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Abstract A unique methodology employing a linear phase finite impulse response
(FIR) low pass filter (LPF) was proposed with an attempt to mitigate passband and
stopband ripples due toGibb’s phenomenon. The three regions of the filter response in
the frequency domain are approximated using trigonometric functions. The proposed
filter model achieved a sharp transition of 2π, fairly flat passband and a stopband
attenuation of 40 dB. Our algorithm suppressed the oscillations near the edge of the
transition region as well as in the passband region, reducing the Gibb’s phenomenon
from the conventional passband ripples from 18% to as low as 2%. Thus a three-
fold satisfactory performance was achieved in all the three bands namely passband,
transition and stopband. Our proposed linear phase FIR LPF was effectively used to
filter out power line interference and higher unwanted frequencies from the real time
electroencephalogram signals.

Keywords Finite impulse response · Linear phase · Low pass filter · Gibb’s
phenomenon · Electroencephalogram

1 Introduction

To design a finite impulse response (FIR) filter we can approximate the frequency
response H (ω) of filter by calculating its impulse response h (n) [1].

H (ω) =
∞∑

n=−∞
h(n) e−jωn (1)
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h(n) = 1

2π

π∫

−π

H (ω) ejωndω − ∞ ≤ n ≤ ∞ (2)

As the duration of the impulse response is infinite and it can be truncated at n =
N − 1, to obtain an FIR filter at length N as shown in Eq. (3).

h′(n) =
{
h(n) n = 0, 1 . . .N − 1,
0, otherwise.

(3)

An oscillatory pattern or ripples are observed in the magnitude response when the
impulse response coefficients of the FIR filter are truncated. The number of ripples,
both in the stopband and the passband are directly proportional to the increasing of
the length of the FIR filter, while there is reduction in the width of the ripples [2].
The oscillatory ripples although being narrow, the height of the ripples are constant.
The maximum ripples occur at the fiduciary edges or near the transition points.
This undesirable trait is called as Gibb’s phenomenon [3]. This effect appears as
a fixed percentage overshoot and ripple before and after the discontinuity. This is
true because it is impossible to obtain an infinite slope using only a finite number of
terms. As stated, as the number of terms increase, the ripples do not decrease but are
squeezed into a narrower interval about the discontinuity. Even in the infinite sum,
this overshooting and undershooting persists and the complete series has flanges.
Resulting, the series in trying to follow the discontinuity, overshoots the mark by
about 18% [4] over a region before settling down to a correct value of unity. For
this reason the rectangular window is not of much practical use and other window
sequences w(n) alleviate this problem as seen in Fig. 1.

The optimalmethod represented byvarious algorithms such asChebyshev approx-
imation criterion [5, 6], Remez exchange algorithm [7], Park McClellan algorithm
[8] have been developed and works on the concept of having equiripples in the pass-

Fig. 1 Low pass filter
designed with a rectangular
window for a certain N
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band and stopband. In the passband, the ripples oscillates between 1 − δp and 1
+ δp and 0 and δs in the stopband. The main algorithm is an iterative process to
determine the extremal frequencies of a filter whose amplitude frequency response
satisfies the optimality condition. Algorithms such as Interpolated FIR filters [9],
frequency response masking filters [10] among others FIR filter designs [11, 12]
were reviewed before proposing a new technique using a linear phase low pass filter
algorithmwherein the stopband, transition band and the passband regions of the filter
magnitude response are modelled using trigonometric functions as it is obtained for
the band pass filter design in [13]. In a similar way in [14], the sinusoidal trigono-
metric functions aid in computing the impulse response coefficients of the filters. In
this method [14] the center frequency decides the band edges of the filter and the
design parameters.

2 Proposed Methodology Using Linear Phase FIR Filter

In this section, the detailed design of the linear phase FIR low pass filter is proposed
where, H (ω) is the magnitude of the filter response, δs is the stopband attenuation
and δp is the passband ripple [15].

In the passband region of 0 ≤ ω ≤ ωcl, the frequency response is

H (ω) = (1 − δp) + δp cos(kpl ω) (4)

At ω = 0; H (0) = (1 − δp) + δp = 1
At ω = ωcl; H (ωcl) = (1 − δp) + δp cos(kplωcl) = 1 − δp

∴ kpl = π
2ωcl

(5)

In the sharp transition region for ωcl ≤ ω ≤ ωsl, the frequency response is,

H (ω) = δs + (1 − δp − δs) cos ktl(ω − ωcl) (6)

At ω = ωcl; H (ωcl) = δs + (1 − δp − δs) = 1 − δp

At ω = ωsl; H (ωsl) = δs + (1 − δp − δs) cos ktl(ωsl − ωcl) = δs

∴ kkl = π
2 (ωsl−ωcl)

(7)

In the stop band region for ωsl ≤ ω ≤ π , the frequency response is,

H (ω) = δs − δs sin(ksl(ω − ωsl)) (8)

At ω = ωsl; H (ωsl) = δs − δs sin ksl(ω − ωsl) = δs

At ω = π; H (π) = δs − δs sin ksl(π − ωsl) = 0
∴ ksl = π

2(π−ωsl)

(9)
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Passband (kpl), transition (ktl) and stopband (ksl) are filter design parameters
derived in Eqs. (5), (7) and (9) respectively.

2.1 Expressions for Impulse Response Coefficients
for the FIR LPF

The impulse response coefficients h (n) for the FIR LPF are obtained by computing
the integral limits of the three regions of the filter magnitude response.

h(n) = 1

π

⎧
⎨

⎩

ωcl∫

0

H (ω) cos k ω ∂ω +
ωsl∫

ωcl

H (ω) cos k ω ∂ω +
π∫

ωsl

H (ω) cos k ω ∂ω

⎫
⎬

⎭

(10)

Solving the 1st term from Eq. (10)

1st term = h1l(n) = 1

π

ωcl∫

0

[(
1 − δp

) + δp cos kplω
]
cos k ω ∂ω

=
(
1 − δp

)
sin kωcl

kπ
+ δp

π
(
kpl2 − k2

)
[
kpl sin

(
kprωcl

)
cos(kωcl) − k cos

(
kplωcl

)
sin(kωcl)

]

(11)

Solving the 2nd term from Eq. (10)

2nd term = h2(n) = 1

π

ωsl∫

ωcl

[
δs + (

1 − δp − δs
)
cos ktl(ω − ωcl)

]
cos kω ∂ω

= δs

kπ
[sin kωsl − sin kωcl]

+
(
1 − δp − δs

)

π
(
ktl2 − k2

)
[
ktl sin ktl(ωsl − ωcl) cos(kωsl) − k cos ktl(ωsl − ωcl) sin(kωsl)

+k sin(kωcl)

]

(12)

Solving the 3rd term from Eq. (10)

3rd term = h3(n) = 1

π

π∫

ωsl

[δs − δs sin(ksl(ω − ωsl))] cos kω ∂ω

= δs

kπ
[sin k π − sin kωsl] + δs

π
(
k2sl − k2

)

[ksl cos[(ksl(π − ωsl)] cos k π + k sin[(ksl(π − ωsl)] sin k π − ksl cos(kωsl)] (13)
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By substituting Eqs. (11)–(13) in Eq. (10) we obtain the expression for the low
pass filter impulse response h (n). Where k �= ktl, kpl and ksl.

h(n) =
{(

δs

kπ

)[
sin

(
kωsl

) − sin
(
kωcl

) + sin(kπ) − sin
(
kωsl

)] +
(
1 − δp

)
sin

(
kωcl

)

kπ

}

+
⎧
⎨

⎩

⎛

⎝ δp

π
(
k2pl − k2

)

⎞

⎠
[
kpl sin

(
kprωcl

)
cos

(
kωcl

) − k cos
(
kplωcl

)
sin

(
kωcl

)]
⎫
⎬

⎭

+
{( (

1 − δp − δs
)

π
(
ktl2 − k2

)
)

[
k sin

(
kωcl

) + ktl sin
(
ktl

(
ωsl − ωcl

))
cos

(
kωsl

) − k cos
(
ktt

(
ωsl − ωcl

))
sin

(
kωsl

)]
}

+
⎧
⎨

⎩

⎛

⎝ δs

π
(
k2sl − k2

)

⎞

⎠[
ksl cos

(
ksl

(
π − ωsl

))
cos(kπ) + k sin

(
ksl

(
π − ωsl

))
sin(kπ) − ksl cos

(
kωsl

)]
⎫
⎬

⎭ (14)

Equation (14) is the expression for the LPF model impulse response h(n).

2.2 Expression for the Frequency Response of the FIR Low
Pass Filter

We selected the symmetric impulse response, h(n) = h(N − 1 − n) for N Even and
the appropriate type of frequency response for the linear phase FIR LPF as shown
below [1, 4].

Hr(ω) = 2
( N

2 )−1∑

n=0

h(n) cos

(
ω

(
N − 1

2
− n

))
(15)

This filter design is most suitable for LPFs as the H(0) gives a maximum value,
while H(π) = 0.

3 Results

The performance of the FIR low pass filter for various filter orders (N) are clearly
depicted in Fig. 2. Where in the passband loss is as low as 6.34% for N = 200 and
further reduces to nearly 2% at larger filter order (N = 2000). There is a reduction of
Gibb’s phenomenon with our proposed linear phase FIR LPF designs. As we know
the conventional FIR filters, the peak passband ripple due to Gibb’s phenomenon is
about 18%, our passband loss is verymuch low as compared to the conventional peak
passband ripple value. Using our proposed low pass FIR filters, we also observed
from Figs. 3 and 4, that (i) the passband losses are quite low, (ii) The ripple decreases
for higher filter order and (iii) The filter exhibited sharp transition region as low of
2π. The magnitude response for various filter orders ranging from N = 200 to N =
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Fig. 2 Passband loss of the LPF design for various filter order

Fig. 3 Linear phase FIR LPF a magnitude response (N = 1000) b linear plot (N = 1000) c mag-
nitude response for various filter order

Fig. 4 Magnitude response of PM algorithm as compared with the proposed LPF a linear plot
b magnified pass band view c magnified stopband view

2000 were also plotted to evaluate the performance of the proposed LPF as shown
in Fig. 3c. These filters are unlike the classical filters, possess a narrow stopband
and/or passband. The stopband attenuation was recorded to be 40 dB. The proposed
design was compared with the optimal linear phase FIR method such as the Parks
McClellan (PM) algorithm. The PM algorithm exhibits large ripple in the pass and
the stop bands as compared to our proposed algorithm as shown in Fig. 4a–c.

The proposed linear phase FIR LPF was used to filter an electroencephalogram
(EEG) signal whose recording was taken for a single subject (activity: relaxed and
alert) for a duration of 5 min. As many as 20 EEG channels were collected with
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Fig. 5 Real time EEG
signals from a healthy
subject

the sampling frequency (fs) of 256 Hz. To enable and filter in the Theta–Alpha
frequencies from the raw EEG signal [16–18], the sharp transition capable linear
phase FIR LPF set its passband edge to 12 Hz and the stopband edge at 13 Hz.
Figure 5 shows the extracted real time EEG signal from the subject from channel
1 and 20 (other channel signals are not shown here). Figure 6a displays the FFT
spectrum of the original EEG (in blue) and the FFT of the filtered EEG after using
our proposed FIR filter (in red). The high frequency artifacts, frequencies above

Fig. 6 Real time EEG signal along with filtered EEG signal a frequency domain b time domain
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13 and 50 Hz power line interference (PLI) and its harmonics are also filtered and
suppressed. The time domain traces in Fig. 6b displays the original EEG signal (in
blue) and the noise free EEG signal (shown in red) which can be further analyzed
and processed.

4 Conclusions

Using the trigonometric functions of frequency the impulse response coefficients are
computed for the three regions of the filter response in the frequency domain. The
proposed filter model stressed on achieving a sharp transition and a flat passband.
As the filter gets sharper in the transition region, more oscillations or ripples will
be the frequency response near the edge of the passband, a trait described as Gibb’s
phenomenon. However our proposed filter model achieved a fair trade-off between
the transition bandwidth and the Gibb’s phenomenon. Using our methodology, a low
passband ripple of 2%was achieved for filter order 2000 with a stopband attenuation
of 40 dB. It was also seen that our proposed method had a flat passband and stopband
as compared to the large ripples seen in the passband and stopband bands using the
Parks McClellan algorithm Thus a threefold satisfactory performance was achieved
in all the three bands namely passband, transition and stopband. Our proposed linear
phase FIR LPF was effectively used to filter out PLI and higher unwanted high
frequencies from the real time EEG signals with sharp transition filter band edges.
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