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ABSTRACT
In this paper we obtain the Lie invariance condition for second order partial differential equations. This condition is used to obtain
the determining equations of the 1-dimensional wave equation with constant speed. The determining equations are split to obtain an
overdetermined system of partial differential equations which are solved to obtain the symmetries of the wave equation. By making
an appropriate transformation between the dependent and independent variable, the wave equation is reduced to an easily solvable
ordinary differential equation. We solve this resulting differential equation to obtain the solutions of the wave equation. In particular,
the one dimensional wave equation with unit speed has been solved.

1 Introduction
Over a hundred years ago, Sophus Lie introduced the theory of Lie symmetry groups which are invertible point
transformations of the independent and dependent variables in differential equations. In such group analysis, these
transformations lead the original differential equation of first order (which may be a complicated one) to becoming a
separable one, which can be easily solved. In addition, for higher order differential equations, group analysis of the
equation is used to reduce the order of the differential equation by one. A lot of literature on group analysis for ordinary
and partial differential equations can be found in [2, 5].

We call transformations leaving objects invariant or unchanged as Symmetries. In [16] it is pointed out that symmetries
account for various laws in nature, A very important implication of symmetry in physics and mathematics is the
existence of conservation laws. This is because their reproduction at different times and places depend on invariance
laws. In this connection Emma N ¥>ether [14] observed and proved a relation between continuous symmetries and
conservation laws. Scientists like Kepler got interested in studying motion of planets using symmetries while Newton
studied the orbits of planets using the laws of mechanics as a symmetry principle.
Partial differential equations are of paramount importance in particle Physics, nonlinear optics, fluid dynamics in ad-
dition to its applications in general relativity to differential and algebraic geometry, topology, etc. Research dedicated
to using symmetry analysis for partial differential equations arising in Mathematical Physics may be found in [20, 13].
In addition symmetry analysis for time fractional partial differential equations can be found in [8]. Lie symmetry
analysis for the Kudryashov-Sinelshikov equation may be found in [23] while Lie symmetry analysis for the Burgers’
equation may be found in [11, 12]. Studies on the Korteweg-de Vries equation using Lie symmetry analysis are seen in
[10, 22]. Interests in studying symmetries is so large that in [19] the definition of an admitted Lie group is developed
for Stochastic differential equations.

We now state the definition of a Lie group which we will be using. We will also give some examples of Lie group to
illustrate the definition.
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Definition 1 ([3]) In general, we consider transformations C̄8 = 58 (C 9 , X), 8, 9 = 1, 2, · · · , =
which continuously depend on the parameter X. Further we assume that, for each 8, 58 is a smooth function of the
variables C 9 and has convergent Taylor series in X.
These set of transformations are said to form a group if:

1. Two transformations carried out in succession are equivalent to another transformation of the set
2. There is a transformation for which the source and image points coincide.
3. Each transformation has an inverse.

Remark 1 The associativity law for groups follows from the closure property.

Remark 2 In general, the order in which the transformations are carried out matters. If the order does not matter, then
we label the group as abelian.

Example 1 C̄ = 0 XC, C ∈ R\{0} is a one parameter group called the stretching group.

Example 2 C̄ = C + X, which is also a group called the translational group.

Example 3 C̄1 = C1 cos X − C2 sin X, C̄2 = C1 sin X + C2 cos X is known as a Rotational group.

In this paper we perform group analysis of the one-dimensional wave equation, which is of the form,

m2D

mC2
(C, G) − 22 m

2D

mG2 (C, G) = 0, (1)

where D is a real valued function defined on � × �, and where � is an open interval in R and � is an open set in R.
Equation (1) under study is a second order partial differential equation with 2 as the constant speed.
Wave equations find applications in modeling the air column of a clarinet or organ pipe, modeling tension via springs,
motion of a vibrating string, study of damping, elastic waves in a rod, acoustic model for seismic waves, sound waves
in liquids and gases, etc.
Traditional methods to solve wave equations are inverse scattering method [1], Hirota bilinear method [9], Darboux
transformation [6], B ¥0ckund method [4] and Painleve’s extension method [7]. Other methods of solution using
D’Alembert’s formula and method of separation of variables can be found in [17, 18]. More studies for the wave
equation can be found in [21].
We have used Taylor’s theorem for a function of several variables to obtain a Lie type invariance condition for second
order partial differential equations. Using this we obtain symmetries and hence the solutions of the wave equation, for
which we have not found any literature.

2 Lie Invariance Condition Second Order Partial Differential Equations
Let D = D(C, G). Then we consider transformations with 61, 62, 63 smooth functions in C, G, D having convergent

Taylor series in X which are of the form,
C̄ = 61 (C, G, D) = C + Xg(C, G, D) +$ (X2),

Ḡ = 62 (C, G, D) = G + Xb (C, G, D) +$ (X2),

D̄ = 63 (C, G, D) = D + X[(C, G, D) +$ (X2).

(2)

where g(C, G, D) = m61
mX

�����
X=0

, b (C, G, D) = m62
mX

�����
X=0

, [(C, G, D) = m63
mX

�����
X=0

.

In order to calculate the prolongation of a given transformation, we need to differentiate (2) with respect to each of the
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parameters C and G. To do this we introduce the following total derivatives:

�C =
m

mC
+ DC

m

mD
+ DGC

m

mDG
+ DCC

m

mDC
+ · · · , (3)

�G =
m

mG
+ DG

m

mD
+ DGG

m

mDG
+ DGC

m

mDC
+ · · · . (4)

The first two equations of (2) may be inverted (locally) to give C and G in terms of C̄ and Ḡ, provided that the Jacobian
is non-zero, that is,

J =

������C C̄ �C Ḡ�G C̄ �G Ḡ

����� ≠ 0, where D = D(G, C). (5)

Since the last equation of (2) contains D̄ as a function of some variables, one of which is D(C, G), we see that if equation
(5) is satisfied, then by local inverse function theorem, the last equation of (2) can be rewritten as

D̄ = D̄(C̄, Ḡ). (6)

Applying the chain rule to equation (6), we obtain,[
�C D̄

�G D̄

]
=

[
�C C̄ �C Ḡ

�G C̄ �G Ḡ

] [
D̄ C̄

D̄ Ḡ

]
,

and therefore by (Cramer’s rule)

D̄ C̄ =
1
J

������C D̄ �C Ḡ

�G D̄ �G Ḡ

����� , D̄ Ḡ =
1
J

������C C̄ �C D̄�G C̄ �G D̄

����� (7)

Equation (7) can be simplified to get the extended infinitesimal representation,

D̄ C̄ = DC + X[ [C ] +$ (X2), D̄ Ḡ = DG + X[ [G ] +$ (X2), (8)

where

[ [C ] = �C ([) − DG�C (b) − DC�C (g), (9)

[ [G ] = �G ([) − DG�G (b) − DC�G (g). (10)

The explicit expression for equation (10) is

[ [C ] = [C − bCDG + ([D − gC )DC − bDDGDC − gDD2
C ,

[ [G ] = [G + ([D − bG)DG − gGDC − bDD2
G − gDDGDC .

Continuing the procedure, we can obtain the second-order prolongations as follows:

D̄CC =
1
J

������C Ḡ �C D̄ C̄�G Ḡ �G D̄ C̄

����� , D̄GG =
1
J

������C D̄ Ḡ �C C̄�G D̄ Ḡ �G C̄

����� (11)

Proceedings of International Conference on Applied Mathematics & Computational Sciences (ICAMCS-2019)
135



On Symmetry Analysis in Finding Solutions of the One Dimensional Wave Equation

D̄GC =
1
J

������C Ḡ �C D̄ Ḡ�G Ḡ �G D̄ Ḡ

����� = 1
J

������C D̄ C̄ �C C̄�G D̄ C̄ �G C̄

����� (12)

On simplifying (11) and (12) we get the extended infinitesimal representations, namely

D̄CC = DCC + X[ [CC ] +$ (X2), D̄GG = DGG + X[ [GG ] +$ (X2), D̄C G = DC G + X[ [C G ] +$ (X2), (13)

where
[ [CC ] = �C ([ [C ]) − DC G�C (b) − DCC�C (g), [ [GG ] = �G ([ [G ]) − DGG�G (b) − DC G�G (g), (14)

and,

[ [C G ] = �C ([ [G ]) − DGG�C (b) − DC G�C (g)

= �G ([ [C ]) − DC G�G (b) − DCC�G (g)
(15)

The explicit expressions for [ [CC ] , [ [GG ] , [ [C G ] given by equations (14) and (15) are

[ [CC ] = [CC − bCCDG + (2[CD − gCC )DC − 2bCDDGDC + ([DD − 2gCD)D2
C − bDDDGD2

C

− gDDD3
C − 2bCDGC − 2bDDCDGC + ([D − 2gC )DCC − bDDGDCC − 3gDDCDCC , (16)

[ [GG ] = [GG + (2[GD − bGG)DG − gGGDC + ([DD − 2bGD)D2
G − 2gGDDGDC − bDDD3

G

− gDDD2
GDC + ([D − 2bG)DGG − 2gGDGC − 3bDDGDGG − gDDCDGG − 2gDDGDGC , (17)

[ [GC ] = [GC + ([CD − bGC )DG + ([GD − gGC )DC − bCDD2
G + ([DD − bGD − gCD)DGDC

− gGDD2
C − bDDD2

GDC − gDDDGD2
C − bCDGG − bDDCDGG + ([D − bG − gC )DGC

− 2bDDGDGC − 2gDDCDGC − gGDCC − gDDGDCC .

If � : � × �7 → R, is a differentiable function where � is an interval in R and � is an open set in R, then for
invariance, we need to have,

0 = � (C̄, Ḡ, D̄, D̄ C̄ , D̄ Ḡ , D̄CC , D̄GG , D̄C G)

= � (C + Xg +$ (X2), G + Xb +$ (X2), D + X[ +$ (X2), DC + X[ [C ] +$ (X2),

DG + X[ [G ] +$ (X2), DCC + X[ [CC ] +$ (X2), DGG + X[ [GG ] +$ (X2),

DC G + X[ [C G ] +$ (X2))

= � (C, G, D, DC , DG , DCC , DGG , DC G) + X
(
g�C + b�G + [�D + [ [C ]�DC + [ [G ]�DG

+ [ [CC ]�DCC + [ [GG ]�DGG + [ [C G ]�DCG
)
+$ (X2)

Equating the coefficient of X, we get

g�C + b�G + [�D + [ [C ]�DC + [ [G ]�DG + [ [CC ]�DCC + [ [GG ]�DGG + [ [C G ]�DCG = 0
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The infinitesimal generator of the admitted group for the equation given by (17) is,

Z∗ = g
m

mC
+ b m

mG
+ [ m

mD
.

The extension is given by,

Z (1) = g�C + b�G + [�D + [ [C ]�DC + [ [G ]�DG + [ [CC ]�DCC + [ [GG ]�DGG + [ [C G ]�DCG . (18)

The Lie type invariance condition is given by Z (1)� |�=0= 0, where � (C, G, D, DC , DG , DCC , DGG , DC G) = 0.

3 Symmetry Analysis of the Wave Equation
We shall obtain symmetries and hence the solutions of

DCC (C, G) − 22DGG (C, G) = 0 (19)

The Lie type invariance condition for the wave equation (19) gives

[ [CC ] − 22[ [GG ] = 0. (20)

Substituting the values of [ [CC ] and [ [GG ] from equations (16) and (17), we get the determining equations given by

[CC − 22[GG − (bCC + 22 (2[GD − bGG))DG + (2[CD − gCC + 22gGG)DC − 22 ([DD − 2bGD)D2
G

− 2(bCD + gGD)DGDC + ([DD − 2gDC )D2
C + 22bDDD

3
G + 22gDDD

2
GDC − bDDDGD2

C − gDDD3
C

− 22 ([D − 2bG)DGG + (222gG − 2bC )DGC + 22 ([D − 2gC )DGG + 322bDDGDGG + 22gDDCDGG

+ 222gDDGDC G − 2bDDCDGC − 22bDDGDGG − 322gDDCDGG = 0. (21)

Splitting equation (21) with respect to DG , we get

− (bCC + 22 (2[GD − bGG)) = 0, (22)

Splitting equation (21) with respect to DC , we get

2[CD − gCC + 22gGG = 0, (23)

Splitting equation (21) with respect to D2
G , we get

− 22 ([DD − 2bGD) = 0, (24)

Splitting equation (21) with respect to DGDC , we get

− 2(bCD + gGD) = 0, (25)

Splitting equation (21) with respect to D2
C , we get

[DD − 2gDC = 0, (26)
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Splitting equation (21) with respect to D3
G , we get

22bDD = 0, (27)

Splitting equation (21) with respect to D2
GDC , we get

22gDD = 0, (28)

Splitting equation (21) with respect to DGD2
C , we get

− bDD = 0, (29)

Splitting equation (21) with respect to D3
C , we get

− gDD = 0, (30)

Splitting equation (21) with respect to DGG , we get

22 (bG − gC ) = 0, (31)

Splitting equation (21) with respect to DGC , we get

22gG − bC = 0, (32)

Splitting equation (21) with respect to DGDGG , we get

222bD = 0, (33)

Splitting equation (21) with respect to DCDGG , we get

− 222gD = 0 = 0, (34)

Splitting equation (21) with respect to DGDC G , we get

222gD = 0 = 0, (35)

Splitting equation (21) with respect to DCDGC , we get

− 2bD = 0 = 0, (36)

Splitting equation (21) with respect to the constant term, we get

[CC − 22[GG = 0. (37)
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From equations (33), (34) and hence (26), we get,

g(C, G, D) = �(C, G), b (C, G, D) = �(C, G), [(C, G, D) = %(C, G)D +&(C, G),

where �, �, % are arbitrary functions of C and G.
From equations (31), (32), (22) and (23), we get, %C = 0, %G = 0⇒ %(C, G) = ?, a constant.
Hence,* = ?D +&(C, G), where & satisfies the wave equation.
The wave equation admits a four dimensional Lie group with generators,

Z∗1 = �(C, G) m
mC
, Z∗2 = �(C, G) m

mG
, Z∗3 = D

m

mD
, Z∗4 = &(C, G) m

mD
.

We now seek a solution of the wave equation by making a special choice of the infinitesimals namely, � = G, � =

C, & = 0.
The associated invariant surface condition is
GDG + CDC = ?D, which is solved to get D = G?�

( C
G

)
, where � is an arbitrary function.

Substituting in the 1-dimension wave equation, we get,

(22A2 − 1)� ′′(A) − 222A (? − 1)� ′(A) + 22?(? − 1)� (A) = 0 where A =
C

G
. (38)

This can be integrated easily giving,

� (A) =


21
22
;>6

(
A2 − 1
A2 + 1

)
if ? = 0

21

(
A − 1

2

) ?
+ 22

(
A + 1

2

) ?
if ? ≠ 0

If ? = 0, exact solution is
D(G, C) = 21

22 ;>6
( 2C − G
2C + G

)
+ 22 (39)

If ? ≠ 0, exact solution is
D(G, C) = G?

[
21�1

( C
G

)
+ 22�2

( C
G

)]
(40)

where �8, 8 = 1, 2 are solutions of equation (38).
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The solutions of equation (38) for some integer values of ? are presented in table 1 below:

Table 1 Solutions of equation (38) for some integer values of ?.

? �1 �2
1 1 A

2
22A2 − 22A + 1

22
22A2 + 22A + 1

22

3
23A3 − 322A2 + 32A − 1

23
23A3 + 322A2 + 32A + 1

23

4
24A4 − 423A3 + 622A2 − 42A + 1

24
24A4 + 423A3 + 622A2 + 42A + 1

24

-1
2

2A − 1
2

2A + 1
-2

22

22A2 − 22A + 1
22

22A2 + 22A + 1
-3

23

23A3 − 322A2 + 32A − 1
23

23A3 + 322A2 + 32A + 1
-4

24

24A4 − 423A3 + 622A2 − 42A + 1
24

24A4 + 423A3 + 622A2 + 42A + 1

We shall conclude the analysis for the wave equation by giving as an example, the particular solution of hyperbolic
wave equation with unit speed.

Example 4 Consider the hyperbolic wave equation with unit speed given by DCC (C, G) − DGG (C, G) = 0.
To obtain a particular solution, consider, � = C, � = G, % = & = 0.
The associated invariant surface condition is CDG + GDC = 0
The solution of this linear partial differential equation is D(G, C) = � (C2 − G2), where � is arbitrary.
To find �, we use the wave equation DCC = DGG , and get A� ′′(A) + � ′(A) = 0, where A = C2 − G2.

The solution of this Clairaut differential equation is
� (A) = 23;=(A) + 24, where 23, 24 are arbitrary constants.
Re substituting A , we get,

D(G, C) = 23;=(C2 − G2) + 24, (41)

which is the exact solution of the 1-dimensional unit speed wave equation.

4 Conclusion
In this paper, we have performed symmetry analysis of the 1-dimensional wave equation with constant speed and

have obtained its equivalents symmetries and explicit solutions.

1. The wave equation (19) admits the general infinitesimal generator of the Lie group given by

Z∗ = �(C, G) m
mC
+ �(C, G) m

mG
+ (?D +&(C, G)) m

mD
.

2. The wave equation with general constant speed admits solutions (found by symmetry analysis) given by equations
(39) and (40).

3. The wave equation with unit speed admits solutions (found by symmetry analysis) given by equation (41).
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