ON A PSEUDO FIBONACCI SEQUENCE

By

${ }^{1}$ Department of Mathematics, G.V.M's College of Commerce \& Economics
Ponda - 403401,Goa, India
Email:dbyte09@gmail.com
${ }^{2,3}$ Department of Mathematics, Goa University, Goa - 403206, India
Email:tamba@unigoa.ac.in; ysvgoa@gmail.com
(Received : October 23, 2020 ; Revised: October 26, 2020)

Abstract

This article deals with a pseudo Fibonacci sequence and its properties. Some well known identities are obtained in terms of the identities of generalised Fibonacci sequence. Modular properties different from those of Fibonacci sequence are reported. 2010 Mathematics Subject Classifications: 11B39, 11B50. Keywords and phrases: Pseudo Fibonacci Sequence, Generalised Fibonacci sequence, modulo properties, period of the sequence.

1 Introduction

The Fibonacci sequence $\left\{F_{n}\right\}$ is defined by the recurrence relation
(1.1) $F_{n+2}=F_{n+1}+F_{n}, n \geq 0$,
with $F_{0}=0$ and $F_{1}=1[3,10]$. This sequence has been extended in many ways [See [2,8] and references therein]. In [1], generalised Fibonacci sequence called B- Fibonacci sequence, defined by
(1.2) ${ }^{f} B_{n+2}=a^{f} B_{n+1}+b{ }^{f} B_{n}$,
with ${ }^{f} B_{0}=0,{ }^{f} B_{1}=1$, is discussed. In [4], Phadte - Pethe has introduced pseudo Fibonacci sequence $\left\{g_{n}\right\}$, defined by the non-homogeneous recurrence relation,
(1.3) $g_{n+2}=g_{n+1}+g_{n}+A t^{n}, n \geq 0$
with $g_{0}=0$ and $g_{1}=1$. Here $A \neq 0$ is a constant and t is a real number such that $t \neq 0, \lambda_{1}, \lambda_{2}$ where λ_{1}, λ_{2} are roots of the equation $\lambda^{2}-\lambda-1=0$. g_{n} is called the $n^{\text {th }}$ pseudo Fibonacci number. First few pseudo Fibonacci numbers are:
$g_{0}=0, \quad g_{1}=1, \quad g_{2}=1+A, \quad g_{3}=2+A+A t$ and $g_{4}=3+2 A+A t+A t^{2}$.
Observe that each pseudo Fibonacci number is such that its first term is a Fibonacci number and the remaining terms form a polynomial in t whose coefficients are A times Fibonacci numbers. More literature on pseudo Fibonacci sequence and its extensions can be seen in [5, 6, 7].

In this paper we shall consider pseudo Fibonacci sequence $\left\{G_{n}\right\}$ defined by the non-homogeneous recurrence relation
(1.4) $G_{n+2}=a G_{n+1}+b G_{n}+A(-1)^{n}, n \geq 0$,
with $G_{0}=\omega, G_{1}=1-\omega$ and study its properties. We assume that $a, b \in \mathbb{Z}$ and A be a constant such that $\omega=\frac{A}{1+a-b} \in \mathbb{Z}$. Following is immediate.
Theorem 1.1 The $n^{\text {th }}$ term G_{n} of (1.4) is given by
(1.5) $G_{n}={ }^{f} B_{n}+\omega(-1)^{n}$,
where ${ }^{f} B_{n}$ is defined by (1.2).
We list below some identities for the sequence G_{n}. These idenetities can be obtained by using corresponding identities for ${ }^{f} B_{n}$. [1]

Theorem $1.2 G_{n}$ satisfies following identities
i) $G_{n+1} G_{n-1}-G_{n}^{2}=(-1)^{n} b^{n-1}-\omega(-1)^{n}\left(G_{n-1}+2 G_{n}+G_{n+1}\right)$
ii) $\sum_{r=0}^{n} G_{r}=\frac{b G_{n}+G_{n+1}-\omega(-1)^{n}(b-1)-1}{a+b-1}+\omega \epsilon_{n}$

$$
\epsilon_{n}=\left\{\begin{array}{l}
0, \text { if } n \text { is odd } \\
1, \text { if } n \text { is even }
\end{array}\right.
$$

iii) $G_{n+1} G_{m}-G_{n} G_{m+1}$ $=(-b)^{n} G_{m-n}+\omega\left\{\left(G_{n+1}+G_{n}\right)(-1)^{m}+\left(G_{m+1}-G_{m}\right)(-1)^{n}-\left((-b)^{n}+2(-1)^{m+n}\right)\right\}$.
iv) $G_{n}^{2}-G_{n+r} G_{n-r}=(-b)^{n-r} G_{r}^{2}+\omega\left[2 G_{n}-(-1)^{-r} G_{n+r}-(-1)^{r} G_{n-r}\right](-1)^{n}+$ $(-b)^{n-r} \omega^{2}-2 \omega(-b)^{n-r}(-1)^{r} G_{r}$.

2 Modulo Properties

In this section we study some modulo properties of the sequence $\left\{G_{n}\right\}$. We have the following result.
Theorem 2.1 Let $\pi(m)$ be the period of G_{n} modulo m. Let $e \geq 1$ be given. Then
i) For odd prime $p, \pi\left(p^{e}\right)=p^{e-e^{\prime}} \pi(p)$, where $1 \leq e^{\prime} \leq e$ is maximal so that $\pi\left(p^{e^{\prime}}\right)=\pi(p)$.
ii) For $p=2$ and $e \geq 2, \pi\left(2^{e}\right)=2^{e-e^{\prime}} \pi(4)$, where $2 \leq e^{\prime} \leq e$ is maximal so that $\pi\left(2^{e}\right)=\pi(4)$.

Proof. Let $\pi^{\prime}(m)$ be the period of $\left\{{ }^{f} B_{n}\right\}$ modulo m. $\pi^{\prime}(m)$ is always even.
Now $G_{0}={ }^{f} B_{0}+\omega=\omega$ and $G_{1}={ }^{f} B_{1}-\omega=1-\omega$.
Hence $G_{\pi^{\prime}(m)}={ }^{f} B_{\pi^{\prime}(m)}+\omega(-1)^{\pi^{\prime}(m)} \equiv \omega(\bmod m)$ and
$G_{\pi^{\prime}(m)+1}={ }^{f} B_{\pi^{\prime}(m)+1}+\omega(-1)^{\pi^{\prime}(m)+1} \equiv 1-\omega(\bmod m)$ so that the period
$\pi^{\prime}(m)$ of ${ }^{f} B_{n}$ and $\pi(m)$ of G_{n} are same. Now the result follows from Theorem 2 of [9].
Remark 2.1 Note that if three consecutive values of G_{n} modulo m are same, then the remaining values repeat. This is different from Fibonacci sequence where two consecutive values of F_{n} modulo m are same then the remaining values repeat.

We now consider a particular case of $\left\{G_{n}\right\}$ with $a=1, b=2$, and $A=1$. For this, Table 2.1 below gives $G_{n}(\bmod n)$.

Using Table 2.1, we can state the following results.

Proposition 2.1

$G(n)= \begin{cases}0 & \bmod 3 \text { if } n \equiv 0,5,6 \bmod 8, \\ 1 & \bmod 3 \text { if } n \equiv 1 \quad \bmod 8, \\ 2 & \bmod 3 \text { if } n \equiv 2,3,4,7 \bmod 8 .\end{cases}$

Proposition 2.2

$G(n)=n \bmod 4$.

Proposition 2.3

$$
G(n)= \begin{cases}0 & \bmod 5 \text { if } n \equiv 0,8,17,21,22 \bmod 24, \\ 1 & \bmod 5 \text { if } n \equiv 1,4,6,7,13,14,19 \bmod 24, \\ 2 & \bmod 5 \text { if } n \equiv 2,5,9,16,18 \bmod 24, \\ 3 & \bmod 5 \text { if } n \equiv 10,11,12,15,20 \bmod 24, \\ 4 & \bmod 5 \text { if } n \equiv 3,23 \bmod 24 .\end{cases}
$$

Proposition 2.4

$G(n)= \begin{cases}0 & \bmod 6 \text { if } n \equiv 0,6 \bmod 8, \\ 1 & \bmod 6 \text { if } n \equiv 1 \bmod 8, \\ 2 & \bmod 6 \text { if } n \equiv 2,4 \bmod 8, \\ 3 & \bmod 6 \text { if } n \equiv 5 \bmod 8, \\ 5 & \bmod 6 \text { if } n \equiv 3,7 \bmod 8 .\end{cases}$

Table 2.1: $G_{n}(\bmod \mathrm{n})$ for $a=1, b=2$ and $A=1$

n	G_{n}	mod 3	$\bmod 4$	$\bmod 5$	mod 6	$\bmod 7$	$\bmod 8$	$\bmod 9$	mod10	mod15
0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2
3	-1	2	3	4	5	6	7	8	9	14
4	-4	2	0	1	2	3	4	5	6	11
5	-3	0	1	2	3	4	5	6	74	12
6	6	0	2	1	0	6	6	6	6	6
7	11	2	3	1	5	4	3	2	1	11
8	0	0	0	0	0	0	0	0	0	0
9	-23	1	1	2	1	5	1	4	7	7
10	-22	2	2	3	2	6	2	5	8	8
11	23	2	3	3	5	2	7	5	3	8
12	68	2	0	3	2	5	4	5	8	8
13	21	0	1	1	3	2	5	3	1	6
14	-114	0	2	1	0	5	6	3	6	6
15	-157	2	3	3	5	4	3	5	3	8
16	72	0	0	2	0	2	0	0	2	12
17	385	1	1	0	1	0	1	7	5	10
18	242	2	2	2	2	4	2	8	2	2
19	-529	2	3	1	5	3	7	2	1	11
20	-1012	2	0	3	2	3	4	5	8	8
21	45	0	1	0	3	3	5	5	0	0
22	2070	0	2	0	0	5	6	0	0	0
23	1979	2	3	4	5	5	3	8	9	14
24	-2160	0	0	0	0	3	0	0	0	0
25	-6119	1	1	1	1	6	1	1	1	1

Proposition 2.5

$G(n)= \begin{cases}n & \bmod 8 \text { if } n \not \equiv 3,7 \bmod 8, \\ 3 & \bmod 8 \text { if } n \equiv 7 \bmod 8, \\ 7 & \bmod 8 \text { if } n \equiv 3 \bmod 8 .\end{cases}$

Proposition 2.6

$G(n)= \begin{cases}0 & \bmod 9 \text { if } n \equiv 0,8,16 \bmod 24, \\ 1 & \bmod 9 \text { if } n \equiv 1 \bmod 24, \\ 2 & \bmod 9 \text { if } n \equiv 2,7,19 \bmod 24, \\ 3 & \bmod 9 \text { if } n \equiv 13,14 \bmod 24, \\ 4 & \bmod 9 \text { if } n \equiv 9 \bmod 24, \\ 5 & \bmod 9 \text { if } n \equiv 4,10,11,12,15,20 \quad \bmod 24, \\ 6 & \bmod 9 \\ 7 & \text { if } n \equiv 5,6 \bmod 24, \\ 7 & \bmod 9 \text { if } n \equiv 17 \bmod 24, \\ 8 & \bmod 9 \text { if } n \equiv 3,18,23 \bmod 24 .\end{cases}$

Proposition 2.7

$$
G(n)= \begin{cases}0 & \bmod 10 \text { if } n \equiv 0,8,22 \bmod 24, \\ 1 & \bmod 10 \text { if } n \equiv 1,7,13,19 \bmod 24, \\ 2 & \bmod 10 \text { if } n \equiv 2,16,18 \bmod 24, \\ 3 & \bmod 10 \text { if } n \equiv 11,15 \bmod 24, \\ 5 & \bmod 10 \text { if } n \equiv 17,21 \bmod 24, \\ 6 & \bmod 10 \text { if } n \equiv 4,6,14 \bmod 24, \\ 7 & \bmod 10 \text { if } n \equiv 5,9 \bmod 24 \\ 8 & \bmod 10 \text { if } n \equiv 10,12,20 \bmod 24 \\ 9 & \bmod 10 \text { if } n \equiv 3,23 \bmod 24\end{cases}
$$

Proposition 2.8

$$
G(n)=\left\{\begin{array}{l}
0 \quad \bmod 15 \text { if } n \equiv 0,8,21,22 \bmod 24, \\
1 \bmod 15 \text { if } n \equiv 1 \bmod 24, \\
2 \bmod 15 \text { if } n \equiv 2,18 \bmod 24, \\
6 \bmod 15 \text { if } n \equiv 6,13,14 \bmod 24, \\
7 \bmod 15 \text { if } n \equiv 9 \bmod 24, \\
8 \bmod 15 \text { if } n \equiv 10,11,12,15,20 \quad \bmod 24, \\
10 \bmod 15 \text { if } n \equiv 17 \bmod 24, \\
11 \bmod 15 \text { if } n \equiv 4,7,19 \bmod 24, \\
12 \bmod 15 \text { if } n \equiv 5,16 \bmod 24, \\
14 \bmod 15 \text { if } n \equiv 3,23 \bmod 24 .
\end{array}\right.
$$

3 Conclusion

A new pseudo Fibonacci sequence is studied whose modular properties are different from those of Fibonacci sequence. Acknowledgements. The authors are very much grateful to the Editor and Reviewers for their valuable suggestions for the improvement of the paper in its present form.

References

[1] S. Arolkar and Y. S. Valaulikar, On an extension of Fibonacci sequence, Bull. Marathawada Math. Soc., 17(1) (2016), 1-8.
[2] D.Kalman and R. Mena, The Fibonacci numbers- Exposed , Math. Mag., 76(3), DOI: 10.2307/3219318, (2003), 167-181.
[3] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, New York, 2001.
[4] C.N. Phadte and S.P. Pethe, On Second Order Non-Homogeneous Recurrence Relation, Annales Mathematicae et Informaticae, 41 (2013), 205-210.
[5] C.N.Phadte, Extended Pseudo Fibonacci Sequence, Bull. Marathwada Math. Soc.,15(2) (2014), 54-67.
[6] C.N. Phadte and Y.S. Valaulikar, Pseudo Fibonacci Polynomials and Some Properties, Bull. Marathwada Math. Soc., 16(2) (2015), 13-18.
[7] C.N. Phadte and Y.S. Valaulikar, On Pseudo Tribonacci Sequence, International Journal of Mathematics Trends and Technology, 31(3)(2016), 195-200.
[8] J. L. Ramírez, Incomplete k-Fibonacci and k-Lucas numbers, Chinese J. of Math., Article ID 107145, DOI: 10.1155/2013/107145, (2013), 7 pages.
[9] M. Renault, The Period, Rank, and Order of the (a, b)-Fibonacci sequence mod m, Math.Mag. 86(5), DOI: 10.4169 math.mag.86.5.372, (2013), 372-380.
[10] S. Vajda, Fibonacci and Lucas numbers and the Golden section: Theory and Applications, Dover Publications Inc, Mineola, New York, 2008.

