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PREFACE 

This thesis is on “Estimation of Glucose using Fixed Wavelength Light Sources”.                       

A system has been developed to estimate the glucose concentration non-invasively on 

an Altera NIOS-II soft-core platform using a DE-0 Nano board having a Cyclone-IV 

FPGA. Fixed wavelengths were used to probe the sample and a PLSR calibration model 

is built to estimate glucose concentration of unknown samples. The whole exercise is 

done to reduce the resources required for development of a portable, low cost glucose 

monitoring device. 

Chapter 1 contains an introduction to the thesis along with overview of diabetes, the 

different types of diabetes, the global prevalence of diabetes, confounding effects of 

other blood constituents, history of blood glucose monitoring devices, economic impact 

of diabetes and finally ends with objective of research work. 

Chapter 2 contains a detailed literature review of various methods used for 

determination of glucose. It classifies these methods into invasive, minimally-invasive 

and non-invasive. Under invasive methods the laboratory methods and home monitoring 

methods are described. Minimally invasive methods such as reverse iontophoresis, 

sonophoresis, and microporation are discussed. In non-invasive section, methods such 

as mid-infrared spectroscopy, Raman spectroscopy, optical polarimetry, photoacoustic 

spectroscopy, bioimpedance spectroscopy, Optical Coherence Tomography, Near 

Infrared spectroscopy are reviewed. The chapter ends with highlight on the need of a 

non-invasive glucometer. 

Chapter 3 discusses how to use near-infrared radiation to estimate glucose. It contains 

the theory behind the near-infrared absorption. The chapter also discusses the major 

interferents and the optical properties of human tissue. 

Chapter 4 elucidates the methodology adopted for determination of glucose 

concentration. It contains the spectroscopic measurements for glucose estimation, 

spectrophotometer for measurement for glucose absorption, sample preparation, path 

length considerations and system design. 

Chapter 5 describes how glucose estimation can be done using a FPGA soft-core 

processor.  It contains structure of an FPGA, soft-core processor for embedded systems, 

a survey of soft-core processors, DE-0 Nano board used to configure the NIOS-II soft 
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core, Qsys system integration tool, SDRAM interface to NIOS-II, ADC controller 

interface and programming the NIOS-II soft core. 

Chapter 6 describes multivariate calibration model for glucose estimation. It discusses 

various multivariate methods available, PLSR along with NIPALS and SIMPLS 

algorithm, the ParLes software for preliminary analysis. 

Chapter 7 gives results obtained and conclusion drawn from the various experiments. A 

PLSR calibration model was built to estimate glucose for three different cases. The 

model for glucose estimation is assessed using root mean square error and Clarke error 

grid analysis. In the end, the future scope of research in the area is given. 
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In the present days cures have been found for so many ailments, which were historically 

thought to be incurable. The advances in medical sciences have enabled people to 

manage their health in a more efficient manner, which has resulted in leading a long and 

healthy life. One of the diseases which plays havoc if not managed well is diabetes. 

There are severe long term conditions that result from diabetes like kidney failure, 

neuropathy and eye damage, leading to blindness, slow healing of wounds, amputation 

of limbs, accompanied by acute cardiovascular conditions. Hence, it is of utmost 

importance that blood sugar levels should be tightly controlled to avoid the above 

complications. Another confounding factor is that these above condition do not surface 

themselves up until many years. These can lead to a serious financial burden in the later 

stage. A good healthy lifestyle involving regular physical activity, normal body weight, 

healthy diet, can go a long way to prevent diabetes. 

The above listed reasons make it imperative for a person having diabetes to regulate his 

blood sugar which requires them to measure the blood sugar at regular intervals during 

the day. Traditionally used laboratory techniques are very accurate but come with an 

inherent delay due to time taken to process the samples. The self-monitoring devices in 

the market today rely on finger pricking and collecting the blood on disposable strips. 

The pain associated with the finger pricking causes apprehension in the patients mind 

and lead to less frequent measurement. Thus a tight control of one’s blood glucose 

levels is not achieved. Additionally these devices come with a serious danger of 

infection. Hence, there is a shift of attention to non-invasive methods to monitor 

glucose. Traditional use of spectroscopy for glucose estimation used a white light 

source, which makes the entire equipment very bulky. If a portable device has to be 

fabricated, fixed wavelength light sources like LEDs must be used in place of a white 

light source. These sources can offer a manifold increase in signal to noise ratio. Use of 

fixed wavelength light sources not only reduces the equipment size but also relaxes the 

power, memory and computing requirements. 

Thus the problem was formulated to develop a method to acquire glucose signal using 

fixed wavelength light sources and to implement multivariate algorithm to estimate the 

glucose concentration.  
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1.1 Overview of Diabetes  

Diabetes is a serious, long-term condition that occurs due to raised levels of glucose in 

the blood, which is a result of body’s inability or insufficient production of the hormone 

insulin, or the ineffectiveness of the hormone it produces. The pancreas is the organ 

which produces the hormone insulin required by the body. Insulin allows the uptake of 

glucose from the bloodstream into the cells. The cells utilize glucose by converting it to 

energy. Hyperglycemia or high blood glucose levels are a result of either inability of 

cells to respond to insulin or insufficient insulin. Hyperglycemia is used as the clinical 

indicator for diabetes [1]. 

1.1.1 Types of Diabetes 

Type 1 diabetes results from an autoimmune reaction of the body. The immune system 

attacks the insulin producing beta cells situated in the pancreas although small 

percentage are a result of idiopathic failure of the beta cells[2]. This leads to very little 

or no production of insulin by the body. Of the total diabetes population, type 1 diabetes 

accounts for 5 - 10 % of the cases [3]. Type 1 diabetes was previously known as insulin 

dependent, childhood-onset or juvenile diabetes. 

Type 2 diabetes is a condition where the body cells cannot respond to insulin fully, 

known as insulin resistance. As a result of ineffectiveness of insulin the body prompts 

an increased production of insulin, which overtime leads to the failure of beta cells to 

keep up with the demand [1]. This type of diabetes accounts for 90 - 95 % of the cases 

of diabetes [3]. This type of diabetes was formally known as adult-onset diabetes or 

non-insulin dependent diabetes. Increasing age, obesity, fat distribution, sedentary 

lifestyle, stress may be considered as potential risk factors in type 2 diabetes. 

Hyperglycemia during pregnancy can be classified as either Diabetes In Pregnancy 

(DIP) or Gestational Diabetes Mellitus (GDM) [4,5]. Hyperglycemia which is 

diagnosed for the first time during pregnancy is termed as GDM. This may occur 

anytime during pregnancy period but most likely after 24 weeks [6]. Pregnant women 

with a history of diabetes or high blood sugar level during pregnancy and fall within the 

WHO criteria when not pregnant are said to have DIP. DIP can occur anytime during 

pregnancy, even during the first trimester [5]. Around 75–90% cases of hyperglycemia 

during pregnancy are GDM [7]. 
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Diabetes needs to be managed well, if not it leads to many life threatening 

complications. Diabetic ketoacidosis in case of type 1 and 2 and hyperosmolar coma in 

type 2 can occur if blood glucose levels are allowed to become abnormally high. 

Exercising more than usual, skipping a meal, or if there is a over dosage of anti diabetic 

medication, the blood glucose levels can drop to abnormally low levels which may lead 

to loss of consciousness or seizures.  

Over a long period, diabetes can cause damages to eyes, heart, blood vessels, nerves and 

kidneys, which increase the incidence of heart disease and stroke. Reduced blood flow 

to the extremities due to the above condition coupled with neuropathy (nerve damage) 

can increase the chances of foot ulcers and infection which eventually may lead to 

amputation of limbs. Another serious issue to health is diabetic retinopathy, which 

occurs due to long-term compounded damage to retinal blood vessels. Diabetes can 

have serious damage to kidney and may result in kidney failure. Gestational diabetes 

can lead to serious complication to both mother and child which may result in fetal 

death, congenital defects, stillbirths, maternal morbidity and mortality. The above 

reasons make it very clear why it is imperative to manage the blood glucose levels in the 

prescribed clinical range. 

1.2 Global prevalence of Diabetes 

According to the latest finding of International diabetes Federation (IDF) as of 2019, 

463 million people suffer from diabetes and this figure is estimated to grow to 578 

million by 2030[1]. It is estimated that 79.4% diabetic patients live in low and middle 

income countries. According to “Diabetes atlas” published by IDF, China has the 

highest number of diabetes in the age group of 20 to 79 years followed by India and 

United States of America [1].India and United States of America are expected to occupy 

the position until 2030, then Pakistan is anticipated to reach the third position by 2045. 

India falls in the IDF South-East Asia (SEA) region. In 2019, 8.8% of the adult 

population aged 20–79 years in the SEA region had diabetes which is equal to 87.6 

million people. India has 77 million adults having diabetes and is ranked second in the 

world. India along with Sri Lanka and Bangladesh amount to 98.9% of the entire adult 

population having diabetes in the SEA region. 
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Table 1.1: Country ranks for number of adults (20 to 79 years) having diabetes in 2019, 

and estimate for 2030 and 2045. 

 

1.3 Physiological Ranges of Glucose 

Glucose acts as the most essential energy source for a human being. Ideally pre-prandial 

glucose must be below 100 mg/dL(5.5 mmol/L) in plasma and below 89 mg/dL(4.9 

mmol/L) in whole blood and capillary. Recommended ideal goals for postprandial are 

140 mg/dL(7.8 mmol/L) in plasma and less than 125 mg/dL(6.9 mmol/L) in whole 

blood and capillary [8]. Most diabetic patients are using blood glucose self-monitoring 

devices for surveillance of their glucose levels and adjustment of their insulin dosage to 

achieve normoglycemia with glucose concentrations between 3.9 and 7.8 mmol/l (70–

140 mg/dl) [9] 
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1.4 The Glucose Metabolism 

Glucose is an essential fuel for the body. The amount of glucose in the bloodstream is 

regulated by different hormones, the most important being insulin. Glucose is used for 

many purposes in the body. It can be converted into energy via pyruvate and the 

tricarboxylic acid cycle (citric acid cycle), as well as being converted to fat (long-term 

storage) and glycogen (short-term storage)[10]. 

 

Figure 1.1: Anabolism and catabolism of glucose 

Insulin is one of the myriad of hormones produced by the body for its proper 

functioning. The insulin making cells of the body are called beta cells, and they are 

found in the pancreas gland. These cells clump together to form the “islets of 

Langerhans”. Insulin controls the metabolism of proteins, fats, and carbohydrates by 

facilitating the uptake of glucose into skeletal muscle cells, fat and liver from the             

blood [11]. Not all tissues require insulin for glucose uptake. Tissues such as liver cells, 

red blood cells, the gut mucosa, the kidneys, and cells of the nervous system use a 

glucose transporter that is not insulin dependent. 

Glucagon is secreted by the alpha cells of the pancreatic islets in much the same 

manner as insulin.  Glucagon is the main hormone opposing the action of insulin and is 
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released when food is scarce. Whereas insulin triggers the formation of glycogen (an 

energy-requiring process, or an anabolic effect), glucagon triggers glycogen breakdown, 

which releases energy (a catabolic effect). Glucagon also helps the body to switch to 

using resources other than glucose, such as fat and protein. Blood glucose levels are not 

constant; they rise and fall depending on the body's needs, regulated by hormones. This 

results in glucose levels normally ranging from 70 to 110 mg/dl. 

After a meal, a rise in blood glucose is detected by the pancreatic beta cells, which 

respond by releasing insulin. Insulin increases the uptake and use of glucose by tissues 

such as skeletal muscle and fat cells. This rise in glucose also inhibits the release of 

glucagon, inhibiting the production of glucose from other sources, e.g., glycogen break 

down. Glucose once inside the cell, is used immediately via glycolysis. This is a central 

pathway of carbohydrate metabolism as it occurs in all cells in the body, and because all 

sugars can be converted into glucose and enter this pathway. During the well fed state, 

the high levels of insulin and low levels of glucagon stimulate glycolysis, which 

releases energy and produces carbohydrate intermediates that can be used in other 

metabolic pathways. 

Any glucose that is not used immediately is taken up by the liver and muscle where it 

can be converted into glycogen (glycogenesis). Insulin also encourages glycogen 

formation in muscle, but by a different method. Here it increases the number of glucose 

transporters on the cell surface. This leads to a rapid uptake of glucose that is converted 

into muscle glycogen. When glycogen stores are fully replenished, excess glucose is 

converted into fat in a process called lipogenesis. Glucose is converted into fatty acids 

that are stored as triglycerides (three fatty acid molecules attached to one glycerol 

molecule) for storage. Insulin also has an anabolic effect on protein metabolism. It 

stimulates the entry of amino acids into cells and stimulates protein production from 

amino acids. 

Fasting is defined as more than eight hours without food. The resulting fall in blood 

sugar levels inhibits insulin secretion and stimulates glucagon release. Glucagon 

opposes many actions of insulin. Most importantly, glucagon raises blood sugar levels 

by stimulating the mobilization of glycogen stores in the liver, providing a rapid burst of 

glucose. In 10–18 hours, the glycogen stores are depleted, and if fasting continues, 
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glucagon continues to stimulate glucose production by favoring the hepatic uptake of 

amino acids, the carbon skeletons of which are used to make glucose. In addition to low 

blood glucose levels, many other stimuli stimulate glucagon release including eating a 

protein-rich meal (the presence of amino acids in the stomach stimulates the release of 

both insulin and glucagon, glucagon prevents hypoglycemia that could result from 

unopposed insulin) and stress (the body anticipates an increased glucose demand in 

times of stress). 

1.5 Confounding Effect of other Blood constituents. 

Blood is a specialized body fluid that delivers necessary substances to the body's cells. 

Blood has different function in the human body which include oxygen and nutrients 

supply to the various parts of the body, removal of waste products such as carbon 

dioxide, lactic acid and urea, immunological function such as transport of white blood 

cells and detection of foreign bodies by antibodies, self repair by coagulation, 

messenger functions by transport of hormones and tissue damage signals, pH regulation 

of the body in the range of (7.35 - 7.45) and temperature regulation of body.  

The blood volume in an average adult is around 5 litres. The blood contains plasma and 

several kinds of cells. The three different types of formed elements in the blood are 

leukocytes (white blood cells), erythrocytes (red blood cells), and thrombocytes 

(platelets) [12]. Plasma constitutes about 55% of the whole blood by volume and the red 

blood cells constitute about 45% of the blood. The white blood cells constitute a 

miniscule volume. The normal appearance of plasma is straw yellow color. 

The total volume of plasma is around 2.7 - 3.0 litres in an average human being.  It is 

basically an aqueous solution which containing 92% water, 8% blood plasma proteins 

and other trace materials. Nutrients such as glucose, fatty acids and amino acids are 

dissolved in the plasma and therefore plasma is responsible to circulate these nutrients 

to the various parts of the body. Water is a major component of blood and tissue, hence 

absorption due to water plays dominant contributors to any absorbance studies. We 

must choose optical windows which present low water absorption. In addition to water, 

blood matrix consists of around 118 constituents. All of them present an overlapping 

absorbance signature, which makes it very difficult to isolate the glucose signature. 

Below table gives the reference physiological range of different blood constituents.  



8 

 
 

Table 1.2: Clinical range of blood constituents 

Sr. 

No. 
Blood Constituent Clinical Range 

1 Acetoacetate < 3 mg/dL 

2 Acidity (pH) 7.35 - 7.45 

3 Alanine aminotransferase 7–41 units/L 

4 Alcohol 
0 mg/dL( blood alcohol content of 30 

mg/dL is the limit of intoxication) 

5 Ammonia 15 - 50 µg of nitrogen/dL 

6 Amylase 53 - 123 units/L 

7 Ascorbic Acid 0.4 - 1.5 mg/dL 

8 Aspartate aminotransferase 12-38 units/L 

9 Bicarbonate 18 - 23 mEq/L (carbon dioxide content) 

10 Bilirubin 

0.3–1.3 mg/dL (total) 

0.0–1 mg/dL (indirect) 

0.0–0.4 mg/dL (direct) 

11 Blood 8.5 - 9.1% of the body weight 

12 Calcium 
8.5 - 10.5 mg/dL (normally slightly 

higher in children) 

13 Carbon Dioxide Pressure 35 - 45 mm Hg 

14 Carbon Monoxide Less than 5% of total hemoglobin 

15 CD4 Cell Count 500 - 1500 cells/µL 

16 Ceruloplasmin 15 - 60 mg/dL 

17 Chloride 98 - 106 mEq/L 

18 
Complete Blood Cell Count 

(CBC) 

White blood cell 3.5–9.1x 109/L 

Red blood cell 4–5.2 x 1012/L 

19 Copper 70 - 150 µg/dL 

20 Creatine Kinase  
38 - 174 units/L (Male) 

96 - 140 units/L (Female) 
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21 Creatine Kinase Isoenzymes 5% MB or less 

22 Creatinine 0.6 - 1.2 mg/dL 

23 Erythrocyte Sedimentation Rate < 50 mm/hr 

24 Glucose 70 - 110 mg/dL (Fasting) 

25 Hematocrit 
45 – 62 % (Male) 

37 – 48 %  (Female) 

26 Hemoglobin 
13 - 18 gm/dL (Male) 

12 - 16 gm/dL (Female) 

27 Iron 
60 - 160 μg/dL (normally higher in 

males) 

28 Iron-binding Capacity 250 - 460 μg/dL 

29 Lactate (lactic acid) 
4.5-19.8mg/dL (Venous) 

4.5 - 14.4 mg/dL (Arterial) 

30 Lactic Dehydrogenase 50 - 150 units/L 

31 Lipase 10 - 150 units/L 

32 Lipids 

< 200 mg/dL( Cholesterol) 

<150 mg/dL( Triglycerides) 

< 60 mg/dL( HDL Cholesterol) 

< 60 - 130 mg/dL( LDL Cholesterol) 

< 4.0 (Cholesterol/HDL ratio) 

33 Magnesium 1.5 - 2.0 mEq/L 

34 
Mean Corpuscular Hemoglobin 

(MCH) 
26 - 31 pg/cell 

35 

Mean Corpuscular Hemoglobin 

Concentration 

(MCHC) 

32 - 36% hemoglobin/cell 

36 
Mean Corpuscular Volume 

(MCV) 
79 – 93.3 fL 

37 Osmolality 280 - 296 mOsm/kg water 
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38 Oxygen Pressure 83 - 100 mm Hg 

39 Oxygen Saturation (arterial) 96 - 100% 

40 Phosphatase Prostatic 0 - 3 units/dL (Bodansky units) (acid) 

41 Phosphatase 
50 - 160 units/L (normally higher in 

infants and adolescents)(alkaline) 

42 Phosphorus 3.0 - 4.5 mg/dL (inorganic) 

43 Platelet Count 150000 - 350000/mL 

44 Potassium 3.5 - 5.0 mEq/L 

45 Prostate Specific Antigen  0 - 4 ng/mL (likely higher with age) 

46 Proteins 

6.7–8.6 gm/dL (Total ) 

3.5–5.5 gm/dL (Albumin) 

2–3.5 gm/dL (Globulin) 

47 Pyruvic Acid 0.3 - 0.9 mg/dL 

48 Red Blood Cell Count  4.2 - 6.9 million/µL/cu mm 

49 Sodium 135 - 145 mEq/L 

50 Thyroid-Stimulating Hormone  0.5 - 6.0 µ units/mL 

51 Urea Nitrogen (BUN) 7 - 18 mg/dL 

52 BUN/Creatinine Ratio 5 – 35 

53 Uric Acid 
2.1 to 8.5 mg/dL (Male) 

2.0 to 7.0 mg/dL  (Female) 

54 Vitamin A 30 - 65 µg/dL 

55 
WBC (leukocyte count and white 

blood cell count) 
4.3-10.8 × 103/mm3 

56 White Blood Cell Count  4300 - 10800 cells/µL/cu mm 

57 Zinc B-Zn 70 - 102 μmol/L 
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1.6 History of Blood Glucose Monitoring     

Diabetes has been known since ancient times, as the level of blood glucose rises above 

the normal range, kidneys pass the glucose into urine. In ancient times the Chinese used 

to test for the disease by checking if ants were attracted to sugar in a patient’s urine. 

Prior to modern chemical techniques, tasting of a urine sample was even considered a 

valid test. Chemical testing of urine for diabetes has been done over a century. In 1908, 

Stanley Benedict made the pioneering development of improved copper reagent for 

estimating glucose in urine. This method was used for over 50 years to estimate glucose 

in urine [13].  

 In 1941, the Ames Division of Miles Laboratories (the division name reportedly came 

from that of the president, a physician named Walter Ames Compton), in Elkhart, 

Indiana, introduced a tablet based on a standard test for certain sugars involving copper 

sulphate, called Benedict’s solution. One of these “Clinitest” tablets could be added to a 

few drops of urine and noting the colour change from bright blue to orange, was 

compared to a series of printed colours on the instruction sheet and the approximate 

level of glucose in the urine was estimated.Urine testing for glucose, however has very 

serious problems. When a person first develops diabetes, the level of glucose in urine is 

a reasonable indication of excessive amounts in the blood; however, because both 

normal and low blood glucose levels results in no glucose in urine, it is never possible 

to assess low blood levels using urine tests. As the disease progresses over a period of 

time, it becomes much less reliable as a marker of high blood glucose. Even otherwise, 

it’s never an accurate measurement, and even though improved testing devices 

(“dipsticks”) have been developed over the years, it’s never been more than a “semi-

quantitative” test. 

 

 

 

 



12 

 
 

 

 

 

 

 

 

Figure 1.2: Dextrostix 

Dextrostix, the first blood glucose strip was developed by Ames in 1965. The color 

developed on the strip after placing a blood drop for 60 seconds was compared to a 

color chart printed on the bottle for a semi quantitative assessment of blood glucose 

levels [14]. Dextrostix used a biochemical reaction, with an enzyme called Glucose 

Oxidase (GOx), which reacts with glucose to produce hydrogen peroxide. The hydrogen 

peroxide produced a colour from another chemical called o-tolidine and the amount of 

colour on the strip after exposing it to a drop of blood was a good measure of the 

amount of glucose present 

                                                                                         

Figure 1.3: Ames Reflectance Meter 
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The Ames reflectance meter was developed in 1970 by Anton H. Clemens. It had a 

needle that indicated the intensity of blue light reflected from Dextrostix. Unfortunately 

it had some reliability problems, mostly from its rechargeable lead acid batteries, and its 

use did not become widespread. The next electronic strip reader appeared in about 1972, 

called the Eyetone, and was manufactured by a Japanese company, Kyoto Dai-ichi 

(which later changed the company name to Ark-Ray). It also read Dextrostix, but used a 

plug-in AC adapter for power instead of batteries. In about 1979, Kyoto Dai-ichi 

introduced an improved Dextrostix meter with a digital readout, called the Dextrometer. 

The meters and the associated strips developed during the 1980s required less blood and 

were became much more affordable. Subsequently self-monitoring of blood glucose 

(SMBG) devices became the standard of care. Boehringer Mannheim, which had 

developed a parallel blood glucose test strip for visual colour comparison called the 

Chemstrip bG, kept pace by introducing a meter to read the strips, the Accu-Chek bG in 

about 1982. The Chemstrip bG was preferred by many over Dextrostix because the 

blood could be wiped off the strip (with a cotton ball) after a minute’s contact instead of 

washing off with water. Later versions of the meters were called Accu-Chek in the U.S. 

and “Reflolux in the rest of the world. LifeScan entered the market in about 1981, with 

a meter (first called Glucocheck, then GlucoScan) developed in England by Medistron 

and test strips developed in Japan by the Eiken corporation—the first product in  which 

the meter was not preceded by a strip intended for visual comparison. Some of the early 

GlucoScan meters had their own reliability problems, but they sustained the company 

until it was purchased by Johnson & Johnson in 1986. Exactech a photometric based 

meter, with a strip developed in England, manufactured by MediSense and marketed 

originally in the U.S. by Baxter. Exactech came in the form of either a slim pen or a 

credit card sized, thin plastic package. Early versions of the device had both accuracy 

and reliability problems, which hampered its early market acceptance. 

Cygnus developed the first real time glucose monitoring device called Glucowatch 

Biographer. It used reverse iontophoresis to stimulate the secretion of subcutaneous 

fluid, which was in turn was used to estimate glucose. It did not do well on the market 

as there were issues related to site irritation. Medtronic introduced a real time 

Continuous Glucose Monitoring (CGM) device named Guardian in 2004. This device 

had the capacity to notify its users of potentially dangerous eventualities such as 
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hyperglycemia and hypoglycemia. The same company launched an integrated insulin 

pump and sensor in 2006. 

                                                                               

Figure 1.4: the Glucowatch Biographer (Cygnus, Redwood, CA) 

FreeStyle Navigator CGM was available commercially in 2008 from Abbott which 

measures glucose concentration in interstitial fluid. All of the above CGMs require one 

to perform calibration with more reliable glucose meters, usually done by self 

monitoring blood glucose device. Dexcom in 2012 launched the G4 Platinum, and soon 

followed by G5 Mobile. The G5 Mobile is a CGM which allows the transmission of 

data to ones cell phone. In 2013 Medtronic became the first company to introduce the 

first insulin pump with a “threshold suspend” in case of hypoglycemia by the 

introduction of MiniMed 530G Enlite sensor. 

FreeStyle Libre Pro introduced by Abbott in 2016 is a CGM which requires no 

fingerstick calibration during wear as they are factory calibrated .The CGM works with 

a special sensor that can be worn for 14 days. The entire system is made up of two units 

the “sensor” and the “reader”, the sensor communicates with the reader using a wireless 

interface.  

1.7 Economic impact of diabetes 

Diabetes is one of the biggest health challenges of the 21st century. Diabetes and its 

complications have a significant economic impact on individuals, families, health 

systems and countries. Diabetes is one of the costliest health problems in the world. The 
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direct cost includes the expenditures incurred due to diabetes, irrespective of whether it 

is borne by the individual or by public/private players or by government. Since 2006, 

the International Diabetes Federation (IDF) has been publishing the estimates of health 

expenditure due to diabetes in “Diabetes Atlas”. The expenditure was 232 billion dollars 

in 2007, 727 billion dollars in 2017, and rose to 760 billion dollars in 2019 for adults in 

the age group of 20-70 years [15–20].  There is a substantial growth of 4.5% form 2017. 

It is estimated that by 2030 the expenditure will reach 825 billion dollars [1]. 

According to IDF, United States of America has the highest diabetes related expenditure 

of 294.6 billion dollars, followed by China with 109.0 billion dollars and Brazil with 

52.3 billion dollars. One study estimates that losses in Gross Domestic Product (GDP) 

worldwide from 2011 to 2030, including both the direct and indirect costs of diabetes, 

will amount to 1.7 trillion dollars, comprising 900 billion dollars for high-income 

countries and 800 billion dollars for low and middle income countries [21]. 

There are also indirect expenditures to be taken into account such as lost productivity 

due to the inability to work, sickness, absence, disability, premature retirement or 

premature death. Bommer et al. calculates the indirect expenditures of diabetes to 

constitute 34.7% of the entire global expenditures of diabetes of 1.31 trillion dollars in 

2015 [22]. The indirect expenditure taken into account by Bommer et al. are 

presenteeism, absenteeism, mortality and labor-force drop out. 

Above paragraphs, give a clear picture of the economic impact of diabetes hence a 

need is felt more than ever before for the development of an inexpensive, and 

reliable non invasive method for estimating glucose.  

1.8 Objective of research work 

A tight control of blood glucose is imperative for a person diagnosed by diabetes. The 

methods used for this not only needs to be accurate but also must have minimum 

waiting time.  Current pathological test involves sending the sample to a laboratory 

hence has an inherent long waiting time. All methods, which involve withdrawal of 

blood by either a syringe or a lancing device, have the perilous possibility of infection, 

not to mention the recurring cost for each measurement. Self-monitoring blood glucose 

meters and the above mentioned pathological test fall under this category. The frequent 

pricking of fingers for blood glucose monitoring has generated an apprehension of pain 
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involved in this method. Near Infrared spectroscopy has proven to be an option which 

circumvents all the above disadvantages and issues. The current trend is to utilize the 

advances in embedded and optical technology to harness the capabilities to perform a 

fast and reliable estimation of blood glucose levels. Our aim here to develop a novel 

FPGA based design using fixed wavelengths near-infrared light sources to probe. The 

criteria for choosing the wavelengths was set as the peaks and valleys which glucose 

present in the combination band of near-infrared region. After probing, the absorbance 

analysis requires the use of multivariate algorithm as the glucose signals are concealed 

in overlapping signatures of other constituent in the aqueous ensemble which is made 

up of five major blood constituents namely glucose, ascorbate, analine, lactate and urea. 

Thus the objective of research work can be categorized as follows. 

1. Design a soft-core FPGA based hardware to estimate the glucose level in 

human blood.  

2. Use fixed wavelength NIR light sources to probe. 

3. Implement multivariate algorithm for estimation of glucose. 

Previous attempts to use NIR technique involved using a while light source with a broad 

emission spectrum and utilized a monochromator. By using fixed wavelength, we can 

bypass the use of white light source, in turn relaxing the power consumption, computing 

and memory requirements. In the future, these wavelengths can be replaced by Laser 

diodes and Light emitting diodes which guarantee us an increase of signal to noise ratio. 
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Diabetes is the underlying reason for many health complications such as stroke, 

cardiovascular diseases, kidney failure, blindness etc. Hence it becomes crucial to 

monitor the blood glucose levels in the prescribed range. Many different methods are 

used to monitor glucose, these methods can be broadly classified into invasive, 

minimally invasive and non-invasive. In this chapter we discuss the different methods 

used in detail. 

2.1 Invasive Methods 

Whole blood, plasma, or serum samples are used to estimate the glucose concentration, 

but the whole blood is seldom used as the readings are 15% lower due to additional 

water content in blood cells. In these methods there is a need of withdrawing blood, 

hence theses methods are known as invasive. 

The laboratories exploited the reducing and condensation properties of glucose, but the 

issues of toxicity, non-specificity and cross-reaction saw these methods being phased 

out from the clinical practices. Currently the pathological laboratories rely on enzymatic 

and hexokinase methods. Both the above methods are highly glucose specific, accurate, 

and offer minimum cross-reaction. Many market players have come out with home 

monitoring devices, which employ finger pricking to withdraw blood in conjunction 

with a glucose strip to estimate glucose concentration. 

2.1.1 Laboratory Methods 

All of the standard laboratory methods rely on withdrawing certain amount of blood and 

hence are invasive in nature. Most laboratories prefer the Enzymatic-amperometric and 

hexokinase method. The above methods offer wide range of operation including 

hypoglycemic and hyperglycemic ranges as well as excellent specificity and sensitivity 

[1]. As such, these methods are often used as standard of reference for other less 

accurate glucose measuring devices.  

In the first method, an enzyme glucose oxidase (GOx) which is specific to glucose is 

used. Glucose, oxygen, water react in the presence of glucose oxidase to form hydrogen 

peroxide and gluconic acid. At the anode of an electrochemical probe, the hydrogen 

peroxide produced then get oxidized, which in turn produces a current (amperometric 

signal) which is proportional to the glucose concentration [2]. 
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Hexokinase method involves the presence of the enzyme hexokinase. There are a 

sequence of chemical reactions which are carried out. In the first phase, the glucose 

reacts with adenosine triphosphate along with biocatalyst hexokinase and magnesium 

ions to form adenosine diphosphate and glucose-6-phosphate. During the next phase, 

glucose-6-phosphate dehygrogenase catalyzes the oxidization  of  nicotinamide adenine 

dinucletide and glucose-6-phosphate to form nicotinamide-adenine-dinucleotide-

reduced and 6-phosphogluconate respectively. Nicotinamide-adenine-dinucleotide-

reduced (NADH) has a special property of absorbing light at 340nm and the amount 

produced is proportional to glucose present. Standard spectrophotometeric techniques 

are used to record the absorption of NADH and therefore this method is also called as 

photometric method [3,4]. 

2.1.2 Home Monitoring Methods 

All of the current monitoring devices used at home use finger pricking with a lancet in 

order to access the capillary blood.  These portable devices are sometimes knows as 

self-monitoring blood glucose (SMBG) devices. Based on the type of diabetes, 

medication and diet these devices are used to monitor glucose at specific times of the 

day at the patients home itself. These devices use a glucose test strip which collects the 

blood drop on it. These strips contain an enzyme and electrodes. The glucose in the 

blood oxidizes in the presence of an enzyme present on the strip. This produces a 

current proportional to the glucose concentration which is conditioned by a signal 

conditioning circuit before being readout on display of the device [5-8].  

2.2 Minimally-Invasive Methods 

Minimally invasive methods use some fluid such as tears, sweat or interstitial fluid 

extracted from the body, but do not require withdrawal of blood from the body. The 

procedure of extraction of body fluid causes minimal irritation to the skin. This body 

fluid is then used for measurement of glucose concentration by enzymatic reaction. The 

glucose from capillary blood and the glucose in interstitial fluid are not quite the same 

as there is a certain delay involved for glucose from capillary blood to reach the 

interstitial fluid. 
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2.2.1 Reverse Iontophoresis   

In reverse iontophoresis, electrodes are located on the skin and a small electric current is 

allowed to flow between the electrodes. A minute quantity of interstitial fluid is 

obtained by means of this small electric current, hence this becomes a minimally 

invasive method.  The current which is primarily produced by sodium ions also causes 

an electro-osmotic-flow of the interstitial fluid, also carrying along with it small amount 

glucose towards the cathode [9]. This glucose can be quantified using the standard 

enzymatic method such as oxidation by enzyme such as glucoses oxidase. 

2.2.2 Sonophoresis 

A low frequency pressure wave is used to drive glucose molecules out of the skin. The 

direction of propagation of the any sound wave is the same as the direction of 

oscillation [10].This process improves the skin permeability and is known as cavitation. 

This process employs a successive compression and expansions of substantial 

magnitude to extract gas out of tissue, which also carries with it other permeants such as 

glucose [11]. This glucose can then be measured using enzymatic method. 

2.2.3 Microporation 

Methods to perforate the stratum corneum, without penetrating the entire skin, attempt 

to punch micro-pathways through the outermost part of the barrier. For example a 

transdermal glucose sensing system developed by SpectRx uses a pulsed laser beam to 

create micropores of less than 100 μm in diameter by thermal ablation of the stratum 

corneum [12,13]. Transdermal fluid is then collected, by applying a vacuum, into a 

disposable collection device. Glucose is subsequently quantified electrochemically. 

2.3 Non-Invasive Methods 

There are several kinds of interactions between electromagnetic radiation and biological 

tissues depending on the properties of target tissues and the characteristics of 

illuminating sources. The interactions can be mainly categorized into absorption, 

transmission, emission, reflection, scattering and optical rotation. Non-invasive 

technologies rely solely on some form of radiation and its interaction with glucose 

without the need of accessing any body fluid. 
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2.3.1 Mid-Infrared Spectroscopy 

Mid-Infrared spectroscopy is a vibrational spectroscopy technique which uses radiation 

in the range of 2.5 µm ton 10µm however some claim to use radiation up to                          

25µm [14,15]. The MIR radiation scatters less in tissue due to longer wavelength, which 

in turn leads to sharp absorption lines in the spectrum in between 8-10 µm [16-17]. 

Many functional groups have a unique spectrum in this region which serves a vital role 

in molecular identification. Hence, this region is often called as finger print region. 

Unfortunately, water also strongly absorbs in the region, which makes it impractical the 

use of MIR in tissue probing as the penetration depth is only a few micrometers in the 

tissue [18]. To circumvent this problem we require sources with high optical power such 

as quantum cascade laser [19] and the use of complementary technologies in 

conjunction with it such as photoacoustic spectroscopy for successful glucose 

estimation [20]. 

2.3.2 Raman Spectroscopy 

In Raman spectroscopy we try to determine the scattering of single wavelength light 

based on Raman Effect. When a monochromatic light hits a target, this light is scattered 

in all directions. The major portion of this scattered light retains the same wavelength, 

and is called as Rayleigh scattering. As the wavelength is not changed this portion of 

scattered light is also called as elastic scattering. The rest of the scattered light which is 

just a small amount, has a different wavelength as the incident light is called as Raman 

scattering or ineleastic scattering. The change between final and initial vibrational state 

of the molecule is given by the wavelength difference and is called as Raman shift [21]. 

The peak positions in the Raman spectrum represent the vibrational modes of the 

functional groups present in the molecule; as such Raman spectroscopy forms a great 

aid in quantifying and detecting specific absorption bands in the sample molecule [22]. 

It is found that the Raman shift is same no matter which wavelength of the incoming 

light is used. The prominent vibrations mode of glucose are those of C-O and C-C 

stretching bands between 12500 nm (800 cm-1) and 7692 nm (1300 cm-1) and C-H 

stretching at around 3448 nm (2900 cm-1) [23-24]. Another advantage of using Raman 

spectroscopy is that light travels relatively deep into the skin tissue however, Raman 

spectra of living tissue are complicated by background fluorescence. 

 



22 

 
 

2.3.3 Optical Polarimetry 

Optical polarimetry is a field evolved around chiral molecules. Chiral molecules are 

molecules which are capable of rotating the plane of plane polarized light. Glucose, 

being a chiral molecule rotates the plane of plane polarized light. The angle of rotation 

is proportional to the glucose concentration. The wavelength of the laser beam is usually 

chosen between approximately 400-780 nm. The presence of other active molecules, 

small optical rotation due to the physiological relevant glucose concentration light, 

scattering in the skin tissue make optical polarimetry unfeasible for use on skin [25]. 

However the aqueous humor inside anterior chamber of the human eye, serves as a 

viable region as it possess excellent optical properties [25-26]. Before application, the 

light is polarized, and then allowed to pass through the aqueous humor. The emerging 

light is than analyzed for the amount of rotation. This technique can detect minute 

amounts of glucose if we can positively address the issues such as temperature 

sensitivity and motion artifacts. 

2.3.4 Photoacoustic spectroscopy 

Developed by Alexander Graham Bell in the 19th century this technology has evolved to 

use advancements in the field of optoelectronics such as pulsed laser. The wavelength of 

the laser is chosen such that it is strongly absorbed by the target molecule. This 

absorption of laser light by the target molecule creates microscopic localized heating. 

The specific heat capacity of the human tissue being probed decides the amount of the 

localized heat generated [22]. The localized heating generates a volumetric expansion of 

the surrounding medium, generating a sound wave. This sound wave can be detected 

using an acoustic sensor. The peak to peak amplitude of the detected acoustic signal is 

dependent on the glucose concentration in tissue. Both continuous wave and pulsed 

light sources are used for non invasive glucose estimation. The use of pulsed mode 

involves the application of pulses with duration in the range of nanosecond, which 

makes to sample undergo an adiabatic thermal expansion at a fast rate. The resultant 

acoustic spectrum has a wide range of acoustic frequencies [27-28]. The continuous 

wave method involves application of a modulated continuous optical laser beam, which 

generates a one acoustic frequency in the detected spectrum. Lock-in detection is 

employed to achieve a higher signal-to-noise ratio [29]. 
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2.3.5 Bioimpedance Spectroscopy 

This technique measures the impedance levels of tissues using a minute alternating 

current signal less that 1MHz frequency. Researchers have modeled biological tissue as 

electric circuit of capacitors and resistors however, more realistic tissue electrical 

models have been proposed [30-32]. The Red blood cell membranes has an important 

role in the determining total tissue impedance as they make up the major portion of the 

human blood [33]. The electric characteristics of the cell membranes influence the 

tissue impedances. The serum osmolality increases if amount of glucose in blood 

increases. As a result of this, water from inside of the cell moves out via the cell 

membrane. Due to dilution, the levels of sodium ions plummet. Also there is a 

redistribution of potassium ions from the intracellular spaces to extracellular spaces due 

to cellular dehydration [33-35].The permittivity and conductivity of surrounding 

medium and cell membranes such as RBCs changes as the [Na+] and [k+] ions are 

balanced. These activities result in changes to the tissue impedance which can be 

correlated to the blood glucose concentration [36]. 

2.3.5 Optical Coherence Tomography 

Optical Coherence Tomography (OCT) has emerged as a high resolution imaging 

technique in the past decades. It is a form of non destructive testing which uses a low 

coherence NIR light source. The coherence length of the light source is usually between 

10 to 15 µm. The interference signal formed by the light coming from reference mirror 

and tissue sample is used for analysis. This is achieved by using interferometer optics 

and a photodetector. In the interferometer setup the beam from the source is split up into 

two beams, one is allowed to hit the target tissue and then backscattered. The second 

beam reflects from a reference mirror and then reaches the beam splitter [37-39]. At the 

beam splitter the light reaching from the reference mirror and sample interfere to form 

interference pattern. The interference pattern is recorded by the photodetector. The 

intensity of the interference pattern is dependent on the glucose concentration at varying 

tissue depths, and can be recorded up to a depth of 1.6 mm [40]. A scanning mirror in 

the reference arm is used to measure the optical coherence tomography signal at a 

specific depth of a tissue layer. Another moving mirror included in the tissue sample 

arm provides lateral movement over the tissue surface, such that a two-dimensional 
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image can be obtained [39,41,42]. The OCT has the potential to resolve microstructure 

with a high signal to noise ratio of the order of 130 dB [43].  

2.3.5 Near Infrared spectroscopy  

Near-Infrared (NIR) spectroscopy was accepted as a technique in early 1960s with the 

work of Karl Norris of United States in the field of agriculture [44]. After that, NIR 

spectroscopy expanded in many fields such as food processing, pharmaceuticals, 

process control, remote imaging and many others applications [45]. Tremendous 

research is conducted by many universities and industries to use this approach in non-

invasive glucose sensing for diabetes [46-51].In our research work we have used near 

infrared spectroscopy which spans the wavelength range of 700-2500nm of the 

electromagnetic radiation. Studies have shown that Combination region (2000 – 2500 

nm) of NIR region has shown better analytical utility as compared to overtone region 

for glucose estimation [52]. Best site in the human body for glucose detection with NIR 

spectroscopy is oral and lip mucosa, forearm skin, cheeks, earlobe, tongue and nasal 

septum [53].  

M.A. Arnold et al. determined glucose concentration in an aqueous matrix having 

physiological ranges [54]. The absorbance at 2273 nm was linked to concentration using 

a univariate calibration model and found an error of prediction of 0.3 mM.  Other 

research groups have investigated the NIR region for robust glucose estimation using 

human serum and whole blood in the presence of other interferences, such as glycated 

and total protein concentration [50,55]. Others studies have studied the result of 

temperature variation on glucose determination. This effect introduced by temperature 

can be reduced by using pre-processing of the spectra using digital Fourier filter 

[56,57]. Measurements in aqueous solution of glucose, glutamine, glutamate, lactate and 

ammonia were done and calibration models were built for simultaneous measurements 

of each solute in the near infrared region [58]. For glucose prediction the standard error 

of prediction and mean percent errors of prediction was 0.54 and 6.98 percent 

respectively. 

Even more complex matrix such as human serum was investigated for feasibility in 

estimation of glucose. A total of 242 undiluted human serum samples were used, which 

were further divided randomly into 3 sets named as training, monitoring and test sets. 

The training, monitoring and test sets had 162, 40 and 40 samples respectively [59]. The 
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calibration process resulted in a model which gave a standard error of prediction for 

glucose of 23.3 mg/dl (1.29 mM). In addition, to test the stability of the calibration 

process, another 50 human serum samples were collected on a modifier spectrometer 

nineteen months later, which were used as a blind test set which resulted in a Standard 

Error of Prediction (SEP)  of 2.91 mM. 

In one study, Independent Component Regression (ICR) was investigated for estimation 

of glucose. They recorded NIR spectra for 30 mixtures containing triacetin, urea and 

glucose in a phosphate buffer solution. The training model was constructed using 

spectra of the 20 mixtures and the spectra of the remaining 10 mixtures were used for 

testing the prediction. The optimum models for PCA-ICR, ICR, PCR and PLS gave 

lowest SEP 24.1, 29.1, 39.56 and 35.59 respectively [60].  

Scattering in human tissue can cause deviation (non-linear) from the linear relation 

between the absorbance and analyte concentration given by Beer-Lamberts Law. Xue et 

al. compared a Partial Least Squares (PLS) which is a linear regression method with 

Artificial Neural Network(ANN) which is a non-linear regression for glucose estimation 

[61]. They collected in vivo NIR spectra from normal and diabetic rats. Compared to the 

ANN model, the performance of the PLS model was much better, with lower root mean 

square error of validation of 0.419 and higher correlation coefficients (R) of 96.22%. In 

another study, the collection of NIR diffuse reflectance spectra (850-1300nm) on the 

fingers of type-1 diabetics was carried out [62]. Using partial least squares and Radial 

Basis Function (RBF) networks for calibration on these NIR diffuse reflectance spectra 

a Root Mean Square Error of Prediction (RMSEP) of 1.4 mM and 1.9 mM was obtained 

respectively.  

The optical techniques discussed in this chapter are very popular to monitor glucose 

non-invasively. A tabulated literate review of the optical techniques is presented in the 

table 2.1. 

Table 2.1: Optical techniques used for non-invasive glucose monitoring 

Sr. 

No. 

Working 

Principle 

Salient Features Critical remarks Results R

ef 

1 

Raman 

spectroscopy 

In vivo application of 

Raman spectroscopy to 

non- invasively quantify 

glucose. 

The Raman spectra 

collected from the 

forearms were 

dominated by collagen 

and triglyceride.  

461 Raman spectra were 

collected of 17 volunteers. 

PLS calibration was done 

for each subject. The R2 of                       

0.83 ± 0.10 was obtained 

63 
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with a mean absolute error 

of 0.8% ± 1.8% for each 

subject. 

2 

Raman 

spectroscopy 

Employed Raman 

spectroscopy for in vivo 

blood glucose 

quantification on mice. 

In the experiment no 

Raman signal was 

found at concentration 

below 50mmol/dl in a 

glucose solution. 

Three mice were subjected 

to elevated blood glucose 

levels using a glucose test 

assay, 25 Raman spectra 

were recorded and a 

relationship was found 

between Raman intensity 

and concentration which 

showed a correlation 

coefficient of 0.91. 

64 

3 

Raman 

spectroscopy 

In vivo, miniature 

wearable fiber optic 

probe is designed to 

work with a portable 

Raman spectrometer.  

The limit of detection of 

glucose by the wearable 

fiber optic probe based 

Raman system is not 

reported in the research 

work. 

Wearable fiber optic probe 

used in conjunction with 

non linear partial least 

squares to predict glucose. 

This method produced 

coefficients of 

determination of 0.99, 0.893 

and 0.844 for glucose 

solution, laboratory rats and 

human volunteers 

respectively. 

65 

4 

Raman 

spectroscopy 

Non-invasive glucose 

sensing implemented 

using a confocal  

Raman 

spectrophotometer 

This study employs 

only subjects having 

diabetes and does not 

include normal healthy 

individuals. 

It is successfully shown that 

the confocal Raman 

spectrometer can reach dept 

of 250 µm below skin of the 

thumb. The prediction 

resulted in 93% of 

measured data points in the 

A and B region of 

consensus error grid 

analysis. 

66 

5 

Raman 

spectroscopy 

Non invasive 

measurement was done 

using Raman 

spectroscopy of blood 

in the micro vessels in 

the nail fold of finger 

In the spectra of 12 

volunteers no Raman 

peaks were isolated 

which depicted a 

regular change with 

corresponding change 

in blood glucose in the 

physiological 

concentrations range, 

this  is attributed due to 

the small Raman cross 

section of glucose 

Raman spectroscopy is used 

in conjunction with an 

algorithm which combines 

PCA and BP-ANN. RMSEP 

of 0.27 mmol/L and R2 of 

0.98 was obtained for the 

total prediction performance 

of all volunteers.  

67 

6 

Raman 

spectroscopy 

Assessment of precision 

of calibration models 

based on the ratio of 

validation and 

calibration points. 

Study conducted only 

on non diabetic patient. 

17 time points of OGTT of 

20 patients were used to 

build PLSR calibration 

models using 50, 30 and 

18% spectra of the 

individuals. In each of these 

respective cases  71.05, 

70.23 and 60.65% points 

were found to lie in A 

region of Clarke error grid 

68 



27 

 
 

7 

Raman 

spectroscopy 

Used confocal Raman 

microscope to acquiring 

the Raman spectra of 

the anterior chamber 

model. 

The energy density that 

is safe for the eye at the 

wavelength used is not 

empirically determined 

The optimum standard error 

of prediction (SEP) 

obtained for glucose was 

34.3 mg/dl (2.72% of full 

range) using a 12-factor 

PLS model. 

69 

8 

NIR 

spectroscopy 

Used an aqueous matrix 

with glucose in it in 

order to determine the 

physiological glucose 

levels in conjunction 

with digitally filtered 

Fourier transform 

Not determined whether 

the univariate methods 

used provides sufficient 

selectivity for clinically 

relevant application or 

there is a need for 

multivariate analysis 

The predictions resulted in a 

maximum error of 0.3 mM 

with the mean percent error 

of 2.5%. 

54 

9 

NIR 

spectroscopy 

Temperature insensitive 

calibration models are 

built using PLSR and 

digital Fourier filtering. 

When strongly 

absorbing interference 

are present with varying 

concentrations, the 

adequacy of digital 

filtering is not 

determined. 

The most optimum model 

provided a mean standard 

error for prediction across 

temperatures of 0.14 mM 

(2.52 mg/dL). 

70 

10 

NIR 

spectroscopy 

Calibration models are 

generated using PLSR 

to predict glucose in 

two separate spectral 

datasets with varying 

triacetine and bovine 

serum albumin 

Although digital Fourier 

filtering reduced high 

frequency noise and 

baseline variation, but is 

not capable of selecting 

information of one 

analyte over another 

when spectral 

bandwidths are similar. 

The triacetin and bovine-

serum albumin matrices  

gave a SEP of 0.5 mM and 

0.2 mM respectively 

71 

11 

NIR 

spectroscopy 

Comparisons were done 

between the first 

overtone and 

combination band to 

build calibration models 

when a aqueous 

solution of alanine, 

triacetin ,ascorbate, 

lactate, urea and 

glucose is used. 

Urea in overtone 

spectral region showed 

a high SEP of 7.33 mM 

Results show the superior 

nature of combination band 

to overtone to form 

calibration models. SEP 

values showed 

approximately 3 fold lower 

values for combination as 

compared to overtone band 

72 

12 

NIR 

spectroscopy 

Attempted to find the 

effect of temperature 

change on PLS analysis 

in the spectral range of 

1250 to 1800 nm. 

The procedure used 

concentration in the 

range of 1-3 g/dL which 

is not clinically relevant 

glucose concentrations. 

The result of prediction 

produced an error in 

glucose concentration of 

4.4% 

73 

13 

NIR 

spectroscopy 

In-vivo measurements 

of first overtone spectra 

of tongue of human 

subjects with type 1 

diabetes were done  

using PLSR 

The presence of tissue 

fat introduced 

significant variability 

A SEP of 3.4 mM was 

found for the optimum 

calibration model. 

74 

14 

NIR 

spectroscopy 

Human serum samples 

are used to build PLSR 

calibration models to 

measure the albumin 

protein, globulin 

protein, triglycerides, 

cholesterol, urea, 

Simultaneous lactate 

prediction was not 

accurate as it was below 

the detection limit in the 

experimental setup 

SEP for glucose was 

reported to be 23.3 mg/dl 

(1.29 mM) 

48 
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glucose, and lactate. 

15 

NIR 

spectroscopy 

Performance of RBFNN 

with PLSR using 

diffused reflectance 

spectra recorded from 

the fingers of type 1 

diabetic patient. 

LOOCV was used to 

determine the number 

of hidden neurons. 

The tuning of the non 

linear technique is a 

complex task even 

though it provides a 

considerable 

improvement in 

prediction 

RBFNN was found to 

perform better as compared 

to PLSR with RMSEP 

values of 1.4 mM and 1.9 

mM respectively. 

62 

16 

NIR 

spectroscopy 

Tunable diode laser 

system developed to                 

non- invasively 

determine glucose 

concentration. A diode 

systems gives high SNR 

values in the region 

where glucose has 

significant absorption 

signatures  

The tuning range of the 

diode laser system does 

not encompass all the 

three absorption peaks 

of glucose in the 

spectral region of 2000-

2500nm. 

The paper reports the 

development of  a diode 

laser system  for in vivo 

measurement of glucose 

which has a tunability  

range from 2210–2330 nm 

with high brightness of 

0.5mW 

75 

17 

NIR 

spectroscopy 

Non invasive glucose 

measurement using a 

2300nm Vertical-Cavity 

Semiconductor Laser 

(VCSL) which is 

thermally tuned. 

The VCSEL provides 

only a small spectral 

window of 5-6 nm 

around the center 

wavelength of 2300nm, 

and does not encompass 

all the absorption peaks 

of glucose. 

A PLS calibration process 

was used to determine the 

glucose concentration in 

aqueous solution in the 

range of (50–300 mg/dL). 

76 

18 

NIR 

spectroscopy 

Novel method of 

building calibration 

model by using NIR 

diffuse reflectance 

spectra which were 

obtained by numerical 

simulation of light 

propagation in skin 

tissue. Later this 

calibration model was 

used to predict glucose 

by a vivo experiment. 

The robustness of the 

calibration was not 

tested on multiple 

subject as only one 

subject was used in the 

in vivo experiment  

The calibration model 

validated using a in vivo 

experiment produced a SEP 

of 12.3 mg/dL and a 

coefficient of determination 

(R2 ) of 0.87.  

77 

19 

Photoacoustic 

spectroscopy 

MIR fiber coupled 

photoacoustic sensor 

employing a QCL laser  

The fiber coupled 

sensor monitored 

glucose in aqueous 

solution in the 

concentration range of 0 

to 5 g/dL and produced 

a detection limit of 

140mg/dL which is not 

conducive for clinical 

relevant range of 

glucose. 

The performance of the 

fiber coupled sensor is 

demonstrated by sensing 

glucose in aqueous 

solutions.  

78 

20 

Photoacoustic 

spectroscopy  

Novel “guide star” 

assisted photo acoustic 

(GSPA) system which 

employs a virtual 

photodiode to amplify 

the photoacoustic signal 

As a result of stronger 

absorption and 

scattering in biological 

tissue the laser power, 

optical path length and 

sensitivity needs to be 

Human blood serum in 

2mm path length gave a R2 

of 0.9791 and RMSE of 

17.3 mg/dL. 

79 
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difference. Tested on 

aqueous glucose and 

Human blood serum 

matrices. 

calibrated in order to 

apply for clinical setup. 

21 

Photoacoustic 

spectroscopy 

Novel method to                          

non- invasively 

determine glucose using 

photoacoustic sensor by 

using fusion of  both 

peak arrival time and 

peak to peak variation 

For in vivo application, 

the interference due to 

temperature and 

movement needs to be 

accounted. 

The accuracy found were 

29.5% for the glucose 

concentration range of 0–7 

g/dL and 33.63% for 

concentration range of 0–

350 mg/dL 

80 

22 

Photoacoustic 

spectroscopy 

Deployed an external 

cavity QCL with a 

tuning range of 9132 -

9900nm (1010-1095 

cm-1) and photoacoustic 

sensor to monitor 

epidermal skin sample 

in contact with glucose 

solution 

The glucose detection 

limit was found to be 

100mg/dL which is not 

appropriate for clinical 

deployment. 

Detection of glucose 

resulted with R2 value of 

0.998 

81 

23 

MIR 

spectroscopy 

Employed Fourier 

transform IR 

spectroscopy with a 

ATR prism to 

implement glucose 

detection on oral 

mucosa 

It was found that the 

glucose specific peaks 

varied with the pressure 

variation of ATR prism 

setup to mucous 

membrane. Also the 

oral measurement may 

be affected by saliva 

and other residual food 

materials 

Good correlation (r = 0.91) 

was found for the 

calibration curves 

constructed. 

82 

24 

MIR 

spectroscopy 

Used Integration sphere 

in conjunction with a 

quantum cascade laser 

to implement a non-

invasive glucose sensor 

on human subjects 

Hypoglycemia range 

not included in the 

study of the three 

subjects 

It is observed that for all the 

subject 78% predictions fell 

in the zone A of the Clarke 

error grid. The constructed 

models for subjects 1 and 

subject 2 gave an accuracy 

of 91% whereas the 

86% accuracy was observed 

for subject 3. 

83 

25 

MIR 

spectroscopy 

 ATR spectroscopy 

employed along with  

hollow optical fibers to 

enhance sensitivity for a 

in-vivo measurement on  

human inner lip mucosa 

Faced with fluctuation 

in the pressure applied 

by the lips and this 

contact pressure causes 

variation in  the 

measured depth 

Applied least square fitting 

and obtained  calibration 

plots measurements errors 

of <20% 

84 

26 

MIR 

spectroscopy 

In vivo non- invasive 

glucose monitoring 

using few wavelengths 

with an ATR prism. 

Three wavelengths were 

determined using series 

cross validation method 

and regression realized  

accuracies comparable 

to those with greater 

number of wavelengths 

A delay of 20min was 

found to exist between 

the actual and observed 

readings. 

When MLR is used with 

three wavelengths it results 

with the correlation 

coefficient of 0.36, and all 

the samples lie in the A and 

B region of Clarke error 

grid, whereas for PLS with 

higher number of 

wavelengths  give a   

correlation coefficient  of 

0.25, and 98.8% of the 

samples are in the area A 

85 
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and B. 

27 

Polarimetry In vivo polarimetric 

monitoring of glucose 

in the physiological 

range inside the anterior 

chamber of the eye of 

the New Zealand rabbit. 

The movement of the 

rabbits during 

procedure cause corneal 

birefregence. It is also 

found There is a lag 

time is present between 

glucose reading in the 

anterior chamber  and 

blood plasma of 2.9-5.4 

seconds 

A dataset of 41 points on 

the Clarke error grid gave a 

result of 93% in the zone A, 

7% in zone B and none in 

the C and D. 

86 

28 

Polarimetry A setup is constructed 

to measure the corneal 

birefringence by 

spectrally resolved 

Mueller matrix 

ellipsometry on porcine 

corneas. The research 

discussed the 

implication for non 

invasive glucose 

monitoring. 

A mathematical model 

was used to determine 

the amount of delay or 

lag in the estimated 

glucose measurement 

and was found to be 4 – 

7 minutes  

In vitro 16 element Mueller 

matrices were obtained in 

the optical range of 300-

1000 nm. 

87 

29 

OCT In vivo and in vitro 

OCT used to find the 

glucose induced 

changes in the optical 

properties of different 

tissues. 

Motion artifacts, 

temperatures, humidity 

and CO2 impacted the 

results. 

 

The study shows that the 

OCT backscattered signals 

is stronger in the skin tissue 

for the in vivo setup as 

compared to the in vitro 

setup. A prominent effect of 

glucose is found in  the in 

vivo condition with the  

least effect in 2% intralipid 

88 

30 

OCT   OCT was used to 

determine the 

specificity of blood 

glucose for non invasive 

monitoring.OCT signals 

were isolated from skin 

of New Zealand rabbits 

and Yucatan micro pigs 

for the study. 

Time lag is observed in 

the change in OCT 

signal slope and the 

actual blood glucose 

change. 

It was found that a change 

in glucose concentration in 

the interstitial fluid within 

the physiological range (3-

30mM) gave a reduction in 

scattering coefficient by 

0.22% mM-1. The OCT 

signal slope was found to be 

resilient to temperature 

change of ±1 ◦C 

41 

 

2.4 Non Invasive Glucometer, Need of the hour!!! 

As self monitoring blood glucose monitoring became a more common place from the 

early1980s through the early 21st century, it still has encountered hindrance to its 

acceptance. It was largely due to the reason that, no matter how fast the test or how 

small the blood drop was, blood withdrawal is a must by a sharp lancing device from a 

body part. For all but a few, this causes pain, fear, apprehension, revulsion and many 

people just take the easy way out of complete avoidance.  
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Before blood glucose testing at home became common, the only lancing device 

available was a sharp piece of stamped steel that made a painful and fairly deep cut in 

the fingertip. In parallel with the development of blood glucose meters, lancing devices 

also evolved. Both small, disposable units and reusable “pens” with replaceable tips 

became commercially available, and they had the added advantage of sharp point being 

hidden from the view. Even though the lancing device used by a diabetic patient has 

evolved the reluctance due to pain involved has still persisted. 

In this industry it is well understood that cost, comfort and convenience drives the 

overall acceptance of the method. Non-invasive monitoring of glucose has been of 

particular interest because it particularly highlights the comfort in the above statement. 

Ease of use and reduction of pain can encourage more frequent testing and hence tighter 

control of the glucose concentration. Recently several reviews have discussed the 

importance of non-invasive glucose testing [89-92]. The limits of detection and 

quantification, the standard deviation of the measurement, the accuracy, and the total 

error of non-invasive measurement need to correlate with self-monitoring devices and 

with measurements in the laboratory if it has to be considered a viable option for blood 

glucose monitoring. 

The use of NIR spectroscopy being non-invasive circumvents all the problems and 

issues posed by all the other methods. Present day requirements in medical field are that 

patients demand quick treatment for which fast diagnosis is important. Current 

pathological tests which are available to analyze blood glucose, though being very 

accurate have long waiting time.  In addition to long waiting time, there are possibilities 

of infection of the wound, which has resulted due to pricking of the finger during the 

withdrawal of blood. The same can be said of self-monitoring home devices. The self 

monitoring device require a test strip for each new reading which involves a recurring 

cost every time you decide to measure your blood glucose.  
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Near infrared radiation was discovered by German born English scientist Sir Frederick 

William Herschel. He was a musician and an astronomer who is also credited to 

discover the planet Uranus. He discovered the invisible radiation while performing an 

experiment to investigate the rise in temperature due to each of the colors present in 

sunlight. To his amazement, he found that the temperature rose even when he went 

beyond the visible red color region. He termed them as calorific rays. Later on this 

region of the electromagnetic radiation was named as Infrared [1- 4]. 

Near infrared light occupies the spectral range of 700 – 2500 nm. The energy possessed 

by these photons is in the range of 2.471 x 10-19 to 7.96 x 10-20 Joules. This energy of 

photon is more than sufficient to transfer a molecule to fundamental vibrational states, 

but is lower than the energy required for electron transitions. 

The near infrared region is used in many present day analytical techniques and it 

presents user with many advantages. Near infrared analysis is non-destructive in nature 

and the sampling is fast. Any sample molecule containing C-H, N-H, S-H and O-H 

bonds can be analyzed using this radiation with a added advantage of relatively deep 

penetration in the probed sample. 

3.1 Theory 

In a chemical bond, there are participating atoms. These atoms are displacing 

themselves relative to each other with a specific frequency. These displacement or 

vibrations are of the order of a few nanometers. If external energy is transferred to them, 

the amplitude of vibration can increase. A photon can transfer energy to the molecule; 

the energy of the photon is given by,  

                                                      Ep=  hν  =h
c

λ
                 (�. �)                                         

Where h is the Planck constant, νis the frequency of the photon, c is the speed of light 

and λ is wavelength of photon.  

3.1.1 The Diatomic Molecule 

The interaction of near infrared radiation with matter can be understood by a simplified 

classical model of a diatomic molecule. This entire system of two atoms in a bond can 

be regarded as a simple harmonic oscillator where a spring with force constant k 
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connects the two spherical masses m1 and m2. One finds that the bond strength in 

molecules and their mass determines the energy of the system given by the Hook’s law.  

E = 
h

2�
�

�

�
               (�. �) 

Where h is Planck constant, k is force constant and the reduced mass μ is given by  

� =  
����

�� + ��
               (�. �)  

The potential energy V of the harmonic oscillator system is given by  

� =  
�

�
���               (�. �) 

where x is the dispalacement of the atoms. 

                                                                           

Figure 3.1:  The potential energy of harmonic oscillator [1] 

The plot in figure 3.1 shows the potential energy of the harmonic oscillator versus the 

interatomic distance. To understand the concept of vibrational energy the above 

approach suffices, however when we consider micorsocopic system like the molecules it 

fails. The molecular system cannot have a continous energy profile given by the 

classical model elucidated above.The molecular system is only allowed to have a few 
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discrete energy levels given by quantum mechanical treatment and is given by the 

equation 

�� = �� +
�

�
� ��           (�. �) 

 

Eυ is the energy of the υth quantum level, υ is the vibrational quantum number and ν 

represents the is the fundamental vibrational frequency. The frequency of vibration in 

the classical model is given by                                                                                                            

� =
�

��
�

�

�
                (�. �) 

 

The energy differnce between adjacent states has to be always the same. Also, it must 

be noted that in the harmonic quantum model the transion can take place only between 

adjacent levels and therefore Δυ = ± 1. The energy of the photon, which is imparted to 

the molecule to reach the excited state, must exactly match the difference between 

adjacent energy levels. The effect of absorption on the vibration amplitude is depicted in 

figure 3.2. The energy of the photon must be 

 

    �� = � �� − � �� =  ����               (�. �) 

                                                

Figure 3.2: Photon absorption by a molecule [1] 

Harmonic oscillator proves to be a promising aid in understanding vibrational 

spectroscopy. Even then it has significant restrictions, transition with Δυ = 2 and above 

are not allowed in the harmonic/quantum model and hence this model fails to explain 

the overtones and combination bands which are observed in the near infrared region. 
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The anharmonic model which is presented in the following section is able to explain the 

observed overtone and combination band.  

 

3.1.2 The Anharmonic Model 

 

Figure 3.3:  the potential energy of an anharmonic oscillator 

The anharmonic model was a result of developing a more realistic model, it develops on 

the earlier harmonic model, which contains two masses and spring, but includes some 

non-ideal behaviors. These non-ideal behaviors include varying bond force due to the 

movements of the atoms and the repulsions experienced by the electronic clouds when 

nuclei approach each other. Higher order terms are used in the potential energy 

equation. 

 

� = �� �
� + ���� + ����            (3.8) 

 

The potential energy is approximated by the Morse function ‘V’ in equation 3.9. This 

function approximates the anharmonic behaviors of diatomic molecule.  

 

 � = ��(� − ���(����))�             (�. �) 

 

Here, r is the instantaneous distance between the atoms, re is the equilibrium distance 

between the two atoms, De is the spectral dissociation energy and a is the constant for 

the said molecule. The Morse function after quantum mechanics treatment results in the 

following equation. 
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              (3.10) 

The anharmonicity constant of vibration xm lies in the range of 5 x 10-3 and 5 x 10-2. The 

anharmonic model allows for transition with Δυ  = 2 or greater and also allows for the  

existence of  combination band of fundamentals vibrations. A detailed consideration of 

the theory underlying the near infrared vibrational spectroscopy is elucidated in several 

references [1-2]. 

3.2 Near Infrared for Absorption Analysis  

The first near infrared spectrum was obtained in 1881 by Abney and Festing in the 

range of 1000–1200nm [5]. But it was not until the 1980s Near Infrared spectroscopy 

encountered steady growth mainly due to development in the instrument design, 

application of chemometric techniques and advancement in processing devices. Near 

infrared spectrum covers several optical windows where photons have less interactions 

with interfering tissue compounds, such as water, hemoglobin, and lipids, so that the 

penetration depth can achieve several millimeters [6-7]. In near infrared region, the 

absorption property of tissue is greatly affected by its constituents such as collagen, fat 

and water. This spectral region is known as a “tissue optical window” or “therapeutic 

window”[8].  

As near infrared analysis is non-destructive, it is viable for online monitoring.  It can be 

used for analysis of various biomolecules hence, near infrared spectroscopy has found 

its application in many fields such as agriculture, food, petroleum and pharmaceutical 

industries [9-16]. Within the biomedical field, near infrared spectroscopy is emerging as 

a potential diagnostic tool with many diverse applications [17].The increasingly 

prevalent disease diabetes mellitus has created a demand for continuous non-invasive 

monitoring of blood glucose concentration. Therefore, methods to do so based on a 

variety of techniques, including near and mid infrared spectroscopy, has been sought 

intensively in recent years[18-27].Absorption spectroscopy quantifies the concentrations 

of substances through the detection of transmitted photons which have the same 

wavelength as the incident beam. 
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3.2.1 Beer-Lambert Law       

The Beer-Lambert law describes the attenuation of intensity of incident light (I0) 

crossing a material with absorbing properties, as seen in figure 3.4 when an incident 

beam (I0) enters the sample, the intensity of transmitted light (I) decreases exponentially 

as shown in equation [28]. 

             � = ��� ��(�).�.�          (3.11)          

Where I is intensity of transmitted light, I0is the intensity of incident light, ε is the 

absorptivity (extinction coefficient) of the substance at a specific wavelength in mol-1 

cm-1 (1/mol centimeters), c is the concentration of absorbent in mol and L is the optical 

path length in the medium in cm (centimeters). 

Figure 3.4: Absorption of light in a material                           

The transmittance (T) of light crossing a medium with absorbing properties is the 

ratio of intensity of transmitted light (I) to the intensity of incident light (I0), and 

absorbance is equal to the negative natural logarithm of the transmittance, as shown in 

Equation.                           

                 � =  − �� � =  − ��
�

��
=  −�(�). �. �                    (�. ��) 

Where A is the absorbance, T is the transmittance (no units). Even if absorption of light 

in a medium occurs in different sections of the medium of lengths L1, L2, ….Ln, the 

Beer-Lambert law is still valid and is given by, 
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3.2.2 Glucose Absorption 

 

Figure 3.5: Normalized glucose absorbance spectra recorded on Jasco V-770 

Glucose absorption spectra has three regions, the short wavelength near infrared region 

from 700 – 1330 nm, the first overtone region from 1540 – 1820 nm and the 

combination region from 2000 – 2500 nm.. Glucose is reported to have absorption 

peaks at 939nm, 970nm, 1197nm in the higher overtone region, 1408nm, 1536nm and 

1688, 1925nm in the first overtone region and 2100nm, 2261nm, 2326nm in the 

combination region [29]. Absorbance spectrum of glucose in combination region as 

recorded on Jasco V-770 spectrophotometer shows three peaks centered at 2120, 2,270, 

and 2,320 nm as shown in figure 3.5. 

3.3 Major Interferents in Human Tissue 

3.3.1 Water Absorption 

Water makes up 60 to 80% of the total body mass and as such is major component of 

the human body. The water content varies with tissue type and it is also age and gender- 

dependent. For instance, water content in adult skeletal muscle is around 74%, whereas 

the newborn brain comprises 90% water by mass. Water is considered one of the most 

important chromophores in tissue spectroscopy measurements because of its high 

concentration in most biological tissue. Corresponding to the various types of the 
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excited molecular vibrations there are three different regions associated with the near 

infrared spectrum, namely the combination band region, the first overtone region and 

the higher-order overtone region. It can be seen in the figure 3.6 that water has very low 

absorption below 1300 nm, thus leaving the higher-order overtone region highly 

accessible. What this means is that based on the water absorption characteristics alone, 

centimeter-thick samples can be measured between 800 nm and 1300 nm. 

Unfortunately, glucose absorption in this region is extremely weak for clinically 

accurate measurements. In the first overtone region is there is window between 1600 nm 

and 1850 nm. In the combination band region, there is a window around the absorption 

minimum at 2200 nm. The below spectra shows the three windows which water offers. 

The absorption spectrum of water shown in figure 3.6 is recorded on a Jasco- V770 

spectrophotometer using a cuvette with a path length of 1mm. 

 

Figure 3.6: Water absorption spectra 

The intensity of the near infrared absorption bands for water is sensitive to solute 

concentration and temperature [30-32]. It decreases as solute concentration increases 

because of the change in the molar ratio of water. This is referred to as water 

displacement. Temperature sensitivity of the near infrared absorption of water is also 

observed in the tissue [33]. 
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3.3.2 Hemoglobin Determination 

Hemoglobin is the most dominant absorber of near infrared light in the window where 

water has good transparency. Hemoglobin is carried in red blood cells also called 

erythrocytes, and constitutes approximately 40 – 45 % of whole blood. It is responsible 

for supplying oxygen from the lungs to the body tissues and returning waste gases, such 

as carbon dioxide, to the lungs to be exhaled. Four ‘heme’ groups bind to the protein 

globin to from Hemoglobin. A ‘heme’ group consists of a ring structure with iron atom 

at the centre. In the oxygenated state hemoglobin binds to oxygen and is known as 

oxyhemoglobin (HbO2). The de-oxygenated form, with no oxygen molecules attached, 

is known as deoxyhemoglobin(Hb). 

3.3.3 Lipids 

Lipids in the body exist in the form of triglycerides (neutral fats). They are mostly found 

in subcutaneous tissues and around internal organs. In the brain, the lipids exist as  

steroidal lipids and the percentage varies with age from 2.6 % in the new-born to 11.6 % 

in the adult. In adipose tissue, found in the sub-dermis, the lipid concentration is again 

age and gender dependent, in the range 23 – 47 % for new-born infants and 68 – 87 % 

for adults. The importance of lipid as an absorber in near infrared spectroscopy depends 

upon the tissue in question. Since the water content is much greater than the lipid 

content in the brain, absorption due to lipid may be insignificant. The lipid content in 

the forearm varies depending on the fat to muscle tissue ratio as a result of which the 

absorption may be significant in any spectroscopic application [34]. 

3.3.4 Melanin 

Melanin, the pigment found in the epidermal layer of human skin, has a large scattering 

coefficient in the ultraviolet region, which protects the skin damaging due to UV 

radiation from the sun, and a significant absorption coefficient in the MIR. In the human 

skin, exposure to UV radiation initiates melanogenesis, the process by which melanin 

created gives the skin a dark look.  Melanin is capable of dissipating over 99 % of the 

absorbed UV radiation [35]. Because of this property, melanin is thought to protect skin 

cells from UV radiation damage, reducing the risk of folate depletion and dermal 

degradation. 
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3.4 Optical Properties of Human Tissue  

Light can penetrate deep enough into the tissue to allow a spectral measurement or a 

therapeutic procedure. Optical imaging and non-invasive diagnosis of the human body 

strongly requires the study of optical and physical properties of skin tissue in general. 

3.4.1 Properties of Skin Tissue 

The skin structure and properties in different parts of the body vary considerably. The 

skin is divided into three layers, namely, the epidermis, dermis, and subcutaneous fat, 

each is divided into their own sub-layers. The outermost layer of the epidermis is 

composed of a relatively thin protective top layer of rough, dead and dry skin cells 

known as the stratum corneum or horny layer. The remainder of the epidermis, 

including the stratum lucidum, stratum granulosum and stratum spinosum, is made up 

of cells called keratinocytes as well as melanocytes, which are pigment cells responsible 

for skin pigmentation. Epidermal thickness varies from 0.1 mm in the eyelids to 

approximately 1 mm on the palms and soles. The dermis consists of a variety of cells, 

fibers, amorphous ground substance, nerves, oil glands, sweat glands, blood vessels and 

hair roots. Its upper layer is called the papillary dermis and contains the vascular 

network and sensory nerve endings, whereas the deeper layer, referred to as reticular 

dermis, consists mainly of a loose connective structure and epithelial-derived structures 

such as glands and follicles. The thickness of the dermis varies from 0.3 mm in the 

eyelids to about 3 mm in the palm and soles. Subcutaneous fat is made up of fat cells, 

which act as a cushioning layer between the deeper muscles and the skin. It also has 

abundant blood content. A typical structure of skin is shown in Fig 3.7. Table 3.1 gives 

the average elemental composition of the skin [36]. 
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Figure 3.7: Anatomy of the skin 

Table 3.1: Average elemental composition of the skin, percentage by mass 

C O H N Na Mg P Cl K 

25 ~ 

15.8 

59.4- 

69.5 
10-10.1 4.6 - 3.7 0.2 0.1 0.2 0.3 0.1 

 

3.4.2 Optical Absorption by Skin Tissue 

As skin is composed of constituents such as water, lipids and proteins the chemical 

makeup of the skin influences its optical absorption properties. Water absorbs photons 

at wavelengths longer than the MIR range, while proteins are strongly absorbed in the 

UV and Violet region. Luckily, the optical absorption capacity of water, proteins and 

lipids is small in the red and near infrared region. This region, known as the “tissue 

optical window”, has a range 600 nm to 2,300 nm and the light can penetrate to a depth 

of a few hundreds of micrometers to a few mm into the skin tissue [37]. As such this 

region is exploited for a variety of purposes, including diagnosis, imaging or therapy. At 

the shorter wavelengths of the tissue optical window, from 600 nm to 1100 nm, the 

most important photon absorbing chromophores are blood and melanin. Water becomes 

dominant at incident wavelengths longer than 1150 nm. The epidermis does not contain 

any blood and its water content is also much lower that of the dermis. However, the 

stratum granulosum and stratum spinosum comprises of some melanocytes, including 
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melanin, which is involved in skin pigmentation. Because the absorption capacity of 

melanin is stronger than that of blood and water, it is the dominant source of absorption 

in the epidermis at shorter near infrared wavelengths. The volume fraction of 

melanosomes in the epidermis can vary from 1.3 - 6.3 % for light-skinned adults, 11 - 

16% for well-tanned adults and 18 - 43 % for darkly pigmented Africans. The blood 

content of the dermis is about 0.2 - 5 %, representing the main source of absorption at 

wavelengths shorter than 1100 nm. If the optical wavelength exceeds the near infrared 

range, water content becomes an important consideration in terms of optical absorption. 

It is a well-known fact that the measured values of absorption coefficient of a tissue are 

different in-vitro and in-vivo measurements. This can be explained on a number of 

grounds such as soaking the tissue sample in saline prior to an in-vitro measurement 

may alter its optical properties, and increase the amount of reflectance. In addition, 

other kinds of tissue treatments, including drying, freezing, deforming or heating, may 

change the optical properties of the sample. Also measuring and calibration procedures 

may introduce an error into the determined values for diffuse reflectance and total 

transmittance.  
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In our research work the fundamental quantity which we are determining is glucose 

absorption of near infrared light. This absorption signal which we measure is passed 

through a multivariate algorithm in order to estimate the glucose concentration present 

in the sample. This chapter details the methodology used to measure the glucose 

absorption signal. 

4.1 Spectroscopic  Measurements for Glucose Estimation  

We have used standard spectroscopic techniques to measure the glucose absorption 

signal. The instrumentation required to effect such a measurement must be in a position 

to measure the absorbed light intensity at the desired wavelength. Instruments for 

spectroscopic measurements necessitate a radiation source, a wavelength selection 

device such as a monochromator, a sample holder which is transparent to the radiation, 

a detector to measure the intensity of the radiation and some means of digitizing, 

processing and then displaying the signal from the detector. The most popular 

instrument used for such a measurement is called a spectrophotometer. 

The optical components and the sample holder used in such and spectroscopic 

measurement need to be transparent to infrared radiation. Also these materials must be 

soft enough to be polished to make lenses and sample holders.  

 

Figure 4.1 Block diagram for a spectroscopic measurement 

4.1.1 Sources for Infrared  

In spectroscopy two types of light sources are predominantly used, namely continuum 

sources and line sources. The continuum sources emit light over a board range of 

wavelengths, whereas line sources emit discrete wavelengths of light. Examples of 

continuum sources are xenon arc lamps, tungsten filament lamp etc. Infrared lasers, 

sodium vapour lamps are examples of line sources. 
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These sources have the intensity of radiation over the range of interest constant for a 

long period of time. Nernst glowers, Globars, and heated wires are the most commonly 

used mid infrared sources. Their emission spectrum is continuous and is similar to the 

one emitted by black body radiators when heated. 

For work in the near infrared region, a quartz tungsten halogen (QTH) lamp is the most 

popular source. A QTH lamp contains a filament made up of tungsten, filled with iodine 

gas sealed inside a quartz bulb. The tungsten starts evaporating from the filament over 

the lifetime of the lamp and starts depositing on the wall of the lamp. Hence there is a 

reduction of light output due to the etching of tungsten form filament and the formation 

of black deposit on the inner wall of the bulb. The evaporated tungsten is removed and 

redeposited on the tungsten filament by the halogen gas present inside the bulb of the 

QTH lamp. The intensity of this source is very high compared to a standard tungsten 

filament incandescent lamp [1]. The range of light put out by this source is from 400nm 

– 5000nm (25,000 to 2000 cm-1). Figure 4.2 shows spectral output of a popular 

commercial quartz tungsten-halogen lamps  with model number 6315 from Newport 

(1000 W, 120 VDC operation, flux output of 27500 Lumens, 3200 K color 

temperature, 300 hour average life) [2].  

While some of the mid infrared sources emit light above 25000nm, the intensity drops 

off for higher wavelengths. High pressure mercury discharge lamp is a very useful 

source in the far infrared region. Elemental Hg, a small amount of inert gas, and two 

electrodes are included inside a quartz bulb.  Mercury is vaporized, exited and ionized 

on passage of a current, forming a plasma discharge at high pressure. 

Solid-state diode lasers with wavelengths in the near infrared region are available which 

are capable of emitting a very intense monochromatic radiation. Laser have high 

intensity and narrow line width, hence they offer high signal to noise ratio for many 

application. These diode lasers have found application in near infrared food and fuels 

analysis. 
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Figure 4.2:  Spectral output of a 6315 quartz tungsten-halogen lamp (Courtesy of 

Newport Corporation, Irvine, USA) 

 

Figure 4.3: Febry perot laser diode LD200 in ТО-8 package (Courtesy of IBSG Co. 

Ltd, Russia) 

4.1.2 Monochromator for Spectroscopic Measurement 

Much versatile optical instruments can be designed with a monochromator, the primary 

function of a monochromator is to provide a beam of radiant energy of a specific 

wavelength and spectral bandwidth. A Monochromator generally consists of following 
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components namely entrance slit, collimator lens, dispersive elements and exit slits. 

Lenses are used to collect radiation from a source and direct it to the monochromator 

entrance slit. Entrance Slit provides narrow path for the radiation to pass. Collimator 

lens makes parallel the light spreading from the entrance slit. Exit slit separates the 

desired spectral band by blocking all other dispersed radiation except that within a given 

resolution element. Gratings or prisms are the usual choice used to disperse the incident 

light. Many near infrared instruments utilize a reflective diffraction grating for dispersal 

of light. Diffraction Gratings consist of a series of closely spaced parallel grooves cut 

(or ruled) into a hard glass, metallic, or ceramic surface.  Both flat and concave surfaces 

are used, and are coated on the ruled surface with a reflective coating. A grating for UV 

and visible regions will contain 500 - 5000 grooves/mm, while a grating for the IR 

region will have 50 - 200 grooves/mm. The dispersion of light is the result of diffraction 

of light at the surface of a grating. Diffraction of light occurs because of constructive 

interference between reflected light waves. The path of one wave is shown in figure 4.4. 

Parallel waves can be visualized on adjacent grooves. Constructive interference or 

diffraction of light occurs when, 

                                                     �� = �(��� � ±��� �)                   (4.1) 

where n is the order of diffraction (n is a integer 1, 2, 3. . .), λ is the wavelength of the 

radiation, d is the distance between adjacent grooves, i is the angle of incidence of the 

beam of light and θ the angle of dispersion of light of wavelength λ made with the 

normal to the grating. For a particular value of n, but different values of λ, the angle of 

dispersion θ is different thus separation of light occurs because light of different 

wavelengths is diffracted at different angles.  

                                                   

Figure 4.4: Reflective Grating 
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4.1.3 Sample Holder for the Infrared Region 

First and foremost, the material used in the infrared instrument must be transparent to 

the infrared radiation. Secondly these materials must be strong enough for polishing and 

shaping into windows, samples cells, lenses etc. Common compounds used are 

potassium bromide, calcium fluoride, sodium chloride, and zinc selenide. The  choice of 

which material to use for the above is determined by wavelength range of interest, as 

sodium  chloride is transparent in the wavelength range 0.25 - 16μm it can be used over 

this range as a sample holder. Potassium bromide can be used over the range of 0.25–26 

μm. The wavelength ranges of some materials used for IR optics and sample holders are 

given in table 4.1. 

Table 4.1: IR sample holders 

Material 
Transmission 

range (μm) 

Solubility 
(g/100 g 
water) 

Refractive 
index 

Sodium chloride 
(NaCl) 

0.25–16 36 1.49 

Potassium chloride 
(KCl) 

0.30–20 35 1.46 

Potassium bromide 
(KBr) 

0.25–26 65 1.52 

Barium fluoride 
(BaF2) 

0.2–11 0.1 1.39 

Cesium iodide 
(CsI) 

0.3–60 160 1.74 

Cesium bromide 
(CsBr) 

0.3–45 125 1.66 

Thallium 
bromide/iodide 
eutectic (KRS-5) 

0.6–40 < 0.05 2.4 

Silver chloride 
(AgCl) 

0.4–25 1.5 x 10-4 2 

Silver bromide 
(AgBr) 

0.5–35 1.2 x 10-5 2.2 

Germanium 2–11 Insoluble 4 

Fused silica 0.2–4.5 Insoluble    1.47 

Magnesium 
fluoride (MgF2) 

0.5–9 Insoluble  1.34 

Zinc sulfide (ZnS) 0.4–14.5 Insoluble 2.2 
Calcium fluoride 
(CaF2) 

0.4–11.5 Insoluble 1.3 
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Zinc selenide 
(ZnSe) 

0.5–22 Insoluble 2.4 

Magnesium oxide 
(MgO) 

0.4–9.5 Insoluble 1.6 

Cadmium telluride 

(CdTe) 
0.9–31 Insoluble 2.7 

 

NaCl and KBr are very popular for use as sample holder in the infrared range. As these 

are water soluble any moisture in the atmosphere can dissovle the polished surfaces, 

which makes the surface opaque  and scatter light. Therefor these materials are stored in 

a desiccator. Sample provision is made for inserting the sample solution and is usually 

located immediately in front of the detector and after the monochromator. Cuvettes 

made of above materials with different optical path length are used. The sample holder 

section is a completely covered enclosure with the inner walls painted in black, this is 

done to block the ambient light. 

4.1.4 Detectors for Infrared 

Detectors in the infrared fall in two categories namely thermal detectors and photon 

sensitive detectors. The advantage of thermal detectors is that they have a flat spectral 

response but have a slow response time and low detection capability. Examples of 

thermal detectors include thermocouples, bolometers, thermistors and pyroelectric.  The 

photon sensitive detectors have faster response times and higher detection capability but 

their spectral response are not flat.  

Semiconductor materials are used for photon sensitive detectors. When an infrared 

photon is absorbed by a semiconductor material, an electron form the valence band is 

raised to the conduction band, which changes its conductivity greatly. This photon 

which is absorbed must have sufficient energy to raise an electron to the conduction 

band and hence the band gap determines the lowest wavelength which can be detected. 

Materials such as lead selenide (PbSe), lead sulfide (PbS), indium antimonide (InSb), 

indium gallium arsenide (InGaAs), and mercury cadmium telluride (HgCdTe/ MCT) are 

intrinsic semiconductors commonly used as detectors in the near and mid infrared 

regions. PbS photoconductor detectors are infrared detectors which make use of 

photoconductive effect i.e. the resistance is reduced when infrared light falls on it. PbS 

detector gives improved results if used with cooling but can also be used at room 



58 

 
 

temperature. This detector has faster response and superior detection capability in 

comparison to other detector of the same spectral range.  

 

Figure 4.5: Typical spectral response of PbS detector (Courtesy of Hamamatsu 

photonics K.K.)[3] 

Table 4.2: Infrared detectors (Courtesy of Hamamatsu Photonics K.K.)[3] 

Detector Spectral response(µm) Operating 

temperature(K) 

Thermocouple/Thermopile Flat response 300 

Bolometer Flat response 300 

Pyroelectric detector Flat response 300 

PbS 1 to 3.6 300 

PbSe 1.5 to 5.8 300 

InSb 2 to 6 213 

HgCdTe (photoconductive 
type) 

2 to 16 77 

Ge 0.8 to 1.8 300 

InGaAs 0.7 to 1.7 300 

Ex. InGaAs 1.2 to 2.55 253 
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InAs 1 to 3.1 77 

HgCdTe (photovoltaic 

type) 
2 to 16 77 

 

4.2 Measurement of Glucose Absorption 

For our study we have used the Jasco V-770 spectrophotometer with extended range. It 

is a dual beam spectrophotometer with a Czerny-Turner grating mount. It houses two 

radiation sources namely Halogen lamp and a Deuterium lamp and can be operated in 

the wavelength range of 190 to 3200 nm. Key features are outline in the table 4.3. 

Table 4.3: V-770 UV-Visible Spectrophotometer specifications 

Optical System Fully symmetrical double-beam   

Single monochromator 

Czerny-Turner grating mount 

Wavelength range 190 to 3200 nm* 

Wavelength accuracy +/-0.3 nm (at 656.1 nm) 

+/-1.5 nm (at 1312.2 nm) 

Wavelength 

repeatability 

+/-0.05 nm (UV-Vis), +/-0.2 nm (NIR) 

Light Source Halogen lamp, Deuterium lamp 

Spectral bandwidth 

(BW) 

NIR: 0.4, 0.8, 1, 2, 4, 8, 20, 40 

UV-Visible: 0.1, 0.2, 0.5, 1, 2, 5, 10 nm 

Photometric range NIR: -3~3 Abs  

UV-Visible: -4~4 Abs 

Baseline flatness +/-0.0002 Abs (200 - 2500 nm) 

Baseline stability 0.0003 Abs/hr (Wavelength: 250nm response: slow and 

BW: 2nm) 

Scanning speed 10-4000 nm/min (8000 nm/min in preview mode) 

RMS noise 0.00003 Abs 

(0 Abs, wavelength: 500 nm, measurement time: 60sec, 

BW:2nm) 
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Power requirements 150 VA 

Detector PMT, Peltier cooled PbS 

Installation 

requirements 

Temperature required: 15-30 °C, humidity: below 85% 

* Specially ordered JASCO V770 spectrophotometer with extended range for our 

application. 

The absorbance and transmission recording is done on the spectrophotometer using 

spectra manager software provided by Jasco [4]. To start we select the spectra 

measurement utility under the spectra manager. Starting the spectra measurement 

displays the window as shown in figure 4.6. We need to specify the parameters for the 

spectrophotometer operation. The photometric mode can be choosing between 

absorbance, transmittance and reflectance using the corresponding drop down menu in 

the parameters panel as shown in figure 4.7. 

The operation range is set using the start and end wavelength field anywhere between 

190nm to 3200nm. Desired scan speed, bandwidth and response time can be selected 

using the corresponding drop down menu. Spectra analysis utility also bundled in the 

spectra manger allows smoothening of noisy spectra as shown in figure 4.8. 

 

Figure 4.6: Spectra Measurement utility  
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Figure 4.7: Parameters Panel 

 Figure 4.8: Smoothening of water spectra using spectra analysis 

4.3 Sample Preparation 

To simulate the blood matrix we prepared laboratory samples containing five of the 

major blood constituents namely glucose, urea, lactate, ascorbate and analine. Each 

aqueous sample contained all the above constituents in varying composition. The 

physiological relevant ranges of the above constituents were chosen for our experiment.  

Glucose ranges 70–280 mg/dL, analine ranges 10–28 mg/dL, urea ranges 11–20 mg/dL, 

lactate ranges 12–22 mg/dL and ascorbate 2–5 mg/dL. Instead of preparing deciliter of 
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solution we prepared 10ml of solution and the concentration was scaled proportionally 

to reflect the above physiological ranges.  The above constituents are measured, using a 

precision weighing machine having an error accuracy of 0.01mg. A total of 64 samples 

were prepared for the purpose of experiment. Typical 15 of the 64 samples are shown in 

the table 4.4 below.  

Table 4.4: Laboratory samples  

Sample 
No 

All above reading are in mg/dL 

Urea Lactate Ascorbate Analine Glucose 

1 11 12 2 10 70 

2 11 22 2 10 70 

3 20 12 2 10 70 

4 20 22 5 28 70 

5 11 12 5 10 100 

6 11 22 5 10 100 

7 20 22 2 28 100 

8 11 12 2 28 200 

9 11 22 2 10 200 

10 20 12 5 28 200 

11 20 22 5 28 200 

12 11 12 5 28 280 

13 11 22 5 10 280 

14 20 12 5 10 280 

15 20 22 5 28 280 
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4.4 Path length consideration 

                                      

Figure 4.9: Absorbance spectra for 5mm and 1mm path length cuvette 

Water exhibits absorption peaks in the infrared region, and the overall absorption of 

water shows a rising trend from the near infrared to mid infrared region. As water is the 

major component of human tissue, it is impractical to use mid infrared region for 

glucose estimation. The water absorption in near infrared region is relatively lower as 

compared to mid infrared region, but the path length of the sample holder plays a 

significant role in our studies. Figure 4.9 show the absorbance spectrum of water 

recorded in quartz cuvette of path length 5mm and 1mm. We can clearly see higher 

noise in the spectrum for water in 5mm path length. In the 5mm cuvette the noise is so 

large above 1900 nm, that it is safe to assume that light is completely absorbed by the 

water. Therefore, all our studies are conducted using a 1mm quartz cuvette. 
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4.5 System Design  

Figure 4.10 gives the block diagram of the system. Jasco V-770 UV-VIS-NIR 

spectrophotometer forms the front end of our system.   

Figure 4.10: Block Diagram 

The light source used is deuterium (D2) lamp (187 to 350nm) for use in the UV region 

and a QTH (Halogen) lamp (330 to 3200nm) for use in the Visible and NIR region. The 

spectrophotometer houses a dual beam configuration and uses a single 

monochoramator. The light exiting the monochromator is split into two beams by a 

select mirror, one going to the target sample to be measured and the other to the 

reference sample. The beams are alternately incident on the detector i.e. photomultiplier 

or Peltier cooled PbS photoconductive detector.  

The target sample and the reference are placed in a 1 mm quartz cuvette. As outlined 

above the aqueous samples contain the 5 different blood constituents. The absorbance 

spectrum is recorded for each sample. These spectra are then transferred to the soft-core 

FPGA platform. 

We use the DE-0 Nano board which houses a Cyclone – IV FPGA to port a NIOS-II 

soft core, a 32-bit embedded processor. The building of the soft-core is discussed in 

detailed chapter 5.The PLSR algorithm is used to build the calibration model on the 

NIOS-II and the same calibration model is used to predict the concentration of the 

unknown sample, which are sent to the display device. 
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The Field Programmable Gate Array (FPGA) is highly configurable logic device. The 

logic density is much higher than those offered by its predecessor such as Complex 

Programmable Logic Device (CPLD). Due to the versatility offered by FPGA, many are 

adopting it in product design. This chapter outlines the different steps required to 

configure a soft-core processor on an FPGA for our application of glucose estimation. 

5.1 FPGA for Estimation of Glucose 

The name of FPGA originates from the fact that a user can deploy a gate array that is 

programmable on the field of any workplace [1]. Broadly an FPGA consists of 

Configurable Logic Blocks (CLBs) with user programmable interconnect which enables 

developers to customize them for their application. This customization can be 

reprogrammed, if need arises in the future to accommodate new features in the 

application. Currently FPGA solutions are offered by Altera (Intel), Xilinx, Lattice 

semiconductor, Cypress, Microchip technology and Microsemi. 

In FPGA the digital function is not implemented using AND and OR planes, instead a 

logic block is used for implementation of relatively large complex logic circuit. An 

FPGA consists of a huge number of independent CLBs, configurable I/O blocks, and 

programmable interconnection path. Depending on the manufacturer, the CLB may 

also be referred to as Logic Block (LB), a Logic Element (LE) or a Logic Cell 

(LC). All the resources of the device are uncommitted and these must be selected, 

configured and interconnected by a user to form a logic circuit for their 

application.  

The various families of FPGAs manufactured by different manufactures differ primarily 

in the number of logic modules (form few hundred to hundreds of thousand), supply 

voltage range, power consumption, speed, architecture, process technology, number of 

pins, and type of packages, etc. The basic architecture of FPGA consists of an array of 

CLBs [2]. The logic blocks are surrounded by configurable input/output blocks [2]. 

There are rows and columns of programmable interconnection paths. The I/O blocks 

can be individually configured as input, output, or bidirectional. The architecture of 

FPGA is shown in Figure 5.1. 
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Figure5.1: The FPGA architecture [2] 

5.1.1 Configurable Logic Blocks 

The configurable logic blocks in FPGA are organized as an array of rows and columns. 

The logic blocks are connected to the I/O blocks through common row/column 

programmable interconnects. The common row/column interconnects are known as 

global interconnects. A logic block consists of a number of logic modules. The logic 

modules are the basic logic elements in an FPGA. The logic modules within a CLB are 

connected through local programmable interconnects. Figure 5.2 shows how a basic 

configurable logic block looks like. 

 

 

 

 

 

 

Figure5.2: Configurable logic block [2] 
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5.1.2 Logic Module 

A logic module consists of a Look Up Table (LUT), a D-type flip-flop and a                          

Multiplexer (MUX). Most of the FPGAs are based on 4 inputs LUT. Figure 5.3 gives 

the block diagram of a logic module with a 4 input LUT. Output of the LUT becomes 

the output of the logic module either directly or indirectly through a D-type flip-flop. 

Thus the output can be configured for combinational or registered.  

 

Figure5.3: A logic module [2] 

5.1.3 Look Up Table  

An LUT consists of a programmable memory and it can be used to generate logic 

function in SOP form. Figure 5.4 shows a LUT. It consists of a memory and a MUX. 

Since, it is an 8-bit memory, we require a 8:1 multiplexer. Larger LUTs would allow for 

more complex logic to be performed per logic block, thus reducing the wiring delay 

between blocks, as fewer blocks would be needed. This will require larger multiplexer 

and an increased chance of waste if all the functionality of larger LUTs were not to be 

used. On the other hand, smaller look up tables may require a design to consume a 

larger number of logic blocks, thus increasing wiring delay between blocks. Hence 4 

input LUT structure makes the best tradeoff between area and delay for a wide range of 

applications. However, some FPGAs vendors have started offering 6 input LUT 

structure.  
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Figure5.4: A 3 input look up table [2] 

5.2 Soft-core Processor for Embedded Systems 

An Embedded system consists of software and hardware working to achieve a dedicated 

task. They have formed an integral part of our modern society and they play a vital role 

in our present gadget driven age. They find application in many places as entertainment 

electronics, automobiles, medical device, industrial control systems etc [3]. The core 

components of an embedded system are microprocessor/microcontroller, an on-board 

memory, an output device, an input device (for a user to enter data and control the 

device) and firmware (application software which runs on the above hardware). As 

manufactures are pushing for mobility and miniaturization, the embedded system 

designer has to adhere to tight constraints on area usage, size, power consumption and 

performance. The modern market requirements have also imposed tight time to market 

deadlines [4]. In order to reduce the time to market deployment, the designer need to 

reduce the time spent on development and debugging and this is done by using a 

hardware/software co-design methodology[5]. 

Designing each and every hardware component of the embedded system from scratch 

becomes time consuming, impractical and expensive for an embedded designer as the 

complexity of the embedded system increases. Hence, the prospect of using pre-

designed and pre-tested Intellectual Property (IP) soft-cores in the application became 

more and more attractive. Soft-core processors are microprocessor with their 

architecture completely specified using Hardware Description Language (HDL). FPGA 

https://en.wikipedia.org/wiki/%C4%80
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are the most popular programmable hardware which are used to instantiate a soft-core 

processor. 

The first stage in design flow of any design of soft-core processor is the description by a 

HDL. After this stage, synthesis and transformation of the design is carried out to form 

a configuration file for the FPGA. Once the configuration file is transferred to the 

FPGA it is transformed in to the required soft-core [7-13]. After the FPGA is configured 

as a soft-core processor, we use standard techniques to program a traditional discrete 

processor to harness its capabilities. Programming languages and Integrated 

Development Environments (IDE) are used for the above purpose. Many of the 

traditional peripherals such as memory, switches, buttons, LEDs, etc. which were 

interfaced with the discrete microprocessor, can also be interfaced with the soft-core 

processor. The interface logic required for the application can also be instantiated in the 

FPGA along with the soft-core processor as shown in the figure 5.5. 

                                                                 

Figure 5.5: Interfacing of devices to a soft-core processor [7] 

Many of the market players who offer FPGA solution, also supply these interface logic. 

The common interface logic used are General Purpose Input/Output(GPIO), Universal 

Asynchoronous Reciever/Transmitter(UART), Inter-Integrated Circuit(I2C), Serial 

Peripheral Interface(SPI), etc.  These logic interface packages offered by the different 

vendors are known as intellectual property or IP cores. These interface logic are also 

specified using a HDL. When a current day FPGA is configured as a soft-core 
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processor, it utilizes less than 1% of the resources present on it, which is contrary to the 

previous generation FPGAs. Many commercially available soft-core IP are available 

such as Nios II [14] by Altera [15], MicroBlaze [16] by Xilinx [17] and Mico32 [18] by 

Lattice [19]. 

Most of the vendors provide custom processor configuration tools, for example Altera 

has Quartus II software. This tool provides a graphical user interface for inclusion of 

different processor configuration and IPs for peripheral interfaces (PLLs, UART, etc.). 

For each component instanced, parameters can be specified. Other system features such 

as device memory address and IRQ numbering can also be specified. For Software 

development vendors also provide an IDE with assembler and C compilers necessary 

for the programming of these soft cores which are usually free to use.  

5.2.1 ASIC v/s FPGA for soft-core  

Different semiconductor devices can be utilized to realize a soft core. For instance an 

Application Specific Integrated Circuit (ASIC) or FPGA can be used to build a soft 

core. An FPGA affords flexibility and reusability, whereas ASICs are intended for 

specific applications such as a chip design for a digital voice recorder, DVD player and 

charge controller for lithium ion batteries. 

To use an ASIC as a soft core, a gate level netlist is synthesized of the soft-core and any 

other desired logic. Logic gates are placed and routed as per the netlist, and from it 

photomasks are realized to fabricate the chip. To realize a soft-core on a FPGA, similar 

netlist is used to generate a configuration file, which is then used to configure the look 

up tables and configurable logic block present on a FPGA. 

5.3 A survey of Soft-core processors  

The various soft-core processors which are in the market today and various offering by 

the open source communities are described below. 

5.3.1 Commercially Available Soft-cores 

Altera and Xilinx are the major market players who offer FPGA solutions and NIOS-II, 

MicroBlaze and PicoBlaze are the soft-core solutions offered by them respectively.  
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NIOS-II soft core 

NIOS-II is a 32-bit processor based on the popular Reduced Instruction Set Computer 

(RISC) architecture. There are thirty two 32-bit general purpose registers in NIOS-II 

soft-core [20, 21]. It employs load and store instructions to move data between memory 

and the large number of internal general purpose registers. The operation involving 

arithmetic and logic are performed in these general purpose registers. NIOS –II can also 

be used in the 16-bit instructions set mode, this improves the code density of the 

processor. Some 16 bit instruction can even be completed in 1 clock cycle. The 

performance of Altera FPGA is 30 to 80 MIPS. The NIOS-II is based on Harvard 

architecture as it has individual instruction and data buses [22].  

The data path can be configured to either 16-bit having 1100 LEs or 32-bit having 1700 

LEs.  Byte addressing can be chosen to be either little endian or big endian. This must 

be selected at the configuration time. NIOS–II can function in three different modes. 

Any application runs in either user or supervisor mode. Figure 5.9 shows the NIOS-II 

soft core. 

• Debug mode – allows features such as watch points and breakpoints used by software 

debugging tools.  

• User mode – This mode prevents the execution of some instruction intended for 

system purpose only. Some of the features offered by the processor are also not 

accessible in this mode. 

• Supervisor mode –On reset the processor enters the supervisor mode which allows it 

to execute perform all the possible functions and execute all the possible instructions 
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Figure 5.6: NIOS II soft-core Processor 

It is feasible to build, debug & run software of a number of platforms utilizing the 

associated CAD tools such as Quartus II and Qsys system development tool. These 

tools help in rapid evaluation and development (validation / verification) of the 

embedded system. NIOS-II processor can be configured as per the requirements of the 

user, as such it offer three different configurations. The comparison between NIOS II 

Economy, Standard and Fast Processors is shown in table 5.1. 

Table 5.1: NIOS-II versions 

Features NIOS- II Fasts 
NIOS- II 

Standard 

NIOS- II 

Economy 

Objective 
Optimized for high 

performance 

Balanced for size 

and speed 
Optimized for size 

Logic Elements 

used 
1400-1800 1200-1400 600-700 

Caches(Instruction/

Data) 
64 KB/64 KB 64 KB/None None 

Pipeline stages 6 5 1 
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Hardware Multiply 1 Cycle per MUL 3Cycles per MUL Software Emulated 

Custom Instruction 256 Custom instructions 

 

The number of Logic elements utilized are balanced in the standard configuration as 

compared to the others. The Hardware Multiply uses 3 Cycles/MUL unlike the fast 

variant having 1 Cycle/MUL. The NIOS II standard configuration provides real-time, 

high performance and deterministic results. 

Micro Blaze and Pico Blaze 

Xilinx offers the Spartan and Virtex families of FPGA solution. To go with these FPGA 

solutions, it also provides the soft IP cores needed for the optimal use of these FPGAs.  

MicroBlaze is a 32-bit soft-core optimized for embedded systems. It is based on 

Harvard architecture and can operate at up to 200MHz on a Vertex-4 FPGA chip. In 

addition, it features a three stage pipelining, 32-bit instructions, thirty two 32-bit general 

purpose registers, two levels of interrupts and a shift unit. On-chip Peripheral                         

Bus (OPB) is used to interface on-chip and off-chip memories and other peripherals 

with the MicroBlaze soft-core[23].  

Figure 5.7: MicroBlaze soft-core block diagram [23] 
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Embedded Development Kit (EDK) by Xilinx is used to develop embedded application 

on MicroBlaze [23]. EDK bundle includes the Xilinx platform studio and a number of 

IP cores needed for MicroBlaze. PicoBlaze, an 8-bit offering of Xilinx which is 

intended for simple data processing applications. This processor is optimized for the 

Virtex-II, Virtex-II Pro and Spartan-3 series of FPGA [24]. 

5.3.2 Open-Source Cores 

The open-source communities provide open-source cores which are free for use and do 

not require licensing [25]. The academia utilizes these cores heavily for research 

purposes and for development of embedded systems. An example of such an open-

source core is the UT NIOS which is very popular in the academia [26]. Another core 

which is provided by Sun Microsystems is OpenSPARC processor which is heavily 

used in ASCI designs, but can also be used on an FPGA [27]. Below we discuss the 

LEON and OpenRISC 1200 cores which are readily available for the open-source 

community. 

OpenRISC 1200 

OpenRISC is one of the most popular open core, and features 32-bit and 64-bit RISC 

architecture which can finds its use in many automotive, consumer products, home 

entertainment and networking applications [25]. This processor is based on Harvard 

architecture with separate data and instruction caches of 8 KB each. It features a 32-bit 

instruction set architecture containing the OpenRISC basic instruction set, a five stage 

pipeline with most instruction requiring a single clock cycle. This processor can be 

utilized in wide range of applications and is optimized for high performance and low 

power consumption. Many real time operating systems are supported such as OAR 

RTEMS RTOS, μLinux and Linux. Many C/C++, Java and Fortran software 

development tools are available to develop embedded application on the OpenRISC. 

LEON  

LEON soft-core IP are provided by Gaisler Research along with the supporting 

development tools and is based on the SPARC V8 instruction set architecture [26]. 

Once synthesized on a target it requires the associated library called the GRLIB IP 

library [28]. Many successive version of this processor are developed by Gaisler 

Research such as the LEON2and theLEON3 processors.  
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5.3.3 Comparative Study of the Soft-cores 

Companies such as Altera, Xilinx, Cypress, Lattice, and Microchip offer soft-cores 

customized to their FPGA solutions. NIOS-II, MicroBlaze, OpenRISC 1200, and 

LEON3 are few of the popular soft-cores. The NIOS-II features an expandable 

instruction set with up to 256 customizable instructions whereas MicroBlaze is not 

provided with this kind of ability. The highest operating frequency on an FPGA can be 

achieved with the NIOS-II and MicroBlaze. Both the NIOS-II and MicroBlaze are 

optimized for FPGA implementations, whereas the others are not optimized for a 

particular technology. Tabulated features and characteristics of different processor are 

given in table 5.2.  

Table 5.2: Comparison of Soft-Core Processors 

Category 
NIOS II 

(Fast Core) 
MicroBlaze 

OpenRISC 
1200 

LEON3 

Register File 
Size 

32 32 32 2 to 32 

Pipeline 6 Stages 3 Stages 5 Stages 7 Stages 

Custom 
Instructions 

Up to 256 
Instructions 

None 
Unspecified 

limit 
None 

ISA 32-bit RISC 32-Bit RISC 32-bit RISC 
32 or 64-bit 

RISC 
Maximum 

frequency in 
MHz 

200 
(FPGA) 

200 
(FPGA) 

300/185 
(ASIC/FPGA) 

400/125 
(ASIC/FPGA) 

 

5.4 DE-0 Nano Development Board 

                                                                      

Figure 5.8: DE-0 Nano board 
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DE-Nano board is a FPGA platform featuring a powerful FPGA namely the Cyclone IV   

EP4CE22F17C6N [29]. It is apt for portable application due to its small compact size. 

This development board features a collection of interfaces such as general purpose 

input/output for extension of designs as well as on board SDRAM and EEPROM 

memory chips so that the application does not run out of data storage. In addition, push 

button and LEDs are included. If a design needs to have mobility, portable power is a 

necessity, therefore DE-0 Nano board offers 2 pin external power header for battery 

connection.  

Table 5.3: Recourses of DE-Nano board [29] 
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Figure 5.9: DE-0 Nano block diagram [29] 

The table 5.3 gives the resources present on the board; all the features make this board 

most suitable for our application. Figure 5.9 gives the block diagram of DE-Nano board. 

In order to give the maximum flexibility, all the connections are accomplished through 

the cyclone IV FPGA. The Avalon switch fabric network provides the interconnection 

to all the components. Appropriate interfaces and IP cores are used to access various 

peripherals and memories such as SDRAM, I2C EEPROM, ADC, G-sensor, Dip 

switches, etc. present on the board.  
 

5.5 Qsys System Integration Tool 

Qsys system integration tool is supplied as a part of Quartus II CAD software. This tool 

is meant for the design of digital hardware systems which contain various components 

such as timers, input/output interfaces, memories and soft cores. Qsys automates the 

task of integrating various hardware components. Using traditional design methods one 

must put in a lot of man hours writing the HDL code for a desired design and its 

interconnections. Qsys Graphical User Interface (GUI) facilitates the process of adding 

the components by just a click-to-add the components and automatically generates the 

interconnect logic to connect these components together. Qsys generates HDL file that 

defines all the components of the system, as well as top-level HDL file that connects all 

the components together. User can choose either VHDL or Verilog as the choice of 

hardware description language [30].  
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5.5.1 SDRAM Interface to NIOS-II  

For practical application such as ours we need to have large amount of memory. For this 

reason DE-Nano board features a SDRAM of 32 Mbytes or 256 Mbits of memory [29]. 

We need to interface this SDRAM chip with the NIOS-II soft core. The memory 

organization of this SDRAM is 4M x 16 bits x 4 banks. This SDRAM requires a careful 

timing control. In order to successfully access the SDRAM we need to include the 

SDRAM controller circuit IP through the Qsys system integration tool.  This IP is 

located under memories and memory controller in the drop down menu on the left side 

of the user interface. All the necessary signals to successfully access the SDRAM chip 

are handled by it. The NIOS-II soft-core is connected to the memory and I/O interfaces 

through an interconnection network called as Avalon switch fabric. The figure 5.10 

below shows a generic system which has instanced SDRAM controller along with few 

other peripherals.  

                         

Figure 5.10: A generic NIOS-II system implemented on DE-Nano board 

The necessary interface to access the SDRAM is shown in the figure 5.10. All necessary 

interface signals are generated by the SDRAM controller except the clock. The clock 

needs to be supplied separately and needs to meet the clock skew requirements. The 
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skew requirement need that the clock signal supplied to the NIOS-II processor lags the 

SDRAM clock by 3 nanoseconds [31,32]. This is accomplished by a phase locked loop 

circuit.  

                                                   

Figure 5.10: SDRAM controller interface [31] 

5.5.2 ADC Controller Interface 

The DE0-nano board is provided with an Analog to Digital Converter (ADC) onboard 

namely the ADC128S022 which provides eight channels with 12 bits of resolution. It is 

a successive approximation type and provides users with sampling rates of 50 to 200k 

samples per second. It comes with an internal track and hold circuit and an SPI 

interface. The 2x13 GPIO header which on the underside of the board is connected to 

the ADC. 

 

Figure 5.11: ADC128S022 interface to FPGA 
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Any analog signal (such as from temperature sensor) is fed to an ADC through one of 

the eight channels IN0 through IN7. The ADC connects to the FPGA through a four 

wire interface. The ADC is controlled by the SCLK and CS signals. The CS is used to 

select the chip and is an active low signal. SCLK is the clock signal required by the 

ADC. The DIN and DOUT pins are used to pass data and address between the chips. 

The SCLK frequency must be limited in the range of 0.8 to 3.2 MHz for proper 

functioning of the above ADC. 

The DE0-Nano ADC Controller IP Core is used to interface with the above ADC and to 

provide the user with the digitized readings [33].The DE0-Nano ADC Controller IP 

core can be instantiated in a system using Qsys system development tool with its 

graphical user interface, and can be made part of the NIOS-II system. All the channels 

of the ADC are read in the ascending order once every cycle. The ADC controller core 

can define how many channels are active using a parameter called NUM_CH, which 

can be set by the user when the core is instantiated. Eight memory mapped registers, 

CH_0 to CH_7 are provided by the ADC controller for the reading and writing purpose. 

The controller must be operated by writing and reading from these registers. The core 

also allows users to specify the SCLK frequency and the desired range must be in the 

range of 0.8 to 3.2 MHz. For accessing the ADC reading each registers corresponds to 

each of the eight channels. If any channel is not in use, the respective register will have 

a zero constant. As soon as the conversion is complete the value is placed in the 

registers. This core is part of the university program IPs in the Qsys system integration 

tool. The ADC controller is also show in the generic NIOS-II system showed in figure 

5.10 and interfaced through Avalon switch fabric network. The DE0-Nano ADC 

Controller core also comes with HAL C package to access the ADC. Figure 5.12 shows 

the NIOS-II instance generated in Quartus –II software along the ADC controller and 

SDRAM controller and figure 5.13 shows the hardware deployment of NIOS-II on DE-

0 Nano board.  
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Figure 5.12: The NIOS-II instance generated in Quartus II software. 

After compilation of the soft core, the programmer integrated in Quartus II software is 

used to program the user-specified SRAM object file (.sof) inside the FPGA. To 

estimate glucose we need to build calibration model which is done using PLS 

multivariate technique. A ‘C’ program was ported to implement PLSR on the soft 

core. The same program is utilized to predict the unknown concentration of 

glucose for prediction samples. To implement PLSR we have used the SIMPLS 

algorithm. 
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Figure 5.13: NIOS-II configured on DE-0 Nano board 

5.5.3 Programming the NIOS-II Soft core 

NIOS-II Software Build Tools (SBT) is used to program the NIOS-II soft-core which is 

built on the FPGA on DE-0 Nano board. It is collection of utilities targeted to build 

embedded C/C++applications for the soft-core. The C/C++ programming is 

accomplished using the Eclipse graphical user interface [34]. It provides identical 

support for both C and C++ development. It also provides editing, building and 

debugging for software development tasks. Nios II SBT provides Board Support 

Packages (BSP) which are specialized libraries containing system-specific support code. 

A BSP separates your application form details of systems such as memory map, 

processor configuration, available devices etc. The SBT also provides support for Altera 

Hardware Abstraction Layer (HAL). A UNIX like C/C++ runtime environment is 

provided by the HAL. The HAL also provides support for newlib C standard library 

routines, such as printf(). Figure 5.13 show the graphical user interface of NIOS-II SBT. 
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Figure 5.13: Graphical user interface of NIOS-II SBT 
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We are surrounded by complex phenomenon occurring around us, and in order to 

completely understand the underlying principle and to analyze them we need to employ 

multiple measurements. For instance, for successful prediction of the weather condition 

around us on a given day, myriad measurements needs to be carried out such as 

temperature, humidity in the atmosphere, wind conditions, pressure, etc. Using these 

measurements a model is built to predict the weather condition. The analysis of such a 

complex phenomenon necessitated the application of statistical methods called as 

multivariate techniques. When we consider only a single variable at a given instance of 

time we term it as univariate analysis. Many a times univariate analysis is not sufficient 

to understand a process or a system completely. A lot of information is lost when we 

employ univariate analysis. Hence we need to use multivariate analysis in order to bring 

out the hidden information lying latent in the available measurement data. 

6.1 Multivariate Analysis 

Multivariate techniques involve use of more than one variable at a given time in order to 

have a better understanding of a system. These techniques are efficient in identifying 

potential problems in a system and give an accurate insight of the behavior of data 

which is highly correlated. Multivariate techniques were an essential part of statistical 

analysis from the 1900s, but were not so popular. The advent of high speed computers 

and readily availability analytical software are responsible for the use of these 

techniques in different fields of research and industry. 

The presence of overlapping spectral signatures in the NIR region as well as broad 

nature of these peaks rules out the use of univariate methods and calls for the use of 

multivariate calibration analysis to implement a successful prediction model. The 

process of multivariate calibration involves the relation of a chemical or physical 

property of interest to the spectral information by some mathematical model. 

Multivariate methods are found to be robust and enhance the selectivity of 

measurement. Sample containing multiple anlaytes are permitted for calibration in a 

multivariate analysis [1].  

In our study spectroscopic measurements are done on a set of calibration samples; here 

calibration samples are those whose physical property of interest is determined using an 

independent reference method. These calibration samples and their reference readings 
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are together called as calibration data set. A mathematical model is formed using this 

calibration data set which relates the target property with the spectral data. This 

calibration model is then used for prediction of unknown values of the modeled 

property. 

There are different multivariate calibration methods which can be employed for analysis 

in the near infrared region. The classical least-squares (CLS) and Inverse least-squares, 

multiple linear regression, Principal component analysis, Principal component 

Regression and Partial Least Squares Regression are few of the popular methods 

employed.  

6.1.1 Classical Least-squares 

Classical Least-Squares (CLS) is sometimes known as K-matrix calibration, as it 

originally involved the application of Multiple Linear Regression (MLR) to the 

expression of Beer-Lambert Law. This approach involves modeling the spectral data as 

a function of analyte concentration. 

                          � = ��                (6.1) 

We begin with calibration in classical least-squares, with concentration matrix C and 

the absorbance matrix A, for the known samples. We then solve for K. Each column in 

K contains the pure component spectra. Least-squares solution is found for the above 

equation i.e. we find the K such that it produces the least sum of squares of error. To 

handle the prediction of concentration of unknown samples, we use the calculated K 

matrix. It is found according to the following equation [2]. 

              [���]�������� = ����          (6.2) 

We use [KTK]-1which is known as pseudo inverse of K and KT which is the transpose 

of K. There are advantages and disadvantages associated with CLS. The main 

advantage of using CLS is that after calibration process, the estimates of true constituent 

spectra are determined. But it also requires the knowledge of the concentrations of all 

the constituents which are present in the sample which is many times impractical to 

know [1]. This can be circumvented by use of augmented CLS (ACLS) which relaxed 

the above criteria and gives a robust modeling with a complex matrix. 
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6.1.2 Inverse Least-squares (ILS) 

This method so called because of the involvement of inverse expression of Beer-

Lambert Law. This method is sometime called the P-matrix method. The ILS calibration 

model assumes that the concentration of sample could be predicted quantitatively from 

sample spectra [3]. 

                      � = ��                         (6.3) 

Where concentration matrix is denoted by C and absorbance matrix by A. In order to 

produce an inverse least square calibration we use calibration samples with known 

concentration, also known as training set. We then find the solution for P matrix in a 

least square manner.  Each row will have a coefficient for each wavelength. This P 

matrix is used to predict the concentration of unknown samples according to the 

following equation [2].           

                        ���� = �����                        (6.4) 

Employing an ILS model alleviates the need for complete knowledge of the calibration 

set constitution. With the ILS model, concentration (or any intrinsic property) is 

modeled as a function of instrument response. 

6.1.3 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a statistical method which characterized 

variance in spectral data [4,5]. PCA provides an interpretation and a better 

understanding of the sources of these variations. The original spectra contains group of 

correlated variable. PCA employs an orthogonal transformation to convert correlated 

variables into uncorrelated variables. Spectral variances are characterized as a set of 

orthogonal vectors typically referred to as principal components, eigenvectors, spectral 

loadings or loading vectors. The first principal components explain the maximum 

variance possible in the spectral data. The second principal component is chosen such 

that it is orthogonal to first principal components, and explains the maximum possible 

remainder of variation in the data. This process is continued as long as the desired 

amount of variation is explained by the principal components obtained.PCA is a 

powerful method for reducing the dimensionality of the spectral data matrix and 

eliminating noise. 
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        � =  �� +  �              (6.5) 

The orthogonal transformation decomposes the spectral data matrix X as shown in 

equation 6.5.T is termed as the scores matrix, P is the principal components matrix and 

E is the noise matrix and contains the noise which cannot be explained. The Singular 

Value Decomposition (SVD) algorithm is utilized to extract the principal components 

for the X matrix. 

In building the PCA calibration model, usually the first k principal components are 

selected as the number of latent variables or factors.  With a properly chosen of number 

of factors, the necessary information for concentration modeling can be included while 

principal components of interferences and noise can be excluded. 

6.2 Partial Least Squares Regression for Glucose estimation 

Partial Least Squares Regression (PLSR) was introduced by the Swedish statistician 

Herman Wold in the 1960s. PLSR finds its application in anthropology, chemometrics, 

biofinformatics, econometrics, marketing etc. PLSR has become the most widely used 

technique for quantitative analysis of NIR spectra as it overcomes most of the serious 

drawbacks of other multivariate techniques. 

PCA is very efficient in finding latent variables which models the variation in the X 

block (spectral data). This highlights the noise removal capability of PCA from the 

spectral data. Problem arises if there is lot of variation in X that is not due to the analyte 

as such.  Sometimes the analyte itself gives rise to only small variation in X, in this 

scenario the useful variation is hidden in the directions which PCA interpreted as noise. 

PLSR is able to cope with this situation by selecting the latent variable which is most 

relevant to the estimation of Y. In PLSR method, both X and Y are decomposed 

simultaneously to obtain a set of latent variables that describe maximum covariance 

between X and Y. Hence, the principal components obtained using PLSR method, could 

be relevant to a set of dependent variables that lead to better prediction accuracy. 

PLSR finds its use in situation where the number of predictor variables in the spectral 

data are more as compared to the number of observations. PLSR also aids in the 

dimensionality reduction like PCA and is used to select a few predictor latent variables. 

PLSR can be used in any one of these condition namely, where the responses are 
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correlated or where number of predictor variable exceeds the number of observations or 

where the predictor variables are correlated. Compared to PCR, PLSR is more robust, 

faster, and requires a lower number of factors to establish the calibration model [1,6]. 

In PLSR, objective is to find linear components to model X and Y as given in equation 

6.6. 

       � =  ���  +  �       &    � =  ���  +  �                    (6.6)      

Y is the response matrix with dimensions m/n, where m is the number of response 

variables and where n is the number of observations (number of spectra). Here, X is the 

spectral data matrix with dimensions n/k, and k is the number of wavelengths/data 

points in each spectrum (number of predictor/explanatory variables). U = YC = (u1,…, 

uZ) and T = XW = (t1,…, tZ) are the n/Z component score matrices for X and Y and 

respectively with Z representing the number of components which is less than or equal 

to k. P = ( p1, … , pZ) and Q = (q1, … , qZ)  are the m/Z and k/Z loading matrices for X 

and Y respectively. The m/Z matrix C and the k/Z matrix, W are the weight matrices 

[7].Mostly the contents of X and Y are centered by subtracting their means and 

normalized to by dividing with their standard deviations. 

We have employed a calibration model using the PLSR methodology to estimate the 

glucose concentration on spectroscopic data. This process involves the development of a 

calibration model using a calibration data set having samples with known glucose 

concentration along with other analytes. Then this calibration model is used to predict 

the unknown glucose concentrations. In the next section we discuss the various 

algorithms for PLSR.   

6.2.1 Algorithm to Implement PLSR 

There are many algorithm proposed to implement PLSR, of which popular one are Non-

linear Iterative Partial Least Squares (NIPALS) and Statistical Inspired Modification of 

PLS (SIMPLS) introduced by Wold et.al.[8] and DeJong et.al.[9] respectively. The 

SIMPLS algorithm is fast as compared to NIPLAS algorithm [10]. SIMPLS does not 

employ a breakdown of the data sets and as such is found to be fast and easy to 

interpret. We have used SIMPLS in our research work due to the advantages offered by 

it as outlined above. 
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6.2.2 NIPALS Algorithm 

The simple NIPALS algorithm was introduced by Herman Wold [11]. It begins with 

centering and scaling matrix X and Y, and proceeds as follows. It must be noted that if a 

only one y-variable is present, the algorithm will be non-iterative This algorithm has 

found its application in chemometric and below are steps involved to implement as 

given in S. Wold et al. [12]. 

Step 1: A starting vector u is chosen u which is usually a column of Y. if Y has a single 

column then, u = y. 

Step 2: The weights w of X are calculated as w = X'u/u'u (here w can be modified as 

‖w‖ = 1.0) 

Step 3: The scores t, of X are calculated as t = Xw 

Step 4: The weights c, of Y are calculated as c = Y't/ t't 

Step 5:Get the updated set of scores of Y as u = Yc/ c'c. 

Step 6: Convergence test is carried to check the change in tby ‖t old - t new ‖ / ‖ t new ‖ < ε , 

here the value of  ε is “small” for example 10-6 or 10-8. If not converged, go back 

to step 2, otherwise continue to to step 7. The process converges with one 

iteration if Y is a single variable matrix and goes on to step 7. 

 Step 7: The component calculated is removed from X and Y and these deflated 

matrices will be used to generate the next component.                                                         

p = X't/ t't                                                                                                                                              

X = X - tp'                                                                                                                                            

Y =  Y - tc' 

Step 8: If the number of desired components are not found go back to step 1 to find the 

next components 

6.2.3 SIMPLS Algorithm 

Statistical Inspired Modification of PLS (SIMPLS) algorithm models X and Y by 

decomposing as shown in equation 6.6. Let us assume the matrices X and Y are mean 

centered. The scores of the X and Y matrix must have maximum covariance; hence, a 
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constraint is added on the score vector to have a length of 1. The solution to the 

following maximization problem are the first score vectors t1and u1 and the statement 

for maximization problem is                              

     cov(�, �) =  cov(��, ��) =  ��� =  (��)��� =  ������ ⇒ max              (6.7) 

The equation 6.7 is under the constraints of ‖t‖ = ‖u‖ = 1. Singular value decomposition 

is used to find the weight vectors w and c. The largest singular value of covariance 

matrix XTY corresponds to the direction of w and c which gives the maximum of 

equation 6.7, and these vectors are names as w1 and c1 respectively.  For the subsequent 

score vectors an additional constraint is required to ensure the orthogonality of the 

previous score vector and is specified by uauj = 0 and  tatj= 0 for 1 ⩽a < j ⩽A. 

Orthogonality is ensured by using the residual matrices to find the subsequent score 

vectors instead of X and Y.SIMPLS involves deflation of the XTY covariance matrix to 

calculate the residual matrices. Below are the steps followed to implement the SIMPLS 

algorithm [7]. 

For each h =1,…, Z, where Z is the number of components to be found. 

Step 1: Mean center the explanatory and response variable matrices, and represents 

them as X and Y after mean centering. Calculate the covariance matrix Sh= 

XTY. 

Step 2: The left singular vector of the matrix Shis taken as wh . 

Step 3: Normalize whusing the expression wh= wh / ‖wh‖. 

Step 4: ththe hth component vector is calculated asth= Xwh (when h=1, t1 is the first 

component vector) 

Step 5: Normalize th  as  th= th / ‖th‖. 

Step 6: ph the hth loading vector of X is calculated as ph = XTth(when h=1, p1 is the first 

loading vector of X). 

Step 7: qhthe hth loading vector of Y is calculated as qh = YTth. (when h=1, q1 is the first 

loading vector of Y). 
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Step 8: Deflated covariance matrix Sh+ 1 is calculated Sh+1 = Sh – vh(vh
T Sh), where                                        

vh= ph(for h = 1)and vh= ph– Vh-1(V h-1
Tph) for a >  1 with Vh - 1= (v1, v2, … , vh - 

1). 

Steps 2 to 8 are repeated till Z components are extracted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Flowchart for SIMPLS algorithm 
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As SIMPLS is very popular technique, and we have based our research on it. A C code 

is ported to the NIOS-II platform to implement the SIMPLS. Figure 6.1 gives the 

flowchart to implement SIMPLS 

6.3 ParLes Software for Preliminary Analysis 

ParLes is a shareware intends to be used for research and teaching purpose in 

spectroscopy and chemometric[13]. ParLes provides a lucid graphical user interface to 

implement various multivariate modeling techniques as well as various assessment 

statistics. ParLes is also intended for use in modeling in real time in field and laboratory 

setup. 

The software structure is given by figure 6.2, here data import operation are shown by 

double lines, whereas rectangles with rounded edges represent assessment statistic 

offered by the software, circles represent the chemometric capabilities of the software, 

and trapeziums represent the saving option of the output of the analysis  

                            

Figure 6.2: ParLes software structure  
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ParLes software was developed by Raphael A. Viscarra Rossel in LabVIEW, and 

provides a simple Graphical User Interface (GUI) to perform many multivariate 

algorithms. Figure 6.3 shows the opening screen of the GUI. Subsequently we need to 

choose the “Import data modeling” tab to import the data into the software as shown in 

figure 6.4. The spectroscopic data needs to be in the tab delimited ASCII format. The 

path of the file must be specified in the space provided under “Get file for modeling”. 

Once that is done we need to specify the number of y variables present in the tab 

delimited ASCII file and to be considered for modeling. Once that is done the data is 

imported in the software by hitting the “import data for modeling button”.  

 

Figure 6.3: Opening screen of the ParLes software 
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Figure 6.4: Import data for modeling in ParLes 

Various preprocessing and transformation techniques are offered by the ParLes software 

(version 3.1), these can be accessed under the data manipulation tab in ParLes. Various 

transformations of reflectance spectra can be affected such as reflectance spectra (R) to 

log (1/R) or Kubelka Munk units. Also reverses also can be affected that is, log (1/R) to 

R units.  

Various implement preprocessing such as multiplicative scatter correction (MSC), 

standard normal variate (SNV) transform and wavelet detrending can be performed. 

Different filtering methods such as median, Savitzky-Golay filtering are provided along 

with differentiation of spectra. Pretreatment of data is supported such as mean centering, 

variance scaling as can be seen in figure 6.5. Of the above options offered we have only 

mean centered out data. 
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Figure 6.5: Data Manipulation in ParLes 

Different modeling techniques are supported by the software such as PCA, PLSR, 

PLSR cross validation, Bagging-PLSR and separate tabs are provided for each of the 

modeling technique. Under the “PLSR Model” tab the parameters needed to build a 

PLSR model are specified as shown in figure 6.6. The number of factors required can be 

selected using the slide bar below “Select No. of factors for PLSR. The button “Run 

PLSR modeling” is used to build the model. Once the model is built we can use the 

various visualizations offered by the software various such as factors scores plot, plot of 

t versus y, B coefficients, and explained variance to better understand the model. The 

Explained variance visualization displays the percentage of variance explained by each 

of the factors generated. 
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 Figure 6.6: PLSR in ParLes 

The “Import data prediction” tab is utilized to import the spectroscopic data of unknown 

samples for prediction using the built PLSR calibration model. Again, the prediction of 

spectroscopic data needs to be in the tab delimited ASCII format. The path of the file 

must be specified in the space provided under “Get file for prediction”. We need to 

specify the number of y variables present in the data to be imported and then hit the 

“Import data for prediction” button. Once the data is imported for prediction we must 

use the “PLSR predict” tab for prediction as shown in figure 6.7. The prediction is done 

by hitting the button” Run prediction”. The RMSE for prediction is displayed on the 

right hand side under Assessment statistics. 
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Figure 6.7: PLSR Prediction in ParLes 
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In order to implement a successful non-invasive glucose sensing we need to detect 

transmitted near infrared radiation through the human tissue and the glucose absorption 

signatures. As we are implementing the sensing in the combination band, the 

overlapping signatures of the other human tissue constituents and the random 

fluctuation due to noise must be isolated.  PLSR is a versatile technique which aids in 

the above process.  

In this research work a system has been developed to estimate the glucose concentration 

non-invasively on an Altera NIOS-II soft-core platform using a DE-0 Nano board 

having a Cyclone-IV FPGA (EP4CE22F17C6N). We have used fixed wavelengths to 

probe the sample. We have focused out research in the combination band region which 

spans 2000 to 2500nm. A detailed study was carried out to test the robustness and 

performance of PLSR algorithm to estimate glucose concentration of unknown samples 

when subjected to input with absorbance at varying number of wavelengths points, First 

with the full absorbance spectrum, then with 10 fixed wavelengths and then with 5 fixed 

wavelengths. C code to implement PLSR using SIMPLS algorithm was ported to the 

NIOS-II platform in this research work. The C code is given at Annexure I. 

7.1 Building of Multivariate Calibration Model  

PLSR is a popular method used to analyze multivariate spectroscopic data and is 

discussed earlier in the chapter 6. PLSR is an extension of multiple linear regressions 

and widely used as exploratory analysis of the predictor variables and to identify 

outliers in the data. Laboratory samples having 5 major blood constituents namely 

glucose, urea, lactate, ascorbate and analine were prepared to simulate the blood matrix. 

Absorbance spectra of these 64 laboratory samples were recorded on a Jasco V-770 

spectrophotometer. This spectrophotometer is equipped with a halogen lamp and a PbS 

detector for NIR range. The spectra were recorded in the range of 2050-2350nm having 

a total of 301 number of wavelength points. These constituents of the samples were 

made to have physiological relevant concentrations. Spectra of typical 15 of the above 

64 samples are shown in the figure 7.1 and the corresponding concentration are 

tabulated below in table 7.1. 
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Figure 7.1: Spectra of typical 15 samples 

Table 7.1: Concentration of typical 15 samples 

Sample 
No 

All above reading are in mg/dL 

Urea Lactate Ascorbate Analine Glucose 

1 11 12 2 10 70 

2 11 22 2 10 70 

3 20 12 2 10 70 

4 20 22 5 28 70 

5 11 12 5 10 100 

6 11 22 5 10 100 

7 20 22 2 28 100 

8 11 12 2 28 200 

9 11 22 2 10 200 

10 20 12 5 28 200 

11 20 22 5 28 200 

12 11 12 5 28 280 
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13 11 22 5 10 280 

14 20 12 5 10 280 

15 20 22 5 28 280 

 

The physiological relevant concentration ranges which were used in our research are 

given adjacent to the constituent. 

 Alanine (10–28 mg/dL) 

 Urea (11 –20 mg/dL) 

 Lactate (12–22 mg/dL) 

 Glucose (70–280 mg/dL) 

 Ascorbate (2–5 mg/dL) 

 

Three different cases were investigated using the same 64 absorbance recorded spectra. 

The different cases which were investigated are, 

Case 1: Building multivariate PLSR model for glucose estimation using entire 

absorbance spectra in the range of 2050 – 2350nm. 

Case2: Building multivariate PLSR model for glucose estimation using absorbance at 

10 fixed wavelengths corresponding to glucose absorbance peaks, valleys, and slopes. 

Case3: Building multivariate PLSR model for glucose estimation using absorbance at 5 

fixed wavelengths corresponding to glucose absorbance peaks and valleys only. 

Of the above 64 samples, 57 were used for the calibration of PLSR model and 7 

samples were used as prediction set. For all the above cases a five component PLSR 

model was built. For each of the cases we have calculated the error and the percent 

error. 

7.1.1 PLSR model using Full Spectra (Case 1): Glucose estimation using entire 

absorbance spectra in the range of 2050 – 2350nm. 

In this case, we have investigated the performance of the multivariate PLSR algorithm 

for estimating the glucose concentration when we use the entire spectrum. Here we 

consider the first dataset to have the entire absorbance spectra of the above samples. It 
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must be noted that we used the entire range of points from 2050-2350nm a total of 301 

sample points in each spectrum. 57 of the samples spectra were used to build the PLSR 

calibration model. The calibration model was built using 5 factors. The remaining 7 

samples spectra were used to test the prediction of the calibrated model, as such these 7 

samples were presented to the model as samples with unknown concentration and the 

predicted concentration were noted and compared with the concentration determined 

using the reference method. The PLSR model extracts five factors form a huge number 

of correlated variables, which models the covariance between the independent variables 

(spectral data)and the response variables (concentration data). The predicted values of 

these unknown samples are tabulated in the table 7.2 

Table 7.2: Prediction results for case 1 

Sr. 
no. 

Actual 
Concentration in  mg/dL Predicted 

Glucose 
in mg/dL 

Error 
Percent 
Error 

Urea Lactate Ascorbate Analine Glucose 

1 20 12 5 28 70 70.20 0.20 0.29 

2 20 12 5 10 100 117.04 17.04 17.04 

3 11 22 2 10 200 187.55 12.45 6.22 

4 11 12 5 28 280 288.16 8.16 2.91 

5 20 22 5 28 280 281.08 1.08 0.39 

6 20 12 2 28 200 190.10 9.90 4.95 

7 11 12 5 10 100 118.53 18.53 18.53 

 

7.1.2 PLSR model using fixed wavelengths (Case 2): Glucose estimation using 

absorbance at 10 fixed wavelengths corresponding to glucose absorption peaks, 

valleys, and slopes. 

In this case, the investigation was done for the performance and robustness of PLSR 

model for the estimation of glucose when we use 10 fixed wavelengths. These 10 fixed 

wavelengths correspond to the peaks, valleys and slopes of the glucose absorbance 

spectrum as shown in figure 7.2. It can be seen that, as the glucose concentration 
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changes, the slopes before and after the peaks change. Hence it can be assumed that the 

slopes of the peaks and valleys correlate with the glucose concentration. Also, it can be 

seen from figure 7.2 that as the concentration of glucose increases, the height of the 

peaks increases. Instead of using the entire spectrum with a huge number of points we 

have attempted to build a calibration model using these fixed wavelengths. The precise 

values of wavelength chosen are 2085, 2127, 2180, 2246, 2264, 2278, 2290, 2312, 2324 

and 2332nm and are represented by bars on the glucose absorbance spectra depicted in 

figure 7.2. 

A separate second dataset is built using the same above absorbance spectra of the 64 

laboratory samples. Each sample in the dataset contains absorbance at only 10 fixed 

wavelengths instead of the entire spectrum. From this new dataset 57 samples are used 

for building the calibration model and 7 samples are used to testing the prediction 

capability of the model. We have built the calibration model to have five factors. The 7 

test samples were given to the model as unknowns and the predicted glucose 

concentration were recorded and tabulated in table 7.3. 

 

Figure 7.2: Pure glucose spectra at different concentrations 
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Table 7.3: Prediction results for case 2 

Sr. 
no. 

Actual 
Concentration in  mg/dL Predicted 

Glucose 
in mg/dL 

Error 
Percent 
Error 

Urea Lactate Ascorbate Analine Glucose 

1 20 12 5 28 70 60.96 9.04 12.91 

2 20 12 5 10 100 119.99 19.99 19.99 

3 11 22 2 10 200 195.33 4.67 2.34 

4 11 12 5 28 280 279.49 0.51 0.18 

5 20 22 5 28 280 275.99 4.01 1.43 

6 20 12 2 28 200 195.70 4.30 2.15 

7 11 12 5 10 100 120.63 20.63 20.63 

7.1.3 PLSR model using reduced wavelengths (Case 3): Glucose estimation using 

absorbance at 5 fixed wavelengths corresponding to glucose absorption peaks and 

valleys only. 

Here, we have investigated the robustness and perfomance of the PLSR model when 

subjected to a input  dataset with absorbance at only 5 wevelengths corresponding to the 

glucose peaks and valleys in the combination band region. As explained earler the 

height of the glucose peaks change as the concentration changes, as such the peaks and 

valleys  wavelengths of  glucose contain information specific to its concentration. 

Hence, we have chosen these five wavelenghts to futher test the feasiblity and 

robustness of the method. The precise values of wavelengths which were chosen are 

2127, 2246, 2278, 2312 and 2332nm. 

Again a separate third dataset is built using the same above absorbance spectra of the 64 

laboratory aqueous samples. From this new dataset 57 samples are used for building the 

calibration model and 7 samples were kept behind to test the prediction capability of the 

model. The calibration model was built by extracting five factors. The 7 test samples 

were given to the model as unknowns and the predicted glucose concentration were 

recorded and tabulated in table 7.4. 
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Table 7.4: Prediction results for case 3 
 

Sr. 
no. 

Actual 
Concentration in  mg/dL Predicted 

Glucose 
in mg/dL 

Error 
Percent 
Error 

Urea Lactate Ascorbate Analine Glucose 

1 20 12 5 28 70 56.74 13.26 18.95 

2 20 12 5 10 100 120.63 20.63 20.63 

3 11 22 2 10 200 199.33 0.67 0.33 

4 11 12 5 28 280 275.18 4.82 1.72 

5 20 22 5 28 280 273.12 6.88 2.46 

6 20 12 2 28 200 197.89 2.11 1.05 

7 11 12 5 10 100 121.18 21.18 21.18 

7.2 Evaluation Criteria 

The PLSR model for glucose estimation is assessed using Root Mean Square Error 

(RMSE) of the prediction. RMSE is calculated for each of the three cases. RMSE can be 

calculated using equation 7.1 

���� ���� ������ ����� =  �
�

�
∑ (��� − ��

�
��� )�        (7.1) 

Where ŷi is the ith predicted value and yi is the actual observed value and N is the sample 

size. Table 7.5 gives the calculated values of RMSE for each of the three cases which 

were investigated.  

Table 7.5: Results for the three cases investigated 

Investigated Cases RMSE 

Case 1: Multivariate PLSR model for 

glucose estimation using entire 

absorbance spectra (2050 – 2350nm)  

11.67 

Case 2: Multivariate PLSR model for 

glucose estimation using absorbance at 
11.73 
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10 fixed wavelengths corresponding to 

glucose absorption peaks, valleys, and 

slopes 

Case 3: Multivariate PLSR model for 

glucose estimation using absorbance at 5 

fixed wavelengths corresponding to 

glucose absorption peaks and valleys 

only 

12.68 

 

In each of the three cases there were 7 samples in the prediction data set. The observed 

value and the predicted values were used to calculate the RMSE. In case 1, where a 

multivariate PLSR model for glucose estimation was built using the entire absorbance 

spectra in the range of 2050 – 2350nm produced an RMSE of prediction of 11.67. Next 

in case 2, where a multivariate PLSR model for glucose estimation was built using 

absorbance at 10 fixed wavelengths corresponding to glucose absorbance peaks, valleys, 

and slopes produced and RMSE of prediction of 11.73. In case 3, where a multivariate 

PLSR model for glucose estimation was built using absorbance at 5 fixed wavelengths 

corresponding to glucose absorbance peaks and valleys only, gave an RMSE of 

prediction of 12.68. The RMSE has increased form 11.67  to 12.68 when we went form 

case 1 to case 3, however the increase in RMSE is not found to be drastic and can be 

improved by using high intensity sources such as high intensity LEDs which offer high 

SNR as compard to the sources on the spectrophotometer. 

7.3 Accuracy Testing of the Models 

A thorough analysis of model accuracy on the basis of clinically relevant criteria needs 

to be carried out. To determine the clinical accuracy afforded by a glucose measuring 

technique we use error grids. The Primary method to measure the clinical accuracy of 

the glucose measuring device is Clarke Error Grid Analysis (EGA) which has become a 

gold standard. It was introduced by a team of five experts of university of Virginia in 

the year 1987 [1]. This method of representation uses a two-dimensional plot, where the 

X-axis represents the glucose values determined by a reference method and the Y-axis 

represents the values which are predicted by the technique under test. The grid is 
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divided into zones which indicate the amount of error from the reference reading. It is 

possible to analyze the distribution of points in the different zones of the grid and then 

quantify the degree of accuracy offered by the particular glucose measuring device or 

method. The diagonal of the EGA represent a perfect agreement between the predicted 

and reference values whereas the values above and below the diagonal represent 

overestimation and underestimation. The different zones represent different degree of 

accuracy and inaccuracy of glucose estimation. This method aims at maintaining the 

blood glucose levels between 70mg/dL - 180mg/dL and based on this assumption, the 

user will have to correct the values which are outside the range. 

Zone A contain those values which are within 20% of the reference and also when the 

values lie in the hypoglycemic range when the reference is found to be less than 

70mg/dL.  The values are considered as clinically accurate as such these reading would 

result in a correct diagnosis. 

Zone B contains those values which differ by greater than 20% from the reference value 

but result into only benign or no treatment.  

Zone C contains those values which would lead to overcorrection, if the method was 

used for clinical practice. This overcorrection would result into glucose value falling 

below 70mg/dL or rise above 180mg/Dl. 

Zone D represents contains those values which would lead to dangerous failure to 

detect glucose values outside the range of interest. 

Zone E contains the values which would give erroneous treatment and would confuse 

treatment of hypoglycemia for hyperglycemia and vice-versa. 

The values which lie in the zones A and B are clinically acceptable, but the values 

which lie in zones C, D, E can be regarded as potentially dangerous and there is a 

likelihood of making clinically significant mistakes [2][3]. For instance, if the patient’s 

blood glucose is low, and the device being used to test says that it is high, the patient 

might take more insulin, lose consciousness and place his life in danger. On the other 

hand, if the true glucose value is high, and the device reads low, the patient might eat 

some food or drink fruit juice. The model accuracy testing is done using Clarke EGA 

for the three cases.  
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7.4.1 Accuracy of Model built using full Spectra in the range of 2050 – 2350nm 

As discussed in section 7.1.1, the entire absorbance spectra of the samples were used for 

generation of the PLSR model. The prediction results are plotted on a Clarke EGA in 

figure 7.3 

 

 

 

 

 

 

 

 

 

Figure 7.3: Clarke Error Grid Analysis for case 1 

As can be seen in the Clarke EGA all the 7 samples used to test the robustness for 

prediction of the PLSR model lie in the A region.  
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7.4.2 Accuracy of Model built using fixed wavelengths corresponding to glucose 

absorption peaks, valleys, and slopes. 

Here we have used the 10 fixed wavelengths corresponding to absorption peaks, valleys 

and slopes of glucose to build the PLSR model. The prediction result of 7 prediction 

samples is plotted on the Clarke EGA in figure 7.4. 

 

 

 

 

 

 

 

 

 

Figure 7.4: Clarke Error Grid Analysis for case 2 

Here the EGA analysis shows that all the points lie inside the zone A except for one 

which lies on the boarder of zone A. 
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7.4.3 Accuracy of Model built using reduced wavelengths corresponding to glucose 

absorption peaks and valleys.  

Here we have used the only the 5 fixed wavelengths corresponding to absorption peaks 

and valleys as discussed in the section 7.1.3 to build the PLSR model. The prediction 

result of 7 prediction samples is plotted on the Clarke EGA in figure 7.5. 

 

 

 

 

 

 

 

 

 

Figure 7.5: Clarke Error Grid Analysis for case 3 

Here we found that out of the 7 samples, 5 lie in the zone A and 2 lie on the border of 

zone A. 

7.5 Conclusion 

In this research work I have extended the previous work done by our research 

group. A portable embedded solution was developed featuring a NIOS-II soft-core. It 

was built on a DE-0 Nano board having a Cyclone-IV FPGA. The focus of our attention 

was the combination band due to the relative transparency afforded by water in the 

human tissue. I have ported a C code to implement PLSR using SIMPLS algorithm on 

the NIOS-II platform. A rigorous study was performed to test the robustness and 

performance of PLSR algorithm for estimation of glucose concentration of unknown 

samples when subjected to input with absorbance at varying number of wavelengths 

points, First with the full absorbance spectrum, then with 10 fixed wavelengths and then 
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with 5 fixed wavelengths. The RMSE was found to be 11.67, 11.73 and 12.68 

respectively for the three cases. The RMSE and the Clarke error grid analysis show that 

it is possible to estimate glucose using five fixed wavelengths corresponding to the 

absorbance peaks and valleys. 

The aim here was to make a portable low power affordable device for glucose 

estimation. From the above results we have shown that we can reduce the number of 

wavelengths form a full spectrum (2050-2350nm) to 5 wavelengths without 

significantly affecting the accuracy. But by doing so we have significantly reduced the 

hardware requirements such as use of a white light source which is more power 

consuming, secondly, we have decreased the computation time and also the hardware 

resources by manifold. It is also now possible to replace these five fixed points by high 

intensity LEDs which can further improve the SNR thereby reducing the noise and 

thereby reducing the RMSE. 

7.6 Future scope 

As discussed, the SNR of the design can be imporved by using high intensity sources, 

the white light source can be replaced with high intensity LEDs to probe the sample. 

These sources are now available in the market at reasonable cost. Once this LED system 

is succesfully designed, PLSR algorithm can be implemented to validate its 

performance for  glucose estimation. Investigation must be carried out on the front of 

finding out the influene of other blood constiuesnts using the LED system. One can 

intend to increase the sample complexity used in the present approach by using blood 

samples and then to use actual human tissue in a phased manner. 
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ANNEXURE II 

Program for LCD 

#include"altera_avalon_lcd_16207_regs.h" 

void lcd_int() 

{ 

usleep(15000); 

IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X38); 

usleep(4100); 

IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X06); 

usleep(4100); 

IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X0E); 

usleep(4100); 

IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X01); 

usleep(2000); 

} 

int main() 

{ 

int i; 

char j[16]=" TEST "; 

lcd_int(); 

 while(1) 

 { 

  IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X80); 

  usleep(2000); 

  for(i=0;i<16;i++) 

  { 

   IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,j[i]); 

   usleep (30000); 

  } 

  

 } 

return 0; 

} 
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ANNEXURE III 

Program for ADC interface 

#include "altera_up_avalon_adc.h" 

#include"altera_avalon_lcd_16207_regs.h" 

 

void lcd_int() 

{ 

usleep(15000); 

IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X38); 

usleep(4100); 

IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X06); 

usleep(4100); 

IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X0E); 

usleep(4100); 

IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X01); 

usleep(2000); 

} 

 

int main() 

{ 

int i; 

alt_up_adc_dev *adc; 

unsigned int thousand, hundred, ten, unit; 

int count; 

int data; 

int channel; 

lcd_int(); 

 

while(1) 

{ 

  data = 0; 

channel = 0; 

adc = alt_up_adc_open_dev ("/dev/ADC"); 

while (adc!=NULL) 

{ 

alt_up_adc_update (adc); 

count += 1; 

data = alt_up_adc_read (adc, channel); 

data=((data*3300)/4095); 

thousand=(data/1000)+48; 
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hundred=((data/100)%10)+48; 

ten=((data/10)%10)+48; 

unit=(data%10)+48; 

 

 IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0XC0); 

   usleep(2000); 

   IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,thousand); 

   usleep (30000); 

   IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,hundred); 

   usleep (30000); 

   IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,ten); 

   usleep (30000); 

   IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,unit); 

   usleep (30000); 

   IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,'m'); 

   usleep (30000); 

   IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,'g'); 

   usleep (30000); 

   IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,'/'); 

   usleep (30000); 

   IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,'d'); 

   usleep (30000); 

   IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,'L'); 

   usleep (30000); 

} 

} 

return 0; 

} 

 


