margin. A number of 

deep-seated faults, fractures, reefs, basement highs, and ridge systems have dissected the 

area (Bhattacharya and Chaubey, 2001; Chakraborty et al., 2006; Mukhopadhyay et al., 

2008). The general orientation of these structural features is NNW-SSE and parallel to 

the coast. The faults in this region are also parallel to the Dharwar Precambrian orogenic 

trend (Biswas, 1987) that has influenced the depositional pattern. On a regional scale, a 

series of parallel sets of longitudinal extension faults and NW–SE trending structural 

features (Laccadive ridge, Laxmi ridge, Prathap ridge complex, Panikkar ridge) abound 

the western offshore. Ramification and network of all these faults have virtually 

configured and molded the geomorphology of the study area. Some of these faults act as 

channel ways for the migration of hydrocarbon gas and fluids (Dandapath et al., 2010; 

2012). Reineck and Singh (1980) and the recent studies carried out by Chakraborty et al., 

(2014a) construed that the upper slope region located in the proximity of the shelf 

break/edge is influenced by a complex hydrodynamic environment, which also affects the 

sedimentological regime. Acoustic blanking and Bottom Simulating Reflectors (BSRs) 

were observed during the recent geological and geophysical surveys in the region 

(Karisiddaiah and Veerayya, 1994; Satyavani et al., 2005; Dewangan and Ramprasad, 

2007). 

3.2.1 Oceanographic Condition 

The regional oceanic circulations, characterized by seasonal reversal of monsoon-

driven surface and bottom currents, summer upwelling and winter downwelling, create 

unstable oceanographic conditions in the WCMI at ~ 250 m water depth (Amol et al., 

2012). Bottom currents are strong and wide (~40 km) and run opposite to the direction of 

surface currents (Shetye et al., 1990). During southwest monsoon the bottom currents 
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moving parallely to the coast advance northwards (SSE-NNW), carrying low salinity 

water and move southwards (NNW-SSE) carrying high salinity water during northeast 

monsoon. The average current speed and direction in the deeper part of the study area 

measured using mooring systems at the commencement of the south-west monsoon 

(June-September), is 12.6 cm/s and 94.5ºN respectively. Similarly, during the north-east 

monsoon (November-February), the mean current speed and directions measured is 12.5 

cm/s and 296.6ºN respectively (Shenoi and Antony, 1991). The water depth at which the 

bottom currents is active ranges between 100 m and 250 m (Rao and Rao, 1995).  

3.3 Regional setting of the study areas 

The study sites entailed in this doctoral work are crucial locations for researchers 

from other scientific disciplines, as this region offers the possibility of uncovering 

groundbreaking economic prospects. The seafloor of three distinct areas in the central 

WCMI, off Malvan to Malpe, in water depths ranging from 30 m to 2000 m, have been 

examined  for seafloor characterization. One of the locations involved represent an area 

related to gas discharge and occurrence of gas hydrates. The other locale consist of  a 

combination of gullies, ridges and slumps, stretching over 5,310 km
2
 offshore Goa, along 

the slope. The southern part of the study area is distinguished by a shallow seafloor with 

two coralline banks. The methods employed for the characterization of the seafloor are 

based on soft computational techniques. The data analyzed represent acoustic 

measurements of the ship-borne hull-mounted multibeam echo sounding system.  

3.3.1 The slope area 

The slope area investigated stretches N-S with a combination of gullies, ridges and 

slumps along the slope in the WCMI. EM302 multibeam system was operated in the 

outer shelf and upper slope region at the water depths ranging from 150 to 280 m. The 
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slope morphology of this area can broadly be divided into two subdivisions viz., a) gently 

(~0.63º) sloping north-eastern part of the study area within the 150-220 m water depth 

having disoriented fault pattern, and b) the adjoining steep slope (~0.90°) between the 

water depth 220-280 m along the south-western part featuring NE-SW trending fault 

system with occasional slumping (beyond the 230 m depth) (Fig. 3.1). The area covers 

over 5,310 km
2
 offshore Goa, with an average slope of 3.11º. The study area is dissected 

by NNW–SSE trending faults, fractures and a ridge system (Chakraborty et al., 2006; 

Mukhopadhyay et al., 2008, Bhattacharya and Chaubey, 2001). The area can be described 

as a formation of gullies and ridges in the north and slump toward the south within a 

quadrangle that extends from 15º10'N - 16º20'N and 72º10'E - 73ºE. The main controlling 

factor of the slump appears to be due to the dissociation of adjacent underlying gas 

hydrates deposits (Fig. 3.1) as reported by Rao et al. (2001). The combination of the 

gullies, ridges, and slumps has the shelf break and modified the upper slope of this study 

area. From the earlier studies/surveys in the WCMI, the existence of bottom-simulating 

reflector (BSR) zone almost 50 km from the present study area has been documented 

(Dandapath et al., 2010). Current-controlled pockmarks have also been identified in the 

adjoining area that are indicative of the strength of the bottom currents in modifying the 

seafloor. Multibeam bathymetric data of the study area reveal gullies of varying length. 

The gullies are steep-sided confined channels incised by surface and subsurface flow that 

are common features on the continental slopes (Spinelli and Field, 2001), submarine 

canyon walls (Lastras et al., 2007) and delta slopes (Maillet et al., 2006). Submarine 

gullies play important role in the general evolution of continental margins over relatively 

long periods of time (Field et al., 1999). Gullies are important agents of submarine 

erosion and down-slope sediment transfer from the upper slope to the continental rise 

(Dowdeswell et al., 2008). They contribute to the facies of slope deposits (Syvitski et al., 
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1996) and also occasionally considered as an important architecture of the petroleum 

reservoirs (Hewlett and Jordan, 1993).  

The upper slope region adjacent to the shelf break experiences complex 

hydrodynamic environment, which also affects the sedimentological regime of the area 

(Chakraborty et al., 2014a). In this area bottom simulating reflectors (BSRs) and acoustic 

blanking were detected during recent geological and geophysical surveys (Karisiddaiah 

and Veerayya, 1994; Satyavani et al., 2005; Dewangan and Ramprasad, 2007). 

 

Fig. 3.1 - Multibeam surveyed slope in the WCMI 

Earlier studies of the WCMI have reported that the slope region has been subjected to 

extensive slumping during the late Pleistocene Epoch (Stackelberg, 1972; Shetty, 1972; 

Hussain and Guptha, 1985; Rao et al., 1988; Guptha et al., 2002). The studies have 

construed that the slumping in the WCMI was triggered during the Holocene period.  
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Congruously the Holocene sedimentary processes in the area are found to be greatly 

influenced by the local dynamics of the current regime and bottom topography. Modern 

processes are also active, although the late Pleistocene paleotopography appears to be the 

controlling factor in the spatial distribution of Holocene deposits (Karisiddaiah et al., 

2002).  

3.3.2 The pockmarked area 

The location of study area represents an area characterized by active sediment and 

transport processes and occurrence of gas hydrate in the WCMI. The multibeam suevey 

of this area is carried out using EM1002 – a shallow water multibeam system. The area is 

dotted with pockmarks and fluid seepages and lie in water depths varying from 145 m. in 

the northeast to 330 m in the southwest, covering nearly 72 km
2
 (9.0 km x 8.0 km), with a 

large number of pockmarks, progenerated by the presence of gas and fluid seepages 

fronting the outer slope of the margin. The pockmarks might have been produced by the 

presence of gas or fluid seepages escaping from the subsurface along the faults, mainly in 

the western end of the area. This study area stretches over 105 km² area and lies at 102 

km west off Marmagao (offshore Goa). The general slope is in the direction of west-

southwest that increases rapidly towards the deep. The latitudinal and longitudinal extents 

of the study area is 15°29'50"N to 15°37'30"N and 72°47'13"E to 72°52'27"E 

respectively. In the recent past due to the discovery of the existence of subsurface 

hydrocarbon, mainly methane, this area was the focus of much research for its gas 

hydrates potential (Fig. 3.2). 
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Fig. 3.2 - Pockmark dotted seepage area in the WCMI  
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3.3.3 The coralline banks 

Farther south, another discernible shallow water area with two coralline banks with 

an atypical environmental setting, away from the seepage area has also been examined. 

This study area lies off coastal Karnataka in the Konkan basin, the NNW- SSE trending 

shoreline is aligned with the predominant Precambrian tectonic trend of the crystalline 

rocks often exposed along the shoreline. Rivers such as the Gangavali, Sharavati and 

Netravati flow across the coastal plain and have an annual runoff of 1.5x10
13

 m
3
 yr

-1
 of 

water. A series of sand dunes, oriented parallel to the general direction of the coastline, 

hinders at places the flow of the rivers, thereby trapping sediments and enlarging the 

alluvial plains. The drainage of the coastal area trending in the East-West direction flows 

into the Arabian Sea in the west. The western margin of India receives a large sediment 

supply during the SW monsoon (June-September) (Chakraborty et al., 2016). An 

underwater current of about 40 km wide at the depth interval between 100 and 250 m, 

with the characteristic of the Bay of Bengal waters, subsists during the SW monsoon. A 

southerly surface current, ~150 km wide, develops along the margin during this season in 

water depths of 50 m on the shelf. During the NE monsoon (November-February), the 

southerly surface current is replaced by a northerly surface current with signatures of the 

Bay of Bengal waters intruding onto the SW coast of India.  

The Gaveshani bank is approximately 100 km west off Malpe along the Karnataka 

coast. The bank is about 1500 m wide and 2000 m long and rises 42 m from the seafloor. 

The area surrounding the Gaveshani bank encompasses a gentle gradient, the main 

topographic feature being the abruptly rising fringe. The seafloor sediment around the 

bank is silty sand, predominantly carbonate, consisting of foraminifera shells, mollusks 

fragments, and corals. The other unnamed bank lies 37 km north of the Gaveshani Bank 
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with its peak soaring at 55 m water depth.  This coralline bank is about 4300 m wide with 

a maximum length of 5900 m and elevation of 24 m from the seafloor. Both the banks 

have evolved with distinct geomorphic features such that the Gaveshani bank is 

unaffected by any attrition, while the unnamed bank is impinged by active seafloor 

processes (Fig. 3.3). The multibeam survey of this area is carried out using EM1002 – a 

shallow water multibeam system. 

 

Fig. 3.3 - Perspective view of Gaveshani Bank (bottom) and the unnamed bank (top)
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CHAPTER – 4 

SLOPE MORPHOLOGY OF WCMI 

 

4.1 Introduction 

The high-resolution multibeam data acquired along the slope, off the coast of 

Malwan-Vegurla-Goa, covering an area of 6,500 km
2
, reveal significant facets of the 

WCMI slope morphology. The fluid flow migration signature in the form of pockmark 

seepages, traces of mud volcanoes and enhanced reflectors is observed in the area. The 

area represents a slope configuration of submarine gullies, ridges and an adjacent slump 

zone.  Geomorphic processes such as slumping and mass movements play a vital role in 

altering the shape and configuration of physiographic provinces along continental 

margins. Mass movements and sediment mobilization can alter the slope topography and 

generate turbidite sedimentation on the deep ocean floor along continental margins. 

Along the WCMI, several bottom simulating reflectors have been identified on 

single-channel seismic records, some of them located in areas where slumping and mass 

wasting are observed (Karisiddaiah et al., 2002). The causes, consequences and degree of 

geographic variation of these geomorphic processes has been assessed in terms of 

possible gas-hydrate dissociation during Pleistocene sea-level changes, high 

sedimentation resulting in under-consolidation, and seismotectonic activity prevailing 

along the WCMI margin (Rao et al., 2002). One consequence of possible gas-hydrate 

dissociation along the continental slope could be sediment failure and mass transport 

down the slope. Contrastingly, in the flat deep-sea areas, gas-hydrate dissociation may 

have led to gas seepage and the development of pockmarks on the seafloor (Dandapath et 

al., 2010). Generally, slope failures are explained as being caused by earthquake activity 

or rapid sedimentation resulting in under-consolidation of sediments. Such causes of 

slope failure have been hypothesized in other parts of the continental margins across the 
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world oceans (Dillon et al., 1993, 1998). It could be caused by dissociation of gas 

hydrates during sea-level low-stands (Kvenvolden, 1993). Many studies have indicated 

that gas hydrates lying beneath submarine slopes can trigger submarine slides 

(Shanmugam, 2012). Investigation of morphological processes along the slope and 

characterization of slope morphology, utilizing both the bathymetry and seismic data are 

germane to the exploration of the continental margins (Mitchell 2005). Any such 

investigation can reveal significant facets of the WCMI slope morphology. 

High-resolution seismic reflection profiler data were collected  normal  to  the  coast,  

along  the  central western margin  of  India  with  a  spacing  of  20 km during the 30
th

 

and 71
st 

cruises of R.V. Gaveshani.  The data  were  obtained  using  a  Huntec  

Hydrosonde  (main pulse: 5 kHz),  and  an  ORE  sub-bottom profiler (3.5kHz) together  

with  side-scan  sonar  (EG&G  Mark  IB,  dual channel  recorder:  259-3  and  tow  fish  

272),  and  Kelvin and Hughes MS-45 (30kHz) echosounder (Karisiddaiah et al., 2002).  

The extent of the area covering the slope morphological studies stretches over 5,310 

km
2
 offshore Goa, and has an average slope of 3.11º. The area covers the gullies, ridges 

in the north and slump toward the south within the quadrangle of 15º10'N to16º20'N and 

72º10'E to 73º00'E. From the earlier studies/surveys based on the analyses of multibeam 

bathymetric data coupled with the single-channel seismic data in this region, it was 

observed that there exist bottom-simulating reflector (BSR) zone almost 50 km from the 

present study area (Dandapath et al., 2010) [Fig. 4.1(a)].  

4.2 Processing of multibeam data 

The present work is based on the analyses of multibeam bathymetric data coupled 

with the single-channel seismic data. The bathymetry data were collected in accordance 

with hydrographic standards using high-quality (DGPS) positioning, standard sound 
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velocity profiles, and calibration offsets from a thorough patch-test. The data files for this 

study area, stored as binary SIMRAD (raw data format), were reprocessed by the author 

using CARIS HIPS 7.1 and ultimately used to produce a bathymetry grid with a cell size 

of 15 m.  

Further calculations were performed on ASCII gridded data and the gridded data were 

converted to GIS raster grids for terrain/slope analysis. The geo-referenced data points 

containing depth values were imported to ArcGIS (Geographical Information System 

developed by ESRI Inc.). During data processing, the data was checked for good quality, 

with sounding densities and depth. Spurious data was weeded out particularly on account 

of the outer beams. Overall the multibeam swath accuracy was well maintained within 

hydrographic standards of IHO. The data were then interpolated to raster using cubic 

convolution methods, and subsequently, high-resolution images were generated. Cubic 

convolution tends to sharpen the data and is more accurate as compared to other methods 

such as bilinear interpolation. The processed bathymetric grid of the slope terrain resulted 

with good detail with a few artifacts common while processing multibeam data (Hughes 

Clarke 2003). 

4.3 Slope characteristics vis-à-vis bottom currents and regional circulation 

Following the processing the multibeam bathymetric data of the study area, it was 

evident that the length of the gully is of variable dimension. Generally, gullies are steep-

sided confined channels incised by surface or subsurface flow, and are seen as common 

features on the continental slopes (Spinelli and Field, 2001), submarine canyon walls 

(Lastras et al., 2007) and delta slopes (Maillet et al., 2006). Submarine gullies play a 

pivotal role in the general evolution of continental margins over relatively long periods of 

time (Field et al., 1999). Gullies are important agents of submarine erosion and 

downslope sediment transfer from the upper slope to the continental rise (Dowdeswell et 
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al., 2008). They contribute to the facies of slope deposits (Syvitski et al., 1996) and also 

occasionally considered as an important architecture of the petroleum reservoirs (Hewlett 

and Jordan, 1993). Studies on the WCMI have demonstrated that the slope region has 

been subjected to extensive slumping during the late Pleistocene Epoch (Stackelberg, 

1972; Shetty, 1972; Hussain and Guptha, 1985; Rao et al., 1988; Guptha et al., 2002). 

These studies inferred that the slumping in the WCMI was set in motion during the 

Holocene. Holocene sedimentary processes in the area are controlled primarily by bottom 

topography and dynamics of the current regime. Although the late Pleistocene 

paleotopography appears as a basic factor in controlling the areal distribution of 

Holocene deposits, modern processes also have been influential (Karisiddaiah et al., 

2002). Main controlling factor of slump appears to be due to the dissociation of adjacent 

underlying gas hydrates deposits [Fig. 4.1(a)] as reported by Rao et al., (2001). 

The bottom currents generally play a major role in the continental margin 

sedimentation. They are able to erode, mold, transport and redistribute the sediments 

supplied to the slope by downslope flows and vertical settings (Weaver et al., 2000). 

Hovland et al., (2002) demonstrated the strength of bottom currents in modifying the 

seafloor shape including pockmarks. Similar observation was noticed in the adjacent 

study area (Dandapath et al., 2010). Bøe et al., (1998) have also reported current-

controlled pockmarks elsewhere. The bottom currents in WCMI move northward 

carrying low-salinity water during the southwest monsoon (summer) and move 

southward carrying high-salinity water during the northeast monsoon (winter). These 

currents are parallel to the bathymetric contours (~250 m). This suggests that the bottom 

currents actively participating in modifying the seafloor morphology indicate higher 

sediment deposition or erosion. The regional circulation along the WCMI is particularly 

affected by seasonal reversal of monsoon driven surface and bottom currents reversal of 
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Fig. 4.1 - (a) Location of the study area including some of the main structural features (adapted from 

Dandapath et al., 2012) of the region. On land, the Dharwarian trend indicated by dotted lines is the 

NNW–SSE trending Precambrian orogenic structure. The west coast fault shown with thick dotted lines 

is different from the Dharwar trend. Red highlighted lines and gray shade indicate the reported BSRs 

zone (Dandapath et al., 2010). Traces of two faults are marked as F1–F1', and F2–F2'; (b) Perspective 

view of the study area in 3D [Fig. 4.2(b)], and the representative seismic sections (6 black lines) 

explained in detail in Fig. 4.3. The locations of thirty-three profiles (Fig. 4.4) of gullies (G1–G9), ridges 

(R1–R12) and slump zones (S1–S12) are indicated. The northern area visibly indicates characteristic 

gullies and intervening ridges, whereas the southern area contains hardly any visible gullies; however, 

interfluves of second generation gullies are observed here. The NW–SE trending line A–B (red in color) 

is the line of view taken of the gullies, ridges and slope zone being studied and depicted in Fig. 4.5. 
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Fig. 4.2 - Perspective view of the study area showing characteristics of gullies, ridges and slump 

zones. Location of studied pockmarks (P, Pg), mud volcano (MV), two faults (F), gullies (G) are 

shown along with ridges and slump collectively. AB represents a northwest-southeast trending 

profile cutting gullies, ridges and slump zone. Fix nos. are given as numerals (162 …169… 471). 

Thin red lines L-3…7 are the seismic lines that have been evaluated. (Map not to scale). 

currents actively participating in modifying the seafloor morphology indicate higher 

sediment deposition or erosion. The regional circulation along the WCMI is particularly 

affected by seasonal reversal of monsoon driven surface and bottom currents, summer 

upwelling and winter downwelling (Naqvi et al., 2010) that create an unstable oceano-

graphic condition over the area. A strong coast parallel (NNW–SSE trending) bottom 

current covering 40 km wide runs through the present study area (Shetye et al., 1990). In 

view of the observations of Hernandez-Molina et al., (2011) and applying it to our work, 

it can be postulated that such circulation of water masses might lead to the development 

of the along-slope currents and generate an erosion and depositional environment within 

the gullies, ridges and slump zone. Bottom currents investigation using ADCP deployed 

along the continental margin, off Goa has revealed that there exist a seasonal-based 
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strong poleward and equatorward currents (~30 cm/s) along the slope off Goa (Stow et al. 

2009). The magnitude of the currents is higher towards the slope region (off Bhatkal) in 

the south than in the north (off Jaigarh) (Amol et al., 2012). This diverse current pattern 

especially off Goa slope region appears to be one of the influencing factors in controlling 

and molding the configuration of the slope morphology. The combination of gullies, 

ridges and slumps has carved the shelf break and upper slope of the study area (Fig. 4.2). 

4.4 Seismic interpretation of the line tracks 

Single-channel seismic data (4.5–8 kJ) (Fig. 4.3) can provide a wide range of 

information of the subsurface and help explain the linkage between the pockmarked 

gullies and the adjacent BSR zone. The seismic reflection profiles [Figs. 4.3 (a-f); L-(3–

7)] reveal the presence of pockmarks (P), stratified reflectors (S), acoustically transparent 

zone (A), unconformity (U), pockmarked gully (Pg) that depicts gas seepage activity, 

enhanced reflector (E) and trace of mud volcano (MV). Mud volcano is a dome shaped 

formation caused by eruption of mud or slurries, water and gases. Along the slope, three 

pockmarks (P) [Fig. 4.3(b); L-6, fixes 454–455] with varying dimension,  159, 79 and 53 

m width and 54, 24 and 15 m depth (measured along east to west) respectively, are 

observed. Also identified are two pockmarks (P) of rounded type and a BG [Fig. 4.3(c); 

L-5, fixes 320–321]; two slope gullies [Fig. 4.3(d); L-4, fixes 304–305] of width 71 and 

60 m and depth of 3 m and 2 m, respectively; shallow dipping reflectors (DR); traces of 

faults (F1–F10) [Figs. 4.3(b), 4.3(c)], and MV. The entire study area data with a 

maximum penetration up to 220 m below the seafloor was processed for characterizing 

the reflectors with variable thickness. An unconformable reflector (U) is seen in the [Fig. 

4.3(a); L-7, fixes 470–471], [Fig. 4.3(d); L-4, fixes 304–305], and [Fig. 4.3(f); L-3]. This 

reflector signifies a surface devoid of deposition, weathering or erosion, depicting a 

separated grouping of strata with continuity in deposition connecting them. Based on the 
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Fig. 4.3 - Single-channel (4.5 - 8 kJ) seismic reflection profiles in the study area off Goa. 
(a) A cross-section of line 7 (L-7) (between fixes 470–471) showing typical slope region with stratified 

reflectors (S), DR and an unconformity (U) at a depth of ~25 m bsf (below seafloor) conspicuously 

demarcating the sequence boundary of top reflector with the underlying stratified layers.  

(b) A transect of line 6 (L-6) showing typical cross-section of three pockmarks (P) with variable 

dimensions (see text), note the dipping (DR) as well as deep reflectors (D). Max. penetration: up to 350 bsf.  

(c) A small portion of line 5 (L-5) showing two pockmarks (P) of rounded type, a BG, shallow DR, traces 

of faulting (F1–F10), MV, an acoustically transparent zone (A) and deep reflectors (D); M indicates 

multiple reflector.  

(d) This section of line 4 (L-4) depicts a cross-view of two slope gullies that appear as faulted, together 

with DR, an unconformity (U) and deep stratified reflectors (S).  

(e) A small portion of line 3a (L-3a) from the southernmost slump zone shows stratified reflectors (S), 

acoustically transparent zone (A), an unconformity (U), trace of mud volcano (MV) and an adjacent 

enhanced reflector (E).  

(f) Another small stretch of line 3b (L-3b) from deeper portion shows a pockmarked gulley, depicting gas 

seepage activity along with stratified reflectors (S). X denotes the gap in seismic data recording for 15 min, 

depicting changes in topography, resulting in artifact (and not a fault). 
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classification of Vail et al., (1984), the unconformity recorded here belongs to the second 

type, wherein the sub-areal surface does not reach the shelf break. Relying on the 

findings of Gay et al. (2007), it can be implied that in this study area the unconformities 

and pockmark link appears to be a conduit for fluid migration. The fault traces on to the 

map trending NW-SE have been demarcated in [Fig. 4.1(b); F1–F1')] while the fault trace 

(F2–F2') has been extrapolated from the recent reports (Dandapath et al., 2010, 2012). 

4.5 Slope Analysis 

The processed multibeam data has revealed a slope configuration of submarine 

gullies, ridges and an adjacent slump zone off Goa, along the WCMI. The quantitative 

analyses of average slope angle and root mean square (rms) relief relating to slope 

morphology were carried out following the techniques of Goff (2001) and Green et al. 

(2007), respectively. The determination of slope curvature was carried out by curve 

fitting (Adams and Schlager, 2000). The slope analysis (Chakraborty, 2014a) of the thirty 

three depth profiles from the gully, ridge and slump areas indicate downslope progression 

in gully incision and varying gradients in the gullies (1.19 - 4.07º) and ridges (2.13 - 

3.70º), whereas the profiles of the slump zone are comparatively steady (2.25 - 2.51º). 

The slope angle is computed by taking the arctangent of the difference in mean depth 

over adjacent profile divided by the down-slope spacing of the profile. The gradient 

values and rms relief were estimated at every 100 m water depth along the profile, and 

the average gradient, depth and rms relief were calculated for the entire profile length. 

The rms relief represents square root of morphological variance as a function of depth. It 

measures the average variability about the mean value along each profile. Three slope 

parameters, gradient, mean depth and rms relief of the depth profiles were made use of, to 

characterize  the  slope-confined  gullies and  ridges  of the  area on a  wider  perspective. 
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Fig. 4.4 - A composite diagram showing thirty-three depth profiles from the 

study area comprising of gullies (G1–G9), ridges (R1–R12) and slump zone 

(S1–S12). Representative undulating slump zone profiles (S1–S4) are 

indicated as (1), and remaining slump zone profiles (S5–S12) is represented 

by (2), whereas (3) and (4) represent ridge and gully profiles, respectively. 

The focus of this study was to characterize the slope morphology and map its spatial 

heterogeneity. The gullies can be characteristically described as having higher depth at 

the central part and lower indention in its lower and higher reaches, as they were formed 

by the removal of soft sediment due to bottom currents. 

4.5.1 Evaluation of slope morphology based on the multi-beam bathymetry 

Following the demarcation of the isobaths at 200 m. interval, thirty three profiles 

were identified considering the configuration of gully, ridge and slump zones [(Figs. 

4.1(a) and 4.1(b)]. The profiles include nine from the gullies, twelve associated with the 

ridges and twelve from the slump zone [Fig. 4.1(b)]. The processed multibeam 

bathymetric data proffer varying dimensions of the gullies ranging from 3.72 to 18.6 km 

in length, and their widths ranging from 0.18 to 1.86 km. The mid-width of the gullies 

typically ranges from 1.5 to 5.7 km and the maximum relief determined is 550 m. The 

sloping walls of the gullies are steep on the southern side (2.60º) and (2.43º) on the 

northern side. The initial expression of the gullies is by and large smooth, negative relief 
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with relatively smooth sloping walls. The relief increases as the inter-gully areas 

aggrades more than the gully axis. The gullies are relatively linear features that are 

perpendicular to the contours and act as migration pathways for fluid flow. The 

transverse section [A–B in Fig. 4.1(b)] of the slope morphology is depicted in Fig. 4.4, 

and the corresponding profiles are portrayed in Fig. 4.5. The ridges [Fig. 4.1(b)] are 

contiguous with the gullies and coalesce with each other; their length varies from 5.58 to 

16.74 km, while their width is in the range of 0.18 - 0.93 km. 

 
Fig. 4.5 - A schematic line diagram A–B describing in detail all the ridges, gullies 

and slumps across the chosen profiles. For profile locations, please see Fig. 4.2. 

4.6 Principal Component Analysis 

Principal component analysis (PCA) can be used for exploratory multivariate data 

analysis to determine the relationship among the seafloor parameters (Davis 2002). PCA 

was formulated in statistics and uses an orthogonal transformation to convert a set of 

observations of possibly correlated variables into a set of values of uncorrelated variables 

called principal components. Many of the functions of PCA are connected with finding 

relationships between objects or ascertaining the number of classes of similar objects. In 

this study, PCA has been utilized to examine the data variability in order to comprehend 
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the interrelationship between three singular slope morphological characteristics. Thirty-

three depth profiles of the gullies in the WCMI were examined using the slope para-

meters viz., gradient, root mean square (rms) relief and depth. The number of profiles 

considered is critical and if inappropriate, may influence the accuracy of results. There 

being no agreed mode for relating the number of observations versus the number of 

variables, the method conjectured by Good and Hardin (2009) has been resorted to. The 

gullies for the most part are particularly characterized by higher depth midway along the 

course compared to both its ends, as they appear to have been formed by the removal of 

soft sediment due to the bottom currents. A positive correlation could be established 

between the mean water depth and the rms relief in the gully region. The gullies are also 

characterized by its gradients with higher roughness in the low-gradient section. Hence, it 

can be concluded that the gradient of the gullies is reduced with increased rms relief 

caused by high sedimentation activity. The gully area with characteristic higher depth 

values is negatively correlated to rms relief and positively associated with the gradient. In 

the case of ridges located in the northern part of the slope area, distribution of gradient, 

rms relief and depth is wide as seen in the scatter plot [Fig. 4.6(a)]. It is also evident that 

there is a considerable variation in rms relief. Hence, it can be attributed that reciprocity 

between the rms relief and the gradient as well as mean depth is significantly congruous. 

There is positive association between mean depth values and gradient, while the variation 

in roughness increases with mean depth. The PCA was used to assess the varying trends 

of rms relief, gradients and mean depths. The PCA and the scatter plot suggest that the 

three parameters are influencing factors that control the profile characteristics of the 

ridge, gully and the slump region respectively. The PCA could establish a fundamental 

link between the parameters and the thirty three profiles generated along the three 

different morphological features (gradient, rms relief and depth).  



 

72 

 

 
Fig. 4.6 - (a) Scatter plot drawn considering mean water depth, gradients and rms relief of all the 

thirty-three profiles; (b) Figure represents the biplot that reveals that the profiles in the slump 

zones are characterized by higher depths and those of the ridges (R8–R12) from the southern area 

are distinctly associated with higher roughness, while most of the remaining profiles of the gullies 

(G1–G7) and ridges (R1–R7) from the northern area are influenced by their gradients. 

It was observed that the first two principal components (PC1 and PC2) together 

explain 94.33% of the total variance in the data. The PC1 variance has comparable 

magnitude (60.81 %) and the variance of the next two PC2 and PC3 is comparatively less 

(33.52 and 5.67%, respectively). The PCA as indicated in [Fig. 4.6(b)], demonstrate that 

the profiles (S1to S12) (Fig. 4.5) from the slump zones show similarities and can be 

grouped together, which may represent processes at greater depth. Similar outcome from 
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the scatter plot [Fig. 4.6(a)] supports this observation. The biplot [Fig. 4.6(b)] reveals that 

the profiles in slump zones are associated with greater depths, and those of the ridges (R8 

to R12) from the southern area are distinctively correlated with higher rms relief. 

However, most of the profiles of the gullies (G1 to G7) and ridges (R1 to R7) from the 

northern area are characterized by steeper gradients. 

4.6.1 Correlation and principal component analysis (PCA) 

The scatter plot [Fig. 4.6(a)] of three parameters, gradient, rms relief and depth of the 

thirty three profiles shows prominent clustering for gullies and slumps. In particular, for 

slumps, there is a positive correlation between the rms relief and gradients. Since rms 

relief is a measure of the large-scale roughness, it indicates that the roughness is 

increasing with the slope gradient. However, this reciprocity is noticed often between rms 

reliefs and depth. The association between the mean depth and the slope gradient is 

negligible for the slump zone. The gullies are characterized by greater depth midway 

along the profiles and low depth at its two ends, as they are formed by the removal of soft 

sediment due to the bottom currents. The correlation between the mean depth and the rms 

relief in gully area is high. Gullies are characterized by gradients, i.e., the roughness is 

high for low-gradient region. Hence, it can be concluded that due to the higher 

sedimentation rate, the gradient is reduced and rms relief is high. The gully region having 

characteristically greater depth is negatively correlated to the rms relief and positively 

correlated to the gradients. 

In the case of ridges in the northern block, the spreading among the three 

parameters in the scatter plot is wide [Fig. 4.6(a)], and it is also clear that there is a 

considerable variation in rms relief. Hence, it is attributed that reciprocity between the 

rms relief and the gradient as well as mean depth is of significance. A positive correlation 

is observed between mean depth and gradient. Further, the variation in the roughness 
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with increasing mean depth is of significance. To compare the performance of the three 

features, the PCA technique is employed. PCA is an exploratory multivariate statistics 

that can be used to examine data variability. Here, the PCA and scatter plot suggests that 

the three parameters, viz., rms relief, gradients and mean depths are influencing factors 

that control the profile characteristics in the ridge, gully and the slump region, 

respectively. The gradient values and rms relief were estimated at every 100 m. water 

depth along the profile, and the average gradient, depth and rms relief were calculated for 

the entire profile length. 

The first two principal components (PC1 and PC2) of the PCA can jointly explicate 

94.33 % of the total variance in the data. The PC1 has comparable magnitude (60.81 %), 

with PC2 and PC3 showing lesser (33.52 and 5.67 %, respectively) values. The PCA 

analyses also indicate [Fig. 4.6(b)] that profiles (S1–S12) (Fig. 4.5) from the slump zones 

are consistently groped and may represent the processes at higher depth. The same is also 

corroborated by the scatter plot [Fig. 4.6(a)]. The biplot [Fig. 4.6(b)] reveals that the 

profiles in slump zones are characterized with higher depths and those of the ridges (R8–

R12) from the southern area are distinctively associated with higher rms relief. However, 

most of the profiles of the gullies (G1–G7) and ridges (R1–R7) from the northern area are 

characterized by their steeper gradients. 

4.7 Discussion 

The scatter plot [Fig. 4.6(a)] bears out that the gullies and slump zones are clustered, 

whereas the profile parameters of ridges show wide spreading. These observations are 

well corroborating with the correlation results (please see section 4.6.1) that has been 

validated using PCA studies [Fig. 4.6(b)]. This signifies that the combination of rms 

relief, gradients and depths is well suited to discern the profiles of the ridge, gully and the 
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slump regions. The two principal components (PC1 and PC2) together explicate 94.33 % 

of the total variance. The PC1 has significant magnitude (60.81 %), whereas the PC2 

depicts less (33.52 %). The PCA analyses also indicate that the slump zone profiles (S1–

S12) are consistently grouped [Fig. 4.6(b)] as an entity. The biplot [Fig. 4.6(b)] reveals 

that the profiles in the slump zones are characterized by higher depths and those of the 

ridges (R8–R12) from the southern area [Fig. 4.1(b)] are distinctly associated with greater 

roughness, while the rest of gully profiles (G1–G7) and ridges (R1–R7) from the northern 

area are characterized by their respective gradients. 

It is assumed that there is slumping or material flow associated with the four profiles 

(S1–S4) and the single-ridge profile (R12) [Fig. 4.1(b)]. Interestingly, this postulation 

could be clarified neither from the scatter plot nor from the PCA. However further study 

resolved the matter through utilization of a stochastic multifractal technique 

(Chakraborty, 2014a), which has advantages to address the intermittency in the 

framework of higher-order nonlinear dynamical system. Nonetheless the three distinct 

parameters were used to understand the system with multifractal approach (i.e., high 

dimensionality), that established that the gullies, ridges and slump zones form a separate 

cluster pattern, signifying a more suitable way for defining fine-scale seafloor aspects 

(Chakraborty et. al. 2014b). Use of multifractal stochastic processes is not included in the 

scope of this study. 

As stated earlier that the slumping in the WCMI was engendered till the 11ky B.P. 

(Hussain and Guptha 1985) and the magnitude of the slumping was minimal thereafter. 

Regardless, it is has been put forward that the formation of methane gas during the 

Holocene might have also triggered the small-scale process of slumping. This has caused 

to believe that after the sea level attaining the present state, there are no signs of large-

scale slumping taking place. However, the characteristic slump zone in the study area 
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[Fig. 4.1(b)] with the presence of gas-escape features is an added factor to consider the 

relevance of this slumping. In that case, Guptha et al., (2002) had shown that the 

methane-bearing gas charged sediments (Karisiddaiah et al., 1993) might be the main 

cause of the slumping. Thus, with the pockmarks existing in the region and the 

investigation of Dandapath et al. (2010; 2012) in their morphological characteristics (e.g., 

shape, sidewall slope etc.) strengthen the possibilities of slumping.  

Further, it is postulated that the vertical rising of gas bubbles and gravitational pulls 

along the sidewall of the pockmarks might have initiated slumping. Similar events due to 

upward migration of gas have been also recorded (Ergün et al., 2002). By and large the 

slope area with the dominant pockmark seepages coupled with the fault traces clearly 

reflects a structurally weak zone [Fig. 4.1(b) and Fig. 4.2]. The main controlling factor of 

the slump appears to be due to the dissociation of adjacent deep-seated gas hydrate zones 

[Fig. 4.1(a)] as reported by Rao et al., (2001). The presence of gully and ridges in the 

slope region may be related to the Holocene turbidite events. However, these gullies 

appear to survive more in the northern part of the study area, but the southern slump zone 

is either masked or has very few such features due to erosional factors. Hence, it can be 

presumed that the source for such erosional processes may possibly be related to the 

dominant poleward bottom currents off Goa slope region (during the winter monsoon) 

than the weaker equator-ward bottom currents (during the summer monsoon) (Amol et 

al., 2012).  

Around the slope region of WCMI under study, the magnitude of bottom currents is 

higher toward the south (Bhatkal in Karnataka) than in the north (Jaigarh in 

Maharashtra). Interestingly the cross-section of the profiles along 600 m contour depicts 

strong erosional effect in the southern part of the slump zone (Fig. 4.4), whereas the 

effect of erosion is minimal toward the north such that the gully and ridge features are 
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found to be intact. Therefore, it is postulated that the convoluted nature of the slope 

containing the four profiles (S1–S4) that tend to change gradually to the extent that they 

may diminish at a later stage due to the interaction between the diverse pole/equator-ward 

current patterns in association with the inherent geodynamic fabric of the slope.  

There are very few pockmarked gullies [Pg; Fig. 4.3 (e), L-3] in the study area. These 

are slightly different from the other gullies as the former ones are the fluid flow conduits. 

These gullies could have formed through the interaction of slope failure and fluid-escape 

processes (Pilcher and Argent 2007). Their presence in the southern area strengthens the 

view that probably this area is partly devoid of gullies, even though Fig. 4.5 depicts their 

presence. It is observed that there is an affinity between pockmark (P) and gullies in the 

form of fluid flow systems such as few traces of MV [Fig. 4.3 (c, f)] and enhanced 

reflectors (E), [Fig. 4.3(f)]. Similar observation has been reported elsewhere (Field et al., 

1999; Moss et al., 2012). The pockmarks (as reported by Dandapath et al., 2010, close to 

the study area) are in proximity to gullies and thus might act as preferred escape routes 

for the migration of gas. The contribution of offshore currents and the negative and 

positive geomorphic features are not to be viewed as exceptional. It may be relevant to 

refer to the work of Leon et al. (2006) on the occurrence of offshore currents and their 

effect on the formation of MV and pockmarks on the Moroccan (Gulf of Cadiz) 

continental margin. 

4.8 Conclusion 

The morphological characteristics of the WCMI, off Goa, display varying slope 

angles for gullies and ridges, while it is comparable in the slump zone from north to 

south. The seismic construal explains the presence of gas-charged sediments, gas-escape 

features in the form of fluid flow systems such as pockmarks, MV, enhanced reflectors 

and pockmarked gullies in the study area. The scatter plot involving average slope 
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gradient, rms relief and mean depth of the thirty-three profiles depict unsettled huddling 

of the ridge profiles, whereas the gullies and the slump zones show good clustering. 

These observations were validated using PCA. However, the presence of slump or 

material flow along the four profiles (S1–S4) in the slump zone and the single ridge 

profile (R12) that has been depicted within the mapped area [Fig. 4.1(b)] could not be 

explicated by means of the scatter plots and PCA. The matter was resolved through 

utilization of a stochastic multifractal technique that established that the gullies, ridges 

and slump zones form a separate cluster pattern. Interestingly, the study area holds fault 

traces [Fig. 4.1(b)] along with the dominant pockmark seepages indicating a structurally 

weak zone.  

Sun et al., (2012) reports that structures that are indicative of focused fluid flow, such 

as seismic chimneys, mud diapirs, MV, pipes, faults, sand injections and pockmarks, are 

wide spread in passive and active continental margins, and they have received increasing 

attention over the last decade due to the wider appreciation of their importance for under-

standing fluid flow in sedimentary basins. They are also being investigated because of 

their role in assessing seabed stability. The presence of gullies and ridges in the slope 

region seems to be connected with the Holocene turbidite events. These gullies appear to 

be confined within the northern part of the study area. Interestingly the southern slump 

zone has rendered itself to erosional processes. Hence, we can deduce that the source for 

such erosional activities may possibly be connected with the dominant poleward bottom 

currents in the slope region off Goa (during the winter) and the weakened equatorward 

bottom currents (during the summer monsoon). The slender narrowing of the shelf 

(15º50"N - 16ºN) changes the aspect of the slope containing the four profiles (S1–S4). 

The diverse current patterns and the unique seafloor topography portend gradual changes 

in dislocating the inherent slope morphology. 
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CHAPTER – 5 

SOFT COMPUTATION FOR SEAFLOOR CLASSIFICATION 

 

 

5.1 Introduction 

Soft computing encompasses a collection of computational techniques and algorithms 

that are used to deal with complex systems (Pal and Pal, 2003). Soft-computing 

techniques can be an alternative for conventional methods that are time consuming and 

resource intensive. In comparison to conventional or hard computing, soft computing 

include methods (fuzzy logic, genetic algorithms, artificial neural networks, machine 

learning and expert systems) for dealing with ambiguous situations like inexactness, 

uncertainty to obtain hardy solutions at reasonable costs (Sivanandam and Deepa, 2011).  

The following are some of the primary methods that fall under soft computing: Fuzzy C-

Means (FCM) of Fuzzy Systems and Artificial Neural Networks (ANN) architectures like 

Self-Organizing Map (SOM) and Multi-Layer Perceptron (MLP). 

5.2 Artificial Neural Network (ANN) 

An ANN is a biologically inspired mathematical model designed to simulate the 

functionality of biological neural networks. It can also be viewed as a nonlinear 

information processing system particularly useful for mapping input vectors to specific 

outputs (Beale and Jackson, 1990). The basic building block of the ANN is the artificial 

neuron that can be considered as a mathematical algorithm that learns the relationships 

and the patterns in a given dataset. ANN have been used in several areas such as process 

control, chemistry, gaming, radar systems, automotive industry, space industry, 

astronomy, genetics, banking, etc. and solving of problems like function approximation, 

regression analysis, time series prediction, classification, pattern recognition, decision 

making, data processing, filtering, clustering, etc. ANN is an analogy of a biological 
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neuron (Hertz et al., 1991). The schematic diagram of a biological neuron is shown in 

Fig. 5.1. 

 
Fig. 5.1 - Schematic diagram of a typical biological neuron 

The human brain is composed of about 10
11 

neurons (nerve cells). A typical neuron is 

divided into three parts: the soma or cell body which contains the nucleus, dendrites - a tree 

like network, and an axon which is a single long fiber extending from the cell body, the axon 

eventually branches into strands and sub-strands. The ends of these branches are called 

synaptic junction or synapses, which transmit signals to the other neurons. The receiving 

ends of these junctions on other cells may be located on the dendrites as well as on the cell 

bodies. A few thousand synapses exist on the axon of a typical neuron. Transmission of a 

signal from one cell to the other through synapses is a complex chemical process. Specific 

chemicals are released from the sending side of the junction in order to raise or lower the 

electrical potential inside the body of a receiving cell. When this potential reaches a 

threshold value, a pulse, called action potential, with certain strength and duration is fired 

through the axon. The pulse moves from one cell to the other through these synapses. After 

firing, there is a refractory period during which a cell waits for a specific time, before the next 

firing. 
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The aim of an ANN is to replicate the functional behavior of neurons in a brain; its 

ability to adapt to the current information and changing circumstances. The performance 

of a neural network is critically dependant on the ability to learn from previous instances and 

apply this information to future iterations. The fundamental processing element of a neural 

network is also called a neuron. It receives external inputs that it performs non-linear 

operations on, and then outputs the final results.  

In ANN, several neurons (also referred to as nodes) are interconnected in accordance 

with some topology to perform a specific task. The output of each neuron may be given to 

several neurons. The amount of output from one neuron received by another neuron depends 

on the strength of the connection between the neurons establishing a weight (also called 

synaptic weight) of the connection links. At any instant of time, each neuron has a unique 

activation value and a unique output value. In a typical operation, a neuron may receive 

inputs from any interconnected neurons or from an external source. A weighted sum of 

the inputs and a specific activation value determine the actual output of an ANN. 

Therefore, an artificial network consists of architecture (i.e., the topology) of a network, 

training or learning algorithm (of the weights between neurons), and activation function 

(Beale and Jackson, 1990) 

There are several books (Beale and Jackson, 1990; Hertz et al., 1991; Yegnanarayana, 

2001; Sivanandam et al., 2006) that are good resources for ANN. The basics of neural 

networks and in particular Self-Organising Maps (SOM) architecture/networks are elucidated 

in this chapter. Later on the approach followed to utilize ANN for seafloor classification 

using SOM based networks is presented in chapter 6 and chapter 7. 

5.2.1 ANN terminologies 

A few ANN terminologies are explained here. 
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5.2.1.1 Weight 

The strength associated with the interconnection between two neurons determines a 

weight for that connection. Weight in neural networks is in reference to the information 

used by the network to solve a specific problem and the destination it needs to achieve it. 

The inputs to a neuron may come from the outputs of other neurons or from external sources. 

Therein the amount of output from one neuron received by another neuron depends on the 

strength of the interconnection (or weights) between the neurons. 

5.2.1.2 Activation Function 

The activation function or the transfer function determines an actual output from a 

neuron. The activation function can be linear or non-linear. Each input signal (say x,) is 

multiplied by a weight (say w,) and the product is summed. The net input is given by the 

sum of the weighted input signal. 

     

In order to produce an output signal, the activation function can be applied to modify 

the net input (i.e., NET). A non-linear activation function is generally used to map a non-

linear process. It is also used to ensure that a neuron's response is bounded – that is, the 

actual response of the neuron is conditioned or dampened as a result of large or small 

activating stimuli and is thus controllable. 

Certain nonlinear functions are used to achieve the benefits of multilayer networks 

from a single-layer network. When a signal is fed through a multilayer network with linear 

activation functions, the output obtained remains the same as that which could be obtained 

using a single-layer network. In that regard, nonlinear functions are widely used in 

multilayer networks as compared to linear functions.  Sigmoidal functions as activation 

functions are used because of the relationship between value of a function at a point and  
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value of the derivative at that point that reduces computing difficulty in training. A 

logistic function also termed as logistic sigmoid function or unipolar sigmoid function (S-

shaped curve), is used for its self-limiting nature or a squashing function (Sivanandam and 

Deepa, 2011; Beale and Jackson, 1990; Hertz et al., 1991). 

5.2.1.3 Bias 

The bias is included by adding the product of a bias weight (say b) with input signal (   

= 1) to the net input; if introduced the NET is calculated as   It is 

often advantageous to have a bias weight for rapid convergence of a training process. Bias 

weight allows the neuron to have an output even if the input is zero. The main purpose of 

the bias is to shift the origin of an activation function. These weights are trainable just as well 

as the other weights. (Sivanandam et al., 2006), 

5.2.1.4 Threshold 

The threshold is a limiting value of  a neuron  to produce an output.  The  weighted  sum of  

inputs  (NET) must reach or exceed the threshold value (Hertz et al.,  1991) for a neuron to fire 

(i.e., to get an output).  Its behavior can be represented as   where 

 is fixed threshold value. 

5.2.1.5 Training 

Training can be referred to as learning process with an objective to achieve an expected 

output by modifying the weights of the interconnection between different layers of the 

network (Sivanandam et al., 2006). There are three types of learning such as supervised 

learning, unsupervised learning, and reinforcement learning. Supervised learning of a network 

makes use of target vectors. The input and the target vector together are known as a training 

pair. If expected target vectors are not available, the training method adopted is unsupervised 

learning. In the unsupervised learning, the weights of the network are adjusted in such a 
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way that similar input vectors are grouped or clustered for assignment to the same output 

unit. Reinforced learning is similar to supervised learning, but the network receives some 

feedback from its environment called a reinforcement signal. While in supervised learning 

the target output values are known for each input pattern, in some cases less information 

might be available. For example, the network might be told its actual output is only "50% 

correct" or so. Thus, here only critic information is available and not the exact information. 

Feedback obtained however, is only evaluative and not instructive. External reinforcement 

signals are processed in the critic signal generator, and the obtained critic signals are sent to 

the ANN for adjustment of weights properly so as to get better critic feedback in future. 

(Sivanandam and Deepa, 2011) 

5.2.2 Fundamental Model of ANN 

McCulloch and Pitts (1943) formulated a synthetic neuron model, based on the concept of 

a simplified biological model. The input values are connected to neurons either by excitatory 

(positive) or inhibitory (negative) weights. A neuron fires if the net input to the neuron is 

greater than a threshold value. Any number of inputs can be added to a neuron. 

5.2.3 Perceptrons 

The simplest form of a neural network is a single layer perceptron. This type of network 

model is generally used for the classification of patterns that are linearly separable. A 

layered feed-forward neural network is a multi layered perceptron. Rosenblatt (1962) and 

Minsky and Papert (1969) developed this perceptron. Originally it had three layers e.g., 

sensory unit (input), association unit (hidden), and response unit (output). The sensory units 

are connected to association units with fixed weights having values 1, 0 or -l, which are 

assigned at random. The binary activation function is used in sensory unit and associator unit. 

The response unit has an activation of l, 0 or -1. The binary step with fixed threshold  is used  
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as activation for associator. The output signals that are sent from the associator unit to the 

response unit are only binary. All the units have their own weights. The association unit 

performs the predetermined mathematical operations on its inputs. The perceptron model 

differs from the McCulloch-Pitts model by the learning function (adjustment of weights) 

introduced in the perceptron (Sivanandam et al., 2006). The desired or target output (T) is 

compared with the actual output (y), and the error ( ) is calculated to adjust the weights. The 

output signal is given by , where  The error term 

is calculated as,  If the error associated with the input vector  is , then the 

change in weight ( ) is expressed as,  , where  is called the learning rate 

parameter (Yegnanarayana, 2001). 

5.2.4 Network Architectures 

Neural network architecture is the arrangement of neurons into layers and the pattern of 

connections among the neurons in various layers (Beale and Jackson, 1990). The number of 

layers or the number of neurons in a layer has no maximum limit. However, computational 

requirement increases with the increase in the number of neurons (and weights). Various 

types of network architectures exist such as feed forward net, feedback net, competitive net, 

and recurrent net. 

5.2.5 Kohonen's Self Organizing Map (SOM) 

Two basic methods of learning namely supervised and unsupervised are means that 

networks learn to execute a specific task. An unsupervised learning method called 

competitive learning has only one neuron in the output unit. Only one neuron in a group 

is a winner and therefore this neuron is often called the winner-take-all neuron (Hertz et 

al., 1991). Based on its inherent characteristics, the objective of such networks is to 

cluster or categorize input data. Unsupervised learning method operates with unlabeled 
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input data. Calculation of error (between desired target and achieved output) is not 

required to train such networks. The network itself discovers patterns, similar features, 

and regularities in an input data. Kohonen's Self Organizing Map (SOM) is such a 

network (Kohonen, 1989, 1990). On the other hand, for networks learning from labeled 

sets of input data or supervised learning; the classes are predefined and each training data 

is tagged with a correct class in a supervised architecture.  

Professor Kohonen (1990) proposed an unsupervised neural network called Self 

Organizing Map. Its architecture consists of two layers, an input layer and an output 

layer. There exist feed-forward connections to every neuron in the output layer for each 

in the input layer. Fig. 5.2 illustrates a Kohenon network in two-dimensional grid. Here 

the neurons are not arranged in layers as in a multilayer perceptron (input, hidden, and 

output) but rather on a flat grid. The goal of the network is the mapping of n-dimensional 

input vectors into one- or two-dimensional lattice (of the output layer). For a given input 

vector, one and only one neuron with the maximum value in the output layer is set to a 

logical one (winner) and all other neurons are set to zero. 

 

Fig. 5.2 - A two-dimensional SOM network 

In general, input data (or input vectors or patterns) are normalized before applying 

to a Kohonen Network. Normalized input vector is obtained from each component of the 

input vector by dividing the length of the vector. Randomly initialized weight vectors are 
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also normalized in these networks. Various steps in the training of a SOM network are as 

follows (Beale and Jackson, 1990). 

5.3 ANN-SOM architecture for seafloor study 

Artificial neural networks (ANN) are generally employed in classification systems on 

account of its relatively fast, computationally cost-effective and reliable delivery 

compared to other applications. In this study, the potentiality of ANN has been made use 

of for seafloor data classification. In this regard, the SOM based ANN developed for 

classification of seafloor data, and its successful application to data from the pock mark 

dotted seepage area of the WCMI, was subsequently adopted for other marked locales in 

the WCMI. 

For classification of the seafloor using multibeam sonar data, the choice of a practical 

and effective classifier is required. Hence preprocessing of the multibeam backscatter and 

bathymetry is a prerequisite. The processed multibeam sonar data is used to produce 

bathymetric maps, and image mosaic from the backscatter data. Several methods in 

connection with classification and characterization of the seafloor exist (Chakraborty et 

al., 2000, and references therein). Neural network methods (Chakraborty et al., 2000; 

Chakraborty et al., 2001; Chakraborty et al., 2003a) using echo features derived from 

multibeam data, have been found effective for efficient classification of the seabed. 

Besides echo features, other input variables like seabed roughness derived from 

bathymetry data can be utilized for classification of the seafloor. Neural network 

classifiers being non-parametric have an advantage over statistical methods.  

It can learn from association by going through different examples of classes and 

ascertaining the similarities and differences between them, which is similar to the process 

of the brain establishing a pattern with repeated association of a pattern, thus building a 
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dynamic association over a period. ANNs can also learn based on principles of self-

organization, unsupervised learning where learning is solely based on training inputs. 

This classical method of making use of unsupervised architecture called Self Organizing 

Map (SOM) has been well documented for single-beam (Chakraborty et al., 2001, 

Chakraborty et al., 2003a, Chakraborty et al., 2004) and multi-beam backscatter data 

(Alexandrou and Pantzartzis, 1993; Michalopoulou et al., 1995; Chakraborty et al., 

2003b; Zhou and Chen, 2005). ANNs are now commonly used for classification in data 

science. It can categorize a group of feature vectors into classes besides allowing new 

data (input) to be accordingly categorized. The SOM algorithm, also known as 

Kohonen’s SOM neural network based on unsupervised competitive learning, can 

automatically learn the classification of input vectors according to the nearest-neighbor 

method by calculating the Euclidean distance (Kohonen, 1989, 1990). SOM has wide 

ranging uses in data exploration.  

5.4 ANN-SOM for seafloor classification 

Multibeam echo-sounding (MBES) systems allow coincident acquisition of high-

resolution seafloor backscatter and bathymetric data (Mayer, 2006; Simons and Snellen, 

2009), which enormously sustains the marine exploration applications. The remotely 

acquired bathymetric and backscatter data respectively reveal large-scale as well as fine-

scale seafloor roughness (at the textural level) (Fox and Hayes, 1985; Goff et al., 1999). 

In general, the quantitative or inversion models are not directly applicable to the acquired 

data, and hence, the bathymetric and backscatter data preprocessing is imperative before 

modeling is employed (Haris et al., 2011). Quantitative model application using non-

stationary data is a major obstacle as most of the models presume that the input data are 

stationary, and therefore the application of segmentation techniques to divide the data set 

into stationary segments become necessary (Malinverno, 1989).  
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ANN is a powerful tool for solving classification problems. In the past, ANN 

techniques have been proposed for hydro-acoustic data classification (Chakraborty et al., 

2001). An ANN can learn the classification task from a set of examples known as training 

set. The Kohonen’s Self-Organizing Map (SOM) is a competitive-learning neural 

network that can be trained to classify the input vectors according to the nearest-

neighbour method by calculating the Euclidean distance. SOM can efficiently carry out 

the classification without any a priori knowledge of the data classes of the surveyed area. 

SOM is a neural network architecture that has the determinant ability to uncover the 

underlying patterns in the input data to cluster or categorize the input data based on its 

inherent characteristics. The unsupervised learning is solely based on the unlabeled input 

data and not dependent on any target output vector. The SOM network can recognize 

patterns, compare features and ascertain similarities in the input data.  

ANN based self-organizing map (SOM) architecture exercises unsupervised 

competitive learning on the unknown data set (input) onto coarser clusters, i.e., primary 

classifications (Chakraborty et al., 2003b). The employed SOM architecture is comprised 

of a flat 1-D neuron grid. The feature vectors are connected to the SOM network. The 

study carried out involves the employment of SOM for the characterization and 

classification of pockmark dotted seepage seafloor (Chapter-6) and coralline banks 

(Chapter-7). The backscatter and roughness data are utilized as the input feature vectors 

to the SOM architecture. On presenting the input vectors to the SOM architecture, the 

neurons in the grid compete among themselves to get activated. The weights of those 

neurons in its neighborhood are updated iteratively to form a representative cluster (refer 

to Chakraborty et al., 2001) for more details about the neighborhood reduction technique 

used in the SOM). This is known as tuning of the weights in response to a given class of 

input vectors. The SOM algorithm organizes the nodes in the grid into local 
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neighborhoods that act as an input feature. An initial weight matrix having a small 

random value is used. Initially, two input feature vectors are presented as a training 

sample, and then the Euclidean distance ( ) between the input vector and the weight of 

the neurons in the 1-D grid is computed 

 

where xi(t) is the input vector to node i at time t, and -1, is the random 

weight vector from input nodes i to j for initialization of the weights from n inputs to the 

nodes having small random values. Only one neuron having the least distance is 

designated as the “winner” neuron and as a result this neuron is often designated the 

winner-take-all neuron (Hertz et al., 1991). The weights of this neuron are updated, and 

the distance matrix is computed iteratively for the same input vectors to minimize the 

error through the use of the expression 

 

This procedure is invariably repeated a number of times until the value of  

(the minimum distance) is reduced below that of a pre-specified error value. The term 

h(t) is a learning function 1), gradually reducing the magnitude of the 

weight update as the error is successful. The neighborhood size also decreases as the 

number of iterations increases, thus localizing the area of maximum activity in response 

to input vectors in the SOM architecture (Chakraborty and Haris, 2012). To determine the 

number of classes using the SOM architecture, two input feature vectors of each data 

point are presented to the random weight matrix (1 x 50) and the nearest neuron is 

selected to be the firing neuron for the input data.  
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The closest neurons on either side of the firing neuron are updated using the 

learning function [h(t)~X/t
0.2

] (Chakraborty et al., 2001). As t increases, the neighborhood 

is reduced to one, i.e., at the end, only the firing neurons are updated. The value of h(t) 

gets altered from its initial value of X.  The training stops when the error is less than the 

pre-assigned value or reaches the pre-set ‘t’ value. Each time a new input class is 

presented to the network, the winning node must first be identified. This marks the region 

of the map that will have its weights updated. In this study, the number of iterations to 

reach the pre-specified error value is optimized based on the purposed testing of the data. 

The testing of the input features commences once the training is completed, and the 

excited neurons during the testing processes are plotted. If testing results show that the 

winning neuron exists within the cluster (a group of five neurons around the central 

neuron) of the trained neuron, then it is assumed to be belonging to the same class as the 

data where it was trained earlier. Otherwise, further training is initiated in the search of a 

firing neuron, and the training/testing process is resumed. At the end of the 

training/testing process, the percentage of the number of times the different neurons have 

been excited is plotted as a bar diagram with respect to the neuron numbers. The 

maximum numbers of classes are equal or larger than the number of occurrences, i.e., 

20% of the highest neuron firing. Though the soft-computational technique (SOM) is 

useful for real-time data classification purposes, there is a necessity to validate the extent 

of success employing other relevant discrete techniques.  

 5.5 Fuzzy logic 

Soft computing is a combination of several methods, such as fuzzy logic, neural net-

works, and genetic algorithms that can complement each other and can be used jointly to 

solve a given problem (Buckley and Hayashi, 1994). Fuzzy logic is tolerant of imprecise 

data and is based on natural language that often cannot express an event as ‘true’ or 
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‘false’ (but rather as ‘partially true’). Fuzzy logic deals with in terms of logical variables 

that take continuous values between 0 and 1. Normal digital logic operates based on 

discrete values of either 1 or 0 (true or false). The inputs to fuzzy systems are general 

mapped by sets of membership functions, known as ‘fuzzy sets’. The fuzzy logic system 

can be considered as a nonlinear mapping of input data set to a scalar output data. The 

process includes ‘fuzzification’ that converts a crisp input value to a fuzzy value, and 

conversely defuzzification. Thereupon, an inference is made based on a set of rules, and 

the resulting fuzzy output is mapped to a crisp output using the membership functions, in 

the defuzzifiation process. The combination of fuzzy logic and neuro-computing leading 

to neuro-fuzzy systems has been an important development having varied applications. 

5.5.1 Fuzzy c-means 

Fuzzy c-means (FCM) is one of the most frequently used fuzzy clustering algorithms.  

Clustering of numerical data forms the basis of many classifications. The purpose of 

clustering is to categorize the natural groupings of data from a larger data set. It involves 

the task of dividing the data points in the set into homogeneous classes or clusters so that 

items in the same class are as similar as possible and different from items in other classes. 

The classes themselves would be as dissimilar as possible. In other words it is a means 

for grouping the data in such a way that observations are more alike within a group and 

differing from the observations in other groups.  

Clustering by FCM is more flexible (say) as compared to Fuzzy K-means, because it 

depicts the objects as having some interface with more than one cluster in the partition. In 

hard clustering, the data is divided into neat clusters, where each data point belongs to 

exactly one cluster. In FCM, the data points can belong to more than one cluster with a 

varying measure of association. Each data point would be associated with what could be 
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called membership grades which indicate the degree to which the data points belong to 

the different clusters. In our work we have utilized the Fuzzy c-means - fcm function 

implemented in MATLAB, for clustering the input data to SOM network for identifying 

the segments. 

In MATLAB
©

, the Fuzzy Logic Toolbox
™

 the function fcm performs the FCM data 

clustering, in which the dataset is grouped into n clusters with every data point in the 

dataset belonging to every cluster to a certain degree, i.e. a certain data point found close 

to the center of a cluster will have a high degree of association or membership to that 

cluster, as compared to another data point that lies away from the cluster center would 

have a less degree of belonging or membership to that cluster. The function fcm starts 

with an initial guess for the cluster centers, which are projected to signify a normal 

location of each cluster. The initial presumption for these clusters may not be the correct 

one. The function fcm then assigns every data point a membership grade for each cluster. 

By iteratively updating the cluster centers and the membership grades for each data point, 

the fcm function iteratively moves the cluster centers to the ‘correct location’ within a 

data set. This iteration is based on minimizing an objective function J that represents the 

distance from any given data point to a cluster center weighted by the membership grade 

of that data point which can be expressed as (Mingoti and Lima, 2006):  

 

restricted to the condition =1; i = 1, 2,… n, where wil is the degree of membership 

of object i to the cluster l, λ >1 is fuzzy exponent that determines the degree the degree of 

fuzziness of the final partition, or in other words the degree of overlap between groups, 

is the squared distance between the vector of observations of object i to the vector 

representing the centroid (prototype) of cluster l and n is the number of sample 
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observations. The solution with highest degree of fuzziness is related to λ approaching to 

infinity. Fuzzy c-means is generally stable even in the presence of outliers and 

overlapping data. However in fuzzy clustering the desired number of clusters n has to be 

predefined which in our case has been adopted in synchroneity with the SOM network 

output. Clustering data along the profiles help identify the data segments using FCM 

algorithm. 

5.6 Conclusion 

In this chapter SOM-ANN and FCM has been briefly presented. The SOM based 

unsupervised method essentially reduces the requirement for collecting a voluminous 

data in an unknown area. This method can be efficiently used in combination with other 

data classifiers. Moreover, the FCM based data-driven features selection process can also 

be used as a preprocessor with other existing classification methods for improving the 

success in the classification of the seafloor. 
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CHAPTER – 6 

POCKMARK DOTTED SEEPAGE AREA 

 
6.1 Introduction 

A number of studies have been conducted along the WCMI (shelf and slope region) 

mainly because of its proximity to coast and high resource potential. The coral reefs 

wherever it exist, present biological diversity. Generally the seafloor topography can be 

broadly divided into comprehensive geomorphological units with distinct characteristics. 

The continental margins consist of shelf, slope and the rise, often incised by submarine 

canyons, trenches that make it to the abyssal plains. The seafloor has its fair share of 

seamounts, reefs, guyots and the characteristic mid-oceanic ridge systems (Garrison, 

2010). The present study engages a combination of soft-computational (SOM and FCM) 

and numerical techniques (power spectral density at short and fine scales) to effectively 

characterize the seafloor, along with the processes and the associated sedimentological 

dynamics in a complex geographical environment (including the pockmarks and faulted 

structures) that are subjected to strong bottom currents and seasonal upwelling. 

The multibeam data used for classifying the pockmarked seepage area was acquired 

from the WCMI, off Goa. Kongsberg Simrad EM 1002 MBES operating at 95 kHz on 

board the CRV Sagar Sukti, was used during the coastal marine surveys (Cruise no. 

SaSu-118), in November 2006, for mapping the study area (the pockmarked seepage 

area). The survey lines were oriented parallel to the coast in N-S direction. The water 

depth of the surveyed area varied from 145 m in the northeast to 330 m in the southwest 

region [Fig. 6.1(a)] (Dandapath et al., 2010). The survey covered nearly 72 km
2
 (9.0 km x 

8.0 km), revealing significant numbers of the pockmarks that are produced by the 

presence of gas or fluid seepages escaping from the subsurface along the faults, largely in 
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the western part of the area. The presence of such seepages has economic significance as 

an indicator for hydrocarbon occurrence (King and MacLean, 1970; Hovland and Judd, 

1988).  This study area is also characterized by active sediment transport processes.  

A general discussion of the data processing schemes are covered in Chapter 2. Here, a 

brief coverage of the multibeam data processing is provided. The MBES data recorded 

was corrected for propagation and other effects including tide corrections using Neptune 

software for bathymetry data. PROBASI II, software developed (in house) for processing 

backscatter data (Fernandes and Chakraborty, 2009) and data normalization. The 

CFLOOR (Cfloor AS) software was utilized for improved visualization and gridding 

(grid resolution: 10 x10 m). The geo-referenced backscatter strength (dB) and depth 

values (m) were imported to ArcGIS. The data were then interpolated to raster using 

cubic convolution methods and subsequently high resolution image with distinct color 

scheme was generated. Cubic convolution tends to sharpen the data as compared to other 

methods such as bilinear interpolation etc. Cubic convolution technique employs 

weighted average values of the sixteen nearest input cell centers, whereas bilinear 

interpolation method uses only four nearest input cell centers to determine the value of 

the output raster. 

The backscattering strength of this area ranged from 25 to 57 dB (Fig. 6.1b). The 

angular back-scatter data strength usually show higher values at normal incidence angles 

compared to the outer beam angles, thereby engendering artifacts that have to be 

eliminated. Further enhancement of the image data quality was carried out employing a 

four-stage image processing technique. The remotely acquired bathymetric and 

backscatter data, revealed large-scale as well as fine-scale seafloor roughness 

respectively, albeit at textural level (Hughes Clarke, 2012; Blondel, 2009). 
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6.2 Study Objectives in the Pockmark dotted Seepage Seafloor 

This study aims to advance the understanding of the fine-scale roughness associated 

with the seepage-related seafloor. Generally, the quantitative or inversion models are not 

directly applicable to the acquired data, hence the bathymetric and backscatter data 

preprocessing is imperative before modeling is employed (Haris et al., 2011). However, 

quantitative model application using non-stationary data is a major impediment as most 

of the models presume that the input data are stationary, therefore the application of 

segmentation techniques to divide the data set into stationary segments becomes 

indispensible (Malinverno, 1989). Therefore, the success of the remote acoustic model 

parameter estimations engages data segmentation techniques. This leads toward the 

development of soft computing techniques that can be used for dimensional reduction 

applications, representing input vectors to a specific output (Kohonen, 1990; Alexandrou 

and Pantzartzis, 1993; Michalopoulou et al., 1995). The soft-computing technique 

including artificial neural networks (ANNs) employs inexact solutions for 

computationally difficult tasks. In the past, ANN techniques were proposed for hydro-

acoustic data classification (Chakraborty et al., 2001). ANN based self-organizing map 

(SOM) architecture exercises unsupervised competitive learning on the unknown data set 

(input) onto coarser clusters, i.e., primary classifications (Chakraborty et al., 2003a). For 

realtime survey applications, the SOM can be utilized to formulate a decision regarding 

the number of data classes during the online data acquisition that are then used as an 

input to the fuzzy C-means (FCM) algorithms for data segmentation (De and 

Chakraborty, 2009). FCM will require the initial information about the number of 

available data classes obtained using the SOM architecture. Once the profiles are 

segmented, the spectral techniques, e.g., the power spectral density (PSD) function of the 

spatial data as a function of frequency (Fox and Hayes, 1985; Berkson and Matthews, 
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1984; Chakraborty et al., 2006), are required to calculate the seafloor roughness 

parameters. Accordingly, the seafloor spectral parameters such as power law exponent 

(β) and intercept (a') of the segmented geomorphic regions are estimated. The curve 

fitting of the power law function in the log10 - log10 plot of the PSD versus the wave-

number (k) curves of the backscatter traces are used. This study endeavors to improve the 

understanding of the fine-scale roughness associated with the seepage-related seafloor 

(Dandapath et al., 2010). The seafloor characterization using the backscatter profile 

involves segmentation and subsequent fine-scale roughness parameter estimations.  

In this study these techniques are used for seafloor characterization to unravel the 

maximum possible number of data classes using multi-beam echo-sounding backscatter 

data.  The Kohonen’s self-organizing map (SOM) is well suited for ascertaining the 

number of classes in a given data set, where no a priori knowledge of the data classes is 

available. The ANN based SOM has been applied to backscatter profile data from 

pockmarked seepage area to determine the number of classes and accordingly the fuzzy 

C-means (FCM) method is employed thereafter, incorporating the number of data classes 

determined by SOM.  

Seventeen profiles were selected for this work. Each of the selected 17 profiles from 

the backscatter map of the survey area holds 447 data points, and the distance between 

the two consecutive data points (along the profile) is nearly 20 m. The uniform separation 

between the 17 parallel profiles is 0.46 km. In all, 7599 data points of the processed 

MBES backscatter data were used from the 17 selected profiles.  
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Fig. 6.1 - (a) Location of the study area, including some of the main structural features of the 

region. On-land Dharwarian trend, commonly used for Archaean rocks that have a NNW–SSE 

trending, Precambrian orogenic structure shown as dotted lines. Red highlighted lines and gray 

shade indicate the identified bottom simulating reflectors (BSRs). MSBR refers to mid-shelf 

basement ridge, and WCF indicates West Coast fault; (b) Backscatter map of the study area 

showing 160–320 m isobaths with an interval of 20-m depth. Pockmarks are indicated by crossed 

circles. Black, blue and red circles with cross markings represent circular, elliptical and elongated 

pockmarks respectively. Dashed lines indicate the location of identified faults. Black arrows show 

bottom current directions. Solid colored squares represent sediment types (see the legend). The 

inset shows the outline map of theWCMI with the location of the part of the Arabian Sea. 

Reproduced from Dandapath et al. (2010). 
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6.3 ANN-SOM Approach to Seafloor Classification 

The work developed here shows that the employed technique can efficiently classify 

the survey area using linear data traces (backscatter/bathymetric) varying along the 

geographical south to the north (Fig. 6.2). These traces are mentioned as ‘profiles’. If a 

statistical technique is applied to the profile data having unpredictable mixtures of the 

statistical parameters (mean, variance, probability density function) of the smooth and 

rough seafloor, the estimated model parameter accuracy would be reduced (Bansal and 

Dimri, 1999). Therefore, it would be imperative to divide the profile data into stationary 

segments before any quantitative analyses of the data segment are carried out. Here, we 

have applied the backscatter profile data segmentation through a combined use of SOMs 

and FCMs (De and Chakraborty, 2009). The SOM uses an unsupervised learning, where 

the network is unaware of the number of classes in which a particular backscatter data set 

would be segregated. 

The extracted 17 backscatter profiles from the calibrated image data are subjected to a 

20-point moving average. A moving average is a type of filter generally used with 

temporal or spatial series data to smooth out short-term fluctuations. For a time or space 

series, the first element of the moving average can be obtained by taking the average of 

the initial fixed subset of the series. This subset is then modified by ‘shifting forward,’ 

i.e., by excluding the first number of the series and including the next number following 

the original subset in the series, i.e., average of the data within the sliding window of 400 

m along the backscatter profile [Fig. 6.3(a)]. Thereafter, the normalization of the data is 

employed using the given technique (Chakraborty et al., 2001). The corresponding depth 

values are also used to calculate the seafloor local roughness, i.e., large-scale roughness. 

In the case of profile segmentation application proposed here, the backscatter and depth 

data are employed to cover fine-scale as well as  large-scale roughness aspects of the sea-  
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Fig. 6.2 - Seventeen backscatter profiles classified into five different classes (depicted in 

color) overlaid on a rasterized map of (ꞵ) values that have been estimated using the 

segmented profiles of the five classes. 
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floor respectively and these two characteristics are then used as feature vectors. The 

‘roughness’ parameter, i.e., the absolute value of ‘y’, is the deviation of the depth value 

about the local linear trend of the data. The large-scale roughness parameter was 

estimated for each of the nine data points (180 m) for the depth data profiles. If the 

deviations with respect to the local linear trends are large, then the seafloor surface is 

considered as rough, otherwise the surface is smooth. Furthermore, the sliding window 

(400 m), i.e., the 20-point moving average and normalization technique, is also applied to 

the computed roughness values of the depth data as an additional feature [Fig. 6.3(a)]. 

 

Fig. 6.3 - (a) Representative plot of the input values (backscatter and roughness) from a section of 

the data profile. (b) Firing neurons correspond to the SOM output of the two input feature vectors 

for the above data. (c) Classification of the data points using FCM. 

The flowchart depicted in Fig. 6.4 explicates the operation of the entire technique for 

data segmentation as well as employment of another methodology (PSD) used for the 

segmented data. The employed SOM architecture comprised of a flat 1-D neuron grid. As 
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Fig. 6.4 - Flowchart of the methodology followed including SOM and FCM for determining the 

number of seafloor classes, and parameters using 17 selected profiles from the backscatter map. 

already mentioned, the backscatter strength along with the seafloor roughness calculated 

using the depth data from the profiles are used as the two input features. The feature 

vectors are connected to the SOM network that consists of 50 output neurons in the grid. 

When the backscatter and roughness data are employed as input vectors to the SOM 

architecture, the neurons in the grid compete among themselves to get activated. Weights 
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of those neurons in its neighborhood are updated iteratively to form a representative 

cluster (refer to Chakraborty et al., 2001) for more details about the neighborhood 

reduction technique used in the SOM). This is known as tuning of the weights in response 

to a given class of input vectors. The algorithm organizes the nodes in the grid into local 

neighborhoods that act as an input feature. 

An initial weight matrix having a small random value is used. Initially, two input 

feature vectors are presented as a training sample, and then the Euclidean distance 

between the input vector and the weight of the neurons in the 1-D grid is computed. The 

neuron having the smallest distance is designated as the “winner” neuron. The weights of 

this neuron are updated, and the distance matrix is computed iteratively for the same 

input vectors to minimize the error. This procedure is consistently repeated a number of 

times until the value (of the minimum distance) is reduced below that of a pre-specified 

error value. The learning function aids in gradually reduction of the magnitude of the 

weight update as the error is successful. The neighborhood size also decreases as the 

number of iterations increases, thus localizing the area of maximum activity in response 

to input vectors in the SOM architecture (De and Chakraborty, 2009). To ascertain the 

number of classes using the SOM architecture, two input feature vectors of each data 

point were presented to the random weight matrix (1 x 50) and the nearest neuron was 

selected to be the firing neurons for the input data. The closest neighborhood neurons on 

either side of the firing neuron are updated using the learning function (Chakraborty et al, 

2001). The updation is iteratively carried on till the neighborhood is reduced to one, i.e., 

at the end, only the firing neurons are updated. The initial value of the learning function 

reduces during the iteration and the training stops when the error is less than 10
-30

 or till 

the  number of iterations arrive at the  pre-specified value.  Each time a new input class is  
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Fig. 6.5 - (a) and (c) Horizontal line represents the line of 20% of the maximum number of 

neuron firings. Here, there are five bars above the line indicating five classes obtained from 

one training/testing process for different moving averaging schemes of input data; (b) and 

(d) Histograms of the number of occurrences of the maximum number of classes obtained 

from the 100 training/testing processes employing the SOM analysis, i.e., indicating the 

number of classes available in data sets. 

applied to the network, the winning node must first be located. This identifies the region 

of the map that will have its weights updated. In this study, the number of iterations to 

reach the pre-specified error value is optimized based on the employed trial runs of the 

data. The testing of the input features is initiated once the training is completed and the 

excited neurons during the testing processes are plotted [Fig. 6.5(b)]. If testing results 

show that the winning neuron exists within the cluster (a group of five neurons around 

the central neuron) of the trained neuron, then it is assumed to be belonging to the same 

class as the data where it was trained earlier. Otherwise, further training is initiated in the 

search of a firing neuron, and the training/testing process is resumed. At the end of the 

training/testing process, the percentage of the number of times the different neurons have 
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been excited is plotted as a bar diagram with respect to the neuron numbers. The 

maximum numbers of classes are equal to the number of occurrences that are equal to or 

larger than 20% of the highest neuron firing (Fig. 6.5). Even though the soft-

computational technique (SOM) establishes the number of data classes, there is a 

necessity to validate the extent of success by employing other different techniques.  

6.4 Validation of the Classification Technique using Multimodal Histogram 

To corroborate the number of classes obtained using SOM and FCM, multimodal 

statistical techniques were employed here. The histogram of the backscatter data points of 

the 17 backscatter profile data is fitted using multimodal curves considering each curve 

as Gaussian distribution. The probability density functions (pdf) of the backscatter 

strengths are computed as in Pearson et al., (1992), where the estimated scaling 

 

Fig. 6.6 - Occurrences of backscatter strength (in decibels) with respect to the rasterized 

backscatter pixels (in decibels) of the study area and fitted multimodal curves of the total and 

five pdf components. 
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amplitude (to scale the height of the curve), mean deviation, and standard deviation of the 

pdf components are estimated using curve fitting between the experimental and 

predictive pdfs, which involve a comparison between the estimated correlation 

coefficients and the sum squared of the residuals (SSR criteria) (Seuront, 2010). Mixtures 

of the normal distributions of the five components are presented (Fig. 6.6). The highest 

correlation coefficients and the lowest errors (SSR) have been considered to determine 

the five predictive components and the resultant (mixture) pdfs through the use of the 

experimental data. The study carried out here supports the fact that the backscatter data 

exhibit the number of available classes in the data set as a means to support the SOM-

based study. 

6.5 Fuzzy c-means for segmentation 

The aim of this work is to develop a system for a segmented seafloor classification 

(based on SOM and FCM) and subsequent characterization (PSD) of the mapped 

backscatter data using the selected profiles. This helps in achieving an operational 

advantage for seafloor data acquisition and interpretation. The use of diverse 

unsupervised algorithms such as the adaptive resonance theory (ART) and the fuzzy ART 

network where cluster creation is being controlled by the use of an explicit parameter 

known as ‘vigilance thresholds’ (Carpenter et al., 1991) have also been used elsewhere 

for similar applications. In this study, multiple training/testing processes using the SOM 

produce neuron numbers. These firing neurons are then plotted in a histogram indicating 

the five major classes [Fig. 6.5(a) and Fig. 6.5(c)]. Subsequently, the FCM technique is 

used to segment the data sets [Fig. 6.3(c)] of the firing neurons to obtain the five 

segmented sets of the original backscatter profile data. The FCM-generated segmented 

profiles are presented in a color code using the geographic information system (GIS) 
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software ArcGIS (Fig. 6.2). In this work, a MATLAB-based FCM algorithm was 

employed for clustering of the profile data. 

6.6 Estimation of fine-scale Roughness Parameters 

The use of the SOM/FCM techniques along with the spectral estimation to the 

segmented sections emphasizes the significance of the method employed here. The 

computations of the PSD of the segmented profiles are employed. The power law 

equation as given in (Chakraborty et al., 2006) is employed here. The power is expressed 

in m
2
/cycles per kilometer and the wave number as cycles per kilometer. A straight-line 

fit of power law equation with a PSD provides the “spectral exponent” of the power law 

curve β (that corresponds to the slope of the straight line) and the intercept a' (meters) of 

the input profile. Welch method was implemented using the MATLAB toolbox through 

the “pwelch” function. A Hamming window was introduced to compute the modified 

periodogram of each segment. The PSD is presented on log10-log10 plots of the PSD 

versus the wave number (Fig. 6.8). Multiple humps in the spectrum in [Fig. 6.8(a) are 

generally observed within the ~ -1.5 cycles/km to -0.2 cycles/km. If the profile represents 

appropriate β (slope) and a' (intercept) values, then its periodogram would be well fitted 

by a straight line (power law) in the log10-log10 space. The “humps” are being identified 

as artifacts and are associated with edge effects, which could partially be improved by the 

edge tapering (Goff et al., 1999). However, a clear-cut drop in power occurs somewhere 

between the wave number (beyond in the -0.2 in the log10-log10 scale) [Fig. 6.7(a)]. At 

higher wave numbers (smaller scales), the periodogram does appear to provide 

appropriate straight-line fitting.   The straight-line  fitting  parameters,  β (slope)  and  a' 

Parameters such as the correlation coefficient and SSR of the data points within the 

windows for the PSD (drawn from the segmented data) and the corresponding power law 

function provide and values of the segmented profiles (Seuront, 2010) [Fig. 6.7(b)]. 
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Fig. 6.7 - (a)   Plot of the Welch’s averaged modified periodogram (“pwelch” function in 

MATLAB) applied to a representative segment; (b) After selecting the appropriate range 

of wave numbers for curve fittings of the remaining – plot of the power spectral density 

versus the wave number belonging to the same segment (the power law parameter fitting 

SSR and correlation coefficients are given in the inset). 
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6.7 Results  

Using the SOM architecture, the numbers of classes were determined by counting the 

number of occurrences of prominent neurons [bar diagram, Fig. 6.5(a) and Fig. 6.5 (c)]. 

For example, during the one-time training/testing process of the entire profile data, most 

of the neuron firings occurred at the neuron position 28, and the rest were observed at 

neuron positions 8, 22, 36, and 45, as shown in [Fig. 6.5(a)]. Similar training/testing 

process is repeated a number of times (~100) for the entire data sets, i.e., the 17 profiles. 

For each training/testing process, the number of classes is determined from the numbers 

of occurrences versus the number of classes as plotted in a histogram [Fig. 6.5 (b)]. The 

number of classes occurring maximum number of times (at the end of a repeated cycle or 

the entire data) is considered to be the number of classes existing in the data. This process 

provides the number of classes available in a given data set without any prior 

information. To examine the consistency of the employed technique and the method of 

preprocessing the variables such as the sliding window width, etc., the averaging of 30 

backscatter data points, i.e., 1 - 30 and so on, was also being tested alternatively. It could 

be observed that there was no change in the number of class estimations using the SOM 

technique [Fig. 6.5(c) and Fig. 6.5(d)]. 

Though the soft-computing techniques (SOM and FCM) are useful for real-time data 

segmentation purposes, there is a necessity to validate the extent of success employing 

other diverse techniques such as the multimodel pdf curve fitting mentioned above. Five 

classes (Fig. 6.6) were obtained from the backscatter values of the 17 profiles. The limits 

of the backscatter strengths of each class and their overlapping areas are also seen. The 

five classes obtained using multimodel pdfs match with the number of classes obtained 

employing SOM. 
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The segmentation of the 17 profiles generated 243 segments within the five classes. 

However, the estimation of the seafloor roughness such as β and a' of the 160 segments 

was determined. Due to the increased inaccuracies in the estimation parameters of the 

smaller profile lengths, only 160 segmented profiles having varied profile lengths could 

be used for β and a' estimation. Using these β values, a map was generated utilizing the 

kriging method (ESRI, 1999). The “Jenks (1967) natural breaks” (used in the ArcGIS 

analyst module) algorithm (North, 2009) was used to classify the entire map into five 

gridded blocks. The raster data maximizes the variance between the different β blocks, 

and minimizes the variance within similar blocks of β values. A map is presented 

utilizing the predicted β values (Fig. 6.2). The results of the segmented classes of the 

backscatter profiles and the five sets of gridded values are superimposed over the 

backscatter raster map using Arc GIS 8.3. The predicted β values, i.e., map-generated 

data points, are compared with the estimated β values that are located over the profiles. 

The histogram of the error values (the difference between the estimated and predicted β 

values) for 7599 data points from the 17 profiles indicates the accuracy of prediction 

[Fig. 6.8(a)]. This figure shows the extent of fluctuations in the estimated values. In 

addition, relationships among the estimated and predicted β values are also indicated by 

correlation coefficients (0.862) [Fig. 6.8(b)]. This study reveals that the predicted slope β 

values of the map data are fairly accurate. Overall, the β values match with the 

background map.  

In general, higher values β (2.13 – 2.76) fall within the fault region of the WCMI, 

whereas lower values (1.26 - 1.93) indicating small-scale or fine-scale sedimentary 

region exist toward the shallower eastern end of the shelf. A spatially located 

intermediate region depicts β within (1.93 - 2.12). Moreover, the five classes allocated 

from the profiles using  SOM and  FCM techniques are also  overlaid  on the  backscatter 
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Fig. 6.8 - (a) Histogram of standardized errors between the computed and 

predicted values (gridded) of the segmented data points (7599 data points) 

obtained using ArcGIS; (b) Scatter plot between the estimated versus 

predicted values. The straight-line fitted curve indicates 80% correlations. 

map. It can be seen that there are more segments toward the comparatively shallower 

water sedimentary regions. Here, the fine-scale roughness is higher (lower β values), and 

the segments are classified as regions I and II. Similarly, near the fault trace site, the fine-

scale roughness is comparatively low (higher β), and the segments are classified as 

regions IV and V. Intermediate β values are classified as region III, i.e., medium 

roughness that exists between the fault trace and the shallower region toward the 

continental shelf. The estimated slope β values from the straight-line fitted power law of 
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the 160 profile data reveal a variation from 1.26 to 2.76  and a corresponding intercept a' 

values from -0.77 to +0.71. 

 

Fig. 6.9 - Scatter plot of power law derived parameters such as (β) and intercept (a') 

estimated from 160 segments along with the classes determined using SOM and FCM. 

The three-axes presentation of the slope (β), intercept (a'), and classes (SOM and 

FCM output) of the segmented profiles show a distinct clustering when observed at a 

view angle of 8.40º (Fig. 6.9). The mean, maximum, and minimum values of the 

estimated slope (β) and intercept (a') for classes I, II, III, IV, and V are: [β=1.67 (max. 

2.07, min. 1.45); a' = -0.48 (max. -0.06 , min. -0.75)], [β=1.75  (max. 2.32, min. 1.26); a' 

= -0.43 (max. 0.42, min.-0.78 )], [β=2.05  (max. 2.76, min. 1.73); a' = -0.24  (max. 0.62, 

min. 0.60)], [β=2.14 (max. 2.60, min. 1.67); a' = -0.24  (max. 0.64, min.-0.80 )], and 

[β=2.30   (max. 2.63, min. 1.98); a' = -0.14  (max. 0.71, min. -0.60)], respectively. In 

total, 160 segments that are used for PSD-based class determination reveal 23, 29, 45, 36, 

and 20 segments for classes I, II, III, IV, and V, respectively. The overlapping between 

the five classes (β and a') is observed, however, the power law plots (log–log) of the 

mean values within the wave numbers (from -0.25 to 1.25 cycles/km) show a dominant 

small-scale roughness. This affirms the highest fine-scale roughness (lowest β) to be the 
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class I type [Fig. 6.9(a)]. The fine- or small-scale roughness (PSD) is found to be 

decreasing with the increase in β values within the wave numbers beginning from class I 

to class V. The segmented profiles having five classes can be observed overlying the 

backscatter map (depicted in color) (Fig. 6.2).  

The performances of the segmented backscatter profiles using the SOM and the FCM, 

and Jenks-algorithm-based gridded blocks of the segmented β values ascertain the 

success of the employed data segmentation techniques. The percentages of roughness 

data pixels (β values) reveal 100% matching with two classes I and V. However, 92.2%, 

97%, and 97% correspondence is observed for classes II, III, and IV, respectively. The 

comparison made here demonstrates that the proposed data-driven approach can be used 

as a preprocessor to increase the efficiency of the classifier. 

6.8 Discussion 

The acoustic backscatter strength of the study area ranges from -26 to -57 dB, which 

can be attributed to the seafloor slope, sediment type, and relief. In the deeper water (210 

m) region [Fig. 6.1(b)], several pockmarks in the proximity of the fault zone show high 

backscatter (from -27 to -40 dB). Along the fault zone, the strong seafloor backscatter, 

i.e., increased acoustic impedance is due to the coarse-grained seafloor sediment as well 

as high calcium carbonate content (60%) (Thamban et al., 1997).  Earlier study 

(Dandapath et al., 2010) had shown that the areas along the faulted region possess 

maximum pockmarks [Fig. 6.1(b)]. Based on the application of the box-counting 

technique to the image blocks of the study area, the estimated higher fractal dimension of 

the backscatter image blocks shows greater roughness (i.e., the rough, fragmented, space-

filling seepage distributions) (Dandapath et al., 2012). Structurally, the pockmark shapes 

are found to be circular, elliptical and composite types with north of northeast–north of 

northwest (NNE–NNW) orientations, and the seep direction indicates the north of north- 
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Fig. 6.10 - (a) Mean power law parameters (β and a') estimated from the five seafloor classes 

revealing the extent of roughness within the given wave-number ranges; (b) Representative 

profiles of the five classes generated from the rasterized backscatter data indicating the degree of 

seafloor roughness. 

west–south of southeast (NNW–SSE) orientation. Seafloor pockmarks, bottom simulating 

reflectors (BSRs), acoustic blanking, and gas-charged sediments were detected during 

geological and geophysical surveys. In addition, more than 90% seeps were found to be 
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located in the eastern flank of the pockmarks, which is an important aspect of the 

seepage-dominated fault zone. Interestingly, this study depicts low seafloor roughness, 

i.e., higher β values (2.13 –2.76) [Fig. 6.10(a) and Fig. 6.10(b)] in the area as revealed by 

the north–south-oriented segmented backscatter profile data (based on SOM and FCM 

techniques), which also show dominant IV and V classes. The higher β values are 

contrary to the previously reported box dimension values where higher seafloor 

roughness was estimated. 

Toward the shallower end (210 m.) where seafloor gradient is gentle, backscatter 

strengths are generally low (~ -45 dB). As previously reported by Dandapath et al. 

(2010), the area is covered with soft terrigenous clayey sediment producing average 

seafloor backscatter strength. However, the sediment data from the seven locations in the 

study area show dominant coarse-grained sandy sediments along with abundant shell 

material [Fig. 6.1(b)] (Dandapath et al., 2012). Based on the fractal dimensions using the 

box-counting method of the image data of this shallower site, a smooth seafloor 

roughness was indicated. However, present study using power law parameter fittings of 

the power spectral density function to the north–south-oriented backscatter profiles shows 

atypical results. The lower β values (1.26 – 1.92) show higher seafloor roughness within 

the given fine-scale wave-number ranges [Fig. 6.10(a)]. Generally, the coarse-grained 

sediment along with abundant shell materials reveals high backscatter strength. The 

existing seafloor relief is quite obvious due to the prevalent monsoonal bottom currents in 

this area (Shetye, 1990). Regional oceanic circulations, characterized by seasonal reversal 

of monsoon-driven surface and bottom currents, summer upwelling, and winter 

downwelling (Naqvi, 2010), create an unstable oceanographic condition over this part of 

the area. Bottom currents are wide (~40 km) and run opposite to the direction of surface 

currents. Measured mean current speed and directions during the southwest monsoons are 
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12.6 cm/s and 94.5º N, respectively. Similarly, during the north–east monsoon, speed and 

direction measured here are 12.5 cm/s and 296.6º N, respectively (Amol, 2010). 

Therefore, we presume that the lower backscatter strengths at the fine-scale level 

strengthen the existence of seafloor relief due to the bottom currents for coarse-grained 

shelly seafloor sediments.  

In this study, the computed β values of backscatter profile data show the highest 

roughness (low β) toward the shallower region (210 m). Box dimensions using the box-

counting computation involve box sizes of 500 x 500 m, which cover backscatter image 

data due to the different patterns of the seafloor seepage patches. The lower box 

dimension values reflect lower roughness within the given box sizes (Dandapath et al., 

2012). These values are not comparable to those of fractal-dimension-computed values 

using the estimated β for the north–south-oriented backscatter profile. The anisotropic 

seafloor (Dandapath et al., 2010) behavior is obvious in this study area due to the north–

south-oriented dominant bottom currents (as already explained) in the shallower region 

than the deeper water fault zone. The dominant bottom currents within the shallower area 

show low backscatter (higher seafloor roughness) even for compacted coarse-grained 

sediments. Moreover, the estimated dimension parameters are box-size sensitive. 

Therefore, the self-affine technique such as the spectral method (Malinverno, 1990) 

employed in this investigation is more effective than the earlier study using box-counting 

analyses of the seafloor area image (Dandapath et al., 2012).  The box-counting method 

appears to be inadequate for analyzing the anisotropic seafloor patterns, but it is found to 

be valid for a statistically self-similar seafloor type.  

 

 



 

118 

 

6.9 Conclusion 

In this paper, a novel technique was proposed to characterize the seafloor backscatter 

data acquired using the MBES system that is also applicable to the SBES system. A 

successful analysis has been carried out in the WCMI (off northern part of the Goa coast). 

This technique provides an approach towards the real-time seafloor roughness 

information using the remote acoustic method, and is helpful for geological applications 

having limited sampled data. A soft-computational method is adopted to determine the 

presence of five classes from the 17 backscatter and bathymetric profile data. The 

presence of the five classes has been further validated employing the multimodal curve 

fitting to the histograms of the backscatter profile. This indirectly suggests a logical 

reasoning for the employment of only two features such as the backscatter and the 

“roughness” parameter of the depth data. A data-driven approach based on the SOM and 

FCM segmentation is used to estimate the fine-scale roughness parameters using PSD of 

the backscatter profiles. Application of the present technique proffers that the utilization 

of calibrated sonar image profiles for real-time classification and characterization is 

promising, which considerably reduces the survey time.  
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CHAPTER – 7 

THE CORALLINE BANKS 

 

 
7.1 Introduction 

The coralline banks lie off coastal Karnataka in the Konkan basin that forms an 

integral part of the eastern Arabian Sea and the western part of the peninsular shield of 

India. The two coralline banks, viz. Gaveshani (Nair and Qasim, 1978; Qasim, 1978; Rao 

et al., 1993) and an unnamed bank (Rao, 1995) located along a buried channel, off Malpe, 

present a diverse geological setting in the WCMI. Coral structures are important for 

coastal protection; they act as barriers against waves and storms, thus preventing loss of 

life and erosion. They are also important as spawning and feeding grounds for many 

marine species, and harbor diverse ecosystem providing habitats for varied marine 

organisms (Beger et al., 2002).  

The bathymetry and backscatter data for the present study (Gaveshani and the 

unnamed bank) was acquired in February 2008, using EM1002 MBES (Kongsberg AS) 

operating at 95 kHz installed on board CRV Sagar Sukti (Cruise No. SaSu-164). The 

survey lines were oriented parallel to the coast in N-S direction. The bathymetric data 

was processed using Neptune software (Kongsberg AS) incorporating corrections for 

propagation, refraction errors, and tide. The backscatter data was processed using 

PROBASI II (PROcessing BAckscatter SIgnal) algorithm (Fernandes and Chakraborty 

2009), for data normalization, and subsequently imported to CFLOOR (Cfloor AS) 

software for gridding and improved visualization. Gridded rasterized maps (bathymetry 

and backscatter) of Gaveshani (Menezes et al., 2015) and the unnamed bank were 

prepared.   
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7.2 Gridding Resolution 

The multibeam data processing of the coralline bank data is similar to that of the 

seepage seafloor described in Chapter 6. Minor modifications were incorporated to adapt 

the basic technique discussed in Chapter 2. The bathymetric grid resolution is controlled 

by two important factors, the size of the footprint and the distance between individual 

soundings (Kenny et al, 2003).The density of the soundings used to create the grid is the 

key factor for determining its resolution, i.e. the denser the data, the higher the resolution 

that can be achieved. Increased concentration of soundings density and individual beams 

with small footprint produce higher spatial resolution grid. The average footprint size of 

the bathymetric data over the Gaveshani bank summit could be approximated to 1.34 m. 

Gridding the Gaveshani bathymetric data with grid size close to 1.34 m resulted in data 

gaps in the rasterized map, attributable to reduced soundings density due to 

comparatively decreased acquisition rate caused by the higher ship speed and rejected 

soundings. When areas with low data density generate data gaps in the rasterized output, 

data interpolation may be resorted to (Boldes, 2017). Although a higher resolution could 

be incorporate with a smaller grid size, increasing the grid size facilitated the creation of 

raster coverage without data gaps. The spatial density of the data covering the banks was 

the guiding factor for choosing the optimum resolution, where the average distance 

between the individual sounding is less that 2.2 m and the raster cell size could 

accommodate as many as three soundings. Accordingly a grid resolution of 2.2 was 

adopted for Gaveshani bank for creating the rasterized map using kriging method that 

uses the geostatistical properties of the data when interpolating (Smith et al, 2002). For 

kriging the multibeam data, Environmental Systems Research Institute (ESRI) ArcGIS 

10.0 software Spatial Analyst and Geostatistical Analyst Extensions were utilized (ESRI, 

2010). Kriging method is a good interpolator for sparse data. In the case of the unnamed 

javascript:;
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bank lying in comparatively deeper waters, located 37 km north of the Gaveshani bank, 

the average foot print size of a single beam could be approximated to 2.7 m. Interestingly 

the density of soundings was considerably large due slow ship speed resulting in more 

pings and overlapping swaths. The average distance between the individual soundings 

could be approximated to 1.6 m. A grid size of 1.6 m could be directly used to create 

rasterized map with cell size that could accommodate up to four soundings without data 

gaps in the raster map. The respective grid sizes selected for the two banks, allowed 

creation of rasterized maps without any gaps. The conditions here are different from the 

data acquisition environment of seepage seafloor area (Chapter 6) where the chosen grid 

size of 10 m is appropriate for the average footprint, based on the operational depth of 

200 m. 

7.3 Pre-processing of Data for ANN based analysis 

EM 1002 MBES primarily measures the time average of the backscatter signal 

envelope in each of its 111 beams. The raw data recorded by the MBES require post 

processing such as removal of Lambert’s law, correction of actual bottom slope, and the 

insonified area. The signal envelopes are corrected for time variable gain (TVG), 

predicted beam patterns and the insonified area, and are recorded in a packet format 

called datagram. All Kongsberg data types are stored in scaled units of dB within the 

different datagrams. Datagrams are used to communicate echo sounder data to and from 

the EM 1002 system (Fernandes and Chakraborty 2009). The Kongsberg systems provide 

value for ‘Beam Intensity’, which represents the average signal level over a given beam’s 

footprint that gets recorded in the datagram for every ping as representative of the 

seafloor’s backscatter strength. The intensity level after corrections for transmission loss 

and insonified area is the physically meaningful BS. The BS value here can be considered 

as near absolute as it would be corrected for the spherical spreading, absorption loss and 



 

122 

 

the area insonified by each beam providing relative backscatter strength as a function of 

incidence angle.  

The angular backscatter data strength frequently exhibit higher values at normal 

incidence compared to the outer beam angles. Such backscatter data produce artifacts 

along the centre beam path during data acquisition (de Moustier, 1986). Often 

rectification is required to be carried out to compensate for the outer beams backscatter 

strength data so as to minimize the effect of angular backscatter intensity.  Consequently 

sonar-related preprocessing of the backscatter data was carried out to diminish the effect 

of artifacts along the centre beam path and inevitably cleared out by using median filter 

(Menezes et al., 2015). The quality of the image data is increasingly enhanced utilizing 

the four stage image processing technique (Blondel, 2009; Haris et al., 2012, 2015). 

 From the gridded maps the six profiles extracted from the Gaveshani bank data 

covered a total of 5970 data values with depth ranging from 80 m around the bank to 38 

m on the top of the feature. The extent of the area comprising of the coralline bank and 

contiguous area was nearly 3.5 km
2
. While in the case of unnamed bank, a total of 28743 

data values of processed MBES backscatter data were utilized from eleven profiles with 

water depths around the unnamed bank varying from 79 m around the bank to 55 m on 

the top of it. The backscatter maps show significant variation in backscatter intensity on 

the summit of the banks (Fig. 7.1).  

The data processing technique used here can be effectively employed to classify the 

survey area using linear data traces (backscatter and bathymetric) with N-S orientation 

(Fig. 7.2). These traces are referred as 'profiles'. Six such profiles were used in the case of 

the Gaveshani bank. Each profile extracted from the gridded backscatter map of the 

Gaveshani bank consists of 995 data points. The average separation between the six 
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parallel profiles is ~300 m. Similarly eleven profiles were drawn from the gridded 

backscatter map of the unnamed bank. Each profiles extracted from the unnamed bank 

area consists of 2613 data points. The average separation between the eleven parallel 

profiles is ~280 m.   

 
Fig. 7.1 - Location of the coralline banks; Gaveshani and the unnamed bank depicting 

backscatter and bathymetry. 

7.4 ANN-SOM based classification techniques 

The soft computing technique making use of SOM and Fuzzy c-means (FCM) has 

been implemented utilizing the MBES data acquired around the Gaveshani and the 

unnamed banks. Six profiles each extracted from the bathymetry and backscatter data of 

the Gaveshani bank and 11 profiles each of bathymetry and backscatter from the 

unnamed bank were subjected to preprocessing individually as described earlier.  

Normally to  smoothen out  short-term  fluctuations,  a 20-point moving  average filter is  
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Fig. 7.2 - (a) Six backscatter profiles classified into six different classes (depicted in color) 

overlaid on the rasterized map of β values, estimated using each segmented data of the 

bathymetric profiles in the case of Gaveshani bank; (b) Eleven profiles, five classes in the case of 

the unnamed bank. 
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generally applied to all the profiles, i.e. the first element from the moving average would 

be the average of the first 20 points; the next element would be the average of the next 20 

points that excludes the first number from the previously selected 20 points and includes 

the next number that follows the original 20 points by ‘shifting forward’ by one point. 

However the data here was found to be already smooth, (after a couple of trial runs), 

particularly the backscatter data, hence no further filtering was carried out. Thereafter the 

data is normalized (within +1 and −1) and the two parameters (bathymetry and 

backscatter) are used as input vectors for the network [Fig. 7.3(a)].  

 

Fig. 7.3 - (a) Plot of the SOM input (bathymetry and backscatter) of Gaveshani bank; (b) Firing 

neurons corresponding to the SOM output; (c) Classification of the data points using FCM. 
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 The methodology and the algorithm for data segmentation have been adapted from 

Chakraborty et al., (2015) to estimate the number of data classes. The SOM architecture 

employed here comprises of one layer two-dimensional flat grid, consisting of 2x50 

neurons that accepts the input vectors for determining the number of data classes. An 

optimum number of 50 training data points is selected after few trial runs. The 

normalized input data representing the backscatter and bathymetry are segmented in a 

serial order with an overlap of 50 data points in a moving average sense as 1-50, 2-51 

successively till the end of data. When the data is presented to SOM, the neurons in the 

grid compete among themselves to get activated, and the closest neurons get selected to 

be the firing neuron or the wining neuron as described in the flowchart (Fig. 7.4). In order  

 

Fig. 7.4 - Flowchart of the methodology followed for determining the number of data 

classes with SOM (using backscatter and bathymetry data from the profiles), and data 

clustering utilizing FCM. 



 

127 

 

to determine the number of data classes using the SOM architecture, a training process is 

initiated with a training sample of 2x50 input vectors, depth and backscatter values [Fig. 

7.3(a)]. 

The SOM algorithm organizes the nodes in the grid into local neighborhood groups of 

5 neurons. Thereafter the weights of the neighborhood neurons, the two neurons each on 

either side of the winner neuron along with the winner neuron are updated iteratively 

using the learning function [h(t)~0.4/t
0.2

 ] (where t is the iteration number), and the 

neighborhood neuron number is reduced to 1 by neighborhood reduction technique used 

by SOM architecture (Chakraborty et al., 2015). During this training process the 

Euclidean distance between the input vector and the weight of the neurons in the grid is 

computed and the neuron with the smallest distance is designated as the “winner” neuron. 

The training stops once the error goal (the Euclidean distance between the input vector 

and the neuron weights) of 10
-30

 is reached or the predefined maximum iteration number 

1500 is attained. To compute the shortest Euclidean distance, the weight matrix of the 

two-dimensional flat grid, consisting of 2x50 neurons is used, in conjunction with the 

training dataset of 2x50 input vectors representing backscatter and depth. 

When the testing result throws up the winning neuron within the group of the trained 

neuron cluster, then it is assumed that it belongs to the same class, where the data was 

formerly trained; if not it is considered as belonging to another class. After completion of 

the initial training process, the SOM network is tested with the remaining data segments. 

Similar training-testing process is carried out using all the remaining consecutive 

segments. The excited neurons obtained from each testing process are plotted with 

respect to the neuron positions in a bar diagram. The SOM output of the one training-

testing process carried out with one of the segments of Gaveshani Bank shows that the 

highest neuron firings (35) occurred at the neuron position 27 and the other prominent 
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neurons were observed at 3, 15, 23, 34 and 44 [Fig. 7.5(a)]. Similarly, the highest neuron 

firings (30) in the case of the unnamed bank took place at position 18 the rest at 12, 23, 

30 and 47 [Fig. 7.5(b)]. The maximum number of classes is estimated by counting the 

presence of the number of prominent fired neurons (bars). The neuron positions (bar) 

with 20% or more of the highest neuron firings are considered as prominent neuron 

firings. The 20% selection criterion is chosen based on initial trial runs.  The 

representative percentages of the number of times the neurons have been fired for the 

entire data set are plotted as bar diagram with respect to the number of neurons [Fig. 7.3 

(b)].  The maximum numbers of classes that exist are equal to neuron firings that are 20% 

or more of the highest neuron firing [Fig. 7.5(a) and 7.5(b)].  

The SOM network ascertains the number of data classes by tallying the occurrences 

of the number of prominent neuron firings. The training-testing process performed on the 

successive different data segments may produce disjointed number of classes. All the 

occurrences of the varying number of classes are finally plotted in a histogram [Fig. 

7.5(c) and 7.5(d)] for Gaveshani and the unnamed bank signifying six and five classes 

respectively. This process enables to ascertain the maximum number of data classes 

(cluster centers) available in a given data set without any prior information. 

The testing and training process for the entire data set is repeated for a number of 

epochs depending on the stability of the SOM classification in achieving a stable firing 

neuron number. (An epoch is considered when the entire dataset has passed through the 

neural network on one occasion only). One epoch is not enough as it can lead to 

‘underfitting’ results. The neuron numbers produced during the multiple training-testing 

processes using the SOM [Fig. 7.3(b)] are plotted in a histogram for discerning the major 

classes [Fig. 7.5(c) and 7.5(d)].  
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Fig. 7.5 - (a) and (b) shows % of neuron firing versus output neuron number obtained from 

one training-testing process. The number of bars above the line corresponds to the number 

classes obtained from one training/testing process. In (a) the six bars above the line 

indicating six classes in the case of Gaveshani bank and in (b) five classes for the case of 

the unnamed bank. The horizontal lines represent the line of 20% of the maximum number 

of neuron firings. For figure (c) and (d) histograms of the number of occurrences of 

maximum number of classes obtained from the ~100 training-testing process employing 

SOM analysis i.e., indicating no. of classes available in the datasets of Gaveshani and the 

unnamed bank respectively. 

7.5 Application of Fuzzy c-means for segmentation 

Thereafter Fuzzy c-means method is employed, utilizing the number of data classes 

determined by the SOM, for segmenting the bathymetric data profiles.  In this work, 

MATLAB based FCM algorithm (www.math-works.com) is made use of for clustering 

the profile data to beget the segments. In situations like the present one, fuzzy clustering 

is more natural than hard clustering. De and Chakraborty (2009) have elucidated the 

advantages of the hybrid network SOM and FCM combination. The FCM generated 

segmented profiles (color coded) overlaid on the backscatter map can be seen in [Fig. 
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7.2(a) and 7.2(b)].  The six classes generated from the training and testing of the firing 

neurons correspond to the six segmented sets of the bathymetric data from the profiles 

[Fig. 7.5(c)] of the Gaveshani bank and five segments for the unnamed bank [Fig. 7.5(d)].  

7.6 Roughness parameter estimation 

This study aims at developing a system for classification of the seafloor (based on 

SOM and FCM) and subsequent characterization, making use of PSD function of 

segmented bathymetric profiles. The use of the SOM-FCM techniques along with the 

spectral estimation of the segmented sections of the profiles underscores the significance 

of the method employed. A liner fit to the PSD output of the segmented profiles is carried 

out employing the power law equation as given below (Chakraborty et al., 2006):  

              akPH
 101010 loglog)(log        (1) 

where P is power [m
2
/(cycles/km)] and k is wave number (cycles/km). A straight line fit 

of this expression with a PSD provides β (that corresponds to the slope of the straight 

line) and the intercept a' (meters) of the input profile. The estimated β from the above 

equation is known as the ‘spectral exponent’ of the power law curve. At higher wave 

numbers (smaller scales), the periodogram appears to provide an appropriate straight line 

fit. The straight-line fitting parameters: β (slope) and a' (intercept) values are estimated 

within the chosen log10 (wave number) window ranges. Parameters such as correlation 

coefficient and root mean square error (RMSE) of the data points within the windows for 

the PSD (drawn from the segmented data) and corresponding power law [W(k)]  function  

provide β and a' values of the segmented profiles. Each of the straight-line fitting 

parameters β and a' depict distinct seafloor classes based on the roughness characteristics 

of the two coralline banks. Fig. 7.6(a) and Fig. 7.6(b) depict two distinct power law (log-

log) plots as representative of the two banks being examined.  
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Fig. 7.6 -  Representative power-law (log-log) plots of (a) Gaveshani bank and  

(b) Unnamed Bank. 

7.7 Results  

The data classes obtained using SOM and FCM could be validated using multimodal 

statistical technique; the multimodal fitted curves obtained from Probability Density 

Functions (PDF) of the backscatter mosaic of the respective profiles of the two banks 

could establish corresponding number of PDF components matching with the data classes 

obtained with SOM (Menezes et al, 2018).  

The validity of the number of classes obtained using SOM and FCM, the histograms 

of the 6 and 11 backscatter profiles data of the two coralline banks (Gaveshani and the 

unnamed bank) were fitted using multimodal curves (Fig. 7.7). Using multimodal PDF of 

the backscatter strengths the estimated amplitude (to scale the height of the curve), mean 
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and standard deviation of the PDF components were computed (indicated in figures). The 

parameters were estimated from the curve fitting between the experimental and predictive 

PDFs involving the estimated correlation coefficients and the sum square of the residuals 

(SSR criteria). The mixtures of the normal distribution of the six components could be 

ascertained from the Gaveshani bank profiles [Fig. 7.7(a)] and five components from the 

unnamed bank [Fig. 7.7(b)]. The highest correlation coefficients and the lowest errors 

(SSR) have been considered in determining the predictive components and the resultant 

(mixture) PDFs through the use of the experimental data. The estimates confirm the same 

number of classes in the data sets as determined by the SOM-based classification system. 

 

Fig. 7.7 - Occurrences of backscatter strength (dB) with respect to the rasterized backscatter 

pixels of the two coralline banks and the fitted multi-modal curves of the total, and the six and 

five PDF components of; (a) Gaveshani bank; (b) The unnamed bank  

(adapted from Menezes et al., 2018) 

Also the number of data classes is found to be similar for estimated β (roughness) 

using bathymetric data. The segmentation of the six bathymetric profiles by FCM could 

produce 60 segments within the six classes of the Gaveshani data. Short segments (< 45 

m) were ignored for the estimation of β and a', as short segments introduces bias. It could 

be discerned from the estimates that segments less than 45 m were not consistent, hence 

marked down. Using the estimated β values from the segmented data of each profile, 
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predicted β values were generated employing kriging method for better discernment. 

Kriging is important for the generation of map of the estimated roughness (β) values so 

that the contours of the predicted β values can be depicted [Fig. 7.2(a) for the Gaveshani 

and Fig. 7.2(b) for the unnamed bank]. The estimated β values match with the overlaid 

contour map drawn (Fig. 7.2) using the predicted β.  The predicted values, i.e., map-

generated data points, were validated for its likely closeness with the estimated values of 

the profiles. The histogram of the error values (the difference between the estimated and 

predicted values) for the 7599 data points from the 6 profiles depicts the accuracy of 

prediction [Fig. 7.8(a)] and the correlation coefficients of  the estimated and predicted β 

values was 0.9590 [Fig. 7.8(c)]. Likewise the histogram of error values of the estimated 

and predicted β values (28664) of the unnamed bank is indicted in [Fig. 7.8(b)] and the 

correlation coefficients being 0.8371 [Fig. 7.8(d)]. From the above the predicted β values 

come out to be reasonably close. By and large the predicted β values compare well with 

the background map.  

The β values of the Gaveshani bank and its surrounds range from 1.46 to 2.38. The 

intercept values a' range from -4.24 to +0.48. The color coded segmented profiles 

representing the six classes, determined using the SOM and FCM, overlaid on the 

backscatter intensity map are found with most of the larger segments stretching over the 

summit of the bank. The backscatter strength of the Gaveshani bank summit ranges from 

-20 to -15 dB, i.e. very high backscatter. Overall the backscatter strength over the summit 

and the edges of the coral bank varies within -30 to -15 dB; the fluctuation effect is due to 

the uneven edges. Likewise the β values of the Gaveshani coral bank summit vary from 

1.57 to 2.04 [Fig. 7.2(a)], which is indicative of the Gaveshani bank summit being 

rougher compared to its surroundings. However, the extremely small portion of middle 

part of the summit has a roughness  (β =1.73 to 2.04),  which covers a negligible portion 
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Fig. 7.8 - (a) Histogram of standardizes errors between the estimated and predicted β 

values of the segmented profiles; (b) Scatter plot of the predicted β and computed β 

of the total. This allows us to surmise that the prevailing seafloor roughness parameter (β 

=1.57 to 1.72) found atop the Gaveshani bank summit is dominant. The estimated slope β 

and intercept a' values of the straight line fitted power law for the 11 bathymetric profile 

data of the unnamed bank produce β varying from 1.25 to 2.97, and the corresponding 

intercept a' values, -7.18 to -0.51. Two hundred and nine data segments could be 

generated using SOM and FCM. Here again, the short segments (<80 m) are not 

considered to reduce inaccuracies in the estimated power law parameters The β values 

atop the unnamed bank are found to be varying from 1.55 to 1.82, indicating that its 

summit has roughness similar to that of the Gaveshani bank summit. Likewise the 

backscatter values on the summit of the unnamed bank vary from -49.50 to -31.0 dB, 

even though the backscatter strength of the entire area has a broad variation (-61.0 to -

30.0 dB). Both the banks have more segments corresponding to its periphery as compared 

to the summit of the banks.  
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7.8 Discussions 

The histograms of the estimated β values for the Gaveshani bank and the unnamed 

bank seafloor are depicted in [Fig. 7.9(a) and 7.9(c)] respectively. [Fig. 7.9(b) and 7.9(d)] 

represent the concentration of lower β values (higher roughness) of the summit of the 

respective Gaveshani and the unnamed banks. The extent of the segmented profiles of the  

 
 

Fig. 7.9 - Histograms of estimated β values of (a) Gaveshani bank;  (b) Gaveshani bank 

summit; (c) Unnamed bank; (d) Unnamed bank summit. 

summit are large and few in number. Most of the large data segments atop the banks are 

confined to a singular class having higher roughness (Fig. 7.2).  As mentioned earlier, the 

roughness of the unnamed coral bank summit is comparable to that of the Gaveshani 

bank. The estimated ranges of β (~1.56 to 1.82) values show relatively a rough seafloor 

surface over the summits of both the banks. The regional oceanic circulations, 

characterized by seasonal reversal of monsoon-driven surface and bottom currents, 
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summer upwelling and winter down welling, create an unstable oceanographic conditions 

in the WCMI at ~ 250 m water depth (Amol et al., 2012). The possibility of the bottom 

current affecting the two coralline banks, located at the 80 m water depth is not probable. 

Hence the possible reason for the morphological traits of the two coral banks can be 

further evaluated. The two coralline features are situated on the left bank of a buried 

channel (Fig. 7.10). The channel could have been originally formed as fluvial drainage. 

The high backscatter strength and the corresponding β values of the Gaveshani bank 

summit are indicative of higher roughness. Histogram of the β values depicts a tapering 

coverage [Fig. 7.9(a)]. With the Gaveshani bank lying on top of a sub-aerial headland, the 

likelihood of absence of fluvial erosion or deposition effect cannot be precluded. The 

perspective map generated from the Shuttle Radar Topography Mission (SRTM) data, 

reveals that the Gaveshani bank is located on what was probably a subaerial headland 

during the Holocene transgression, and protracted without the effect of any sediment 

deposition as a submerged headland (Fig. 7.10).  On the other hand, the unnamed coral 

bank lies on a lowland and has less backscatter strength. The estimated β values and the 

corresponding lower backscatter intensity suggest comparatively lower roughness (except 

atop its summit and nearby areas) than the Gaveshani bank. It is also observed that the 

paleo-drainage of the former river-shelf system may possibly be linked to the inland 

drainage system off the coast of Goa-Karnataka. The widespread distribution of the β 

values corresponding to lower roughness in comparison to the Gaveshani bank is 

probable due to heterogeneity of the process involved in the unnamed bank data series. 

The presence of a series of paleo-channels and a few coral reefs in the present study area 

has been reported earlier (Karisiddaiah et al., 2002). The drainage pattern along the Goa 

and  Karnataka coast linked to the river  courses extend from the continental  shelf to the  
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Fig. 7.10 - A broad perspective view of Gaveshani and the unnamed bank 

with bathymetry from SRTM data. (Adapted from Chakraborty et al. (2016). 

shelf edge. Even before the Holocene period, the prevalence of fluvial deposition 

continued, which has subsequently smoothened the walls of buried channels. During the 

Holocene transgression period the two coral banks were submerged and the reduction in 

the flow of sediments could have initiated sediment backfilling along the slope of the 

channel (Chakraborty et al., 2016). Likewise the waves and currents have also modified 
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the present morphology of the study area. The distinct difference in the two coral bank 

morphologies could be discerned by making use of the estimated roughness parameters. 

The two banks exhibit relatively higher backscatter intensity on its summit, the intensity 

values of Gaveshani being higher than that of the unnamed bank. The variation in 

backscatter intensity on the summit of the unnamed bank is indicative of higher sediment 

accumulation, however along the edge of the banks, the backscatter intensity reduces 

with decreasing depth. In this research, the seafloor roughness is estimated using depth 

data. The depth values are assigned using echo-waveform peaks of the seafloor 

backscatter data. The low backscatter strength of the summit of the unnamed bank 

indicates a thin layer deposit. However the presence of such layer may not attenuate to 

the backscatter signal. According to Jackson et al., the acoustic seafloor roughness 

includes two major roughness types: i) interface and ii) sediment volume roughness (in 

the presence of soft sediment), and the estimation of the interface roughness varies due to 

the sediment volume (Jackson and Briggs 1992; Jackson and Richardson 2007). 

Interestingly in the present case, the scattering signals are not attenuated due to the slim 

fluvial deposits. Therefore the estimated roughness parameters continue unchanged on 

the summit of the unnamed bank.  

7.9 Conclusions 

In the present study, the seafloor classification technique for determining the number 

of data classes utilizing the backscatter and bathymetric data has been successfully 

applied to the Gaveshani and the unnamed bank data.  The data driven technique making 

use of SOM for estimating the numbers of data classes, and FCM for segmentation of the 

bathymetric profiles into homogeneous segments has been extended. The application of 

the soft-computing method could determine the presence of six classes from backscatter 

and bathymetric data profiles of the Gaveshani coralline bank. Likewise, five classes 
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could be ascertained from unnamed coral bank site. Additionally the bathymetric 

segments have been used to estimate the roughness parameters using PSD. The estimated 

power law exponent (β) and intercept (a') generated from each of the profile segments 

employing power spectral density function, provide an assessment of the seafloor 

roughness. The gridded maps prepared using the roughness estimate (β) of the segmented 

bathymetric data profiles overlaid on the co-registered backscatter map, offer an 

improved understanding of the distribution and characteristics of the overlying sediment 

material of the banks. The two coralline banks lie on a buried channel that was formerly 

shaped by the fluvial drainage in a paleo-environment earlier than the Holocene. The two 

coralline banks situated on the left bank of a buried channel with the Gaveshani bank 

positioned on a submerged headland. The high backscatter strength and the 

corresponding (β) values of the Gaveshani bank summit can be attributed to the coral 

growth and absence of fluvial erosion or deposition effect. The unnamed coral bank 

situated on a low land, having relatively lower backscatter strength and roughness (except 

atop the summit of the bank), compared to Gaveshani Bank, points to the heterogeneity 

of the process involved in the unnamed bank data series.  
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CHAPTER - 8 

SUMMARY AND CONCLUSION 

 

 
8.1 Summary and Conclusion  

With the advent of fast processors and automated classification software, seafloor 

classification has facilitated several applications in connection with the understanding of 

seafloor processes. Knowledge of the seafloor, combined with ground truth, is of great 

importance for validating seafloor data classification results. This study was focused on 

classification and characterization of seafloor data, making use of soft computing 

techniques, of the central part of the western continental margin of India in the Arabian 

Sea. The spotlight was on the characterization of the slope morphology, the adjacent 

seepage area dotted with pock marks and the shallow seafloor with two coralline banks. 

The methods employed for seafloor characterization and classification are simple, 

adaptable and effective for the diverse seafloor areas.  

In this work (Chapter 4) offers new insights into the characterization of the seafloor 

specifically, the slope morphological characteristics of the WCMI, revealing that the 

gullies and ridges have acquired varying slope angles while that of the slump zone from 

north to south is comparable. The scatter plot linking the average slope gradient, rms 

relief and mean depth of the thirty-three profiles, depict huddling of the ridge profiles, 

whereas the gullies and the slump zones show good clustering. These observations have 

been validated using PCA. The slope area exhibit fault traces and pockmark seepages 

signifying a structurally weak zone. It has been ascertained that there is presence of gas-

charged sediments, gas-escape features in the form of fluid flow systems such as 

pockmarks, mud volcanoes (MV), enhanced reflectors and pockmarked gullies, based on 

seismic construal. Such features are normally observed in passive and active continental 
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margins and are important factors for seabed stability studies. The gullies and ridges in 

the slope region particularly in the northern part appear to be connected with the 

Holocene turbidite events while the southern slump zone has rendered itself to erosional 

processes. The erosional activities may be linked to the poleward bottom currents in the 

slope region off Goa (during the winter) and weakened equator ward bottom currents 

(during the summer monsoon). These processes may have caused tapering off the shelf 

with the varied current patterns and the resultant changes in seafloor topography portend 

a slow uncertain transformation of the inherent slope morphology.  

For the characterization of the pockmarked seepage area (Chapter 6), Kohonen's self-

organizing mapping technique was utilized, for estimating the most likely number of 

cluster centers corresponding to different unknown data classes without any prior 

information. The ANN-SOM based soft-computational technique could determine the 

presence of five data classes in the pockmarked seepage area. The presence of the five 

classes of backscatter strength has been further validated employing the multimodal 

curve fitting to the histograms of the backscatter profile. The five classes obtained using 

multimodal pdfs match with the number of classes obtained employing SOM. Fine scale 

roughness parameters (β and a') were computed applying PSD to the backscatter profiles 

and using power law fitting. The data reveal different segment lengths. The estimated 

roughness parameters of the segmented profiles provide quantitative information about 

the area seafloor roughness. A gridded map of the estimated roughness parameter is 

generated using the “kriging” method. The gridded map and the class of the segmented 

profiles overlaid on the backscatter map have been presented. The combination of soft-

computational (SOM and FCM) and numerical techniques (PSD) have effectively 

categorized the seafloor processes and the associated sediment-logical dynamics in a 
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complex geographical environment (with pockmarks and faulted structures) that are 

subjected to strong bottom currents and seasonal upwelling. 

In the study related to the shallow seafloor (Chapter 7), the seafloor classification 

technique has been successfully applied for characterizing the Gaveshani and the 

unnamed bank data.  The two coralline banks are some of the best studied features in the 

WCMI. The ANN approach has contributed to new insights into the characterization of 

the coralline banks. The application of neuro-fuzzy classification (ANN-SOM and FCM) 

technique for determining the number of data classes utilizing the backscatter and 

bathymetric data of the Gaveshani coralline bank has revealed the presence of six classes. 

Likewise, five classes could be ascertained from the unnamed coral bank site. The 

bathymetric segments of both the banks have been used to estimate the roughness 

parameters using PSD. The estimated power law exponent (β) and intercept (a') generated 

from each of the bathymetric profile segments employing power spectral density 

function, has provided an assessment of the seafloor roughness. The gridded maps 

prepared using the roughness estimate (β) of the segmented bathymetric data profiles 

overlaid on the co-registered backscatter map, enhance the comprehension of the 

distribution and characteristics of the overlying sediment material of the banks. The 

SRTM data reveal that the two coralline banks lie on the left bank of a buried channel 

that was formerly formed by the fluvial drainage in a paleo-environment earlier than the 

Holocene. The Gaveshani bank is located on a submerged headland. The high backscatter 

strength and the corresponding (β) values of the Gaveshani bank summit can be attributed 

to the coral growth and absence of fluvial erosion or deposition effect. On the other hand 

the unnamed coral bank situated on a low land, having relatively lower backscatter 

strength and roughness (except atop the summit of the bank), compared to Gaveshani 

Bank, points to the heterogeneity of the processes involved affecting the unnamed bank.  
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