

ISSN: 2414-3146 iucrdata.iucr.org/x

Di-*μ*-aqua-bis[aqua(2,2'-bipyridine)(4-nitro-benzoato)cobalt(II)] bis(4-nitrobenzoate)

Bikshandarkoil R. Srinivasan, Sarvesh S. Harmalkar, Luann R. D'Souza and Sunder N. Dhuri

IUCrData (2020). 5, x200796

This open-access article is distributed under the terms of the Creative Commons Attribution Licence https://creativecommons.org/licenses/by/4.0/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

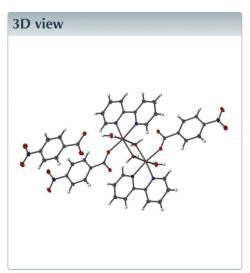
ISSN 2414-3146

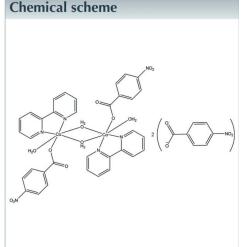
Received 27 May 2020 Accepted 13 June 2020

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; bimetallic complex; divalent-metal 4-nitrobenzoate; hydrogen bonds.

CCDC reference: 2009578


Structural data: full structural data are available from iucrdata.iucr.org


Di-μ-aqua-bis[aqua(2,2'-bipyridine)(4-nitro-benzoato)cobalt(II)] bis(4-nitrobenzoate)

Bikshandarkoil R. Srinivasan, Sarvesh S. Harmalkar, Luann R. D'Souza and Sunder N. Dhuri*

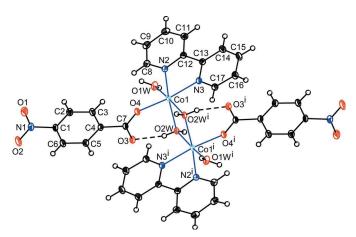
School of Chemical Sciences, Goa University, Goa 403206, India. *Correspondence e-mail: sndhuri@unigoa.ac.in

The title compound, $[\text{Co}_2(\text{C}_7\text{H}_4\text{NO}_4)_2(\text{C}_{10}\text{H}_8\text{N}_2)_2(\text{H}_2\text{O})_4](\text{C}_7\text{H}_4\text{NO}_4)_2$, consists of a centrosymmetric bimetallic complex charge-balanced by free 4-nitrobenzoate anions. The Co^{II} ion exhibits a distorted $\textit{cis}\text{-CoN}_2\text{O}_4$ octahedral coordination environment and the $\text{Co}\cdots\text{Co}$ separation is 3.326 (2) Å. In the crystal, the dications and anions are linked by $\text{O}\text{-H}\cdots\text{O}$ and $\text{C}\text{-H}\cdots\text{O}$ hydrogen bonds.

Structure description

As part of an ongoing research program we are investigating the structural aspects of mixed-ligand compounds of divalent-metal 4-nitrobenzoates. Recently we described the structure of [Co(H₂O)₂(DMSO)₂(C₇H₄NO₄)](C₇H₄NO₄) **2** (DMSO = dimethylsulfoxide; C₇H₄NO₄ = 4-nitrobenzoate) containing a bidentate as well as a free 4-nitrobenzoate anion (Srinivasan *et al.*, 2020). Our attempts to replace the *cis*-aqua ligands of **2** with 2,2′-bipyridine has resulted in the isolation of the diaqua-bridged title dinuclear compound. The Cambridge Structural Database (CSD, version 5.40, update September 2019; Groom *et al.*, 2016) lists the structures of several cobalt 4-nitrobenzoates: of these, more than a dozen are mononuclear cobalt compounds (Srinivasan *et al.*, 2004, 2020; Chakravorty *et al.*, 2011) while only four dinuclear compounds of 4-nitrobenzoate are known to date (Singh *et al.*, 2007; Jung *et al.*, 2009; Yang *et al.*, 2011; Wang & Qi, 2014). The title compound is a new addition to the list of dimeric cobalt 4-nitrobenzoates.

The structure of the title compound, **1**, consists of a crystallographically unique cobaltous ion and a 2,2'-bipyridine molecule, two crystallographically independent 4-nitrobenzoate ions and two unique aqua ligands (one terminal, one bridging). The Co^{II} ion, one 4-nitrobenzoate ion, one 2,2'-bipyridine molecule and each of a terminal and bridging water molecule build up one half of a dimeric dicationic species


Table 1 Hydrogen-bond geometry (Å, °).

D $ H$ $\cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	D $ H$ $\cdot \cdot \cdot A$
$O2W-H2B\cdots O5^{i}$	0.84(2)	1.67 (2)	2.5101 (13)	173 (2)
$O2W-H2A\cdots O3$	0.79(2)	1.88(2)	2.6483 (13)	164(2)
$O1W-H1B\cdots O3^{ii}$	0.82(2)	2.04(2)	2.8477 (14)	174(2)
$O1W-H1A\cdotsO6^{iii}$	0.81(2)	1.88(2)	2.6803 (14)	171 (2)
$C21-H21\cdots O2^{iv}$	0.93	2.48	3.2219 (17)	137
$C17-H17\cdots O5^{i}$	0.93	2.24	3.1679 (16)	172
$C16-H16\cdots O2^{v}$	0.93	2.57	3.4644 (17)	160
$C14-H14\cdots O6^{vi}$	0.93	2.41	3.3126 (16)	164
C9−H9···O7 ^{vii}	0.93	2.64	3.5467 (18)	164

Symmetry codes: (i) x-1,y,z; (ii) -x,-y+1,-z+1; (iii) -x+1,-y+1,-z+1; (iv) x+1,y,z-1; (v) x,y,z-1; (vi) x,y+1,z; (vii) x,y+1,z+1.

 $[\mathrm{Co_2(H_2O)_2(C_{10}H_8N_2)_2(C_7H_4NO_4)_2(\mu_2\text{-}H_2O)_2}]^{2^+},~$ the other half being generated by inversion symmetry (Fig. 1). The crystallographic inversion centre is situated at the midpoint of the line connecting the $\mathrm{Co^{II}}$ atoms in the dimer. A charge-balancing 4-nitrobenzoate ion completes the structure.

In the centrosymmetric dimer, each Co^{II} ion exhibits a distorted octahedral environment and is bonded to a terminal aqua ligand, a monodentate 4-nitrobenzoate ligand disposed *cis* to the terminal aqua ligand and a bidentate 2,2'-bipyridine molecule. A pair of *cis*-aqua ligands bridges the metal centres

Figure 1 The dinuclear dication in **1** with displacement ellipsoids drawn at the 50% probability level. Intramolecular hydrogen bonds are shown as broken lines [Symmetry code: (i) 1 - x, 1 - y, 1 - z.]

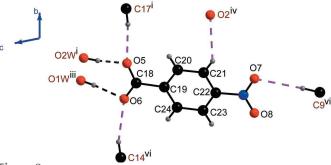


Figure 2 The hydrogen-bonding scheme around the 4-nitrobenzoate anion showing the $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds as dashed lines. For symmetry codes see Table 1.

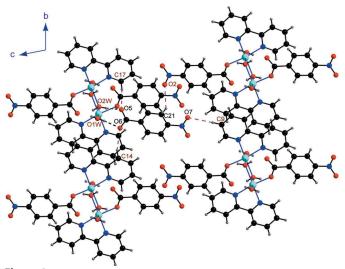


Figure 3 Environment of the anion, showing its hydrogen bonds to four symmetrically related dications via O $-H\cdots$ O and C $-H\cdots$ O bonds.

and completes the hexa-coordination around the metal ions resulting in a $Co \cdot \cdot \cdot Co(1-x, 1-y, 1-z)$ separation of 3.326 (2) Å. It is interesting to note that in three of the four known dinuclear cobalt compounds (Singh *et al.*, 2007; Yang *et al.*, 2011; Wang & Qi, 2014), the 4-nitrobenzoate anion functions as a monodentate ligand as in the title compound. One example each of a dinuclear (Jung *et al.*, 2009) and a tetranuclear cobalt compound (Dimitrou *et al.*, 2001) is known where the 4-nitrobenzoate ion functions as a symmetric bridging ligand.

The geometric parameters of **1** are in their normal ranges and are in agreement with reported data (Srinivasan *et al.*, 2020). The $Co-O_w$ (w = water) bonds [2.0743 (10) and 2.1617 (9) Å] are elongated as compared to the $Co-O_c$ (c = carboxylate) distance, which is the shortest at 2.0494 (9) Å. The *cis*-O-Co-O and N-Co-N bond angles range between 77.97 (4) and 100.02 (4)°, while the *trans* bond angles deviate from ideal values, indicating a distortion of the $\{CoN_2O_4\}$ octahedron.

All of the H atoms attached to the aqua ligands, and five of the other H atoms *viz*. H9, H14, H16, H17 and H21 bonded to C9, C14, C16, C17 and C21, respectively, function as hydrogenbond donors, while the oxygen atoms O2, O3, O5, O6 and O7 of the 4-nitrobenzoate ions function as acceptors, resulting in a

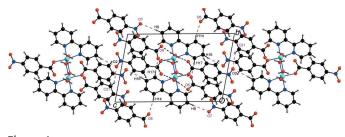


Figure 4
The hydrogen-bonding scheme around the dication showing its linking with eight anions and two cations $via O - H \cdots O$ and $C - H \cdots O$ hydrogen bonds.

total of four $O-H\cdots O$ and five $C-H\cdots O$ hydrogen bonds (Table 1). Each free 4-nitrobenzoate anion is linked with four symmetry-related dications with the aid of two $O-H\cdots O$ hydrogen bonds and four $C-H\cdots O$ hydrogen bonds (Figs. 2 and 3). Each of the dinuclear dicablt dicationic species is linked with two symmetry-related dications and eight symmetry-generated anions (Fig. 4), resulting in a three-dimensional supramolecular network.

Synthesis and crystallization

Crystals of 2 (0.0292 g, 0.05 mmol) were taken in DMSO (3 ml) to obtain a purple solution. 2,2'-Bipyridine (0.0078 g, 0.05 mmol) was dissolved in DMSO (3 ml) in a separate beaker and then was added dropwise to the cobalt solution with continuous swirling. The pale-orange solution thus obtained was left undisturbed at room temperature. After to days, dark-orange blocks of 1 started forming in the solution, which were isolated by filtration and air dried. Yield 60%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

We thank Council of Scientific and Industrial Research (CSIR) New Delhi, for financial support.

References

Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

Bruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chakravorty, S., Platts, J. A. & Das, B. K. (2011). *Dalton Trans.* **40**, 11605–11612.

Dimitrou, K., Brown, A. D., Christou, G., Concolino, T. E. & Rheingold, A. L. (2001). *Chem. Commun.* pp. 1284–1285.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.

Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). *J. Appl. Cryst.* **44**, 1281–1284.

Jung, M., Sharma, A., Hinderberger, D., Braun, S., Schatzschneider, U. & Rentschler, E. (2009). Eur. J. Inorg. Chem. 2009, 1495–1502.

 Table 2

 Experimental details.

(C ₇ H ₄ NO ₄) ₂ (C ₁₀ H ₈ N ₂) ₂ - ₂ O) ₄](C ₇ H ₄ NO ₄) ₂ 74 nic, <i>P</i> I 7 (5), 10.4927 (8), 3560 (12)
74 nic, P1 7 (5), 10.4927 (8),
7 (5), 10.4927 (8),
7 (5), 10.4927 (8),
· /·
· /·
5 (2), 102.840 (2), 102.607 (2)
70 (15)
Κα
\times 0.32 \times 0.21
er D8 Quest eco
i-scan (<i>SADABS</i> ; Krause <i>et</i> , 2015)
7, 5763, 5312
, 0.064, 1.05
oms treated by a mixture of lependent and constrained inement
-0.31

Computer programs: APEX3 and SAINT (Bruker, 2019), SHELXT2014/5 (Sheldrick, 20015a), SHELXL2018 (Sheldrick, 2015b), DIAMOND (Brandenburg, 1999) and SHELXLE (Hübschle SLE SLE

Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Singh, U. P., Aggarwal, V. & Sharma, A. K. (2007). Inorg. Chim. Acta, 360, 3226–3232.

Srinivasan, B. R., Sawant, S. C. & Das, S. K. (2004). *Indian J. Chem. Sect A*, 43, 1066–1075.

Srinivasan, B. R., Tari, S. P., Parsekar, N. U. & Narvekar, K. U. (2020). *Indian J. Chem. Sect A*, 59, 51–56.

Wang, Y. & Qi, Y. (2014). Z. Anorg. Allg. Chem. 640, 2609–2615.

Yang, E. C., Liu, Z. Y., Liu, T. Y., Li, L. L. & Zhao, X. J. (2011). Dalton Trans. 40, 8132–8139.