

CrystEngComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: S. K. Dey, A. Kataria, S. Pereira, S. S. Harmalkar, S. Mhaldar, V. V. Gobre and C. Janiak, *CrystEngComm*, 2020, DOI: 10.1039/D0CE00834F.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the <u>Information for Authors</u>.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Journal Name

ARTICLE

Selective encapsulation and extraction of hydrogenphosphate by a hydrogen bond donor tripodal receptor

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Sandeep Kumar Dey,*a Archana,a Sybil Pereira,a Sarvesh S. Harmalkar,a Shashank N. Mhaldar,a Vivekanand V. Gobrea and Christoph Janiakb

Selective encapsulation of an anion by a hydrogen bond donor scaffold demands design and synthesis of suitable receptors which could discriminate between anions of identical size and shape or basicity. Here, we report the anion coordination chemistry of two second generation tripodal receptors (AUL and AAL) based on ¹H-NMR and crystallization experiments. The tripodal urea-based receptor AUL can selectively encapsulate a hydrogenphosphate (HPO₄²⁻) dianion by six strong hydrogen bonds donated from the three urea groups. Theoretical calculations showed that AUL has highest binding affinity for hydrogenphosphate when compared to other competitive anions (F-, CN-, CH₃COO- and HSO₄-). Because of its HPO₄²⁻ selectivity, AUL has been successfully employed in the extraction of HPO₄²⁻ from water in presence of competitive anions (F-/OH-/CH₃COO-) by anion exchange between two immiscible phases. On the other hand, the tripodal amide-based receptor AAL when crystallized in the presence of F-, CN-, CH₃COO-, H₂PO₄- and HSO₄- did not yield any hydrogen-bonded receptoranion complex and instead crystalline AAL were precipitated in each case. ¹H-NMR experiments showed significant broadening and/or downfield shift of -NH signals in AUL and AAL upon additions of F-, Cl-, CN-, CH₃COO- and H₂PO₄- (supplied as tetraalkylammonium salts), indicative of strong hydrogen bonding interactions between -NH donors and anions in the solution-state.

Introduction

Published on 07 August 2020. Downloaded by University of New England on 8/8/2020 8:34:30 PM

Anion coordination chemistry has already evolved into an established and recognized field of research within the realm of supramolecular chemistry over the past three decades.1 Hydrogen bond donor (HBD) acyclic and macrocyclic receptors have widely been studied in the solution and solid-states where the receptor-anion binding constants and X-ray structures of hydrogen bonded anion complexes were determined, respectively.2 There are several HBD receptors which can selectively or preferentially bind a specific anion (halide/oxoanion) are reported in literature.3 Anion selectivity of a receptor is largely governed by receptor-anion complementarity where the acidity of the hydrogen bond donor groups and basicity of an anion plays a key role in the formation of a stable hydrogen bonded anion complex. For macrocyclic and tripodal receptors, both cavity size and nature of the hydrogen bond donor groups determines the anion selectivity, although discrimination between anions of similar basicity (such as F⁻, CH₃COO⁻, HCO₃⁻) or anions of identical shape and size (such as SO₄²⁻, HPO₄²⁻,

Selective removal of inorganic phosphate anions (H₂PO₄-, HPO₄²⁻ and PO₄³⁻) from freshwater ecosystems contaminated with agricultural and household run offs containing fertilizers and detergents, is crucial in limiting eutrophication of natural water bodies. 6 However, due to the high Gibbs hydration free energies of phosphates (ΔG_H of $H_2PO_4^- < HPO_4^{2-} < PO_4^{3-}$)7 and presence of other competitive anions (Cl⁻, NO₃⁻ and SO₄²⁻) in the freshwater bodies, selective phosphate removal is a challenging task. Thus, development of synthetic HBD receptors capable of selective encapsulation and separation of inorganic phosphates are crucial due to their diverse biological and environmental relevance.8 Over the past two decades, many researchers have devoted themselves in developing artificial receptors for the selective binding of phosphates via noninteractions. featuring different complementarities for the anion.9

HASO₄²⁻) can be a challenge to achieve. Conformational flexibility in the receptor molecule often allows coordination of anions of different geometry (spherical, planar and tetrahedral) by structural reorganization as exemplified by several tripodal urea/thiourea receptors.⁴ Nonetheless, a few urea/thiourea based tripodal receptors among others are known to preferentially coordinate to a specific anion over some other anions and thus, selective separation of anions has been achieved by liquid-liquid extraction or crystallization experiments in a competitive environment.⁵

^{a.} School of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403206, India. Email: sandeepdey@unigoa.ac.in Phone: +91-7387633550

b. Institute for Inorganic and Structural Chemistry, Heinrich-Heine University
Dusseldorf, 40225 Dusseldorf, Germany. Email: janiak@uni-duesseldorf.de
+49-8669609302

[†] Footnotes relating to the title and/or authors should appear here. Electronic Supplementary Information (ESI) available: [Synthesis details, characterization data, ¹H-NMR experiments with quaternary ammonium salts, DFT optimized structures and powder XRD patterns]. See DOI: 10.1039/x0xx00000x

comm Accepted Man

ARTICLE Journal Name

Scheme 1 Molecular structures of tripodal receptors AUL (urea-based) and AAL (amide-based) as synthesized from tris(4-amino-N-ethylbenzamide)amine AL by reaction with (a) 3.2 equivalents of 4-nitrophenyl isocyanate in dimethyl sulfoxide (DMSO), and (b) 3.5 equivalents of 4-nitrobenzoyl chloride in tetrahydrofuran-ethanol solvent mixture (8:2 v/v) in the presence of 2 equivalents of tetrabutylammonium chloride. -NH protons of the receptors are labelled as a, b and c to discuss their relevance in ¹H-NMR experimental discussions in the text (synthesis details are provided in the ESI†).

Herein, report selective encapsulation hydrogenphosphate dianion (HPO₄²⁻) by a tripodal urea-based receptor AUL (Scheme 1) and subsequent extraction of the oxoanion from water in presence of highly competitive anions. Our experimental results showed that the urea-based receptor AUL can selectively form a hydrogen bonded complex with hydrogenphosphate [(n-Bu₄N)₂(**AUL**·HPO₄)·DMSO·CH₃CN], while AUL·2DMSO adduct was formed in presence of other competitive anions such as F-, Cl-, CN-, CH₃COO- and HSO₄under identical crystallization conditions. Theoretical binding energy calculations were found to be in agreement with the experimental results showing highest binding affinity of AUL for HPO₄²⁻ in the energy optimized receptor-anion complexes. On the other hand, the amide-based receptor AAL (Scheme 1) when crystallized in the presence of different anions such as F-, Cl⁻, CN⁻, CH₃COO⁻ and H₂PO₄⁻, did not form an anion complex. Instead, crystalline AAL formed in each case suggesting that AAL is not a suitable anion receptor. Solution state anion binding studies of AUL and AAL have also been carried out by ¹H-NMR spectroscopy with quaternary ammonium salts of different anions.

Numerous tris(2-aminoethyl)amine (Tren)-based tripodal trisurea/thiourea and tris-amide receptors have been studied for anion coordination,⁴ among which only a few receptors are known to selectively coordinate to a specific anion (Scheme 2a).^{3a-f} Synthesized from nitrophenyl functionalized tripodal tris-urea receptors, Biao Wu et al. has reported a series of tripodal hexa-urea receptors which showed preferential binding of sulfate in the receptor cavity (Scheme 2b).¹⁰ To tune the anion selectivity in tripodal receptors, we have synthesized two Tren-based receptors both having an identical inner amide cavity but differing in their outer HBD cavities. Receptor **AUL** has an outer tris-urea cavity and **AAL** has an outer tris-amide cavity. Anion coordination by tripodal receptors having an inner tris-

amide cavity and an outer tris-urea cavity has not been studied before. AAL a hexa-amide receptor, can be considered as the amide analogue of the hexa-urea receptor (5c in Scheme 2b) that was observed to encapsulate a sulfate anion exclusively in the inner tris-urea cavity only.

Scheme 2 (a) Tren-based tripodal tris-urea/thiourea receptors (1-5) known for selective recognition of sulfate (SO_4^{2-}) , phosphate (PO_4^{3-}) and fluoride (F^-) ions, $^{3a-}$ ° (b) Tren-based tripodal hexa-urea receptors $(\mathbf{6a-c})$ for recognition of sulfate (SO_4^{2-}) ion; 10 ortho-bridged hexa-urea $\mathbf{6a}$ could encapsulate a SO_4^{2-} ion within the complementary receptor cavity, meta-bridged hexa-urea $\mathbf{6b}$ could encapsulate two SO_4^{2-} ions within the inner and outer tris-urea cavities, and para-bridged hexa-urea $\mathbf{6c}$ could encapsulate a SO_4^{2-} ion within the inner tris-urea cavity only.

Results and discussions

In our effort to achieve selective anion binding, we have synthesized two second generation tripodal receptors (AUL and AAL) by post-synthetic modification of tris(4-nitro-Nethylbenzamide)amine, (see section S2a in ESI+), which is a Tren-based tris-amide receptor with peripheral nitrophenyl ring. 11 Tris (4-nitro-N-ethylbenzamide) amine was reduced to its amine analogue tris(4-amino-N-ethylbenzamide)amine, AL (Scheme 1) which was then then reacted with 4-nitrophenyl isocyanate and 4-nitrobenzoyl chloride to obtain AUL and AAL respectively (see section S2b and S2c in ESI+). The tripodal receptors AUL and AAL were characterized by ¹H-NMR, ¹³C-NMR, FT-IR (KBr) and X-ray diffraction techniques. Both receptors are soluble in DMSO and DMF, but insoluble in other solvents such as chloroform, tetrahydrofuran and methanol/ethanol. The solution state anion binding properties of AUL and AAL were investigated by

Published on 07 August 2020. Downloaded by University of New England on 8/8/2020 8:34:30 PM

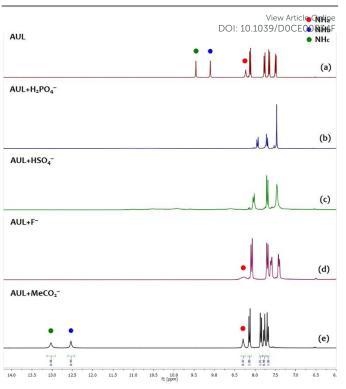
Journal Name ARTICLE

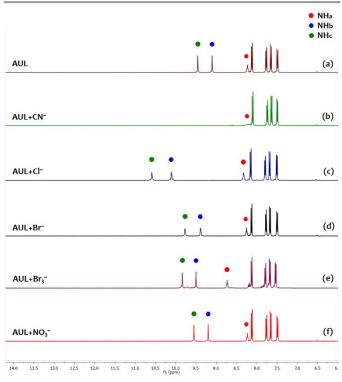
 $^1\text{H-NMR}$ spectroscopy in DMSO-d₆ and crystallization experiments in DMSO-acetonitrile (8:2 v/v) mixture were performed to establish the formation of hydrogen-bonded anion complexes in the solid state. In a typical qualitative $^1\text{H-NMR}$ experiment, 15 mg of **AUL/AAL** was dissolved in 0.6 ml of DMSO-d₆ and 2 to 4 equivalents of tetrabutylammonium (n-Bu₄N⁺) or tetraethylammonium (Et₄N⁺) salt (halide/oxyanion) was added into the solution. 12 The solution was then sonicated to ensure complete solubility of the receptor and added salt in DMSO-d₆ before $^1\text{H-NMR}$ analysis.

Anion binding studies of urea-based receptor AUL

Urea -NH protons are potential hydrogen bond donors and known to form strong hydrogen bonds with halides and oxoanions. The $^1\text{H-NMR}$ spectrum of AUL in DMSO-d $_6$ showed the amide -NH $_a$ signal at 8.23 ppm and the urea -NH protons appeared at 9.10 and 9.46 ppm for -NH $_b$ and -NH $_c$ respectively (Fig. 1a). Urea -NH $_c$ bonded to the nitrophenyl ring is more downfield shifted (9.46 ppm) as compared to -NH $_b$ bonded to the inner benzamide ring (9.10 ppm) because the peripheral nitrophenyl ring is more electron deficient than the inner benzamide ring. Aromatic -CH proton signals originated as doublets due to para substitution of the aromatic rings.

Addition of tetrabutylammonium (n-Bu₄N⁺) salts of F⁻, HSO₄⁻ and H₂PO₄⁻ to solutions of **AUL** (in DMSO-d₆) resulted in disappearance of urea -NH signals due to hydrogen bond formation between the -NH protons and the negatively charged ions (Fig. 1b-d). Strong hydrogen bonds between -NH protons and anion often lead to shifts in ¹H-NMR signals. At the same time, dynamic anion coordination i.e., if the exchange of complexed and uncomplexed guest (anion) is within the NMR time scale, significant peak broadening up to the point of disappearance of the signal occurs. 13 Also, addition of lithium acetate resulted in large downfield shift of urea -NH signals by 3.5 ppm with concomitant broadening, but still presence of the singlet peaks (Fig. 1e).14 Due to interaction of urea -NH protons with the anion, the electronic environment of the adjacent aromatic rings was affected and therefore, some changes in peak positions have also been observed for the aromatic -CH signals (Fig. 1). Similarly, addition of (Et₄N⁺)CN[−] to a solution of AUL (in DMSO-d₆) showed disappearance of urea -NH signals due to hydrogen bond induced peak broadening, however with no observable changes in the -CH peak positions (Fig. 2b). Addition of chloride, bromide or tribromide salts showed downfield shift of urea -NH peaks indicating receptor-anion interaction, but did not show any changes in the -CH peak positions. Considerable downfield shift of 1.0-1.1 ppm was observed for urea -NH signals, in the presence of (Et₄N⁺)Cl⁻ salt (Fig. 2c). However, (n-Bu₄N $^+$)Br $^-$ and (n-Bu₄N $^+$)Br $_3^-$ salt showed downfield shift of 0.3-0.4 ppm for urea -NH signals indicative of weaker receptor-anion hydrogen bond interactions (Fig. 2d-e) as compared to chloride and fluoride. Finally, addition of (n-Bu₄N⁺)I⁻ or (n-Bu₄N⁺)NO₃⁻ showed negligible spectral changes of AUL in DMSO-d₆ (Fig. 2f).




Fig. 1 Aromatic region (6–14 ppm) of 1 H-NMR (DMSO- d_6) spectra of (a) AUL and in the presence of (b) (n-Bu₄N⁺)H₂PO₄⁻, (c) (n-Bu₄N⁺)HSO₄⁻, (d) (n-Bu₄N⁺)F⁻ and (e) Li⁺CH₃COO⁻. (Full spectra are provided in Fig. S11-S14 in ESI⁺).

Solution state anion binding studies showed strong hydrogen bond interactions of urea -NH protons with anions such as, F⁻, Cl⁻, CN⁻, CH₃COO⁻, H₂PO₄⁻ and HSO₄⁻ (Fig. 1 and 2). Thus, in order to obtain hydrogen-bonded anion complexes in the solid state, we have crystallized **AUL** in the presence of n-Bu₄N⁺ or Et₄N⁺ salts of the above anions. In a typical crystallization experiment, 100 mg of **AUL** was dissolved in 5 mL of DMSO-CH₃CN (8:2 v/v) solvent mixture and an excess of tetraalkylammonium salt (5 equivalents) was added into it followed by stirring at room temperature for about half an hour. The solution was then kept undisturbed at room temperature in a 10 mL beaker for crystallization upon evaporation.

In the crystallization experiments, from the solution mixtures of **AUL** with either F⁻, Cl⁻, CH₃COO⁻, CN⁻ and HSO₄⁻ only AUL-2DMSO could be crystallized (see below). Whereas, from the solution mixture of AUL with H₂PO₄-, a hydrogen-bonded anion complex with composition Bu₄N)₂(AUL·HPO₄)·DMSO·CH₃CN was crystallized (see below). Similar results have previously been observed for receptor 2 (Scheme 2) which formed a sulfate-encapsulated coordination polymer in the presence of Ag₂SO₄ (in water/acetone) and crystallization in the presence of other Ag+ salts (NO₃-, CH₃COO-, CH₃SO₃⁻ and BF₄⁻) yielded crystals of **2**.3b 1H-NMR spectra of the crystalline products obtained from the solution mixtures of **AUL** with either F⁻, Cl⁻, CH₃COO⁻, CN⁻ and HSO₄⁻ salts showed the absence of (n-Bu₄N⁺)/(Et₄N⁺) signals in the aliphatic region and all five spectra closely resemble the ¹H-NMR spectrum of pure AUL recorded in DMSO-d₆. Only the ¹H-NMR spectrum of crystals obtained from the solution mixture of AUL and H₂PO₄-

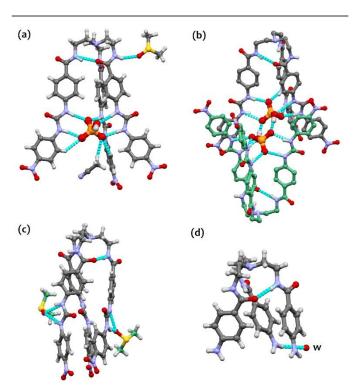
ARTICLE Journal Name

showed the presence of tetrabutylammonium (n-Bu₄N⁺) signals and a large downfield shift of urea -NH protons with concomitant broadening was observed (Fig. 4b and Fig. S21 in ESI[†]). The urea -NH signals were observed to appear at 11.90 and 13.10 ppm for -NH_b and -NH_c respectively (Fig. 4b). Changes in peak position have also been observed for the aromatic -CH signals with respect to AUL spectrum (Fig. 4a-b). The presence of n-Bu₄N⁺ signals and the downfield shift of urea -NH protons indicate the possible coordination of a phosphate species by the urea-based receptor. Integration of the ¹H-NMR peaks suggests that there are at least two n-Bu₄N⁺ cations present in the crystal structure, which implies that a HPO₄²⁻ dianion is coordinated to the urea groups. ³¹P-NMR spectroscopy showed the appearance of a peak at 7.37 ppm which further suggested the presence of hydrogen-bonded HPO₄²⁻ in the crystal structure (Fig. S22 in ESI[†]).¹⁵ Thus, from the results of crystallization experiments it has been inferred that AUL is capable of forming a hydrogen-bonded complex with HPO₄²⁻ in the solid state and not with any of the other tested anions (F-, Cl-, CN-, CH₃COOand HSO_4^-).

Fig. 2 Aromatic region (6–14 ppm) of 1H -NMR (DMSO- d_6) spectra of (a) **AUL** and in the presence of (b) (Et₄N+)CN⁻, (c) (Et₄N+)Cl⁻, (d) (n-Bu₄N+)Br⁻, (e) (n-Bu₄N+)Br₃⁻ and (f) (n-Bu₄N+)NO₃⁻ (Full spectra are provided in Fig. S16-S20 in ESI+).

Single crystal X-ray structures

Single crystal X-ray analysis of the hydrogenphosphate complex with **AUL** yielded the crystal composition (n-Bu₄N)₂(**AUL**·HPO₄)·DMSO·CH₃CN. In the solid state, the HPO₄²⁻ anion is encapsulated within the tripodal cavity by six strong charge-assisted hydrogen bonds¹⁶ (average N···O-P = 2.820 Å)


donated from the three urea groups (Fig. 3a, Table \$2 in ESIT) Two n-Bu₄N+ cations are present in the crystal lattice together with two solvent molecules (DMSO and CH3CN). The anion complex crystallized in the triclinic P-1 space group from the DMSO-CH₃CN mixture at room temperature. The slightly longer P-O1 bond of 1.602(3) Å, compared to the other P-O bonds of 1.513(3) to 1.522(3) Å suggest that the H atom resides on O1 and is not delocalized over the phosphate group. 16b The presence of two n-Bu $_4N^+$ cations in the asymmetric unit further confirmed the presence of a hydrogenphosphate dianion, HPO₄²⁻ in the crystal structure. Two encapsulated HPO₄²⁻ anions are observed to be in dimeric association by complementary O-H···O hydrogen bonds (P-O···O-P = 2.594 Å) resulting in the formation of a dimeric capsular assembly (Fig. 3b).¹⁷ Two amide groups are involved in an intramolecular N-H···O=C hydrogen bond (N···O = 3.031 Å) and the third amide -NH is involved in intermolecular N-H···O=S hydrogen bonding (N···O = 2.984 Å) with the lattice DMSO molecule (Fig. 3a). The lattice CH₃CN molecule forms a weak C-H···O hydrogen bond with a phosphate oxygen (C···O-P = 3.421 Å). The n-Bu₄N+ cations are also involved in weak C-H···O interactions with two amide (O=C-NH) groups and two nitro (-NO₂) groups of **AUL** (Fig. S46 in ESI[†]). Thus, several strong hydrogen bond interactions stabilize a HPO₄²⁻ anion within the tripodal urea cavity supported by a number of weak C-H hydrogen bond interactions in the crystal

All three samples of single crystals of AUL·2DMSO obtained in the presence of fluoride, chloride and acetate (n-Bu₄N⁺ salts) from DMSO-CH₃CN solutions were found to show identical cell parameters. Powder X-ray diffraction patterns of the bulk samples were also observed to be identical (Fig. S44 in ESI†). Single crystal structural elucidation revealed that AUL crystallized in the triclinic P-1 space group with two DMSO molecules in the crystal lattice (Fig. 3c). Two urea groups of AUL are hydrogen bonded to two DMSO molecules of the lattice while the third urea group is hydrogen bonded to carbonyl oxygen of two adjacent receptor units. One lattice DMSO was observed to be disordered over two positions and in order to model this disorder, a PART command was used with 0.6 (60%) and 0.4 (40%) contributions for the two fractions. 18 The amide groups of AUL are involved in strong intramolecular N-H···O=C hydrogen bond (N···O = 3.031 Å), as observed in the structure of hydrogenphosphate complex.

An intramolecular N-H···O=C hydrogen bond (N···O = 3.020 Å) between two amide groups has also been observed in the X-ray structure of **AL**·H₂O (**AL** is the amine precursor of **AUL** and **AAL** in Scheme 1), which crystallized from ethanol (Fig. 3d). Both **AUL**·2DMSO and **AL**·H₂O also showed intermolecular N-H···O=C hydrogen bond (N···O = 2.907 Å and 2.930 Å respectively) formation between the third amide -NH and an amide carbonyl oxygen of adjacent tripodal unit (Fig. S47 in ESI†).

Published on 07 August 2020. Downloaded by University of New England on 8/8/2020 8:34:30 PM

Journal Name ARTICLE

Fig. 3 Single crystal X-ray structures of (a) $(n-Bu_4N)_2(AUL\cdot HPO_4)\cdot DMSO\cdot CH_3CN$ showing receptor-anion hydrogen bonds, counter cations are not shown, (b) Dimeric capsular assembly formation in $(n-Bu_4N)_2(AUL\cdot HPO_4)\cdot DMSO\cdot CH_3CN$ where two receptor units are shown in different colors, counter cations, lattice solvents and CH protons are not shown for clarity of presentation, (c) $AUL\cdot 2DMSO$ where DMSO carbon atoms are shown in different colors for clarity, (d) $AL\cdot H_2O$ where W represents lattice water. Hydrogen bonds are shown with blue dotted lines (See \ddagger footnotes for crystal data). Color code: C = grey/green, N = blue, O = red, H = white, P = orange, and S = yellow.

Thus, crystal structures of both $AUL \cdot 2DMSO$ and $(n-Bu_4N)_2(AUL \cdot HPO_4) \cdot DMSO \cdot CH_3CN$ showed the presence of an intramolecular $N-H\cdots O=C$ hydrogen bond between two amide groups, which induce conformational rigidity and restricts the flexibility of the two tripodal arms to encapsulate anions of different size and shape. The urea groups are however free to rotate by the aryl-urea C-NH single bonds, as observed in the crystal structures. The intramolecular $N-H\cdots O=C$ hydrogen bond is inherent to AUL and its HPO_4^{2-} complex, since this has also been observed in the structure of hydrated AL which yielded AUL upon reaction with 4-nitrophenyl isocyanate. Thus, selective encapsulation of HPO_4^{2-} by AUL is possibly due to receptor-anion complementarity i.e., the receptor cavity size and acidity of urea -NH protons of AUL complements the geometry (size/shape) and basicity of HPO_4^{2-} anion.

On the other hand, intramolecular N-H···O=C hydrogen bond between the amide groups is perhaps missing in the solution state because the ¹H-NMR spectrum of **AUL** indicated that the three tripodal arms are equivalent. Formation of intramolecular N-H···O=C hydrogen bond between the amide groups would have disrupted the C3v symmetry in solution and additional peaks could have appeared in the ¹H-NMR spectrum of **AUL** for the nonequivalent tripodal arms. The absence of intramolecular hydrogen bonding provides conformational flexibility to the tripodal arms which could reorganize and adjust its cavity size to encapsulate anions of different size and shape by hydrogen

bonds. This is the reason why significant broadening and for downfield shifts of the urea -NH signals have been observed to dynamic anion coordination in the $^1\text{H-NMR}$ spectra of AUL in presence of several anions (F-, Cl-, CN-, CH_3COO-, H_2PO_4- and HSO_4- supplied as quaternary ammonium salts). Whereas, in the crystallization experiments formation of intramolecular N-H···O=C hydrogen bond between the amide groups play a pivotal role towards selective recognition of hydrogenphosphate.

In order to further gain an insight into the selective binding of

Binding energy calculations of receptor-anion complexes

hydrogenphosphate dianion by AUL over other competitive anions, we have carried out binding energy calculations based on density functional theory (DFT). Energy optimization was carried out using the hybrid density functional theory incorporating the B97D correlation functional via Kohn-Sham self-consistent theory calculations employing the NWChem program.¹⁹ The 6-31G(d,p) basis set was used for all computations and obtained using EMSL Basis Set Library.²⁰ To calculate the binding energy of AUL with anions such as, F-, CN-, CH₃COO-, HSO₄-, SO₄²⁻ and HPO₄²⁻, energy optimization of the receptor and anion was performed to obtain hydrogenbonded complexes of AUL with each anion (Fig. S23 in ESI+). Further, energy optimization of the free receptor conformer and free anion was carried out independently to calculate the binding energy (B.E.) using the equation B.E. = $(E_{receptor} + E_{anion})$ - E_{complex} in Hartree (1 Hartree = 2625.5 kJ/mol).^{13e} DFT calculations revealed that the binding affinity of AUL for HPO₄²⁻ is highest followed by fluoride, acetate, cyanide and hydrogensulfate. The binding energy of AUL for HPO_4^{2-} (1063 kJ/mol) is nearly double as compared to HSO₄[−] (483 kJ/mol) and CN⁻ (538 kJ/mol), and higher as compared to F⁻ (768 kJ/mol) and CH₃COO⁻ (761 kJ/mol) (Table S1 in ESI⁺). Calculations have also been carried out with sulfate (SO₄²⁻) dianion, revealing that the binding affinity of AUL for SO₄²⁻ (1018 kJ/mol) is marginally lower than HPO₄²⁻ (1063 kJ/mol). However, extraction experiments have proven that **AUL** (mixed with n-Bu₄NF in dichloromethane) can selectively extract and encapsulate HPO₄²⁻ dianion from an aqueous solution mixture of phosphate and sulfate (see below). Thus, it can be argued that dimeric association between HPO₄²⁻ions resulting in the formation of a hydrogen bonded capsular assembly (Fig. 3b) is possibly responsible for the observed selectivity of AUL for HPO₄2-.21 Such a dimer formation is not possible in case of SO_4^{2-} , while HSO₄-showed the least affinity for **AUL** (483 kJ/mol).

Energy optimization of **AUL** with PO_4^{3-} anion to obtain hydrogen-bonded complex showed deprotonation of two urea -NH by PO_4^{3-} to form $H_2PO_4^{-}$. The binding energy of deprotonated receptor-phosphate hydrogen bonded complex was calculated to be 2261 kJ/mol. However, such a deprotonated receptor-anion complex is ideally not possible to obtain from crystallization experiments since the deprotonated receptor crystallizes with counter-cations present in the solution. Thus, we have been able to validate the selective binding of HPO_4^{2-} by **AUL** in the crystallization experiments based on theoretical calculations.

ARTICLE Journal Name

Extraction of hydrogenphosphate from water

The selective encapsulation of HPO_4^{2-} by **AUL** has encouraged us to achieve extraction of HPO_4^{2-} from water in the presence of competitive anions. In a typical liquid-liquid extraction experiment, **AUL** (100 mg) was dissolved in dichloromethane (20 mL DCM) in the presence of two equivalents (n-Bu₄N⁺)F⁻ or (n-Bu₄N⁺)CH₃COO⁻ or (n-Bu₄N⁺)OH⁻ and an aqueous solution of potassium phosphate (5 equivalents of K_3PO_4 dissolved in 10 mL water) was added into the DCM solution. The solution mixture was then stirred at room temperature for about an hour and the DCM layer was separated from the aqueous layer and treated with anhydrous sodium sulfate. The solution was then filtered and evaporated to dryness to obtain a yellow powder that was dissolved in DMSO-d₆ and characterized by ¹H-NMR and ³¹P-NMR analysis (Fig. S24-S28 in ESI⁺).

 $^1\text{H-NMR}$ and $^{31}\text{P-NMR}$ spectra of the compounds obtained from extraction experiments closely resemble the spectra of the hydrogenphosphate complex [(n-Bu₄N)₂(AUL·HPO₄)·DMSO·CH₃CN] (Fig. 4b-e). Notably, chemical shift of the urea -NH signals (-NH_b at 11.90 and -NH_c at 13.10 ppm), and integral values of the aromatic -CH peaks and tetrabutylammonium peaks are observed to be similar in all spectra obtained (Fig. 4b-e and S24-S28 in ESI†). It is to be noted that, tetrabutylammonium salts of Cl⁻, Br⁻, Br₃⁻, NO₃⁻ and HSO₄⁻ are not capable of dissolving AUL in DCM due to their weakly basic nature.

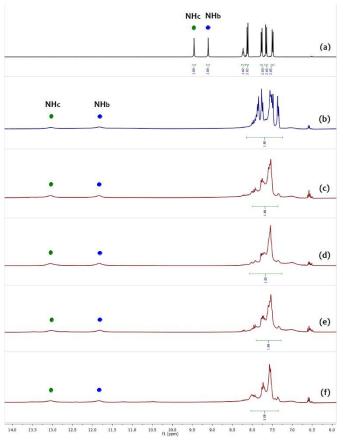


Fig. 4 Aromatic region (6–14 ppm) of 1 H-NMR spectra in DMSO- d_{6} of (a) AUL (b) hydrogenphosphate complex [(n-Bu₄N)₂(AUL-HPO₄)-DMSO-CH₃CN] and

hydrogenphosphate complex of **AUL** obtained from phosphate extraction experiments (dichloromethane/water) in the presence of (c) (n-Bu₄N⁺)E-(d) (n-Bu₄N⁺)DH-and (f) (n-Bu₄N⁺)F- in organic phase and Na₂SO₄ in aqueous phase. (All spectra recorded are provided in Fig. S24-S30 in ESI⁺).

In a control experiment, an aqueous solution of K_3PO_4 was treated with a DCM solution mixture of **AUL** and (n-Bu₄N⁺)H₂PO₄⁻ to obtain a phosphate complex from organic phase. The ¹H-NMR spectrum of the isolated phosphate complex is comparable to the spectra of the above extracted samples (Fig. 4c-e) suggesting the exclusive formation of HPO₄²⁻ complex in the extraction experiments (Fig. S32 in ESI⁺).

In another experiment, **AUL** (100 mg) was dissolved in dichloromethane (20 mL) in the presence of two equivalents of (n-Bu₄N⁺)F⁻ and an aqueous solution mixture of potassium phosphate and sodium sulfate (5 equivalents of each salt dissolved in 10 mL water) was added into the DCM solution. The solution mixture was then stirred for about an hour and the DCM layer was separated from the aqueous layer. The 1 H-NMR and 31 P-NMR (in DMSO-d₆) spectra of the compound isolated from the DCM layer were observed to be identical to the other extracted samples of hydrogenphosphate complex (Fig. 4f and Fig. S29-30 in ESI⁺). The FT-IR spectrum of the isolated compound also matches perfectly with the sample extracted in the presence of only (n-Bu₄N⁺)F⁻ (Fig. S31 in ESI⁺).

It is important to mention that $H_2PO_4^-$ and HPO_4^{2-} exist in an equilibrium ($H_2PO_4^- \leftrightarrows HPO_4^{2-}$) at neutral pH (p K_a 7.21), while PO_4^{3-} can exist only under strongly basic conditions (p K_a 12.67) in aqueous medium.²² Thus, in spite of the fact that a PO_4^{3-} salt (K_3PO_4) was used in the extraction experiment, we have isolated a HPO_4^{2-} complex of **AUL** from the organic layer. It is remarkable to note that, extraction of HPO_4^{2-} from water occurs so efficiently with **AUL** by exchange of competitive anions (such as F^- , OH^- or CH_3COO^-) with HPO_4^{2-} between the two immiscible phases, indicating the very high affinity of **AUL** for HPO_4^{2-} .

Anion binding studies of amide-based receptor AAL

Similar to the urea group, the amide -NH protons are also strong hydrogen bond donors and several amide-based receptors are known to form stable hydrogen-bonded complexes with halides and oxo-anions.^{2,4} The ¹H-NMR spectrum of **AAL** in DMSO-d₆ showed an amide -NH signal (-NH_b) at 10.68 ppm, while the other -NH signal (-NH_a) has merged with the aromatic -CH peak at 8.32 ppm, as evident from the NMR integral values (Fig. 5a and S6 in ESI†). Aromatic -CH proton signals of the peripheral nitrophenyl ring originated as two doublets (at 8.12 and 8.32 ppm), and the inner benzamide -CH protons appeared as a singlet (at 7.82 ppm) due to amide group substitution at the para positions (Fig. 5a). Addition of n-Bu₄N⁺ or Et₄N⁺ salts of F[−], CN-, CH₃COO- and H₂PO₄- to individual solutions of AAL (in DMSO-d₆) resulted in disappearance of amide -NH_b signal due to dynamic anion coordination between amide groups and added anion (Fig. 5). Addition of (n-Bu₄N⁺)Cl⁻ resulted in negligible downfield shift of the amide -NH_b signal (Fig. 5c). Due to receptor-anion hydrogen bond interactions, changes have also been observed for the aromatic -CH proton signals in the

Published on 07 August 2020. Downloaded by University of New England on 8/8/2020 8:34:30 PM

Published on 07 August 2020. Downloaded by University of New England on 8/8/2020 8:34:30 PM

Journal Name

presence of F⁻, Cl⁻, CN⁻, CH₃COO⁻ and H₂PO₄⁻ anions (Fig. 5). However, addition of n-Bu₄N⁺ salts of Br⁻, Br₃⁻, NO₃⁻, and HSO₄⁻ to solutions of **AAL** (in DMSO-d₆) did not show any observable shift of -NH_b and -CH signals, suggesting that the receptor do not interact well with these anions in solution (Fig. 5). Thus, in order to obtain hydrogen-bonded anion complexes in the solid state, we have crystallized **AAL** in the presence of n-Bu₄N⁺ or Et₄N⁺ salts of F⁻, CN⁻, CH₃COO⁻ and H₂PO₄⁻ in DMSO-CH₃CN (8:2 v/v) solvent mixture.

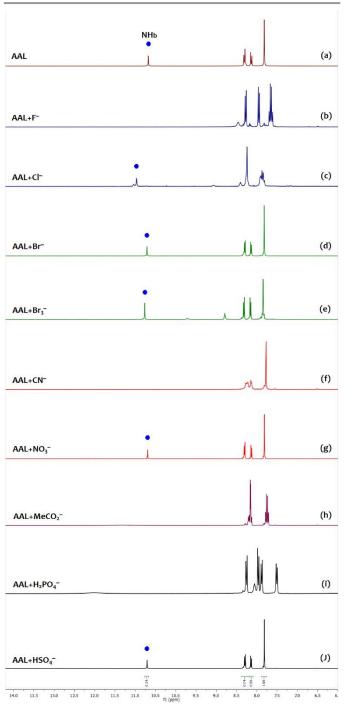


Fig. 5 Aromatic region (6–14 ppm) of 1 H-NMR (DMSO- d_c) spectra of (a) AAL and in the presence of (b) (n-Bu₄N⁺)F⁻, (c) (n-Bu₄N⁺)Cl⁻, (d) (n-Bu₄N⁺)Br⁻, (e) (n-Bu₄N⁺)Br₃⁻, (f)

 $\begin{array}{ll} (\text{Et}_4\text{N}^+)\text{CN}^-, (g) \ (n-\text{Bu}_4\text{N}^+)\text{NO}_3^-, (h) \ \text{Li}^+\text{CH}_3\text{COO}^-, (i) \ (n-\text{Bu}_4\text{N}^+)\text{H}_2\text{PO}_4^-, \text{ and } (j) \ (n-\text{Bu}_4\text{N}^+)\text{HSO}_3^-, \text{View Article Online} \\ (\text{Full spectra are provided in Fig. S34-S42 in ESI}^+). \\ & \text{DOI: } 10.1039/\text{DOCE00834F} \\ \end{array}$

ARTICLE

No single crystals were formed from any of the above solution mixtures containing AAL and a quaternary ammonium salt. Instead, yellow crystalline powders were precipitated in each case which were then collected by filtration and washed repeatedly with methanol for subsequent analysis. ¹H-NMR analysis (in DMSO-d₆) revealed the absence of n-Bu₄N⁺ or Et₄N⁺ cation in these precipitated compounds and the spectrum in each case matches perfectly with the AAL spectrum in DMSOd₆ (Fig. S43 in ESI†). It is thus confirmed that no hydrogen bonded receptor-anion complex was formed from the crystallization experiments and the neat receptor has precipitated out in all cases. The powder X-ray diffraction patterns of all samples were identical (Fig. S45 in ESI†). The inefficiency of AAL to form a hydrogen-bonded complex in the solid state can be explained by the lack of sufficient hydrogen bond donor atoms to stabilize an anion within the receptor cavity, i.e., lack of receptor-anion complementarity where the cavity size of the receptor also plays a critical role towards anion recognition.

Conclusion

In conclusion, we have achieved selective encapsulation of the hydrogenphosphate dianion by a second generation tripodal urea-based receptor (AUL). Crystallization of AUL in the presence of various anions (supplied as n-Bu₄N⁺/Et₄N⁺ salts) yielded AUL-2DMSO adducts except from the solution containing H₂PO₄⁻ which formed a hydrogen-bonded anion complex (n-Bu₄N)₂(AUL·HPO₄)·DMSO·CH₃CN due to receptoranion complementarity. The selectivity of AUL for hydrogenphosphate has also been reflected in the extraction experiments where HPO₄²⁻ could easily be extracted into the organic layer (dichloromethane) from water (K₃PO₄ solution) by anion exchange between the two phases. Theoretical calculations on energy optimized hydrogen bonded receptoranion complexes also showed the highest binding affinity of AUL for the HPO₄²⁻ anion. The differences in solid and solution state anion binding affinities is due to the formation of intramolecular N-H···O=C hydrogen bond between the receptor sidearms (during crystallization) which dictate the cavity size and hence, the anion complementarity of the receptor having urea groups as hydrogen bond donors. Most importantly, this work showcases the synthetic modification of a first generation tripodal receptor into an anion selective second-generation receptor and unfolds the numerous possibilities of obtaining anion selectivity by mere structural alteration of known hydrogen bond donor receptors.

Conflicts of interest

There are no conflicts to declare.

ARTICLE Journal Name

Acknowledgements

SKD acknowledges the Department of Science and Technology (DST) under Ministry of Science and Technology India, for providing financial support through INSPIRE Faculty award (DST/INSPIRE/04/2016/001867). We thank DST-FIST for providing single crystal X-ray diffraction and NMR facilities at School of Chemical Sciences, Goa University. SKD and CJ thank Alexander von Humboldt Foundation, Germany for providing the opportunity for research collaboration.

Notes and references

‡ Single crystal data of $(n-Bu_4N)_2(AUL\cdot HPO_4)\cdot DMSO\cdot CH_3CN$ CCDC No. **2008261**, $F=C_{84}H_{127}N_{16}O_{17}PS$, M=1696.05, T=296(2) K, Space group = P-1, a=13.8359(11), b=18.7145(15), c=19.6641(15), $\alpha=104.991(2)^\circ$, $\beta=99.589(3)^\circ$, $\gamma=104.672(2)^\circ$, V=4608.9(6) ų, Z=2, $\mu=0.124$ mm $^{-1}$, D=1.221 g cm $^{-3}$, F(000)=1818, reflections total = 19087, reflections gathered = 8892, $R_{int}=0.1148$, $R_1(F)=0.1055$, $wR_2(F^2)=0.2184$, S=1.018, $N_{par}=1085$. Single crystal data of **AUL-2DMSO**

CCDC No. **2008262**, $F = C_{52}H_{57}N_{13}O_{14}S_2$, M = 1152.23, T = 100(2) K, Space group = P-1, a = 9.4857(4), b = 17.0599(7), c = 18.6326(8), $\alpha = 64.282(2)^\circ$, $\beta = 80.544(2)^\circ$, $\gamma = 87.541(2)^\circ$, V = 2678.3(2) ų, Z = 2, $\mu = 0.180$ mm⁻¹, D = 1.429 g cm⁻³, F(000) = 1208, reflections total = 9430, reflections gathered = 8381, $R_{int} = 0.0223$, $R_1(F) = 0.0502$, $WR_2(F^2) = 0.1355$, S = 1.032, $N_{par} = 773$.

Single crystal data of AL·H₂O

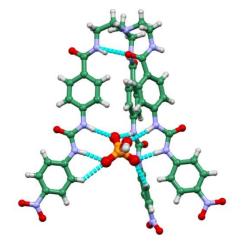
CCDC No. **2008263**, F = $C_{27}H_{33}N_7O_4$, M = 519.60, T = 296(2) K, Space group = P 2₁2₁2₁, a = 10.3677(3), b = 11.6016(3), c = 23.4291(6), α = 90°, β = 90°, γ = 90°, V = 2818.10(13) ų, Z = 4, μ = 0.085 mm⁻¹, D = 1.225 g cm⁻³, F(000) = 1104, reflections total = 6999, reflections gathered = 4453, $R_{\rm int}$ = 0.0383, $R_1(F)$ = 0.0628, w $R_2(F^2)$ = 0.1756, S = 1.021, $N_{\rm par}$ = 352.

- (a) K. Bowman-James, Acc. Chem. Res., 2005, 38, 671-678, (b)
 S. Kubik, Chem. Soc. Rev., 2009, 38, 585-605, (c) V. Amendola,
 D. Esteban-Gomez, L. Fabbrizzi and M. Licchelli, Acc. Chem. Res., 2006, 39, 343-353, (d) K. M. Mullen and P. D. Beer, Chem. Soc. Rev., 2009, 38, 1701-1713, (e) P. A. Gale, Chem. Commun., 2008, 4525-4540, (f) B. P. Hay, Chem. Soc. Rev., 2010, 39, 3700-3708, (g) G. Cavallo, P. Metrangolo, T. Pilati, G. Resnati, M. Sansotera and G. Terraneo, Chem. Soc. Rev., 2010, 39, 3772-3783, (h) J. T. Davis, O. Okunolaa and R. Quesada, Chem. Soc. Rev., 2010, 39, 3843-3862, (i) A.-F. Li, J.-H. Wang, F. Wang and Y.-B. Jiang, Chem. Soc. Rev., 2010, 39, 3729-3745, (j) C. Jia, W. Zuo, D. Zhang, X.-J. Yang and B. Wu, Chem. Commun., 2016, 52, 9614-9627.
- (a) S. Peng, Q. He, G. I. Vargas-Zúñiga, L. Qin, I. Hwang, S. K. Kim, N. J. Heo, C.-H. Lee, R. Dutta and J. L. Sessler, *Chem. Soc. Rev.*, 2020, 49, 865-907, (b) S. K. Kim and J. L. Sessler, *Chem. Soc. Rev.*, 2010, 39, 3784-3809, (c) M. Wenzel, J. R. Hiscock and P. A. Gale, *Chem. Soc. Rev.*, 2012, 41, 480-520, (d) P. A. Gale, S. E. García-Garrido and J. Garric, *Chem. Soc. Rev.*, 2008, 37, 151-190, (e) D. Mungalpara, A. Valkonen, K. Rissanen and S. Kubik, *Chem. Sci.*, 2017, 8, 6005-6013, (f) S. Kubik, *Chem. Soc. Rev.*, 2010, 39, 3648-3663, (g) S. O. Kang, J. M. Llinares, V. W. Day and K. Bowman-James, *Chem. Soc. Rev.*, 2010, 39, 3980-4003, (h) R. Dutta and P. Ghosh, *Chem. Commun.*, 2014, 50, 10538-10554.
- 3 (a) R. Custelcean, P. Remy, P. V. Bonnesen, D. Jiang and B. A. Moyer, Angew. Chem., Int. Ed., 2008, 47, 1866-1869, (b) R.

Custelcean, B. A. Moyer and B. P. Hay, Chem. Commun., 2005, 5971-5974, (c) S. K. Dey and G. Das, Dolton Transp 2012, 41, 8960-8972, (d) J. Zhao, D. Yang, Y. Zhao, L. Cao, Z. Zhang, X.-J. Yang and B. Wu, Dalton Trans., 2016, 45, 7360-7365, (e) I. Basaran, M. E. Khansari, A. Pramanik, B. M. Wong and M. A. Hossain, Tetrahedron Lett., 2014, 55, 1467-1470, (f) S. K. Dey and G. Das, Chem. Commun., 2011, 47, 4983-4985, (g) A. S. Singh and S.-S. Sun, J. Org. Chem., 2012, 77, 1880–1890, (h) D. P. Cormode, S. S. Murray, A. R. Cowley and P. D. Beer, Dalton Trans., 2006, 5135-5140, (i) N. Singh, and D. O. Jang, Org. Lett., 2007, 9, 1991-1994, (j) L. Qin, A. Hartley, P. Turner, R. B. P. Elmes, and K. A. Jolliffe, Chem. Sci., 2016, 7, 4563-4572, (k) C. J. Woods, S. Camiolo, M. E. Light, S. J. Coles, M. B. Hursthouse, M. A. King, P. A. Gale, and J. W. Essex, J. Am. Chem. Soc., 2002, 124, 8644-8652, (I) P. G. Young and K. A. Jolliffe, Org. Biomol. Chem., 2012, 10, 2664-2672, (m) I. Ravikumar and P. Ghosh, Chem. Commun., 2010, 46, 6741-

- 4 (a) S. K. Dey, A. Basu, R. Chutia and G. Das, RSC Adv., 2016, 6, 26568–26589, (b) M. Arunachalam and P. Ghosh, Chem. Commun., 2011, 47, 8477-8492.
- (a) I. Ravikumar and P. Ghosh, Chem. Soc. Rev., 2012, 41, 3077-3098, (b) R. Ghosh, T. K. Ghosh and P. Ghosh, Dalton Trans., 2020, 49, 3093-3097, (c) S. Chakraborty, R. Dutta and P. Ghosh, Chem. Commun., 2015, 51, 14793-14796, (d) I. Ravikumar, S. Saha and P. Ghosh, Chem. Commun., 2011, 47, 4721-4723, (e) R. Custelcean and P. Remy, Cryst. Growth Des., 2009, 9, 1985-1990, (f) C. Jia, B. Wu, S. Li, X. Huang, Q. Zhao, Q.-S. Li and X.-J. Yang, Angew. Chem., Int. Ed., 2011, 50, 486-489, (g) J. Almog, I. Gavish-Abramovich, R. Rozin, S. Cohen, G. Yardeni, I. Zilbermann, Euro. J. Inorg. Chem., 2012, 4427-4432, (h) C. R. Rice, C. Slater, R. A. Faulkner and R. L. Allan, Angew. Chem., Int. Ed., 2018, 57, 13071-13075, (i) B. Akhuli and P. Ghosh, Chem. Commun., 2015, 51, 16514-16517, (j) S. Chakraborty, R. Dutta, and P. Ghosh, Chem. Commun., 2015, 51, 14793-14796.
- 6 (a) K. E. Havens and C. L. Schelske, Environ. Pollut., 2001, 113, 1-9, (b) M. F. Coveney, E. F. Lowe, L. E. Battoe, E. R. Marzolf and R. Conrow, Freshwater Biol., 2005, 50, 1718-1730, (c) C. L. Schelske, E. F. Stoermer and W. F. Kenney, Limnol. Oceanogr., 2006, 51, 728-748.
- 7 (a) A. M. Hyde, S. L. Zultanski, J. H. Waldman, Y.-L. Zhong, M. Shevlin and F. Peng, *Org. Process Res. Dev.*, 2017, 21, 1355–1370.
- (a) N. Busschaert, C. Caltagirone, W. Van Rossom and P. A. Gale, *Chem. Rev.*, 2015, **115**, 8038–8155, (c) Z. Wang, H. Luecke, N. Yao and F. A. Quiocho, *Nat. Struct. Biol.*, 1997, **4**, 519.
- 9 (a) S. Pal, T. K. Ghosh, R. Ghosh, S. Mondal and P. Ghosh, *Coord. Chem. Rev.*, 2020, 405, 213128, and references therein, (b) D. Yang, J. Zhao, X.-J. Yang and B. Wu, *Org. Chem. Front.*, 2018, 5, 662-690, (c) C. Bazzicalupi, A. Bencini and V. Lippolis, *Chem. Soc. Rev.*, 2010, 39, 3709-3728, (d) M. V. R. Raju, S. M. Harris and V. C. Pierre, *Chem. Soc. Rev.*, 2020, 49, 1090-1108.
- 10 X. Huang, B. Wu, C. Jia, B. P. Hay, M. Li and X.-J. Yang, Chem.— Eur. J., 2013, 19, 9034-9041.
- I. Ravikumar, P. S. Lakshminarayanan and P. Ghosh, *Inorg. Chim. Acta*, 2010, **363**, 2886–2895.
- 12 Most tetrabutylammonium (n-Bu₄N⁺) or tetraethylammonium (Et₄N⁺) salts are hygroscopic in nature and thus, weighing identical equivalents of each salt relative to **AUL/AAL** were hard to measure.
- 13 (a) J. W. Steed and J. L. Atwood, Supramolecular Chemistry, Second Edition, Wiley, New York, 2000, (b) S. K. Dey and G. Das, Dalton Trans., 2011, 40, 12048–12051, (c) N. Busschaert, M. Wenzel, M. E. Light, P. Iglesias-Hernandez, R. Perez-Tomas and P. A. Gale, J. Am. Chem. Soc., 2011, 133, 14136-14145, (d)

Journal Name ARTICLE


View Article Online DOI: 10.1039/D0CE00834F

SrystEngComm Accepted Manuscript

- A. Basu, S. K. Dey and G. Das, *RSC Adv.*, 2013, **3**, 6596–6605, (e) M. E. Khansari, M. H. Hasan, C. R. Johnson, N. A. Williams, B. M. Wong, D. R. Powell, R. Tandon, and M. A. Hossain, *ACS Omega*, 2017, **2**, 9057–9066.
- 14 Commercially available tetrabutylammonium (n-Bu₄N⁺) acetate (Sigma-Aldrich) was received as thick sticky liquid due to its hygroscopic nature and thus, lithium acetate (soluble in DMSO-d₆) was used for the $^1\text{H-NMR}$ experiment as a source for acetate anion.
- 15 (a) R. Chutia, S. K. Dey and G. Das, Cryst. Growth Des., 2015, 15, 4993-5001, (b) R. Chutia, S. K. Dey and G. Das, Cryst. Growth Des., 2013, 13, 883-892, (c) P. S. Lakshminarayanan, I. Ravikumar, E. Suresh and P. Ghosh, Chem. Commun., 2007, 5214–5216.
- 16 (a) A. Tahli, Ü. Köc, R. F. M. Elshaarawy, A. C. Kautz and C. Janiak, Crystals, 2016, 6, 23, (b) C. Heering, B. Nateghi and C. Janiak, Crystals, 2016, 6, 22, (c) B. G-, Hernández, J. K. Maclaren, H. A. Höppe, J. Pasán, J. Sanchiz and C. Janiak, CrystEngComm, 2012, 14, 2635-2644, (d) J. K. Maclaren and C. Janiak, Inorg. Chim. Acta, 2012, 389, 183-190, (e) B. M. Drašković, G. A. Bogdanović, M. A. Neelakantan, A. -C. Chamayou, S. Thalamuthu, Y. S. Avadhut, J. S. auf der Günne, S. Banerjee, and C. Janiak, Cryst. Growth Des. 2010, 10, 1665–1676, (f) B. Wu, X. Huang, Y. Xia, X. -J. Yang, and C. Janiak, CrystEngComm, 2007, 9, 676-685, (g) M. D. Ward, Chem. Commun., 2005, 5838-5842.
- 17 (a) K. Pandurangan, J. A. Kitchen, S. Blasco, E. M. Boyle, B. Fitzpatrick, M. Feeney, P. E. Kruger and T. Gunnlaugsson, Angew. Chem., Int. Ed., 2015, 54, 4566-4569, (b) P. S. Lakshminarayanan, I. Ravikumar, E. Suresh and P. Ghosh, Chem. Commun., 2007, 5214-5216, (c) Y. Zhang, R. Zhang, Y. Zhao, L. Ji, C. Jia and B. Wu, New J. Chem., 2013, 37, 2266-2270, (d) M. Wei, B. Wu, L. Zhao, H. Zhang, S. Li, Y. Zhao and X. -J. Yang, Org. Biomol. Chem., 2012, 10, 8758-8761.
- 18 L. J. Farrugia, J. Appl. Cryst., 2012, 45, 849-854.
- 19 M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, W. A. de Jong, *Comput. Phys. Commun.*, 2010, 181, 1477-1489.
- K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li and T. L. Windus, J. Chem. Inf. Model, 2007, 47, 1045-1052.
- 21 (a) X. Wu, A. M. Gilchrist and P. A. Gale, Chem, 2020, 6, 1296–1309, (b) Q. He, P. Tu and J. L. Sessler, Chem, 2018, 4, 46–93.
- 22 E.A. Katayev, Y.A. Ustynyuk, J.L. Sessler, Coord. Chem. Rev., 2006, 250, 3004–3037.

View Article Online DOI: 10.1039/D0CE00834F

Intramolecular N-H···O=C hydrogen bonding between the inner amide groups dictates the receptor-anion complementarity in a second-generation tripodal receptor towards selective encapsulation of hydrogenphosphate in the outer urea cavity by multiple hydrogen bonds.

