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ABSTRACT 

 

           The accurate measurement of human blood pressure, is a growing need in recent 

years, to obtain prior information about heart-related risks. The blood pressure 

measurement is based on the principle of oscillometric and auscultatory methods. The 

currently available devices use one of these principles or combined information of both the 

principle to compute systolic and diastolic pressure. In this work, we have developed a 

pressure meter that is based on the principle of the oscillometric and auscultatory method. 

Further, to combine the information from the oscillometric and auscultatory signal, we 

present a complementary data fusion approach that fuses the data to improve the accuracy 

of the measurement. However, the parameters for our complementary information fusion 

are optimized for systolic and diastolic pressure sample data points generated using the 

Windkessel approach. The experimental results were obtained to measure the systolic and 

diastolic pressure for three types of patients that include Normal, Hypertension, and 

Hypotension. The better accuracy measurement of around 90% is obtained using our 

approach of complementary information fusion for α = 0.5 value. Further, the proposed 

data fusion scheme compliments the information from various sensors, that enables the 

potential scope in a health care facility to improve the completeness of the system under 

observation.  

Human body physiology is regulated through the central neural control (CNS) which takes 

the signal from the respiratory system and ambiance which signifies atmospheric pressure, 

temperature and various gases in the environment. The central nervous system then 

controls the metabolic control of various organs through the afferent nerves and the 

efferent nerves reflecting the various reflex of the organs to the CNS, which regulates the 

cardiovascular system (CVS) for the stroke volume (SV) of the blood and heart rate (HR). 

The SV and HR collectively synthesize the cardiac output of the heart balancing the body 

for the coherence or non-coherence states. We have defined and simulated here in this 

work the Neural Mass Model (NMM), which is one of the components which feeds the 

CNS and controls the cardiovascular system for the human blood pressure (ABP) and heart 

rate. We have defined and simulated arterial blood pressure model, i.e., Windkessel model; 

describing the arterial blood pressure for the particular input volume of the blood and ECG 
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model for the computing heart rate and heart rate variability (HRV). The integration of 

CNS, Windkessel and EEG model has thrown light on some aspects of sympathetic and 

parasympathetic of ANS for further improvisation and experimentations. Brain-Computer 

Interface (BCI) provides an alternative way for humans to communicate with the external 

environment. BCI systems can be of great help to people with severe motor disabilities 

who cannot perform normal daily activities. In this work, we introduce a novel steady-state 

visual evoked potential (SSVEP)-based brain-computer interface system that controls 

home appliances like an electric fan, tube light, etc. The designed system aim is to extract 

the SSVEP signal and then classify them using multiclass SVM. We confirmed the 

generation of SSVEP frequencies in the online analysis using Fast Fourier Transform. The 

classification of SSVEP signals is done using multiclass SVM. 

Finally, a preliminary study was done on the use of SSVEP BCI paradigm for biometric 

studies and the results were found to be promising.   
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Chapter 1 

Introduction  

1.1  ORIGIN OF RESEARCH PROBLEM 

In general, it has been discovered that people with access to neighboring natural 

environments are healthier than other people. Long-term, indirect effects also include 

enhanced rates of satisfaction with one's home, one's job, and life in general [1]. 

City authorities had a powerful faith in the potential health benefits that would result from 

open space when parks were first built in the nineteenth century [2,3]. Parks were expected 

to decrease disease, crime, and social unrest and provide the town with' green lungs' and 

leisure places [3]. These assumptions were used to justify offering urban parks and other 

natural regions and maintaining wilderness areas outside towns for government use [4,5]. 

Contact with nature in an urban park environment can be experienced through a variety of 

means, including viewing natural scenes, being in natural settings, encountering plants and 

animals, taking part in recreational activities, undertaking environmental conservation 

work, and participating in nature-based therapy programs. A broad range of study findings 

indicate that exposure to nature may affect the functioning of physiology. For instance, 

researchers have discovered that greater levels of well-being and life satisfaction were 

associated with window opinions of nature from the office and home [6,7].Some 

researchers[8] showed that among kids residing in urban settings, those who had daily opin

ions of nature (e.g., a tree outside their apartment window, rather than a concrete perspecti

ve) performed better on assignments that measured working memory (backward digit span,

 backward alphabet span), impulse inhibition (fitting familiar figures task), selective attenti

on (Stroop color-word span) and concentration (pattern control assignment for Necker 

Cube). These findings indicate that there may be a variety of significant benefits connected 

with increased exposure to natural settings. Benefits from exposure to nature were also 

noted over different exposure durations; from a few minutes of viewing pictures, to hour- 
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long or multi-day wildlife experiences, to life-long proximity to greenspace. The variety of 

findings indicates that the psychological functioning effect of nature experience can be 

both prevalent and robust.Two significant theories were suggested to explain the 

restorative advantages of nature. They indicate that one helpful way to categorize the 

literature's empirical findings is to differentiate between the affective and cognitive 

benefits of the experience of nature.  

1.2 Complexity in the Human Physiological System 

Increased consistency is correlated with beneficial modifications in multiple 

physiological functional dimensions, which in turn are associated with psychological 

advantages. We present this debate by explaining how the quantity of data traveling 

through the afferent nerves rises during coherence, and then we examine the role that 

cardiac afferent input plays in pain perception, pulmonary function, emotional processing, 

and cognitive performance of neural pathways. 

Over the previous several centuries, several lines of scientific evidence have shown

 that the heart works as a sensory organ and as a complicated encoding and processing cent

er of data far more than a mechanical pump.In the comparatively new field of 

neurocardiology, groundbreaking research has shown that the heart has an enormous 

intrinsic nervous system that is sufficiently advanced to qualify as a "little brain" on its 

own. In 1991, Pioneer neurocardiology researcher Dr. J. Andrew Armour first defined the 

heart brain's anatomical organization and function [9]. It‘s complicated circuitry, which 

contains over 40,000 neurons, allows it to sense, control and remember. In addition, the 

heart brain can process data and make choices independently of the central nervous system 

about cardiac control [10,11]. The heart brain senses, translates hormonal, heart rate, and 

blood pressure signals into neurological impulses, and processes this data internally. It 

then sends the data in the vagus nerves and spinal column via afferent pathways to the 

central brain. When the sensory neurites in the core detect distinct hormones or 

neurotransmitters in the bloodstream, the pattern in the afferent cell output sent to the brain 

is changed [12].In other words, in relation to its better known tasks, the heart is also a 

sensory center that detects and transmits data about the regional blood flow's biochemical 

content. In controlling the function of organs and structures throughout the body, 

neurological signals originating in the core have a significant and widespread impact. For 
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instance, it is now recognized that in relation to modulating nervous and endocrine system 

activity, cardiac input affects digestive tract activity, urinary bladder, spleen, respiratory 

and lymph systems, and skeletal muscle activity [13].Cardiovascular afferent signals in 

more particular terms control efferent outflow of ANS [14] modulate pain perception [15] 

and hormone manufacturing [16]. The activity of the locus coeruleus and pyramidal tract 

cells in the motor cortex is influenced [17,18]. Also, excitability of the spinal cord differs 

directly with the heart pulse, as does in ordinary skeletal muscle physiological tremor [19]. 

An important fact is the impact of the heart on perceptual and cognitive function through 

its input into greater brain centers beyond the main role of cardiac afferent signals in 

physiological regulation. So far, we have discussed behavioral information indicating a 

connection between the input of the heart and cognitive performance as well as demonic 

electrophysiological studies. Psychophysiologist Rainer Schandry's experiments in 

Germany have shown that afferent heart input evokes similar cortical reactions to 

‗classical‘ sensory event-related potentials. These studies have shown that cardiovascular 

afferent input is accompanied by particular modifications in the electrical activity of the 

brain. Schandry and peers have discovered that this activity is most pronounced in the 

frontocortical fields, a region that is particularly engaged in the processing of visceral 

afferent data. In addition, psychological factors such as cardiac sensitivity, sensitivity to 

perception, and motivation were discovered to modulate cortical heartbeat evoked 

potentials in a manner similar to the cortical processing of external stimuli [20,21,22,23]. 

In another study it was examined that the electrophysiology of the processing of 

information in relation to intuition, and also it was found that the afferent input of the heart 

significantly modulates frontocortical activity. The observation that the afferent 

contribution of the core modulates frontal activity is consistent with other results that 

activity covaries with modifications in heart rhythm in the prefrontal cortex [24]. This is 

compatible with the reciprocal links in neural systems biological principle. Thus, in 

relation to well-established paths (e.g., the thalamic pathway) through which 

cardiovascular afferent signals modulate greater cortical function, extra paths from the core 

to the prefrontal cortex may well be available. 
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1.2.1 Complexity of Cardiac Afferent Signals 

One of the micro-pattern hypothesis fundamental assumptions is that there is a one-

to-one correspondence between each heartbeat and the neural activity bursting from 

cardiac mechanosensory neurites into the brain. However, the dynamics of generating and 

transmitting cardiovascular afferent input require many kinds of neurons and a multiplicity 

of processes working over distinct moment scales at the stage of the macro-scale heart 

brain interactions studied here. About 40,000 sensory neurites are engaged in transmitting 

afferent data to the brain in the human core. Only 20 percent of these are mechanosensory 

cells. Of this 20%, only a small proportion actually fire in unison with each heartbeat. 

Moreover, there are at least five different types of mechanosensory neurons. Nearly all 

mechanosensory neurons are susceptible to change frequency, as their concentrations of 

activity rise in reaction to system change in a nonlinear way. Some only improve their 

firing rate when blood pressure drops, while others only increase during increased 

pressure. Others are only susceptible to big heart rate or blood pressure change rate 

motions [25]. Thus, there is only a minority of sensory neurites whose output activity 

shows a one-to-one connection to heartbeat and regional changes in blood pressure. To add 

to the complexity, the intrinsic nervous system of the heart has both short and long-term 

memory that affects cardiac (and therefore afferent) function over two different time 

scales: (1) changes in patterns of activity resulting from rapid changes in local mechanical 

status over milliseconds; and (2) variations in patterns of worldwide activity operating 

over time scales of seconds to minutes [25,26]. Therefore, in relation to data linked to a 

single cardiac cycle, there is also rhythmic data that can modulate brain activity over 

longer time scales. The fact that many of the neurons mainly react to change frequency and 

that changes in activity patterns can last for minutes is significant considerations in 

knowing how cohesion affects heart-brain interactions and can have an expanded carry-

over impact. This is because the rate of change in beat-to-beat variation of both heart rate 

and blood pressure is increased in the coherence mode, in relation to the enhanced order in 

the cardiovascular system's spatial activity patterns. While the overall amount of afferent 

neural activity reaching the brain is likely to be the same or nearly the same from one 

heartbeat to the next under normal pressure variations and heart rates, it is our contention 

that the macro-scale patterns of neural activity may be quite different. Wölk and Velden 
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produced a significant observation in this respect in noting that the frequency and stability 

of the afferent input were significant variables influencing the efficiency of the sensory 

motor [27,28]. However, in this context, we recommend that the activity pattern idea is 

more suitable than the frequency idea. This is because data is encoded in the interspike 

interval (the temporal space between successive neural activity spikes). Thus, the 

significance of the data embedded in the signals is contained in the general pattern of 

activity and not simply its frequency. In addition, we consider the pattern's stability over 

longer time scales, from seconds to minutes. Therefore, in order to comprehend the 

impacts of cardiovascular afferent signals on the brain, in relation to stimulus intensity, 

heart rate and pressure, the rhythmic pattern of the heart over longer time scales must also 

be regarded as a significant factor in itself. As we have seen, the macro-scale pattern of the 

operation of the heart is likely to have a much higher impact on performance than the 

effects of the internal cardiac cycle. 

 

Figure 1.1: Different afferent pathways 

1.2.2 Afferent Input to Brain Centers other than the Thalamus 
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Another significant factor in relation to heart-brain relations is that while the micro-pattern 

model focuses exclusively on cardiovascular thalamus input, there are other neural 

pathways through which the input of the heart can modulate cortical activity and therefore 

performance. As shown in Figure 1.1, cardiovascular inputs from the vagal afferent nerves 

first reach the tractus solitarius nucleus (NTS) and then travel straight to the parabrasive 

complex, periacqueductal gray, thalamus, hypothalamus, and amygdala. The afferent 

inputs then migrate from the amygdala, hypothalamus, and thalamus to the cerebral cortex 

through links. The presence of afferent pathways from the medulla straight to the 

prefrontal cortex is also suggested [29]. While this diagram demonstrates mainly the 

afferent pathways one-way input flow to the brain, in most instances the areas are 

interconnected reciprocally so that data flows in both directions. This reciprocally 

interconnected network enables ongoing positive and negative feedback interactions and 

autonomous reactions to be integrated with the processing of perceptual and sensory data. 

Moreover, the various parallel distributed pathways allow various ways to process a 

specified response. The third way the image is more complex is that while the hypothesis 

of Wölk and Velden considers only the alpha rhythm, there are other brain rhythms linked 

to the core as well. These include both beta rhythm and reduced brain activity frequency. 

Therefore, the impacts of macro-scale cardiovascular dynamics on other elements of brain 

activity are also likely to be crucial in contributing to greater performance changes. 

1.2.3 Vagal Afferent Traffic 

However, the vagus nerve is a significant duct which is relayed to the brain by afferent 

neurological signals from the core and other visceral organs. Psychophysiologist Paul 

Lehrer has shown that a lasting increase in baroreflex gain is achieved independently of 

respiratory and cardiovascular changes by using heart rhythm feedback to facilitate a state 

of physiological coherence (which he calls "resonance"), demonstrating the neuroplasticity 

of the baroreflex system [30].This change in baroreflex gain shows that the activation 

threshold of some of the mechanosensory neurons in the baroreflex scheme is reset with 

repeated episodes of consistency and consequently these neurons boost their production 

accordingly. Furthermore, a fundamental property of mechanosensory neurons is that they 

usually boost their output in reaction to a rise in the pace of change in the function to 

which they are tuned (heart rate, blood pressure, etc.).There is an increase in beat-to-beat 
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variation in both heart rate and blood pressure during heart rhythm consistency, which is 

equal to a rise in change rate. As a result, the vagal afferent traffic sent to the brain from 

the core and cardiovascular system will boost. With frequent exercise in keeping the mode 

of consistency, it is also probable that increased vagal afferent traffic would be observed 

even if one is not in this mode. This is due to the reality that the threshold of the 

mechanosensory neurons is reset as a consequence of the exercise of consistency building, 

thus creating a fresh level of afferent traffic baseline. There are a number of potential 

advantages to generating an increase in vagal afferent traffic through non-invasive 

methods such as heart-based emotion refocusing methods and heart rhythm coherence 

feedback. A number of clinical apps have been identified in latest years to boost vagal 

afferent traffic; however, the rise in afferent activity is generally produced by implanted or 

external instruments that boost vagal afferent pathways, typically in the left vagus nerve. 

An increase in ordinary inherent concentrations of vagal afferent traffic has been 

discovered to inhibit pain pathways at the stage of the spinal cord from the body to the 

thalamus and a latest research discovered that stimulation of afferent vagal cells 

considerably decreases cluster and headaches of migraine [31].It has also been shown that 

vagal nerve stimulation improves cognitive processing and memory [32] findings 

consistent with those of several latest individual research using cohesion-building methods 

for heart rhythm. 

1.2.4 Emotional Processing 

Afferent heart input, and especially the heart rhythm pattern, also plays a main role in 

emotional experience. One researcher in his study proposed a basic connection between 

feelings and changes in patterns of both efferent and afferent autonomous activity, as well 

as changes in ANS activation that are obviously reflected in changes in patterns of heart 

rhythm. The experience of adverse feelings is represented in more erratic or disordered 

heart rhythms, suggesting less synchronization in both the operation of parasympathetic 

outflow-regulating brain structures and the reciprocal action between the parasympathetic 

and sympathetic branches of the ANS. In comparison, a strongly ordered or consistent 

pattern in the heart rhythms is connected with continuous favorable feelings, reflecting 

higher general synchronization in these same systems. However, it is essential to stress that 

the rhythmic running patterns of the heart not only represent the emotional state of the 



Page 8 of 138 

 

individual, but also play a direct part in determining mental experience. At the 

physiological stage, as shown in Figure 1.1, afferent heart input is transmitted to several 

subcortical brain areas engaged in emotional processing, including thalamus, 

hypothalamus, and amygdala. In addition, cardiac afferent input has an important impact 

on brain center activity [32,33,34,35,36,37]. For instance, amygdala activity is discovered 

to be synchronized with the cardiac cycle [35,37]. These understandings support the claim 

that afferent heart data is directly engaged in emotional processing and emotional 

experience. 

 

1.3 Coherence in Cognition for Nature Experience   

The theory of stress reduction (SRT) offers an explanation for the effect on the 

effect of nature experience. This theory suggests that the restorative benefit of natural 

settings over artificial settings is due to the role they played in our species development 

[38]. More specifically, according to this perspective, because of our inherent attachment 

to the natural world, nature scenes activate our parasympathetic nervous system in ways 

that decrease stress and autonomic excitement. Particular natural landscapes tended to 

provide ‗possibilities‘ for benefit for human beings and safe locations of ‗shelter‘. The 

viewing of these kinds of landscapes activates our physiology in affectively beneficial 

ways, according to Ulrich et al. [39], helps to develop an inherent preference for these 

kinds of settings. In support of SRT, it has been shown that viewing photographic pictures 

and videos of natural landscapes reduces skin behavior, heart rate and other physiological 

stress indices [39,40,41]. Likewise, walking through trees and other natural scenery 

decreases concentrations of cortisol [42,43]. Besides these changes in physiological stress 

measures, a 50-minute walk through a natural environment may have a beneficial effect 

[44,45,46]. After monitoring for population and socioeconomic variables [47,48,49], 

proximity to green space has been shown in other cross-sectional and longitudinal research 

to encourage reduced rates of "mental distress" and stress, as well as higher psychological 

well-being. For instance, many psychological disorders are correlated with modifications 

in other effect dimensions, including anxiety, rumination, and negative mood rises. 

Importantly, previous studies did not specifically assess anxiety or rumination, although 
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some used scales that may partially reflect anxiety changes [47]. Ulrich's theory provides a 

number of testable hypotheses about the impact of nature on the autonomic nervous 

system, and these were tested during their exposure to various settings through the use of 

individual physiological measurements. These results show that extensive nature exposure 

can decrease stress and increase positive impacts. If improvements in mental health result 

from decreased exposure to nature could be expected to extend beyond stress and positive 

mood the affective impacts. 

According to ART, natural environments invoke a distinct kind of attention from 

individuals – a feeling of "fascination," "being away," "extent," and "compatibility" – 

which can lead to a replenishment of focused attention because they are less taxed in these 

alternative settings. This, in turn, may lead to improved performance on tests that 

measure memory and attention. Consistent with ART, [50] found that dormitory 

students who had views of nature through their windows performed better on tasks 

that require concentration (Necker Cube pattern test) than students without such 

views. Some researcher‘s [51] proved nature's restorative influence on suspended 

attention, demonstrating that respondents who viewed nature pictures performed 

better on the assignment than those who saw urban environment pictures. 

1.3.1   Effects of Yoga on Human Health 

Yoga is an ancient Indian science that, with its different methods, designs the way 

of life. It is performed by professionals in a variety of techniques and styles in the form of 

Asana (Posture), Pranayama (breathing manipulation), Meditation (concentration method), 

etc.Pranayama is one practice discovered to be efficient in many respects for human 

physiology. The Sanskrit term Pranayama includes two sections namely Prana (means 

essential force) and Yama (means control). It literally implies a yogic act conducted to 

control the flow of essential energy that governs the body's entire physiological 

cycle.Pranayama is one practice discovered to be efficient in many respects for human 

physiology.In humans, the breath is an active link between body and mind, while the 

Pranayama is deemed to manipulate one-time own breathing. Different kinds of 

pranayama generate specific physiological responses and are highly dependent on the 

practice type and length. Among them are well established Nadisuddhi, Savitri, 
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Kapalbhati, Bhasrika, BhramariPra-nayama, etc. [52,53,54]. Pranayama reduces dead 

space ventilation by ongoing exercise and decreases breathing job. In comparison to the 

shallow breathing that only refreshes the base of the lung, the entire lung is ventilated. 

Practicing pranayama frequently has a beneficial effect on cardiovascular and respiratory 

functions, demonstrates the parasympathetic (vagal tone) dominance of the autonomous 

system. This increases general physical and mental health. Yoga practice has also been 

reported to be efficient in correcting circumstances of hormonal imbalance and other 

illnesses such as hypertension, anxiety, and depression. It‘s calming impact also helps in 

overcoming drug addiction. 

1.3.2 HRV in Physical Activities  

Research has shown the impact of somatic and cognitive anxiety on sports result measures. 

Competitive stress method includes the perception of a significant imbalance between 

environmental demand and the ability to respond. This imbalance is seen to have 

significant effects on the outcome [55].It has been shown that elevation in sympathetic 

tone as marked by anxiety and decreased heart rate variability patterns are controlled by 

breathing regulation [56]. In addition, to boost efficiency, cognitive behavioral therapy 

directed at decreasing anxiety has been documented [57]. The ability to overcome pressure 

and anxiety is an integral part of sports, particularly among elite athletes [ 58,59]. 

1.4 Coherence in Physiological System of Body  

Organizing the many interconnected neural networks within the brain enables maximum 

flexibility to adapt to evolving requirements, such as focusing on an external sensory input 

or an inner process. The degree of coupling, however, which controls synchronized 

network activity, differs depending on the moment's requirements. The system is less 

willing to dynamically employ the suitable neural support mechanisms that it requires to 

react to a specific demand when the network is either excessively coupled or too loosely 

coupled. For example, when the neural populations in the brain are more closely linked, 

the alpha rhythm increases in amplitude and distribution, which occurs when the brain 

regions involved do not process information. Cognitive efficiency is decreased under these 

conditions, in particular that involves processing external sensory data. This generally 

implies that one should not be too relaxed (enhanced coupling) or overly stimulated 
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(reduced coupling) in terms of optimizing efficiency. Thus, taking into account the 

outcomes of our cognitive performance and heart-brain synchronization research 

mentioned above, the psychophysiological coherence mode appears to be a condition 

under which optimal coupling and thus enhanced performance happens across a variety of 

body structures. This is important in understanding the relationship between global 

coherence, emotional stability, and optimal performance. Whatever the mechanisms that 

enable synchronous activity in distant cell assemblies turn out to be, it is evident that input 

from the core to the brain impacts the thalamus ' activity and its capacity to synchronize 

cortical activity. The procedures that are accountable for the synchronization of remote 

cells in the brain are even more complex as there are local and global synchronization 

levels as well as interactions at local and global level. 

 

1.5     Motivation 

It is estimated that increased blood pressure is causing 7.5 million fatalities 

worldwide, about 12.8 percent of all fatalities. This represents 57 million life years 

adjusted for disability (DALYS) or 3.7% of total DALYS. Heightened blood pressure is a 

significant risk factor for heart disease and ischemic and hemorrhagic stroke. It has been 

shown that blood pressure levels are favorably and continually associated with the danger 

of stroke and coronary heart disease. For each 20/10 mmHg increase in blood pressure, the 

danger of cardiovascular disease doubles in some age groups, beginning as low as 115/75 

mmHg. Complications of increased blood pressure include heart failure, peripheral 

vascular disease, kidney deficiency, retinal hemorrhage, and visual impairment in relation 

to coronary heart disease and stroke. A decrease in cardiovascular complications is 

connected with the treatment of systolic blood pressure and diastolic blood pressure up to 

140/90 mmHg. Overall, in 2008, the overall incidence of increased blood pressure in 

adolescents aged 25 years and older was about 40%. Between 1980 and 2008, the 

percentage of the world's high blood pressure population, or uncontrolled hypertension, 

dropped modestly. However, the proportion of individuals with uncontrolled hypertension 

grew from 600 million in 1980 to nearly 1 billion in 20 due to population growth and 

ageing. In Africa, where it was 46 percent for both sexes coupled, the incidence of 
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increased blood pressure was highest across the WHO areas. Both males and females in 

the African area have elevated levels of increased blood pressure, with prevalence rates 

above 40%. For both sexes, the lowest prevalence of increased blood pressure was 35 

percent in the WHO Region of the Americas. The incidence of males in this area was 

greater than that of females (39% for males and 32% for females). Men have a 

significantly greater incidence of elevated blood pressure in all WHO regions than 

females. This distinction in the Americas and Europe was only statistically important. 

 

Figure 1.2:  Prevalence of blood pressure across the globe in different income 

categories 

The incidence of increased blood pressure was constantly high across countries 

revenue groups, with low, lower middle and upper middle nations all at levels of 

around 40% as shown in in Figure 1.2. The incidence was smaller in high-

income nations at 35%. Here based on the above understanding the research problem was 

framed with following objectives. 

1.6      Objectives of Research: 

 Collect the database of various modalities available. 
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 Modeling the system for the HRV using parameters like ECG, Human blood 

pressure and EEG (Neural Mass Model). 

 Integrating the setup for the measurement of ECG, Human blood pressure and EEG 

(Neural Mass Model). 

 Establishing data acquisition for the said system. 

 Establish the time domain analysis for the modalities. 

 Establish the frequency domain analysis for the modalities. 

 Exploring the relation with the Sympathetic and parasympathetic system of body. 

1.7 Thesis organization 

Chapter 2 discusses the various state of the art techniques used to measure human 

physiological parameters like arterial blood pressure EEG, ECG etc. Also literature 

survey is discussed on SSVEP paradigms. Finally, we conclude the chapter by 

mention the work done to achieve coherent state of body. 

Chapter 3 discusses about the design and implementation of a human arterial blood 

pressure meter based on auscultation and oscillometric principles. It talks about 

modelling Windkessel blood pressure model to find out which fusion gives the least 

standard deviation error.  It also covers the implementation of the Windkeseel model 

in detail. 

Chapter 4 discusses about the design and implementation of a human neural mass 

model which mimics the EEG activities of the brain 

 Chapter5 discusses about the design and implementation of a Heart Rate Variability 

model which mimics the ECG activities of the heart. It mentions about the integration 

of the above NMM, HRV and Arterial blood pressure model for coherence studies. 

Chapter 6 discusses about the design and implementation of a SSVEP based Brain 

Computer Interface. 

Chapter 7 discusses about the various conclusion made and the scope of future work 
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Chapter 2 

Related Work in the 

Reseach Area  
 

2.1 Human Physiological Monitors 

 

Measurement of human physiological parameters is not only useful for diagnosis but also 

for prognosis of a human being. This chapter discusses the various state of the art 

techniques used to measure various physiological parameters of the human body like blood 

pressure, respiration rate, blood-oxygen saturation, ECG, EEG and so on. Also a thorough 

literature survey on the use of SSVEP for BCI paradigms and for biometrics studies has 

been done. 

Finally, the chapter concludes with a literature review on the various multimodal 

biometrics based on human physiological traits.  

 

2.1.1 Pulse oximeter  

Measurement of blood-oxygen saturation (SpO2) is another method used to monitor the 

effects of abnormal ventilation. When air enters the lungs, it connects its oxygen in red 

blood cells to the hemoglobin. The oxygen is then transferred in arterial blood throughout 

the body. The proportion of hemoglobin in the blood that is saturated with oxygen is 

determined by a pulse oximeter using the red and infrared frequencies. This proportion is 

known as saturation of blood, or SpO2. The SpO2 level as well as the pulse rate and 

plethysmogram are displayed at the same time by an oximeter [61]. 
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2.1.2 Respiration rate monitor  

 

Respiratory rate is a vital sign used to monitor disease progression and an abnormal 

breathing rate is a significant indicator of severe disease. There is significant proof that 

respiratory changes can be used to forecast possibly severe clinical occurrences such as 

cardiac arrest or admission to the intensive care unit. The gold standard for monitoring 

exhaled air is still to position a thermistor in a nostril. A range of contact and non-contact 

breathing devices have been developed like, Noncontact respiratory monitoring methods 

include radar based respiration rate monitoring, optical based respiration rate monitoring, 

thermal sensor and thermal imaging based respiration rate monitoring [62]. The other 

contact respiratory monitoring methods are Electrocardiogram derived respiration rate, 

oximetry probe (SpO2), transcutaneous CO2 monitoring, chest and abdominal movement 

detection, airflow based methods and acoustic based methods [63]. 

 

2.1.3 Central Nervous System 

 

 

2.1.3.1 Functional Magnetic Resonance Imaging (fMRI) 

 

 It operates by detecting changes in blood oxygenation and flow in reaction to 

neural activity when a brain region is more active, it consumes more oxygen and raises the 

blood flow to the active region in order to satisfy this enhanced requirement. FMRI can 

dynamically detect changes in regional blood flow and concentration of oxyhemoglobin 

and reflect changes in brain activity with excellent spatial resolution through these 

measures [64] 

 

2.1.3.2 Magnetoencephalography (MEG)  

 

Magnetoencephalography (MEG) is the magnetic field measurement produced by 

neuronal electrical activity. It is normally mixed with magnetic resonance imaging to form 

magnetic source imaging. The technology that helped record these minute magnetic fields 
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is a superconductive detector of quantum interference that is like an extremely delicate 

magnetic field meter. The MEG is housed in a magnetically protected space to attenuate 

the internal magnetic noise. Magnetometers and/or gradiometers are the real sensors that 

record magnetic fields. Without distortion, MEG fields pass through the head. This is a 

major benefit of MEG over electroencephalography. MEG offers a high resolution in space 

and time [65-66]. 

 

2.1.3.3 Electroencephalography (EEG) 

 

Human brain is made up of millions of neurons that play a significant role in 

regulating the human body's conduct towards internal / external motor / sensory 

stimulation. These neurons are going to behave as carriers of data between human body 

and brain. It is possible to understand cognitive brain conduct by analyzing either signals 

or brain pictures. In terms of motor and sensory conditions such as eye movement, lip 

motion, memory, attention, hand squeezing, etc., human behavior can be visualized. These 

states are associated with particular frequency of the signal that helps to comprehend the 

functional behavior of complicated brain structure. Electroencephalography (EEG) is an 

efficient way of obtaining brain signals that corresponds to different states from the surface 

of the scalp [67-68]. These signals are usually classified as delta, theta, alpha, beta, and 

gamma based on the range of signal frequencies from 0.1 Hz to over 100 Hz. 

2.2 Cardiovascular related Monitors for Human Blood Pressure 

There are two approach to measure the blood pressure in human subject. The 

invasive and non-invasive measurement.   

2.2.1 Arterial Blood Pressure 

Arterial pressure measurement is a compulsory step in evaluating the 

hemodynamics of patients as it provides main data on cardiovascular system efficiency 

and tissue perfusion. Direct intra-arterial pressure measurement invasive blood pressure is 

regarded the gold standard in critically ill patients and in patients experiencing high-risk 

and significant surgery. The option to invasive blood pressure is the (oscillometric) non-

invasive (NIBP) system [69-70]. However, NIBP measurement is not continuous and this 

technique is expected to be less accurate than the invasive one during hemodynamic 
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instability, severe hypotension, under conditions of increased arterial stiffness and in obese 

patients.  

2.2.1.1Invasive blood pressure measurement 

Arterial blood pressure through an arterial line is most correctly assessed 

invasively. Invasive intravascular cannula arterial pressure measurement includes direct 

arterial pressure measurement by putting a cannula needle (generally radial or brachial) in 

an artery as shown in in Figure 2.1.It is necessary to connect the cannula to a sterile, fluid-

filled device linked to an electronic pressure transducer. The benefit of this scheme is the 

constant beat-by-beat monitoring of pressure. A brief, parallel-sided cannula made up of 

teflon or polyurethane, like the radial artery, is transmitted into a non-end artery. The 

cannula is connected to a system of tubing that offers a steady saline infusion. The 

pressure waveform is transferred to a diaphragm in reaction to the stress through the fluid 

within the infusion tube. The displacement is then converted to an electrical signal by a 

transducer. The invasive BP measurement method is generally limited to a hospital 

environment and has the inconvenience of complexity, patient risk, and inconvenience. 

 

Figure2.1: Invasive blood pressure measurement via a catheter or cannula 
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2.2.1.2  Non-invasive blood pressure measurement   

2.2.1.2.1 Palpatory 

Alternatively, several non-invasive BP estimation techniques that are safer, faster, and 

involve less knowledge have been created. The methods of non-invasive BP estimation are 

either manual or automated. This technique does not have the disadvantage of being able 

to assess diastolic pressure. These are the two popular BP estimation manual techniques. In 

both manual techniques, a sphygmomanometer consisting of an inflatable cuff and a 

manometer is used, traditionally filled with mercury. The inflatable brace is put at the 

same height as the core around the upper arm of the subject. The cuff is inflated so that the 

artery is totally occluded to the supra-systolic pressure.  

 

Figure2.2: Non-Invasive blood pressure measurement via palpitation method 

The cuff is then released slowly. The method of palpation is shown in Figure. 2.2. A 

qualified examiner palpates the radial pulse at the neck of the subject in the palpatory 

technique [71-72]. During inflation, the stress at which the pulse falls and then reappears 

during deflation will be the SBP. Palpation is used only in emergency situations and the 

DBP and MAP cannot be estimated. 
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2.2.1.2.2 Auscultation (Korotkoff sounds) 

The auscultative method was first described by the Russian physician "Korotkoff" in 1905 

[73]. The cuff is inflated to a point above arterial pressure in this technique (as stated by 

pulse obliteration). The stress at which sounds generated by the arterial pulse waves 

(Korotkoff sounds) appear and vanish again as flow through the artery resumes is 

mentioned as the cuff is gradually deflated. The first Korotkoff sound's appearance is the 

highest pressure produced during each heart cycle: the systolic pressure. The pressure level 

at which the sounds permanently vanish when the artery is no longer compressed and the 

blood flow is fully restored is the resting pressure between the heart contractions: the 

diastolic pressure. As the pressure is reduced during deflation of the occluding cuff, the 

Korotkoff sounds change in quality and intensity. The five phases of this change are 

characterized as follows:  

Phase 1: First appearance of clear, repetitive, tapping sounds. This coincides 

approximately with the reappearance of a palpable pulse. 

Phase 2: Sounds with the quality of an intermittent murmur are softer and longer.  

Phase 3: Sounds become louder and crisper again.  

 Phase 4: Muffled sounds, less separate, softer sounds. 

 Phase 5: Sounds totally disappear. 

The pressure at which the sounds first appear (Phase 1) corresponds to the systolic 

pressure, sound disappearance (Phase 5) best corresponds to diastolic blood pressure and 

also better correlates with intra-arterial pressure [74,75]. If an auscultative gap exists, the 

identification of systolic blood pressure by palpatory technique enables one prevent a 

reduced systolic reading by auscultative technique. 

Zhi Zhang et al [76] introduced a smartphone-based method to check the precision of 

BPMs. During readings of electronic oscillometric BPMs, Korotkoff sounds were gathered 

concurrently using a stethoscope head under a smartphone-connected cuff, and an App 

called AccutensionStetho could then be used as a reference for an auscultatory BP reading. 
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Next, differences were identified in BP between the various BPMs and AccutensionStetho. 

The precision could differ in the same person if, under distinct physiological 

circumstances, the BP values differ, which requires regular validation. The limitation of 

this research was that no study was done to verify whether the accuracy obtained by the 

oscillometric method was influenced by the deflation rate. However, although a slow pace 

of deflation in this research appeared to contribute to the precision of the BPMs. The 

amplitude of Korotkoff sounds was evaluated in one of the research works to give an 

understanding of the nature of the arterial wall as shown by a reduction in amplitude in 

elderly people compared to younger people and the quantity of blood flowing through the 

artery as shown by the greater amplitudes found in men compared with females [77].In 

order to standardize the values of the Korotkoff sounds amplitudes for healthy individuals 

in each category-young males, young females, old males and old females-a study with a 

larger sample size can be taken up. 

Another researcher quantitatively evaluated the variety of Korotkoff sounds during BP 

measurement from above systole to below diastole, as well as the variability of Korotkoff 

sounds within the subject between repeats [78]. To classify whether stethoscope sounds 

could be recognized as Korotkoff sounds (KorS), a deep learning based CNN technique 

was created and implemented at beat-by-beat stage. The author has claimed that it was a 

first study to use the CNN technique to evaluate the variety of Korotkoff sounds during BP 

measurement. Subjects with a higher heart rate may result in mistaken outcomes. 

Therefore, it is necessary to develop more sophisticated signal processing strategy to 

prevent its potential impact at higher heart rate. In addition, there was no investigation into 

the efficacy of the CNN technique on certain particular cardiovascular patients, such as 

patients with ectopic beats and atrial fibrillation, to verify its efficacy. The authors looked 

at quantifying the impacts of cuff stress and stethoscope position on the measured features 

of the KorS waveform in the study work [79]. Under most conditions, the stethoscope 

above the artery (m1) produced the largest amplitude of RMS intensity and the shortest 

high-level duration, whereas the stethoscope at the opposite location of m1 produced the 

smallest amplitude of RMS intensity. The stethoscopes below the center of the cuff always 

generated KorS recordings with higher intensity amplitude and shorter high-level duration 

in terms of the impact of longitudinal position. Their research quantified and presented 
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scientific evidence that cuff stress, longitudinal and circumferential positions of the 

stethoscope are significant variables that affect the features of the KorS waveform. No 

comparative trials were conducted to explore the distinctive waveform distinction between 

the cuff microphones and the cuff. A computerized data acquisition and analysis scheme 

was developed by Yuqi Wang et al to provide observers with more objective information 

about an auscultatory measurement so that adequate information can be accessible to 

create measurements with higher prospective objectivity and precision [80]. Their system 

could obtain and store Korotkoff sound, cuff pressure, and oscillometric pulse signals as 

well as the sphygmomanometer picture, and it also showed the waveforms of the three 

signals and the sphygmomanometer video while playing Korotkoff synchronous sounds. 

Due to this scheme, observers can use the visual auscultation technique to create their 

readings, i.e. by observing these waveforms instead of the sphygmomanometer while 

listening to synchronized Korotkoff sounds. The scheme was validated under the 

International Protocol (IP). No modern digital signal processing algorithms have been 

implemented to improve the accuracy of the system. 

 

Figure2.3: Non-Invasive blood pressure measurement via PTT 

2.2.1.2.3 Oscillometric method 

This method utilizes manometer or sensor appearance and disappearance of 

oscillation. The word NIBP is often used to define oscillometric surveillance devices 

(automated electronic blood pressure monitoring devices) for non-invasive blood pressure. 
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Charles Babbs has developed a mathematical model integrating artery anatomy, 

physiology, and biomechanics, which predicts cuff pressure oscillations generated by the 

oscillometric technique during non-invasive blood pressure measurements. In his work he 

has explored the fundamental processes that contribute to a model-based algorithm for 

correctly deducting systolic and diastolic pressures from cuff pressure oscillations in the 

presence of varying arterial rigidity or pulse pressure [81]. Here, future proof of real-world 

precision will involve information comparing human oscillometric and intra-arterial 

pressure over a variety of test circumstances including variable cuff size, arm diameter, 

cuff tightness, cuff deflation rate, etc. In another research study, the author [82] has 

suggested a novel strategy on information corrupted with motion artifact to estimate SBP 

and DBP using variable feature ratios derived from oscillometric waveform envelope 

characteristics. An automatic algorithm was suggested to remove outlier points before the 

curve fitting method based on modifications in the oscillometric pulses relative to their 

corresponding neighboring pulses. Though there was an improvement in the SBP in the 

mean and standard deviation with respect to the reference system, negligible improvement 

was accomplished in the estimation of DBP. One researcher has used Bayesian method for 

fusing of various oscillometric estimation algorithms‘ in order to achieve more accurate 

and stable results [83]. Though the author has claimed improved accuracy no validation 

has been done as suggested by AAMI. Soojeong Lee has proposed a profound learning-

based regression estimator with asymptotic methods and provides a technique that can 

reduce uncertainty for oscillometric blood pressure (BP) measurements using the Monte-

Carlo and bootstrap approach. Although the former is used to assess SBP and DBP, the 

latter tries to determine SBP and DBP confidence intervals (CIs) based on oscillometric 

BP [84]. Clinical testing was done on a small subject population and protocols suggested 

by AAMI/ANSI were not followed. In another research work the author [85] has 

introduced a Hammerstein–Windkessel model to represent the central blood pressure 

system. It is a very simple representation capturing the low frequency dynamics of the 

cardiovascular system which was extended by an amplitude modulation representing the 

inflating and deflating cuff. A Kalman filter estimated the time varying Fourier series 

representing the Windkessel model‘s output signal. The Fourier coefficients of this output 

signal was then used in a next step to drive a logistic regression analysis. He showed that a 

logistic regression analysis based on the signal features of the oscillometric signal can 
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detect hyper and hypotension and correct the blood pressures accordingly. Validation was 

not done as suggested by AAMI/ANSI protocol. 

2.2.1.2.4 Pulse Transit Time and PPG 

One of the most commonly used methods for acquiring BP is Pulse Transit Time 

(PTT) [86] is shown in Figure 2.4. PTT is generally defined as the time taken to propagate 

from the heart to the peripherals of the body by the heart beat pulse. In most cases, to 

measure this parameter, researchers use signals from Electrocardiograph(ECG) and 

Photoplethysmography (PPG). One ECG sensor and one PPG sensor or two PPG sensors 

can be used to measure PTT [86,87].Proper ECG signal recording needs the positioning of 

at least three electrodes at three distinct body points. Motion artifacts and non-contact of 

the electrode with the skin surface and the long-term recording cables of the electrode may 

add noise to the signal, which are the limiting factors of BP estimation with this method 

[88,89].Two separate hardware is required at two different points in the body when 

recording two PPG signals to estimate BP. Therefore, it estimates BP using only one PPG 

signal. Because of the elasticity of the human blood vessels, the diameter of the vessels 

and then the quantity of blood inside them shifts when the pressure pulse moves through 

them [90]. 

 

Figure2.4: Non-Invasive blood pressure measurement via Pulse Transit Time 

Plethysmography is a technique to record changes in blood volume per heart drop in the 

body, whereas PPG is a non-invasive optical technique for measuring changes in blood 
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volume per pulse as shown in Figure 2.3 [91].In this technique, a Light Emitting Diode 

(LED) emits light into a portion of the body's tissue and changes in light absorption are 

evaluated over a period of time using a photo detector [92]. If the blood volume 

modifications are measured correctly, PPG has a wave-like shape and its frequency would 

be the same as the heart's operating frequency [93].It is possible to divide the PPG signal 

into two components. The upper portion of the signal has to do with heart or systole 

contraction while the bottom of the signal has to do with heart growth or diastole. There is 

a time-split variable in the PPG signal between systolic and diastolic cardiac stages called 

dicrotic notch. The dicrotic notch is not detectable in many recorded specimens of PPG 

signals from patients with hypertension. Fig. 1(a) demonstrates an instance of a PPG signal 

and its significant points belonging to a healthy individual, while Fig. 1(b) shows the 

hypertension patient's PPG signal. In this research, if detectable at the three points of 

systole peak, dicrotic notch, and diastolic peak, a PPG signal is called suitable. Otherwise, 

inappropriate is called the signal. 

2.2.1.2.5 Other alternative methods  

Several automated methods for ongoing and home BP surveillance have been created as an 

option to the manual BP estimation methods. These methods can be divided into two 

kinds: (i) ongoing recording methods that provide beat-to-beat arterial BP differences, and 

(ii) sampling methods that estimate only SBP, DBP, and sometimes MAP in less than one 

minute [94]. Tonometry [95] and vascular unloading [96] are the most prevalent ongoing 

methods. These methods are of low precision and involve frequent calibration. Automated 

auscultative [97], Doppler ultrasound sphygmomanometry[98] and oscillometry [99],[ 

100] are the most popular sampling techniques. Among these methods, oscillometry is the 

most popular for SBP, DBP, and MAP assessment as it can be applied comparatively 

readily in automated BP measuring devices [99,100,101]. 

2.3 Human Blood Pressure Meter Survey 

Most of the available non-invasive measurement of blood pressure systems are 

either based on oscillometric signals or auscultatory signals or fusion of both the 

signals.Both these methods of blood pressure measurement are complementary and 

provide enough information to accurately measure the pressure if both the devices are 
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associated together. Some of the related works conducted based on the oscillometric and 

auscultatory methods are listed in the follows: The previous literature has shown more 

attention towards the comparison of oscillometric and auscultatory methods. For instance, 

Heinemann et al. performed a comparison of these two methods in computing the systolic 

and diastolic pressure. The observed output results have indicated the poor estimation by 

the oscillometric method in extracting systolic and diastolic pressure [102]. Further, the 

lower blood pressure measurement is estimated by the oscillometric method compared to 

the auscultatory method of measurement using mercury manometer[103,104]. Several 

other studies have shown more focused on measuring blood pressure measurement in 

hemodialysis patients[105]. However, the interesting results have been obtained under this 

study, which has indicated the higher coefficents of variation in auscultatory method over 

the 23 hours of measurement.Although oscillometric and auscultatory methods are well 

studied in the literature, despite these facts, there is limited evidence that can 

experimentally validate the significance of one of this method over the other method. We 

will discuss in brief, some of the pros and cons of both the methods in measuring the 

pressure when it comes to the clinical applications. For instance, the auscultatory method 

can be implemented using a simple mechanical system like a sphygmomanometer which 

gives a more accurate detection of systolic and diastolic pressure based on the appearance 

and disappearance of ‗Korotkoff‘ sounds. But this method performs poorly in the presence 

of artifacts such as movements, exercise, talking, background noise, difficulties in the 

signal analysis due to physiological variations of the ‗Korotkoff‘ sound patterns or low 

Signal-To-Noise-Ratio (SNR) due to ambient temperature change, alcohol/nicotine 

consumption, bladder distension, etc. [106]. On the other hand, the oscillometric method 

has shown great potential to measure blood pressure, under the circumstances when the 

‗Korotkoff‘ signal strength is poor. However, the major drawback of this method is that it 

is very sensitive to movements due to the bandwidth of signals, so the arm must be 

immobile and also the accuracy of systolic and diastolic blood pressure is highly 

dependent on the algorithms used for the estimation [107]. Further, the accurate 

measurement in the different categories of patients such as Normal, Hypertension, 

Hypotension is always a challenging task, hence it is required to integrate information 

from both the methods to get an accurate measurement. 
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2.4 Heart Rate, HRV & RR measurement 

Computer modeling of a human physiologic system centered around the 

Autonomic Nervous System (ANS) is discussed. Autonomic nervous system is a control 

system that involuntarily controls the body organs. It consists of two major subdivisions 

Sympathetic and Parasympathetic system. Sympathetic system controls the body during 

emergencies, stress or exercise. It is known as the flight or fight mode. Parasympathetic 

system is responsible for basal autonomic activities like digestion, heart and respiration 

under normal conditions. It is also sometimes called as the rest or digest mode. The ANS 

usually consists of two major components Central Nervous System(CNS) and 

cardiovascular system which collectively generate body blood pressure indirectly dictated 

by the heart rate variability(HRV) of the ECG signals generated at the sinoatrial node (SA) 

of the heart. The HRV gives a reflection of how well the heart is performing. A flat HRV 

line will suggest that the subject is not being able to adapt to different external conditions 

whereas variability suggests that the heart is in a heathy state and is being able to adapt to 

according to the situation.  Here, we have developed CNS, Cardiovascular and ECG signal 

mathematical models and further present the interaction of them to demonstrate the 

sympathetic and parasympathetic signal of the ganglion which regulated the body 

physiology through the control of various organs. 

 

Figure 2.5: One Cardiac cycle 
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Figure 2.6: HRV over time of a healthy subject (Image Source: Heart Math Institute) 

A normal one-cycle electrocardiogram (ECG) signal consists of several waves, as shown 

in Figure 2.5. RR intervals show the variation between consecutive heartbeats. Heart rate 

variability (HRV) measurements analyze how these RR intervals change over time. The 

sinoatrial(SA) node and atrioventricular(AV) nodes are responsible for the repeated 

contraction of the heart. They are known as the pacemakers of the heart. The SA node is 

located in the upper wall of the right atrium. The firing rate of the SA node is usually 

around 60-100 action potentials per minute. The sympathetic nervous system(SNS) and 

parasympathetic nervous system(PNS) compete with each other to maintain overall 

sympathovagal balance. The PNS is dominant during state off rest or relaxation which 

generates an average heart rate of 75 beats per minute(bpm). This is comparatively lower 

than the SA node actual heart rate of about 107 bpm at 20 years to 90 bpm at 50 years [1]. 

The PNS can decrease the heart rate to as low as 20 bpm. 

Heart rate variation (HRV), a non-invasive technique used to assess the modulation of the 

autonomous nervous system on the cardiac sinus node, explains the oscillations between 

successive R-R intervals of electrocardiogram (R-Ri), (Figure 2.6). There is currently 

increasing interest in knowing the processes associated with HRV, its clinical usefulness, 

and modifications in its norms that may imply impairment of health. High concentrations 

of HRV indices are usually indications of effective autonomic processes that characterize a 

healthy person, while low or decreased HRV often demonstrate an autonomous 
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malfunction of the nervous system and may result in impairment of health. However, 

cardiovascular defects such as conductive illnesses and atrial fibrillation (especially in the 

elderly) can also generate elevated HRV. It is heavily related to enhanced mortality danger 

in this situation. Therefore, a clinical assessment of the topics with an electrocardiogram 

and thorough interpretation of it is essential before obtaining HRV. Therefore, a clinical 

assessment of the topics, followed by an electrocardiogram and thorough interpretation of 

it, is essential before obtaining HRV. Various cardiology studies have shown the 

significance of this technique as an instrument for assessing patients following cardiac 

surgery, myocardial infarction, ventricular dysfunction patients, arrhythmias, predicting 

sudden cardiac death and evaluating patients receiving therapeutic exercise intervention. 

The assessment of HRV as a predictor of danger of cardiac illness was also provided 

special significance. In patients with left ventricular dysfunction or heart failure, or with 

previous myocardial infarction, or bypass surgery, low HRV index values have been 

shown to be a powerful predictor of low probability of survival. Considering that 

disseminating the findings of these and other research using HRV as a technique of 

assessment is crucial to the growth of health care and that many outcomes are clinically 

important, it is essential that this technique is used correctly. Hemanth Kapu et al., 

presented a method to estimate Resting Heart Rate (RHR) by a PIR sensor system [108]. 

The PIR-based system is an effective and low-cost cardiac monitoring alternative. Here, 

they have estimated the RHR from the 2nd order derivative of the analog PIR sensor signal 

which exhibits an almost periodic behavior due to the heart beat. Since the waveform 

acquired from the PIR detector depict the heart activity, it may be necessary to monitor the 

variation of heart rate from the zero-crossings or peaks of the second-order derivative 

signal. Parham Nooralishahi et al. suggested a novel algorithm for estimating heart rate 

compared to algorithms that function well on stationary topics under well-controlled 

circumstances and considerably degrade their efficiency under the movements and 

variations in illumination of the subject [109]. It can also distinguish between a photograph 

of a human face and a real human face, which means it can detect and skip fake signals. 

The technique obtains ROIs using facial landmarks, then rectifies lighting based on the 

adaptive filter Normalized Least Mean Square (NLMS) and eliminates non-rigid 

movements based on standard deviation of the sections of the signal's set length. The 

method uses the technique of RADICAL to obtain autonomous subcomponents. The heart 
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rate measurements for each subcomponent are predicted to locate the one with the largest 

magnitude by analyzing the frequency signal. A two-steps data fusion method is also 

introduced to combine current and previous measured heart rates to calculate a more 

accurate result. Researchers have also proposed a novel HR estimate from the PPG signal 

during treadmill practice using cascade hierarchical structure and adaptive filter parallel 

combinations [110]. For each window, they have estimated the HR through the PPG signal 

and the HR received from the ECG signal are contrasted and the estimated HR from the 

PPG signal is found to be precise with regard to the HR received from the ECG signal. 

Their proposed design of combining two distinct pairs of adaptive filters is extremely 

robust and has shown an enhanced HR estimation and monitoring efficiency. The 

efficiency of their suggested algorithm to the distinct situations has not been evaluated.A 

novel and low-complex PPG peak detection algorithm for HR estimation has been 

suggested in another research [111]. Results indicate that their technique can be a useful 

contribution to solid approaches that can dynamically adjust their peak detection technique 

to conditions where the PPG signal amplitude is anticipated to reduce. The restriction of 

their work was that they have not tested in order to conduct a strict validation under a 

broad spectrum of circumstances. Norihiro Sugita has suggested a new technique for 

measuring heart rate variability using a compact RF motion sensor that is tiny enough to fit 

in the shirt pocket of a user [112]. They used an algorithm to optimize a digital filter based 

on the signal's energy spectral density to extract a heart rate-related element from the 

sensor signal. During the resting state, they measured signals from the RF motion sensor 

for 29 subjects and their heart rate variability was estimated from the measured signals. A 

correlation coefficient estimated from their suggested technique between true heart rate 

and heart rate was 0.69.However, some improvements were needed for stable 

measurement, such as regulating the direction of sensing. 

2.5 Brain Wave Monitors for EEG 

A novel pin-shaped dry electrode for electroencephalography recording was 

provided in a document released by Kun-Peng Gao et al. To obtain low impedance and 

smooth characteristics, the pins on dry electrode were manufactured from carbon fibers 

[113].The tips of the pins were further processed to carbon fiber bristles to decrease the 

contact impedance between the skin and the dry electrode and could fill the unevenness on 
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the scalp. It could also achieve bigger contact area and better convenience with tiny 

pressure compared to the traditional pin tip without bristles. The characterization findings 

suggested a comparatively small skin-electrode contact impedance for the smooth dry 

electrodes with carbon fiber. In order to assess the electrode efficiency for EEG recording, 

the alpha rhythms from auditory evoked potential and steady-state visual evoked potential 

were evaluated. Moreover, the influences of dry electrode on skin showed there was no 

breakage and movement.Guger C, Krausz et al. have shown that dry electrodes with a 

P300 BCI can deliver similar output to gel electrodes [114]. This is a significant result 

giving both the promise and prominence of dry electrodes and P300 BCIs. The dry 

electrode decreased preparation time but may be more susceptible to artifact motion and 

electrostatic ambient charges. Despite elevated impedances, the dry electrode system 

enables excellent efficiency by using various gold-coated pins in each electrode and an 

integrated amplifier within each electrode. The average P300 amplitude peak was reduced 

and greater signal drifts were also shown below 3 Hz than electrodes based on gel. This 

may cause issues with other BCI types. 

P. Kidmose et al. intended an over the-ear EEG and compared the standard on-

scalp EEG rigorously [115]. This is accomplished over steady-state and transient 

paradigms and across a population of topics for both auditory and visual evoked responses. 

The corresponding steady-state answers were assessed in terms of signal-to-noise ratio and 

statistical significance, while the transient response qualitative analysis is conducted by 

considering large-scale event-related waveforms (ERP).The results of their research have 

shown conclusively that the ear-EEG signals are in line with standard EEG collected from 

electrodes positioned over the temporal region in terms of the signal-to-noise ratio. Ear-

EEG provides a non-invasive and discrete way to record EEG and has the potential to be 

used in real-life environments for long-term brain monitoring. While ear-EEG recordings 

were earlier recorded using moist electrodes, Kappel et al. created and assessed ear-EEG 

dry-contact electrodes in their research [116]. They created a fresh ear-EEG platform to 

accomplish a well-functioning dry-contact interface. Their platform included actively 

protected and nanostructured electrodes integrated in a soft-earpiece that was 

individualized. The prototype built by the dry-contact ear-EEG platform reflects a 

significant user-friendly technological development of the technique as it eliminates the 

need for gel in the electrode-skin interface. Xiao Xing et al., introduced a high-
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performance SSVEP-based BCI scheme using dry claw-like electrodes [117]. The study 

suggested dry electrode decreases the time required for system preparing and their 

flexibility increases wearing convenience and enhances user experience. The material as 

well as the dry electrode structure were elaborately constructed and adapted by them. It 

can comfortably be worn on the hair-covered head region and the electrode pins can 

readily go through the hair and touch the scalp. The electrode impedance is stable and the 

electrode is therefore capable of recording reliable and high-quality signals for subsequent 

signal processing. By fully considering the individual differences of SSVEPs, the adopted 

TRCA-based identification algorithm can attain high precision with brief information. By 

mixing these two features, their current dry-electrode-based BCI scheme achieves high 

classification precision (93.2 ± 5.74 percent) and elevated ITR (92.35 ± 12.08 bits / min) 

using a BCI paradigm of 12 classes. Chi-Chun Lo et al., have suggested that a new non-

contact control system for disabled patients medical care and applied successfully in the 

hospital [118].Based on the benefit of the brain-computer interface method, the disabled 

patients brain can use the suggested scheme to regulate the hospital's nurse emergency call 

system, lights, air conditioners and TV sets without manual operation. A tablet is used in 

their study for the visual stimulus, and a specific coding scheme is proposed to provide the 

property of asynchronous operation to enhance the practicality of the proposed system and 

the convenience for use.In addition, this research also designs and implements a wearable 

EEG procurement device with non-contact dry EEG electrodes. With the benefits of tiny 

quantity, light weight and simple set-up in the suggested EEG sensor, the suggested 

scheme can readily be used in the hospital to measure EEG signals in the hairy site without 

conductive gel. 

 

2.5.1 SSVEP Measurement  

SSVEP is a type of BCI technology with a high speed of transfer of data. Because 

of its nature, however, frequencies may be used as stimuli are scarce. A stimuli encoding 

technique is created by Xing Zhao et al. to fix this issue, which encodes SSVEP signal 

using the Frequency Shift Keying (FSK) method [119]. In the technique used by them, 

each stimulus is governed by an FSK signal containing three distinct frequencies 

representing respectively "Bit 0," "Bit 1" and "Bit 2." Unlike common BFSK in digital 

https://www.frontiersin.org/people/u/384122
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communication, the unique identifier of stimuli in binary bit stream form was composed 

by "Bit 0" and "Bit 1," while "Bit 2" indicates the end of a stimulus encoding. In order to 

study the function of sensory processing in the visual cortex, A. Zhigalov et al. have 

explored the feasibility of fast frequency tagging [120]. Our findings indicate that it is 

actually feasible to evaluate reactions at the tagging frequencies and that spatial attention 

modulates these reactions. The alpha energy modulation was inversely related to the 

gamma energy modulation. These findings provide significant proof of principle that fast 

frequency tagging can be used to assess visual cortex neuronal excitability in a stimulus-

specific way to explore spatial attention. In addition, despite the frequency tagging, the 

dynamic properties of the alpha band oscillations have been preserved. Rapid frequency 

tagging is extremely advantageous for standard reduced frequency (< 20 Hz) tagging as it 

does not generate a noticeable flicker and the quicker frequencies also enable for better 

temporal resolution investigation of the tagged reaction. Alexander M. Dreyer et al., have 

attempted to enhance SSVEP‘s user experience by eliminating fatigue owing to flickering 

stimuli exposure [121]. To decrease this, the authors suggested high-frequency stimulation. 

They have adjusted auditory domain FM stimulation, where it is frequently used to evoke 

steady-state reactions, and compare the EEG and perceptibility scores of cognitive flicker. 

With rising FM carrier frequencies, subjective perceptibility ratings decline, while peak 

amplitude and signal-to-noise ratio (SNR) stay the same. They have adapted the FM 

stimulation of the auditory domain, where it is often used to evoke steady-state responses 

and compare the EEG and cognitive flicker perceptibility scores. Subjective perceptibility 

ratings decrease with increasing FM carrier frequencies, while peak amplitude and signal-

to-noise ratio (SNR) remain the same. In another research, the scientists explored the 

correlation between EEG-based measures for the normal behavioral evaluation [122]. 

 

 As their stimulus technique they used six gray-level natural pictures; in six stages 

of degradation produced by coding the pictures with the HM10.0 high-efficiency video 

coding (H.265/MPEG-HEVC) test model using six distinct compression rates. In fast 

alternation with the initial pictures, the degraded pictures were displayed. The existence of 

SSVEPs in this environment is a neural indicator that objectively shows the neural 

processing of the modifications in quality caused by video coding. They tested two distinct  
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techniques of machine learning, respectively, to classify such potentials based on brain 

rhythm modulation and time-locked elements. Their findings indicate elevated accuracy 

over the limit of perception of quality modifications in the classification of the neural 

signal. Accuracies in the standardized degradation category rating quality assessment of 

the same group of pictures were significantly associated with the mean opinion results 

provided by the respondents.  

 

Their design could have been further enhanced by selecting subject-specific 

frequencies of stimuli, increasing the amount of quality concentrations evaluated, and 

tracking the alpha rhythm level during the experiment. In dealing with covariance matrices 

as classification characteristics, Emmanuel K. Kalunga et al. explored the efficiency of 

Riemannian geometry [123]. They created a new MDRM-based algorithm, improved by 

class probability and curve direction in the covariance EEG signals room, for a 4-class 

brain computer interface on a SSVEP classification assignment. Existing covariance 

matrix estimators have been explored and their robustness has been evaluated on multi-

channel SSVEP signals to guarantee that the matrices collected are precise information 

covariance estimates, are well conditioned, and the positive-definite property is verified. 

They discovered the Schäfer shrinkage estimator to be the best because with the MDRM 

algorithm it yielded the greatest rating precision. Another research group attempted to 

explore whether a practical SSVEP speller could be created in the high-frequency range 

with Repetitive Visual Stimuli [124]. Using five flickering visual stimuli, they attempted 

to use an asynchronous high-frequency (35–40 Hz) speller for typing in Persian language. 

Despite very elevated general typing speed of 6.9 chars / min, average precision of 98.3 

percent, and information transfer rate of 64.9 bpm for eight of the respondents, the other 

six respondents had severe problems with spelling the scheme and were unable to finish 

the typing experiment. According to some prior research, the findings of their research 

proposed that elevated illiteracy rates in high-frequency SSVEP-based BCI schemes. 

Perception of illusory contours have shown to be a consequence of neural activity related 

to spatial integration in early visual areas. Candidates for such filling-in phenomena are 

long-range horizontal connections of neurons in V1/V2, and feedback from higher order 

visual areas. To get a direct measure of spatial integration in early visual cortex, 

researchers have presented two differently flickering inducers, which evoked steady-state 
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visual evoked potentials (SSVEPs) while manipulating the formation of an illusory 

rectangle [125]. As a neural marker of integration they have tested differences in 

amplitudes of intermodulation frequencies i.e. linear combinations of the driving 

frequencies. These were significantly increased when an illusory rectangle was perceived. 

Increases were neither due to changes of any of the two driving frequencies nor in the 

frequency that tagged the processing of the compound object, indicating that results are not 

a consequence of paying more attention to inducers when the illusory rectangle was 

visible. 

 

2.5.2 Using BCI paradigms for Biometric Applications          

Table 2.1: Depicting literature survey of various BCI paradigms based biometrics   

Author 
Subjects Electrodes Stimulus Sessions CRR(%) 

Su et al.[131] 
40 1 Rested with 

eyes closed 

One 97.5 

Lee et al.[132] 
4 1 Rested with 

eyes closed 

One 98.33 

Rocca et al.[133] 
108  20 Resting with 

eyes open and 

eyes closed 

One 100 

Singhal et al.[134] 
10 1 P300 VEP One 78 

Yearn et al.[135] 
10 18  P300 VEP Two 14.5 

Palaniappan 

et al.[136,137] 

10 61 P300 VEP One 95 

Marcel et al.[138] 
9 8 Motor Imagery One 92.9 

Min et al.[139] 
20 32 SSVEP One 98.9 
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2.5.3Literature survey of various physiological traits of human body used for  

         biometrics. 

In one of the earlier studies, Yogendra Narain Singh et al. [ 126] developed a multimodal 

biometric system comprising of face, fingerprint and ECG features. Their proposed FT-

EER score level fusion scheme performed better with an EER of 0.22% as compared to the 

FT-MSD score fusion scheme attained an EER of 0.98%. The ROC curves of the fused 

ECG signal, face and fingerprint biometrics for the FT-EER and the FT-MSD fusion 

techniques showed that there was an improvement in the authentication rates of the 

biometric system in comparison to the unimodal systems. Marcin D. Bugdol et al. [127] 

has proposed a multimodal behavioral biometric system that involves the feature level 

fusion of ECG and sound signals. They have utilized heart rate variability (HR)features 

extracted from ECG beats and Mel-frequency cepstral coefficient and the voice timbre as 

features extracted from voice. These features are then fed individually to the Support 

vector machine classifier after feature reduction using principal component analysis. 

Average (arithmetic) identification accuracy was 77% using k- Nearest Neighbor as their 

classifier. In one of the research work, Belgacem, Noureddine, et al. [128] implemented a 

multimodal biometric system by fusion information from ECG and EMG to obtain a much 

more reliable biometric by the extra information give n by the EMG recordings. They 

extracted the spectral coefficients as features and used an optimum path classifier for 

classification. They achieve an accuracy of 99% for 120 subjects. More recently Mohamed 

Hammad et al. [129]have fused ECG and fingerprint information to identify human beings. 

They have generated biometric templates for both the biometric traits using a 

convolutional neural network and also have applied a cancellable biometric to secure the 

templates. Q-Gaussian multi support vector machine for authentication and fusion with an 

accuracy of 99.9%. In another recent work, KunSu et al. [130] developed a multimodal 

biometric system based on finger vein and ECG signals. They have made use of 

discriminant correlation analysis for the fusion of the two modalities. They achieved a 

Genuine Acceptance Rate of 94.86 % at False Acceptance Rate of 1% and an Equal Error 

Rate is 1.27 using sum rule-based fusion method which is a reflection of the 

complementary nature of the two biometrics. Figure 2.7 shows various biometrics based 

on physiological and behavioral traits of human body. 
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Figure 2.7: Different biometric traits at physiological and behavioral levels 

2.6 Coherence in Physiology of Body  

The study by Steinhubl SR examined inter-individual variations to meditation 

through continuous monitoring of EEG, blood pressure, heart rate and its variability 

(HRV) in novice and experienced meditators. They were able to show that meditation led 

to significant, measureable EEG changes even in individuals just beginning a meditation 

practice. The most unique finding was that they found that meditation was associated with 

a small, but statistically significant decrease in blood pressure in a normotensive 

population [140].In a study by Sze JA et al. it bridges two important areas of emotion 

Physiological Behavioral 
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research, response coherence and body awareness. Using a within-individual approach for 

assessing coherence, their hypothesis was supported that body awareness training is 

associated with greater coherence between subjective emotional experience and heart 

period during film-induced emotional episodes. Moreover, they found that this association 

was strongest in those whose training emphasizes visceral awareness (Vipassana 

meditation), intermediate in those whose training emphasizes somatic awareness (modern 

dance and ballet), and weakest in those who have neither kind of training. These findings 

provided a more nuanced support for theories of emotion that posit that emotions help 

organize disparate response systems and for those that posit an important role for body 

sensations in the construction of emotional experience [141].Musicology is a branch very 

mush used to balance the sympathetic and parasympathetic activities of the body. The aim 

of such study is to evaluate the effects of music on autonomic nervous system activity in 

orthostatic tolerance after exercise. It is found that music increased parasympathetic 

activity and attenuated the exercise-induced decrease in parasympathetic activity without 

altering the orthostatic tolerance after exercise. Therefore, music may be an effective 

approach for improving post-exercise parasympathetic reactivation, resulting in a faster 

recovery and a reduction in cardiac stress after exercise [142]. 
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Chapter 3 

Exploring Design of  

Human 

BloodPressure Meter  

3.1 Human Blood Pressure Meter System  

Arterial blood pressure (ABP) is an important biomarker of the dynamics of blood flow 

and also organ perfusion. Pressure builds up as blood is ejected from the left ventricle into 

the aorta and other branching arteries. This pressure knows as the mean arterial pressure is 

governed by factors such as cardiac output and total peripheral resistance. The primary 

function of the heart is organ perfusion i.e. to make sure the important organs receive an 

adequate amount of blood to function. The heart accomplishes this job by contracting the 

heart muscle such that blood is ejaculated from the left ventricle into the aorta via the 

aortic valve and also from the right ventricle to the pulmonary arteries via the pulmonic 

valve. It has been seen that over time the amount of blood which is pumped from the right 

and left ventricle tends to be the same. This is known as the stroke volume and is 

expressed as ml per beat or in liters per beat. Cardiac output is the product of stroke 

volume and the beats per minute. It is expressed in ml/minute or liters per minute. 

Systemic vascular resistance (SVR) also known as total peripheral resistance (TPR) is the 

collection of systemic vasculature. Vasoconstriction and vasodilation increase and 

decrease SVR respectively. 
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3.2 Modeling Human Blood Pressure  

3.2.1 Windkessel Arterial Blood Pressure(ABP)  

The two elements lumped the Windkessel model developed by Otto Frank explained the 

dynamics of blood flow in the human arterial system [143]. The heart is considered as a 

current source which is replicated by a lumped resistance which represents the arterial 

resistance and compliance represents the elasticity of the arterial system parameters. But 

there was a limitation with this model that it could not explain the aortic pressure in 

systole [144,145]. Hence a third element called the characteristic impedance was 

introduced to overcome this shortcoming and it linked the Windkessel model to 

transmission phenomena. The capability of an arterial wall to compress or expand to 

accommodate changes in pressure is necessary for the proper functioning of the heart. This 

ability of the arterial walls to distend is called arterial compliance. This is similar to the 

compressibility of the air pocket and it simulates the elasticity and extensibility of the 

major artery. The capacitor is analogous to the compliance of the blood vessel. The 

resistance emulates the systemic vascular resistance to arterial blood flow.  

N. Stergiopulos et al. found out that three-element Windkessel acted as a perfect load for 

isolated heart studies, but did not correctly estimate the total arterial parameters like the 

aortic characteristic impedance and total arterial compliance [146]. To solve this 

problem, they added a fourth element, the total arterial inertance to the Windkessel 

model. The inductance L represents the inertia of blood flow in the vascular system. They 

tested three and four-element Windkessel‘s that were tested against an extended model 

of the systemic circulation. The estimated lumped parameters were found to be within 

10% of the arterial system. Their four-element Windkessel model also fitted well in vivo 

studies. We have adapted their model in our study and the equivalent circuit is shown in 

Fig. 3.1(a), here qin represents the left ventricular stroke volume per beat, and the output 

stroke volume per beat is qout. As shown in Fig. 3.1(a), the first elastic chamber 

represents the aortic arch and C1 represents the lumped compliance of the proximal large 

arteries. The second elastic chamber represents the abdominal aorta and C2 represents 

lumped compliance of the distal muscular arteries. R represents the peripheral resistance. 

The blood column L, which connects the two cavities, represents the inertance of the 
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flowing blood. The pressures and volumes in chamber one and chamber two are given by 

p1, v1, p2, and v2, respectively.  

 The arterial blood pressure model developed is based on Windkessel‘s model [147]. 

Blood flow occurs due to a pressure gradient(p1-p2) across the length of the systemic 

vasculature. p1 is the pressure at the start of the artery and p2 is at the end.   

 

(a) 

 

(b) 
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(c) 

Figure 3.1 The Blood Pressure Modelling (a)Windkessel Model (b) Input Volume (c) 

Arterial blood pressure 

The Windkessel arterial blood pressure is described by the following set of equations: 
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The four element Windkessel model is shown in Figure3.1(a). The output arterial blood 

pressure waveform is shown in Figure 3.1(c) and the input volume to the model is shown 

in Figure 3.1(b) which is the left ventricular ejection in one cardiac cycle. 

The input qin is defined by the following equations: 
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(3.5) 

The maximum input amplitude is given by q0 with reference to the cardiac output; Tsys 

and Time represent the duration of left ventricle ejection and the cardiac cycle 

respectively. The time at which we get the maximum peak at systole is αTsyswhere α is the 

ratio that varies form 0.1to 0.8.CarOP is the cardiac output and the left ventricular ejection 

plot qin(t) in one heartbeat is shown in Figure 3.1(b). All the differential equations (3.1-3.5) 

were solved using Runge-Kutta4
th

 order method in MATLAB 2017. 

 

3.3 Block diagram of the proposed system  

This section describes the major system components and their significance in the 

development of our instrument. The developed pressure meter instrument is based on the 

oscillometric and auscultatory principle. Hence, before actually describing the 

instrumentation details, we will explain in brief, how systolic and diastolic pressure is 

obtained in the oscillometric and auscultatory principle. In the case of the oscillometric 

method, the cuff initially inflated above systolic pressure and then slowly starts to deflate 

until the systolic pressure is reached. Piezoresistive sensor detects the systolic pressure as 

soon as the oscillations start to appear due to the perturbation caused in the bronchial 

artery. The amplitude of oscillations increases and start to decrease as the pressure in the 

cuff starts to decrease due to deflation to match with brachial lower pressure. However, in 

this principle of measurement, it is always a difficult task to estimate the diastolic pressure 

due to a decrease in the amplitude of oscillations (Diastolic pressure is the lower arterial 

pressure at which the oscillations stop while the cuff pressure is deflated). Thus, diastolic 

pressure is then obtained from the Mean Arterial Pressure (MAP), i.e. the pressure at 

which the amplitude of the oscillometric signal is at its maximum (Figure 3.2). 
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Figure 3.2: Oscillometric and auscultatory signal during deflation of cuff pressure 
a
. 

Where, xaxis corresponds to time in sec and y axis corresponds to pressure in 

mmHg.a
www.accessanesthesiology.com 

On the other hand, in the auscultatory method, the process of cuff inflation and then 

deflation remains the same, but the measurement of systolic and diastolic pressure is based 

on the ‗Korotkoff‘ sounds. ‗Korotkoff‘ sound is a kind of sound that results due to the 

turbulence effect caused in the bronchial artery, when blood starts to flow through the 

pressurized bronchial artery, after the pressure in the cuff is released. However, the systolic 

pressure is indicated by the start of ‘Korotkoff‘ sound, while diastolic pressure is detected 

when ‘Korotkoff‘ sound is stopped after the pressure build due to the cuff is released. We 

employed the above standard protocol in our system to obtain systolic and diastolic 

pressure based on oscillometric and auscultatory principle. To compute pressure, the 

developed instrumentation device is subdivided into three main sections: Pneumatic 

section, Analog section and a Microcontroller unit (MCU). Figure 3.3 illustrates the block 

diagram of our developed pressure meter instrument and the developed system is shown in 

Figure 3.13. The details description of each of the sections from the block diagram is 

explained in the following subsections. 

http://www.accessanesthesiology.com/
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Figure 3.3: Block diagram of Blood Pressure Meter 

 

3.3.1 Pneumatic section 

 

The purpose of this section of the system is to maintain the cuff pressure above and 

below the systolic pressure and diastolic pressure respectively. We used CJP37-
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D06A1 motor (V voltage: 9 Volt DC, Current:100mA, Flow Rate: 2 LPM) as an air 

pump to inflate cuff at the rate of 15mmHgs
−1

 to reach a pressure +15mmHg above the 

systolic pressure. The upper systolic cuff pressure is 285mmHg which covers the very 

severe stage 4 as per the standard human blood pressure chart [148]. A solenoid valve-

1 with a bleeder is used to release the air pressure at a very low rate of 3mmHgs
−1

, 

during the deflation, while it remains closed when the cuff is inflated. Further, a 

separate solenoid valve-2 is used to release the air pressure at the rate of 20mmHgs−1 

at the time when the pressure in the cuff falls below the diastolic pressure. This second 

valve is used to improve the measurement time. Further, the size of the cuff selected is 

medium type (approximately 24 - 40cm). The selection of medium size cuff is because 

the majority of the population available are of the medium physique. The piezoelectric 

microphone sensor is embedded in the inner lining of the cuff at the central place in a 

separate pocket, so that it gets aligned with the bronchial artery during mounting of the 

cuff. 

However, to measure the pressure based on the oscillometric method, a monolithic 

piezoresistive pressure sensor (Model: MPXV5050GP) is placed in the cuff. This sensor 

has a sensitivity of 90mV/kPa and an accuracy of 2.5% with an inbuilt instrumentation 

amplifier having a gain of 100 to sense the pressure from the cuff. Further, a piezoelectric 

microphone is used to sense the auscultatory signals and the signals captured in this 

section of the instrument is then further processed in the analog section. 

3.3.2 Analog section 

In this section, oscillometric and auscultatory signals are amplified and filtered before 

sending the signal to the microcontroller unit.  The oscillometric signal obtained from the 

monolithic piezoresistive pressure sensor has a superimposed AC signal due to palpation 

dynamics of the bronchial artery along with the dc signal during the process of inflation 

and deflation of the cuff. The maximum pressure designed for smooth workingis  

approximately 300mmHg which corresponds to approximately3.8 Volts DC level as per 

the sensitivity of the sensor. This signal is given as an input to a second order active 

bandpass filter with a roll-off factor of -40 dB/decade to filter the AC signal. The range of 

frequencies in the passband varies from 0.3 Hz to 20 Hz with 0.3Hz as the lower cutoff 
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frequency and 20 Hz as the upper cutoff frequency. The output of the second-order band-

pass filter containing AC signal is then transferred to the microcontroller unit for further 

processing. However, on the other hand, auscultatory signal sensed from the piezoelectric 

microphones is first amplified in the analog section, which further passed through low pass 

filter before it reaches to the microcontroller section for further processing. 

3.3.3 Microcontroller unit 

The third section of our system is the Microcontroller unit. We have used ARM LPC2148 

microcontroller in our developed pressure meter.   This controller has two 10-bit ADC, 

which provides a total of 14 Analog inputs, with conversion time as low as 2.44 

microseconds per channel. The following are the major work employed by the 

microcontroller section of the instrument. 

First, work is to control the pneumatic section, which involves inflating and deflating the 

cuff using the motor and valve circuit. The second work is to process the AC and DC 

signals obtained from sensors over the analog section to quantify the oscillometric and 

auscultatory signals. 

 

Figure 3.4: Illustration of Complementary sensor data fusion 

Further, the details about the acquiring and processing of oscillometric and auscultatory 

signals are explained in section 3.4.1.2.1 and 3.4.1.2.2. 

 

3.4 Data Fusion for Accuracy                       

Signal X1 from 

Environment 
A 

S1 (α) 

Fusion of System 

Signal X2 from 

Environment 
B 

S2 (1-α) 
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As mentioned in the previous sections, the oscillometric and auscultatory method of 

pressure measurement depends on the various factors, that often lead to the variation in 

pressure value measured as compared to the actual value. Especially, in the case of 

oscillometric methods, most of the time sensors fail to provide the readings for 

Hypotension and Hypertension patients [149,150]. Hence, to avoid these errors, in recent 

times, instruments have been developed to have two separate sensors to capture 

oscillometric and auscultatory signals, such that even if one of the sensors fails, still the 

pressure can be measured with the other sensor.  Moreover, very often complimentary 

fusion methods have been used where α is the variable and can be customized depending 

on the type of sensor operated. Equation for systolic pressure is given by Equation 3.6. 

SBP = 3*MAP – 2*DBP                                    (3.6) 

Similarly, the equation for the diastolic pressure of oscillometric and auscultatory sensor 

can be easily deduced (For simplicity, we have not shown the equation diastolic pressure). 

However, the fusion operator employed by most of the vendors is not known. Considering 

these above facts, we have introduced the complementary fusion approach for sensor data 

fusion. Figure 3.4, illustrates the block diagram for complementary data fusion. The 

mathematical details of the fusion are given as follows: 

Let the Oscillometricsys and Auscultatorysys be the systolic pressure obtained from the 

oscillometric and auscultatory sensor. The complementary information fusion for systolic 

blood pressure measurement is given by the following Equation 3.7. 

Pressuresys = ((1 − α)  Oscillometricsys) + ((α)  Auscultatorysys) for 0 ≤ α ≤ 1   (3.7) 

Where α is the variable and can be customized depending on the type of sensor operated.          

 

3.4.1 Experiments and Results 

         In this section, we present the experimental protocol and the results based on our 

developed instrument. The results were obtained independently for oscillometric and 

auscultatory method and fusion of these methods using complementary fusion operator. 
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3.4.1.1 Experiment 1  

Table 3.1: Detail description of number of samples data generated based on  

Windkessel model. 

Table 3.2:  Comparison results for oscillometric, auscultation, complementary fusion 

at various values of α and state-of-the-art fusion methods such as min, max method. 

 

 

 

 

The values of αselected are 0.3 and 0.7, to select higher and lower 

contribution from the sensors involved. Same contribution comes with 0.5 

Value.   

We present the results in three experiments: Experiment 1 presents the measurement errors 

in estimating oscillometric and auscultatory measurement based on the simulated sample 

No of 

subjects 

Oscillometric Auscultatory 
No of 

measurements 

Number 

of  folds 

Total 

samples 

Systolic  Diastolic  Systolic Diastolic  

       100 

 

20 

 

24000 
3 

2 2 

Subjects Pressure Oscillometric 
 

Auscultatory 

Complementary fusion at α 

MIN 

 

MAX 
0.3 0.4 0.5 0.6 0.7 

 

Normal 

Systolic 9.1435 8.8241 6.7059 6.2548 6.0656 6.1624 6.5326 7.139 
7.094 

Diastolic 5.2236 6.0346 4.2148 4.1142 4.154 4.3304 4.6278 5.0959 
4.4714 

 

Hypotension 

Systolic 4.2763 4.4635 3.1927 3.0217 2.9808 3.0753 3.2936 3.2359 
3.6832 

Diastolic 4.3942 4.4377 3.321 3.1414 3.0833 3.1536 3.344 3.5086 
3.7601 

 

Hypertension 

Systolic 5.77 5.856 4.0318 3.7254 3.6267 3.7521 4.0811 4.6385 
4.1794 

Diastolic 5.2766 5.9671 4.1179 3.9807 3.9991 4.1711 4.4791 4.52 
4.6693 
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data (systolic and diastolic data) obtained using Windkessel model. Experiment 2 presents 

the blood pressure measurement for real subjects for various values of signal threshold.  

Experiment 3 is customizing the parameters α and threshold values from Experiment 1 and 

Experiment 2. The details of each of these experiments are discussed in the following 

sections. 

 

 

In this experiment, we optimize the parameters for the complementary fusion method to 

combine oscillometric and auscultatory signals. Further, in the experiment, we present the 

systolic and diastolic pressure based on the optimized parameters. To perform this 

experiment, we introduced well known Windkessel model to randomly generate systolic 

and diastolic measurement by simulating the heart. The model is used to generate the 

measurement for three categories of patients: Normal, Hypertension and Hypotension 

categories having a standard deviation of ±10 about the reference pressure. The model is 

programmed to generate the reference measurement by considering the standard range of 

human blood pressure measurement chart for Normal, Hypertension, and Hypotension 

category. The reference reading for Normal, Hypertension, Hypotension is in the range of 

50 − 82mmHg, 70 − 105mmHg, 110 − 170mmHg respectively. The total number of 

samples generated consists of 3CategoriesofSubjects x 2Oscillometricsignals x 

2Auscultatorysignals x 100Measurement x 20 Folds of repetition = 24000 Total samples. 

Table 3.1 illustrates in more detail the classification of data in each category.After, 

generating the data using the Windkessel model, we processed the data to compute 

pressure using our complementary fusion method for various values of α shown in 

Equation 3.7. We present the validation results of complementary information fusion is 

illustrated in Figure 3.4 
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Figure3.5:Performance measurement in terms of standard deviation for 

oscillometric, auscultation, complementary fusion (α=0.3,0.4,0.5,0.6,0.7) , min fusion, 

and max fusion. 
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Observation 1 : Table 3.2 and Figure 3.5 presents the set of results estimating the errors in 

computing systolic and diastolic pressure for oscillometric, auscultation, using 

complementary fusion at various values of α and state-of-the-art fusion methods such as 

min, max method. Following major observation can be made: 

The overall better measurement accuracy is obtained for fusion methods as compared to 

the oscillometric and auscultatory method operating independently. Specifically, our 

intuition of using complementary fusion method outperforms single method (Either, 

oscillometric and auscultatory method) and the state-of-the-art fusion methods such as 

min, max. Of the results obtained by a complementary fusion method, better measurement 

accuracy is obtained for α = 0.5 value for Normal, Hypertension, and Hypotension 

patients. 

 

 

 Observation 2: The British Hypetension Society (BHS) protocol classifies, the blood 

pressure monitoring devices into grades A to D, where, grade A shows the best accuracy 

and grade D is assigned to the device with the worst accuracy. Hence, to support such 

grading we have performed Clarkes Error Grid analysis to verify the percentage 

measurement accuracy over A and B quadrants. Figure 3.6 and Table 3.6represents 

graphically the accuracy independently for oscillometric and auscultatory method,  and 

complementary fusion at various values of α such as 0.3,0.4,0.5,0.6,0.7 and state-of-the-art 

fusion such as min, max methods. Figure 3.10 demonstrates the fusion for various values 

of α.The results obtained for Normal, Hypertension and Hypotension categories, we make 

our following observations: The measurement accuracy for all values of α in 

complementary fusion method is around 90%, proving a reasonable accuracy in 

measurement. However, better measurement accuracy is obtained for min fusion method, 

but such method fails in the scenarios when either of the signal (oscillometric or 

auscultation) is deteriorates as in the case of Hypertension and Hypotension subjects. 
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Figure 3.6: Clarks Grid chart illustrating complementary fusion method for 

measurement of systolic and diastolic values over Normal, Hypertension, and 

Hypotension categories. Here, we have shown the graphical results for 0.5=  for 

simplicity. 

 

3.4.1.2 Experiment 2 

This section, we present the experimental protocol and the results based on our developed 

instrument. The oscillometric and auscultation waveforms were fed into MATLAB via 

serial port for offline analysis. FIR filter was used to denoise the noisy waveforms as 

shown in Figure 3.7 and obtain cleaner waveforms as shown in Figure 3.8.   
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 Figure 3.7: Noisy oscillometric and auscultation waveforms  

 

 Figure 3.8: Filtered oscillometric and auscultation waveforms 

 

3.4.1.2.1 Algorithm for Oscillometric Method 

After filtering the next step is to find the envelope of the oscillometric waveform by using 

a moving average filter. Then we calculate the average of the envelope. The systolic 

pressure is the point at which the envelope crosses a certain threshold (100%,80% and 

50% of average). The Mean Arterial Pressure is calculated by finding the maximum point 
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on the envelope obtained. Once we obtain the systolic and diastolic values the diastolic 

pressure is obtained by Equation 3.  

3.4.1.2.2 Algorithm for Auscultation method 

The first step is to find the envelope of the auscultation waveform by using a moving 

average filter. Calculate the average of the obtained envelope. The systolic pressure is the 

point at which the envelope crosses a certain threshold (100%,80% and 50% of average). 

The Diastolic Pressure is the point at which the envelope crosses the threshold (100%,80% 

and 50% of average) from the maximum point of the envelope. 

Total ten readings of four subject was taken with simultaneous readings from Rossmax 

meter as shown in Table 3.3.Three values of threshold were used a) 100% of average b) 

80% average c) 50% to find which gave the lowest standard deviation when compared to 

the reference RossmaxAC701k blood pressure meter as shown in Table 3.4. Standard 

deviation is the least when we choose the threshold as 80% of the average for the four 

subjects. 

Table 3.3:  Total ten readings of a subject with the blood pressure meter developed 

along with readings from Rossmax meter. 

a) Threshold = 100% of average 

Our designed system 

Sys(Rossmax AC701k 

meter ) 

Sys(osc) Sys(aus) Sys(fusion) 

113 136 124 130 

122 125 121 123 

126 123 133 128 

124 114 132 123 

120 135 137 136 

124 128 128 128 

122 124 117 120.5 

119 111 122 116.5 
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118 119 115 117 

118 127 127 127 

Our designed system 

Dias (Rossmax AC701k 

meter ) 

Dias(osc) Dias(aus) Dias(fusion) 

82 71.5 83 77.25 

83 78.5 64 71.25 

87 96 72 84 

86 75.5 72 73.75 

83 74 82 78 

88 83 78 80.5 

80 65.5 69 67.25 

78 78 100 89 

 

78 

93.5 74 83.75 

75 71.5 63 67.25 

b) Threshold = 80% of average 

Our designed system 

Sys(Rossmax AC701k 

meter ) 

Sys(osc) Sys(aus) Sys(fusion) 

113 136 125 130.5 

122 126 122 124 

126 126 137 131.5 

124 123 134 128.5 

120 136 138 137 

124 128 128 128 

122 124 118 121 

119 123 123 123 



Page 56 of 138 

 

118 133 116 124.5 

118 127 127 127 

Our designed system 

Dias(Rossmax AC701k 

meter ) 

Dias(osc) Dias(aus) Dias(fusion) 

82 71.5 83 77.25 

83 78 64 71 

87 95.5 72 83.75 

86 72 72 72 

83 73.5 82 77.75 

88 78 83 80.5 

80 65.5 69 67.25 

78 72 100 86 

78 86.5 74 80.25 

75 71.5 63 67.25 

 

c) Threshold = 50% of average 

Our designed system 

Sys(Rossmax AC701k 

meter ) 

Sys(osc) Sys(aus) Sys(fusion) 

113 134 136 135 

122 127 128 127.5 

126 137 137 137 

124 134 134 134 

120 139 138 138.5 

124 128 128 128 

122 124 119 121.5 
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119 131 131 131 

118 133 133 133 

118 127 127 127 

 
Our designed system 

Dias(Rossmax AC701k 

meter ) 

Dias(osc) Dias(aus) Dias(fusion) 

82 71.5 83 77.25 

83 77.5 64 70.75 

87 89 72 80.5 

86 66.5 72 69.25 

83 73 82 77.5 

88 83 78 80.5 

80 65.5 69 67.25 

78 68 100 84 

78 86.5 74 80.25 

75 71.5 63 67.25 

 

 

 

 

 

Table 3.4: Average standard deviation of three subjects 

For Threshold=100% 

 
Subject 1 Subject 2 Subject 3 Subject 4 

Std Dev (sys) 
7.25 8.04 4.61 6.63 

Std Dev (dias) 
7.79 5.92 4.56 6.09 

For Threshold=80% 
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Subject 1 Subject 2 Subject 3 Subject 4 

Std Dev (sys) 
6.05 8.20 2.69 5.65 

Std Dev (dias) 
6.86 5.93 4.59 5.79 

For Threshold=50% 

 
Subject 1 Subject 2 Subject 3 Subject 4 

Std Dev (sys) 
6.74 9.30 2.61 6.21 

Std Dev (dias) 
6.80 6.13 4.80 5.91 

3.4.1.3 Experiment 3 

 

In this section, we present the accuracy of our system for real subjects based on the 

optimized parameters (α = 0.5) from Experiment 1. We selected three categories of 

patients, one subject in each of the categories: Normal, Hypertension and Hypotension 

patient. The measurement is repeated for oscillometric and auscultatory measurement of 

100 times.  

Table 3.5:Data generated for Normal, Hypertension and Hypotension patient 

 

The detail description of the database is shown in Table 3.5. The obtained results with our 

developed instrument are compared against the reference meter (RossmaxAC701k Upper 

Arm Blood Pressure Meter). The Rossmax meter is selected for the reference measurement 

since this meter uses the advance dual sensor cuff system, which senses both pressure and 

sound. The meter meets the AAMI accuracy standard requirements (AAMI/ANSI/ISO 

81060-2). 

No of 

subjects 

Oscillometric Auscultatory 
No of 

measurements 

Number 

of  folds 
Total samples 

Systolic Diastolic Systolic Diastolic  

 

100 

 

 

1 

 

 

1200 
3 

 

2 

 

2 
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Table  3.6 : Quadrant A, B, and D % values in Clarke Grid Chart. 

Table  3.7 : Standard Deviation in systolic and diastolic pressure for complementary 

fusion method with 0.5= for Normal, Hypertension, and Hypotension subject 

(Here, 'Std' corresponds to standard deviation) 

Subject Pressure 
Stdfor complementary fusion with  alpha=0.5 

Normal 

Systolic 2.45 

Diastolic 1.75 

Hypertension 

Systolic 2.7 

Diastolic 2.9 

Hypotension 

Systolic 1.78 

Diastolic 2.5 

Fusion Scheme Quadrant values (%) 

Regression 

r=A+B 

 
 A B D  

Complementary Fusion at 

various α values 

α= 0.3 41.16 50.16 8.60 91.32 

α= 0.4 41.50 49.16 9.33 90.66 

α= 0.5 41.67 49.17 9.17 90.82 

α= 0.6 42.50 48.67 8.83 91.16 

α= 0.7 42.50 48.67 8.83 91.16 

MIN 
49.33 45.50 5.17 94.83 

MAX 
38.00 49.50 12.50 87.50 
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Figure 3.11 and Figure 3.12 presents the waveform acquired in real time for auscultation 

and oscillometric sensor on the oscilloscope. Further, Table 3.7 represents the standard 

deviation at the parametrized α = 0.5 value for measuring systolic and diastolic pressure 

for Normal, Hypertension and Hypotension patients. Similarly, Figure 3.9 illustrates the 

graphical representation of results. The major observations of these experiments are as 

follows. We have successfully implemented the real-time data acquisition system for 

obtaining oscillometric and auscultation signal by fusion algorithm. The average 

measurement error for systolic and diastolic pressure with our approach shows the 

standard deviation approximately between 1.7 to 2.9 range, which is well within the 

acceptable limit.The designed low-cost pressure meter is not clinically validated for a large 

population size as per BHS and AAMI standards. The proposed system will give directions 

to the researcher community to employ sensor fusion methods to describe the 

completeness of the system under observation. Also, the said implementation has 

demonstrated data acquisition in real time for several sensors. The study can be extended 

for more number of fusion algorithms and large number of sensors. 

Figure  3.9: Performance measurement in terms of standard deviation for complementary    

fusion with 0.5=  

This study describes the design of an integrated oscillometric and auscultatory based blood 

pressure meter to determine the systolic and diastolic blood pressure values of Normal, 

Hypertension and hypotension subjects. The oscillometric and auscultatory methods were 
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individually tested in a laboratory environment and fused for data using the 

complementary fusion method to improve the measurement accuracy with minimum error. 

The various stages of the develpoment of the human blood pressure meter are shown in 

Figures 3.13 to 3.15.The proposed method is quite efficient in the measurement of blood 

pressure for Hypertension and Hypotension subjects which is demonstrated through the 

simulation studies for 100 recordings in 20 fold. The error analysis and prediction error are 

presented using the standard deviation and Clarke Error Grid analysis. It is found that the 

fusion methods help in improvising the measurement error accuracy and prediction 

accuracy for the nearly non-biased fusion at. The interpretation of the Clarke Error Grid 

indicates that complementary rule can help in improvising the prediction and can also 

improvise the overall prediction accuracy around average 90. Although the system meets 

the basic requirements, it can further be enhanced with the combination of complex 

circuitry for motion artifacts, sensor data pre-processing and prediction algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 : Various complementary methods for values of α 
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Figure3.11: Auscultation waveforms observed on oscilloscope 
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Figure3.12:Oscillometric waveform for piezo sensor observed over the oscilloscope 

 



Page 64 of 138 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure3.13: The 2-sided Printed Circuit Board Design of the proposed system 
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Figure3.14:The meter assembled in custom design box using 3-D printing for various 

components 
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Figure3.15:The final integrated meter for both the sensors with cuff. 
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3.5  Human Electrocardiogram(ECG) System 

3.5.1 Implementation of ECG Model by Sharrys 

McSharry‘s has modeled an ECG signal with practical PQRST morphology and heart rate 

dynamics[154]. The model creates a standard practical ECG signal with features that can 

be generated with the mean and standard deviation of the heart rate and frequency-domain 

features of HRV. To extract useful pathological information from the real physiological 

signals (like ECG) effective signal processing techniques are needed [155,156,157]. 

Filtering is the most widely used signal processing technique because if the signal is 

corrupted by noise then no matter what signal processing or statistics is used it tends to 

become irrelevant. After filtering the next step is usually find the R peaks in the QT-

interval detection [158,159,160], and then find the heart rate from the RR interval. The RR 

intervals are the time interval between two consecutive R peaks, the inverse this time 

interval gives us the current heart rate. The RR recordings over time give us a fair insight 

into the pathological state of a human being. A lot of signal processing is being developed 

by researchers [161,162,163]to get a better understanding of more fiducial and non- 

fiducial features of the heart. A live ECG signal such as those found in ECG databases like 

Physionet will be affected by certain noise parameters but certainly not all the possible 

noise sources. With the generation of synthetic ECG, it is possible to add different types of 

noise conditions. Then comparison studies can be done to find the best signal processing 

algorithm for the given noise.  

The model creates a trajectory with coordinates (x, y, z) (in a three-dimensional (3-D) 

state-space. The ECG's quasi-periodicity is expressed in the trajectory's motion around an 

attracting unit radius limit cycle in the (x, y) plane. Each revolution corresponds to one 

RR-interval or heartbeat in this circle. The ECG's interbeat variation is performed using 

the trajectory movement. 

The ECG reproduces interbeat variation by moving the path in the direction. Events  

corresponding to adverse and positive attractors / repellers in the direction describe distinct

 points on the ECG, such as the P, Q, R, S, and T.These events are positioned at set corners 

along the circle of the unit provided by ƟP, ƟQ, ƟR, Ɵs, ƟT. When the path approaches one 

of these occurrences, it is pushed up or down from the limit cycle and then pulled back to 

the limit cycle as it moves away. 
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The dynamic equations of motion are given by a set of three differential equations adapted 

from Mc Sharry‘s model[2] given below. 
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          where; a=1-
22 yx  , )2(=  modii  ),2(= xyatan   The 

times and angles (ƟP, ƟQ,Ɵs, ƟT) are relative to the R peak.ai gives the positive or negative 

peaks of the PQRST wave and bi gives the width(duration) of each significant component 

(P, Q, R, S, T).  The ECG wave varies as a function of heart rate as shown in Figure 3.16 

(a, b, c).  The model parameters of the system implemented is shown in Table 3.8. 

 

Table 3.8:Model system parameters of ECG model 

Index(i) P Q R S T 

Time(secs) 
-0.2 -0.05 0 0.05 0.3 

i  

-1/3 π -1/12 π 0 1/12 π 1/2 π 

ia
 

1.2 -5 30 -7.5 0.75 

ib
 

0.25 0.1 0.1 0.1 0.4 
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 (a)  
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(c) 

Figure 3.16: The ECG model to generate the (a) Mean Heart Rate 30bpm, (b) Mean 

Heart Rate 60bpm and (c)Mean Heart rate 90bpm 
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Chapter 4 

Modelling of EEG 

System  
4.1 Human Electroencephalogram (EEG) System  
 

Decoding the neuronal activity of the human brain has been intriguing researchers 

for a long time [ 164,165,166,167].   But owing to the complexity of the human brain 

which consists of billions of neurons it becomes cumbersome to understand the various 

underlying neuronal processes [168,169,170].  One way of simplifying this is by using 

mathematical models that try to mimic the activity of the various levels of the human 

brain. The bases of these models are usually the differential equations associated with the 

state of the variable of the system describing it, which explains the dynamics of the brain. 

Physically it corresponds to membrane potentials of each neural mass of interest. In a 

macroscopic sense, the state variables are the variables that describe the neuron model 

state while at the abstract level it is the membrane potential. The differential equations 

describe the flow of state in the time domain between the interplay of the system 

equations. Such time flows form orbits, thus producing time series for all of the states. 

Modeling brain neural activities by mathematical models usually give simplification of the 

real brain activity with a useful insight into the processes that generate neural activity, if 

the variables under interest are properly chosen. One can also change the system‘s 

parameters to obtain different state variables indicating specific behaviors that might not 

be possible in real-world experiments. Understanding of neural activities is being done by 

macroscopic or microscopic models. Microscopic models describe the activity at the level 

of a single neuron. Microscopic neural mass models are based on the coupling of several 

single neurons as shown in Figure 4.1 and hence computational expensive, since it 
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involves large number of parameters. Macroscopic neural mass models have less detail and 

involve an average pattern of a large group of neurons similar to 

EEG(Electroencephalogram) signals. The single neuron models can be grouped for larger 

cortical columns but will need a powerful processor for processing these large number of 

neurons.  

 

 

Figure 4.1: The neuron depicting nucleus, dendrites and axon terminal  

The solution to this is the use of macroscopic models that depict the average activity of 

neuronal populations as few number of variables are involved with it. These orbits capture 

the features of the system like steady state, periodic, quasi-periodic, and chaotic. The main 

variable of interest of such ensembles describing the Neuronal Mass Model (NMM) is the 

mean and variance state of membrane potential for the set of an ensemble of neuron‘s 

synapses in space. The mean membrane potential increases and decreases in response 

towards the collective synaptic inputs and this increases or decreases depending on the 

variation of afferent inputs. Variance can be ignored or minimized if the ensemble activity 

is coherent; which therefore reduces the number of dimensions so that the interesting local 
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population can be modeled for excitatory and inhibitory neurons using small numbers of 

equations (as seen in Figure 4.3) representing the regions over said neural mass. This 

approach is usually used to describe neural mass models (NMM). 

         Coarse grained models in a sense simplify the complex models. Originally developed by 

Lopes Da Silva in 1970‘s [166] and further extended by Freeman [171,172,173], Wendling 

[174,175], Zavalgia (176) and so on. Dendrite‘s receive information/signals from the 

axons of other neurons. Pyramidal neurons account for 80% neurons in the cerebral cortex. 

Remaining are the excitatory and inhibitory interneurons (GABAa&GABAb). External 

input is all the activity from neighboring cortical column. 

4.2 Modeling of EEG System  

 As shown in Figure 4.2 the developed neural mass model consists of four populations 

which generate the EEG activity. The pyramidal neurons, excitatory neurons, fast and slow 

inhibitory neurons represent the different populations neurons over the region of cortex.  

The alpha waves are generated by the interplay of the pyramidal and slow inhibitory 

interneurons. The fast inhibitory neurons have a self-loop which helps in mimicking the 

gamma activity of the brain. Single Neural mass where inputs are transformed to potentials 

using Post Synaptic Potentials(PSP) transforms.   

 

Figure 4.2: Schematic of neural mass model 
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The average number of synapses from this input to the population are multiplied by a 

constant. The addition and subtraction of the excitatory and inhibitory potentials produces 

u(t) over timethe mean membrane potential. Sigmoid function converts u(t) to generate the 

average pulse rate of the population. The described four neuronal populations i.e. the 

pyramidal neurons, excitatory interneurons, slow inhibitory interneurons, and fast 

inhibitory interneurons are derived by two variables the mean firing rate firing z(t) as 

described in Equation which is a function of mean membrane potential u(t), and mean post 

synaptic potential v(t). We obtain the mean membrane potential from the weighted 

summation of inputs. The mean firing rate is deduced by the membrane potential via a 

sigmoid function:  
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                                                     (4.1) 

The maximum firing rate vmaxof the population of neurons, vris the value of the potential 

for which a 50% mean firing rate is achieved, and r is the slope of the sigmoid at vr; where 

the parameter vrwill serve as mean firing threshold. The sigmoid function is parametrized 

equally for all populations in the model. The mean firing rate, z(t), of one population is 

coupled to the unweighted mean post synaptic potential population, with help of the 

transfer function which represents dendrites. 

4.2.1 Overview of a neural mass model 

The pyramidic population unit of nerve cells excites and receives feedback from all 3 

population units of the interneuron population. The slow inhibitory unit of the population 

of interneurons inhibits the rapidly inhibitory unit of the population of interneurons. For 

dynamic self-inhibition, the rapid inhibitory interneuron population has an additional state 

variable, Cfafa. The self-feedback loop in the rapidly inhibitory population are of first order 

and serve as a LPF with cut-off frequency fc. The quick inhibitory interneuron and 

pyramidal neuron units are excited for each node by autonomous Gaussian noise. The 

noise reflects the mean firing rate of outer neural communities that are unmodeled.To 

transform it to mean post-synaptic potentials, the noise is carried through the dendritic 

transfer function of pyramidal neurons. In order to excite the pyramidal neurons and quick 

inhibitory interneurons respectively. The pyramidal population's mean membrane potential 
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is the primary output for each node. In earlier cortical neural mass models, the pyramid 

population unit was the primary output (and input) unit [167,177]. 

 

 

 

  

  

 

 

 

 

 

Figure 4.3: Block diagram of a single neural mass  

The mean membrane potential of the neurons represents the node's population activity; this 

output is therefore similar to macroscopic electrophysiological brain signals such as LFP, 

ECoG, and EEG[113,114,178,179,180,181]. Here the Figure 4.2 illustrates the multiple 

interacting local populations, such as excitatory and inhibitory neurons in different layers 

of the cortex, to be modeled by a small number of equations. Here we present a 

macroscopic Wendling NMM which is developed from the original works of Lopes 

DaSilva and Freeman. The extended Wendling model [174] can be described by a set of 

differential equations given below (Equations 4.2 -4.19)). 

4.2.1.1Pyramidal neuronal population 
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4.2.1.2Excitatory neuronal population   
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4.2.1.3Slow inhibitory neuronal population 
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4.2.1.4 Excitatory neuronal population 
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Table 4.1: Model system parameters of neural mass model 

System 

parameters 

Description Value 

A 
Average excitatory synaptic gain 3.35mV 

B 
Average slow inhibitory synaptic gain 22mV 

G 
Average fast inhibitory synaptic gain 10mV 

a 
Reciprocal of excitatory time constant 100Hz 
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b 
Reciprocal of slow inhibitory time constant 50Hz 

g 
Reciprocal of fast inhibitory time constant 500Hz 

C 
General connectivity constant 135 

Cpyexc 
Connectivity :pyramidal to excitatory cells 1 

Cexppy 
Connectivity : excitatory to pyramidal cells 0.8 

Cpysl 
Connectivity :pyramidal to slow inhibitory cells 0.25 

Cslpy 
Connectivity : slow inhibitory to pyramidal cells 0.25 

Cpyfa 
Connectivity :pyramidal to fast inhibitory cells 0.3 

Cslfa 
Connectivity : slow to fast inhibitory cells 0.1 

Cfapy 
Connectivity : fast inhibitory to pyramidal cells 0.8 

v0 
Sigmoid function: potential at half of max firing rate 6mV 

e0 
Sigmoid function: half of maximum firing rate 2.5Hz 

r 
Sigmoid function: Steepness parameter 0.56mV

-1
 

 

4.2.2 Implementation of Human Neural Mass Model 

 

The neural mass model developed is based on extended Wendling‘s neural mass model as 

shown in Figure 4.4 has been designed in MATLAB 2016) to generate the alpha, beta and 

gamma brain waves as shown in Figure 4.5 (a, b, c) respectively using Runge-Kutta (RK4) 

method. The input ufa and up are given as Gaussian white noise with standard deviation 

SD=3 and mean as m=90.The mean strength and time series are denoted by G and w. 

Different units of the population are characterized by their time constant T= 1/w and the 

low frequency gain from the G / w dendritic transmission feature. Each population unit's 
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dendritic transfer function is referred to as Hlx(S), {p stands for pyramidal neuron 

population, q refers to exciting interneuron population, f refers to quick inhibitory 

interneuron population, s represents slow inhibitory interneuron population}. The model 

parameters are shown in Table 4.1. 

 

Figure 4.4: Implemented Neural Mass model 

A single node is constituted by four interconnected population units. The weighted 

outputs from the other units are inputs to each population unit, reflecting the mean 

exciting or inhibitory post-synaptic potential of an exciting or inhibitory population 

(EPSP or IPSP). Here the Constant connectivity strengths that are called synaptic gains, 
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weigh the input synaptic potentials. The Cαβ represents a synaptic gain among 

populations where α, β;refers respectively to the target and source population; e.g. the 

steady Cpysl is the gain from the synaptic association between the slow inhibitory 

population and the pyramidal neuron population. 

 

(a) 

 

                            (b) 
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(c) 

Figure 4.5: The NMM to generate the (a) alpha, (b) beta and (c) gamma brain 

waves 
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Chapter 5 

Symphathetics and 

Para-Symphathetics 

in Human Body  

5.1 Sympathetic Neurons Activities  

In the stellate ganglion are the sympathetic neurons that control cardiac function. It 

gets pre-ganglionic sympathy feedback from the intermediate column (and other spinal 

neurons) and coordinates effective neural reactions to the center cervical ganglia to the 

core either directly or through the ansasubclavia [182,183,184,185]. Efferent post-

ganglionic fibers travel alongside the coronary vasculature to enter the epicardial areas to 

the endocardium. Stellate ganglion stimulation results in increased dromotropy, 

chronotropy, lusitropy, and inotropy [186]. Mechanosensory, chemosensory, or 

multimodal in nature are cardiac afferent neurons [187]. They transduce a range of 

chemicals, including different neuropeptides, such as gene-related peptide P, bradykinin, 

and calcitonin. 

These cardiac afferents are also engaged in initiating local vascular and 

inflammatory responses that can play a significant part in cardiac remodeling [188]. In the 

atria and ventricles are the sympathetic nerve fibers. There is a regional reaction to the 

correct sympathetic paravertebral ganglia versus the left sympathetic paravertebral ganglia, 

with predominant impacts respectively on the anterior and later ventricular walls [189]. In 
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relation to increasing the firing of the sinoatrial node and enhancing atrioventricular nodal 

conduction, sympathetic output results in shortening of the prospective length of 

ventricular action [190]. 

 

Figure 5.1: Afferent and efferent elements in the parasympathetic nervous 

system 

5.2 Parasympathetic Neurons Activities          

There are also significant afferent and efferent elements in the parasympathetic 

nervous system (Figure5.1 and Figure 5.2). This system's cardio motor feature enables 

slow heart rate, lower blood pressure, and balances the system to guarantee 
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sympathovagalexcitation is counterbalanced. The parasympathetic impacts are coordinated 

through the cervical vagus nerve, which splits into the upper and lower cardiac nerves to 

finally enter through the cardiac plexus into the core. The parasympathetic nerve fibers are 

much more heterogeneously distributed, with the sinoatrial node, atrioventricular node 

[191], and ventricles [192] being significantly inward. 

Neurons in the ICNS coordinate the parasympathetic reaction of the cardiomotor that 

receive pre-ganglionic parasympathetic feedback from the cervical vagus and provide a 

homogeneous or coordinated reaction to the atria and ventricles [193,194]. 

Depending on what aspect of the neuroaxis is involved, cervical vagus stimulation can 

generate distinct responses. Stimulation in the intact state can lead in immediate and 

reactive or reflex responses on the inherent cardiac nervous system as a consequence of 

core and peripheral interactions initiated throughout the cardiac neuronal hierarchy. 

Low-level stimulation given to the cervical vagus may lead in tachycardia, likely as a 

consequence of involving cardiac afferent fibers, whereas higher-level stimulation in 

bradycardia may result in results [195]. 

The cardiac ANS is a complex equilibrium between sympathetic and parasympathetic 

inputs in the resting state. After transecting the cervical vagus from the central nervous 

system, a significant rise in heart rate indicates that the central neuronal cholinergic drive 

plays a considerable role in regulating the basal heart rate [195]. 

5.3 Modeling of Central Nervous System(CNS) for Human Body  

The autonomic nerves regulate cardiac and vascular function. Parasympathetic and 

sympathetic efferent nerves control heart and vasculature which are found in the cell 

bodies of the medulla oblongata. The central nervous system receives input from 

baroreceptors and chemoreceptors which are responsible to maintain blood pressure and 

chemistry respectively. There are billions of neurons in the brain which receive and 

transport neurotransmitters in the brain. Each of these neurons is classified as sensory, 

motor, or interneurons. Sensory neurons are neurons that detect changes in the external 

environment and generate impulses that are sent to the brain. Motor neurons activate 

muscle cells and control motor activity like walking, speaking, etc. Various cardiovascular 

models have been described in the literature to have a better understanding of the 

underlying mechanisms of the heart and vasculature. Cardiovascular systems are proposed 
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in the literature in the form of empirical and functional models. Extended models are also 

available which include the respiratory system interaction through an autonomic neural 

controller [196]. The various components of the cardiovascular system help in regulating 

cardiac output (see Fig. 6). The cardiac output is a function of Heart Rate and stroke 

volume. Heart Rate is a complex parameter obtained through sympathetic (ftbs) and 

parasympathetic (ftp) peripheral nerve response. The ftbs, ftp and α-sympathetic(ftas) nerve 

responses are generated through central autonomic control from the complex integration of 

central respiratory control (Nt), chemoreflexes (Fchem), lung stretch receptors reflexes (fls), 

baroreflexes (fcs) and CNS responses [197, 198]. The ftas signal which signifies the α-

sympathetic nerve response regulates the total peripheral resistance (TPR) to produce 

arterial blood pressure (ABP) which further generates stroke volume via a change in 

venous return and cardiac contractibility. 

Short-term rhythmic activity in HRV calculations is a result of the interplay between 

autonomic neural system, blood pressure and respiratory activities [199]. A heart rate 

tachogram is commonly used to notice these short term changes between consecutive RR 

intervals over time. HRV is considered thus as a function of heart and brain which reflect 

the changes in the ANS dynamics. HRV can be measured in the frequency domain by 

using FFT of other power spectral density algorithms. The RR interval of the ECG is 

transformed into specific frequency components. Power spectral analysis plots of HR 

oscillations reveal specific frequency components wherein heart rate cycles are classified 

as HF (0.15–0.40 Hz); LF (0.04–0.15 Hz); VLF (0.0033–0.04 Hz); and ULF (below 

0.0033–0.2 Hz). 

5.3.1 Integration of the ECG, ABP and NMM models 

Human body physiology is regulated through the central neural control (CNS) which 

takes signal from the respiratory system and ambiance which signifies atmospheric 

pressure, temperature and various gases in the environment. The central nervous system 

then controls the metabolic control of various organs through the afferent nerves and the 

efferent nerves reflecting the various reflex of the organs back to the CNS, which regulates 

the cardiovascular system(CVS) for the stroke volume(SV) of the blood and heart 

rate(HR). The SV and HR collectively synthesizes the cardiac output of the heart 

balancing the body for the coherence or non-coherence states. We have defined and 
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simulated here in this work the Neural Mass Model(NMM), which is one of the component 

which feeds the CNS and controls the cardiovascular system for the human blood pressure 

(ABP) and heart rate. We have defined and simulated arterial blood pressure model i.e. 

Windkessel model; describing the arterial blood pressure for the particular input volume of 

the blood and ECG model for the computing heart rate and heart rate variability(HRV) as 

shown in Fig 1.4.1. The model has open for the researcher communities for discussion and 

experimentation for further improvisation 

 

5.3.2 ANS for Coherence 

The well-being of an organism is determined by the healthy functioning of the 

regulatory systems. For this to happen there should be optimal variability in the 

functioning of the regulatory systems. Too much variability is harmful to effective 

physiological processes, too little variation means deterioration or diseases. Evidence 

shows the age of a patient reflects the relationship between regulatory capacity and 

reduced HRV.As a person gets older the HRV decreases due to loss of neurons in the 

spinal cord which reduces signal transmission [197] and reduces regulatory capacity. 

Functional gastrointestinal disorders, inflammation, and hypertension are caused due to 

lower HRV. While patients with functional gastrointestinal disorders often have reduced 

HRV [200], HRV has increased vagal tone and improved symptom ratings in these 

patients [201]. 
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Figure 5.2: Illustrates the nervous system link between the heart and brain. The 

Sympathetic branch increases the heart flow while the parasympathetic slows the 

rate. 
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5.3.2.1 High-Frequency Band 

The power in HF varies over 0.15–0.4 Hz band of frequencies. This band is known 

as the respiratory band due to HR perturbations related to the respiratory cycle. It reflects 

the vagal or parasympathetic activity of the ANS. Parasympathetic activity is often 

lowered in patients under stress or if diagnosed with stress. Also as a person ages, the 

parasympathetic activity reduces thereby reducing HRV [202]. Normally the 

parasympathetic activity increases at night and decreases during daytime for a healthy 

individual [203]. 

5.3.2.2Low-Frequency Band 

The power in the LF varies over 0.04–0.15 Hz band of frequencies. This band is 

called the baroreceptor range since it reflects the baroreceptor activity at rest [204]. The 

afferent signals from the heart and other visceral organs along with baroreceptor signals 

are passed onto the brain via the vagus nerves. Located in the chambers of the heart and 

vena cava, carotid sinuses (which contain the most fragile mechanoreceptors), and the 

aortic arch are baroreceptors which are stretch fragile mechanoreceptors. The baroreflex 

reduces blood pressure when the blood pressure is observed too high by inhibiting 

sympathetic activation along with parasympathetic activation. Peripheral resistance is 

lowered by sympathetic inhibition, whereas activation of the parasympathetic branch 

reduces heart rate and contractility. Cycle to cycle differences in heart rate per unit change 

in blood pressure is calculated as the baroreflex gain. Aging and weakened regulatory 

ability cause a decrease in baroreflex gain. 

5.3.2.3Autonomic Balance and the LF/HF Ratio 

One can accept that the SNS and PNS are the two branches of ANS. These 

branches can be simultaneously active to regulate the SA node firing, i.e., where an 

increase in SNS activity is coupled with a decrease in PNS activity. Certain orthostatic 

challenges sometimes disturbed the SNS activities and vagal withdrawal. Also, 

psychological stresses induced changes in SNS and PNS activity [205].  
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Hence, the relation of SNS and PNS in LF power spectral density is complex 

nonlinear and solely depends on the experimental paradigm employed to the subject [206, 

207]. The LF/HF is a ratio of LF and HF power is used to reflect sympathetic and 

parasympathetic activities. The low ratio gives the idea of energy conservation and 

engaging in tend-and-befriend behaviors [208]. The high value of ratio indicates high 

sympathetic activities than parasympathetic which is seen when subjects are meeting 

challenges which demand high SNS activities. But due to the above-cited reasons in LF 

power, the said ratio has to be used with caution. 

 

5.4     Discussion and conclusion   

Researchers are keen on understanding the interaction between CVS and ANS 

which are predictors of adverse cardiovascular events. The source of such events has to be 

diagnosed to pinpoint abnormality of ANS or a pathological organ response. Also, other 

factors like age, lipid profile, smoking status, and family history will also play a role in the 

prediction of CV events. The coherence model of the psycho-physiological system 

proposed by the Institute of Hearth-math focuses on increasing the self-regulatory capacity 

of an individual, which reflects in maintaining the heart rhythms. These rhythmic activities 

reflect the perception over cognitive, biological, social and ecological networks in living 

systems. Here afferent pathways that collect basal regulatory information from the 

cardiovascular system are given more relevance in this model. They claim that to have 

improved performance better self-regulation and well-being of living systems, the system 

should go through positive emotion which induces coherence and harmonious 

physiological mode. This is very often known as physiological coherence which describes 

the orderly and stable system rhythm generated by living beings which is quantified by the 

maximum peak of 0.04–0.26 Hz of the HRV power spectrum. 
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Chapter 6 

Some Applications of 

EEG  
6.1 Brain Computer Interface 

In current years, extraordinary improvements have been made in knowing the 

functioning of the human mind. Technological developments consisting of functional 

magnetic resonance imaging (fMRI), positron emission tomography (PET), and 

magnetoencephalography (MEG) have made feasible the mapping of the cerebral images 

from hemodynamic, metabolic or electromagnetic measurements. Among these brain 

imaging techniques, electroencephalography (EEG) is of great significance due to its 

simplicity, accessibility, and temporal resolution, and has been regarded with renewed 

interest in recent years, due to superior techniques of analysis and interpretation of its data. 

These techniques can improve the spatial decision of traditional EEG, making it possible 

to address the analysis of activities of the brain in a noninvasive way by using the temporal 

resolution of EEG signals (of the order of milliseconds). With high-resolution EEG, it's 

now viable to acquire cortical activation maps describing the activity of the mind at the 

cortical stage all through the execution of a given experimental project.Human beings 

communicate with the external world through the motor and sensory pathways. But the 

damage to these pathways makes it difficult to communicate with the external world. 

Humans who suffer from neuromuscular diseases like quadriplegic patients, amyotrophic 

lateral sclerosis cannot move their limbs due to damage to the spinal cord. Brain-computer 

interface-based systems can be of great help to such type of patients for communication 

[209]. BCI‘s have also been used in selective attention based studies, speller systems, and 
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prosthetics. There are normally two types, i.e., invasive and non-invasive BCI‘s as shown 

in Figure 6.1. Invasive BCI‘s include ECoG, neural implants, single-cell recording, etc.; 

whereas non-invasive BCI‘s include EEG, MEG, fMRI, etc. Invasive BCI‘s are more 

accurate compared to non-invasive BCI, but since it requires surgery it is only used on 

animals or more recently on patients suffering from severe disabilities or 

diseases[210,211,212].  

 

6.1.1 Various signal acquisition methods to measure brain activities 

 

 

 

 

 

 

 

 

 

Figure 6.1: Methods used to measure brain activities 

EEG has a high time resolution and can capture the physiological changes 

underlying the cognitive processes much better than other brain imaging techniques (such 

as Magnetic Resonance Imaging or Positron Emission Tomography scanners). EEG 

recordings do have limitations such as low spatial resolution and low signal to noise ratio 

since they are affected by various artefact‘s like muscle activity, power line interference, 

motion etc. and difficulty in source localization.  But it‘s low cost, portability and ease to 

the user under observation make it a potent option. Electroencephalography records 

electrical activity and brain waves using electrodes placed on the scalp.EEG recordings are 

widely used for non-invasive BCI as it has a good temporal resolution. An EEG recording 

is done by placing an electrode strip or cap on the scalp. There are various non-invasive 

EEG-based BCI interfaces such as evoked potentials, P300 signals [210], Slow Cortical 

Potentials [211], Motor imagery [212], etc. The evoked potentials occur due to an external 

stimulus that can be based on vision, sound, or touch (somatosensory) [213, 214] or a 

combination of them [215]. In P300-based BCI‘s a positive peak is elicited at a delay of 
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about 300 milliseconds‘, when an irregular stimulus occurs after a pattern of regular 

stimuli. Mu rhythm arises due to imagined motor activity in Motor imagery based BCI.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Evoked stimulus based BCI paradigms and Spontaneous stimulus based 

BCI paradigms 

 

6.1.2    Application of EEG as SSVEP based Brain Computer Interface 

Evoked potentials are the activities or responses generated either by an external 

stimulus or an internally driven cognitive process. Externally evoked potentials are called 

as exogenously generated evoked potentials whereas the internal cognitive potentials are 

called as endogenously evoked potential‘s. These are named as auditory, visual or tactile 

evoked potentials depending on the external stimulus which can take the form of audio, 

visual or touch. Visually evoked potentials are further classified as transient or steady state 

evoked potentials as shown in Figure 6.2. In Transient VEP‘s the rate of stimulation is 

usually less than 2 Hz as compared to Steady State visually evoked potentials where the 

rate of stimulating frequencies ranges from 5-100Hz [216]. Generally, it has been seen that 
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the SSVEP has a higher amplitude response at low and medium frequency stimulating 

frequencies compared to higher frequencies. But higher frequencies have the advantage of 

causing less fatigue to the subject and reduction as well in risk of photosensitive epileptic 

seizures. SSVEP have been widely used in Brain Computer Interface systems like moving 

a mouse cursor [230], speller [219], controlling wheelchairs [231], electrical prosthesis 

[215], biometrics and attentional based studies [217,218]. The use of SSVEPS in spatial 

attention based studies has garnered a lot of interest over the years. In one such work 

SSVEP responses were captured when the subject attended a visual display in one field 

while he ignored the another similar visual in an opposite field. The 20.8 Hz and 27.8Hz 

were the stimulating frequencies in the left and right field respectively [217]. The 

amplitude response of the SSVEP corresponding to the attended frequency increased. 

Variable Resolution Electromagnetic Tomography is usually used to estimate the current 

source densities and it is found out that the SSVEP had a focal origin in the contralateral 

parieto-occipital cortex. In another study by Jian Ding et al changes in attention also can 

occur in the just a single field of display [218]. They have presented random disc in two 

concentric annuli.  One concentric circle has a fixed stimulation frequency while the other 

has a random broadband flicker. Occipital frontal lobes are phase locked to the stimulating 

frequency when the subject attends it at delta and lower alpha band frequencies. When 

attention is shifted towards the other engaging unattended flicker the parietal lobe and 

posterior frontal cortex, responds preferentially to the unattended flicker. It is widely used 

due to its high signal to noise ratio which is key to any system. High SNR in turn causes an 

increase in accuracy. 

In VEP‘s a stimulus such as flash is used to elicit activity in the occipital lobe 

which is the visual processing unit of the brain. SSVEP reflect the changes in the cortical 

activity due to recurrent stimulus presentation. This cortical activity generates an electrical 

signal at the frequency of stimulation and its harmonics. These electrical activitiesare 

captured by the EEG system which is more prominent in the occipital lobe. The advantage 

of SSVEP over other BCI‘s is that the subject requires little or no training, its information 

transfer rate is high. SSVEP has also been explored for selective attention [219]. Many 

researchers are exploring research in the area of cognitive neuroscience. In one such work, 

a BCI-based speller paradigm has been designed by Movahedi et al. [220]. Chen et al. 

[221] have built a high information transfer rate speller paradigm with 45 commands. Here 
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in our work, we proposed steady-state visual evoked potential-based BCI for smart 

appliance control. We use non-invasive EEG techniques to read the raw electrical signals 

using a single channel (a single electrode) system. A stimulus of flickering LED‘s help 

produce the steady-state visual evoked potentials, only the potentials are taken up from the 

occipital lobe are amplified and transmitted over a Bluetooth module to a computing 

system which performs feature extraction (using Fast Fourier Transform (FFT) algorithm) 

and classification (using multiclass SVM algorithm) to classify the incoming signal for 

determined automation control in smart appliances. 

6.1.2.1 Signal Acquisition and Features Extraction 

 

Figure 6.3. BCI system build on SSVEP using B-Alert X-24 device 

We proposed a BCI system build on SSVEP using B-Alert X-24 device via a 

Bluetooth interface for controlling home appliances as shown in Figure 6.3. The design 

includes a stimulating platform, EEG signal acquisition unit, signal processing unit, and 

MATLAB for feature extraction and classification. The stimulating platform as shown in 

Figure 6.4 generates the frequency based paradigm with the help of four light emitting 

diodes (LEDs) [222]. 
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Figure 6.4: Subject gazing at the SSVEP based flickering LED of interest. 

 

6.1.2.1.1Signal Acquisition 

Here, the B-Alert X-24 series mobile EEG system as shown in Figure 6.7 is used 

which has 20 EEG channels that acquire high-quality signals. The brain response can be 

recorded with system like B-Alert X series mobile EEG system following 10/20 EEG 

standard with a 256 Hz sampling frequency [223]. The reference sensor is usually placed 

on the right temple and the right ear lobe served as the ground via an ear clip. In case of B-

Alert X-24 system one has 20 channels as shown in Figure 6.5 for high quality EEG and 

four optional signals like for ECG (2 channels), EMG and EOG (1 channel each). 

Automated impedance check is possible in most of such system for confirming the 

connectivity of channels. The Bluetooth based module (Figure 6.8) are usually used for 

data acquisition over 20 meters. On-board accelerometer sensor is inbuilt in system to 

quantify head movement and position. In the 10-20 system, electrode names begin with 

one or two letters indicating the general brain region or lobes where the electrode is placed 

(Fp = frontopolar; F = frontal; C = central; P = parietal; O = occipital; T = temporal). The 

cortical areas of the brain as shown in Figure 6.6 are covered by the EEG strip. 
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  Figure 6.5. B-Alert 10/20 sensor location 

 

 

Figure 6.6: Different cortical areas of the brain 

 

 

Figure6.7. B-Alert headset with 20 EEG sensor strip mounted on a scalp model 
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Figure 6.8: Bluetooth module 

 

6.1.2.1.2 Stimulus Presentation   

The stimulus can be presented by light emitting diodes(LED), liquid crystal display or 

LED monitors. The stimulus can be of any shape of color. The intensity or luminance 

should be good enough to elicit SSVEP responses. At the same time, it should not be too 

bright so as to cause discomfort to the subjects. Different patterns have been used such as 

checkerboards [224], moving shapes of varying contrast and color. LED‘s based stimulus 

have the advantage of portability and are cheaper compared to LED or LCD monitors. One 

can generate flickering frequencies from the SSVEP range of 2-100Hz. LCD‘s on the other 

hand are dependent on the refresh rate and can generate frequencies in the entire range. But 

their limitation is that they can generate only a limited number of different patterns with it.   

6.1.2.1.3 Experimental paradigm 

 

Individual‘s seizures occur in brain mass in response to the external stimuli like sound, 

vision or tactile stimuli, rather than spontaneous occurring seizures [225]. We have chosen 

our stimulus such that it does not affect a photosensitive subject. We chose four LED‘s 

that flicker at 6, 7, 8, and 9 Hz. Here, lower frequencies are chosen as these frequency 

regions have a stronger amplitude response and higher accuracy. Secondly, we have 

avoided the lower delta range of brain frequency as it may cause dizziness. The 
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microcontroller board is programmed to flicker the LED at the frequencies discussed 

above. 

6.1.2.1.4 Database creation 

Total ten subjects (all male with a mean age of 22 years) participated in the 

experiment. All the subjects had normal visual acuity. They were comfortably seated in a 

chair in front of four blinking LEDs. The subjects sat at a distance of around 40 cm from 

the target stimuli. Their brain waves were recorded with described EEG system at a 256 

Hz sampling frequency in a low decibel dark room. The reference sensor was placed on the 

right ear lobe and the left ear lobe served as the ground via electrodes. Impedance checking 

in established to ensure proper contact of the electrodes with the scalp. The subjects had to 

focus on the flickering LED‘s over 2 min as shown in Figure 6.9. The procedure was 

repeated six times over a frequency. A total of 24 trials, 2 minutes were performed on 

every subject. The raw EEG signals are stored in the EDF file format. Preprocessing, 

feature extraction and classification are established in MATLAB 2017. 

6.1.2.1.5 Feature Extraction 

 

The raw EEG signal is passed through a Finite Impulse Response filter having a 

lower cut-off at 4 Hz and a higher cut-off at 18 Hz. This range removes all the dc 

components as well as high frequency and power line noise. The transition width of the 

filter has been set to 0.2 Hz and the filter order is selected to be 30. The filter is tapered to 

avoid ringing or edge artifacts. The noisy and filtered raw EEG signal from channel O1 is 

shown in Figure 6.10. The next step is to extract features from the signal. Canonical 

Correspondence Analysis (CCA) [226, 227] and Fast Fourier Transform (FFT) have been 

extensively used by researchers [228]. We chose FFT in our work to extract the peak 

frequencies. The FFT and its inverse are defined as Equations 6.1 and 6.2, in which the 

signals are transformed between time domain and frequency domain. 

X(K)=∑                
       (6.1) 

          x(n)=∑                 
               (6.2) 

FFT is a digital signal processing method to compute the discrete Fourier 

Transform (DFT) of a signal. This is used to transform a time domain signal to its 
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frequency domain. The computational complexity of the DFT which is 2*N
2
 is reduced to 

2*N *log (2*N) in FFT. The sampling frequency for FFT computation was set at 256 Hz 

to match the EEG sampling frequency. The maximum peak valuess detected by the FFT 

algorithm are the features fed to the classifcation algorithm. 

 

6.1.2.1.6 Signal Classification using multiclass SVM  

 

 

Figure 6.9: Subject under test 

Support vector machine (SVM) created by Cores and Vapnik is a controlled learning 

computer based on the hypothesis of statistical learning or Vapnik-Chervonenkis 

(VC)[229].  It is possible to view the SVM as a binary classifier. It abstracts a border of 

choice from the information and utilizes it to classify patterns that belong to both classes. 

The 1/w margin, a distance between the optimum hyperplane separation and the instances 

on either side of it, is an important notation in the SVM. The vectors on these margins are 

called vectors of assistance. The solution is depicted as a linear combination of only 

support vectors that ignore the other information in a linear separable situation. The 

complexity of the SVM model is therefore generally not affected by the number of features 

selected. The essence of the SVM lies in the projection to a high-dimensional feature space 
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of linearly non-separable input data and finding an optimal hyperplane in the feature space 

with the maximum possible margin. 

For a workout set labeled as {Xi, yi}, I = 1, 2, L and l are the amount of training samples, t

he issue of finding ideal hyper plane over bias, b and vector w weight.Where x is the class 

label input vector y { −1, 1}.  The first portion of the issue is intended to maximize the 

margin between the two classes. The second term aims to reduce the training errors by 

penalizing the solutions of a large slack variable ξi with the cost of penalty, C.  Larger C 

value makes constraints hard to ignore and hence, minimize the margin. 

Using the Lagrangian multiplier technique and formulating its dual problem with kernel tri

cks, this restricted quadratic programming issue can be solved more easily.Where, there, 

there's a Lagrangian multiplier. A straightforward sequential     minimal optimization 

algorithm can solve this dual issue with linear quality limitations. 

The rise in the dimensionality of the information through nonlinear function mapping may 

help with a linear hyperplane to separate classes. Using the kernel feature K(xi, xj) mappin

g is obtained and the most frequently used kernels are polynomial, Gaussian. The other 

technique, OAA solves the k-class issue by solving k amount of two classification 

assignments, requiring only k binary models, each devoted to detecting a specific class. In 

this technique, each binary SVM model is trained only for the present class and adverse 

label for all other classes with full information with the positive label. Both of these 

techniques are regarded appropriate for issues with multi-class classification [245]. SVM, 

which was initially created for binary classification, is successfully used by adopting a 

group of binary SVMs for multi-class classification problems. The most commonly used 

ways for multiclass classification are one-against-all (OAA), one-against-one (OAO) and a 

directed acyclic graph SVM (DAGSVM)[245]. The OAO method performs pairwise 
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classification by constructing k (k − 1) / 2 binary models. We have used the OAA method 

for our study and it has been implemented in MATLAB. 

 

Figure 6.10: Noisy and Filtered waveform at occipital lobe O1 location   

 

6.2    Steady State Evoked Potentials BCI results 

 

In SSVEP the main work is to find out the most dominant frequency which 

corresponds to the frequency of the stimulus from the recorded EEG signals. When we run 

FFT analysis over the raw EEG signal acquired from the O1 location, we can differentiate 

between the SSVEP frequencies. Each fundamental frequency has corresponding 

harmonics at 2f and 3f. These harmonics can also be used to decrease misclassification 

errors. We have chosen the fundamental frequency in such a manner that it does not 

overlap with the harmonics of other frequencies. Figure 6.11 a–d depicts the frequency 

domain representation of an SSVEP signal for stimulus frequencies of 6, 7, 8, and 9 Hz 

respectively. The FFT output produces dominant frequencies at 6, 7, 8, and 9 Hz which 

can be used for specific applications. Also one can use the multiclass SVM feature 

classification method to classify the input signals to discriminate the SSVEP signals 

perceived by the subject. 
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(a) 

 

(b) 

 

 (c) 



Page 103 of 138 

 

 

(d) 

Figure 6.11: Power spectrum at a) 6 Hz b) 7Hz c) 8Hz and d) 9Hz 

 

Figure6.12: Scatter plot of SSVEP frequencies under interest 

 

6.3 Summary  

In this work, we proposed a BCI-based on SSVEP for home automation with 

wireless technology.We have successfully tested the preliminary design of BCI system for  
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both online and offline analyses. In the proposed system, a subject just gazes an 

independent flickering target having low frequencies to turn on/off-normal day to days‘ 

electrical gadgets like a bulb or fan. We also discovered that when the flickering 

frequencies were kept above the delta brain (above 4 Hz) and below the beta brain (below 

12 Hz) one obtained pretty good detection of frequencies. We also noticed that the 

subject‘s eyes are tired after some trials. This can be reduced by adjusting the distance of 

the stimulus LED box for each subject rather than keeping a fixed distance since each user 

will have different eye sensitivity. In this study, instead of producing the stimulus on an 

LCD screen the LED‘s are used which is portable for the user, thus allowing better 

flexibility to the user. Another advantage of using LED‘s is that one has the flexibility to 

decide on various frequencies as compared to an LCD screen where the frequencies are a 

multiple of the monitor refresh frequency rate. One can use a phase-based SSVEP system 

instead of the current frequency based system to reduce the fatigue caused to the eye retina 

and to improve performance. At present, the frequencies we have selected have 1 Hz 

spatial separation between them. Also one can reduce the separation to 0.2 or 0.5 Hz so 

that we can accommodate more commands within the 4–12 Hz range. The length of each 

trial can be reduced from 120 seconds to check how it performs with a shorter trial length 

to increase the information transfer rate. Classification algorithms based on ensemble, 

discriminant or neural networks can be used to reduce misclassification error. 
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Chapter 7 

Conclusion and 

Scope for Future 

Work  

7.1 Future Scope    

There is good potential for the SSVEP based study and one can design diverse applications 

in this area. We propose application of SSVEP in biometrics.   

7.1.1 Application of EEG in biometrics 

Subject identification and verification are two different processes together, wherein 

for identification the subject need not be physically present, example if photo of the person 

is available, then one can check whether he or she exists in a certain criminal database.  

Verification requires the presence or direct involvement of the person as it mostly deals 

with authorizing a person or allowing to access security systems.Traditional authentication 

methods use "what you know "(i.e. authenticator based on knowledge) or "what you have 

"(i.e. authenticator based on objects) to identify users. These can be unintentionally 

disclosed or simply lost or stolen. "what you are "(i.e., ID-based authenticator) gives an 

edge, as people are "who they are "regardless of "what they know "or "what they have". 
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Also, EEG devices are undergoing significant development, which leads to an increasing 

number of users accepting them as brain-computer interfaces (BCI). This creates an 

opportunity to advantage of a person's unique ―inner self‖ for authentication. Several 

literary studies attempt to explore the potential biometric use of EEG. Biometric systems 

based on EEG can be based on the use of exogenous or endogenous brain activity. 

Endogenous activity is when the subject is asked to relax and not perform any particular 

task. The problem is that EEG activity varies from person to person. Exogenous activity is 

when the subject is asked to perform some tasks, such as looking at flickering LEDs, 

counting mentally, imagining, etc. [212]. Biometrics such as fingerprint and face have 

become ubiquitous in all walks of life and there is continuous work being done for subject 

identification and verification. But there are certain problems with fingerprint biometrics 

as a person‘s biometric can easily be picked from smooth surfaces to spoof and in the 

process compromising with the authenticity of the system. A lot of research has been done 

to showcase the vulnerability of finger-based biometric systems. Facial images can again 

be spoofed or masks can be used to bypass the identification system. There has been 

tremendous effort being put in to overcome the liability of these biometric systems, hence 

there is no harm in considering another biometric or biometrics in the offing. More 

recently physiological signals like pulse pressure, electrocardiogram, electromyography, 

electroencephalography, functional magnetic resonance imaging has garnered interest as a 

potential biometric.  EEG has been used extensively for medical prognosis and diagnosis 

from its inception, and more recently in BCI to help people with severe motor disabilities 

to communicate with people or control devices.  The ECG signal like it‘s counterpart ECG 

has been used for a long time to determine the pathologic condition of human beings. ECG 

has distinctive features inherently present in them which helps in identifying individuals. 

Both of them come under the category of hidden biometrics, since it is not visible to the 

human naked eye and to access it requires a certain amount of expertise. For any trait to be 

considered as a biometric it must fulfill the certain criterion; a) Universality: The biometric 

trait should be present in all the subjects, b) Unique: It should have discriminative features 

that will vary from person to person, c) Repeatable: It should not vary over time. d) 

Accessible:   We should access to the biometric trait, d) Robust: The trait should be good 

enough to avoid imposters and frauds. 
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EEG and ECG both possess all the above features, hence making a potent emerging 

biometric candidate. Apart from this EEG and ECG assure us of the liveliness of the 

person which is missing in other biometrics and also it is impossible to steal and forge 

them. There are certain issues with EEG biometric a) Cost: At present the cost of EEG 

systems is quite high. b) The setup time is quite long compared to other biometric traits. c) 

Repeatability studies need to be carried out. d)The acquisition process can be a bit taxing 

with current EEG systems but a lot of effort is being put by researchers to make it easier 

and faster. Most of the research done in EEG biometrics or BCI‘s is task dependent. The 

aim is to understand which areas of the brain called the Broadmann areas to respond to the 

given tasks whether it is audible, visual, tactile form and also to understand the functional 

connectivity amongst them. But more recently there have been studies that have reported 

that neural signature[126,127] is independent of task-related activity. EEG and ECG have 

been studied individually as unimodal biometric, but there has no study according to our 

knowledge after extensive literature survey which suggests or utilizes the combination of 

both. It is a well-known fact that multimodal biometrics have been useful to overcome the 

shortcomings present in unimodal biometric systems.  There has been fusion done on ECG 

and other modalities like EMG and EEG and handwritten signature and so 

on[126,127,128,129,130].There are hardly any databases that have recorded EEG and 

ECG in unison.  In this work, we propose a novel approach to the fusion of EEG and ECG 

biometrics for person identification and verification. Both the physiological traits are 

interlinked to each other hence garnering more interest to see how fusing such traits will 

improve the performance of the biometric system.   

 

7.2       Stimulus design and presentation 

The stimulus here presented is based on visually evoked stable potential (SSVEP) 

based on visual stimulus. The block diagram in Figure 7.1, which shows the biometric 

system based on EEG. It's split into five sub-blocks. It consists of three rows and three 

columns, each flickering at a given frequency. The frequency range selected is in the theta 

band. The reason for choosing this design is to present alphanumeric characters ' L,'' T' and 

' 7.' At the intersection of the flickering lines that made up the letter or number, the 

subjects were asked to focus. The experiment is attended by fifteen subjects(all males). 

None of the subjects had an epilepsy history. The subject sat comfortably on a chair about 
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60 cm from the stimulus. The stimulus is based on top-down cognitive processing in the 

brain [238]. At the beginning of each stimulus, an auditory cue was given (Refer Figure 

7.2). There were two trials per subject and each trial lasted 180 sec. There were a total of 

30 segments on each trail. Of the 30 segments, 10 segments each corresponding to the 

letter "L, "T "and "7. " Each segment lasted six seconds, i.e. one second for the auditory 

cue and the other five for the stimulus flickering. Since the total number of studies per 

subject was two, there were 20 segments of' L,'' T' and' 7.' The stimulus presentation was 

carried out on a 24-inch LCD using the Psychtoolbox toolbox in MATLAB 2017a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: SSVEP evoked using grid shaped line array. (Adapted for Min et al.  

(SSVEP top down paradigm, Nature 2016)). 
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7.3 Preliminary Database acquisition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Stimulus time line for SSVEP Signal. 

The EEG data were obtained from ABM using the B-Alert system 24 channelsEEG 

system. The computer receives data via Bluetooth. Before recording, the impedance 

matching is done to ensure proper contact at electrode sites to obtain good quality signals. 

The EEG strip is based on the international 10-20 system [223]. Set up time varies 

between 5-15 minutes per subject. 

 

7.4 Feature Extraction 

Evaluating spectral maps alone is not enough. To understand how information is 

processed in the brain, how different brain regions communicate with each other and the 
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direction of the information flow is important. Spatiotemporal distribution of brain activity 

and network conduct provides significant psychophysiological data and understanding 

brain function is essential to picture functional connectivity [ 232, 233,234,235,236]. As 

such, the assessment of Granger causality was used to identify vital neurodynamic 

networks for the top-down grid-shaped SSVEP paradigm. Analysis of the causality of 

Granger is frequently used to predict the causal directional relationships between 

electrophysiological signals [236,237]. Directed Transfer Function (DTF), in specific, is a 

computing technique for measuring causality between an arbitrary amount of signals [ 239, 

240].DTF is suggested as a technique for extracting directional information flow between 

brain structures to overcome possible inaccurate measures (e.g., coherence analysis) when 

applied to multivariate systems [241]. DTF can be considered as one type of multivariate 

causality of Granger and can be used to handle multichannel signals derived from the 

coefficients of a multivariate autoregressive model (MVAR) that fits the data [242].  For 

estimating MVAR models, the ARfit package [243] can be used to calculate DTF.  The 

eConnectome software allowed cortical source imaging assessment and subsequent 

cortical source activity connectivity analysis. The Directed Transfer Function (DTF) as 

shown in Fig 7.3 is a method used to obtain this information. The causality relationship 

between two regions of interest is found using Auto Regressive models. Node 1 's current 

value can be predicted by Node 2 's previous values and so on. In MATLAB 2017a, DTF 

analysis was carried out using the eConnectome toolbox. The 26 Region of Interests 

(ROIs) has been selected. Information flow graphics give similar information on how areas 

of the brain communicate with each other but in the spatial domain as shown in Figure 7.3.  
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Figure 7.3: DTF matrix of one segment at one particular frequency (26 X 26) 

The EEG signals were used for extraction of the function in the frequency range 

from 5 Hz to 14 Hz.  This frequency range involves the flickering frequencies of the 

stimulus along with the amount of the combination frequencies corresponding to the letter. 

Source waveforms were estimated at all chosen ROIs and directional information flow 

(Refer Figure 7.4) across sources was shown by DTF assessment.  The DTF feature 

produces arbitrary values representing functional connectivity that are still subject to 

statistical evaluations of their meaning [235]. 
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Figure 7.4: Information Flow Graphics  

 

 

 

Figure 7.5: DTF matrices of Subject 1, Subject 2, Subject 3 and Subject 4 
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Figure 7.6: Information Flow Graphics of Subject 1, Subject 2, Subject 3 and  

Subject 4  

  Due to the extremely nonlinear relationship between the DTF function and the time series 

data from which it is obtained, a non-parametric statistical test technique based on 

surrogate data is used to assess the information. In this method, one transforms the original 

time series into Fourier space, maintaining unchanged the magnitudes of the Fourier 

coefficients, but shuffling the Fourier coefficients phases randomly and independently.  

The surrogate data was then converted back to the time domain in the Fourier space. This 

stage shuffling method maintains the time series spectral structure that is suitable for DTF 

assessment as DTF measures frequency-specific causal relationships.  The estimation of 

connectivity was introduced to the surrogate data after shuffling.  For each set of source 

time series, we repeated the shuffling and connectivity estimation procedures 1000 times, 
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creating an empirical distribution of the DTF values under the null hypothesis that there is 

no causal connectivity (p<0.05) [244]. 

 

7.5 Classification 

         A DTF matrix was calculated for 10 different frequencies (5-14 Hz). Each DTF 

matrix is of size 26 X 26 X 10 for one stimulus. Four such DTF matrix is shown in Fig 7.4. 

One can see the directional flow of the signal in the brain neural mass (Refer Figure 7.6), 

which depict the uniqueness for the stimuli subjected to various subjects. Hence for each 

subject there a total of 60 X (26 X 26 X10) = 600 matrices. These matrices are then saved 

as images to input them to deep learning based protocol i.e. CNN. For four subjects a total 

of 2400 images each of size 26 X 26. For support vector machine (SVM) based 

classification, the matrices are reshaped from 26 X 26 X 10 to 676 X10 row vectors. For 

each subject total 60 X (676 X10) = 600 row vectors of length 676.Total for say four 

subjects there are 2400 row vectors of length 676. For the Convolutional neural 

network(CNN) classification out of the 600 images, 400 images were used for training and 

the remaining 200 images for testing. For Support Vector Machines (5-fold cross 

validation) classification, 400-row vectors were used for training and 200 for testing. A 

100% classification was obtained for both the methods. This preliminary studies state that 

there is potential for the biometrics authentications.  

 

7.6 Database acquisition 

The database is created for the video paradigm suggested above. In session 1 there were 28 

subjects (18 males and 10 females). Here, each subject is asked to perform the tasks given 

below over alphanumeric paradigm (4 trials) and continuous authentication (4 trials) as 

shown in Table 7.1. In session 2 there were 18 subjects (14 males and 4 females). Session 

two was done after 15 days to perform analysis for repeatability. Care is ensuring to ensure 

that none of the subjects had any history of epilepsy. The subject is seated comfortably on 

a chair at a distance of around 60 cms from the stimulus. The subject was asked to focus at 

the intersection of the rectangular boxes which made up a letter.  Each of the horizontal or 

vertical lines. An auditory cue (refer Figure 7.2) is given at the start of each stimulus. 

Stimulus presentation was implemented using the Psychtoolbox toolbox in MATLAB 
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2017 a. The setup time to mount the EEG cap over each subject varied from 20-30 

minutes. 

Table 7.1: Created a database of 28 subjects (18 males and 10 females) Session 1 and 

Session 2 (14 males and 4 females). 

 

7.7 Conclusion  

DFT is very computing power intensive and required good computing machines. One may 

note that on i3 processor the DTF computing takes 30 minutes. Hence, the study will be 

extended for biometrics application in near future. Hence, the thesis can be concluded with 

following.  

 Blood pressure meter was developed based on auscultation and oscillometric principles 

and validated for subjects. 

 Windkessel simulation studies performed to generate the data for the best fusion 

strategies to combine the blood pressure systolic and diastolic values for auscultation 

and oscillometric principles.  

 Successfully implemented and studied independency the Neural Mass Model, 

ECG(HRV) model and Windkessel Arterial Blood Pressure model. 

 The above three model integrated to implement the Autonomous Neural System (ANS) 

Model to understand the complexity in the Coherence of the Physiological system.   

 Studied and implemented brain computer interface system as an application of EEG 

signals. The Study is extended for various paradigm for SSVEP signals analysis.  

Session I and II - 05 Second for three letter 10 times +  1 sec 

auditorycue 

LCD Continuous Authentication 

Instance 1 Instance 2 Instance 3 Instance 4 Instance 1 Instance 2 Instance 3 Instance 4 
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 Proposed implemented EEG biometric system with a preliminary database of ten 

subjects and demonstrated classification accuracy of 100% using Support Vector 

Machines and Convolutional Neural Networks. Also proposed paradigm for Continuous 

Authentication. 

7.8 Future Work 

 Validation with standard protocols(British Hypertension Society or Advancement of 

Medical Instrumentation) 

 One can explore a cheaper system such as Neurosky Think gear for the acquisition of 

signals. Neurosky Think Gear ASIC Module is a single channel (EEG electrode, the 

reference electrode and ground electrode) EEG amplifier with a sampling rate of 512 

Hz. The exciting features of this are that, it directly connects to a dry EEG electrode and 

provides extremely low-level signal detection in the range of 3–100 Hz bandwidth.  

 In BCI paradigm that can generate more number of commands by using the following 

grid structure where the resolution between each frequency is 0.5Hz. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7: Grid structure with better frequency resolution  

 Increase the size of the existing database for the EEG and ECG biometric system for two   

Paradigms and for two sessions for 50 subjects across both the sessions. 

 Compare different state of the art machine learning algorithms for better biometric  

recognition. 

 Implement the proposed multimodal approach with ECG and EEG for better recognition  

rates 

5Hz 

5.5Hz 

6Hz 

6.5Hz 

30Hz 30.5H
z

31Hz 31.5Hz 
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