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Abstract

Differential equations play an important role in physical processes, chemical processes,
biological processes and also social sciences as well as commerce and finance. A powerful
tool in solving ordinary and partial differential equations is the method of symmetry. By
this method many unfamiliar differential equation can be solved. This method was given
by a Norwegian mathematician Sophus Lie. The method involves some fundamental
ideas which can be easily employed to solve a differential equations.

Symmetries are transformations that leave an object unchanged or invariant. In [48] it
is explained that symmetries are very useful in formulating and exploiting the laws of
nature. The reproducibility of experiments at different times and places heavily rely on
invariance laws. The existence of conservation laws in Physics and Mathematics is an
important implication of symmetry. Nöether’s theorem proved in [47] relates symmetries
and conservation laws. The concept of symmetries has interested scientists from Kepler
— in determining the orbits of planets to Newton — in studying the laws of mechanics as
a symmetry principle. The motivation to study Lie groups is to model the continuous
symmetries of differential equations, in much the same way as finite groups are used in
Galois theory to model the discrete symmetries of algebraic equations.

However, in differential equations, the unknown function and its derivatives are all
evaluated at the same instant t. More general types of differential equations, called
functional differential equations, are ones in which the unknown function occurs with
various different arguments. In Russian literature these are called “differential equa-
tions with deviating arguments ”. The simplest of these are called “delay differential
equations ”(or “differential equations with retarded arguments ”). This basically means
expressing some derivative of the unknown function x at time t in terms of x and its
lower derivatives, if any, at t and earlier instants. Functional differential equations
are further classified as differential difference equations, integro-differential equations,
delay differential equations, neutral differential equations, etc. Functional differential
equations find a wide range of applications in traffic flow problems, signal processing,
control systems, heat transfer problems, population models, evolution of species, prey-
predator models, biological systems, population dynamics, networking problems, study
of epidemics, rolling of ships, electrical engineering, etc [33]. The best known method
to solve delay differential equations is the method of steps. Other methods in solving
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functional differential equations include substitutions, numerical solutions and power
series solutions [12]. The theory on delay differential equations can be found in [15, 21].

The main problems encountered in applying symmetry analysis to functional differential
equations are that:

1. The presence of the delay term in functional differential equations make it seemingly
difficult to solve the higher order and nonlinear equations.

2. Differential equations with deviating arguments do not possess any equivalent
transformations related with the change of the variables – both dependent and
independent. These equivalent transformations could be found for ordinary differ-
ential equations which could reduce them to separable equations, which in turn
were easy to solve.

3. Symmetry analysis cannot be used to explicitly find solutions of many functional
differential equations due to the presence of the delay term.

As there is no analytic method to solve functional differential equations, symmetry
analysis is a powerful tool for studying the properties of the solutions of these functional
differential equations. Such group classification of these functional differential equations
are of great importance to Applied Mathematicians, Physicists, scientists and engineers
in modeling the physical phenomenon under study which in many cases involve delay
differential equations.

The research was carried out with the following objectives:

1. To find a new procedure to get the Lie type invariance condition of first and second
order delay differential equations used in obtaining their equivalent symmetries.

2. To use the newly developed procedure to make a complete group classification of
first and second order neutral differential equations for which there is no literature.

3. To identify if any alternate classification scheme exists. If yes, to develop the
alternate scheme and assess its merits and demerits.

4. To develop a novel approach in obtaining the Lie type invariance condition for first
order partial differential equations with delay. Having developed this, to classify
the Inviscid Burgers’ equation with delay, with respect to an arbitrary and special
case of its differentiable functional. Having done this, to obtain a representation of
its analytic solutions and the reduced equations from its symmetry.

5. To develop a novel approach in obtaining the Lie type invariance condition for
second order partial differential equations with delay. Having developed this, to
classify the wave equation with delay, with respect to an arbitrary and special
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case of its differentiable functional and to obtain the reduced equations from its
symmetries, along with obtaining a representation of its invariant solutions.

Subsequent to this abstract of the thesis, the ideas, terminologies, existing results and
terminologies of group analysis for ordinary and partial differential equations is developed.
The existing approach to classify delay differential equations is researched by defining
an operator equivalent to the canonical Lie Bäcklund operator. This approach uses
an invariant manifold theorem and results in terms with double delay when applied to
higher order equations. We have used this approach to illustrate it only for first order
delay differential equations with constant coefficients, for which there was no existing
literature, in chapter 2. In our study, we have obtained an approach different from the
existing one — using Taylor’s theorem for a function of several variables. We obtain our
determining equations and split them in a manner different from the existing approach
for delay differential equations. In addition, our approach does not result into any terms
with double delay, even when working with higher order equations. In this thesis, using
the approach we have obtained (a Lie type invariance condition for functional differential
equations using Taylor’s theorem for a function of several variables), we have classi-
fied several linear and nonlinear functional differential equations with variable coefficients.

In chapter 3, a Lie type invariance condition for first order linear and nonlinear delay
differential equations with the most general time delay g(t) is developed. This condi-
tion is used to make a thorough group classification of the first order delay differential
equation. Next, we choose the standard time delay of t − r and classify the resulting
delay differential equation. This change in the delay gives us different results. The
classification is generalized in chapter 4 by obtaining a Lie type invariance condition and
making a group classification of first order neutral differential equations with the most
general and standard delay. We also show that if the derivative term with delay vanishes
(that is the neutral differential equations reduces to a delay differential equation), our
results obtained for neutral differential equations agree with our results obtained for
delay differential equations. Examples in both chapters illustrate our theories.

In chapter 5, a Lie type invariance condition for second order linear delay differential
equations with the most standard time delay is developed. The Taylor’s theorem ap-
proach here does not give us any terms with double delay in the determining equations
as seen in the existing literature. We also use certain results to simplify our existing
delay differential equation. The developed condition is then used to make a thorough
group classification of the second order delay differential equation. This classification is
generalized in chapter 6 by obtaining a Lie type invariance condition and making a group
classification of second order neutral differential equations with the most standard time
delay. We also show that if the derivative term with delay vanishes (that is the neutral
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differential equations reduces to a delay differential equation), our results obtained for
for neutral differential equations agree with our results obtained for delay differential
equations. The results obtained herein are an improvement to several well established
results for second order delay differential equations using Lie Bäcklund operators. We
illustrate some practical examples in both chapters.

It may be noted that the drawback of the approach in chapters 2, 3, 4, 5, 6 was that the
inverse of the classification could not be found. We overcome this difficulty in chapter 7
and 8. Differential equations with deviating arguments do not possess any equivalent
transformations related with the change of the variables – both dependent and inde-
pendent. We consider the absence of such equivalent transformations to obtain a basis
for the solvable Lie algebras of such functional differential equations. In chapter 7 we
provide a basis for the Lie algebra given by the first order linear and nonlinear functional
(delay and neutral) differential equations with constant coefficients, for which there is
no existing literature. In chapter 8, with the aid of some existing results to simplify
our equations, we extend our results to second order functional (delay and neutral)
differential equations with constant coefficients. The approach to get to the determining
equations in these two chapters, using Taylor’s theorem is slightly different from those
developed in the preceding chapters. The only drawback in this approach established is
that if it is applied to functional differential equations with variable coefficients, then
solving the resulting splitting equations require certain Computer Algebra Systems.

The theories developed so far was for ordinary functional differential equations. In chap-
ters 9 and 10 symmetry analysis is applied to partial differential equations with delay.
The procedure for establishing the invariance conditions and extended infinitesimals
gets complicated for partial differential equations and requires certain local invertibility.
In chapter 9, group analysis of first order partial differential equations with delay is
discussed and used to obtain symmetries of the Inviscid Burgers’ equation with delay, its
kernel and extensions of the kernel. A Lie type invariance condition by using Taylor’s
theorem for a function of several variables is obtained. Further, representations of ana-
lytic solutions and the reduced equations from the symmetries are obtained. In chapter
10, we establish a Lie type invariance condition for second order partial differential
equations with delay. The symmetries of the wave equation with delay, its kernel and
extensions of the kernel have been found. We make a complete group classification of
the wave equation containing an arbitrary differentiable functional with delay. Further,
the complete set of invariant solutions led by this classification have been found.

Finally, we conclude the thesis with future scope led by this research work which can be
continued by researchers interested in this area.
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Chapter 1
Introduction and Review of Literature

Part of the contents of this chapter are published in
Proceedings of International Conference on Applied

Mathematics and Computational Sciences.
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Chapter 1. Introduction and Review of Literature 2

1.1 What is a Symmetry?

A symmetry is a transformation that leaves an object unchanged or “invariant”. For
example, if we start with an equilateral triangle with the vertices labeled 1, 2, and 3 (see
Figure 1.1), then a reflection through any one of the three bisection axes (see Figure
1.2) or rotations through the angles of 2π

3 and 4π
3 (see Figure 1.3) leaves the triangle

invariant.

Figure 1.1: An equilateral triangle

Figure 1.2: Reflections of an equilateral triangle

Figure 1.3: Rotations of an equilateral triangle through 2π
3 and 4π

3

As another example, consider a disk, which is rotated by an angle δ. Let the points (t, x)
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and (t̄, x̄) lie on the circumference of the circle of radius r. (see Figure 1.4). In terms of the
radius and the angles θ (a reference angle) and θ+δ, (after rotation), we can write these as

t = r cos θ, t̄ = r cos(θ + δ),

x = r sin θ, x̄ = r sin(θ + δ),

which on elimination of θ gives,

t̄ = t cos δ − x sin δ, x̄ = x cos δ + t sin δ. (1.1)

We shall show the invariance of the circle under (1.1). That is, we shall show that
t̄2 + x̄2 = r2 if t2 + x2 = r2. Thus,

t̄2 + x̄2 = (t cos δ − x sin δ)2 + (x cos δ + t sin δ)2

= t2 cos2 δ + x2 sin2 δ − 2tx sin δ cos δ

+ t2 sin2 δ + x2 cos2 δ + 2tx sin δ cos δ

= t2 + x2

= r2

Figure 1.4: Rotations of a circle

As a final example, consider the line x = 1
2 t and the transformation

t̄ = eδt, x̄ = eδx. (1.2)

The line is invariant under (1.2),
For if x̄ = 1

2 t̄, then e
δx = 1

2e
δt if x = 1

2 t.
(See Figure 1.5).
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Figure 1.5: Invariance of the line x = 1
2 t

We shall now illustrate the invariance of an equation. Consider the equation

t2x2 − tx2 + 2tx− x2 − x+ 1 = 0. (1.3)

This equation is invariant under

t̄ = t+ δ, x̄ = x

1− δx. (1.4)

It is easier to write (1.3) as

(
t+ 1

x

)2
−
(
t+ 1

x

)
− 1 = 0. (1.5)

Under the transformation (1.4), the term t+ 1
x

becomes

t̄+ 1
x̄

= t+ δ + 1− δx
x

= t+ δ + 1
x
− δ = t+ 1

x
,

and the invariance of (1.5) readily follows.

Remark 1.1.1. Not all equations are invariant under all transformations.
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Consider the line x− 1 = 3(t− 1) and the transformation given by (1.2). If this were
invariant, then,
x̄− 1 = 3(t̄− 1) if x− 1 = 3(t− 1).
On substituting, we get, eδx− 1 = 3(eδt− 1), which is very clearly not the original line
and hence not invariant under (1.2).

1.2 One-Parameter Group of Transformations

Lie, while investigating differential equations, found it necessary to distinguish between
two approaches given below:

1. The natural approach which deals with the totality of solutions of a given differential
equation.

2. Regarding the differential equation as a surface in the space of independent and
dependent variables together with the derivatives involved in the given equation.

We explain these approaches in the subsequent sections. We formally define a one-
parameter group of transformations as below:

Definition 1.2.1. Consider transformations given by, t̄i = gi(tj , δ), i, j = 1, 2, · · · , n.
where δ is the parameter and these transformations, depend continuously on δ.
Let for each i, gi be a smooth function of the variables tj having a convergent Taylor
series in δ.
We say that this set of transformations form a one-parameter group of transformations
if:

1. (Closure) The product of two transformations of the set is again a transformation
of the set.
That is, if t̄i = gi(tj , δ1), i, j = 1, 2, · · · , n., and t̂i = gi(t̄j , δ2), i, j = 1, 2, · · · , n., are
two transformations of the set corresponding to parameters δ1 and δ2 respectively,
then there exists a parameter δ3, such that t̂i = gi(tj , δ3), i, j = 1, 2, · · · , n.

2. (Identity) Every transformation has an identity.
That is, there is a value of the parameter, say δ = δe, such that
ti = gi(tj , δe), i, j = 1, 2, · · · , n.

3. (Inverse) Every transformation has an inverse.
That is, there exists a parameter, say δ−1, such that
ti = gi(t̄j , δ−1), i, j = 1, 2, · · · , n.

We have the following:

Definition 1.2.2. A real Lie group is a group that is also a finite-dimensional real
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smooth manifold, in which the group operations of multiplication and inversion are
smooth maps. Smoothness of the group multiplication

µ : G×G→ G, µ(t, x) = tx,

means that µ is a smooth mapping of the product manifold G×G into G. These two
requirements can be combined to the single requirement that the mapping (t, x) 7→ t−1x

be a smooth mapping of the product manifold into G.

Example 1.2.1. The rotation matrices form a subgroup of GL(2,R) which is the group
(under multiplication) of 2× 2 real invertible matrices, and is denoted by SO(2,R). It is
a Lie group in its own right. Using the rotation angle δ as the parameter, this group can
be parametrized as follows:

SO(2,R) =


cos δ − sin δ

sin δ cos δ

 : δ ∈ R/2πZ

 .
Addition of the angles corresponds to multiplication of the elements of SO(2,R), and
taking the opposite angle corresponds to inversion. Thus both multiplication and inversion
are differentiable maps.

Remark 1.2.1. The associativity law for groups follows from the closure property.

In general, the order in which we carry out the transformations matter. If the order of
carrying out the transformations is immaterial, then the group is termed as abelian.

Definition 1.2.3. A symmetry group of a differential equation is a group that con-
verts every solution of the equation under consideration into a solution of the same
equation. That is, a symmetry group of a system of differential equations is a group of
transformations mapping every solution to another solution of the same system.

Remark 1.2.2. The terms “groups admitted by differential equations”, “admitted group”
and “symmetry groups” are used interchangeably in literature.

We provide a few examples to illustrate a Lie group:

Example 1.2.2. Consider Figure 1.6.

We shall show that the set of transformations given by t̄ = at, a ∈ R\{0} form a
one-parameter group.

1. Closure. If t̄ = at and t̃ = bt̄, then t̃ = abt. That is, the product of two transforma-
tions in the group result into another transformation of the group.

2. Identity. Clearly 1 is the identity, because when the value of the parameter becomes
equal to 1, the source point t and the image point t̄ coincide.
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Figure 1.6: Scaling group t̄ = at

3. Inverse. As t = 1
a
t̄,

1
a
characterizes the inverse of a.

Remark 1.2.3. We note that if we reparametrize the group by letting a = eδ, then the
group in Example 1.2.2 becomes a Lie group.

Other standard examples of Lie groups include:

Example 1.2.3. t̄1 = t1, t̄2 = t2 + δ is known as a Translation group.

Example 1.2.4. For any constant a, t̄1 = aδt1, t̄2 = aδt2 is known as a Stretching
group.

Example 1.2.5. t̄1 = t1 cos δ − t2 sin δ, t̄2 = t1 sin δ + t2 cos δ is known as a Rotational
group.

For each i, j = 1, 2, · · · , n, the functions gi(tj , δ), are referred to as the global form of
the group.
For two variables (the case for ordinary differential equations, one being dependent while
the other being independent), we shall denote the variables by x and t. Thus, we consider
the transformations

t̄ = f(t, x, δ), x̄ = g(t, x, δ), (1.6)

If we assume that δ is small, then we construct a Taylor series of equation (1.6) about
δ = 0. Therefore,

t̄ = t+ δ

(
dt̄

dδ

)
δ=0

+O(δ2), x̄ = x+ δ

(
dx̄

dδ

)
δ=0

+O(δ2), (1.7)
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where O(δ2) indicates terms involving only powers of δ greater than or equal to two. Let,(
dt̄

dδ

)
δ=0

= ω(t, x),
(
dx̄

dδ

)
δ=0

= Υ (t, x). (1.8)

Then we get,

t̄ = t+ δω(t, x) +O(δ2), x̄ = x+ δΥ (t, x) +O(δ2). (1.9)

Equation (1.9) is referred to as the infinitesimal form of the group.
Further, ω and Υ are called coefficients of the infinitesimal transformations or simply
infinitesimals.

Remark 1.2.4. The crucial property of one-parameter transformation groups is that given
the infinitesimal form of the group we can deduce the global form by integrating the
following autonomous system of differential equations,

dt̄

dδ
= ω(t̄, x̄), dx̄

dδ
= Υ (t̄, x̄), (1.10)

subject to the initial conditions t̄ = t, x̄ = x, when δ = 0.
A proof of this result can be found in [13].

We conclude this section by giving an example of a set of transformations that do not
form a one-parameter transformation group.

Example 1.2.6. Consider the transformations given by t̄ = 1
δ

log(1+δt), x̄ = (1+δt)x.

We see that t = eδt̄ − 1
δ

, x = e−δt̄x̄.

Further,
dt̄

dδ
= 1− δt̄− e−δt̄

δ2 ,
dx̄

dδ
= (1− e−δt̄)

δ
x̄,

and since δ occurs explicitly on the right-hand sides of these equations, the system is non-
autonomous and therefore does not generate a one-parameter group of transformations.
In addition, −δ does not characterize the inverse.

Remark 1.2.5. The infinitesimal transformations given by (1.9) is an Euler finite difference
algorithm for solving the coupled differential equations namely,

dt

ω(t, x) = dx

Υ (t, x) = dδ (1.11)

1.3 Invariant Curves and Families of Curves

An invariant curve C, is one whose points, considered as source points, map into other
points of curve C for all transformations of the group. Thus, C must either be an orbit or
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a locus on which the infinitesimal coefficients ω(t, x) and Υ (t, x) simultaneously vanish.
A one-parameter family of curves can be represented parametrically by the equation
Φ(t, x) = c2, where Φ is the function defining the family and c2 is a parameter that labels
different curves of the family. The family is said to be invariant if the image of each curve
of it is another curve of the family. The condition for this is that, for any fixed value of
δ, the image points (t̄, x̄) satisfy, Φ(t̄, x̄) = c3 when the source points satisfy Φ(t, x) = c2.

Here c3 is different from c2 and depends on c2 and δ.
The representation of the family of curves Φ(t, x) = c2, is not unique and any other
representation Ω(t, x) = c3 for which Ω is a function of Φ, that is, Ω = G(Φ) is equivalent
to Φ(t, x) = c2.

Now,

ωΩt + ΥΩx = ω

[
dG

dΦ
Φt

]
+ Υ

[
dG

dΦ
Φx

]
= (ωΦt + ΥΦx)dG

dΦ

= dG

dΦ
F (Φ),

where F is an arbitrary function.
Choosing G(Φ) =

∫
dΦ

F (Φ) , the right hand side of the above equation becomes equal to
1. Therefore,

ωΩt + ΥΩx = 1 (1.12)

1.4 Invariance of Differential Equations

Having seen in the previous examples that equations can be invariant under a Lie group,
we now provide an example to illustrate the invariance of an ordinary differential equation
under a Lie group.

Example 1.4.1. We shall show that the differential equation given by

dx

dt
= (tx+ 1)3

t5
+ 1
t2

(1.13)

is invariant under t̄ = t

1 + δt
, x̄ = x− δ.

By chain rule,

dx̄

dt̄
= dx̄

dt

/
dt̄

dt

= dx

dt
(1 + δt)2

(1.14)
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The right hand side of equation (1.13) becomes

(t̄x̄+ 1)3

t̄5
=

(
t

1 + δt
(x− δ) + 1

)3

(
t

1 + δt

)5

=

(
tx+ 1
1 + δt

)3

(
t

1 + δt

)5

= (tx+ 1)3

t5
(1 + δt)2.

(1.15)

Hence, the right hand side of equation (1.13) becomes

(t̄x̄+ 1)3

t̄5
+ 1
t̄2

= (tx+ 1)3

t5
(1 + δt)2 + (1 + δt)2

t2
(1.16)

Using equations (1.15) and (1.16) we see that

dx̄

dt̄
= (t̄x̄+ 1)3

t̄5
+ 1
t̄2

if dx

dt
= (tx+ 1)3

t5
+ 1
t2

(1.17)

Consider a first order ordinary differential equation,1

F (t, x, ẋ) = 0. (1.18)

In Lie’s first approach mentioned in Section 1.2, the symmetry group of equation (1.18)
is a one-parameter group of transformations given by equation (1.6) and is called point
transformations (unlike contact transformations, where the transformed values also
depend on the derivative ẋ.) Any solution h(t) of equation (1.18) is converted into a
solution of equation (1.18) in the following way. Consider the integral curve,

x = h(t). (1.19)

Fix the parameter δ in equation (1.6) and apply the transformation given by equation
(1.6) to the integral curve given by equation (1.19). This yields a curve given by,

t̄ = f(t, h(t), δ), x̄ = g(t, h(t), δ), (1.20)

which, according to the first approach, is an integral curve. After elimination of t from

1The notations ẋ means dx

dt
. Similarly the notation ẍ means d2x

dt2 and so on.
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equation (1.20), this curve can be rewritten in the form,

x̄ = H(t̄, δ). (1.21)

Because t̄ is arbitrary we can again denote it by t. Hence, the original solution h(t) of
equation (1.18) is converted by the symmetry group into a one-parameter family of
solutions H(t, δ) of equation (1.18).
We now turn to see why group methods is the only unified understanding as to why
differential equations can be solved.
Consider the first order differential equation

dx

dt
= t2 + x2

tx
. (1.22)

This is a homogeneous differential equation which can be made separable by the substi-
tution v(t, x) = x

t
, which can then be integrated to yield

log t− 1
2

(
x

t

)2
= c1, (1.23)

where c1 denotes an arbitrary constant.
The substitution v(t, x) = x

t
leads to a separable equation for v, because v(t, x) is an

invariant of the Lie group
t̄ = eδt, x̄ = eδx. (1.24)

This is because v(t̄, x̄) = x̄

t̄
= x

t
= v(t, x). It is this property that results in the simplifi-

cation of equation (1.22).
In general, if a differential equation is invariant under a one-parameter group of trans-
formations then the use of an invariant of the group results in a simplification of the
differential equation. The differential equation becomes separable if it is of first order
and the use of an invariant of the group reduces the order of a higher order differential
equation by one.
From equations (1.23) and (1.24) we have,

log t̄− 1
2

(
x̄

t̄

)2
= c1 + δ,

so that the degrees of freedom in the solution given by equation (1.23) resulting from the
arbitrary constant c1 is related to the invariance of the differential equation (1.22) under
the Lie group given by equation (1.24) which is characterized by arbitrary parameter δ.
That is, the Lie group given by equation (1.24) permutes the solution curves given by
equation (1.23).
In general, for every one-parameter group in two variables there are functions u(t, x) and
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v(t, x) such that the group becomes

u(t̄, x̄) = u(t, x), v(t̄, x̄) = v(t, x) + δ. (1.25)

The function u(t, x) is said to be an invariant of the group while together (u, v) are referred
to as the canonical coordinates of the group. Moreover, every first order differential
equation invariant under this group, takes the form in terms of these new variables u
aand v as

dv

du
= φ(u),

and consequently has a solution of the form

v + ψ(u) = c1

for appropriate functions φ(u) and ψ(u).

Example 1.4.2. We shall obtain the canonical coordinates of the one-parameter Lie
group

t̄ = t

1 + δt
, x̄ = (1 + δt)2x. (1.26)

The infinitesimal form of the group is given by,

t̄ = t− δt2 +O(δ2), x̄ = x+ 2δtx+O(δ2),

which from equation (1.9) shows that ω(t, x) = −t2 and Υ (t, x) = 2tx. This can also be
obtained from

dt̄

dδ
= t̄2,

dx̄

dδ
= 2t̄x̄ (1.27)

To obtain u(t, x), we solve dx̄
dt̄

= ω(t̄, x̄)
Υ (t̄, x̄)

, to get,

dt̄

dx̄
= − t̄

2x̄ ,

which on integration yields u(t, x) = t2x as an invariant. From the first equation of
(1.27), we see that, v(t, x) = 1

t
satisfies equation (1.25).

Remark 1.4.1. There are differential equations invariant under transformations which
cannot be characterized as one-parameter groups.
For example, a differential equation arising in fluid dynamics is given by

d2x

dt2
= 2dx

dt
+ (5 + 3x)

4x(1 + x)

(
dx

dt

)2
+ 3x(1− x)

1 + x
. (1.28)
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If x(t) is a solution of equation (1.28), then so is x(t)−1. This is seen by putting
X(t) = x(t)−1 and using

dX

dt
= − 1

x2
dx

dt
,

d2X

dt2
= − 1

x2
d2x

dt2
+ 2
x3

(
dx

dt

)2

to get,

d2X

dt2
− 2dX

dt
− 5 + 3X

4X(1 +X)

(
dX

dt

)2
− 3X(1−X)

1 +X

= − 1
x2

{
d2x

dt2
− 2dx

dt
− 5 + 3x

4x(1 + x)

(
dx

dt

)2
− 3x(1− x)

1 + x

}
= 0

Setting y = dx

dt
, equation (1.28) becomes

y
dy

dx
= 3x(1− x)

1 + x
+ 2y + 5 + 3x

4x(1 + x)y
2, (1.29)

which is an Abel equation of second kind. From the solution property of equation (1.28)
we can deduce that equation (1.29) remains invariant under the transformation

x̄ = 1
x
, ȳ = − y

x2 ,

which cannot be characterized by a one-parameter group.
We shall illustrate the procedure of finding the canonical coordinates.

We now obtain a relationship between the infinitesimals ω and Υ and canonical coordinates
u and v.
On differentiating equation (1.25) with respect to δ, we get,

∂ū

∂t̄

dt̄

dδ
+ ∂ū

∂x̄

dx̄

dδ
= 0, ∂v̄

∂t̄

dt̄

dδ
+ ∂v̄

∂x̄

dx̄

dδ
= 1, (1.30)

where ū and v̄ denote u(t̄, x̄) and v(t̄, x̄) respectively.
From equations (1.10) and (1.30), we have on replacing (t̄, x̄) by (t, x),

∂u

∂t
ω + ∂u

∂x
Υ = 0, ∂v

∂t
ω + ∂v

∂x
Υ = 1 (1.31)

which can we solved for ω and Υ to deduce

ω(t, x) = −∂u
∂x

/
∂(u, v)
∂(t, x) , Υ (t, x) = ∂u

∂t

/
∂(u, v)
∂(t, x) (1.32)
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where the Jacobian is given by

∂(u, v)
∂(t, x) = ∂u

∂t

∂v

∂x
− ∂u

∂x

∂v

∂t
.

Our arguments upto equation (1.31) lead us to the following theorem:

Theorem 1.4.1. A one-parameter group of transformations t̄ = f(t, x, δ), x̄ = g(t, x, δ)
can be reduced under a suitable change of variables, called canonical variables
u = u(t, x), v = v(t, x), to the translation group ū = u, v̄ = v + δ.

1.5 Transformations of Derivatives

1.5.1 The Extended Group

Since the one-parameter transformations for fixed δ determine the image curve C1 of
any curve C , it is possible to calculate the slope ˙̄x = dx̄

dt̄
of the curve C1 from the slope

ẋ = dx

dt
of the curve C.

If A : (t, x) and B : (t+dt, x+dx) are neighboring points on the curve C, the coordinates
of their images Ā : (t̄, x̄) and B̄ : (t̄+ dt̄, x̄+ dx̄) on the curve C1 are given by

t̄ = α(t, x, δ), x̄ = β(t, x, δ) (1.33)

and,
t̄+ dt̄ = α(t+ dt, x+ dx, δ), x̄+ dx̄ = β(t+ dt, x+ dx, δ). (1.34)

Equations (1.33) and (1.34) yield,

dt̄ = αtdt+ αxdx, dx̄ = βtdt+ βxdx. (1.35)

From equation (1.35),

˙̄x = dx̄

dt̄
= βtdt+ βxdx

αtdt+ αxdx
= βt + βxẋ

αt + αxẋ
. (1.36)

Equations (1.33) and (1.36) specify a set of extended transformations of the quantities
t, x and ẋ. Geometrically speaking t, x and ẋ define an infinitesimal line element at
point (t, x) having slope ẋ. The set of extended transformations thus carry one such line
element to another.
When the transformation law for x̄ is equation (1.36), then these extended transforma-
tions form a group called once-extended group or the first prolongation of the group of
point transformations.
The coefficients of the infinitesimal transformation of the first extended group corre-

sponding to ˙̄x = dx̄

dt̄
is the derivative

(
∂ ˙̄x
∂δ

)
δ=0

.
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Noting that for the identity transformation corresponding to δ = 0, equations (1.33) to
(1.36) transform to,

t = α(t, x, 0), x = β(t, x, 0),

and,
t+ dt = α(t+ dt, x+ dx, 0), x+ dx = β(t+ dt, x+ dx, 0).

Hence,
dt = αtdt+ αxdx, dx = βtdt+ βxdx.

Therefore,
ẋ = dx

dt
= βt + βxẋ

αt + αxẋ
.

Hence we get, βt = 0 = αx and βx = 1 = αt.

Υ[t] =
(
∂ ˙̄x
∂δ

)
δ=0

=
[
∂

∂δ

(
βt + βxẋ

αt + αxẋ

)]
δ=0

=
[(αt + αxẋ)(Υt + Υxẋ)− (βt + βxẋ)(ωt + ωxẋ)

(αt + αxẋ)2

]
δ=0

Since βt = 0 = αx and βx = 1 = αt, we get,

Υ[t] = (Υt + Υxẋ)− ẋ(ωt + ωxẋ)

= dΥ

dt
− ẋdω

dt

(1.37)

The importance of equation (1.37) is that it is possible to find the coefficient Υ[t] of the
infinitesimal transformation

˙̄x = ẋ+ Υ (t, x, ẋ)δ +O(δ2) (1.38)

directly from the coefficients ωand Υ.
In Lie’s second approach mentioned in Section 1.2, the differential equation is considered
as a surface in the three-dimensional space of variables t, x, y given by,

F (t, x, y) = 0. (1.39)

Here, t, x, y are considered to be three independent variables that transform as

t̄ = f(t, x, δ), x̄ = g(t, x, δ), ȳ = Df/Dg, (1.40)

where D = ∂

∂t
+ y

∂

∂x
.

A symmetry group, in the sense of the second approach, is defined as the group of
transformations such that its first prolongation leaves invariant the surface given by
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equation (1.39). The constraint on the transformation law for y that appears in equation
(1.40) provides a connection with the first approach because the prolongation is consistent
with the transformation law for first derivatives with the identification y = ẋ. This
constraint provides the important fact of providing an algorithm for finding symmetry
groups.
It is clear from the second approach that the symmetry group of equation (1.18) is
identical to the invariance group for the surface given by equation (1.39) and does
not depend on the existence of solutions of the differential equation. Because of this
fundamental role played by the surface given by equation (1.39), it is called the frame of
the differential equation.
In integrating differential equations, a decisive step is that of simplifying the frame. For
this purpose, it suffices to “straighten out” the one-parameter symmetry group, that is,
to reduce its action to a translation by a suitable change of the variables t and x. This
automatically simplifies the equation by coverting its frame into a cylinder, that is, the
explicit dependence on one of the variables t or eliminating x.
An invariant of the once-extended group is a function h(t, x, ẋ) of t, x, ẋ whose value at
any image point is the same as its value at a source point. That is,

h(t̄, x̄, ˙̄x) = h(t, x, ẋ) (1.41)

Differentiating equation (1.41) with respect to δ and setting δ = 0, we obtain the first
order linear partial differential equation for h, namely, ωht + Υhx + Υ[t]hẋ = 0.
The characteristic equations of which are,

dt

ω(t, x) = dx

Υ (t, x) = dẋ

Υ[t](t, x, ẋ) . (1.42)

These equations have two independent integrals and the most general solution for h is
an arbitrary function of the two integrals.

Example 1.5.1. Consider the Lie group, t̄ = δt, x̄ = δαx. The coefficients of the
infinitesimal transformation are given by,

ω(t, x) = t, Υ (t, x) = αx, Υ[t](t, x, ẋ) = (α− 1)ẋ.

The characteristic equation (1.42) gives,

dt

t
= dx

αx
= dẋ

(α− 1)ẋ .

Solving this, we get the most general first order differential equation invariant under this
Lie group is

ẋ

tα−1 = F

(
t

xα

)
,
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where F is an arbitrary function.

Remark 1.5.1. Equation (1.37) can be written as

Υ[t] =
[
Υt + Υxẋ

αt + αxẋ
− (βt + βxẋ)(ωt + ωxẋ)

(αt + αxẋ)2

]
,

which is written as the total directional derivative in the direction whose slope is ẋ.

Since the transformations, for a fixed δ determine the image C1 of the curve C, it must

be possible to calculate the kth derivative, x̄(k) = dkx̄

dt̄k
of C1 from the kth derivative

x(k) = dkx

dtk
of C.

Using equation (1.38) we can find the infinitesimal coefficient Υ[kt], where Υ[kt] = Υ[ttt · · · t]︸ ︷︷ ︸
k-times

corresponding to x(k) as follows:

dx̄(k) = dx(k) + dΥ[tk]δ +O(δ2), dt̄ = dt+ dωδ +O(δ2) (1.43)

Thus, we get,

x̄(k+1) = x(k+1) +
(
dΥ[tk]
dt
− x(k+1)dω

dt

)
δ +O(δ2). (1.44)

Hence, we can define,

Υ[tk] =
dΥ[tk]
dt
− x(k+1)dω

dt
. (1.45)

Inductively, Υ[tk] is a function of t, x, ẋ, x(2), x(3), · · · , x(k). Therefore,

dΥ[tk]
dt

=
∂Υ[tk]
∂t

+ ẋ
∂Υ[tk]
∂x

+ x(2)∂Υ[tk]
∂ẋ

+ x(3)∂Υ[tk]

∂x(2) + · · ·+ x(k+1)∂Υ[tk]

∂x(k) .

Remark 1.5.2. Due to the profusion of terms appearing in the total derivative, the
expression for Υ[tk] rapidly becomes more complicated as k increases.

Example 1.5.2. For the rotation group given in Example 1.2.5, the coefficients of the
infinitesimals are ω(t, x) = −x, Υ (t, x) = t. So,

Υ[t] = dΥ

dt
− ẋdω

dt
= 1 + ẋ2.

1.5.2 Prolongations

By definition, groups of point transformations act only on the space (t, x) of n + m

variables. However, one needs the transformation of derivatives in order to apply these
groups to differential equations. Therefore it becomes necessary to extend a group of
point transformations acting on the (t, x) space to groups of point transformations acting
on the (t, x, ẋ) space, (t, x, ẋ, x(2)) space, · · · , (t, x, ẋ, x(2), · · · , x(s)) space, s ≥ 1, for a
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given differential equation with order s. These groups are called the first prolongation, the
second prolongation, · · · , the s-times prolongation group, respectively, where, following
the notations from [26], the transformations are of the form,

t̄ = φt(t, x, δ) = t+ ω(t, x)δ +O(δ2),

x̄ = φx(t, x, δ) = x+ Υ (t, x)δ +O(δ2),
˙̄x = φẋ(t, x, ẋ, δ) = ẋ+ Υ[t](t, x, ẋ)δ +O(δ2),

x̄(2) = φx
(2)(t, x, ẋ, x(2), δ) = x(2) + Υ[tt](t, x, ẋ, x(2))δ +O(δ2),

...

x̄(s) = φx
(s)(t, x, ẋ, x(2), · · · , x(s), δ) = x(s) + Υ[ttt · · · t]︸ ︷︷ ︸

s-times

(t, x, ẋ, x(2), · · · , x(s))δ +O(δ2).

The prolongation transformation formulae of the components {x̄α,i} of ˙̄x are determined
by (More details on the prolongation formulas can be found in [49]).

x̄α,1

x̄α,2

...

x̄α,n


=



(φẋ)α1 (t, x, ẋ, δ)

(φẋ)α2 (t, x, ẋ, δ)
...

(φẋ)αn(t, x, ẋ, δ)


= B−1



D1φ
x(t, x, δ)

D2φ
x(t, x, δ)

· · ·

D1φ
x(t, x, δ)


where B−1 is the inverse (assumed to

exist) of the matrix B =



D1φ
t
1 D1φ

t
2 · · ·D1φ

t
n

D2φ
t
1 D2φ

t
2 · · ·D2φ

t
n

...
... · · ·

...

Dnφ
t
1 Dnφ

t
2 · · ·Dnφ

t
n


and the prolongation transformation
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of the formulas of the components {x̄αi1 · · · is} of x̄
(s) are determined by,



x̄α,i1···is−11

x̄α,i1···is−12

...

x̄α,i1···is−1n


=



(φx(s))αi1···is−11(t, x, ẋ, x(2), · · ·x(s), δ)

(φx(s))αi1···is−12(t, x, ẋ, x(2), · · ·x(s), δ)
...

(φx(s))αi1···is−1n(t, x, ẋ, x(2), · · ·x(s), δ)



= B−1



D1[(φx(s−1))αi1···is−1(t, x, ẋ, x(2), · · ·x(s−1), δ)]

D2[(φx(s−1))αi1···is−1(t, x, ẋ, x(2), · · ·x(s−1), δ)]
...

Dn[(φx(s−1))αi1···is−1(t, x, ẋ, x(2), · · ·x(s−1), δ)]


The formulas of the coefficients, Υαi , · · · , Υαi1···is , of the infinitesimal generator are deter-
mined by

Υαi = Di(Υα)− xα,jDi(ωj),

Υαi1i2 = Di2(Υαi1)− xα,i1jDi2(ωj),
...

Υαi1i2···is = Dis(Υαi1···is−1)− xα,i1···is−1jDis(ωj).

The first prolonged generator of the first order differential operator ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
,

which is the tangent vector field, is given by,

ζ∗1 = ωi
∂

∂ti
+ Υα

∂

∂xα
+ Υαi

∂

∂xα,i
.

and the s times prolonged generator is written recurrently as,

ζ∗s = ζ∗s−1 + Υα,i1···is .

1.5.3 Lie-Bäcklund Representation

Let D denote the vector space (with respect to the usual addition of functions) of
all differentiable functions of finite order. It is closed under differentiation given by,
Di = ∂

∂ti
+ xα,i

∂

∂xα
+ xα,ij

∂

∂xα,ij
+ · · · Consider the operator having the form,

ζ = ωi
∂

∂ti
+ Υα

∂

∂xα
+ Υαi

∂

∂xα,i
+ Υαi1i2

∂

∂xα,i1i2
+ · · · , (1.46)
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where ωi, Υα ∈ D are infinitely differentiable functions and,
Υαi = Di(Υα − ωjxα,j) + ωjx

α
,ji,

Υαi1i2 = Di2Di1(Υα − ωjxα,j) + ωjx
α
,ji1i2 ,

. . .

(1.47)

The operator given by (1.46) with coefficients given by (1.47) is called a Lie-Bäcklund
operator.

Remark 1.5.3. The operator given by (1.46) is the infinite prolongation of

ζ∗ = ωi
∂

∂ti
+ Υα

∂

∂xα
, ωi, Υ

α ∈ D.

Lemma 1.5.1. The Lie-Bäcklund operator satisfies the commutation relation

ζ∗Di −Diζ
∗ = −Di(ωj)Dj .

The proof of this lemma follows by a straightforward computation.

Lemma 1.5.2. Every operator

ζ̃∗ = ω̃iDi = ω̃i
∂

∂ti
+ ω̃ix

α
,j

∂

∂xα
+ ω̃ix

α
,jj1

∂

∂xα,j1
+ · · · (1.48)

with arbitrary analytic coefficients ω̃i is a Lie-Bäcklund operator.

Remark 1.5.4. Rather than working with the full algebra, it is more advantageous to
work with the factor algebra of all Lie-Bäcklund operators by its ideal L∗ of operators
(1.48). In accordance with this two Lie-Bäcklund operators ζ1 and ζ2 are said to be
equivalent whenever ζ1 − ζ2 ∈ L∗.
In particular, every operator (1.47) is equivalent to a Lie-Bäcklund operator with
coordinates ωi = 0 (i = 1, 2, · · · , n); given by

ζ1 ≡ ζ2 = (Υα − ωixαi ) ∂

∂xα
+ · · ·

Definition 1.5.1. A Lie-Bäcklund operator given by equation (1.47) of the form

ζ = Υ β
∂

∂xβ
, Υ β ∈ D (1.49)

is called a canonical Lie-Bäcklund operator.
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For such operators, a simpler form for the prolongation formulas given by (1.46) are

Υαi1i2···is = Di1i2···is(Υα). (1.50)

On account of Lemma 1.5.1, the canonical Lie-Bäcklund operators commute with the
differentiation operators Di. Also, conversely, the operator (with ωi = 0) given by
equation (1.46) commutes with the differentiation operators Di implying that equation
(1.50) holds.
The canonical Lie-Bäcklund operator although being convenient leads to a loss of
geometric transparency in some cases. This is true for all groups of point transformations.
For example, the simplest one-parameter group, which is the translation group
t̄i = ti + δ, x̄i = xi with infinitesimal generator ζ∗ = ∂

∂ti
is reduced to the canonical

form, namely ζ = Υαi
∂

∂xα
+ · · ·

1.6 The Determining and Splitting Equations

Most of the times it may not be possible to explicitly find a group under which a
differential equation is invariant. There is an approach to this difficulty, but it involves
extensive computation, especially for partial differential equations.
The invariants u of any group are the solutions of the partial differential equation given
by, ωut +Υux = 0, which we shall write as ζ∗u = 0, where ζ∗ is the first order differential
operator which is the tangent vector field,

ζ∗ = ω(t, x) ∂
∂t

+ Υ (t, x) ∂
∂x
. (1.51)

Lie called the operator given by equation (1.51) a symbol of the infinitesimal transfor-
mation given by equation (1.9). The terms infinitesimal operator, group operator, Lie
operator and group generator came into use later. All these terms are used interchange-
ably.
The first prolongation was given by Lie as,

ζ∗1 = ω
∂

∂t
+ Υ

∂

∂x
+ Υ[t]

∂

∂ẋ
, (1.52)

and the second prolongation was given by Lie as,

ζ∗2 = ω
∂

∂t
+ Υ

∂

∂x
+ Υ[t]

∂

∂ẋ
+ Υ[tt]

∂

∂ẍ
. (1.53)

We consider constructing the group admitted by a given second order differential equation
w(t, x, ẋ, ẍ) = 0, for which the invariance condition given by ωwt+Υwx+Υ[t]wẋ+Υ[tt]wẍ =
0, at w = 0 is obtained by operating ζ∗2w |w=0= 0.
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In treating differential equations of the form,

ẍ = w̃(t, x, ẋ), (1.54)

the determining equations becomes,

Υtt + (2Υtx − ωtt)ẇ + (Υxx − 2ωtx)ẇ2 − ẇ3ωxx

+ (Υx − 2ωt − 3ẋωx)w̃ − [Υt + (Υx − ωt)ẋ− ẋ2ωx]w̃ẋ − ωw̃t − Υw̃x = 0. (1.55)

These determining equations can be split into several independent equations. As a result
we obtain an overdetermined system of differential equations for ω and Υ . Solving this
system of determining equations, we can find all operators admitted by equation (1.54).
In this section, the basic ideas of the method are explained by working the example of
the simple second order differential equation ẍ = 0. For this differential equation, we
have, Υ[tt] = 0.
Now using equations (1.37) and (1.45) with k = 1, we get, for ẍ = 0,

Υ[tt] = Υtt + ẋ(2Υtx − ωtt) + ẋ2(Υxx − 2ωtx)− ẋ3ωxx = 0. (1.56)

We refer to equation (1.56) as an invariant equation. Since equation (1.56) is an identity
in t, x, ẋ, and since ω and Υ are functions of t and x only, the various powers of ẋ must
vanish separately to give us the splitting equations namely,

Υtt = 0, ωxx = 0, ωtt = 2Υtx, Υxx = 2ωtx. (1.57)

According to the first two splitting equations,

ω = A(t)x+B(t) and Υ = C(x)t+D(x), (1.58)

where A,B,C,D are functions yet to be determined.
According to the last two splitting equations,

Ä(t)x+ B̈(t) = 2Ċ(x) and C̈(x)t+ D̈(x) = 2Ȧ(t). (1.59)

By differentiating the first equation of (1.59) partially with respect to x and the second
equation of (1.59) partially with respect to t, we get,

Ä(t) = 2C̈(x), C̈(x) = 2Ä(t).

These equations imply Ä(t) = 0 = C̈(x).
Substituting this equation in equation (1.59), we get,

B̈(t) = 2Ċ(x) and D̈(x) = 2Ȧ(t),
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are both constants, say B̈(t) = 2c14 and D̈(x) = 2c15.

Solving these equations we get,

B(t) = c14t
2 + c16t+ c18 and D(x) = c15x

2 + c20x+ c21.

Therefore, we get,

A(t) = c15t+ c16 and C(x) = c14x+ c19.

With these values, from equation (1.58), we get,

ω = c14t
2 + c15tx+ c16t+ c17x+ c18,

and,
Υ = c15x

2 + c14tx+ c19t+ c20x+ c21,

where the coefficients c14 through c21 are constants. The coefficients of the infinitesimal
transformation ω and Υ belong to an eight parameter group whose infinitesimal transfor-
mation given by equation (1.51), can be obtained by taking one of the coefficients c14

through c21 to be 1 and the rest 0.
The ordinary differential equation ẍ = 0 admits the eight parameter group spanned by
the generators

ζ∗1 = ∂

∂t
, ζ∗2 = ∂

∂x
, ζ∗3 = t

∂

∂t
, ζ∗4 = x

∂

∂t
, ζ∗5 = x

∂

∂x
,

ζ∗6 = t
∂

∂x
, ζ∗7 = tx

∂

∂t
+ x2 ∂

∂x
, ζ∗8 = t2

∂

∂t
+ tx

∂

∂x
.

Remark 1.6.1. In order to work with this approach using the determining and splitting
equations, it may not be possible to find the closed form of the group to which the
differential equation is invariant. Hence, we assume our infinitesimals ω and Υ of a
certain form and proceed. The most commonly used forms are

ω = A(t), Υ = B(t)x+ C(t) or ω = A(x), Υ = B(x)t+ C(x)

or ω = A(t), Υ = B(x) or ω = A(x), Υ = B(t).

1.7 Lie Algebras

The determining equation is a linear partial differential equation in ω(t, x) and Υ (t, x)
and hence it follows that the set of all its solutions is a vector space. However, there is
another property that is intrinsic to determining equations. A set of solutions of any
determining equations forms what is called a Lie algebra. (This term was introduced by
H. Weyl; Sophus Lie himself used the term infinitesimal group.)
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Definition 1.7.1. Let F be a field. A Lie algebra over F is an F− vector space L,
together with a bilinear map, the Lie bracket

L× L→ L, (S1, S2) 7→ [S1, S2],

satisfying the following properties:

1. [S1, S1] = 0, ∀S1 ∈ L.

2. (Jacobi identity) [S1, [S2, S3]] + [S2, [S3, S1]] + [S3, [S1, S2]] = 0, ∀S1, S2, S3 ∈ L.

The Lie bracket [S1, S2] is referred to as a commutator of S1 and S2.

Condition (1) of the definition of Lie algebra implies that [S1, S2] = −[S2, S1],
∀ S1, S2 ∈ L, which is known as anti-symmetry.

Remark 1.7.1. The associative property, [[S1, S2], S3] = [S1, [S2, S3]], holds if and only
if ∀ S1, S2 ∈ L, the commutator [S1, S2] lies in the centre of of L which is defined as
Z(L) = {Si ∈ L | [Si, Sj ] = 0 ∀ Sj ∈ L}.

Definition 1.7.2. (Commutator) Let Si = ωiα(x) ∂

∂xα
, Sj = ωjβ(x) ∂

∂xβ
, where x =

(x1, x2, · · · , xn). Then the commutator of Si and Sj is defined as:

[Si, Sj ] = SiSj − SjSi =
n∑

α,β=1

[(
ωiα(x) ∂

∂xα

)(
ωjβ(x) ∂

∂xβ

)

−
(
ωjβ(x) ∂

∂xβ

)(
ωiα(x) ∂

∂xα

)]
=

n∑
β=1

Υβ(x) ∂

∂xβ
,

where Υβ(x) =
∑n
α=1

[
ωiα(x)∂ωjβ(x)

∂xα
− ωjβ(x)∂ωiβ(x)

∂xβ

]
.

Remark 1.7.2. If we have the operators

Si = ωi
∂

∂t
+ Υi

∂

∂x
, i = 1, 2.,

then we can define,

[S1, S2] = (S1(ω2)− S2(ω1)) ∂
∂t

+ (S1(Υ2)− S2(Υ1)) ∂
∂x
.
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Example 1.7.1. Let S1 = t
∂

∂t
, S2 = tx

(
∂

∂x
+ ∂

∂u

)
, then,

[S1, S2] = S1S2 − S2S1

=
(
t
∂

∂t

)(
tx

(
∂

∂x
+ ∂

∂u

))
−
(
tx

(
∂

∂x
+ ∂

∂u

))(
t
∂

∂t

)
= tx

(
∂

∂x
+ ∂

∂u

)
= S2.

Definition 1.7.3. (Basis for a Lie algebra) The basis for a Lie algebra is the basis of its
underlying vector space. More precisely, a set B is a basis for a Lie algebra L if:

1. B is linearly independent, and

2. span(B) = L.

Definition 1.7.4. (Structure Constants) If L is a Lie algebra over a field F with a basis
{S1, S2, · · · , Sn}, we define scalars cijk ∈ F such that [Si, Sj ] =

n∑
k=1

cijkSk. The scalars

cijk are called the structure constants of L with respect to the basis.

Remark 1.7.3. 1. The structure constants depends on the choice of the basis of L.

2. By the definition of Lie algebra, it is sufficient to know the structure constants cijk
for 1 ≤ i < j ≤ n.

Theorem 1.7.1. Let L1 and L2 be Lie algebras. Then L1 is isomorphic to L2 if and
only if there is a basis B1 of L1 and a basis B2 of L2 such that the structure constants
of L1 with respect to B1 are equal to the structure constants of L2 with respect to B2.

Definition 1.7.5. (Subalgebra) Given a Lie algebra L, the vector subspace M ⊂ L is
called a subalgebra of L if [S, T ] ∈M, ∀ S, T ∈ M.

Definition 1.7.6. (Ideal) An ideal of a Lie algebra L is a subspace I of L such that
[S1, S2] ∈ I, ∀ S1 ∈ L, S2 ∈ I.

Example 1.7.2. The set of operators given by equation (1.48) is an ideal in the Lie
algebra of all Lie-Bäcklund operators with the product as [S1, S2] = S1S2 − S2S1.

Definition 1.7.7. (Quotient or Factor algebra) Let I be an ideal of L, then I is in
particular a subspace of L, and so we may consider the cosets, L/I = {z + I | z ∈ L}. By
defining the Lie bracket on L/I as:

[w + I, z + I] = [w, z] + I, ∀ w, z ∈ L,

L/I becomes a Lie algebra with this bracket and is called the quotient or factor algebra
of L by I.
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Definition 1.7.8. (Derived algebra) Let M and T be ideals in L. We define [M,T ] to
be the span of the commutators of elements of M and T rather than just the set of
such commutators. An important example of this construction occurs when we take
M = T = L. We write L′ for [L,L], and L′ is known as the derived algebra of L. (We
note that L′ is an ideal of L).

Definition 1.7.9. (Derived series) We define the derived series of L to be the series
with terms

L(1) = L′, and L(k) = [L(k−1), L(k−1)], for k ≥ 2.

Remark 1.7.4. As the product of ideals is an ideal, L(k) is an ideal of L (and not just
L(k−1).)

Definition 1.7.10. (Solvable Lie algebra) A Lie algebra L is said to be solvable if for
some m ≥ 1 we have L(m) = 0.

Theorem 1.7.2. If L is a Lie algebra with ideals

L = I0 ⊃ I1 ⊃ · · · ⊃ Im−1 ⊃ Im = {0},

such that Ik−1/Ik is abelian for 1 ≤ k ≤ m, then L is solvable.

Theorem 1.7.3. Let L be a Lie algebra.

(a) If L is solvable, then every sub-algebra and every homomorphic image of L are
solvable.

(b) Suppose that L has an ideal I such that I and L/I are solvable. Then L is solvable.

Remark 1.7.5. (i) If we can find a sequence

L = Lr ⊃ Lr−1 ⊃ · · · ⊃ L1

of sub-algebras of dimension r, r−1, · · · , 1, respectively such that ∀ s = 2, 3, · · · , r, Ls−1

is an ideal in Ls, then the Lie algebra L is solvable.

(ii) Since the derived algebra of any two dimensional Lie algebra is abelian, it follows
that every two dimensional Lie algebra is solvable.

(iii) The vector space of all 2 × 2 matrices over C, with trace zero and with the Lie
bracket defined by [x, y] = xy − yx, where xy is the usual product of matrices x
and y is denoted by sl(2,C) and is known as the special linear algebra. For this
three dimensional Lie algebra, we have sl(2,C)′ = sl(2,C). Consequently, this Lie
algebra is not solvable. In fact, upto isomorphism, it is the only three dimensional
Lie algebra L such that L′ = L.

More details on Lie algebras can be found in [18].
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1.8 Symmetry Analysis of First Order Partial Differential
Equations

1.8.1 Construction of Infinitesimals for First Order Partial Differential
Equations

The computations required in order to determine a Lie group for partial differential
equations is lengthy. As such, we shall restrict ourselves only to a class of partial
differential equations, in order to keep our calculations to the minimum.
Let u = u(t, x). Then we consider transformations with h1, h2, h3 as smooth functions in
t, x, u having convergent Taylor series in δ which are of the form,

t̄ = h1(t, x, u, δ) = t+ δT (t, x, u) +O(δ2),

x̄ = h2(t, x, u, δ) = x+ δX(t, x, u) +O(δ2),

ū = h3(t, x, u, δ) = u+ δU(t, x, u) +O(δ2),

(1.60)

where T (t, x, u) = ∂h1
∂δ

∣∣∣∣∣
δ=0

, X(t, x, u) = ∂h2
∂δ

∣∣∣∣∣
δ=0

, U(t, x, u) = ∂h3
∂δ

∣∣∣∣∣
δ=0

.

In order to calculate the prolongation of a given transformation, we need to differentiate
(1.60) with respect to each of the parameters t and x. To do this we introduce the
following total derivatives:

Dt = ∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux
+ utt

∂

∂ut
+ · · · , (1.61)

Dx = ∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ uxt

∂

∂ut
+ · · · . (1.62)

The first two equations of (1.60) may be inverted (locally) to give t and x in terms of t̄
and x̄, provided that the Jacobian is non-zero, that is,

J =

∣∣∣∣∣∣∣∣
Dtt̄ Dtx̄

Dxt̄ Dxx̄

∣∣∣∣∣∣∣∣ 6= 0, when u = u(x, t). (1.63)

If equation (1.63) is satisfied, then the last equation of (1.60) can be rewritten as

ū = ū(t̄, x̄). (1.64)

Applying the chain rule to equation (1.64), we obtain,Dtū

Dxū

 =

Dtt̄ Dtx̄

Dxt̄ Dxx̄


ūt̄
ūx̄

 ,



Chapter 1. Introduction and Review of Literature 28

and therefore by Cramer’s rule,

ūt̄ = 1
J

∣∣∣∣∣∣∣∣
Dtū Dtx̄

Dxū Dxx̄

∣∣∣∣∣∣∣∣ , ūx̄ = 1
J

∣∣∣∣∣∣∣∣
Dtt̄ Dtū

Dxt̄ Dxū

∣∣∣∣∣∣∣∣ (1.65)

Equation (1.65) can be simplified to get the extended infinitesimal representation,

ūt̄ = ut + δU[t] +O(δ2), ūx̄ = ux + δU[x] +O(δ2), (1.66)

where,

U[t] = Dt(U)− uxDt(X)− utDt(T ), (1.67)

U[x] = Dx(U)− uxDx(X)− utDx(T ). (1.68)

The explicit expression for equation (1.68) is

U[t] = Ut −Xtux + (Uu − Tt)ut −Xuuxut − Tuu2
t ,

U[x] = Ux + (Uu −Xx)ux − Txut −Xuu
2
x − Tuuxut.

The Lie invariance condition for the first order partial differential equation ∆(t, x, u, ut, ux) =

0 is ζ(1)∗∆
∣∣∣∣∣
∆=0

= 0, where

ζ(1)∗ = T
∂

∂t
+X

∂

∂x
+ U

∂

∂u
+ U[t]

∂

∂ut
+ U[x]

∂

∂ux
.

Remark 1.8.1. The infinitesimal generator (or tangent vector field) of the Lie group is
given by,

ζ∗ = T
∂

∂t
+X

∂

∂x
+ U

∂

∂u
. (1.69)

1.8.2 Group Analysis of a Hamilton–Jacobi Type Equation

Consider a Hamilton–Jacobi equation given by,

ut = u2
x. (1.70)

The determining equation (1.76) for equation (1.70) after substituting equation (1.74)
and eliminating ut from equation (1.70) is,

Ut − (Xt + 2Ux)ux + (2Xx − Tt − Uu)u2
x + (Xu + 2Tx)u3

x + Tuu
4
x = 0.
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Setting the various coefficients of ux to zero, we get the splitting equations namely,

Utt = 0, Tu = 0, Xt + 2Ux = 0, Xu + 2Tx = 0, 2Xx − Tt − Uu = 0.

Solving these equations, we get,

T (t, x, u) = A(t, x), X(t, x, u) = −2Axu+B(t, x),

U(t, x, u) = −2Axxu2 + (2Bx −At)u+ C(t, x),

where A(t, x), B(t, x), C(t, x) are arbitrary functions.
Substituting these equations in the splitting equations we get,

Axxx = 0, Atx −Bxx = 0, Bt + 2Cx = 0, Atxx = 0, Att − 2Btx = 0, Ct = 0.

These equations can be solved to give,

A = c36x
2 + (2c37t+ c38)x+ 4c39t

2 + c40t+ c41,

B = c37x
2 + (4c39t+ c42)x+ 2c43t+ c44,

C = −c39x
2 − c43x+ c45.

This in turn gives the infinitesimals,

T (t, x, u) = c36x
2 + (2c37t+ c38)x+ 4c39t

2 + c40t+ c41,

X(t, x, u) = −2(2c36x+ 2c37t+ c38)u+ c37x
2 + (4c39t+ c42)x+ 2c43t+ c44,

U(t, x, u) = −4c36u
2 + (2c37x− c40 + 2c42)u− c39x

2 − c43x+ c45,

where c36, · · · , c45 are arbitrary constants.
The presence of ten arbitrary constants signifies that the Lie algebra is ten dimensional.
It is generated by,

ζ∗1 = x2 ∂

∂t
− 4xu ∂

∂x
− 4u2 ∂

∂u
, ζ∗2 = 2tx ∂

∂t
+ (x2 − 4tu+ 2xu) ∂

∂x
+ 2xu ∂

∂u
,

ζ∗3 = x
∂

∂t
− 2u ∂

∂x
, ζ∗4 = 4t2 ∂

∂t
+ 4tx ∂

∂x
− x2 ∂

∂u
, ζ∗5 = t

∂

∂t
− u ∂

∂u
, ζ∗6 = ∂

∂t
,

ζ∗7 = x
∂

∂x
+ 2u ∂

∂u
, ζ∗8 = 2t ∂

∂x
− x ∂

∂u
, ζ∗9 = ∂

∂x
, ζ∗10 = ∂

∂u
.

We note that, for ordinary differential equations, we introduced new variables, u and v,
called the canonical variables, such that the original equation reduced to a new ordinary
differential equation that was separable and independent of the variable v.



Chapter 1. Introduction and Review of Literature 30

Precisely, under a change of variables (t, x)→ (u, v), and by using equation (1.31), equa-
tion (1.51) gives ζ∗ = ∂

∂v
, which represents that the new ordinary differential equation

admits translation in the variable v.

We extend a similar idea to partial differential equations. In order to obtain solutions of
equation (1.70), we introduce new independent variables r and s and a new dependent
variable v such that,

r = r(t, x, u), s = s(t, x, u), v = v(t, x, u),

then by employing a change of variables (t, x, u)→ (r, s, v), we get,

ζ∗ = T
∂

∂t
+X

∂

∂x
+ U

∂

∂u
,

= T

(
rt
∂

∂r
+ st

∂

∂s
+ vt

∂

∂v

)
+X

(
rx
∂

∂r
+ sx

∂

∂s
+ vx

∂

∂v

)
+ U

(
ru
∂

∂r
+ su

∂

∂s
+ vu

∂

∂v

)
= (Trt +Xrx + Uru) ∂

∂r
+ (Tst +Xsx + Usu) ∂

∂s

+ (Tvt +Xvx + Uvu) ∂
∂v
,

which upon choosing,
Trt +Xrx + Uru = 0,

T st +Xsx + Usu = 1,

T vt +Xvx + Uvu = 0,

gives ζ∗ = ∂

∂s
.

Hence, after a change of variables, the original equation F (t, x, u, ut, ux) = 0, transforms
into an equation independent of s and takes the form, G(r, v, vr, vs) = 0. However, the
transformed equation is still a partial differential equation; but if we assume that we are
only interested in solutions of the form v = v(r), then the transformed equation becomes
K(r, v, vr) = 0, which is an ordinary differential equation!
Thus, just as in the case for ordinary differential equations, we find the canonical
coordinates (r, s, v) for partial differential equations and note a similar result for partial
differential equations below:

Theorem 1.8.1. A one-parameter group of transformations t̄ = f(t, x, u, δ),
x̄ = g(t, x, u, δ), ū = h(t, x, u, δ) can be reduced under a suitable change of variables,
called canonical variables
r = r(t, x, u), s = s(t, x, u), v = v(t, x, u), to the translation group r̄ = r, s̄ = s+ δ,

v̄ = v.
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Having constructed the symmetries of equation (1.70), as a particular case with c40 =
1 = c42, and the remaining constants zero, we get,

T (t, x, u) = t, X(t, x, u) = x, U(t, x, u) = u.

By using change of variables described above,

trt + xrx + uru = 0,

tst + xsx + usu = 1,

tvt + xvx + uvu = 0.

The solutions are given by,

r = R

(
x

t
,
u

t

)
, s = ln t+ S

(
x

t
,
u

t

)
, v = V

(
x

t
,
u

t

)
,

where R,S, T are arbitrary functions of t, x, u.
If we choose these to get,

r = x

t
, s = ln t, v = u

t
,

then transforming the equation (1.70) will give,

v + vs − rvr = v2
r .

Setting vs = 0, and simplifying gives us the Clairaut equation,

v2
r + rvr − v = 0,

whose general solution is,

v = −1
4r

2, v = c46r + c2
46,

where c46 is an arbitrary constant. Passing through the transformation we get the exact
solution given by,

u = −1
4
x2

t
, u = c46x+ c2

46t.
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1.9 Symmetry Analysis of Second Order Partial Differential
Equations

1.9.1 Construction of Infinitesimals for Second Order Partial Differen-
tial Equations

In continuation with Section 1.8.1, we can obtain higher-order prolongations. If ūΩ is
any derivative of ū with respect to t̄ and x̄, then

ūΩt̄ = ∂ūΩ
∂t̄

= 1
J

∣∣∣∣∣∣∣∣
Dtx̄ DtūΩ

Dxx̄ DxūΩ

∣∣∣∣∣∣∣∣ (1.71)

ūΩx̄ = ∂ūΩ
∂x̄

= 1
J

∣∣∣∣∣∣∣∣
DtūΩ Dtt̄

DxūΩ Dxt̄

∣∣∣∣∣∣∣∣ (1.72)

In particular, the transformation of the second derivative is as follows

ūtt = 1
J

∣∣∣∣∣∣∣∣
Dtx̄ Dtūt̄

Dxx̄ Dxūt̄

∣∣∣∣∣∣∣∣ , ūxx = 1
J

∣∣∣∣∣∣∣∣
Dtūx̄ Dtt̄

Dxūx̄ Dxt̄

∣∣∣∣∣∣∣∣ , (1.73)

ūxt = 1
J

∣∣∣∣∣∣∣∣
Dtx̄ Dtūx̄

Dxx̄ Dxūx̄

∣∣∣∣∣∣∣∣ = 1
J

∣∣∣∣∣∣∣∣
Dtūt̄ Dtt̄

Dxūt̄ Dxt̄

∣∣∣∣∣∣∣∣ (1.74)

On simplifying (1.74) we get the extended infinitesimal representations, namely

ūtt = utt+δU[tt]+O(δ2), ūxx = uxx+δU[xx]+O(δ2), ūtx = utx+δU[tx]+O(δ2) (1.75)

where,

U[tt] = Dt(U[t])− utxDt(X)− uttDt(T ), U[xx] = Dx(U[x])− uxxDx(X)− utxDx(T ),
(1.76)

and,

U[tx] = Dt(U[x])− uxxDt(X)− utxDt(T ).

= Dx(U[t])− utxDx(X)− uttDx(T ).
(1.77)

The explicit expressions for U[tt], U[xx], U[tx] given by equations (1.76) and (1.77) are

U[tt] = Utt −Xttux + (2Utu − Ttt)ut − 2Xtuuxut + (Uuu − 2Ttu)u2
t −Xuuuxu

2
t

− Tuuu3
t − 2Xtuxt − 2Xuutuxt + (Uu − 2Tt)utt −Xuuxutt − 3Tuututt, (1.78)
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U[xx] = Uxx + (2Uxu −Xxx)ux − Txxut + (Uuu − 2Xxu)u2
x − 2Txuuxut −Xuuu

3
x

− Tuuu2
xut + (Uu − 2Xx)uxx − 2Txuxt − 3Xuuxuxx − Tuutuxx − 2Tuuxuxt, (1.79)

U[xt] = Uxt + (Utu −Xxt)ux + (Uxu − Txt)ut −Xtuu
2
x + (Uuu −Xxu − Ttu)uxut

− Txuu2
t −Xuuu

2
xut − Tuuuxu2

t −Xtuxx −Xuutuxx + (Uu −Xx − Tt)uxt
− 2Xuuxuxt − 2Tuutuxt − Txutt − Tuuxutt. (1.80)

If the second order partial differential equation is K(t, x, u, ut, ux, utt, utx, uxx) = 0, then
the determining equation is given by

T
∂K

∂t
+X

∂K

∂x
+U

∂K

∂u
+U[t]

∂K

∂ut
+U[x]

∂K

∂ux
+U[tt]

∂K

∂utt
+U[tx]

∂K

∂utx
+U[xx]

∂K

∂uxx

∣∣∣∣
K=0

= 0.

(1.81)

Remark 1.9.1. The infinitesimal generator of the Lie group is given by equation (1.69).

1.9.2 Group Methods for the One-Dimensional Wave Equation

The one-dimensional wave equation with constant speed is given by utt = c2uxx,

where u = u(x, t) denotes displacement from initial position, t denotes time, x denotes
position and c denotes velocity of propagation.
The determining equation (1.81) gives U[tt] = c2U[xx], where U[tt] and U[xx] are defined
by equations (1.78) and (1.79). Hence, the determining equations become,

Utt − c2Uxx − (Xtt + c2(2Uxu −Xxx))ux + (2Utu − Ttt + c2Txx)ut − c2(Uuu − 2Xxu)u2
x

− 2(Xtu + Txu)uxut + (Uuu − 2Tut)u2
t + c2Xuuu

3
x + c2Tuuu

2
xut −Xuuuxu

2
t − Tuuu3

t

− c2(Uu − 2Xx)uxx + (2c2Tx − 2Xt)uxt + c2(Uu − 2Tt)uxx + 3c2Xuuxuxx + c2Tuutuxx

+ 2c2Tuuxutx − 2Xuutuxt − c2Xuuxuxx − 3c2Tuutuxx = 0.

Splitting the determining equations with respect to ux, ut, u2
x, uxut, u

2
t , u

3
x, u

2
xut, uxu

2
t , u

3
t , uxx,

uxt, uxuxx, utuxx, uxutx, utuxt, we get,

Utt − c2Uxx = 0, Xtt + c2(2Uxu −Xxx) = 0, 2Utu − Ttt + c2Txx = 0,

Uuu − 2Xxu = 0, Xtu + Txu = 0, Uuu − 2Tut = 0, Xuu = 0,

Tuu = 0, Xx − Tt = 0, c2Tx −Xt = 0, Xu = 0, Tu = 0.

Solving these equations, we get,

T (t, x, u) = A(t, x), X(t, x, u) = B(t, x), U(t, x, u) = P (t, x)u+Q(t, x),
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where, Pt = 0, Px = 0⇒ P (t, x) = c47, a constant.
Hence, U = c47u+Q(t, x), where A,B are arbitrary functions of t and x, and Q satisfies
the wave equation.
The wave equation admits a four dimensional Lie algebra with generators,

ζ∗1 = A(t, x) ∂
∂t
, ζ∗2 = B(t, x) ∂

∂x
, ζ∗3 = u

∂

∂u
, ζ∗4 = Q(t, x) ∂

∂u
.

We now seek a solution of the wave equation by making a special choice of the infinitesi-
mals namely, A = x, B = t, Q = 0.
The associated invariant surface condition is
xux + tut = c47u, which is solved to get u = xpF

(
t

x

)
, where p = c47 and F is an

arbitrary function.
Substituting in the one-dimension wave equation, we get,

(c2r2 − 1)F ′′(r)− 2c2r(p− 1)F ′(r) + c2p(p− 1)F (r) = 0 where r = t

x
. (1.82)

This can be integrated easily giving,

F (r) =


c1
c2
log

(
rc− 1
rc+ 1

)
if p = 0

c1

(
r − 1

c

)p
+ c2

(
r + 1

c

)p
if p 6= 0

If p = 0, exact solution is u(x, t) = c1
c2 log

(
ct− x
ct+ x

)
+ c2.

If p 6= 0, exact solution is u(x, t) = xp
[
c1F1

(
t

x

)
+ c2F2

(
t

x

)]
,

where Fi, i = 1, 2 are solutions of equation (1.82).
The solutions of equation (1.82) for some integer values of p are presented in the table
below:
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p F1 F2

1 1 r

2 c2r2 − 2cr + 1
c2

c2r2 + 2cr + 1
c2

3 c3r3 − 3c2r2 + 3cr − 1
c3

c3r3 + 3c2r2 + 3cr + 1
c3

4 c4r4 − 4c3r3 + 6c2r2 − 4cr + 1
c4

c4r4 + 4c3r3 + 6c2r2 + 4cr + 1
c4

-1 c

cr − 1
c

cr + 1
-2 c2

c2r2 − 2cr + 1
c2

c2r2 + 2cr + 1
-3 c3

c3r3 − 3c2r2 + 3cr − 1
c3

c3r3 + 3c2r2 + 3cr + 1
-4 c4

c4r4 − 4c3r3 + 6c2r2 − 4cr + 1
c4

c4r4 + 4c3r3 + 6c2r2 + 4cr + 1

.

We shall conclude the analysis for the wave equation by obtaining a particular solution
of the wave equation with unit speed.
To obtain a particular solution, consider, A = t, B = x, P = Q = 0.
The associated invariant surface condition is tux + xut = 0
The solution of this linear partial differential equation is u(x, t) = F (t2− x2), where F is
arbitrary.
To find F , we use the wave equation utt = uxx, and get rF ′′(r) + F ′(r) = 0, where
r = t2 − x2.

The solution of this Clairaut differential equation is
F (r) = c48ln(r) + c49, where c48, c49 are arbitrary constants.
Re substituting r, we get, u(x, t) = c48ln(t2 − x2) + c49, which is the exact solution of
the one-dimensional unit speed wave equation.
The analysis of the uni speed one-dimensional wave equation can be found in [5].

1.10 Admitted Generator For Functional Differential Equa-
tions Using Lie-Bäcklund Operators

In this section we shall present the existing literature found in [40] on obtaining the
admitted generator for (second-order) delay and neutral differential equations. This
approach uses the Lie-Bäcklund operator and an invariant manifold theorem.
We shall assume the infinitesimal generator of the Lie group admitted by the functional
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differential equation2

x′′ = f(t, x(t), x(t− r), x′(t), x′(t− r)), (1.83)

is given by equation (1.51).
The corresponding Lie-Bäcklund operator has the form

ζ∗ = η(t, x, x′) ∂
∂x
, (1.84)

where η = Υ −x′ω. In order to obtain the determining equations for functional differential
equations (second-order described here), one has to prolong the canonical Lie-Bäcklund
operator to the six-dimensional space of variables (t, x(t), x(t− r), x′(t), x′(t− r), x′′(t)) :

ζB = ηx
∂

∂x
+ ηxr

∂

∂x(t− r) + ηx′
∂

∂x′
+ ηx

′
r

∂

∂x′(t− r) + ηx
′′ ∂

∂x′′
. (1.85)

where
ηx(t, x, x′) = Υ (t, x)− x′ω(t, x),

ηxr(t, xr, x′r) = ηx(t− r, x(t− r), x′(t− r)) = η(t− r, x(t− r))−x′(t− r)ω(t− r, x(t− r)),

ηx
′(t, x, x′, x′′) = D(ηx) = Υt(t, x) + [Υx(t, x)− ωt(t, x)]x′ − ωx(t, x)(x′)2 − ω(t, x)x′′,

ηx
′
r(t, x(t− r), x′(t− r), x′′(t− r)) = ηx

′(t− r, x(t− r), x′(t− r), x′′(t− r))

= Υt(t− r, x(t− r)) + [Υx(t− r, x(t− r))

− ωt(t− r, x(t− r))]x′(t− r)− ωx(t− r, x(t− r))

(x′(t− r))2 − ω(t− r, x(t− r))x′′(t− r),

ηx
′′(t, x, x′, x′′, x′′′) = D(ηx′) = Υtt(t, x) + [2Υtx(t, x)− ωtt(t, x)]x′

= [Υxx(t, x)− 2ωtx(t, x)](x′)2 − ωxx(t, x)(x′)3

+ [Υx(t, x)− 2ωt(t, x)]x′′ − 3ωx(t, x)x′x′′ − ω(t, x)x′′′,

where D is the total derivative operator with respect to t given by, D = ∂

∂t
+x′

∂

∂x
+ · · · .

The determining equation for the functional differential equation (1.83) is given by,

ζB
(
x′′ − f(t, x(t), x(t− r), x′(t), x′(t− r))

)
|(1.83)= 0. (1.86)

Equation (1.86) has to be satisfied by any solution of equation (1.83).
Substituting x′′′ = ft + x′fx + x′rfxr + x′′fx′ + x′′rfx′r + x′′rfx′r , x′′ = f and x′′r = fr, the

2For functional differential equations the notation x′ means dx

dt
. Similarly the notation x′′ means d2x

dt2
and so on.
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determining equation (1.86) can be written as

− ωxx(x′)3 + (Υxx − 2ωtx + ωxfx′)(x′)2 + ωrxrfx′r(x
′
r)2 + (2Υtx − ωttx′)

+ (ωt + Υx)fx′x′ − 3ωxfx′ + Υtt − Υtfx′ + (Υx − 2ωt)f − Υ rt fx′r + (ωrt − Υ rxr)fx′rx
′
r

− ftω − fxΥ − Υ rfxr + (ωr − ω)fxrx′r + (ωr − ω)frfx′r = 0, (1.87)

where fr = f(t− r, x(t− r), x(t− 2r), x′(t− r), x′(t− 2r)).
By virtue of the Cauchy problem, one can account the variables3 t, x, xr, x′, x′r, x2r and
x′2r where x2r = x(t− 2r) and x′2r = x′(t− 2r) in equation (1.87) as arbitrary variables.
If fx′r 6= 0, then splitting the determining equation (1.87) with respect to x′2r, we get
ω = ωr.

If fx′r = 0, then fxr 6= 0. Then splitting the determining equation (1.87) with respect to
x′r, we again get ω = ωr.

This shows the periodic property of ω, that is,

ω(t, x) = ω(t− r, x(t− r)). (1.88)

As this property is satisfied for any solution of the Cauchy problem, equation (1.88)
implies that ω does not depend on x, that is, ωx = 0. Moreover, the property (1.88)
allows us to write the determining equation (1.87) as

ζ̃∗2
(
x′′ − f(t, x, xr, x′, x′r)

)
|(1.83)= 0, (1.89)

where ζ̃∗2 = ζB + ωD = ω
∂

∂t
+ Υ

∂

∂x
+ Υ[t]

∂

∂x′
+ Υ r

∂

∂xr
+ Υ r[t]

∂

∂x′r
+ Υ[tt]

∂

∂x′′
,

where all symbols have their usual meaning and expressions as seen in the earlier sections.
In addition,

Υ r = Υ (t− r, x(t− r)),

and,

Υ r[t] = Υt(t−r, x(t−r))+[Υx(t−r, x(t−r))−ωt(t−r, x(t−r))]x′r−ωx(t−r, x(t−r))(x′r)2.

The generator ζ̃∗2 acts in the space of variables (t, x, xr, x′, x′r, x′′), whereas the coefficients
of the operator ζB include the derivatives x′′r and x′′′.
Equation (1.89) means the manifold defined by equation (1.83) is an invariant manifold
of the generator ζ̃∗2 . As a result of the invariant manifold theorem, any invariant manifold
can be represented through invariants of the generator ζ̃∗2 . Hence, for describing equations
admitting the generator ζ∗, one needs to find all invariants of the generator ζ̃∗2 .
Direct calculations show that if two generatorsX1 andX2 are admitted by equation (1.83),

3The notations xr, x′r, x′′r means x(t − r), x′(t − r), x′′(t − r) respectively. Similarly the notations ωr

means ω(t − r, x(t − r)).
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then their commutator [X1, X2] is also admitted by equation (1.83). This property allows
stating that the set of infinitesimal generators admitted by equation (1.83) composes a
Lie algebra on the real plane.
The above can be summarized as the following theorem:

Theorem 1.10.1. The second order functional differential equation given by (1.83),
which contains the infinitesimal generator ω, obeys the periodic property for ω. That is,

ω(t, x) = ω(t− r, x(t− r)).

Remark 1.10.1. The admitted group for second order functional (neutral and delay)
differential equations is described above. The same procedure can also be used to get
the admitted generator for first order functional differential equations.

A great detail of literature on group methods for ordinary and partial differential equations
can be found in [2, 3, 8, 11, 14, 17, 24, 25, 26, 31, 50, 57].
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2.1 Introduction

The symmetry approach developed for differential equations, cannot be applied to equa-
tions with nonlocal terms, as in delay differential equations. The nonlocality does not
allow the manifold’s approach for defining an admitted Lie group (i.e mapping any
solution of equations into a solution of the same equation), given by Lie. In the sense of
applications of group analysis for constructing equations, this definition of an admitted
Lie group is more appropriate: it excludes the possibilities where an equation admits a
Lie group, but the equation has no solution [22]. This definition was applied to study
integro differential equations [19, 20, 32]. Some retarded equations being of the type of
integro differential equations, we got a similar idea to use the approach, particularly for
delay differential equations.

The definition of an admitted Lie group allows us to construct the determining equations.
The determining equations are then split with respect to arbitrary elements. In the
case of differential equations the arbitrary elements are parametrical derivatives. In
the case of analytical systems the parametrical derivatives are dictated by the Cauchy-
Kovalevskaya theorem for a Cauchy type systems and by the Cartan-Khäler theorem
for involutive systems. For other types of equations an answer to the question about ar-
bitrary elements is obtained on the basis of a theorem of existence of the Cauchy problem.

In this chapter, we state an approach developed in [34] where a delay differential equation
is replaced by an underdetermined system of differential equations for which classical
group analysis is applied. The reduction to underdetermined system widens a class of
equations admitted by a given Lie group. But an extension of equations narrows a set of
admitted Lie groups.

This chapter is devoted to studying symmetry analysis to first order delay differential
equations with constant coefficients.

2.2 Construction of Determining equations

As delay differential equations have terms with delay (nonlocal terms), this serves as a
major hindrance to applying symmetry analysis. To overcome this hindrance, we adopt
the following method. We describe the method for functional differential equations with
one independent variable

S ≡ x′(t)− F (t, xt) = 0. (2.1)
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If χ(t) is a function defined at least on [t − r, t], then one defines a new function
χt : [−r, 0]→ D by

χt(s) = χ(t+ s), s ∈ [−r, 0]

where D is an open subset in Rn, J is some interval in R, F is a functional. Here we
have used notations accepted in literature given in [15, 21, 43]. For delay differential
equations

F (t, xt) ≡ f(t, χ(g1(t)), · · · , χ(gm(t)),

where f : [t0, β) ×Dm → Rn, and gj(t) ≤ t for t0 ≤ t ≤ β for each j = 1, 2, · · · ,m. A
continuous function χ(t), t ∈ [t0 − r, t0 + β) is called a solution of the delay differential
equation if it is differentiable in the interval (t0, β) and satisfies equation (2.1) in the
interval (t0, β). The value χ′(t0) is understood as the right hand derivative.
As done for differential equations, let the symmetry group G of transformations fδ :

t̄ = f1(t, x; δ), x̄ = f2(t, x; δ),

where f1 and f2 are smooth functions in t and x having a convergent Taylor series in δ,
with t = f1(t, x; 0) and x = f2(t, x; 0), map solutions of equation (2.1) to solutions of the
same equation. We usually consider, the following infinitesimal generator instead of a
Lie group,

X = ω(t, x) ∂
∂t

+ Υ (t, x) ∂
∂x
,

where,
ω(t, x) = ∂f1

∂δ
(t, x; 0), Υ (t, x) = ∂f2

∂δ
(t, x; 0).

Let x = χ(t) be a solution. A parametrical representation of the transformed function
χδ(t̄) is given by the equations t̄ = f1(t, χ(t); δ), x̄ = f2(t, χ(t); δ). In order to find χδ(t̄),
one has to define

t = Ψ(t̄; δ), (2.2)

from the equation t̄ = f1(t, χ(t); δ). For differential equations this is guaranteed by local
inverse function theorem. For delay differential equations (2.1), one has to define the
function Ψ not only in a neighbourhood of the point t, but also in the interval [t− r, t]
and in a right-hand neighbourhood of t. For obtaining this it is not enough only a local
inverse function theorem. Assume that the given Lie group possess this property. Hence,
the function χδ(t̄) is defined by χδ(t̄) = f2(Ψ(t̄; δ), χ(Ψ(t̄; δ)); δ), and then,

dχ̄(t̄)
dt̄

= (f1,1 + f1,2χ
′(Ψ(t̄; δ)))∂Ψ(t̄; δ)

∂t̄
,

where f1,i means the partial derivative of f with respect to the ith argument. Thus

F (t̄, χ̄t̄) = f(t, f11, · · · , f1m),
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where f1i = f1(Ψ(gi(t̄); δ), χ(Ψ(gi(t̄); δ)); δ), i = 1, 2, · · · ,m.
Let ∆(t, xt, x′) = x′ − F (t, xt). Since χ(t) and χδ(t̄) are solutions, then,

∆(t, xt, x′) ≡ 0. (2.3)

for x = χ(t) and x = χδ(t̄). Differentiating the functions ∆(t, xt, x′), where x = χδ(t̄),
with respect to the group parameter δ, then setting δ = 0, we get,

∂∆(t, xt, x′)
∂δ

= 0. (2.4)

The left side of these equations is expressed only through the coefficients of the infinitesi-
mal generator X, their derivatives, the function χ(t) and its derivatives. This we denote
by

S(χ, ω, Υ ) ≡ ∂∆(t, xt, x′)
∂δ

, at δ = 0.

Thus, equation (2.4) becomes
S(χ, ω, Υ ) = 0.

where χ(t) is an arbitrary solution of (2.1).
Note that equation (2.4) coincides with the equations obtained in the result of an action
onto (2.1) by the prolonged canonical Lie-Bäcklund operator equivalent to the generator
X:

X̂ = (Υ (t, x)− ω(t, x)x′) ∂
∂x

+ · · ·

For functional differential equations the action of the derivative ∂

∂x
has to be considered

in the sense of Frechet derivative; this is the difference in applying the canonical operator
as applied for ordinary differential equations. A Lie group satisfying,
At [S],

S(χ, ω, Υ ) = X̂(S) = 0. (2.5)

for any solution of (2.1), is called an admitted Lie group. Equation (2.5) is called the
determining equation. The notation [S] in (2.5) means that equation (2.5) has to be
satisfied for any solution of equation (2.1).
The definition of admitted Lie group admits the following features:

1. They must be satisfied for any solution of equation (2.1).

2. The definition is free from the requirement for the admitted Lie group to have (2.2)
globally.

3. In the sense of Lie Bäcklund representation, the definition coincides with one of the
classical definitions of an admitted Lie group in the case of differential equations.

4. Was applied for integro-differential equations.
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5. Can be applied for finding an equivalence group, contact and Lie-Bäcklund trans-
formations for functional differential equations.

The determining equations are then split with respect to arbitrary elements. Since
arbitrary elements of delay differential equations are contained in determining equations
by similar ways, as for differential equations, the process of solving determining equations
for delay differential equations is similar to obtaining solutions of determining equations
for ordinary differential equations.

2.3 Infinitesimal Generator Admitted by the First Order
Delay Differential Equation With Constant Coefficients

In this section we extend group analysis to delay differential equations of the form,

x′(t) = ax(t) + bx(t− r). (2.6)

We define the operator,

ζ = (Υ − x′ω) ∂
∂x

+ (Υ r − x′rωr) ∂

∂xr
+ Υ[t]

∂

∂x′
= 0. (2.7)

Let,
∆ = x′(t)− ax(t)− bx(t− r). (2.8)

Then by Lie’s Invariance condition, at ∆ = 0, ζ∆ = 0, using the notations xr =
x(t− r), ωr = ω(t− r, x(t− r)), Υ r = Υ (t− r, x(t− r)), we get,
(Υ − x′ω) ∂

∂x
(x′(t) − ax(t) − bx(t − r)) + (Υ r − x′rωr) ∂

∂xr
(x′(t) − ax(t) − bx(t − r)) +

Υ[t]
∂

∂x′
(x′(t)− ax(t)− bx(t− r)) = 0.

Therefore, at (t0, x0), we get,
Φ(t0, x0, x1, x2, x3) = −aΥ (t0, x0) + ax′(t0 − r)ω(t0, x0) − bΥ (t0 − r, x0 − r) + bx′(t0 −
r)ω(t0 − r, x0 − r) + Υ[t] = 0.
Let, x′(t0) = x1, x0 = ψ(t0), x2 = ψ(t0 − r), x3 = ψ′(t0 − r).
Now,

Υ[t] = Υt + x′Υx − x′ωt − x′2ωx
= Υt + (ax((t) + bx(t− r))Υx − (ax(t) + bx(t− r)ωt − (ax(t) + bx(t− r))2ωx.

Therefore, at (t0, x0),
Υ[t] = (aΥx(t0, x0)−aωt(t0, x0)x0+(bΥx(t0, x0)−bωt(t0, x0)x2+Υt(t0, x0)−a2ωx(t0, x0)x2

0−
2abωx(t0, x0)x0x2 + b2ωx(t0, x0)x2

2.

Hence, we get,
Φ(t0, x0, x1, x2, x3) = −aΥ (t0, x0) + (aω(t0, x0) + bω(t0− r, x0− r)x3− bΥ (t0− r, x0− r) +
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(aΥx(t0, x0)− aωt(t0, x0)x0 + (bΥx(t0, x0)− bωt(t0, x0)x2 + Υt(t0, x0)− a2ωx(t0, x0)x2
0 −

2abωx(t0, x0)x0x2 + b2ωx(t0, x0)x2
2.

By splitting this determining equation, we get,

aΥx − aωt = 0, (2.9)

bΥx − bωt = 0, (2.10)

a2ωx = 0, (2.11)

2abωx = 0, (2.12)

b2ωx = 0, (2.13)

aω(t0, x0) + bω(t0 − r, x0 − r) = 0, (2.14)

Υt − bΥ (t0 − r, x0 − r)− aΥ = 0. (2.15)

From equations (2.11), (2.12) and (2.13), ωx = 0⇒ ω = ω(t).
From equations (2.9) and (2.10), Υ (t, x) = ω′(t)x + α(t), where α(t) is an arbitrary
function of t. From equations (2.14), (2.15), if a 6= −b, ω = 0, hence, Υ = α(t), where
α(t) is an arbitrary solution of equation (2.6)
The generator is given by X = α(t) ∂

∂x
, where α(t) is an arbitrary solution of equation

(2.6).
If a = −b, from equations (2.9)-(2.13), ω = c, an arbitrary constant, Υ = β(t), where
β(t) is an arbitrary solution of equation (2.6).
The generator in this case is X = c

∂

∂t
+ β(t) ∂

∂x
, where c is an arbitrary constant and

β(t) is an arbitrary solution of equation (2.6).

2.4 Summary

In this chapter, a Lie-Bäcklund operator for first order delay differential equations is
defined. We have discussed its construction and properties. Further, using this operator,
we have obtained symmetries of a first order linear delay differential equation with
constant coefficients.
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3.1 Introduction

Delay differential equations are shown in [33] to have a wide range of applications in
control theory, signal processing, heat transfer problems, developing population models,
biosciences (blood flow and disease related problems), ecology, evolution of species,
electrical networking, physics, study of epidemics, etc.

In [59] we are shown the construction of an equivalent Lie-Bäcklund operator discussed
by [25, 26] which is applied to delay differential equations to obtain symmetries. Linchuk
in [34] suggests a group method to research functional differential equations based on a
search of symmetries of underdetermined differential equations by methods of classical
and modern group analysis, using the principle of factorization. His method encompasses
the use of a basis of invariants consisting of universal and differential invariants. In the
previous chapter, an admitted Lie group has been defined for first order delay differential
equations with constant coefficients, using Lie Bäcklund operators, a method different
from the one contained herein; the results of which are seen in the previous chapter.

In this chapter, we establish group methods to delay differential equations of the type

x′(t) = f(t, x, x(g(t))),where g(t) is a differentiable function such that g(t) < t, (3.1)

and where f is a real valued function defined on I × D2, with I as an open interval
in R and D an open set in R. We also assume ∂f

∂x(g(t)) 6= 0. The process of applying
group methods involve some steps. We first need to find a group under which the delay
differential equation is invariant. We can then use this group for obtaining symmetries
of the delay differential equation. We call this the admitted Lie group, for which we
shall mean that each transformation carries a solution of the differential equation to a
solution of the same equation. We do not define any equivalent Lie-Bäcklund operator,
but obtain a Lie type invariance condition, using which we define certain operators
required in obtaining the desired symmetries. We shall be using Taylor’s theorem to do
this. The equations we obtain by acting our operator on the delay differential equation,
will be called as determining equations. We shall then split these equations with respect
to the independent variables to obtain an overdetermined system of partial differential
equations which we shall call splitting equations. We shall finally solve this system to
obtain the symmetry algebra of the delay differential equation. We shall make a complete
group classification of the first order differential equation containing variable coefficients,
and with the most general and most standard time delay.

The rest of the chapter is organized as followed: In the following section, the ideas
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of group methods for ordinary differential equations have been extended to first order
delay differential equations, in a manner different from existing literature for delay
differential equations. In the subsequent Section 3.3 and Section 3.4, symmetry analysis
has been applied for first order linear delay differential equations with most general and
most standard time delay, for which no literature has been found. The section that
follows illustrates the classification and invariance under a Lie group, a delay differential
equation of importance in some practical models. The next section demonstrates group
classification and invariance under a Lie group, a nonlinear delay differential equation
extensively studied by [28, 30] in researching population growth models.

3.2 Lie Type Invariance Condition for First Order Delay
Differential Equations

Formally, a first order delay differential equation is defined as follows:

Definition 3.2.1. (First Order Delay Differential Equation)
Let J be an interval in R, and let D be an open set in R. Sometimes J will be [t0, β),
and sometimes it will be (α, β), where α ≤ t0 ≤ β. Let f : J ×D3 → R. Conveniently,
a first order delay differential equation is expressed as

x′(t) = f(t, x(g1(t)), x(g2(t))), (3.2)

where x and f are real valued functions, and each gj(t) is a retarded argument i.e.
gj(t) ≤ t. Often g1(t) ≡ t.
We consider equation (3.2) for t0 ≤ t ≤ β together with the initial function

x(t) = θ(t), for γ ≤ t ≤ t0, (3.3)

where γ ∈ R, γ < t0 and θ is a given initial function mapping [γ, t0]→ D.

Definition 3.2.2. (Solution of a First Order Delay Differential Equation)
By a solution of delay differential equations (3.2) and (3.3) we mean a continuous function
x : [γ, β1)→ D, for some β1 ∈ (t0, β], such that,

1. x(t) = θ(t) for γ ≤ t ≤ t0.

2. x(t) reduces equation (3.2) to an identity on t0 ≤ t ≤ β1.

We understand x′(t0) to mean the right-hand derivative.

In this section we extend the results to delay differential equations of type equation
(3.1). To determine the delay differential equation completely, we need to specify the
delay term, where the delayed function is specified, otherwise the problem is not fully
determined.
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We obtain a Lie type invariance for delay differential equations using Taylor’s theorem
for a function of several variables:

Theorem 3.2.1. For the first order delay differential equation

dx

dt
= F (t, x, g(t), x(g(t))), (3.4)

defined on I1 ×D1 × I2 ×D2, where I1, I2 are open intervals in R and D1, D2 are open
sets in R, the Lie invariance condition is given by

ωFt + ΥFx + ωg(t)Fg(t) + Υ g(t)Fx(g(t)) = Υt + (Υx − ωt)x′ − ωxx′2,

where the notations ωg(t) and Υ g(t) mean ω(g(t), x(g(t))) and Υ (g(t), x(g(t))) respectively.

Proof. Let the delay differential equation be invariant under the Lie group
t̄ = t+ δω(t, x) +O(δ2),
x̄ = x+ δΥ (t, x) +O(δ2).
We then naturally define,
g(t) = g(t) + δω(g(t), x(g(t))) +O(δ2),
x(g(t)) = x(g(t)) + δΥ (g(t), x(g(t))) +O(δ2).
Then,

dx̄

dt̄
=

dx̄

dt
dt̄

dt

=
[
dx

dt
+ (Υt + Υxx

′)δ +O(δ2)
] [

1− (ωt + ωxx
′)δ +O(δ2)

]
= dx

dt
+ [Υt + (Υx − ωt)x′ − ωxx′2]δ +O(δ2)

For invariance, dx̄
dt̄

= F (t̄, x̄, g(t), (x(g(t)))).
With the notations,
ωg(t) = ω(g(t), x(g(t))), Υ g(t) = Υ (g(t), x(g(t))), we get,

dx

dt
+ [Υt + (Υx − ωt)x′ − ωxx′2]δ +O(δ2) = F (t+ δω +O(δ2), x+ δΥ +O(δ2),

g(t) + δωg(t) +O(δ2), x(g(t)) + δΥ g(t)

+O(δ2))

= F (t, x, g(t), x(g(t)))+

(ωFt + ΥFx + ωg(t)Fg(t) + Υ g(t)Fx(g(t)))δ

+O(δ2).



Chapter 3. Symmetry Analysis of First Order Delay Differential
Equations 49

Comparing the coefficient of δ, we get

ωFt + ΥFx + ωg(t)Fg(t) + Υ g(t)Fx(g(t)) = Υt + (Υx − ωt)x′ − ωxx′2. (3.5)

The above equation (3.5) obtained is a Lie type invariance condition.

Similar to the case of ordinary differential equations, we can define a prolonged operator,
for delay differential equations as:
ζ = ω

∂

∂t
+ ωg(t)

∂

∂g(t) + Υ
∂

∂x
+ Υ g(t)

∂

∂x(g(t))
With the notation,
Dt = ∂

∂t
+ x′

∂

∂x
We can write,

dx̄

dt̄
= dx

dt
+ (Dt(Υ )− x′Dt(ω))δ +O(δ2)

= dx

dt
+ Υ[t]δ +O(δ2),

where Υ[t] = Dt(Υ )− x′Dt(ω).
We then define the extended operator as:

ζ(1) = ω
∂

∂t
+ ωg(t)

∂

∂g(t) + Υ
∂

∂x
+ Υ g(t)

∂

∂x(g(t)) + Υ[t]
∂

∂x′
. (3.6)

Defining, ∆ = x′(t)− F (t, x(t), g(t), x(g(t))) = 0, we get,

ζ(1)∆ = Υ[t] − ωFt − ΥFx − ωg(t)Fg(t) − Υ g(t)Fx(g(t)). (3.7)

Comparing equation (3.7) and equation (3.5), we get,
Υ[t] = Υt + (Υx − ωt)x′ − ωxx′2.
On substituting x′ = F into ζ(1)∆ = 0, we get an invariance condition for the delay
differential equation which is ζ(1)∆ |∆=0= 0, from which we shall obtain the determining
equations.

3.3 Symmetries of First Order Non-homogeneous Differen-
tial Equations With Most General Time Delay

We establish the following result:

Theorem 3.3.1. Consider the delay differential equation

x′(t) = p(t)x(t) + q(t)x(g(t)) + s(t). (3.8)

Then the symmetries of the non-homogeneous delay differential equation
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x′(t) = p(t)x(t) + q(t)x(g(t)) +s(t) where g is a sufficiently smooth non constant function
such that g(t) < t, p(t), q(t) and s(t) are sufficiently smooth functions satisfying q(t)
not identically zero, admit a symmetry algebra of infinite dimension due to the linear
superposition principle, and is represented by the vector fields, x2(t) ∂

∂x
and (x−x1(t)) ∂

∂x
.

Further, if the delay differential equation is homogeneous, then it admits a symmetry
algebra which is again of infinite dimension, given by the vector fields x2(t) ∂

∂x
and x ∂

∂x
,

where x1(t) is an arbitrary solution of (3.8) and x2(t) is the general solution of the
associated homogeneous delay differential equation.

Proof. Let,
g(t) = h(t). (3.9)

We look out for a coefficient of the infinitesimal generator ω of the form (that is we
assume) ω(t, x) = ω(t). Then applying equation (3.6) to the delay equation given by
(3.9), we get,

ω(h(t)) = h′(t)ω(t). (3.10)

Applying operator ζ(1) defined by equation (3.6) to equation (3.8), we get,

Υt(t, x) + (Υx(t, x)− ω′(t))(p(t)x(t) + q(t)x(g(t)) + s(t)) =

ω(t)(p′(t)x(t) + q′(t)x(g(t)) + s′(t)) + p(t)Υ (t, x) + q(t)Υ g(t).
(3.11)

Differentiating the above equation with respect to x(g(t)) twice, we get,

Υ (t, x) = M(t)x+N(t). (3.12)

Substituting equation (3.12) in equation (3.11), and splitting the equation with respect
to x(t), x(g(t)), and the constant term, we get

M(t) = p(t)ω(t) +M0, M0 = constant. (3.13)

q(t)ω′(t) + ω(t)q′(t) = q(t)(M(t)−M(g(t))). (3.14)

N ′(t) = p(t)N(t) + q(t)N(g(t)) + s(t)ω′(t)− s(t)M(t). (3.15)

Substitute (3.13) in (3.14)
q(t)ω′(t) + ω(t)q′(t) = q(t)(p(t)ω(t)− p(g(t))ω(g(t))).
Therefore,

ω′(t) = (p(t)ω(t)− p(g(t))ω(g(t)))− q′(t)ω(t)
q(t)

=
(
p(t)− g′(t)p(g(t))− q′(t)

q(t)

)
ω(t).

(3.16)

Therefore, ω′(t) = ξ(t)ω(t), where,
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ξ(t) = p(t)− g′(t)p(g(t))− q′(t)
q(t) . (3.17)

Differentiate equation (3.10) with respect to t, we get,

ω′(h(t))h′(t) = h′′(t)ω(t) + h′(t)ω′(t). (3.18)

Using equation (3.10) and (3.17), we get, ξ(h(t))(h′(t))2ω(t) = h′′(t)ω(t) + h′(t)ξ(t)ω(t).
The above equation is the compatibility condition for ω(t).
For a general p(t), q(t), s(t), equations (3.10) and (3.16), have only one solution, namely,
ω(t, x) = 0.
Thus, we obtain the symmetries,
ω(t, x) = 0, Υ (t, x) = M0x+N(t), M0 = constant,
where N(t) solves, N ′(t) = p(t)N(t) + q(t)N(g(t))−M0s(t).
Thus, the general solution of the determining equations corresponds to the generator,
ζ∗ = M0x

∂

∂x
+N(t) ∂

∂x
.

3.4 Symmetries of First Order Differential Equations With
The Most Standard Time Delay

In the previous section, we have obtained the equivalent symmetries of (3.8). In (3.8),
we have considered the most general time delay given by g(t) where g(t) < t.
In this section, we shall make a group classification of the first order delay differential
equation given by,

x′(t) = p(t)x(t) + q(t)x(t− r) + s(t). (3.19)

It may be noted that our delay here is chosen by setting g(t) = t − r in Section 3.3.
However, it is pointed out here that for the differential equation with most general
time delay given by (3.8), we have seen that one of the coefficients of the infinitesimal
generator was 0. It will be seen in this section, that by choosing g(t) = t− r, both of
our coefficients of the infinitesimal generator will be non-trivial.
Equation (3.19) is of paramount importance in modeling physical phenomenon arising in
fluid mechanics, physics, ecology, biological processes, etc.

Proposition 3.4.1. If x1(t) is an arbitrary solution of equation (3.19), then by employing
the change of variables t̄ = t, x̄ = x − x1(t), the delay differential equation given by
equation (3.19), gets transformed a homogeneous delay differential equation, namely,

x′(t) = p(t)x(t) + q(t)x(t− r). (3.20)

Proof. The proposition easily follows by substituting t = t̄ and x(t) = x̄+ x1(t̄) in (3.19),
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and by noting that x′1(t) = p(t)x1(t) + q(t)x1(t− r) + s(t).

We establish the following theorem for equation (3.19)

Theorem 3.4.1. The delay differential equation given by equation (3.19) for which

1. p(t) 6= p(t− r) admits the three dimensional group generated by

ζ∗1 = e

∫
ν(t)− q′(t)

q(t) dt ∂
∂t

+xp(t)e

∫
ν(t)− q′(t)

q(t) dt ∂
∂x
, ζ∗2 = x

∂

∂x
, ζ∗3 = x3(t) ∂

∂x
,

where x3(t) is the general solution of the associated homogeneous delay differential
equation and ν(t) = p(t)− p(t− r).

2. p(t) = p(t− r) admits the three dimensional group generated by

ζ∗1 = 1
q(t)

∂

∂t
+ x

p(t)
q(t)

∂

∂x
, ζ∗2 = x

∂

∂x
, ζ∗3 = x4(t) ∂

∂x
,

where x4(t) is the general solution of the associated homogeneous delay differential
equation.

Proof. We first will obtain the equivalent symmetries of (3.20). We assume that
p(t) 6= p(t− r).
With the notations,
ωr = ω(t− r, x(t− r)),
Υ r = Υ (t− r, x(t− r)),
it follows that (3.6) can be rewritten as,

ζ(1) = ω
∂

∂t
+ ωr

∂

∂(t− r) + Υ
∂

∂x
+ Υ r

∂

∂x(t− r) + Υ[t]
∂

∂x′
. (3.21)

Applying the operator defined by equation (3.21), to the delay equation g(t) = t− r, we
get

ω(t, x) = ω(t− r, x(t− r)). (3.22)

Again applying the operator (3.21) to equation (3.20), we get,

Υt + (Υx − ωt)x′ − ωxx′2 = p(t)Υ + q(t)Υ r + ω[p′(t)x(t) + q′(t)x(t− r)]. (3.23)

Differentiating (3.23) with respect to x(t− r) twice, we get,
Υ rx(t−r)x(t−r) = 0, which is solved to get,

Υ (t, x) = α(t)x+ β(t). (3.24)
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Substituting equation (3.24) in equation (3.23), we get,

α′(t)x+ β′(t) + (α(t)− ωt)(p(t)x(t) + q(t)x(t− r))− ωx(p2(t)x2(t) + q2(t)x2(t− r)

+ 2p(t)q(t)x(t)x(t− r)) = p(t)(α(t)x+ β(t)) + q(t)(α(t− r)x(t− r) + β(t− r))

+ ω(p′(t)x(t) + q′(t)x(t− r)) (3.25)

Splitting (3.25) with respect to x2(t) or x2(t− r) or x(t)x(t− r) we get ωx = 0, which
gives,

ω(t, x) = µ(t). (3.26)

Since ω = ωr, we get, µ(t) = µ(t− r). Splitting (3.25) with respect to x(t) and solving it
gives,

α(t) = p(t)µ(t) + c1, (3.27)

where c1 is an arbitrary constant.
Splitting (3.25) with respect to x(t− r) gives,

q(t)(α(t)− α(t− r)) = µ(t)q′(t) + q(t)µ′(t). (3.28)

Splitting (3.25) with respect to the constant term, we get,

β′(t) = p(t)β(t) + q(t)β(t− r). (3.29)

That is, β(t) solves equation (3.20).
Substituting equation (3.27) in equation (3.28), and using the fact that µ(t) = µ(t− r)
we get,

µ′(t)q(t)− (q(t)ν(t)− q′(t))µ(t) = 0, (3.30)

where ν(t) = p(t)− p(t− r). Equation (3.30) can be solved to give,

µ(t) = c2e

∫
ν(t)− q′(t)

q(t) dt
. (3.31)

where c2 is an arbitrary constant.
Substituting equation (3.31) in equation (3.27) we get,

α(t) = p(t)

c2e

∫
ν(t)− q′(t)

q(t) dt
+ c1. (3.32)

Thus, we obtain the coefficients of the infinitesimal transformation as,
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ω(t, x) = c2e

∫
ν(t)− q′(t)

q(t) dt
, Υ (t, x) =

c2p(t)e

∫
ν(t)− q′(t)

q(t) dt
+ c1

x+ β(t).

provided c2 6= 0.
Hence we get the infinitesimal generator of the Lie group as,

ζ∗ = c2

e
∫
ν(t)− q′(t)

q(t) dt ∂
∂t

+ xp(t)e

∫
ν(t)− q′(t)

q(t) dt ∂
∂x

+ c1x
∂

∂x
+ β(t) ∂

∂x
. (3.33)

provided c2 6= 0.
If c2 = 0, then, ω(t, x) = 0, Υ (t, x) = c1x+ β(t).
In this case, we get the infinitesimal generator of the Lie group as,

ζ∗ = c1x
∂

∂x
+ β(t) ∂

∂x
. (3.34)

As a special case, we tend to see what happens when p(t) = p(t−r). That is, we study and
make a group classification of the special cases, where p(t) satisfies a periodic property
(this case includes the possibilities when p(t) is any constant).
Following similar analysis as done above, we get from equation (3.30),

µ(t)q(t) = c3, (3.35)

where c3 is an arbitrary constant.
In this case, the coefficients of the infinitesimal generator in this case are given by,

ω(t, x) = c3
q(t) , Υ (t, x) =

(
c3
p(t)
q(t) + c1

)
x+ ρ(t),

provided c3 6= 0.
where ρ(t) solves equation (3.20) with p(t) = p(t− r) .
The infinitesimal generator in this case is given by,

ζ∗ = c3

( 1
q(t)

∂

∂t
+ x

p(t)
q(t)

∂

∂x

)
+ c1x

∂

∂x
+ ρ(t) ∂

∂x
. (3.36)

provided c3 6= 0.
If c3 = 0, then ω(t, x) = 0, Υ (t, x) = c1x+ ρ(t), and the infinitesimal generator is given
by,

ζ∗ = c1x
∂

∂x
+ ρ(t) ∂

∂x
. (3.37)

where ρ(t) solves equation (3.20), with p(t) = p(t− r).
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The following is an example. In this example, we shall perform symmetry analysis of a
first order delay differential equation arising in models for mixing of liquids. We shall
construct a Lie group under which this delay differential equation is invariant. We shall
first quickly introduce how this delay differential equation comes into our model.

Example 3.4.1. Let us consider a tub with U litres of glucose solution. Assume that
fresh water flows in at the top of the tub at V litres per minute. The glucose solution
is continually stirred, and the mixed solution flows out through the bottom, at the same
rate of V litres per minute. Let us assume that this mixing cannot occur instantaneously
throughout the tub. Then, if x(t) is the amount of glucose in the tub at time t, the con-
centration of the solution leaving the tank at time t will equal the average concentration
at some earlier instant say t − r. We shall assume that r = π

2 , is a positive constant.
Then the delay differential equation describing this model is given by,

x′(t) = −V x(t− r)
U

.

As an example, further assuming, U = V , our delay differential equation becomes
x′(t) = −x(t− π

2 ), whose solution is given by x(t) = sin t.
Following the procedure outlined in this section, and using the same notations as in this
section, we see that p(t) = s(t) = 0 and q(t) = −1.
Hence, ω = 0, Υ = c1x+ sin t.

Solving the system, dt̄
dδ

= ω(t̄, x̄) = 0, dx̄
dδ

= Υ (t̄, x̄) = c1x̄+sin t̄, subject to the conditions
t̄ = t, x̄ = x when δ = 0, we get the delay differential equation invariant under the Lie
group given by,

t̄ = t, x̄ = 1
c1

[ec1δ(c1x+ sin t)− sin t].

The infinitesimal generator of this delay differential equation arising in models involving
mixing of liquids is given by,

ζ∗ = c1x
∂

∂x
+ sin t ∂

∂x
.

3.5 Symmetries of a Delay Differential Equation Arising
in a Population Growth Model: A Nonlinear Case

If x(t) is the population of any isolated species at time t, then the most naive model
for the growth of population is x′(t) = kx(t), where k is a positive constant. A more
realistic model is obtained if we consider that the growth rate k will diminish as x(t)
grows due to overcrowding and shortage of food. This leads us to the differential equation
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x′(t) = k

[
1− x(t)

P

]
x(t), where k and P are both positive constants.

Now suppose that the biological self-regulatory reaction is not instantaneous, but responds
only after a time lag say r > 0, then we have the following nonlinear delay differential
equation which aptly describes the population growth model:

x′(t) = k

[
1− x(t− r)

P

]
x(t). (3.38)

We shall perform symmetry analysis of equation (3.38). We have the following result for
equation (3.38):

Theorem 3.5.1. The delay differential equation given by (3.38) arising in population
growth models admits the four dimensional group generated by

ζ∗1 = ∂

∂t
, ζ∗2 = x

∂

∂x
, ζ∗3 = e−kt

∂

∂t
, ζ∗4 = xe−kt

∂

∂x
.

Proof. Following the procedure given in the previous section, and applying the operator
defined by equation (3.21) to equation (3.38), we get,

Υt + (Υx − ωt)x′ − ωxx′2 = kΥ − k

P
Υx(t− r)− k

P
Υ rx(t). (3.39)

Differentiating equation (3.39) with respect to x(t− r) twice and splitting with respect
to x(t) we get,

Υ (t, x) = φ(t)x+ ψ(t). (3.40)

Substituting equation (3.40) in equation (3.39) and using equation (3.38), we get,

φ′(t)x+ ψ′(t) + (φ(t)− ωt)(kx(t)− k

P
x(t)x(t− r))− ωx(k2x2(t)− 2k

2

P
x2(t)x(t− r)+

k2

P 2x
2(t)x2(t− r)) = k(φ(t)x+ ψ(t))− k

P
(φ(t)x+ ψ(t))x(t− r)− k

P
(φ(t− r)x(t− r)

+ ψ(t− r))x(t). (3.41)

Splitting equation (3.41) with respect to either x2(t) or x2(t)x2(t− r) or x2(t)x(t− r),
we get,

ω(t, x) = Φ(t). (3.42)

Since ω = ωr, it follows that Φ(t) = Φ(t− r).
Splitting equation (3.41) with respect to x(t− r), we get,

ψ(t) = 0. (3.43)

Splitting equation (3.41) with respect to x(t), and using equations (3.42) and (3.43) we
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get, after solving,
φ(t) = kΦ(t) + c4, (3.44)

where c4 is an arbitrary constant. Since Φ(t) = Φ(t− r), we get, φ(t) = φ(t− r).
Splitting equation (3.41) with respect to x(t)x(t− r) and using equation (3.44), and the
periodic property of ψ(t), we can solve it to get,

Φ(t) = c4
k

+ c5e
−kt, (3.45)

where c5 is an arbitrary constant.
Hence, we get the coefficients of the infinitesimal transformation as,

ω(t, x) = c4
k

+ c5e
−kt, Υ (t, x) = (2c4 + c5ke

−kt)x.

Thus the infinitesimal generator is given by,

ζ∗ = c4

[1
k

∂

∂t
+ 2x ∂

∂x

]
+ c5

[
e−kt

∂

∂t
+ kxe−kt

∂

∂x

]
. (3.46)

Let us also find the Lie group under which this nonlinear delay differential equation

is invariant. To do this, we need to solve the system, dt̄
dδ

= ω(t̄, x̄) = c4
k

+ c5e
−kt̄,

dx̄

dδ
= Υ (t̄, x̄) = (2c4 + c5ke

−kt̄)x̄, subject to the conditions t̄ = t, x̄ = x when δ = 0.
This system can be solved to obtain the Lie group which is,

t̄ = 1
k

ln
(
k

c4

[
ec4δ

(
c5 + c4

k
ekt
)
− c5

])
,

x̄ = xe

δ

(
2c4+c7

[
ec4δ

(
c5+

c4
k
ekt

)
−c5

]−1
)
,

where c7 = c4c5
k

is an arbitrary constant.

3.6 Summary

1. We have obtained the symmetries of the first order non-homogeneous delay ordinary
differential equation, with a general delay. If x2(t) is the general solution of the
associated homogeneous delay differential equation, then the non-homogeneous
delay ordinary differential equation admits a symmetry algebra of infinite dimen-
sion, due to the linear superposition principle, and is represented by the vector
fields, x2(t) ∂

∂x
and (x − x1(t)) ∂

∂x
. Further, if the delay differential equation is

homogeneous, then it admits a symmetry algebra again, of infinite dimension, given
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by the vector fields x2(t) ∂
∂x

and x ∂
∂x

.

2. For the delay differential equation given by x′(t) = p(t)x(t)+q(t)x(t−r)+s(t), such
that p(t) 6= p(t− r), if x3(t) is the general solution of the associated homogeneous
delay differential equation, then the infinitesimal generator of this delay differential
equation is given by

ζ∗ = c2

e
∫
ν(t)− q′(t)

q(t) dt ∂
∂t

+ xp(t)e

∫
ν(t)− q′(t)

q(t) dt ∂
∂x

+ c1x
∂

∂x
+ x3(t) ∂

∂x
.

However, if p(t) = p(t − r), and if x4(t) is the general solution of the associated
homogeneous delay differential equation, then the infinitesimal generator of this
delay differential equation is given by

ζ∗ = c3

( 1
q(t)

∂

∂t
+ x

p(t)
q(t)

∂

∂x

)
+ c1x

∂

∂x
+ x4(t) ∂

∂x
.

3. On performing symmetry analysis of x′(t) = −x(t− π2 ), a delay differential equation
obtained in modeling mixing of liquids, we found its infinitesimal generator to be
ζ∗ = c1x

∂

∂x
+ sin t ∂

∂x
. Further, this delay differential equation is invariant under

the Lie group given by t̄ = t, x̄ = 1
c1

[ec1δ(c1x+ sin t)− sin t].

4. We demonstrated the application of group methods to x′(t) = k

[
1− x(t− r)

P

]
x(t),

a non linear delay differential equation arising in population growth models and
found that the infinitesimal generator corresponding to this non linear delay differen-
tial equation given by ζ∗ = c4

[1
k

∂

∂t
+ 2x ∂

∂x

]
+ c5

[
e−kt

∂

∂t
+ kxe−kt

∂

∂x

]
. Further,

this non linear delay differential equation is invariant under the Lie group given by

t̄ = 1
k

ln
(
k

c4

[
ec4δ

(
c5 + c4

k
ekt
)
− c5

])
and x̄ = xe

δ

(
2c4+c7

[
ec4δ

(
c5+

c4
k
ekt

)
−c5

]−1
)
.

where ci, i = 1, 2, 3, 4, 5, 7 are arbitrary constants.
The results can be summarized in Table 3.1 below:
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Table 3.1: Group Classification of First Order Delay Differential Equations

Type of First order Delay Differential Equation Generators

x′(t) = p(t)x(t) + q(t)x(g(t)) + s(t),
g(t) < t.

ζ∗1 = x
∂

∂x
,

ζ∗2 = N(t) ∂
∂x

N(t) solves N ′(t) = p(t)N(t)+
q(t)N(g(t))−M0s(t)
where M0 is an arbitrary con-
stant.

x′(t) = p(t)x(t) + q(t)x(t− r) + s(t).
p(t) 6= p(t− r).

With ν(t) = p(t)− p(t− r),

ζ∗1 = e

∫
ν(t)− q′(t)

q(t) dt ∂
∂t

+xp(t)e

∫
ν(t)− q′(t)

q(t) dt ∂
∂x
,

ζ∗2 = x
∂

∂x
,

ζ∗3 = β(t) ∂
∂x
.

x′(t) = p(t)x(t) + q(t)x(t− r) + s(t).
p(t) = p(t− r).

ζ∗1 = 1
q(t)

∂

∂t
+ x

p(t)
q(t)

∂

∂x
,

ζ∗2 = x
∂

∂x
,

ζ∗3 = ρ(t) ∂
∂x
.

x′(t) = −x(t− π

2 ).
(This delay differential equation arises in
models involving mixing of liquids.)

ζ∗1 = x
∂

∂x
,

ζ∗2 = sin t ∂
∂x
.

x′(t) = k

[
1− x(t− r)

P

]
x(t).

(This non linear delay differential equation
arises in modeling population growth.)

ζ∗1 = ∂

∂t
,

ζ∗2 = x
∂

∂x
,

ζ∗3 = e−kt
∂

∂t
,

ζ∗4 = xe−kt
∂

∂x
.
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4.1 Introduction

In this chapter, we restrict our attention to neutral differential equations. Neutral
differential equations are differential equations in which the unknown function and the
derivative appear with time delays. Such equations are of importance in models involving
flip-flop circuit [53], compartmental systems [61], etc. A lot of research has been dedi-
cated to obtaining solutions of neutral differential equations. In [54], neutral differential
equations are solved using multistep block method. Other methods of solution include
implicit block method [27], and analysing discontinuities of the derivatives as studied in
[1]. Our focus is to obtain symmetries and the corresponding generators of the Lie group
admitted by neutral differential equations. It is noteworthy to mention here that the
concept of symmetry analysis has been recently used by [45] to obtain Lie symmetries of
fractional ordinary differential equations with neutral delay.

In the first part of this chapter, we study the first order neutral differential equation

x′(t) = F (t, x(t), x(t1), x′(t1)), (4.1)

where F is defined on I ×D3, where I is an open interval in R and D is an open set in R.
The notations x(t1) mean x(g(t)), g(t) < t and x′(t1) mean dx

dt (g(t)). We further assume,
∂F

∂x(t1) 6= 0 and ∂F
∂x′(t1) 6= 0. To determine the problem completely, we specify the delay

point t1 by t1 = g(t), where g(t) < t, is the most general kind of delay. We assume that
the delay function g(t) is sufficiently smooth in some interval. We shall first need to find a
group under which this neutral differential equation is invariant. We call this the admitted
Lie group by which we mean that one solution curve is carried to another solution curve
of the same equation. We then use this group to obtain the desired equivalent symmetries.

In the second part of this chapter, we study the neutral differential equation with most
standard time delay t− r, which is given by

ψ(t, x(t), x(t− r), x′(t), x′(t− r)) = 0, (4.2)

where ψ is a real valued function defined on I ×D4 with I as an open interval in R and
D as an open set in R. We assume that ψ is not independent of x′(t− r). We establish a
result to obtain the determining equations by obtaining a Lie type invariance condition
using Taylor’s theorem for a function of several variables. In addition we make a group
classification of the linear and a nonlinear first order neutral differential equation with
the most standard time delay t− r. We also analyze the case for which equation (4.2)
is independent of x′(t− r), thus becoming a first order delay differential equation and
perform symmetry analysis for the same. By choosing this widely used delay, we shall
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see that we get different results from the ones obtained by choosing the most general
time delay.

4.2 Lie Type Invariance Condition for First Order Neutral
Differential Equations With Most General Time Delay

Definition 4.2.1. (First Order Neutral Differential Equation)
Let J be an interval in R, and let D be an open set in R. Sometimes J will be [t0, β),
and sometimes it will be (α, β), where α ≤ t0 ≤ β. Let f : J ×D3 → R. Conveniently,
a first order neutral differential equation is expressed as

x′(t) = f(t, x(t), x(g(t)), x′(g(t))), (4.3)

where x and f are real valued functions, and g(t) is a retarded argument i.e. g(t) ≤ t.
We consider equation (4.3) for t0 ≤ t ≤ β together with the initial function

x(t) = θ(t), γ ≤ t ≤ t0, (4.4)

where θ is a given initial function mapping [γ, t0]→ D.

Definition 4.2.2. (Solution of a First Order Neutral Differential Equation)
By a solution of the neutral differential equation (4.3) satisfying (4.4), we mean a
differentiable function x : [γ, β1)→ D, for some β1 ∈ (t0, β], such that
1. x(t) = θ(t), for γ ≤ t ≤ t0, and
2. x(t) reduces equation (4.3) to an identity on t0 ≤ t ≤ β1.

We understand x′(t0) to mean the right-hand derivative.

In this section, we extend the results of ordinary differential equations to neutral
differential equations given by equation (4.1). In order to determine the neutral differential
equation completely, we need to specify the delay term, where the delayed function is
specified, otherwise the problem is not fully determined.

Let a function F be defined on a 5-dimensional space. We extend our results to

dx

dt
= F (t, x, g(t), x(g(t)), x′(g(t))). (4.5)

Let the neutral differential equation be invariant under the Lie group

t̄ = t+ δω(t, x) +O(δ2), x̄ = x+ δΥ(t, x) +O(δ2).

We then naturally define g(t) = g(t) + δω(g(t), x(g(t))) +O(δ2) and
x(g(t)) = x(g(t)) + δΥ(g(t), x(g(t))) +O(δ2).
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With the notations, ω1 = ω(g(t), x(g(t))), and Υ1 = Υ(g(t), x(g(t)))), it follows that,

x′(t1) = dx̄
dt̄

(g(t))

= x′(t1) + ((Υ1)t1 + ((Υ1)x(t1) − (ω1)t1)x′(t1)− (x′(t1))2(ω1)x(t1))δ +O(δ2).
(4.6)

For invariance, dx̄
dt̄

= F (t̄, x̄, g(t), (x(g(t))), x′(g(t))).
This gives,

dx
dt + [Υt + (Υx − ωt)x′ − ωxx′2]δ +O(δ2)

= F (t+ δω +O(δ2), x+ δΥ +O(δ2), g(t) + δω1 +O(δ2), x(t1) + δΥ1 +O(δ2),

x′(t1) + ((Υ1)t1 + ((Υ1)x(t1) − (ω1)t1)x′(t1)− (x′(t1))2(ω1)x(t1))δ +O(δ2))

= F (t, x, g(t), x(g(t)), x′(g(t))) + (ωFt + ΥFx + ω1Ft1 + Υ1Fx(t1)

+Υ1[t]Fx′(t1))δ +O(δ2),
(4.7)

where Υ1[t] = (Υ1)t1 + ((Υ1)x(t1) − (ω1)t1)x′(t1)− (x′(t1))2(ω1)x(t1).
Comparing the coefficient of δ, we get

ωFt + ΥFx + ω1Ft1 + Υ1Fx(t1) + Υ1[t]Fx′(t1) = Υt + (Υx − ωt)x′ − ωxx′2. (4.8)

The above obtained equation (4.8) is a Lie type invariance condition.
Similar to the case of ordinary differential equations, we can define a prolonged operator
for neutral differential equation as:

ζ = ω
∂

∂t
+ ω1

∂

∂t1
+ Υ ∂

∂x
+ Υ1

∂

∂x(t1) .

With the notation Dt = ∂
∂t + x′ ∂∂x , we can write,

dx̄
dt̄

= dx
dt + (Dt(Υ)− x′Dt(ω))δ +O(δ2).

= dx
dt + Υ[t]δ +O(δ2),

(4.9)

where Υ[t] = Dt(Υ)− x′Dt(ω). We then define the extended operator as:

ζ(1) = ω
∂

∂t
+ ω1

∂

∂t1
+ Υ ∂

∂x
+ Υ1

∂

∂x(t1) + Υ[t]
∂

∂x′
+ Υ1[t]

∂

∂x′(t1) . (4.10)
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Defining ∆ = x′(t)− F (t, x(t), g(t), x(g(t)), x′(g(t))) = 0, we get

ζ(1)∆ = Υ[t] − ωFt + ΥFx + ω1Ft1 + Υ1Fx(t1) + Υ1[t]Fx′(t1). (4.11)

Comparing equations (4.8) and (4.11), we get
Υ[t] = Υt + (Υx − ωt)x′ − ωxx′2.
On substituting x′ = F into ζ(1)∆ = 0, we get an invariance condition for the neutral
differential equation which is ζ(1)∆ |∆=0= 0, from which we shall obtain the determining
equations.
We point out here that equations (4.9)-(4.11) is an easy way of working with higher order
differential equations as compared to equations (4.6)-(4.8) which is simpler to use for
lower order differential equations.

4.3 Symmetries of Non-homogeneous Neutral Differential
Equation of First Order With Most General Time
Delay

Consider the neutral differential equation, with once differentiable variable coefficients
α(t), β(t), γ(t) and ρ(t) given by,

x′(t) = α(t)x(t) + β(t)x(g(t)) + γ(t) + ρ(t)x′(g(t)). (4.12)

We obtain symmetries of the non-homogeneous neutral differential equation (4.12), where
g is a sufficiently smooth function with g(t) < t. Also α(t), β(t), γ(t) and ρ(t) are
sufficiently smooth functions satisfying β2(t) + ρ2(t) not identically zero and g(t) is non
constant.
We seek our coefficient of the infinitesimal transformation ω of the form, (that is we
assume) ω(t, x) = ω(t). Then applying the operator defined by (4.11), to the delay
equation t1 = g(t), we get,

ω1 = g′(t)ω(t). (4.13)

Applying operator ζ(1) defined by (4.10) to equation (4.12), we get

Υt(t, x) + (Υx(t, x)− ω′(t))(α(t)x(t) + β(t)x(g(t)) + γ(t) + ρ(t)x′(g(t)) =

ω(t)(α′(t)x(t) + β′(t)x(g(t)) + γ′(t) + ρ′(t)x′(g(t))) + α(t)Υ(t, x) + β(t)Υ1

+ρ(t)((Υ1)t1 + ((Υ1)x(t1) − ω′1)(x′(g(t)))).

(4.14)

Differentiating with respect to x(t1) twice, we get
β(t)(Υ1)x(t1)x(t1) + ρ(t)[(Υ1)t1x(t1)x(t1) + (Υ1)x(t1)x(t1)x(t1)x

′(g(t))] = 0.
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Splitting the equation with respect to x′(g(t)), we get ρ(t)(Υ1)x(t1)x(t1)x(t1) = 0,
which is solved to give

Υ(t, x) = 1
2A(t)x2 +B(t)x+ C(t). (4.15)

Substituting equation (4.15) into the determining equation (4.14), we get
1
2A
′(t)x2 +B′(t)x+ C ′(t) + (A(t)x+B(t)− ω′(t))(α(t)x

+β(t)x(g(t)) + γ(t) + ρ(t)x′(g(t)))

= ω(t)(α′(t)x+ β′(t)x(g(t)) + γ′(t) + ρ′(t)x′(g(t))) + α(t)(1
2A(t)x2

+B(t)x+ C(t)) + β(t)(1
2A(t1)x2(t1) +B(t1)x(t1) + C(t1))

+ρ(t)[(1
2A
′(t1)x2(t1) +B′(t1)x(t1) + C ′(t1)) + (A(t1)x(t1) +B(t1)

−ω′1(t1))x′(g(t))].

(4.16)

Splitting equation (4.16) with respect to x2, we get

A(t) = exp(−
∫ t

α(s)ds) +A0, (4.17)

where A0 = constant.
Similarly splitting equation (4.16) with respect to x, x(g(t)), x2(g(t)), x′(g(t)),
x(t)x(g(t)), x(t)x′(g(t)) and with respect to constant term , we get

B′(t) +A(t)γ(t) = ω′(t)α(t) + α′(t)ω(t), (4.18)

ρ(t)B′(t1) + β(t)[B(t1)−B(t)] + ω(t)β′(t) + ω′(t)β(t) = 0, (4.19)

A(t1)β(t) + ρ(t)A′(t1) = 0, (4.20)

B(t)ρ(t) = ω′(t)ρ(t) + ω(t)ρ′(t), (4.21)

A(t)β(t) = 0, (4.22)

A(t)ρ(t) = 0, (4.23)

and

C ′(t) +B(t)γ(t)− ω′(t)γ(t) = ω(t)γ′(t) + α(t)C(t) + β(t)C(t1) + ρ(t)C ′(t1), (4.24)

respectively.
For a general α(t), β(t), γ(t), ρ(t) and g(t), equations (4.13), (4.18), (4.19), (4.21)
and (4.24) have only one solution namely, ω(t, x) = 0.
Equations (4.22) and (4.23), give A(t) = 0.
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With ω(t, x) = 0 and A(t) = 0, equation (4.18) gives

B(t) = B1, (4.25)

a constant.
With this, equation (4.21) gives

B(t) = 0. (4.26)

From equation (4.24), we get

C ′(t) = α(t)C(t) + β(t)C(g(t)) + ρ(t)C ′(g(t)). (4.27)

That is, C(t) satisfies the corresponding homogeneous neutral differential equation.
Thus, we obtain the coefficients of the symmetries as

ω(t, x) = 0, Υ(t, x) = C(t).

Hence the most general solution of the determining equations corresponds to the in-
finitesimal generator ζ∗ = C(t) ∂

∂x , where C(t) solves the corresponding homogeneous
neutral differential equation.

Remark 4.3.1. In obtainining equivalent symmetries of the neutral differential equation
given by equation (4.12), we had assumed that, β2(t) + ρ2(t) is not identically zero.
However, we remark here that, if ρ(t) = 0, β(t) 6= 0, then equation (4.12) reduces to a
first order ordinary delay differential equation. From equations (4.18) and (4.21), we get,
B(t) = B0, a constant. From equation (4.24), we get
C ′(t) = α(t)x(t)+β(t)x(g(t))−B0γ(t). Hence, the infinitesimal generator of the admitted
Lie group in this case is given by, ζ∗ = (B0x+E(t)) ∂

∂x , where E(t) is the solution of the
delay differential equation x′(t) = α(t)x(t) + β(t)x(g(t))−B0γ(t).

Remark 4.3.2. If in equation (4.12), ρ(t) 6= 0, β(t) = 0, then from equation (4.24), we get
C ′(t) = α(t)x(t) +ρ(t)C ′(g(t)). Hence the generator in this case is given by, ζ∗ = G(t) ∂

∂x ,
where G(t) is the solution of equation x′(t) = α(t)x(t) + ρ(t)x′(g(t)).

Remark 4.3.3. Further, if ρ(t) = 0, β(t) = 0, then equation (4.12), reduces to a first
order ordinary differential equation. Again, From equation (4.25), we get, B(t) = B2, a
constant. Hence, the infinitesimal generator of the admitted Lie group in this case is

given by, ζ∗ = (B2x+ C0 exp(
t∫
α(s)ds)) ∂

∂x , where C0 is an arbitrary constant.
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4.4 Example

We give an example to illustrate the construction of a Lie group under which a neutral
differential equation is invariant.
Consider the neutral differential equation

x′(t) + x′(g(t)) = 0. (4.28)

Compared with (4.12), we get α(t) = β(t) = γ(t) = 0, and ρ(t) = 1.
For a smooth g(t) satisfying g(t) < t, x(t) = K, a constant, is a solution of the equation
(4.28). Following the procedure in Section 4.3, we see that, for a nonzero B0,

ω(t, x) = 0 and Υ(t, x) = B0x+K.

This yields dt̄
dδ = ω(t̄, x̄) = 0 and dx̄

dδ = Υ(t̄, x̄) = B0x̄+K.
On solving these equations with conditions x̄ = x and t̄ = t, when δ = 0, we get

t̄ = t and x̄ = 1
B0

[(B0x+K)eB0δ −K]

which is the Lie group under which neutral differential equation (4.28) is invariant.

This completes the first half of this chapter. In the next half, we consider the most
standard time delay and obtain the Lie symmetries of the corresponding first order
neutral differential equation.

4.5 Lie Type Invariance Condition for First Order Neutral
Differential Equations With Most Standard Time Delay

In this section, we extend the Lie invariance condition for ordinary differential equations
to first order neutral differential equations of type equation (4.2). To determine the
neutral differential equation completely, we need to specify the delay term, where the
delayed function is specified, otherwise the problem is not fully determined.

We obtain a Lie type invariance for neutral differential equations using Taylor’s theorem
for a function of several variables:

Theorem 4.5.1. Consider the first order neutral differential equation

dx

dt
= F (t, x, t− r, x(t− r), x′(t− r)), (4.29)

defined on I ×D × I − r ×D2, where I is an open interval in R, D is an open set in R,
and I − r = {y − r : y ∈ I}. Then with ω(t− r, x(t− r)) = ωr, Υ (t− r, x(t− r)) = Υ r,
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the Lie invariance condition is given by

ωFt + ΥFx + ωrFt−r + Υ rFx(t−r) +
(
Υ rt−r + (Υ rx(t−r) − ω

r
t−r)x′(t− r)

− ωrx(t−r)(x
′(t− r))2

)
Fx′(t−r) = Υt + (Υx − ωt)x′ − ωxx′2. (4.30)

Proof. Let the neutral differential equation be invariant under the Lie group
t̄ = t+ δω(t, x) +O(δ2),
x̄ = x+ δΥ (t, x) +O(δ2).
We then naturally define,
t− r = t− r + δω(t− r, x(t− r)) +O(δ2),
x(t− r) = x(t− r) + δΥ (t− r, x(t− r)) +O(δ2).
Then,

dx̄

dt̄
=

dx̄

dt
dt̄

dt

=
[
dx

dt
+ (Υt + Υxx

′)δ +O(δ2)
] [

1− (ωt + ωxx
′)δ +O(δ2)

]
= dx

dt
+ [Υt + (Υx − ωt)x′ − ωxx′2]δ +O(δ2).

For invariance, we must have, dx̄
dt̄

= F (t̄, x̄, t− r, x(t− r), x′t− r).
With the notations,
ωr = ω(t− r, x(t− r)), Υ r = Υ (t− r, x(t− r)), we get,

dx

dt
+ [Υt + (Υx − ωt)x′ − ωxx′2]δ +O(δ2) = F (t+ δω +O(δ2), x+ δΥ +O(δ2),

t− r + δωr +O(δ2), x(t− r) + δΥ r

+O(δ2),

x′(t− r) + δ(Υ rt−r + (Υ rx(t−r) − ω
r
t−r)

x′(t− r)− ωrx(t−r)(x
′(t− r))2) +O(δ2))

= F (t, x, t− r, x(t− r), x′(t− r))+

(ωFt + ΥFx + ωrFt−r + Υ rFx(t−r)

+ (Υ rt−r + (Υ rx(t−r) − ω
r
t−r)x′(t− r)

− ωrx(t−r)(x
′(t− r))2)δ +O(δ2).

Comparing the coefficient of δ, we get equation (4.30) which is a Lie type invariance
condition for first order neutral differential equations.

Similar to the case of ordinary differential equations, we can define extended operator
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for the neutral differential equation as:

ζ(1) = ω
∂

∂t
+ ωr

∂

∂t− r
+ Υ

∂

∂x
+ Υ r

∂

∂x(t− r) + Υ[t]
∂

∂x′
+ Υ r[t]

∂

∂x′(t− r) , (4.31)

where with the notation Dt = ∂

∂t
+ x′

∂

∂x
,

Υ[t] = Dt(Υ )− x′Dt(ω), and

Υ r[t] = Υ rt−r + (Υ rx(t−r) − ω
r
t−r)x′(t− r)− ωrx(t−r)(x

′(t− r))2.

Defining, ∆ = x′(t)− F (t, x(t), t− r, x(t− r), x′(t− r)) = 0, we get,

ζ(1)∆ = Υ[t] − ωFt − ΥFx − ωrFt−r − Υ rFx(t−r) − Υ r[t]Fx′(t−r). (4.32)

Comparing equation (4.32) and equation (4.30), we get,
Υ[t] = Υt + (Υx − ωt)x′ − ωxx′2.
On substituting x′ = F into ζ(1)∆ = 0, we get an invariance condition for the neutral
differential equation which is ζ(1)∆ |∆=0= 0, from which we shall obtain the determining
equations.

4.6 Symmetries of First Order Linear Neutral Differential
Equations With Most Standard Time Delay

We shall obtain symmetries and make a group classification of the first order neutral
differential equation with twice differentiable variable coefficients, namely

x′(t) = α(t)x(t) + β(t)x(t− r) + h(t) + ρ(t)x′(t− r), (4.33)

where α(t), β(t), h(t), ρ(t) are twice differentiable functions in t.
We shall employ a proposition to convert the non-homogeneous equation (4.33) to it’s
corresponding homogeneous one. This change does not alter the group classification of
(4.33).

Proposition 4.6.1. If x1(t) is an arbitrary solution of equation (4.33), then by employing
the change of variables t̄ = t, x̄ = x − x1(t), the neutral differential equation given
by equation (4.33), gets transformed into a homogeneous neutral differential equation,
namely,

x′(t) = α(t)x(t) + β(t)x(t− r) + ρ(t)x′(t− r). (4.34)

Proof. The proposition easily follows by substituting t = t̄ and x(t) = x̄+ x1(t̄) in (4.33),
and by noting that
x′1(t) = α(t)x1(t) + β(t)x1(t− r) + h(t)x1(t) + ρ(t)x′1(t− r) = h(t).
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We shall obtain equivalent symmetries of equation (4.34).
Applying the operator defined by equation (4.30) to the delay term g(t) = t− r, we get
ω(t, x) = ωr.

Applying the operator defined by equation (4.30) to equation (4.34) we get

Υ[t] = ω[α′(t)x(t) + β′(t)x(t− r) + ρ′(t)x′(t− r)] + Υα(t) + Υ rβ(t) + Υ r[t]ρ(t).

Substituting the values of Υ[t] and Υ r[t] obtained before and then substituting for x′(t)
from equation (4.34), we get,

Υt + (Υx − ωt)(α(t)x(t) + β(t)x(t− r) + ρ(t)x′(t− r))− ωx
[
α2(t)x2(t)

+ β2(t)(x(t− r))2 + ρ2(t)(x′(t− r))2 + 2α(t)β(t)x(t)x(t− r) + 2α(t)ρ(t)x(t)x′(t− r)

+2β(t)ρ(t)x(t−r)x′(t−r)
]
= ω[α′(x)x(t)+β′(t)x(t−r)+ρ′(t)x′(t−r)]+Υα(t)+Υ rβ(t)

+
[
Υ rt−r + (Υ rx(t−r) − ω

r
t−r)x′(t− r)− ωrx(t−r)(x

′(t− r))2
]
ρ(t). (4.35)

Differentiating equation (4.35) with respect to x twice, we get ωx = 0 which implies
ω = ω(t).
With this, equation (4.35) becomes

Υt + (Υx − ωt)(α(t)x(t) + β(t)x(t− r) + ρ(t)x′(t− r)) = ω
[
α′(x)x(t) + β′(t)x(t− r)

+ ρ′(t)x′(t− r)
]

+ Υα(t) + Υ rβ(t) +
[
Υ rt−r + (Υ rx(t−r) − ω

r
t−r)x′(t− r)

]
ρ(t). (4.36)

Differentiate equation (4.36) with respect to x(t− r) twice, we get,

β(t)Υ rx(t−r)x(t−r) + ρ(t)
[
Υ r(t−r)x(t−r)x(t−r) +

(
Υ rx(t−r)x(t−r)x(t−r) − ω

r
(t−r)x(t−r)x(t−r)

)]
= 0.

Splitting the above equation with respect to x′(t− r) we get ρ(t)Υ rx(t−r)x(t−r)x(t−r) = 0,
which can be solved to give

Υ (t, x) = 1
2A(t)x2 +B(t)x+ C(t).

Substituting this in equation (4.35) we get,

1
2A
′(t)x2 +B′(t)x+C ′(t) + (A(t)x+B(t)−ω′(t))(α(t)x+β(t)x(t− r) + ρ(t)x′(t− r))

= ω(t)[α′(t)x+ β′(t)x(t− r) + ρ′(t)x′(t− r)] + α(t)
[1

2A(t)x2 +B(t)x+ C(t)
]

+ β(t)
[1

2A(t− r)x2(t− r) +B(t− r)x(t− r) + C(t− r)
]

+ ρ(t)
[1
2A
′(t− r)x2(t− r)

+B′(t− r)x(t− r) + C ′(t− r) + (A(t− r)x(t− r) +B(t− r)− ω′(t))x′(t− r)
]

= 0.

(4.37)
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Splitting equation (4.37) with respect to xx(t− r), and solving it for an arbitrary β(t)
we get, A(t) = 0.
Substituting A(t) = 0 in equation (4.37), we get,

B′(t)x+ C ′(t) + (B(t)− ω′(t))(α(t)x+ β(t)x(t− r) + ρ(t)x′(t− r)) = ω(t)[α′(t)x

+ β′(t)x(t− r) + ρ′(t)x′(t− r)] + α(t)[B(t)x+C(t)] + β(t)[B(t− r)x(t− r) +C(t− r)]

+ ρ(t)
[
B′(t− r)x(t− r) + C ′(t− r) + (B(t− r)− ω′(t))x′(t− r)

]
= 0. (4.38)

Splitting equation (4.38) with respect to x and solving it we get,

B(t) = α(t)ω(t) + c1, (4.39)

where c1 is an arbitrary constant.
Since ω(t) = ω(t− r), we get

B(t)−B(t− r) = [α(t)− α(t− r)]ω(t). (4.40)

Splitting equation (4.38) with respect to the constant term we get,

C ′(t) = α(t)C(t) + β(t)C(t− r) + ρ(t)C ′(t− r). (4.41)

That is C(t) solves equation (4.34).
Splitting equation (4.38) with respect to x(t− r), we get,

[B(t)−B(t− r)]β(t) = ω(t)β′(t) + ω′(t)β(t) + ρ(t)B′(t− r). (4.42)

Splitting equation (4.38) with respect to x′(t− r), we get,

[B(t)−B(t− r)]ρ(t) = ω(t)ρ′(t). (4.43)

Based on the symmetry analysis we have performed so far, we establish the following
results:

Theorem 4.6.1. The first order neutral differential equation given by equation (4.34),

for which α(t) 6= α(t − r), and α′(t − r) 6= −β(t)
ρ(t) , admits a three dimensional group

generated by

ζ∗1 = e

∫
µ(t)β(t)− β′(t)

β(t) + ρ(t)α′(t− r)dt ∂
∂t

+ xα(t)e

∫
µ(t)β(t)− β′(t)

β(t) + ρ(t)α′(t− r)dt ∂
∂x
,

ζ∗2 = x
∂

∂x
, ζ∗3 = C(t) ∂

∂x
,

where µ(t) = α(t)− α(t− r) and C(t) solves equation (4.34).
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Proof. Using equation (4.40) in equation (4.42), with the notation µ(t) = α(t)−α(t− r),
we get,

[β(t) + ρ(t)α′(t− r)]ω′(t) + [β′(t)− µ(t)β(t)]ω(t) = 0,

which can be solved to give

ω(t) = c2e

∫
µ(t)β(t)− β′(t)

β(t) + ρ(t)α′(t− r)dt, (4.44)

where c2 is an arbitrary constant.
Substituting equation (4.44) into equation (4.39), we get,

B(t) = c2α(t)e

∫
µ(t)β(t)− β′(t)

β(t) + ρ(t)α′(t− r)dt + c1.

Consequently,

Υ (t, x) =

c2α(t)e

∫
µ(t)β(t)− β′(t)

β(t) + ρ(t)α′(t− r)dt + c1

x+ C(t).

Thus, the most general infinitesimal generator of the Lie group is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x

= c2

e
∫

µ(t)β(t)− β′(t)
β(t) + ρ(t)α′(t− r)dt ∂

∂t
+ xα(t)e

∫
µ(t)β(t)− β′(t)

β(t) + ρ(t)α′(t− r)dt ∂
∂x


+ c1x

∂

∂x
+ C(t) ∂

∂x
.

(4.45)

If c2 6= 0, the substituting equation (4.40) in equation (4.43), we get
[α(t)−α(t− r)]ω(t)ρ(t) = ω(t)ρ′(t), which can be solved to give ρ(t) = c3e

∫
µ(t)dt, where

c3 is an arbitrary constant.
If c2 = 0, then ω(t) = 0. Consequently, B(t) = c1 and Υ (t, x) = c1x + C(t). The most
general infinitesimal generator of the Lie group in this case is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x

= c1x
∂

∂x
+ C(t) ∂

∂x
.

(4.46)

Let us turn to see what happens when α(t) = α(t− r). We establish the following result
for this case:
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Theorem 4.6.2. The neutral differential equation given by equation (4.34), satisfying
α(t) = α(t− r) admits either

1. A two dimensional group generated by

ζ∗1 = (x− x1(t)) ∂
∂x
, ζ∗2 = x1(t) ∂

∂x
,

Or,

2. A three dimensional group generated by

ζ∗1 = 1
β(t) + ρ(t)α(t)

∂

∂t
+ xα(t)
β(t) + ρ(t)α(t)

∂

∂x
, ζ∗2 = x

∂

∂x
, ζ∗3 = x1(t)(t) ∂

∂x
,

provided α(t) 6= −β(t)
ρ(t) ,

depending on ω(t).

Proof. Suppose α(t) = α(t− r), then from equation (4.40) we get B(t) = B(t− r), and
hence from equation (4.43) we get

ω(t)ρ′(t) = 0. (4.47)

If ω(t) = 0, then consequently B(t) = c1, and hence Υ (t, x) = c1x+ C(t).
Thus the infinitesimal generator of the admitted Lie group is given by equation (4.46).
From equation (4.47), if ω(t) 6= 0, then we must have ρ(t) = c4 an arbitrary constant.
Substituing this value of ρ(t) in equation (4.42), we get

ω(t)β′(t) + ω′(t)β(t) + c4B
′(t) = 0.

Using equation (4.39), we get

ω(t)β′(t) + ω′(t)β(t) + c4[α′(t)ω(t) + ω′(t)α(t)] = 0,

which can be solved to give
ω(t) = c5

β(t) + ρ(t)α(t) , (4.48)

where c5 is an arbitrary constant.
Using equation (4.48) in equation (4.39), we get, B(t) = c5α(t)

β(t) + ρ(t)α(t) + c1.

Consequently,
Υ (t, x) =

[
c5α(t)

β(t) + ρ(t)α(t) + c1.

]
x+ C(t). (4.49)
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The infinitesimal generator of the admitted Lie group in this case is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x

= c5

[ 1
β(t) + ρ(t)α(t)

∂

∂t
+ xα(t)
β(t) + ρ(t)α(t)

∂

∂x

]
+ c1x

∂

∂x
+ C(t) ∂

∂x
.

(4.50)

Finally, let us turn to the case when ρ(t) = 0. In this case equation (4.34) becomes a
first order delay differential equation

x′(t) = α(t)x(t) + β(t)x(t− r), (4.51)

Following the analysis given above equation (4.42) becomes

[B(t)−B(t− r)]β(t) = ω(t)β′(t) + ω′(t)β(t). (4.52)

We then establish the following result

Corollary 4.6.1. The first order delay differential equation given by equation (4.51),
for which α(t) 6= α(t− r), admits a three dimensional group generated by

ζ∗1 = e

∫
µ(t)− β′(t)

β(t) dt ∂
∂t

+ xα(t)e

∫
µ(t)− β′(t)

β(t) dt ∂
∂x
, ζ∗2 = x

∂

∂x
, ζ∗3 = D(t) ∂

∂x
,

where µ(t) = α(t)− α(t− r) and D(t) solves equation (4.51).

Proof. With ρ(t) = 0, equation (4.41) becomes C ′(t) = α(t)C(t) + β(t)C(t− r).
Using equation (4.40) in equation (4.52), with the notation µ(t) = α(t)− α(t− r), we
get,

[β(t) + α′(t− r)]ω′(t) + [β′(t)− µ(t)β(t)]ω(t) = 0,

which can be solved to give

ω(t) = c6e

∫
µ(t)− β′(t)

β(t) dt, (4.53)

where c6 is an arbitrary constant.
Substituting equation (4.53) into equation (4.39), we get,

B(t) = c6α(t)e

∫
µ(t)− β′(t)

β(t) dt + c1.
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Consequently,

Υ (t, x) =

c6α(t)e

∫
µ(t)− β′(t)

β(t) dt + c1

x+D(t).

Thus, the most general infinitesimal generator of the Lie group is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x

= c2

e
∫
µ(t)− β′(t)

β(t) dt ∂
∂t

+ xα(t)e

∫
µ(t)− β′(t)

β(t) dt ∂
∂x

+ c1x
∂

∂x
+D(t) ∂

∂x
.

(4.54)

If c6 = 0, then ω(t) = 0. Consequently, B(t) = c1 and Υ (t, x) = c1x+D(t). The most
general infinitesimal generator of the Lie group in this case is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x

= c1x
∂

∂x
+D(t) ∂

∂x
.

(4.55)

To conclude, we examine what happens when α(t) = α(t− r). We establish the following
result for this case:

Corollary 4.6.2. The delay differential equation given by equation (4.51), satisfying
α(t) = α(t− r) admits either

1. A two dimensional group generated by

ζ∗1 = x
∂

∂x
, ζ∗2 = D(t) ∂

∂x
,

Or,

2. A three dimensional group generated by

ζ∗1 = 1
β(t)

∂

∂t
+ xα(t)

β(t)
∂

∂x
, ζ∗2 = x

∂

∂x
, ζ∗3 = D(t) ∂

∂x
.

depending on ω(t).

Proof. Suppose α(t) = α(t− r), then from equation (4.40), using the fact that
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ω(t) = ω(t− r) we get B(t) = B(t− r), and hence from equation (4.52) we get

ω(t)β′(t) + ω′(t)β(t) = 0. (4.56)

which can be easily solved to give ω(t) = c7
β(t) , where c7 is an arbitrary constant. Then

from equation (4.39), we get, B(t) = c7α(t)
β(t) + c1 and hence

Υ (t, x) =
[
c7α(t)
β(t) + c1

]
x+D(t).

Thus the infinitesimal generator of the admitted Lie group is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x

= c7

[ 1
β(t)

∂

∂t
+ x

α(t)
β(t)

∂

∂x

]
+ c1x

∂

∂x
+D(t) ∂

∂x
,

(4.57)

provided c7 6= 0. If c7 = 0, then ω(t) = 0. Consequently, B(t) = c1 and
Υ (t, x) = c1x+D(t). The most general infinitesimal generator of the Lie group in this
case is given by equation (4.55).

4.7 An Example

Consider the first order neutral differential equation given by x′(t) + x′(t− π) = 0. The
solution of this differential equation is x(t) = sin t.
For this neutral differential equation we have seen that, ω(t, x) = 0 and
Υ (t, x) = c1x+ sin t.
Solving the system,
dt̄

dδ
= ω(t̄, x̄) = 0, dx̄

dδ
= Υ (t̄, x̄) = c1x̄+ sin t̄, subject to the conditions, t̄ = t and x̄ = x,

when δ = 0, we get the above neutral differential equation invariant under the Lie group
t̄ = t, x̄ = 1

c1

[
ec1δ(c1x+ sin t)− sin t

]
.

The generators of the Lie group (or vector fields of the symmetry algebra) corresponding
to this neutral differential equation are given by,
ζ∗1 = x

∂

∂x
and ζ∗2 = sin t ∂

∂x
.

4.8 Symmetries of a Nonlinear Neutral Differential Equa-
tion

In this section we consider a nonlinear case obtaining symmetries of

x′(t) = x(t)x(t− r) + h(t) + x′(t− r), (4.58)
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where h(t) is a positive real valued differentiable function.
Applying the operator defined by equation (4.30) to the delay term g(t) = t− r, we get
ω(t, x) = ωr.

Applying the operator defined by equation (4.30) to equation (4.58) we get

Υt + (Υx − ωt)x′ − ωxx′2 = xΥ r + x(t− r)Υ + ωh′(t)

+ Υ rt−r + (Υ rx(t−r) − ω
r
t−r)x′(t− r)− ωrx(t−r)x

′(t− r)2
. (4.59)

Splitting equation (4.59) with respect to x′2 we get ωx = 0 which can be solved to give
ω = ω(t).
With this and equation (4.58), equation (4.59) becomes

Υt + (Υx − ωt)[xx(t− r) + h(t) + x′(t− r)] = xΥ r + x(t− r)Υ + ωh′(t)

+ Υ rt−r + (Υ rx(t−r) − ω
r
t−r)x′(t− r). (4.60)

Differentiating equation (4.60) with respect to x(t− r) twice and splitting the resulting
equation with respect to x, we get Υ rx(t−r)x(t−r) = 0 which can be solved to give
Υ (t, x) = A(t)x+B(t).
Substituting this value of Υ (t, x) in equation (4.60) we get

A′(t)x+B′(t)+(A(t)−ω′(t))[xx(t−r)+h(t)+x′(t−r)] = x[A(t−r)x(t−r)+B(t−r)]

+x(t−r)[A(t)x+B(t)]+ω(t)h′(t)+A′(t−r)x(t−r)+B′(t−r)+(A(t−r)−ω′(t))x′(t−r) = 0.
(4.61)

Splitting equation (4.61) with respect to x, we get,

A′(t) = B(t− r). (4.62)

Splitting equation (4.61) with respect to the constant term,

B′(t) + h(t)[A(t)− ω′(t)] = ω(t)h′(t) +B′(t− r). (4.63)

Splitting equation (4.61) with respect to xx(t− r), we get,

A(t− r) = −ω′(t). (4.64)

Splitting equation (4.61) with respect to x′(t− r), we get,

A(t) = A(t− r). (4.65)
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Splitting equation (4.61) with respect to x(t− r), we get,

A′(t− r) = −B(t). (4.66)

Using equation (4.65), equation (4.64) becomes

ω′(t) = −A(t). (4.67)

Using equation (4.65), in equation (4.66), we get

B(t) = B(t− r). (4.68)

Using equation (4.67) and (4.69), in equation (4.63), we solving the resulting equation
get

ω(t) = c1√
h(t)

, (4.69)

where c2 is an arbitrary constant.

Hence from equation (4.67) we get A(t) = c2
h′(t)
h3/2(t)

, and from equation (4.66) we get

B(t) = h′(t)
h5/2(t)

c3 −
h′′(t)
h3/2(t)

c4, where c2, c3 and c4 are arbitrary constants.

Consequently, Υ (t, x) =
[
c2

h′(t)
h3/2(t)

]
x+ c3

h′(t)
h5/2(t)

− c4
h′′(t)
h3/2(t)

.

Hence the general form of the infinitesimal generator of the admitted Lie group is

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x

= c1√
h(t)

∂

∂t
+
[
c2

h′(t)
h3/2(t)

]
x+ c3

h′(t)
h5/2(t)

− c4
h′′(t)
h3/2(t)

∂

∂x
.

(4.70)

Thus we observe that the Lie group is four dimensional generated by

ζ∗1 = 1√
h(t)

∂

∂t
, ζ∗2 = x

h′(t)
h3/2(t)

∂

∂x
,

ζ∗3 = h′(t)
h5/2(t)

∂

∂x
, ζ∗4 = h′′(t)

h3/2(t)
∂

∂x
.

4.9 Summary

We have obtained the symmetries of the first order non-homogeneous neutral differential
equation with a general delay. We can make a group classification of the first order
neutral differential equation into the following cases. In all cases we see that the first order
neutral differential equation admits linear symmetries. The three cases are presented
below:

1. If ρ(t) 6= 0, β(t) 6= 0, and if x1(t) is a general solution of the associated homogeneous
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neutral differential equation, then the non-homogeneous neutral differential equation
admits a symmetry algebra of infinite dimension, due to the linear superposition
principle, given by the vector field x1(t) ∂

∂x .

2. If ρ(t) = 0, β(t) 6= 0, and if x2(t) is a general solution of the associated homogeneous
delay differential equation, then the non-homogeneous delay differential equation
admits a symmetry algebra of infinite dimension, due to the linear superposition
principle, given by the vector fields x2(t) ∂

∂x and (x− x3(t)) ∂
∂x , where x3(t) is the

solution of the non-homogeneous delay differential equation, x′(t) = α(t)x(t) +
β(t)x(g(t)) − B0γ(t). Further, if the delay differential equation is homogeneous,
then it admits a symmetry algebra, again of infinite dimension, given by vector
fields x2(t) ∂

∂x and x ∂
∂x .

3. If ρ(t) = 0, β(t) = 0, then the ordinary differential equation admits a symmetry
algebra of infinite dimension, due to the linear superposition principle, given by

vector fields, x ∂
∂x and exp(

t∫
α(s)ds)) ∂

∂x .

For the first order linear neutral differential equation with variable coefficients and most
standard time delay, we have established a Lie type Invariance condition using Taylor’s
theorem for a function of several variables. We have also illustrated the group methods
for a nonlinear first order neutral differential equations. Our results can be summarized
as

(i) The general form of the infinitesimal generator of the admitted Lie group for the
first order neutral differential equation (4.34), for which α(t) 6= α(t − r), and

α′(t− r) 6= −β(t)
ρ(t) , is given by equation (4.46).

(ii) The general form of the infinitesimal generator of the admitted Lie group for the
neutral differential equation (4.34), satisfying α(t) = α(t− r) is given by equation
(4.50).

(iii) The general form of the infinitesimal generator of the admitted Lie group for the
nonlinear neutral differential equation (4.58), is given by equation (4.70).

(iv) The general form of the infinitesimal generator of the admitted Lie group for the
first order delay differential equation (4.51), for which α(t) 6= α(t− r), is given by
equation (4.54).

(v) The general form of the infinitesimal generator of the admitted Lie group for the
first order delay differential equation (4.51), for which α(t) = α(t− r), is given by
equation (4.57).
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5.1 Introduction

In this chapter, we study the second order delay differential equation

x′′(t) = f(t, x(t), x′(t), x(t− r), x′(t− r)), (5.1)

where f and x are real valued functions defined on the domain I ×D4, where I is an
interval in R, D is an open set in R and r > 0. The notation x′(t− r) means dx

dt
(t− r).

We assume that, ∂f

∂x(t− r) 6= 0 and ∂f

∂x′(t− r) 6= 0. We specify the delay point t− r, in
order to completely determine the problem. We shall see different cases of the equation
under study and obtain the equivalent symmetries for each of these cases.

In papers [59, 60], we find the application of symmetry analysis to delay differential
equations. This research defines and uses an operator equivalent to the canonical Lie-
Bäcklund operator. This operator is then used for obtaining symmetries. A research
paper by [51] obtains equivalent symmetries of a second order delay differential equa-
tion by following an approach different from ours. It should be noted that in [51]
too, an operator equivalent to the canonical Lie-Bäcklund operator is defined. The
splitting equations obtained by [51] are with respect to terms with double delay as
well. Our approach dosen’t result in any terms with double delay. Systems of second
order linear ordinary differential equations with constant coefficients are thoroughly
provided their group classification in [36]. In chapter 2, an admitted Lie group for
first order delay differential equations with constant coefficients is defined, and the
corresponding generators of the Lie group for this equation are obtained. The approach
in chapter 2 consists of using Lie Backlund operators to obtain the determining equations.

Given any equation, the problem of finding all equations, which are equivalent to that
given equation, is called an equivalence problem. If the given equation is linear, then the
equivalence problem is called a linearization problem. Consider a linear second order
ordinary differential equation

x′′ + α(t)x′ + γ(t)x = h(t). (5.2)

By an equivalent Lie group we mean a Lie group of transformations of the dependent
and independent variables, and their coefficients which preserve the differential structure.
This group allows simplifying the coefficients of the equations. Sophus Lie showed that
any linear second order ordinary differential equation (5.2) is equivalent to the equation

x′′ = 0. (5.3)



Chapter 5. Group Methods for Second Order Delay Differential
Equations 82

In chapter 1, we have seen that the ordinary differential equation given by equation (5.3),
admits the eight-dimensional Lie algebra spanned by the generators

ζ∗1 = ∂

∂t
, ζ∗2 = ∂

∂x
, ζ∗3 = t

∂

∂t
, ζ∗4 = x

∂

∂t
, ζ∗5 = x

∂

∂x
,

ζ∗6 = t
∂

∂x
, ζ∗7 = tx

∂

∂t
+ x2 ∂

∂x
, ζ∗8 = t2

∂

∂t
+ tx

∂

∂x
.

If one tries to find an admitted Lie group for equation (5.2), then the system of determining
equations consists of four second-order ordinary differential equations. This system, in
general, cannot be solved. In this chapter, we do group classification of

x′′(t) + α(t)x′(t) + β(t)x′(t− r) + γ(t)x(t) + ρ(t)x(t− r) = h(t). (5.4)

5.2 Lie Type Invariance Condition for Second Order Delay
Differential Equations

Formally, a second order delay differential equation is defined as follows:

Definition 5.2.1. (Second Order Delay Differential Equation)
Let J be an interval in R, and let D be an open set in R. Sometimes J will be [t0, β),
and sometimes it will be (α, β), where α ≤ t0 ≤ β. Let f : J ×D4 → R. Conveniently,
a second order delay differential equations is expressed as

x′′(t) = f(t, x(t), x(t− r), x′(t), x′(t− r)), (5.5)

where x and f are real valued functions.
We consider equation (5.5) for t0 ≤ t ≤ β together with the initial function

x(t) = θ(t), for γ ≤ t ≤ t0. (5.6)

where θ is a given initial function mapping [γ, t0]→ D, and γ is some real number less
than t0.

Definition 5.2.2. (Solution of a Second Order Delay Differential Equation)
By a solution of the delay differential equations (5.5) and (5.6) we mean:
A differentiable function x : [γ, β1)→ D, for some β1 ∈ (t0, β], such that,

1. x(t) = θ(t) for γ ≤ t ≤ t0,

2. x(t) reduces equation (5.5) to an identity on t0 ≤ t ≤ β1.

We understand x′(t0) to mean the right-hand derivative.
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In this section, we shall obtain a Lie type invariance condition for second order delay
differential equations. In order to determine this delay differential equation completely,
we need to specify the delay term, where the delayed function is specified, otherwise the
problem is not fully determined.

We establish the following Lie type invariance condition using Taylor’s theorem which is
a novel approach for obtaining symmetries of second order delay differential equations.

Theorem 5.2.1. Let a function F be defined on I ×D× I − r×D3, where D is an open
set in R, I is an open interval in R and I − r = {y− r : y ∈ I}. The Lie type invariance
condition for

d2x

dt2
= F (t, x(t), t− r, x(t− r), x′(t), x′(t− r)), (5.7)

is given by

ωFt + ΥFx + ωrFt−r + Υ rFx(t−r) + Υ[t]Fx′(t) + Υ r[t]Fx′(t−r) =

Υtt + (2Υtx − ωtt)x′ + (Υxx − 2ωtx)x′2 − ωxxx′3 + (Υx − 2ωt)x′′ − 3ωxx′x′′,

where,
Υ[t] = Dt(Υ )− x′Dt(ω) = Υt + (Υx − ωt)x′ − ωxx′2,

Υ[tt] = Dt(Υ[t])− x′′Dt(ω), where Dt = ∂

∂t
+ x′

∂

∂x
+ x′′

∂

∂x′
+ · · · ,

and, ωr = ω(t− r, x(t− r)), Υ r = Υ (t− r, x(t− r)).

Proof. Let the delay differential equation be invariant under the Lie group
t̄ = t+ δω(t, x) +O(δ2),
x̄ = x+ δΥ (t, x) +O(δ2).
We then naturally define,
t− r = t− r + δω(t− r, x(t− r)) +O(δ2) and
x(t− r) = x(t− r) + δΥ (t− r, x(t− r)) +O(δ2).
Then,

dx̄

dt̄
=

dx̄

dt
dt̄

dt

=
[
dx

dt
+ (Υt + Υxx

′)δ +O(δ2)
] [

1− (ωt + ωxx
′)δ +O(δ2)

]
= dx

dt
+ [Υt + (Υx − ωt)x′ − ωxx′2]δ +O(δ2).

With the notation,
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Dt = ∂

∂t
+ x′

∂

∂x
,

we can write,

dx̄

dt̄
= dx

dt
+ (Dt(Υ )− x′Dt(ω))δ +O(δ2)

= dx

dt
+ Υ[t]δ +O(δ2).

where Υ[t] = Dt(Υ )− x′Dt(ω) = Υt + (Υx − ωt)x′ − ωxx′2.
Considering the second-order extended infinitesimals, we can write

d2x̄

dt̄2
= d

dt̄

(
dx̄

dt̄

)

=

d

dt

[
dx

dt
+ [Dt(Υ )−Dt(ω)x′]δ +O(δ2)

]
1 + δDt(ω) +O(δ2)

=
(
d2x

dt2
+Dt(Υ[t])δ +O(δ2)

)
(1− δDt(ω) +O(δ2))

= d2x

dt2
+ (Dt(Υ[t])−Dt(ω)x′′)δ +O(δ2).

So,
Υ[tt] = Dt(Υ[t])− x′′Dt(ω).
As Υ[t] contains t, x and x′, we need to extend the definition of Dt, so,

Dt = ∂

∂t
+ x′

∂

∂x
+ x′′

∂

∂x′
+ · · ·

Expanding Υ[tt], gives,

Υ[tt] = Υtt + (2Υtx − ωtt)x′ + (Υxx − 2ωtx)x′2 − ωxxx′3 + (Υx − 2ωt)x′′ − 3ωxx′x′′.

With the notations,
ωr = ω(t− r, x(t− r)), Υ r = Υ (t− r, x(t− r)), it follows that,

x′(t− r) = dx̄

dt̄
(t− r)

= x′(t− r) + [(Υ r)t−r + ((Υ r)x(t−r)

− (ωr)t−r)x′(t− r)− (x′(t− r))2(ωr)x(t−r)]δ +O(δ2).

Let Υ r[t] = (Υ r)t−r + ((Υ r)x(t−r) − (ωr)t−r)x′(t− r)− (x′(t− r))2(ωr)x(t−r).

For invariance, d
2x̄

dt̄2
= F (t̄, x(t), t− r, (x(t− r)), dx̄

dt̄
,
dx̄

dt̄
(t− r)).
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This gives,

d2x

dt2
+ Υ[tt]δ +O(δ2) = F (t+ δω +O(δ2), x+ δΥ +O(δ2),

t− r + δωr +O(δ2), x(t− r) + δΥ r +O(δ2),
dx

dt
+ δΥ[t] +O(δ2), dx

dt
(t− r) + Υ r[t]δ +O(δ2))

= F (t, x, t− r, x(t− r), x′(t), x′(t− r))+

(ωFt + ΥFx + ωrFt−r + Υ rFx(t−r) + Υ[t]Fx′(t)

+ Υ r[t]Fx′(t−r))δ +O(δ2).

Comparing the coefficient of δ, we get

ωFt + ΥFx + ωrFt−r + Υ rFx(t−r) + Υ[t]Fx′(t) + Υ r[t]Fx′(t−r) =

Υtt + (2Υtx − ωtt)x′ + (Υxx − 2ωtx)x′2 − ωxxx′3 + (Υx − 2ωt)x′′ − 3ωxx′x′′. (5.8)

The above obtained equation (5.8) is a Lie type invariance condition for a second order
delay differential equation.

We can define a prolonged operator for the second order delay differential equation as:
ζ = ω

∂

∂t
+ ωr

∂

∂(t− r) + Υ
∂

∂x
+ Υ r

∂

∂x(t− r) .

We then, naturally define the extended operator, for a second order delay differential
equation as:

ζ(1) = ω
∂

∂t
+ωr ∂

∂(t− r) +Υ ∂

∂x
+Υ r ∂

∂x(t− r) +Υ[t]
∂

∂x′
+Υ r[t]

∂

∂x′(t− r) +Υ[tt]
∂

∂x′′
. (5.9)

Defining, ∆ = x′′(t)− F (t, x(t), t− r, x(t− r), x′(t), x′(t− r)) = 0, we get,

ζ(1)∆ = Υ[tt] − ωFt − ΥFx − ωrFt−r − Υ rFx(t−r) − Υ[t]Fx′(t) − Υ r[t]Fx′(t−r). (5.10)

Comparing equation (5.10) and equation (5.8), we get,
Υ[tt] = Υtt + (2Υtx − ωtt)x′ + (Υxx − 2ωtx)x′2 − ωxxx′3 + (Υx − 2ωt)x′′ − 3ωxx′x′′.
On substituting x′′ = F into ζ(1)∆ = 0, we get an invariance condition for the second
order delay differential equation which is ζ(1)∆ |∆=0= 0, from which we shall obtain the
determining equations.
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5.3 Symmetries of A Non-homogeneous Second Order De-
lay Differential Equation

Consider the delay differential equation with variable coefficients which are twice differ-
entiable:

x′′(t) + α(t)x′(t) + β(t)x′(t− r) + γ(t)x(t) + ρ(t)x(t− r) = h(t). (5.11)

Proposition 5.3.1. If x1(t) is an arbitrary solution of equation (5.11), then by employing
the change of variables t̄ = t, x̄ = x − x1(t), the delay differential equation given by
equation (5.11), gets transformed a homogeneous delay differential equation, namely,

x′′(t) + α(t)x′(t) + β(t)x′(t− r) + γ(t)x(t) + ρ(t)x(t− r) = 0. (5.12)

Proof. The propsition easily follows by substituting t = t̄ and x(t) = x̄+ x1(t̄) in (5.11),
and by noting that
x′′1(t) + α(t)x′1(t) + β(t)x′1(t− r) + γ(t)x1(t) + ρ(t)x1(t− r) = h(t).

Proposition 5.3.2. By employing a suitable change, the delay differential equation

x′′(t) + α1(t)x′(t) + β1(t)x′(t− r) + γ1(t)x(t) + ρ1(t)x(t− r) = 0, (5.13)

with α1(t), β1(t), γ1(t) and ρ1(t) twice differentiable functions with variable coefficients
can be reduced to a one in which the first order ordinary derivative term is missing.

Proof. By employing a change, x = u(t)s(t), where u(t) 6= 0 is some twice differentiable

function in t and with s(t) satisfying s(t) = exp(−
t∫
α1(ξ)dξ

2 ) + s0, where s0 is an
arbitrary constant, equation (5.13), can be reduced to

u′′(t) + β2(t)u′(t − r) + γ2(t)u(t) + ρ2(t)u(t − r) = 0, where β2(t) = β1(t)s(t− r)
s(t) ,

γ2(t) = s′′(t) + α1(t)s′(t) + γ1(t)s(t)
s(t) , and ρ2(t) = β1(t)s′(t− r) + ρ1(t)s(t− r)

s(t) .

This is similar to what is done to second-order ordinary differential equations to remove the
coefficient of the first derivative term. This change does not alter the group classification
of (5.11).
We shall consider equivalent symmetries of

x′′(t) + β(t)x′(t− r) + γ(t)x(t) + ρ(t)x(t− r) = 0. (5.14)

Let us specify the delay point,
tr = g(t) = t− r. (5.15)
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Applying operator ζ(1) defined by equation (5.9) to equation (5.15), we get,

ωr = ω. (5.16)

Applying operator ζ(1) defined by equation (5.9) to equation (5.14), we get,

Υtt+(2Υtx−ωtt)x′+(Υxx−2ωtx)x′2−ωxxx′3+(Υx−2ωt)(−β(t)x′(t−r)−γ(t)x−ρx(t−r))

− 3ωxx′(−β(t)x′(t− r)− γ(t)x− ρx(t− r)) = −
[
ω(β′(t)x′(t− r) + γ′(t)x+ ρ′(t)x(t− r))

+ γ(t)Υ + ρ(t)Υ r + β(t)(Υ rt−r + (Υ rx(t−r) − ω
r
t−r)x′(t− r)− ωrx(t−r)(x

′(t− r)2))
]
.

(5.17)

Differentiate equation (5.17) with respect to x′(t− r) twice, we get,
ωrx(t−r) = 0, which we can easily solve to get,

ω(t, x) = A(t). (5.18)

Differentiate equation (5.17) with respect to x(t− r) twice, we get,
ρ(t)Υ rx(t−r)x(t−r) + β(t)Υ r(t−r)(x(t−r))(x(t−r))
+ β(t)(Υ rx(t−r)x(t−r)x(t−r) − ω

r
(t−r)(x(t−r))(x(t−r)))x

′(t− r) = 0.
Splitting the equation with respect to x′(t− r), and using the fact that β(t) 6= 0 we get,
Υxxx = ωtxx = 0,
which is solved to give,

Υ (t, x) = 1
2B(t)x2 + C(t)x+D(t). (5.19)

Substituting equations (5.18) and (5.19) into the determining equation (5.17), we get,

1
2B
′′(t)x2 + C ′′(t)x+D′′(t) + (2(B′(t)x+ C ′(t))−A′′(t))x′ +B(t)(x′(t− r))2

+ (B(t)x+ C(t)− 2A′(t))(−β(t)x′(t− r)− γ(t)x− ρ(t)x(t− r))

= −
[
A(t)(β′(t)x′(t− r) + γ′(t)x+ ρ′(t)x(t− r)) + γ(t)(1

2B(t)x2 + C(t)x+D(t))

+ ρ(t)(1
2B(t− r)x2(t− r) + C(t− r)x(t− r) +D(t− r))

+ β(t)[(1
2B
′(t− r)x2(t− r) + C ′(t− r)x(t− r) +D′(t− r))

+ (B(t− r)x(t− r) + C(t− r)−A′(t− r))x′(t− r)]
]
. (5.20)

Splitting equation (5.20) with respect to x2, we get,

B′′(t) = B(t)γ(t). (5.21)
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Splitting equation (5.20) with respect to x, we get,

C ′′(t) = −γ′(t)A(t)− 2γ(t)A′(t)− 2B′(t). (5.22)

Splitting equation (5.20) with respect to x′(t− r), we get,

A′′(t) = 2C ′(t). (5.23)

Splitting equation (5.20) with respect to (x′(t− r))2, we get,

B(t) = 0. (5.24)

As a consequence of B(t) = 0, equation (5.19), reduces to

Υ (t, x) = C(t)x+D(t). (5.25)

and equation (5.22) reduces to,
C ′′(t) = −γ′(t)A(t)− 2γ(t)A′(t).

Using B(t) = 0, equation (5.20), simplifies to

C ′′(t)x+D′′(t)+(2C ′(t)−A′′(t))x′+(C(t)−2A′(t))(−β(t)x′(t−r)−γ(t)x−ρ(t)x(t−r))

= −
[
A(t)(β′(t)x′(t−r)+γ′(t)x+ρ′(t)x(t−r))+γ(t)(C(t)x+D(t))+ρ(t)(C(t−r)x(t−r)

+D(t− r)) + β(t)[(C ′(t− r)x(t− r) +D′(t− r)) + (C(t− r)−A′(t− r))x′(t− r)]
]
.

(5.26)

Splitting equation (5.26) with respect to x(t− r), we get,

ρ(t)[C(t)− C(t− r)] = ρ′(t)A(t) + β(t)C ′(t− r) + 2A′(t)ρ(t). (5.27)

Splitting equation (5.26) with respect to x′(t− r), we get,

β(t)[C(t)− C(t− r)] = A(t)β′(t) + β(t)(2A′(t)−A′(t− r)). (5.28)

Since ω = ωr, equation (5.28) becomes

β(t)[C(t)− C(t− r)] = A(t)β′(t) + β(t)A′(t). (5.29)

Splitting equation (5.26) with respect to constant term, we get,

D′′(t) = −β(t)D′(t− r)− γ(t)D(t)− ρ(t)D(t− r). (5.30)
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That is, D(t) satisfies the homogeneous second order delay differential equation (5.14)
So far we have obtained from equations (5.16), (5.22), (5.23), (5.25), (5.27), (5.28) and
(5.30)

ω = ωr, Υ = C(t)x+D(t). (5.31)

ωtt = 2C ′(t), C ′′(t) = −γ′(t)ω − 2γ(t)ωt. (5.32)

D′′(t) = −β(t)D′(t− r)− γ(t)D(t)− ρ(t)D(t− r). (5.33)

β(t)[C(t)− C(t− r)] = ωβ′(t) + β(t)ω′(t). (5.34)

ρ(t)[C(t)− C(t− r)] = ρ′(t)ω(t) + β(t)C ′(t− r) + 2ω′(t)ρ(t). (5.35)

Integrating equation (5.32), we get, C(t) = ωt
2 + c1, where c1 is a constant.

Since ω = ωr, we have, C(t) = C(t− r).
Hence, equation (5.34) gives,

β(t)ω(t) = c2, (5.36)

where c2 is an arbitrary constant.
Equation (5.35) can be written as

ρ′(t)ω + 2ωtρ(t) = −β(t)C ′(t− r)

= −β(t)ωrtt
2

= −β(t)
2 ωtt.

(5.37)

We now make a complete group classification of equation (5.14), by proving the following
results:

Theorem 5.3.1. The second order delay differential equation given by equation (5.14),
for which β 6= 0, ρ 6= 0 admits a three dimensional group generated by

ζ∗1 = x
∂

∂x
, ζ∗2 = 1

β(t)
∂

∂t
+ x

2

( 1
β(t)

)′ ∂
∂x
, ζ∗3 = D(t) ∂

∂x
.

Proof. Substituting C(t) = ωt
2 + c1, in equation (5.32), we get,

ωttt = −(2γ′(t)ω + 4γ(t)ωt or ωωttt = −(2γ′(t)ω2 + 4γ(t)ωωt.
Integrating this, we get,

ωωtt −
ω2
t

2 + 2γ(t)ω2 = c3, (5.38)

where c3 is a constant.
If c2 6= 0, then from equation (5.36),

ω = c2
β(t) . (5.39)
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From equation (5.31),

Υ (t, x) = x

(
c2
2

( 1
β(t)

)′
+ c1

)
+D(t). (5.40)

From equation (5.37), we get, ρ′(t)− 2β
′(t)
β(t) ρ(t) = 1

2

(
β′′(t)− 2(β′(t))2

β(t)

)
.

This is a linear differential equation yielding solution ρ(t) = c4β
2(t) + β′(t)

2 ,
where c4 is an arbitrary constant.
From equation (5.38),

γ(t) = 1
2

[
c5β

2(t)− 3
2

(
β′(t)
β(t)

)2
+ β′′(t)

β(t)

]
, where c5 = c3

c2
2
.

Since, ω = ωr, β(t) = β(t− r),
In this case we get coefficients of the infinitesimal transformation as

ω = c2
β(t) , Υ = x

(1
2

(
c2
β(t)

)′
+ c1

)
+D(t). (5.41)

The infinitesimal generator in this case is

ζ∗ = c1x
∂

∂x
+ c2

( 1
β(t)

∂

∂t
+ x

2

( 1
β(t)

)′ ∂
∂x

)
+D(t) ∂

∂x
, (5.42)

where D(t) is an arbitrary solution of equation (5.14).
If c2 = 0, then

ω = 0, Υ = c1x+D(t). (5.43)

The infinitesimal generator is given by

ζ∗ = (c1x+D(t)) ∂
∂x
. (5.44)

Theorem 5.3.2. The second order delay differential equation given by equation (5.14),
for which β 6= 0 and ρ = 0 admits a three dimensional group generated by

ζ∗1 = ∂

∂t
, ζ∗2 = x

∂

∂x
, ζ∗3 = D(t) ∂

∂x
.

Proof. We see that from equation (5.35)
C(t− r) = c6, an arbitrary constant.
From equation (5.36),
ω = c2

β(t) .

From equation (5.37),
ω = c7t+ c8, both c7 and c8 being arbitrary constants.
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From equation (5.38), γω2 = c9, where c9 = 1
2

[
c3 + c2

7
2

]
, is an arbitrary constant.

Further, since ω = ωr, we get c7 = 0 and ω = c8.

If c8 6= 0, then
γ(t) = c9

c2
8
, β(t) = c2

c8
.

The infinitesimal generator in this case is given by

ζ∗ = c8
∂

∂t
+ (c6x+D(t)) ∂

∂x
. (5.45)

If c8 = 0, then ω = 0 and Υ = c6x+D(t).
The infinitesimal generator in this case is given by

ζ∗ = (c6x+D(t)) ∂
∂x
. (5.46)

Theorem 5.3.3. The second order delay differential equation given by equation (5.14),
for which β = 0, ρ 6= 0 admits a four dimensional group generated by

ζ∗1 = 1√
ρ(t)

∂

∂t
, ζ∗2 =

[(
− ρ′(t)
ρ3/2(t)

)
x

]
∂

∂x
, ζ∗3 = x

∂

∂x
, ζ∗4 = D(t) ∂

∂x
.

Proof. We see that from equation (5.37), we get,
ω =

√
c10
ρ(t) .

Hence,

Υ = C(t)x+D(t)

=
(
ωt
2 + c1

)
x+D(t)

=
(
−
√
c10
4

ρ′(t)
ρ3/2(t)

+ c1

)
x+D(t).

If c10 6= 0, then from equation (5.38),

γ(t) = 1
2

[
c3
c10

ρ(t) + ρ′′(t)
2ρ(t) −

5
8

(
ρ′(t)
ρ(t)

)2]
.

The infinitesimal generator in this case is given by,

ζ∗ =
√
c10
ρ(t)

∂

∂t
+
[(
−
ρ′(t)√c10

4ρ3/2(t)
+ c1

)
x+D(t)

]
∂

∂x
. (5.47)

If c10 = 0, then ω = 0, Υ = c1x+D(t).
Hence, the infinitesimal generator in this case is given by,

ζ∗ = (c1x+D(t)) ∂
∂x
. (5.48)
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5.4 An Illustrative Example

We shall apply symmetry analysis and make a group classification of a delay differential
equation arising in control systems studied in [9]. Consider, a system whose motion
is governed by a second order, linear homogeneous differential equation with positive
constant coefficients, given by, mx′′(t) + bx′(t) + kx(t) = 0. Let b represent the damping
coefficient. In [37], the system studied is a ship rolling in the waves and x is the angle
of tilt from the normal upright position. As one must be more ingenious in trying to
increase b, ballast tanks, partially filled with water, are introduced in each side of the
ship. A servomechanism designed to pump water from one tank to the other attempts
to counteract the roll of the ship. Hopefully, this introduces another term proportional
to x′(t), in the equation, say qx′(t). Thus, we consider,

mx′′(t) + bx′(t) + qx′(t) + kx(t) = 0. (5.49)

If one recognizes that the servomechanism cannot respond instantaneously, then instead
of equation (5.49), we must consider,

mx′′(t) + bx′(t) + qx′(t− r) + kx(t) = 0. (5.50)

The control takes time r > 0 to respond and thus the control term is proportional to the
velocity at earlier instant, t− r. It seems possible that such a time lag could result in
the force represented by qx′(t) being in the opposite direction to that which is desired.
Having explained the model, we can make a group classification of the second order delay
differential equation (5.50) representing it. We can rewrite equation (5.50) as:

x′′(t) + b

m
x′(t) + q

m
x′(t− r) + k

m
x(t) = 0. (5.51)

Following the approach given in the previous section, and keeping to the same notations,
we see that, β(t) = q

m
, a constant and ρ(t) = 0. Performing symmetry analysis of

equation (5.50), we get, ω = c11, a constant and Υ = c12x + E(t), where c12 is an
arbitrary constant and E(t) solves equation (5.50). Hence, the generators of the Lie
group (or vector fields of the symmetry algebra) are given by, ζ∗1 = ∂

∂t
, ζ∗2 = x

∂

∂x
and

ζ∗3 = E(t) ∂
∂x

.
Furthermore, solving the system,
dt̄

dδ
= ω(t̄, x̄) = c11,

dx̄

dδ
= Υ (t̄, x̄) = c12x̄ + E(t̄), subject to the conditions, t̄ = t and

x̄ = x, when δ = 0, we see that the delay differential equation given by (5.50) is invariant
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under the Lie group
t̄ = t+ c11δ, x̄ = 1

c12

[
ec12δ (c12x+ E(t))− E(t+ c11δ)

]
.

It is noteworthy to mention here that this model actually arose during tests of systems
for anti rolling stabilization of a ship before World War II which is seen in [38].

5.5 Summary

We have obtained the infinitesimal generators of equation (5.14), and based on the
various cases we can classify the second-order delay differential equation as

1. The delay differential equation (5.14) with β 6= 0, ρ 6= 0, admits the infinitesimal
generator given by equation (5.42).

2. The delay differential equation (5.14) with β 6= 0, ρ = 0, admits the infinitesimal
generator given by equation (5.45).

3. The delay differential equation (5.14) with β = 0, ρ 6= 0, admits the infinitesimal
generator given by equation (5.47).

The results can be summarized as a Table 5.1 below:

Table 5.1: Group Classification of the Second Order Delay Differential Equation

Type of Second Order Delay Differential Equation Generators
x′′(t)+β(t)x′(t−r)+γ(t)x(t)+ρ(t)x(t−r) = 0,

ρ(t) = c4β
2(t) + β′(t)

2 ,

γ(t) = 1
2

[
c5β

2(t)− 3
2

(
β′(t)
β(t)

)2
+ β′′(t)

β(t)

]
ζ∗1 = x

∂

∂x
,

ζ∗2 = 1
β(t)

∂

∂t
+ x

2

( 1
β(t)

)′ ∂
∂x
,

ζ∗3 = D(t) ∂
∂x

x′′(t) + β(t)x′(t− r) + γ(t)x(t) = 0,
γ(t) = c9

c2
8

ζ∗1 = ∂

∂t
,

ζ∗2 = x
∂

∂x
,

ζ∗3 = D(t) ∂
∂x
.

x′′(t) + γ(t)x(t) + ρ(t)x(t− r) = 0,

γ(t) = 1
2

[
c3
c10

ρ(t) + 1
2
ρ′′(t)
ρ(t) −

5
8

(
ρ′(t)
ρ(t)

)2]
ζ∗1 = 1√

ρ(t)
∂

∂t
,

ζ∗2 =
[(
− ρ′(t)
ρ3/2(t)

)
x

]
∂

∂x
,

ζ∗3 = x
∂

∂x
,

ζ∗4 = D(t) ∂
∂x
.
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6.1 Introduction

In this chapter, we obtain a Lie type invariance condition and make a complete group
classification of the second order neutral differential equation

x′′(t) = f(t, x(t), x′(t), x(t− r), x′(t− r), x′′(t− r)), (6.1)

where f is defined on I × D5, where I is an open interval in R, D is an open set in

R, r > 0 is the delay, x′(t− r) and x′′(t− r) mean dx

dt
(t− r) and d2x

dt2
(t− r) respectively.

We further assume, ∂f

∂x(t− r) 6= 0, ∂f

∂x′(t− r) 6= 0 and ∂f

∂x′′(t− r) 6= 0. We shall first
find a group under which this neutral differential equation is invariant. We call this
the admitted Lie group by which we mean that one solution curve is carried to another
solution curve of the same equation. We then use this group to obtain the desired
symmetries. Such group classification of differential equations aid in modeling problems
in the fields of mathematics, physics, engineering and mechanics.

In [7], the Lie symmetries of systems of second order linear ordinary differential equations
with constant coefficients over both real and complex fields are exhaustively described.
The research also proposes an algebraic approach to obtain bounds for the dimensions of
the maximal Lie invariance algebras possessed by such systems. Further, such systems
are thoroughly provided their group classification in [36, 39], with extensions to linear
systems of second order ordinary differential equations with more than two equations.
Higher order symmetries for ordinary differential equations are studied in [23]. Another
research paper suggests a group method to study functional differential equations based
on a search of symmetries of underdetermined differential equations by methods of
classical and modern group analysis, using the principle of factorization. The method
therein, encompasses the use of a basis of invariants consisting of universal and differential
invariants [34]. In chapter 4, we have obtained an invariance condition and used it to
make a group classification of first order neutral differential equations with variable
coefficients and the most general time delay.

In this chapter, we use Taylor’s theorem to obtain a Lie type invariance condition for

x′′(t) + α(t)x′(t) + β(t)x′(t− r) + γ(t)x(t) + ρ(t)x(t− r) + κ(t)x′′(t− r) = h(t), (6.2)

where α(t), β(t), γ(t), ρ(t), κ(t) and h(t) are continuously differentiable functions.
Using this, we suitably define an operator, its prolongation and extension and use it
to obtain our determining equations. These equations are then split with respect to
the independent variables to obtain an over-determined system of partial differential
equations, which are then solved to obtain the most general generator of the Lie group
and the corresponding equivalent symmetries. It may be noted that while performing
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the symmetry analysis of this second order neutral differential equation, we have come
across nonlinear ordinary differential equations. It is seen that in most cases, we do
not get an explicit solution due to the arbitrariness of the variable coefficients. As
such, we do not get explicit infinitesimal generators. By then choosing particular values
of the variable coefficients or restricting our differential equation by choosing certain
values of the obtained constants (which does not alter the symmetries obtained), we
illustrate the infinitesimal generators of the admitted group, which are explicitly obtained,
for these special cases. We then obtain the group classification of this second order
neutral differential equation and as a special case obtain a group classification of the
corresponding second order delay differential equation. The complete classification is
presented as tables at the end. It is noteworthy to point out here that there is no existing
literature on the group classification of neutral differential equations.

6.2 Lie Type Invariance Condition for Second Order Neu-
tral Differential Equations

Formally, a second order neutral differential equation is defined as follows:

Definition 6.2.1. (Second Order Neutral Differential Equation)
Let J be an interval in R, and let D be an open set in R. Sometimes J will be [t0, β), and
sometimes it will be (α, β), where α ≤ t0 ≤ β. Let f map J ×D5 → R. Conveniently, a
second order neutral differential equation is expressed as,

x′′(t) = f(t, x(t), x(t− r), x′(t), x′(t− r), x′′(t− r)), (6.3)

where x and f are real valued functions.
We consider equation (6.3) for t0 ≤ t ≤ β together with the initial function

x(t) = θ(t), for γ ≤ t ≤ t0. (6.4)

where γ ∈ R such that γ < t0, and θ is a given initial function mapping [γ, t0]→ D.

Definition 6.2.2. (Solution of a Second Order Neutral Differential Equation)
By a solution of the neutral differential equations (6.3) and (6.4), we mean a differentiable
function x : [γ, β1)→ D, for some β1 ∈ (t0, β] such that,

1. x(t) = θ(t) for γ ≤ t ≤ t0,

2. x(t) reduces equation (6.3) to an identity on t0 ≤ t ≤ β1.

We understand x′(t0) and x′′(t0) to mean the right-hand derivative.
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In this section, we extend the results to second order neutral differential equations given
by equation (6.2). In order to determine this neutral differential equation completely, we
need to specify the delay term, where the delayed function is specified, otherwise the
problem is not fully determined.

We establish the following Lie type invariance condition for second order neutral differ-
ential equations:

Theorem 6.2.1. Consider the second order neutral differential equation

d2x

dt2
= F (t, x, t− r, x(t− r), x′(t), x′(t− r), x′′(t− r)), (6.5)

where F be defined on a 7-dimensional space I×D×I−r×D4, D ⊂ R, I is any interval
in R, and I − r = {y − r : y ∈ I}. Then with the notations, ωr = ω(t− r, x(t− r)),
Υ r = Υ (t− r, x(t− r)), the Lie type invariance condition is given by

ωFt + ΥFx + ωrFt−r + Υ rFx(t−r) + Υ[t]Fx′(t) + Υ r[t]Fx′(t−r) + Υ r[tt]Fx′′(t−r) =

Υtt + (2Υtx − ωtt)x′ + (Υxx − 2ωtx)x′2 − ωxxx′3 + (Υx − 2ωt)x′′ − 3ωxx′x′′.

where,
Υ[t] = Dt(Υ )− x′Dt(ω),

Υ[tt] = Dt(Υ[t])− x′′Dt(ω), where Dt = ∂

∂t
+ x′

∂

∂x
+ x′′

∂

∂x′
+ · · · ,

Υ r[t] = (Υ r)t−r + ((Υ r)x(t−r) − (ωr)t−r)x′(t− r)− (x′(t− r))2(ωr)x(t−r),

Υ r[tt] = (Υ r(t−r)(t−r)+(2Υ r(t−r)x(t−r)−ω
r
(t−r)(t−r))x

′(t−r)+(Υ rx(t−r)x(t−r)−2ωr(t−r)x(t−r))x
′(t−

r)2 − ωrx(t−r)x(t−r)x
′(t− r)3 + (Υ rx(t−r) − 2ωrt−r)x′′(t− r)− 3ωrx(t−r)x

′(t− r)x′′(t− r)).

Proof. Let the neutral differential equation be invariant under the Lie group
t̄ = t+ δω(t, x) +O(δ2),
x̄ = x+ δΥ (t, x) +O(δ2).
We then naturally define,
t− r = t− r + δω(t− r, x(t− r)) +O(δ2) and
x(t− r) = x(t− r) + δΥ (t− r, x(t− r)) +O(δ2).
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Then,

dx̄

dt̄
=

dx̄

dt
dt̄

dt

=
[
dx

dt
+ (Υt + Υxx

′)δ +O(δ2)
] [

1− (ωt + ωxx
′)δ +O(δ2)

]
= dx

dt
+ [Υt + (Υx − ωt)x′ − ωxx′2]δ +O(δ2).

With the notation,
Dt = ∂

∂t
+ x′

∂

∂x
,

we can write,

dx̄

dt̄
= dx

dt
+ (Dt(Υ )− x′Dt(ω))δ +O(δ2)

= dx

dt
+ Υ[t]δ +O(δ2).

where Υ[t] = Dt(Υ )− x′Dt(ω) = Υt + (Υx − ωt)x′ − ωxx′2.
Considering the second-order extended infinitesimals, we can write

d2x̄

dt̄2
= d

dt̄

(
dx̄

dt̄

)

=

d

dt

[
dx

dt
+ [Dt(Υ )− x′Dt(ω)]δ +O(δ2)

]
1 + δDt(ω) +O(δ2)

=
(
d2x

dt2
+Dt(Υ[t])δ +O(δ2)

)
(1− δDt(ω) +O(δ2))

= d2x

dt2
+ (Dt(Υ[t])−Dt(ω)x′′)δ +O(δ2).

So,
Υ[tt] = Dt(Υ[t])− x′′Dt(ω).
As Υ[t] contains t, x and x′, we need to extend the definition of Dt, so,

Dt = ∂

∂t
+ x′

∂

∂x
+ x′′

∂

∂x′
+ · · ·

Expanding Υ[tt], gives,

Υ[tt] = Υtt + (2Υtx − ωtt)x′ + (Υxx − 2ωtx)x′2 − ωxxx′3 + (Υx − 2ωt)x′′ − 3ωxx′x′′.

With the notations,
ωr = ω(t− r, x(t− r)), Υ r = Υ (t− r, x(t− r)),
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it follows that,

x′(t− r) = dx̄

dt̄
(t− r)

= x′(t− r) + [(Υ r)t−r + ((Υ r)x(t−r)

− (ωr)t−r)x′(t− r)− (x′(t− r))2(ωr)x(t−r)]δ +O(δ2),

and

x′′(t− r) = d2x̄

dt̄2
(t− r)

= x′′(t− r) +
[
Υ r(t−r)(t−r) + (2Υ r(t−r)x(t−r) − ω

r
(t−r)(t−r))x

′(t− r)

+ (Υ rx(t−r)x(t−r) − 2ωr(t−r)x(t−r))x
′(t− r)2 − ωrx(t−r)x(t−r)x

′(t− r)3

+ (Υ rx(t−r) − 2ωrt−r)x′′(t− r)− 3ωrx(t−r)x
′(t− r)x′′(t− r)

]
δ +O(δ2).

Let Υ r[t] = (Υ r)t−r + ((Υ r)x(t−r) − (ωr)t−r)x′(t− r)− (x′(t− r))2(ωr)x(t−r) and
Υ r[tt] = (Υ r(t−r)(t−r)+(2Υ r(t−r)x(t−r)−ω

r
(t−r)(t−r))x

′(t−r)+(Υ rx(t−r)x(t−r)−2ωr(t−r)x(t−r))x
′(t−

r)2 − ωrx(t−r)x(t−r)x
′(t− r)3 + (Υ rx(t−r) − 2ωrt−r)x′′(t− r)− 3ωrx(t−r)x

′(t− r)x′′(t− r)).
For invariance,
d2x̄

dt̄2
= F (t̄, x̄, t− r, x(t− r), dx̄

dt̄
,
dx̄

dt̄
(t− r), d

2x̄

dt̄2
(t− r)).

This gives,

d2x

dt2
+ Υ[tt]δ +O(δ2) = F (t+ δω +O(δ2), x+ δΥ +O(δ2),

t− r + δωr +O(δ2), x(t− r) + δΥ r +O(δ2),
dx

dt
+ δΥ[t] +O(δ2), dx

dt
(t− r) + Υ r[t]δ +O(δ2),

d2x

dt2
(t− r) + Υ r[tt]δ +O(δ2))

= F (t, x, t− r, x(t− r), x′(t), x′(t− r), x′′(t− r))+

(ωFt + ΥFx + ωrFt−r + Υ rFx(t−r) + Υ[t]Fx′(t)

+ Υ r[t]Fx′(t−r) + Υ r[tt]Fx′′(t−r))δ +O(δ2).

Comparing the coefficient of δ, we get

ωFt + ΥFx + ωrFt−r + Υ rFx(t−r) + Υ[t]Fx′(t) + Υ r[t]Fx′(t−r) + Υ r[tt]Fx′′(t−r) =

Υtt + (2Υtx − ωtt)x′ + (Υxx − 2ωtx)x′2 − ωxxx′3 + (Υx − 2ωt)x′′ − 3ωxx′x′′. (6.6)

The above obtained equation (6.6) is a Lie type invariance condition.

We can define a prolonged operator for the second order neutral differential equation as:
ζ = ω

∂

∂t
+ ωr

∂

∂(t− r) + Υ
∂

∂x
+ Υ r

∂

∂x(t− r) .
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We then, naturally define the extended operator, for equation (6.2) as:

ζ(1) = ω
∂

∂t
+ ωr

∂

∂(t− r) + Υ
∂

∂x
+ Υ r

∂

∂x(t− r) + Υ[t]
∂

∂x′
+ Υ r[t]

∂

∂x′(t− r) + Υ[tt]
∂

∂x′′

+ Υ r[tt]
∂

∂x′′(t− r) .

Defining, ∆ = x′′(t)− F (t, x(t), t− r, x(t− r), x′(t), x′(t− r), x′′(t− r)) = 0, we get,

ζ(1)∆ = Υ[tt]−ωFt−ΥFx−ωrFt−r−Υ rFx(t−r)−Υ[t]Fx′(t)−Υ r[t]Fx′(t−r)−Υ
r
[tt]Fx′′(t−r). (6.7)

Comparing equation (6.7) and equation (6.6), we get,
Υ[tt] = Υtt + (2Υtx − ωtt)x′ + (Υxx − 2ωtx)x′2 − ωxxx′3 + (Υx − 2ωt)x′′ − 3ωxx′x′′.
On substituting x′′ = F into ζ(1)∆ = 0, we get an invariance condition for the second
order neutral differential equation which is ζ(1)∆ |∆=0= 0, from which we shall obtain
the determining equations.

6.3 Symmetries of A Non-homogeneous Second Order Neu-
tral Differential Equation

Consider the neutral differential equation with continuously differentiable variable coeffi-
cients given by

x′′(t) + a(t)x′(t) + b(t)x′(t− r) + c(t)x(t) + d(t)x(t− r) + k(t)x′′(t− r) = h(t). (6.8)

Proposition 6.3.1. If x1(t) is an arbitrary solution of equation (6.8), then by employing
the change of variables t̄ = t, x̄ = x− x1(t), the neutral differential equation given by
equation (6.8), gets transformed a homogeneous neutral differential equation, namely,

x′′(t) + a(t)x′(t) + b(t)x′(t− r) + c(t)x(t) + d(t)x(t− r) + k(t)x′′(t− r) = 0. (6.9)

Proof. The proposition easily follows by substituting t = t̄ and x(t) = x̄+ x1(t̄) in (6.8),
by noting that
x′′1(t) + a(t)x′1(t) + b(t)x′1(t− r) + c(t)x1(t) + d(t)x1(t− r) + k(t)x′′1(t− r) = h(t).

Proposition 6.3.2. By employing a suitable change, the neutral differential equation

x′′(t) + a1(t)x′(t) + b1(t)x′(t− r) + c1(t)x(t) + d1(t)x(t− r) + k1(t)x′′(t− r) = 0, (6.10)
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with a1(t), b1(t), c1(t), d1(t) and k1(t) twice differentiable functions with variable coef-
ficients can be reduced to a one in which the first order ordinary derivative term is
missing.

Proof. By employing a change, x = u(t)s(t), where u(t) 6= 0 is some twice differentiable

function in t and with s(t) satisfying s(t) = exp(−
t∫ a1(ξ)dξ

2 ) + s0, where s0 is an
arbitrary constant, equation (6.10), can be reduced to
u′′(t) + b2(t)u′(t− r) + c2(t)u(t) + d2(t)u(t− r) + k2(t)u′′(t− r) = 0, where

b2(t) = b1(t)s(t− r) + 2k(t)s′(t− r)
s(t) , c2(t) = s′′(t) + a1(t)s′(t) + c1(t)s(t)

s(t) ,

d2(t) = b1(t)s′(t− r) + d1(t)s(t− r) + k1(t)s′′(t− r)
s(t) and k2(t) = k1(t)

u(t) .

This is similar to what is done to second-order ordinary differential equations to remove the
coefficient of the first derivative term. This change does not alter the group classification
of (6.8).
We shall consider equivalent symmetries of

x′′(t) + b(t)x′(t− r) + c(t)x(t) + d(t)x(t− r) + k(t)x′′(t− r) = 0. (6.11)

Let us specify the delay point,
tr = g(t) = t− r. (6.12)

Applying operator ζ(1) defined by equation (6.2) to equation (6.12), we get,

ωr = ω. (6.13)

Applying operator ζ(1) defined by equation (6.2) to equation (6.11), we get,

Υtt + (2Υtx − ωtt)x′ + (Υxx − 2ωtx)x′2 − ωxxx′3 + (Υx − 2ωt)
(
−b(t)x′(t− r)− c(t)x

−d(t)x(t−r)−k(t)x′′(t−r)
)
−3ωxx′(−b(t)x′(t−r)−c(t)x−d(t)x(t−r)−k(t)x′′(t−r))

= −
[
ω(b′(t)x′(t−r)+c′(t)x(t)+d′(t)x(t−r)+k′(t)x′′(t−r))+c(t)Υ+d(t)Υ r+b(t)(Υ rt−r

+ (Υ rx(t−r) − ω
r
t−r)x′(t− r)− ωrx(t−r)x

′2(t− r)) + k(t)
(
Υ r(t−r)(t−r) + (2Υ r(t−r)x(t−r)

− ωr(t−r)(t−r))x
′(t− r) + (Υ rx(t−r)x(t−r) − 2ωr(t−r)x(t−r))x

′2(t− r)− ωrx(t−r)x(t−r)x
′3(t− r)

+ (Υ rx(t−r) − 2ωrt−r)x′′(t− r)− 3ωrx(t−r)x
′(t− r)x′′(t− r)

)]
. (6.14)

Splitting equation (6.14) with respect to x′3(t− r), we get,
k(t)ωrx(t−r)x(t−r) = 0, which we can easily solve to get,

ω(t, x) = α(t)x+ β(t). (6.15)
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Differentiating equation (6.14) with respect to x′′(t− r), we get,
k(t)(2ωt − Υx) + 3k(t)ωxx′ = 3k(t)ωrx(t−r)x

′(t− r)− (ωk′(t) + k(t)(Υ rx(t−r) − 2ωrt−r))
Splitting this equation with respect to x′(t− r), and using the fact that k(t) 6= 0 we get,
ωx = 0.
This with equation (6.15) gives,

ω(t, x) = β(t). (6.16)

Splitting equation (6.14) with x′2, we get,
Υxx = 0, which solves to give,

Υ (t, x) = γ(t)x+ ρ(t). (6.17)

Substituting equations (6.16) and (6.17) into the determining equation (6.14), we get,

γ′′(t)x+ ρ′′(t) + (2γ′(t)−β′′(t))x′+ (γ(t)− 2β′(t))(−b(t)x′(t− r)− c(t)x−d(t)x(t− r)

−k(t)x′′(t−r)) = −
[
β(t)(b′(t)x′(t−r)+c′(t)x+d′(t)x(t−r)+k′(t)x′′(t−r))+c(t)(γ(t)x

+ρ(t))+d(t)(γ(t−r)x(t−r)+ρ(t−r))+b(t)(γ′(t−r)x(t−r)+ρ′(t−r)+(γ(t−r)−β′(t−r))

x′(t− r)) +k(t)
(
γ′′(t− r)x(t− r) +ρ′′(t− r) + (2γ′(t− r)−β′′(t− r))x′(t− r) + (γ(t− r)

− 2β′(t− r))x′′(t− r)
)]
. (6.18)

From (6.13), we have,
β(t) = β(t− r). (6.19)

Splitting (6.18) with respect to x(t), we get,

γ′′(t) + 2β′(t)c(t) + β(t)c′(t) = 0. (6.20)

Splitting (6.18) with respect to x′(t), we get,

γ(t) = 1
2[β′(t) + c1]. (6.21)

Using (6.19), we get,
γ(t) = γ(t− r). (6.22)

Splitting (6.18) with respect to the constant terms, we get,

ρ′′(t) + b(t)ρ′(t− r) + c(t)ρ(t) + d(t)ρ(t− r) + k(t)ρ′′(t− r) = 0. (6.23)

That is, ρ(t) satisfies the homogeneous neutral differential equation of second order given
by (6.11).
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Splitting (6.18) with respect to x′′(t− r), and using (6.19) and (6.22), we get,

β(t)k′(t) = 0. (6.24)

Theorem 6.3.1. The neutral differential equation given by equation (6.11) for which
k(t) 6= constant, admits a two dimensional group generated by

ζ∗1 = x
∂

∂x
, ζ∗2 = ρ(t) ∂

∂x
.

Proof. Equation (6.24), having to be true for an arbitrary β(t) and k(t) implies that for
a non-constant k(t), we must have, β(t) = 0, and consequently,
ω(t, x) = 0 and Υ (t, x) = c1

2 x+ ρ(t).
The infinitesimal generator of the Lie group is given by,

ζ∗ = c1
2 x

∂

∂x
+ ρ(t) ∂

∂x
, (6.25)

where c1 is an arbitrary constant and ρ(t) satisfies (6.11).

Having obtained the infinitesimal generator for the case when k(t) is non-constant, we
now perform symmetry analysis and a complete group classification of the second order
neutral differential equation given by (6.8), for which,

k(t) = c2, (6.26)

where c2 is an arbitrary constant.
Splitting (6.18) with respect to x(t− r), and using (6.22), we get,

k(t)β′′′(t) + 2β(t)d′(t) + 4β′(t)d(t) + 2b(t)γ′(t) = 0. (6.27)

Splitting (6.18) with respect to x′(t− r), and using (6.19) and (6.22), we get,

b(t)β′(t) + β(t)b′(t) = 0. (6.28)

Equation (6.28) can be easily integrated to give,

b(t)β(t) = c3, (6.29)

where c3 is an arbitrary constant.
Using (6.16), we can rewrite equations (6.17), (6.20), (6.21), (6.27) and (6.29) as,

Υ (t, x) =
[1

2(ωt + c1)
]
x+ ρ(t), (6.30)
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ωttt + 4c(t)ωt + 2c′(t)ω = 0, (6.31)

γ(t) = 1
2(ωt + c1), (6.32)

c2ωttt + 2d′(t)ω(t) + 4d(t)ωt + b(t)ωtt = 0, (6.33)

ω(t, x) = c3
b(t) , (6.34)

where c1, c2 and c3 are arbitrary constants.
The following theorems make a complete group classification of the second order neutral
differential equation:

Theorem 6.3.2. The neutral differential equation given by equation (6.11) for which
b(t) 6= 0, d(t) 6= 0, k(t) = c2 admits a three dimensional group generated by

ζ∗1 = x
∂

∂x
, ζ∗2 = 1

b(t)
∂

∂t
+ x

2

( 1
b(t)

)′ ∂
∂x
, ζ∗3 = ρ(t) ∂

∂x
.

Proof. If c3 6= 0, from (6.34) we get

b(t) = c3
ω(t, x) . (6.35)

From (6.30), we can write,

Υ (t, x) =
[1
2(c2( 1

b(t))′ + c1)
]
x+ ρ(t). (6.36)

Using (6.35) in (6.33), we get,

c2ωωttt + 2ω2d′(t) + 4ωωtd(t) + c3ωtt = 0. (6.37)

Equation (6.37) can be easily integrated to give,

c2ωωtt −
c0
2 ω

2
t + 2ω2d(t) + c3ωt = c4, (6.38)

where c4 is an arbitrary constant.
Using (6.34), we can solve (6.38) for d(t) to get,

d(t) = 1
2

[
c5b

2(t) + b′(t) + c2

(
b′′(t)
b(t) − 2

(
b′(t)
b(t)

)2
+ b′(t)
b2(t)

)]
, where c5 = c2c

2
3.

Since ω = ωr, we get, b(t) = b(t− r).
Using (6.34) in (6.31), we get,

c′(t)− 2b
′(t)
b(t) c(t) = −1

2b(t)
[
6b
′(t)b′′(t)
b3(t) − b′′′(t)

b2(t) − 6b
′3(t)
b4(t)

]
. (6.39)

Equation (6.39) is a first order linear ordinary differential equation which can be solved
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to give,

c(t) = 1
2

[
b′′(t)
b(t) −

3
2

(
b′(t)
b(t)

)2
+ c6

2 b
2(t)

]
, (6.40)

where c6 is an arbitrary constant.
In this case, we have obtained the coefficients of the infinitesimal transformation as,

ω = c3
b(t) , Υ = x

2

[
c3

( 1
b(t)

)′
+ c1

]
+ ρ(t). (6.41)

The infinitesimal generator in this case is given by,

ζ∗ = c1
2 x

∂

∂x
+ c3

( 1
b(t)

∂

∂t
+ x

2

( 1
b(t)

)′ ∂
∂x

)
+ ρ(t) ∂

∂x
, (6.42)

where ρ(t) is an arbitrary solution of equation (6.11).
If c3 = 0 then,

ω(t, x) = 0, Υ (t, x) = c1
2 x+ ρ(t). (6.43)

The infinitesimal generator is given by,

ζ∗ =
(
c1
2 x+ ρ(t)

)
∂

∂x
. (6.44)

Theorem 6.3.3. The neutral differential equation given by equation (6.11) for which
b(t) 6= 0, d(t) = 0, k(t) = c2, admits the infinitesimal generator given by

ζ∗ = Φ1(t) ∂
∂t

+ Ψ1(t, x) ∂
∂x
,

where Φ1(t) solves
∫ ω(t) c2

E tanAdθ − t− c9 = 0, for ω(t) where A is a root (or zero) of[
B ln

(
B2(1 + tan2 y)

c2θ

)
+D + 2c3y

]
for y, with B =

√
2c7c2

2 − c2
3, D = c8B,

E = c3 +B, and Ψ1(t, x) = 1
2
[
(Φ1(t))t + c1

]
x+ ρ(t).

Proof. If c3 6= 0, then substituting (6.35) into (6.33), we get,

c2ωωttt + c3ωtt = 0. (6.45)

This is a nonlinear third order differential equation, the solution of which is given by,

∫ ω(t) c2
E tanAdθ − t− c9 = 0, (6.46)
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where A is a root (or zero) of
[
B ln

(
B2(1 + tan2 y)

c2θ

)
+D + 2c3y

]
for y, with

B =
√

2c7c2
2 − c2

3,
D = c8B, and
E = c3 +B.

It is to be noted that the expression in (6.46) may be complex valued and we are finding
the zeroes for y. In this solution, c7, c8 and c9 are arbitrary constants. To obtain the
corresponding infinitesimal generator, we have to solve (6.46) for ω(t).
The infinitesimal generator in this case is given by

ζ∗ = Φ1(t) ∂
∂t

+ Ψ1(t, x) ∂
∂x
, (6.47)

where Φ1(t) solves (6.46) for ω(t) and Ψ1(t, x) = 1
2
[
(Φ1(t))t + c1

]
x+ ρ(t).

Remark 6.3.1. As the above is not easy to solve in general, choosing B = 0 that is
k(t) = c3√

2c7
, we see that, ω(t, x) = c3

c2
(t+ c10), solves (6.46).

But the condition ω = ωr gives c3 = 0.
Consequently, ω(t, x) = 0 Υ (t, x) = 1

2c1x+ρ(t), and the infinitesimal generator is given
by

ζ∗ = 1
2x

∂

∂x
+ ρ(t) ∂

∂x
. (6.48)

By considering a very special case in which c2 = 1 = c3, we obtain from (6.33),

ωωttt + ωtt = 0. (6.49)

Equation (6.49) yields a solution for which some infinitesimal generators can be explicitly
found. It’s solution is given by

∫ ω(t) dθ

1 + c11 tanG − t− c13 = 0, (6.50)

where G is a root (or zero) of
[
ln
(

c2
11

cos2 y

)
c11 − c11 ln θ + c11c12 + 2y

]
for y.

In (6.50), c11, c12 and c13 are arbitrary constants.
The infinitesimal generator in this case is

ζ∗ = Φ2(t) ∂
∂t

+ Ψ2(t, x) ∂
∂x
, (6.51)

where Φ2(t) solves (6.50) for ω(t) and Ψ2(t, x) = 1
2
[
(Φ2(t))t + c1

]
x+ ρ(t).

Corollary 6.3.1. The neutral differential equation given by equation (6.11) for which
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b(t) 6= 0, d(t) = 0, k(t) = 1 = c3, c11 = 0, admits the three dimensional group given by

ζ∗1 = ∂

∂t
, ζ∗2 = x

2
∂

∂x
, ζ∗3 = ρ(t) ∂

∂x
.

Proof. It can be easily seen that the generators corresponding to c11 = 0 can be explicitly
obtained. In this case ω(t, x) = c14t+ c15 is a solution of (6.49), where c14 and c15 are
arbitrary constants.
The condition ω = ωr implies c14 = 0.
Hence, ω(t, x) = c15, Υ (t, x) = c1

2 x+ ρ(t).
If c15 6= 0,
The infinitesimal generator is given by

ζ∗ = c15
∂

∂t
+ 1

2c1x
∂

∂x
+ ρ(t) ∂

∂x
. (6.52)

Using (6.40), c(t) = 1
4
c6c

2
3

c2
15

.

If c15 = 0, then the infinitesimal generator is given by (6.48). Finally, if c3 = 0, then the
infinitesimal generator is given by (6.44).

Theorem 6.3.4. The neutral differential equation given by equation (6.11) for which
b(t) = 0, d(t) 6= 0, k(t) = c2 admits the infinitesimal generator given by

ζ∗ = Φ3(t) ∂
∂t

+ Ψ3(t, x) ∂
∂x
,

where Φ3(t) solves c2ωωtt − c2
ω2
t

2 + 2ω2(t)d(t) = c16, for ω(t), and

Ψ3(t, x) = 1
2
[
(Φ3(t))t + c1

]
x+ ρ(t).

Proof. Then from equation (6.33),

c2ωttt + 2d′(t)ω(t) + 4d(t)ωt = 0. (6.53)

Equation (6.53) can be integrated once to obtain,

c2ωωtt − c2
ω2
t

2 + 2ω2(t)d(t) = c16, (6.54)

where c16 is an arbitrary constant.
Equation (6.54) is extremely difficult to solve for an arbitrary d(t).
If ω(t) = Φ3(t) solves equation (6.54), then, The infinitesimal generator in this case is
given by

ζ∗ = Φ3(t) ∂
∂t

+ Ψ3(t, x) ∂
∂x
, (6.55)
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where Φ3(t) solves (6.54) for ω(t) and Ψ3(t, x) = 1
2 [(Φ2(t))t + c1]x+ ρ(t).

Remark 6.3.2. As can be seen the infinitesimal generator given by (6.55) cannot be
explicitly solved due to the arbitrariness of d(t). However, by choosing a few explicit
values of d(t), we obtain the corresponding different infinitesimal generator.

Corollary 6.3.2. The neutral differential equation given by equation (6.11) for which
b(t) = 0, d(t) = 1, k(t) = c2 admits the five dimensional Lie group generated by

ζ∗1 = ∂

∂t
, ζ∗2 = x

2
∂

∂x
, ζ∗3 = sin

(
2t√
k(t)

)
∂

∂t
+ x√

k(t)
cos

(
2t√
k(t)

)
∂

∂x
,

ζ∗4 = cos
(

2t√
k(t)

)
∂

∂t
− x√

k(t)
sin
(

2t√
k(t)

)
∂

∂x
, ζ∗5 = ρ(t) ∂

∂x
.

Proof. Taking d(t) = 1, equation (6.54) becomes c2ωωtt − c2
ω2
t

2 + 2ω2(t) = c16, which
can be solved to give

ω (t) =
√
c17
2 + c18 sin

(
2t
√
c2

)
+ c19 cos

(
2t
√
c2

)
, (6.56)

where c17 = 4c2
18 + 4c2

19 + 2c16, c18, c19 are arbitrary constants. Using (6.56), equation
(6.30) gives,

Υ (t, x) = 1
2

[
2 c18√

c2
cos

(
2t
√
c2

)
− 2 c19√

c2
sin
(

2t
√
c2

)
+ c1

]
x+ ρ(t).

Using (6.31), we see that,

c(t) =
(
2c2

18 cos
( 4t
√
c2

)
− 2c2

19 cos
( 4t
√
c2

)
− 4c18c19 sin

( 4t
√
c2

)
− 4 cos

( 4t
√
c2

)√
c17c19

− 4 sin
( 4t
√
c2

)√
c17c18 − c20c2

) / (
2 cos

( 4t
√
c2

)
c2c

2
18 − 2 cos

( 4t
√
c2

)
c2c

2
19 − 4 sin

( 4t
√
c2

)
c2c18c19 − 4 cos

( 4t
√
c2

)
c2
√
c17c19 − 4 sin

( 4t
√
c2

)
c2
√
c17c18 − 6c2c

2
18 − 6c2c

2
19 − 2c2c16

)
.

We note that, from equation (6.26), k(t) = c2.

The infinitesimal generator in this case is explicitly given by,

ζ∗ = c21
∂

∂t
+ c1

2 x
∂

∂x
+ c18

(
sin
(

2t
√
c2

)
∂

∂t
+ x
√
c2

cos
(

2t
√
c2

)
∂

∂x

)

+ c19

(
cos

(
2t
√
c2

)
∂

∂t
− x
√
c2

sin
(

2t
√
c2

)
∂

∂x

)
+ ρ(t) ∂

∂x
. (6.57)
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where c18, c19, c20 and c21 =
√
c17
2 are arbitrary constants.

Corollary 6.3.3. The neutral differential equation given by equation (6.11) for which
b(t) = 0, d(t) = et, k(t) = c2 admits the five dimensional Lie group generated by

ζ∗1 =
(
J0
(
2λ
))2 ∂

∂t
+ xet√

k(t)et
J0
(
2λ
)
J1
(
2λ
) ∂
∂x
,

ζ∗2 =
(
Y0
(
2λ
))2 ∂

∂t
− xet√

k(t)et
Y0
(
2λ
)
Y1
(
2λ
) ∂
∂x
,

ζ∗3 = J0
(
2λ
)
Y0
(
2λ
) ∂
∂t
− xet√

k(t)et
(
J1
(
2λ
)
Y0
(
2λ
)

+ J0
(
2λ
)
Y1
(
2λ
)) ∂
∂x
,

ζ∗4 = x

2
∂

∂x
, ζ∗5 = ρ(t) ∂

∂x
,

where λ =
√
k(t)et
k(t) .

Proof. Taking d(t) = et, equation (6.54) becomes c2ωωtt − c2
ω2
t

2 + 2etω2(t) = c16, which
can be solved to give

ω(t) = 1
4
c2

23(1 + 2c16)
c22

(
J0

(
2
√
c2et

c2

))2

+ c22

(
Y0

(
2
√
c2et

c2

))2

+ c23J0

(
2
√
c2et

c2

)
Y0

(
2
√
c2et

c2

)
, (6.58)

where c22 and c23 are arbitrary constants,
From (6.30), we get
Υ (t, x) = 1

2
[−1

2
etc232(1+2c16)
c22
√
c2et

J0
(
2
√
c2et

c2

)
J1
(
2
√
c2et

c2

)
− 2 c22 et√

c2et
Y0
(
2
√
c2et

c2

)
Y1
(
2
√
c2et

c2

)
− c23 et√

c2et
J1
(
2
√
c2et

c2

)
Y0
(
2
√
c2et

c2

)
− c23 et√

c2et
J0
(
2
√
c2et

c2

)
Y1
(
2
√
c2et

c2

)
+ c1

]
x+ ρ(t).

Using (6.31), we see that,

c (t) =

∫ q (t)
r (t)e

−4
∫ p1 (t)
p2 (t)dtdt+ c24

 e4
∫ s(t)
s2(t)dt,

where,

p1(t) = et
[
(1+2c16)c2

23J0

(
2
√
c2et

c2

)
J1

(
2
√
c2et

c2

)
+2c22c23

(
J0

(
2
√
c2et

c2

)
Y1

(
2
√
c2et

c2

)

+ J1

(
2
√
c2et

c2

)
Y0

(
2
√
c2et

c2

))
+ 4c2

22Y0

(
2
√
c2et

c2

)
Y1

(
2
√
c2et

c2

)]
,
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p2(t) =
√
c2et

[
(1 + 2c16)c2

23

(
J0

(
2
√
c2et

c2

))2

+ 4c22c23J0

(
2
√
c2et

c2

)
Y0

(
2
√
c2et

c2

)

+ 4c2
22

(
Y0

(
2
√
c2et

c2

))2]
,

q (t) = (1 + 2c16)c2
23e

t
√
c2et

(
J0

(
2
√
c2et

c2

))2

+4c22e
t
√
ket
(
J0

(
2
√
c2et

c2

)
Y0

(
2
√
c2et

c2

)
c23 +

(
Y0

(
2
√
c2et

c2

))2

c22
)

−4(1 + 2c16)e2tc2
23J0

(
2
√
c2et

c2

)
J1

(
2
√
c2et

c2

)

−8c22c23e
2t
(
J0

(
2
√
c2et

c2

)
Y1

(
2
√
c2et

c2

)
+ J1

(
2
√
c2et

c2

)
Y0

(
2
√
c2et

c2

))

−16e2tc2
22Y0

(
2
√
c2et

c2

)
Y1

(
2
√
c2et

c2

)
,

r(t) = c2
√
c2et

[
(1 + 2c16)c2

23

(
J0

(
2
√
c2et

c2

))2

+ 4c22
(
J0

(
2
√
c2et

c2

)
Y0

(
2
√
c2et

c2

)
c23

+
(
Y0

(
2
√
c2et

c2

))2

c22
)]
,

s1(t) = c2
2e

3t
[
(1 + 2c16)c2

23J0

(
2
√
c2et

c2

)
J1

(
2
√
c2et

c2

)
+ 2c22c23

(
J0

(
2
√
c2et

c2

)

Y1

(
2
√
c2et

c2

)
+ J1

(
2
√
c2et

c2

)
Y0

(
2
√
c2et

c2

))
+ 4c2

22Y0

(
2
√
c2et

c2

)
Y1

(
2
√
c2et

c2

)]
,

and

s2(t) = (c2e
t)5/2

[
(1+2c16)c2

23

(
J0

(
2
√
c2et

c2

))2

+4c22Y0

(
2
√
c2et

c2

)(
J0

(
2
√
c2et

c2

)
c23

+ Y0

(
2
√
c2et

c2

)
c22
)]
,

where c24 is an arbitrary constant.
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The infinitesimal generator is given by

ζ∗ = c2
23(1 + 2c16)

4c22

[(
J0
(
2
√
c2et

c2

))2 ∂

∂t
− xet√

c2et
J0
(
2
√
c2et

c2

)
J1
(
2
√
c2et

c2

) ∂
∂x

]
+ c22

[(
Y0
(
2
√
c2et

c2

))2 ∂

∂t
− xet√

c2et
Y0
(
2
√
c2et

c2

)
Y1
(
2
√
c2et

c2

) ∂
∂x

]
+ c23

[
J0
(
2
√
c2et

c2

)
Y0
(
2
√
c2et

c2

) ∂
∂t
− xet√

c2et

(
J1
(
2
√
c2et

c2

)
Y0
(
2
√
c2et

c2

)
+ J0

(
2
√
c2et

c2

)
Y1
(
2
√
c2et

c2

)) ∂
∂x

]
+ c1

x

2
∂

∂x
+ ρ(t) ∂

∂x
. (6.59)

Corollary 6.3.4. The neutral differential equation given by equation (6.11) for which
b(t) = 0, d(t) = sin t, k(t) = c2, admits the five dimensional Lie group generated by
ζ∗1 =

(
MathieuC

(
0,− 2

k(t) ,
−π
4 + t

2
))2 ∂

∂t

+ x

2 MathieuC
(
0,− 2

k(t) ,
−π
4 + t

2
)
MathieuCPrime

(
0,− 2

k(t) ,
−π
4 + t

2
) ∂
∂x
,

ζ∗2 =
(
MathieuS

(
0,− 2

k(t) ,
−π
4 + t

2
))2 ∂

∂t

+ x

2 MathieuS
(
0,− 2

k(t) ,
−π
4 + t

2
)
MathieuSPrime

(
0,− 2

k(t) ,
−π
4 + t

2
) ∂
∂x
,

ζ∗3 = MathieuC
(
0,− 2

k(t) ,
−π
4 + t

2
)
MathieuS

(
0,− 2

k(t) ,
−π
4 + t

2
) ∂
∂t

+ x

4
(
MathieuCPrime

(
0,− 2

k(t) ,
−π
4 + t

2
)
MathieuS

(
0,− 2

k(t) ,
−π
4 + t

2
)

+ MathieuC
(
0,− 2

k(t) ,
−π
4 + t

2
)
MathieuSPrime

(
0,− 2

k(t) ,
−π
4 + t

2
)) ∂
∂x
,

ζ∗4 = x

2
∂

∂x
, ζ∗5 = ρ(t) ∂

∂x
.

Proof. Taking d(t) = sin t, equation (6.54) becomes c2ωωtt − c2
ω2
t

2 + 2ω2(t) sin t = c16,
which can be solved to give

ω (t) = 1
4
c26

2

c25
(1 + 8c16)

(
MathieuC

(
0,− 2

k(t) ,
−π
4 + t

2

))2

+ c25

(
MathieuS

(
0,− 2

k(t) ,
−π
4 + t

2

))2
+ c26 MathieuC

(
0,− 2

k(t) ,
−π
4 + t

2

)
MathieuS

(
0,− 2

k(t) ,
−π
4 + t

2
)
, (6.60)

where c25, c26 are arbitrary constants. Using (6.60), equation (6.30) gives,
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Υ (t, x) = 1
2
[1
4
c2

26
c25

(1 + 8c16)MathieuC
(

0,− 2
k(t) ,

−π
4 + t

2

)
MathieuCPrime

(
0,− 2

k(t) ,

−π
4 + t

2
)

+ c25 MathieuS
(

0,− 2
k(t) ,

−π
4 + t

2

)
MathieuSPrime

(
0,− 2

k(t) ,

−π
4 + t

2
)

+ 1
2 c26 MathieuCPrime

(
0,− 2

k(t) ,
−π
4 + t

2

)
MathieuS

(
0,− 2

k(t) ,

−π
4 + t

2
)

+ 1
2 c26 MathieuC

(
0,− 2

k(t) ,
−π
4 + t

2

)
MathieuSPrime

(
0,− 2

k(t) ,

−π
4 + t

2
)

+ c1
]
x+ ρ(t).

Using (6.31), we see that,

c(t) = e−2
∫
r1(t)dt

∫
q1(t)
q2(t)e

2
∫
r1(t)dtdt+ c27e

−2
∫
r1(t)dt,

where,

r1(t) =
(
c26(1+8c16)2MathieuC

(
0,− 2

k(t) ,
−π
4 + t

2
)
MathieuCPrime

(
0,− 2

k(t) ,
−π
4 + t

2
)

+ 2c25c26
(
MathieuCPrime

(
0,− 2

k(t) ,
−π
4 + t

2
)
MathieuS

(
0,− 2

k(t) ,
−π
4 + t

2
)

+ MathieuC
(
0,− 2

k(t) ,
−π
4 + t

2
)
MathieuSPrime

(
0,− 2

k(t) ,
−π
4 + t

2
))

+4c2
25MathieuS

(
0,− 2

k(t) ,
−π
4 + t

2
)
MathieuSPrime

(
0,− 2

k(t) ,
−π
4 + t

2
)) / (

c26(1+8c16)2

(
MathieuC

(
0,− 2

k(t) ,
−π
4 + t

2
))2

+ 4c25c26MathieuC
(
0,− 2

k(t) ,
−π
4 + t

2
)

MathieuS
(
0,− 2

k(t) ,
−π
4 + t

2
)

+ 4c2
25

(
MathieuS

(
0,− 2

k(t) ,
−π
4 + t

2
))2)

,

q1(t) = 2c26(1+8c16)2MathieuC
(
0,− 2

k(t) ,
−π
4 + t

2
)
MathieuCPrime

(
0,− 2

k(t) ,
−π
4 + t

2
)

sin t+ 4c25c26
(
MathieuCPrime

(
0,− 2

k(t) ,
−π
4 + t

2
)
MathieuS

(
0,− 2

k(t) ,
−π
4 + t

2
)

+ MathieuC
(
0,− 2

k(t) ,
−π
4 + t

2
)
MathieuSPrime

(
0,− 2

k(t) ,
−π
4 + t

2
))

sin t

+ 8c2
25MathieuS

(
0,− 2

k(t) ,
−π
4 + t

2
)
MathieuSPrime

(
0,− 2

k(t) ,
−π
4 + t

2
)

sin t

+ c26(1 + 8c16)2
(
MathieuC

(
0,− 2

k(t) ,
−π
4 + t

2
))2

cos t+ 4c25c26MathieuC
(
0,− 2

k(t) ,

−π
4 + t

2
)
MathieuS

(
0,− 2

k(t) ,
−π
4 + t

2
)

cos t+4c2
25

(
MathieuS

(
0,− 2

k(t) ,
−π
4 + t

2
))2

cos t,

and,
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q2(t) = k(t)
(
c26(1 + 8c16)2

(
MathieuC

(
0,− 2

k(t) ,
−π
4 + t

2
))2

+ 4c25c26

MathieuC
(
0,− 2

k(t) ,
−π
4 + t

2
)
MathieuS

(
0,− 2

k(t) ,
−π
4 + t

2
)

+ 4c2
25

(
MathieuS

(
0,− 2

k(t) ,
−π
4 + t

2
))2)

,

where c27 is an arbitrary constant.
The infinitesimal generator in this case is explicitly given by,

ζ∗ = 1
4
c2

26
c25

(1 + 8c16)
[(

MathieuC
(
0,− 2

k(t) ,
−π
4 + t

2
))2 ∂

∂t

+ x

2 MathieuC
(
0,− 2

k(t) ,
−π
4 + t

2
)
MathieuCPrime

(
0,− 2

k(t) ,
−π
4 + t

2
) ∂
∂x

]
+ c25

[(
MathieuS

(
0,− 2

k(t) ,
−π
4 + t

2
))2 ∂

∂t
+ x

2 MathieuS
(
0,− 2

k(t) ,
−π
4 + t

2
)

MathieuSPrime
(
0,− 2

k(t) ,
−π
4 + t

2
) ∂
∂x

]
+ c26

[
MathieuC

(
0,− 2

k(t) ,
−π
4 + t

2
)

MathieuS
(
0,− 2

k(t) ,
−π
4 + t

2
) ∂
∂t

+ x

4
(
MathieuCPrime

(
0,− 2

k(t) ,
−π
4 + t

2
)

MathieuS
(
0,− 2

k(t) ,
−π
4 + t

2
)

+ MathieuC
(
0,− 2

k(t) ,
−π
4 + t

2
)

MathieuSPrime
(
0,− 2

k(t) ,
−π
4 + t

2
)) ∂
∂x

]
+ c1

x

2
∂

∂x
+ ρ(t) ∂

∂x
. (6.61)

Corollary 6.3.5. The neutral differential equation given by equation (6.11) for which
b(t) = 0, d(t) = tm where m is any constant, k(t) = c2 admits the five dimensional
Lie group generated by
ζ∗1 = t(Jν(µ))2 ∂

∂t
+ x

(1
2(Jν(µ))2 + 2

m+ 2Jν(µ)
(
−Jν+1(µ) + Jν(µ)

2τ
)
τ(m/2 + 1)

) ∂
∂x
,

ζ∗2 = t(Yν(µ))2 ∂

∂t
+ x

(1
2(Yν(µ))2 + 2

m+ 2Yν(µ)
(
−Yν+1(µ) + Yν(µ)

2τ
)
τ(m/2 + 1)

) ∂
∂x
,

ζ∗3 = tJν(µ)Yν(µ) ∂
∂t

+ x
(1

2Jν(µ)Yν(µ) + 1
m+ 2

((
−Jν+1(µ) + Jν(µ)

2τ Yν(µ)

+ Jν(µ)
(
−Yν+1(µ) + Yν(µ)

2τ
))
τ(m/2 + 1)

)) ∂
∂x
,

ζ∗4 = x

2
∂

∂x
, ζ∗5 = ρ(t) ∂

∂x
,

where ν = (m+ 2)−1, τ =
√

(k(t))−1tm/2+1, µ = 2τν.

Proof. Taking d(t) = tm, where m is any constant, equation (6.54) becomes
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c2ωωtt − c2
ω2
t

2 + 2ω2(t)tm = c16, which can be solved to give

ω (t, x) = 1
4
c29

2t

c28
(1 + 2c16)

(
J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
))2

+ c28 t
(
Y(m+2)−1

(
2
√
c2−1tm/2+1

m+ 2
))2

+ c29 tJ(m+2)−1

(
2
√
c2−1tm/2+1

m+ 2
)
Y(m+2)−1

(
2
√
c2−1tm/2+1

m+ 2
)
,

(6.62)

where c28 and c29 are arbitrary constants,
From (6.30), we get

Υ (t, x) = 1
2
[1
4
c29

2

c28
(1 + 2c16)

(
J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
))2

+ 1 + 2c16
c28(m+ 2)

(
c2

29J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)(
−J(m+2)−1+1

(
2

√
c−1

2 tm/2+1

m+ 2
)
+
J(m+2)−1

(
2
√
c−1

2 tm/2+1

m+2

)
2
√
c−1

2 tm/2+1

)
√
c−1

2 tm/2+1 (m/2 + 1)
)

+ c28
(
Y(m+2)−1

(
2
√
c2−1tm/2+1

m+ 2
))2

+ 1
m+ 2

(
4c28Y(m+2)−1

(
2
√
c2−1tm/2+1

m+ 2
)(
−Y(m+2)−1+1

(
2
√
c2−1tm/2+1

m+ 2
)

+
Y(m+2)−1

(
2
√
c−1

2 tm/2+1

m+2

)
2
√
c−1

2 tm/2+1

)√
c−1

2 tm/2+1 (m/2 + 1)
)

+ c29J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)

Y(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)

+ 1
m+ 2

(
2c29

(
−J(m+2)−1+1

(
2

√
c−1

2 tm/2+1

m+ 2
)

+
J(m+2)−1

(
2
√
c−1

2 tm/2+1

m+2

)
2
√
c−1

2 tm/2+1

)√
c−1

2 tm/2+1 (m/2 + 1)Y(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
))

+ 1
m+ 2

(
2c29J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)(
−Y(m+2)−1+1

(
2

√
c−1

2 tm/2+1

m+ 2
)

+
Y(m+2)−1

(
2
√
c−1

2 tm/2+1

m+2

)
2
√
c−1

2 tm/2+1

)√
c−1

2 tm/2+1 (m/2 + 1)
)

+ c1
]
x+ ρ(t).

Using (6.31), we see that,

c(t) =

∫ − l(t)
c2j(t)

e
−4
∫ e(t)
j(t)dt

dt+ c30

 e4
∫ y(t)
j(t) dt,
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where,

e(t) =
√
c−1

2 (1 + 2c16)c2
29J(3+m)(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)
J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)

tm/2+1 + 2
√
c−1

2 c28c29
(
J(3+m)(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)
Y(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)

+ J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)
Y(3+m)(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
))
tm/2+1

+ 4
√
c−1

2 c2
28Y(3+m)(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)
Y(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)
tm/2+1

− (1 + 2c16)c2
29

(
J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
))2
− 4c28Y(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)

(
J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)
c29 + Y(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)
c28
)
,

j(t) = t
[
(1 + 2c16)c2

29

(
J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
))2

+ 4c28Y(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)

(
J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)
c29 + Y(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)
c28
)]
,
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l(t) = 4
√
c−1

2 (1+2c16)c2
29J(3+m)(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)
J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)
t1.5m+1

−2mc2
29c16

(
J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
))2

tm+8
√
c−1

2 c28c29
(
J(3+m)(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)

Y(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)

+ J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)
Y(3+m)(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
))

t3m/2+1 + 16
√
c−1

2 c2
28Y(3+m)(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)
Y(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)
t3m/2+1

− 8c2
29c16

(
J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
))2

tm −mc2
29

(
J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
))2

tm

− 4mc28c29J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)
Y(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)
tm

− 4mc2
28

(
Y(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
))2

tm − 4c2
29

(
J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
))2

tm

− 16c28Y(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)(
J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)
c29

+ Y(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)
c28
)
tm,

y(t) =
√
c−1

2 c2
29(1 + 2c16)J(3+m)(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)
J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)

tm/2+1 + 2
√
c−1

2 c28c29
(
J(3+m)(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)
Y(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)

+ J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)
Y(3+m)(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
))
tm/2+1 + 4

√
c−1

2 c2
28

Y(3+m)(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)
Y(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)
tm/2+1 − (1 + 2c16)c2

29

(
J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
))2
− 4c28Y(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)

(
J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)
c29 + Y(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)
c28
)
,

where c30 is an arbitrary constant.
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The infinitesimal generator is given by

ζ∗ = 1
4
c2

29
c28

(1+2c16)
[
t
(
J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
))2 ∂

∂t
+
(x

2
(
J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
))2

+ 2x
m+ 2J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)(
−J(m+2)−1+1

(
2

√
c−1

2 tm/2+1

m+ 2
)

+
J(m+2)−1

(
2
√
c−1

2 tm/2+1

m+2

)
2
√
c−1

2 tm/2+1

)√
c−1

2 tm/2+1 (m/2 + 1)
) ∂
∂x

]
+c28

[
t
(
Y(m+2)−1

(
2
√
c2−1tm/2+1

m+ 2
))2

∂

∂t
+
(x

2
(
Y(m+2)−1

(
2
√
c2−1tm/2+1

m+ 2
))2

+ 2x
m+ 2Y(m+2)−1

(
2
√
c2−1tm/2+1

m+ 2
)

(
−Y(m+2)−1+1

(
2
√
c2−1tm/2+1

m+ 2
)

+
Y(m+2)−1

(
2
√
c−1

2 tm/2+1

m+2

)
2
√
c−1

2 tm/2+1

)√
c−1

2 tm/2+1 (m/2 + 1)
) ∂
∂x

]

+ c29
[
tJ(m+2)−1

(
2
√
c2−1tm/2+1

m+ 2
)
Y(m+2)−1

(
2
√
c2−1tm/2+1

m+ 2
) ∂
∂t

+
(x

2J(m+2)−1

(
2
√
c2−1tm/2+1

m+ 2
)
Y(m+2)−1

(
2
√
c2−1tm/2+1

m+ 2
)

+ x

m+ 2
(
−J(m+2)−1+1

(
2

√
c−1

2 tm/2+1

m+ 2
)
+
J(m+2)−1

(
2
√
c−1

2 tm/2+1

m+2

)
2
√
c−1

2 tm/2+1

)√
c−1

2 tm/2+1 (m/2 + 1)

Y(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)
+ x

m+ 2J(m+2)−1

(
2

√
c−1

2 tm/2+1

m+ 2
)(
−Y(m+2)−1+1

(
2

√
c−1

2 tm/2+1

m+ 2
)

+
Y(m+2)−1

(
2
√
c−1

2 tm/2+1

m+2

)
2
√
c−1

2 tm/2+1

)√
c−1

2 tm/2+1 (m/2 + 1)
) ∂
∂x

]
+ c1

x

2
∂

∂x
+ ρ(t) ∂

∂x
. (6.63)

Remark 6.3.3. In all our cases above, we gave assumed k(t) 6= 0, that is c2 6= 0. However,
if c2 = 0, then equation (6.8) reduces to a second order delay differential equation. As
special cases of our group classification, we study the cases for which c2 = 0.

Theorem 6.3.5. The delay differential equation given by equation (6.11) for which
b(t) 6= 0, d(t) 6= 0, k(t) = 0 admits a three dimensional group generated by

ζ∗1 = x
∂

∂x
, ζ∗2 = 1

b(t)
∂

∂t
+ x

2

( 1
b(t)

)′ ∂
∂x
, ζ∗3 = ρ(t) ∂

∂x
.

Proof. Equation (6.31) reduces to ,
ωttt = −(2c′(t)ω + 4c(t)ωt or ωωttt = −(2c′(t)ω2 + 4c(t)ωωt.
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Integrating this, we get,

ωωtt −
ω2
t

2 + 2c(t)ω2 = c31, (6.64)

where c31 is an arbitrary constant.
If c3 6= 0, then from equation (6.34),

ω = c3
b(t) . (6.65)

From equation (6.30),

Υ (t, x) = x
1
2

(
c3

( 1
β(t)

)′
+ c1

)
+ ρ(t). (6.66)

From equation (6.33), we get,

d′(t)− 2b
′(t)
b(t) d(t) = 1

2

(
b′′(t)− 2(b′(t))2

b(t)

)
.

This is a linear differential equation yielding solution

d(t) = c32b
2(t) + b′(t)

2 ,
where c32 is an arbitrary constant.
From equation (6.64),

c(t) = 1
2

[
c33b

2(t)− 3
2

(
b′(t)
b(t)

)2
+ b′′(t)

b(t)

]
, where c33 = c31

c2
3

is an arbitrary constant.

Since, ω = ωr, we get, b(t) = b(t− r),
In this case we get coefficients of the infinitesimal transformation as

ω(t, x) = c3
b(t) , Υ (t, x) = x

1
2

(
c3

( 1
b(t)

)′
+ c1

)
+ ρ(t). (6.67)

The infinitesimal generator in this case is

ζ∗ = c1
2 x

∂

∂x
+ c3

( 1
b(t)

∂

∂t
+ x

2

( 1
b(t)

)′ ∂
∂x

)
+ ρ(t) ∂

∂x
, (6.68)

where ρ(t) is an arbitrary solution of equation (6.11).
If c3 = 0, then the coefficients of the infinitesimal transformation are given by (6.43) and
the infinitesimal generator is given by (6.44).

Theorem 6.3.6. The delay differential equation given by equation (6.11) for which
b(t) 6= 0, d(t) = 0, k(t) = 0 admits a three dimensional group generated by

ζ∗1 = ∂

∂t
, ζ∗2 = x

∂

∂x
, ζ∗3 = ρ(t) ∂

∂x
.

Proof. From equation (6.33),
b(t)ωtt = 0, which can be solved to give, ω(t, x) = c34t + c35, where c34 and c35 are
arbitrary constants.
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From equation (6.64), c(t)ω2(t, x) = c36, where c36 = c31
2 + c2

34
4 , is an arbitrary constant.

Further, as ω = ωr, we get c34 = 0 and hence, ω(t, x) = c35.

If c35 6= 0, then
c(t) = c36

c2
35
, b(t) = c3

c35
.

The infinitesimal generator in this case is given by

ζ∗ = c35
∂

∂t
+ (c1

2 x+ ρ(t)) ∂
∂x
. (6.69)

If c35 = 0, then ω(t, x) = 0 and Υ (t, x) = c1
2 x+ ρ(t).

The infinitesimal generator in this case is given by(6.44).

Theorem 6.3.7. The delay differential equation given by equation (6.11) for which
b(t) = 0, d(t) 6= 0, k(t) = 0 admits a four dimensional group generated by

ζ∗1 = 1√
d(t)

∂

∂t
, ζ∗2 =

[(
− d′(t)
d3/2(t)

)
x

]
∂

∂x
, ζ∗3 = x

2
∂

∂x
, ζ∗4 = ρ(t) ∂

∂x
.

Proof. From equation (6.33), we get,
ω(t, x) =

√
c37
d(t) , where c37 is an arbitrary constant.

Then from equation (6.30),

Υ (t, x) =
[

1
2

((√
c37
d(t)

)′
+ c1

)]
x+ ρ(t)

=
(
−
√
c37
4

d′(t)
d3/2(t)

+ c1
2

)
x+ ρ(t).

If c37 6= 0, then from equation (6.64),

c(t) = 1
2

[
c31
c37

d(t) + d′′(t)
2d(t) −

5
8

(
d′(t)
d(t)

)2]
.

The infinitesimal generator in this case is given by,

ζ∗ =
√
c37
d(t)

∂

∂t
+
[(
−
d′(t)√c37

4d3/2(t)
+ c1

2

)
x+ ρ(t)

]
∂

∂x
. (6.70)

If c37 = 0, then ω(t, x) = 0, Υ (t, x) = c1
2 x+ ρ(t).

Hence, the infinitesimal generator in this case is given by (6.44).

6.4 Some Illustrative Examples

Example 6.4.1. Consider the second order neutral differential equation given by
x′′(t) + x′′(t− π) = 0. The solution of this differential equation is x(t) = sin t.
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Following the procedure given in the previous section, we can show that,
ω(t, x) = c38, a constant, and Υ (t, x) = c1

2 x+ sin t.
Solving the system,
dt̄

dδ
= ω(t̄, x̄) = c38,

dx̄

dδ
= Υ (t̄, x̄) = c1

2 x̄ + sin t̄, subject to the conditions, t̄ = t and
x̄ = x, when δ = 0, we get the above neutral differential equation invariant under the Lie
group
t̄ = t+ c38δ, x̄ = 2

c1

[
ec1δ/2

(
c1
2 x+ sin t

)
− sin(t+ c38δ)

]
.

The generators of the Lie group (or vector fields of the symmetry algebra) corresponding
to this neutral differential equation are given by,
ζ∗1 = ∂

∂t
, ζ∗2 = x

∂

∂x
and ζ∗3 = sin t ∂

∂x
.

Example 6.4.2. Consider the Cauchy problem,
x′(t) =

∫ 0
−r x(s)ds.

This is equivalent to the second order delay differential equation given by,
x′′(t)− x(t) + x(t− r) = 0.
Following the procedure in the previous section, from Theorem 6.3.7, we get,
ω(t, x) = c39, where c39 = √c37, is a constant and Υ (t, x) = c1

2 x+ x̃(t).
Solving the system,
dt̄

dδ
= ω(t̄, x̄) = c39,

dx̄

dδ
= Υ (t̄, x̄) = c1

2 x̄+ x̃(t̄), subject to the conditions, t̄ = t and x̄ = x,
when δ = 0, we get the above neutral differential equation invariant under the Lie group
t̄ = t+ c39δ, x̄ = 2

c1

[
ec1δ/2

(
c1
2 x+ x̃(t)

)
− x̃(t+ c39δ)

]
.

The generators of the Lie group (or vector fields of the symmetry algebra) corresponding
to this delay differential equation are given by,
ζ∗1 = ∂

∂t
, ζ∗2 = x

∂

∂x
and ζ∗3 = x̃(t) ∂

∂x
.

6.5 Summary

We have obtained the infinitesimal generators of equation (6.11) and based on the various
cases we can classify the linear second-order neutral differential equation as follows:

1. Equation (6.11) with b(t) 6= 0, d(t) 6= 0, k(t) = a non constant function, admits the
infinitesimal generator given by equation (6.25).

2. Equation (6.11) with b(t) 6= 0, d(t) 6= 0, k(t) = a non-zero constant, admits the
infinitesimal generator given by equation (6.42).

3. Equation (6.11) with b(t) 6= 0, d(t) = 0, k(t) = a non-zero constant, admits the
infinitesimal generator given by equation (6.47).

4. Equation (6.11) with b(t) 6= 0, d(t) = 0, k(t) = 1, admits the infinitesimal generator
given by equation (6.52).
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5. Equation (6.11) with b(t) = 0, d(t) 6= 0, k(t) = a non-zero constant, admits the
infinitesimal generator given by equation (6.55).

6. Equation (6.11) with b(t) = 0, d(t) = et, k(t) = a non-zero constant, admits the
infinitesimal generator given by equation (6.59).

7. Equation (6.11) with b(t) = 0, d(t) = sin t, k(t) = a non-zero constant, admits the
infinitesimal generator given by equation (6.61).

8. Equation (6.11) with b(t) = 0, d(t) = tm, k(t) = a non-zero constant, admits the
infinitesimal generator given by equation (6.63).

9. Equation (6.11) with b(t) = 0, d(t) = 1, k(t) = a non-zero constant, admits the
infinitesimal generator given by equation (6.57).

The neutral differential equation (6.11) with k(t) = 0 becomes a delay differential
equation, the results for which are summarized below:

10. With k(t) = 0, equation (6.11) together with b(t) 6= 0, d(t) 6= 0, admits the
infinitesimal generator given by equation (6.68).

11. With k(t) = 0, equation (6.11) together with b(t) 6= 0, d(t) = 0, admits the
infinitesimal generator given by equation (6.69).

12. With k(t) = 0, equation (6.11) together with b(t) = 0, d(t) 6= 0, admits the
infinitesimal generator given by equation (6.70).

The results can be summarized in the following tables:
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Table 6.1: Group Classification of the Second Order Neutral Differential Equation

Type of Second order Neutral Differential Equation Generators

x′′(t) + b(t)x′(t− r) + c(t)x(t) + d(t)x(t− r) + k(t)x′′(t− r) = 0,
k(t) 6= constant

ζ∗1 = x
∂

∂x
,

ζ∗2 = ρ(t) ∂
∂x

x′′(t) + b(t)x′(t− r) + c(t)x(t) + d(t)x(t− r) + k(t)x′′(t− r) = 0,
k(t) = c2,

d(t) = 1
2

[
c5b

2(t) + b′(t) + c2

(
b′′(t)
b(t) − 2

(
b′(t)
b(t)

)2
+ b′(t)
b2(t)

)]
,

c(t) = 1
2

[
b′′(t)
b(t) −

3
2

(
b′(t)
b(t)

)2
+ c6

2 b
2(t)

]
ζ∗1 = x

∂

∂x
,

ζ∗2 = 1
b(t)

∂

∂t
+ x

2

(
1
b(t)

)′
∂

∂x
,

ζ∗3 = ρ(t) ∂
∂x

x′′(t) + b(t)x′(t− r) + c(t)x(t) + k(t)x′′(t− r) = 0,

c(t) = 1
2

[
b′′(t)
b(t) −

3
2

(
b′(t)
b(t)

)2
+ c6

2 b
2(t)

]
,

k(t) = c3√
2c7

ζ∗1 = x

2
∂

∂x
,

ζ∗2 = ρ(t) ∂
∂x
.

x′′(t) + b(t)x′(t− r) + c(t)x(t) + k(t)x′′(t− r) = 0,
k(t) = 1

c(t) = 1
4
c6c

2
3

c2
15
,

c3 = 1

ζ∗1 = ∂

∂t
,

ζ∗2 = x

2
∂

∂x
,

ζ∗3 = ρ(t) ∂
∂x
.

x′′(t) + c(t)x(t) + d(t)x(t− r) + k(t)x′′(t− r) = 0,
d(t) = 1,

c(t) =
(

2c2
18 cos

( 4t
√
c2

)
−2c2

19 cos
( 4t
√
c2

)
−4c18c19 sin

( 4t
√
c2

)
−4 cos

( 4t
√
c2

)√
c17c19−4 sin

( 4t
√
c2

)√
c17c18−c20c2

)/
(

2 cos
( 4t
√
c2

)
c2c

2
18−2 cos

( 4t
√
c2

)
c2c

2
19−4 sin

( 4t
√
c2

)
c2c18c19

−4 cos
( 4t
√
c2

)
c2
√
c17c19−4 sin

( 4t
√
c2

)
c2
√
c17c18−6c2c

2
18

− 6c2c
2
19 − 2c2c16

)

ζ∗1 = ∂

∂t
,

ζ∗2 = x

2
∂

∂x

ζ∗3 = sin
(

2t√
k(t)

)
∂

∂t

+ x√
k(t)

cos
(

2t√
k(t)

)
∂

∂x
,

ζ∗4 = cos
(

2t√
k(t)

)
∂

∂t

− x√
k(t)

sin
(

2t√
k(t)

)
∂

∂x
,

ζ∗5 = ρ(t) ∂
∂x
.
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Table 6.2: Group Classification of the Second Order Neutral Differential Equation

Type of Second order Neutral Differential Equation Generators
x′′(t) + c(t)x(t) + d(t)x(t− r) + k(t)x′′(t− r) = 0,
d(t) = et,

c (t) =

∫ q (t)
r (t)e

−4
∫
p1 (t)
p2 (t) dt

dt+ c24

 e4
∫ s(t)
s2(t) dt

p1(t) = et
[
(1 + 2c16)c2

23J0(λ)J1(λ) + 2c22c23

(
J0(λ)Y1(λ)

+ J1(λ)Y0(λ)
)

+ 4c2
22Y0(λ)Y1(λ)

]

p2(t) =
√
c2et

[
(1 + 2c16)c2

23 (J0(λ))2

+ 4c22c23J0(λ)Y0(λ) + 4c2
22 (Y0(λ))2

]

q (t) = (1 + 2c16)c2
23e

t
√
c2et (J0(λ))2 + 4c22e

t
√
ket
(
J0(λ)Y0(λ)c23

+ (Y0(λ))2
c22

)
− 4(1 + 2c16)e2tc2

23J0(λ)J1(λ)− 8c22c23

e2t (J0(λ)Y1(λ) + J1(λ)Y0(λ))− 16e2tc2
22Y0(λ)Y1(λ)

r(t) = c2
√
c2et

[
(1 + 2c16)c2

23 (J0(λ))2 + 4c22

(
J0(λ)Y0(λ)c23

+ (Y0(λ))2
c22

)]
.

s1(t) = c2
2e

3t
[
(1 + 2c16)c2

23J0(λ)J1(λ) + 2c22c23

(
J0(λ)Y1(λ)

+ J1(λ)Y0(λ)
)

+ 4c2
22Y0(λ)Y1(λ)

]

s2(t) = (c2e
t)5/2

[
(1 + 2c16)c2

23 (J0(λ))2 + 4c22Y0(λ)
(
J0(λ)c23

+ Y0(λ)c22

)]

With λ =
√
k(t)et

k(t) ,

ζ∗1 =
(
J0

(
2λ
))2 ∂

∂t

+ xet√
k(t)et

J0

(
2λ
)
J1

(
2λ
) ∂
∂x

ζ∗2 =
(
Y0

(
2λ
))2 ∂

∂t

− xet√
k(t)et

Y0

(
2λ
)
Y1

(
2λ
) ∂
∂x

ζ∗3 = J0

(
2λ
)
Y0

(
2λ
) ∂
∂t

− xet√
k(t)et

(
J1

(
2λ
)
Y0

(
2λ
)

+ J0

(
2λ
)
Y1

(
2λ
)) ∂

∂x

ζ∗4 = x

2
∂

∂x
,

ζ∗5 = ρ(t) ∂
∂x
.
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Table 6.3: Group Classification of the Second Order Neutral Differential Equation

Type of Second order Neutral Differential Equation Generators
x′′(t) + c(t)x(t) + d(t)x(t− r) + k(t)x′′(t− r) = 0,
d(t) = sin t,

c(t) = e
−2
∫
r1(t)dt

∫
q1(t)
q2(t)

e
2
∫
r1(t)dtdt+ c27e

−2
∫
r1(t)dt

.

where,

r1(t) =
(
c26(1 + 8c16)2MathieuC

(
0,−

2
k(t)

,
−π
4

+
t

2

)
MathieuCPrime(

0,−
2
k(t)

,
−π
4

+
t

2

)
+ 2c25c26

(
MathieuCPrime

(
0,−

2
k(t)

,
−π
4

+
t

2

)
MathieuS

(
0,−

2
k(t)

,
−π
4

+
t

2

)
+ MathieuC

(
0,−

2
k(t)

,
−π
4

+
t

2

)
MathieuSPrime

(
0,−

2
k(t)

,
−π
4

+
t

2

))
+ 4c2

25MathieuS
(

0,−
2
k(t)

,
−π
4

+
t

2

)
MathieuSPrime

(
0,−

2
k(t)

,
−π
4

+
t

2

))/ (
c26(1 + 8c16)2

(
MathieuC

(
0,−

2
k(t)

,
−π
4

+
t

2

))2
+ 4c25c26MathieuC

(
0,−

2
k(t)

,
−π
4

+
t

2

)
MathieuS

(
0,−

2
k(t)

,
−π
4

+
t

2

)
+4c2

25

(
MathieuS

(
0,−

2
k(t)

,
−π
4

+
t

2

))2)
,

q1(t) = 2c26(1 + 8c16)2MathieuC
(

0,−
2
k(t)

,
−π
4

+
t

2

)
MathieuCPrime(

0,−
2
k(t)

,
−π
4

+
t

2

)
sin t+ 4c25c26

(
MathieuCPrime

(
0,−

2
k(t)

,
−π
4

+
t

2

)
MathieuS

(
0,−

2
k(t)

,
−π
4

+
t

2

)
+ MathieuC

(
0,−

2
k(t)

,
−π
4

+
t

2

)
MathieuSPrime

(
0,−

2
k(t)

,
−π
4

+
t

2

))
sin t+ 8c2

25MathieuS(
0,−

2
k(t)

,
−π
4

+
t

2

)
MathieuSPrime

(
0,−

2
k(t)

,
−π
4

+
t

2

)
sin t

+ c26(1 + 8c16)2
(

MathieuC
(

0,−
2
k(t)

,
−π
4

+
t

2

))2
cos t+ 4c25c26MathieuC(

0,−
2
k(t)

,
−π
4

+
t

2

)
MathieuS

(
0,−

2
k(t)

,
−π
4

+
t

2

)
cos t

+ 4c2
25

(
MathieuS

(
0,−

2
k(t)

,
−π
4

+
t

2

))2
cos t,

and,

q2(t) = k(t)
(
c26(1 + 8c16)2

(
MathieuC

(
0,−

2
k(t)

,
−π
4

+
t

2

))2
+ 4c25c26

MathieuC
(

0,−
2
k(t)

,
−π
4

+
t

2

)
MathieuS

(
0,−

2
k(t)

,
−π
4

+
t

2

)
+ 4c2

25

(
MathieuS

(
0,−

2
k(t)

,
−π
4

+
t

2

))2)
.

ζ∗1 =
(

MathieuC
(

0,−
2
k(t)

,

−π
4

+
t

2

))2 ∂

∂t

+
x

2
MathieuC

(
0,−

2
k(t)

,
−π
4

+
t

2

)
MathieuCPrime

(
0,−

2
k(t)

,

−π
4

+
t

2

)
∂

∂x

ζ∗2 =
(

MathieuS
(

0,−
2
k(t)

,

−π
4

+
t

2

))2 ∂

∂t

+
x

2
MathieuS

(
0,−

2
k(t)

,
−π
4

+
t

2

)
MathieuSPrime

(
0,−

2
k(t)

,

−π
4

+
t

2

)
∂

∂x

ζ∗3 = MathieuC
(

0,−
2
k(t)

,

−π
4

+
t

2

)
MathieuS

(
0,−

2
k(t)

,

−π
4

+
t

2

)
∂

∂t

+
x

4

(
MathieuCPrime

(
0,−

2
k(t)

,

−π
4

+
t

2

)
MathieuS

(
0,−

2
k(t)

,

−π
4

+
t

2

)
+ MathieuC

(
0,−

2
k(t)

,

−π
4

+
t

2

)
MathieuSPrime

(
0,

−
2
k(t)

,
−π
4

+
t

2

))
∂

∂x

ζ∗4 =
x

2
∂

∂x
,

ζ∗5 = ρ(t)
∂

∂x
.
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Table 6.4: Group Classification of the Second Order Neutral Differential Equation

Type of Second order Neutral Differential Equation Generators
x′′(t) + c(t)x(t) + d(t)x(t− r) + k(t)x′′(t− r) = 0,
d(t) = tm, where m is a constant,

c(t) =

∫ − l(t)
c2j(t)

e
−4

∫
e(t)
j(t)

dt
dt+ c30

 e4

∫
y(t)
j(t) dt.

With θ =
(

2
√

(k(t))−1tm/2+1

m+2

)
,

e(t) =
√

(k(t))−1(1 + 2c16)c2
29J(3+m)(m+2)−1 (θ)J(m+2)−1 (θ)tm/2+1

+ 2
√

(k(t))−1c28c29

(
J(3+m)(m+2)−1 (θ)Y(m+2)−1 (θ)

+ J(m+2)−1 (θ)Y(3+m)(m+2)−1 (θ)
)
tm/2+1

+ 4
√

(k(t))−1c2
28Y(3+m)(m+2)−1 (θ)Y(m+2)−1 (θ)tm/2+1

− (1 + 2c16)c2
29

(
J(m+2)−1 (θ)

)2
− 4c28Y(m+2)−1 (θ)(

J(m+2)−1 (θ)c29 + Y(m+2)−1 (θ)c28

)
,

j(t) = t

[
(1 + 2c16)c2

29

(
J(m+2)−1 (θ)

)2
+ 4c28Y(m+2)−1 (θ)(
J(m+2)−1 (θ)c29 + Y(m+2)−1 (θ)c28

)]
,

l(t) = 4
√

(k(t))−1(1 + 2c16)c2
29J(3+m)(m+2)−1 (θ)J(m+2)−1 (θ)t3m/2+1

− 2mc2
29c16

(
J(m+2)−1 (θ)

)2
tm + 8

√
(k(t))−1c28c29

(
J(3+m)(m+2)−1 (θ)

Y(m+2)−1 (θ) + J(m+2)−1 (θ)Y(3+m)(m+2)−1 (θ)
)
t3m/2+1

+ 16
√

(k(t))−1c2
28Y(3+m)(m+2)−1 (θ)Y(m+2)−1 (θ)t3m/2+1

− 8c2
29c16

(
J(m+2)−1 (θ)

)2
tm −mc2

29

(
J(m+2)−1 (θ)

)2
tm

− 4mc28c29J(m+2)−1 (θ)Y(m+2)−1 (θ)tm

− 4mc2
28

(
Y(m+2)−1 (θ)

)2
tm − 4c2

29

(
J(m+2)−1 (θ)

)2
tm

− 16c28Y(m+2)−1 (θ)
(
J(m+2)−1 (θ)c29 + Y(m+2)−1 (θ)c28

)
tm,

y(t) =
√

(k(t))−1c2
29(1 + 2c16)J(3+m)(m+2)−1 (θ)J(m+2)−1 (θ)tm/2+1

+ 2
√

(k(t))−1c28c29

(
J(3+m)(m+2)−1 (θ)Y(m+2)−1 (θ) + J(m+2)−1 (θ)

Y(3+m)(m+2)−1 (θ)
)
tm/2+1 + 4

√
(k(t))−1c2

28Y(3+m)(m+2)−1 (θ)

Y(m+2)−1 (θ)tm/2+1 − (1 + 2c16)c2
29

(
J(m+2)−1 (θ)

)2

− 4c28Y(m+2)−1 (θ)
(
J(m+2)−1 (θ)c29 + Y(m+2)−1 (θ)c28

)
.

With ν = (m+ 2)−1,

τ =
√

(k(t))−1tm/2+1, µ = 2τν,

ζ∗1 = t(Jν(µ))2 ∂

∂t

+ x

(1
2

(Jν(µ))2 +
2

m+ 2
Jν(µ)(

−Jν+1(µ) +
Jν(µ)

2τ

)
τ(m/2 + 1)

)
∂

∂x

ζ∗2 = t(Yν(µ))2 ∂

∂t

+ x

(1
2

(Yν(µ))2 +
2

m+ 2
Yν(µ)(

−Yν+1(µ) +
Yν(µ)

2τ

)
τ(m/2 + 1)

)
∂

∂x

ζ∗3 = tJν(µ)Yν(µ)
∂

∂t

+ x

(1
2
Jν(µ)Yν(µ)

+
1

m+ 2

((
−Jν+1(µ)

+
Jν(µ)

2τ
Yν(µ) + Jν(µ)

(
−Yν+1(µ)

+
Yν(µ)

2τ

))
τ(m/2 + 1)

))
∂

∂x

ζ∗4 =
x

2
∂

∂x
,

ζ∗5 = ρ(t)
∂

∂x
.
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Table 6.5: Group Classification of the Second Order Delay Differential Equation

Type of Second order Delay Differential Equation Generators
x′′(t)+b(t)x′(t−r)+c(t)x(t)+d(t)x(t−r) =
0,

d(t) = c32b
2(t) + b′(t)

2 ,

c(t) = 1
2

[
c33b

2(t)− 3
2

(
b′(t)
b(t)

)2
+ b′′(t)

b(t)

]
ζ∗1 = x

∂

∂x
,

ζ∗2 = 1
b(t)

∂

∂t
+ x

2

( 1
b(t)

)′ ∂
∂x
,

ζ∗3 = ρ(t) ∂
∂x

x′′(t) + b(t)x′(t− r) + c(t)x(t) = 0,
c(t) = c36

c2
35

ζ∗1 = ∂

∂t
,

ζ∗2 = x
∂

∂x
,

ζ∗3 = ρ(t) ∂
∂x
.

x′′(t) + c(t)x(t) + d(t)x(t− r) = 0,

c(t) = 1
2

[
c31
c37

d(t) + d′′(t)
2d(t) −

5
8

(
d′(t)
d(t)

)2]
ζ∗1 = 1√

d(t)
∂

∂t
,

ζ∗2 =
[(
− d′(t)
d3/2(t)

)
x

]
∂

∂x
,

ζ∗3 = x

2
∂

∂x
,

ζ∗4 = ρ(t) ∂
∂x
.
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7.1 Introduction

In this chapter, we make a complete classification of first order functional (delay and
neutral) differential equations with constant coefficients to solvable Lie algebras. We
provide a basis for the Lie algebra given by the first order linear and nonlinear functional
differential equations. In all the chapters seen so far, the only drawback is that the
inverse of the obtained classification cannot be found.

It may be noted that Lie group–Lie algebra correspondence allows one to study Lie
groups which are geometric objects, in terms of Lie algebras, which are linear objects.
Any Lie group gives rise to a Lie algebra, which is its tangent space at the identity.
Conversely, by Lie’s third theorem, every finite dimensional real Lie algebra is the Lie
algebra of some simply connected Lie group.

We shall be studying the functional differential equation

Φ(t, x(t), x(t− r), x′(t), x′(t− r)) = 0, (7.1)

where Φ is a real valued function defined on I ×D4 where D is an open set in R, I is
an open interval in R and r > 0 is the delay. We use the notations x′(t − r) to mean
dx

dt
(t− r) and the notation xr to denote x(t− r). For first order functional differential

equations we assume that, ∂Φ
∂x(t− r) 6= 0 or ∂Φ

∂x′(t− r) 6= 0 depending on whether the
differential equation is a delay or neutral type. We shall find a Lie group under which
these functional differential equations are invariant. We call this the admitted Lie group
by which we mean that one solution curve is carried to another solution curve of the
same equation. In this chapter we obtain a Lie type invariance condition by setting up a
procedure slightly different from the way we set up in the previous chapters.

The rest of this chapter is organised as follows: The next section extends the results
for ordinary differential equations to functional differential equations by obtaining a Lie
type invariance condition using Taylor’s theorem for a function of several variables. In
the sections to follow, each section will consist of two subsections — one for linear and
the other for nonlinear functional differential equations with constant coefficients. Each
section will independently be concerned with (i) First order delay differential equations
(ii) First order neutral differential equations. We conclude with representation of our
results, which are the basis for the Lie algebras, in a tabular form.
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7.2 Lie Type Invariance Condition for First Order Func-
tional Differential Equations

In this section, we extend the results for ordinary differential equations to functional
differential equations. We prove a Lie type invariance condition using Taylor’s theorem
for a function of several variables. A careful look at the proof will see that it is slightly
different from the proof given in chapter 3 and 4.

Theorem 7.2.1. Let a function F be defined on I ×D3, where D is an open set in R,
and I is an open interval in R. The Lie type invariance condition for

dx

dt
= F (t, x(t), x(t− r), x′(t− r)), (7.2)

is given by

ωFt + ΥFx + Υ rFx(t−r) + Υ r[t]Fx′(t−r) = Υt + (Υx − ωt)x′ − ωxx′2,

where
Υ[t] = Dt(Υ )− x′Dt(ω) = Υt + (Υx − ωt)x′ − ωxx′2,

Υ r[t] = (Υt)r + ((Υx)r − (ωt)r)x′(t− r)− (x′(t− r))2(ωx)r,

where Dt = ∂
∂t + x′ ∂∂x ,

and ωr = ω(t− r, x(t− r)), Υ r = Υ (t− r, x(t− r)).

Proof. Let the neutral differential equation be invariant under the Lie group

t̄ = t+ δω(t, x) +O(δ2), x̄ = x+ δΥ (t, x) +O(δ2).

We then naturally define t− r = t− r + δω(t− r, x(t− r)) +O(δ2) and
x(t− r) = x(t− r) + δΥ (t− r, x(t− r)) +O(δ2).

With the notations, ωr = ω(t− r, x(t− r)), and Υ r = Υ (t− r, x(t− r)), it follows that,

x′(t− r) = dx̄
dt̄

(t− r)

= x′(t− r) + (Υt)r + ((Υx)r − (ωt)r)x′(t− r)

− (x′(t− r))2(ωx)r)δ +O(δ2).

(7.3)

For invariance, dx̄
dt̄

= F (t̄, x̄, (x(t− r)), x′(t− r)).
This gives,
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dx
dt + [Υt + (Υx − ωt)x′ − ωxx′2]δ +O(δ2)

= F (t+ δω +O(δ2), x+ δΥ +O(δ2), x(t− r) + δΥ r +O(δ2),

x′(t− r) + ((Υt)r + ((Υx)r − (ωt)r)x′(t− r)− (x′(t− r))2(ωx)r)δ +O(δ2))

= F (t, x, x(t− r), x′(t− r)) + (ωFt + ΥFx + Υ rFx(t−r)

+Υ r[t]Fx′(t−r))δ +O(δ2),
(7.4)

where Υ r[t] = (Υt)r + ((Υx)r − (ωt)r)x′(t− r)− (x′(t− r))2(ωx)r.
Comparing the coefficient of δ, we get

ωFt + ΥFx + Υ rFx(t−r) + Υ r[t]Fx′(t−r) = Υt + (Υx − ωt)x′ − ωxx′2. (7.5)

The above obtained equation (7.5) is a Lie type invariance condition.

We can define a prolonged operator (the general infinitesimal generator associated with
the Lie algebra) for neutral differential equations as:

ζ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂x(t− r) .

With the notation Dt = ∂
∂t + x′ ∂∂x , we can write,

dx̄
dt̄

= dx
dt + (Dt(Υ )− x′Dt(ω))δ +O(δ2).

= dx
dt + Υ[t]δ +O(δ2),

(7.6)

where Υ[t] = Dt(Υ )− x′Dt(ω). We then define the extended operator as:

ζ(1) = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂x(t− r) + Υ[t]
∂

∂x′
+ Υ r[t]

∂

∂x′(t− r) . (7.7)

Defining ∆ = x′(t)− F (t, x(t), x(t− r), x′(t− r)) = 0, we get

ζ(1)∆ = Υ[t] − ωFt + ΥFx + Υ rFx(t−r) + Υ r[t]Fx′(t−r). (7.8)

Comparing equations (7.5) and (7.8), we get
Υ[t] = Υt + (Υx − ωt)x′ − ωxx′2.
On substituting x′ = F into ζ(1)∆ = 0, we get an invariance condition for the neutral
differential equation which is ζ(1)∆ |∆=0= 0, from which we shall obtain the determining
equations.
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We point out here that equations (7.6)-(7.8) is an easy way of working with higher order
differential equations as compared to equations (7.3)-(7.5) which is simpler to use for
lower order differential equations.

Remark 7.2.1. If the term x′(t− r) is absent, then the corresponding first order neutral
differential equation reduces to a first order delay differential equation.

We conclude this section by proving a very elementary result which is used in our
subsequent sections:

Proposition 7.2.1. If the linear functional differential equation is given by

x′(t) + ax′(t− r) + bx(t) + cx(t− r) = d(t), (7.9)

then by employing a change of variables namely t̄ = t, x̄ = x− x̃, where x̃ is a solution
of the functional differential equation, we can convert the given non-homogeneous linear
functional differential equation to a homogeneous one, namely
x′(t) + ax′(t− r) + bx(t) + cx(t− r) = 0.

Proof. The proposition easily follows by substituting t = t̄ and x(t) = x̄+ x̃(t̄) in (7.9),
by noting that x̃′(t) + ax̃′(t− r) + bx̃(t) + cx̃(t− r) = h(t).

7.3 Classification of First Order Delay Differential Equa-
tions to Solvable Lie Algebras

7.3.1 The Linear Case

We shall make a classification of the first order delay differential equation with constant
coefficients,

x′(t) + αx(t) + βx(t− r) = 0. (7.10)

The extension and prolongation operator for equation (7.10) is given by,

ζ(1) = ω
∂

∂t
+ ωr

∂

∂(t− r) + Υ
∂

∂x
+ Υ r

∂

∂x(t− r) + Υ[t]
∂

∂x′
. (7.11)

Applying the operator defined by equation (7.11), to the delay equation g(t) = t− r, we
get

ω(t, x) = ω(t− r, x(t− r)). (7.12)

Applying the operator defined by equation (7.11), to equation (7.10), we get,

Υt + (Υx − ωt)(−αx − βxr) − ωx(α2x2 − 2αβxxr + β2xr2) + αΥ + βΥ r = 0. (7.13)
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Splitting equation (7.13) with respect to the constant term we get,

Υt + αΥ + βΥ r = 0. (7.14)

Splitting equation (7.13) with respect to x we get,

− α(Υx − ωt) = 0. (7.15)

Splitting equation (7.13) with respect to x2, xr2 or xxr, we get,

ωx = 0. (7.16)

Splitting equation (7.13) with respect to xr we get,

− β(Υx − ωt) = 0. (7.17)

We solve the above equations by studying all possible cases and make a complete
classification of (7.10) to solvable Lie algebras by proving the following theorems, with
the notation u = xr.

Theorem 7.3.1. The first order delay differential equation (7.10) for which

1. α 6= −β, admits the two dimensional Lie algebra generated by

S1 = ∂

∂t
, S2 = x

(
∂

∂x
+ ∂

∂u

)
,

with the infinite dimensional Lie sub-algebra given by

Si3 = −
(

ωt
α+ β

)
∂

∂t
+
[
θ − (α+ β)ωx

] ∂
∂x
−
[
α

β
θ + 1

β
θt + (α+ β)ωx

]
∂

∂u
.

2. α = −β, admits the two dimensional Lie algebra generated by

S1 = t
∂

∂t
+ x

(
∂

∂x
+ ∂

∂u

)
, S2 = ∂

∂t
,

with the infinite dimensional Lie sub-algebra given by

Si3 = θ

(
∂

∂x
+ ∂

∂u

)
− 1
β
θt
∂

∂u
.

Proof. (1) Let α, β be arbitrary non-zero constants, α 6= −β. Then, from equation
(7.16), we get ω = ω(t).
From equation (7.15), we get,
Υ = ωtx+ θ(t), Υ r = ωtx+ ψ(t− r).
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From equation (7.14), we get, ωt = c1 − (α+ β)ω, ψ = −α
β
θ − 1

β
θt,

ω = c2 −
ωt

α+ β
, (7.18)

where c1 is an arbitrary constant and c2 = c1
α+ β

. Hence,

Υ = [c1 − (α+ β)ω]x+ θ, (7.19)

and,
Υ r = [c1 − (α+ β)ω]x+ ψ. (7.20)

The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

=
(
c2 −

ωt
α+ β

)
∂

∂t
+ ([c1 − (α+ β)ω]x+ ψ) ∂

∂x

+
(

[c1 − (α+ β)ω]x−
(
α

β
θ − 1

β
θt

))
∂

∂xr
.

The Lie algebra is spanned by S1 = ∂

∂t
, S2 = x

(
∂

∂x
+ ∂

∂u

)
with

S3 = −
(

ωt
α+ β

)
∂

∂t
+ [θ − (α+ β)ωx] ∂

∂x
−
[
(α+ β)ωx+ α

β
θ + 1

β
θt

]
∂

∂u
.

as the infinite dimensional Lie sub-algebra.
The commutator table is given by,

S1 S2

S1 0 0

S2 0 0

.

Then L = {S1, S2} is a solvable Lie algebra.

(2) Let α, β be arbitrary non-zero constants, α = −β.
Then equation (7.14), becomes Υt + α(Υ − Υ r) = 0, which can be solved to give

ω = c3t+ c4, (7.21)

Υ = c3x+ θ, (7.22)

Υ r = c3x+ ψ, (7.23)
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where c3, c4 are arbitrary constants and ψ = θt
α

+ α.

The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

= (c3t+ c4) ∂
∂t

+ (c3x+ θ) ∂

∂x
+
(
c3x+ θt

α
+ α

)
∂

∂xr
.

The Lie algebra is spanned by S1 = t
∂

∂t
+ x

(
∂

∂x
+ ∂

∂u

)
, S2 = ∂

∂t
with

S3 = θ

(
∂

∂x
+ ∂

∂u

)
− 1
β
θt
∂

∂u
as the infinite dimensional Lie sub-algebra.

The commutator table is given by,

S1 S2

S1 0 −S2

S2 S2 0

.

Then L = {S1, S2} is a solvable Lie algebra.

Corollary 7.3.1. The first order delay differential equation given by equation (7.10)
for which α = 0, β is an arbitrary non-zero constant, admits the same generators as the
Theorem 7.3.1 (part (1)) above, except that the infinite dimensional Lie sub algebra is
given by S3 = −

(
ωt
β

)
∂

∂t
+ (θ − βxω) ∂

∂x
−
[
θt
β

+ βxω

]
∂

∂u
.

7.3.2 A Nonlinear Case

We make a classification of

x′(t) = k

[
1− x(t− r)

P

]
x(t), (7.24)

a nonlinear delay differential equation extensively studied by [28, 30] in modeling popu-
lation growth problems.
Applying the operator defined by equation (7.11), to the delay equation g(t) = t− r, we
get equation (7.12).
Applying the operator defined by equation (7.11), to equation (7.24), we get,

Υt + (Υx − ωt)x′ − ωxx′2 = kΥ − k

P
[Υ rx + xΥ r]. (7.25)
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Splitting equation (7.25) with respect to constant term, x′ and x′2 respectively, we get,

Υt = kΥ − k

P
xrΥ − k

P
xΥ r, (7.26)

Υx − ωt = 0, (7.27)

ωx = 0. (7.28)

These equations can be solved to give,

ω = c1 (7.29)

Υ = θ, Υ r = ψ, (7.30)

where c1 is an arbitrary constant and θt = ψθ − k

P
θxr − k

P
xψ.

The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

= c1
∂

∂t
+ θ

∂

∂x
+ ψ

∂

∂xr
.

The Lie algebra is spanned by S1 = ∂

∂t
with S2 = θ

∂

∂x
+ψ

∂

∂u
as the infinite dimensional

Lie sub-algebra.

7.4 Classification of First Order Neutral Differential Equa-
tions to Solvable Lie Algebras

7.4.1 The Linear Case

We shall make a classification of the first order neutral differential equation with constant
coefficients,

x′(t) + αx(t) + βx(t− r) + γx′(t− r) = 0. (7.31)

The extension and prolongation operator for equation (7.31) is given by,

ζ(1) = ω
∂

∂t
+ ωr

∂

∂(t− r) + Υ
∂

∂x
+ Υ r

∂

∂x(t− r) + Υ[t]
∂

∂x′
+ Υ r[t]

∂

∂xr ′
. (7.32)

Applying the operator defined by equation (7.32), to the delay equation g(t) = t− r, we
get equation (7.12).
Applying the operator defined by equation (7.32), to equation (7.31), we get,

Υt + (Υx − ωt)(−αx− βxr − γxr ′)− ωx(α2x2 + 2αβxxr + 2βγxrxr ′ + 2αγxxr ′ + β2xr2

+ γ2xr
′2) + αΥ + βΥ r + γ[Υ rt + (Υ rx − ωrt )xr ′ − ωrxxr

′2] = 0. (7.33)
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Splitting equation (7.33) with respect to the constant term we get,

Υt + αΥ + βΥ r + γΥ rt = 0. (7.34)

Splitting equation (7.33) with respect to x we get,

− α(Υx − ωt) = 0. (7.35)

Splitting equation (7.33) with respect to x2, xr2, xrxr ′, xxr ′ or xxr, we get,

ωx = 0. (7.36)

Splitting equation (7.33) with respect to xr we get,

− β(Υx − ωt) = 0. (7.37)

Splitting equation (7.33) with respect to xr′2 we get,

γωx − ωrx = 0. (7.38)

Splitting equation (7.33) with respect to xr′ we get,

Υx − ωt = Υ rx − ωrt . (7.39)

We solve the above equations by studying all possible cases and make a complete
classification of (7.31) to solvable Lie algebras by proving the following theorems, with
the notation u = xr.

Theorem 7.4.1. The first order neutral differential equation (7.31) for which

1. α 6= −β, admits the two dimensional Lie algebra generated by

S1 = ∂

∂t
, S2 = x

(
∂

∂x
+ ∂

∂u

)
,

with the infinite dimensional Lie sub-algebra given by

Si3 = −
( 1 + γ

α+ β

)
ωt
∂

∂t
+
[
θ −

(
α+ β

1 + γ

)
ωx

]
∂

∂x
+
[
ψ −

(
α+ β

1 + γ

)
ωx

]
∂

∂u
.

2. α = −β, admits the two dimensional Lie algebra generated by

S1 = t
∂

∂t
+ x

(
∂

∂x
+ ∂

∂u

)
, S2 = ∂

∂t
,

with the infinite dimensional Lie sub-algebra given by Si3 = θ
∂

∂x
+ ψ

∂

∂u
.
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3. α = −β, γ = −1, admits the one dimensional Lie algebra generated by S1 = ∂

∂t

with the infinite dimensional Lie sub-algebra given by Si2 = θ
∂

∂x
+ ψ

∂

∂u
.

Proof. (1) Let α, β, γ be arbitrary non-zero constants, α 6= −β, γ 6= −1. Then, from
equation (7.36), we get ω = ω(t).
From equations (7.35), (7.37) and (7.39), we get,
Υ = ωtx+ θ(t), Υ r = ωtx+ ψ(t− r).

From equation (7.34), we get, ωt = c3 −
(α+ β)
1 + γ

ω, θt + αθ + βψ + γψt = 0,

ω = c2 −
1 + γ

α+ β
ωt, (7.40)

where c1 is an arbitrary constant, c2 = c1
α+ β

and c3 = c1
1 + γ

. Hence,

Υ =
[
c3 −

(α+ β)
1 + γ

ω

]
x+ θ, (7.41)

and,
Υ r =

[
c3 −

(α+ β)
1 + γ

ω

]
x+ ψ. (7.42)

The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

=
(
c2 −

1 + γ

α+ β
ωt

)
∂

∂t
+
([
c3 −

(α+ β)
1 + γ

ω

]
x+ θ

)
∂

∂x

+
([
c3 −

(α+ β)
1 + γ

ω

]
x+ ψ

)
∂

∂xr
.

The Lie algebra is spanned by S1 = ∂

∂t
, S2 = x

(
∂

∂x
+ ∂

∂u

)
with

S3 = −
( 1 + γ

α+ β

)
ωt
∂

∂t
+
[
θ −

(
α+ β

1 + γ

)
ωx

]
∂

∂x
−
[
ψ −

(
α+ β

1 + γ

)
ωx

]
∂

∂u

as the infinite dimensional Lie sub-algebra.
The commutator table is given by,

S1 S2

S1 0 0

S2 0 0

.

Then L = {S1, S2} is a solvable Lie algebra.
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(2) Let α, β be arbitrary non-zero constants, α = −β, γ 6= −1.
Then equation (7.34), becomes Υt + α(Υ − Υ r) + γΥ rt = 0, which can be solved to give

ω = c4t+ c5, (7.43)

Υ = c4x+ θ, (7.44)

Υ r = c4x+ ψ, (7.45)

where c4, c5 are arbitrary constants and θt + α(θ − ψ) + γψt = 0.
The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

= (c4t+ c5) ∂
∂t

+ (c4x+ θ) ∂

∂x
+ (c4x+ ψ) ∂

∂xr
.

The Lie algebra is spanned by S1 = t
∂

∂t
+x

(
∂

∂x
+ ∂

∂u

)
, S2 = ∂

∂t
with S3 = θ

∂

∂x
+ψ ∂

∂u
as the infinite dimensional Lie sub-algebra.

The commutator table is given by,

S1 S2

S1 0 −S2

S2 S2 0

.

Then L = {S1, S2} is a solvable Lie algebra.

(3) Let α 6= −β, γ = −1.
Then equation (7.34), becomes Υt + αΥ + βΥ r − Υ rt = 0, which can be solved to give

ω = c7, (7.46)

Υ = θ(t), (7.47)

Υ r = ψ(t− r), (7.48)

where c6 is an arbitrary constant, c7 = c6
α+ β

and θt + αθ + βψ − ψt = 0.
The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

= c7
∂

∂t
+ θ

∂

∂x
+ ψ

∂

∂xr
.
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The Lie algebra is spanned by S1 = ∂

∂t
with

S2 = θ
∂

∂x
+ ψ

∂

∂u
as the infinite dimensional Lie sub-algebra.

Corollary 7.4.1. Subject to the conditions γ = −1, in equation (7.31), the same result
of Theorem 7.4.1 (part (3)) is obtained if α 6= −β but either α = 0 or β = 0.

Theorem 7.4.2. The first order neutral differential equation (7.31) for which
α = 0 = β, γ = 1 admits the three dimensional Lie algebra generated by

S1 = t
∂

∂t
+ x

(
∂

∂x
+ ∂

∂u

)
, S2 = ∂

∂t
, S3 = ∂

∂u
,

with the infinite dimensional Lie sub-algebra given by

Si4 = θ

[
∂

∂x
− ∂

∂u

]
.

Proof. Let α = 0 = β, γ = 1.
Then equation (7.34), becomes Υt + Υ rt = 0, which can be solved to give

ω = c8t+ c9, (7.49)

Υ = c8x+ θ(t), (7.50)

Υ r = c8x+ ψ(t− r), (7.51)

where c8, c9, c10 are arbitrary constants and ψ = c10 − θ.
The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

= (c8t+ c9) ∂
∂t

+ (c8x+ θ) ∂
∂x

+ (c8x+ c10 − θ)
∂

∂xr
.

The Lie algebra is spanned by S1 = t
∂

∂t
+ x

(
∂

∂x
+ ∂

∂u

)
, S2 = ∂

∂t
,

S3 = ∂

∂u
with S4 = θ

(
∂

∂x
− ∂

∂u

)
as the infinite dimensional Lie sub-algebra.

The commutator table is given by
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S1 S2 S3

S1 0 −S2 0

S2 S2 0 0

S3 0 0 0

.

Then L = {S1, S2, S3} is a solvable Lie algebra.

Corollary 7.4.2. For the first order neutral differential equation given by (7.31) with
α = 0 = β, γ 6= 0,−1, the same generators as in the previous Theorem are obtained,
only that the infinite dimensional Lie sub-algebra is given by

S4 = θ

(
∂

∂x
− 1
γ

∂

∂u

)
.

7.4.2 A Nonlinear Case

We make a classification of

x′(t) + x(t)x(t− r) + x′(t− r) = v(t), (7.52)

This is a nonlinear and nonhomogeneous equation.
Applying the operator defined by equation (7.32), to the delay equation g(t) = t− r, we
get equation (7.12).
Applying the operator defined by equation (7.32), to equation (7.52), we get,

Υt + (Υx − ωt)x′ − ωxx′2 + xΥ r + xrΥ + Υ rt + (Υ rx − ωrt )xr ′ − ωrxxr
′2 = ωv′. (7.53)

Splitting equation (7.53) with respect to constant term, x′, x′2, xr ′ and xr′2 respectively,
we get,

Υt + xΥ r + xrΥ + Υ rt = ωv′, (7.54)

Υx − ωt = 0, (7.55)

ωx = 0, (7.56)

Υ rx − ωrt = 0, (7.57)

ωrx = 0. (7.58)

These equations can be solved to give,

ω = c1, (7.59)
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Υ = θ, Υ r = ψ, (7.60)

where c1, c2 are arbitrary constants and θ = c1v + c2 − ψt.
The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

= c1
∂

∂t
+ (c1v + c2 − ψt)

∂

∂x
+ ψ

∂

∂xr
.

The Lie algebra is spanned by S1 = ∂

∂t
+ v

∂

∂x
, S2 = ∂

∂x
with

S3 = −ψt
∂

∂x
+ ψ

∂

∂u
as the infinite dimensional Lie sub-algebra.

The commutator table is given by

S1 S2

S1 0 0

S2 0 0

.

Then L = {S1, S2} is a solvable Lie algebra.

7.5 Summary

With the notation Lmn , where m denotes the dimension of the solvable Lie algebra and
Si to mean the infinite dimensional Lie sub-algebra, the entire classification of first order
functional differential equations with constant coefficients to solvable Lie algebras is
summarized in Table 7.1 and Table 7.2 below:
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Table 7.1: Group Classification of First Order Functional Differential Equations

Type of Functional
Differential Equation Basis for the Lie Algebra Solvable

Lie algebra

x′(t) + αx(t) + βx(t −
r) = 0,
α 6= −β

S1 = ∂

∂t
, S2 = x

(
∂

∂x
+ ∂

∂u

)
,

Si3 = −
(

ωt
α+ β

)
∂

∂t

+
[
θ − (α+ β)ωx

] ∂
∂x

−
[
(α+ β)ωx+ α

β
θ + 1

β
θt

]
∂

∂u

L2
1

x′(t) + α(x(t) − x(t −
r)) = 0.

S1 = t
∂

∂t
+ x

(
∂

∂x
+ ∂

∂u

)
, S2 = ∂

∂t
,

Si3 = θ

(
∂

∂x
+ ∂

∂u

)
− 1
β
θt
∂

∂u

L2
2

x′(t) + βx(t− r) = 0.
S1 = ∂

∂t
, S2 = x

(
∂

∂x
+ ∂

∂u

)
,

Si3 = −
(
ωt
β

)
∂

∂t
+ (θ−βxω) ∂

∂x
−βxω ∂

∂u

L2
3

x′(t) =

k

[
1− x(t− r)

P

]
x(t). S1 = ∂

∂t
, Si2 = θ

∂

∂x
+ ψ

∂

∂u
L1

4

x′(t)+αx(t)+βx(t−r)+
γx′(t− r) = 0,
α 6= −β, γ 6= −1

S1 = ∂

∂t
, S2 = x

(
∂

∂x
+ ∂

∂u

)

Si3 = −
( 1 + γ

α+ β

)
ωt
∂

∂t
+
[
θ−(

α+ β

1 + γ

)
ωx
] ∂
∂x

−
[
ψ −

(
α+ β

1 + γ

)
ωx
] ∂
∂u

L2
5

x′(t)+α(x(t)−x(t−r))+
γx′(t− r) = 0,
γ 6= −1.

S1 = t
∂

∂t
+ x

(
∂

∂x
+ ∂

∂u

)
, S2 = ∂

∂t

Si3 = θ
∂

∂x
+ ψ

∂

∂u

L2
6
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Table 7.2: Group Classification of First Order Functional Differential Equations

Type of Functional
Differential Equation Basis for the Lie Algebra Solvable

Lie algebra
x′(t)+αx(t)+βx(t−r)−
x′(t− r) = 0,
α 6= −β

S1 = ∂

∂t

Si2 = θ
∂

∂x
+ ∂

∂u

L1
7

x′(t) + x′(t− r) = 0.
S1 = t

∂

∂t
+ x

(
∂

∂x
+ ∂

∂u

)
, S2 = ∂

∂t

S3 = ∂

∂u
, Si4 = θ

[
∂

∂x
− ∂

∂u

] L3
8

x′(t) + γx′(t− r) = 0,
γ 6= 0,−1

S1 = t
∂

∂t
+ x

(
∂

∂x
+ ∂

∂u

)
, S2 = ∂

∂t

S3 = ∂

∂u
, Si4 = θ

[
∂

∂x
− 1
γ

∂

∂u

]
.

L3
9

x′(t) + x(t)x(t − r) +
x′(t− r) = v(t).

S1 = ∂

∂t
+ v

∂

∂x
, S2 = ∂

∂x

Si3 = −ψt
∂

∂x
+ ∂

∂u

L2
10
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8.1 Introduction

In this chapter, we make a complete classification of second order functional (delay and
neutral) differential equations with constant coefficients to solvable Lie algebras. We
shall use certain facts stated later to simplify our second order functional differential
equations. We provide a basis for the Lie algebra given by second order linear and
nonlinear functional differential equations by simplifying them and using an approach
different from the existing literature. We also make a classification for some second order
nonlinear functional differential equations.

It is noteworthy to mention here that by using Lie-Bäcklund operator and invariant
manifold theorem, [40] classifies second order delay differential equations to solvable
Lie algebras. We see that [40] performs a symmetry analysis without simplification of
the linear delay differential equations, the simplification of which will be seen in this
chapter. In addition several crucial cases are not considered in [40]. The approach for
classification of delay differential equations to solvable Lie algebras is extended to some
nonlinear differential equations in [41, 42]. The drawback of the analysis in [51, 59, 60]
is that the inverse of the obtained classification cannot be found. We extend the results
we have obtained in the previous chapter to obtain symmetries for linear and nonlinear
functional differential equations.

We shall be studying the functional differential equation

Φ(t, x(t), x(t− r), x′(t), x′(t− r), x′′(t), x′′(t− r)) = 0, (8.1)

where Φ is defined on I ×D6 where D is an open set in R, I is an interval in R and
r > 0 is the delay. We assume that, ∂Φ

∂x′′(t− r) 6= 0. We shall find a Lie group under
which these functional differential equations are invariant. We call this the admitted Lie
group by which we mean that one solution curve is carried to another solution curve of
the same equation.

The rest of this chapter is organised as follows: The next section extends the results
for ordinary differential equations to functional differential equations by obtaining a Lie
type invariance condition using Taylor’s theorem for a function of several variables. In
the sections to follow, each section will consist of two subsections — one for linear and
the other for nonlinear functional differential equations with constant coefficients. Each
section will independently be concerned with (i) Second order delay differential equations
(ii) Second order neutral differential equations. We conclude with representation of our
results, which are the basis for the Lie algebras, in a tabular form.
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8.2 Lie Type Invariance Condition for Second Order Func-
tional Differential Equations

In this section, we extend the results for ordinary differential equations to functional
differential equations. The notation xr whenever it appears will denote x(t− r).
We establish the following Lie type invariance condition for second order neutral differ-
ential equations. A careful look at the proof will see that it is slightly different from the
proof given in chapter 5 and 6.

Theorem 8.2.1. Consider the second order neutral differential equation

d2x

dt2
= F (t, x, x(t− r), x′(t), x′(t− r), x′′(t− r)), (8.2)

where F be defined on a 6-dimensional space I ×D5, D is an open set in R and I is any
interval in R. Then the Lie type invariance condition is given by

ωFt + ΥFx + Υ rFx(t−r) + Υ[t]Fx′(t) + Υ r[t]Fx′(t−r) + Υ r[tt]Fx′′(t−r) =

Υtt + (2Υtx − ωtt)x′ + (Υxx − 2ωtx)x′2 − ωxxx′3 + (Υx − 2ωt)x′′ − 3ωxx′x′′,

where,
Υ[t] = Dt(Υ )− x′Dt(ω),

Υ[tt] = Dt(Υ[t])− x′′Dt(ω), where Dt = ∂

∂t
+ x′

∂

∂x
+ x′′

∂

∂x′
+ · · · ,

Υ r[t] = (Υt)r + ((Υx)r − (ωt)r)x′(t− r)− (x′(t− r))2(ωx)r,

Υ r[tt] = (Υtt)r + (2(Υtx)r − (ωtt)r)x′(t− r) + ((Υxx)r − 2(ωtx)r)x′(t− r)2

− (ωxx)rx′(t− r)3 + ((Υx)r − 2(ωt)r)x′′(t− r)− 3(ωx)rx′(t− r)x′′(t− r)),
and ωr = ω(t− r, x(t− r)), Υ r = Υ (t− r, x(t− r)).

Proof. Let the neutral differential equation be invariant under the Lie group

t̄ = t+ δω(t, x) +O(δ2), x̄ = x+ δΥ (t, x) +O(δ2).

We then naturally define t− r = t− r + δω(t− r, x(t− r)) +O(δ2) and
x(t− r) = x(t− r) + δΥ (t− r, x(t− r)) +O(δ2).
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With the notations, ωr = ω(t− r, x(t− r)), and Υ r = Υ (t− r, x(t− r)), it follows that,

x′(t− r) = dx̄
dt̄

(t− r)

= x′(t− r) + (Υt)r + ((Υx)r − (ωt)r)x′(t− r)

− (x′(t− r))2(ωx)r)δ +O(δ2).

(8.3)

Considering the second-order extended infinitesimals, we can write

d2x̄

dt̄2
= d

dt̄

(
dx̄

dt̄

)

=

d

dt

[
dx

dt
+ [Dt(Υ )− x′Dt(ω)]δ +O(δ2)

]
1 + δDt(ω) +O(δ2)

=
(
d2x

dt2
+Dt(Υ[t])δ +O(δ2)

)
(1− δDt(ω) +O(δ2))

= d2x

dt2
+ (Dt(Υ[t])−Dt(ω)x′′)δ +O(δ2).

So, Υ[tt] = Dt(Υ[t])− x′′Dt(ω).
As Υ[t] contains t, x and x′, we need to extend the definition of Dt.

Let Dt = ∂

∂t
+ x′

∂

∂x
+ x′′

∂

∂x′
+ · · · .

Expanding Υ[tt], gives,

Υ[tt] = Υtt + (2Υtx − ωtt)x′ + (Υxx − 2ωtx)x′2 − ωxxx′3 + (Υx − 2ωt)x′′ − 3ωxx′x′′.

It follows that,

x′′(t− r) = d2x̄

dt̄2
(t− r)

= x′′(t− r) +
[
(Υtt)r + (2(Υtx)r − (ωtt)r)x′(t− r)

+ ((Υxx)r − 2(ωtx)r)x′(t− r)2 − (ωxx)rx′(t− r)3

+ ((Υx)r − 2(ωt)r)x′′(t− r)− 3(ωx)rx′(t− r)x′′(t− r)
]
δ +O(δ2).

Let Υ r[t] = (Υt)r + ((Υx)r − (ωt)r)x′(t− r)− (x′(t− r))2(ωx)r and
Υ r[tt] = (Υtt)r + (2(Υtx)r − (ωtt)r)x′(t− r) + ((Υxx)r − 2(ωtx)r)x′(t− r)2

− (ωxx)rx′(t− r)3 + ((Υx)r − 2(ωt)r)x′′(t− r)− 3(ωx)rx′(t− r)x′′(t− r)).
For invariance,
d2x̄

dt̄2
= F (t̄, x̄, x(t− r), dx̄

dt̄
,
dx̄

dt̄
(t− r), d

2x̄

dt̄2
(t− r)).
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This gives,

d2x

dt2
+ Υ[tt]δ +O(δ2) = F (t+ δω +O(δ2), x+ δΥ +O(δ2), x(t− r) + δΥ r +O(δ2),

dx

dt
+ δΥ[t] +O(δ2), dx

dt
(t− r) + Υ r[t]δ +O(δ2),

d2x

dt2
(t− r) + Υ r[tt]δ +O(δ2))

= F (t, x, x(t− r), x′(t), x′(t− r), x′′(t− r))+

(ωFt + ΥFx + Υ rFx(t−r) + Υ[t]Fx′(t) + Υ r[t]Fx′(t−r)

+ Υ r[tt]Fx′′(t−r))δ +O(δ2).

Comparing the coefficient of δ, we get

ωFt + ΥFx + Υ rFx(t−r) + Υ[t]Fx′(t) + Υ r[t]Fx′(t−r) + Υ r[tt]Fx′′(t−r) =

Υtt + (2Υtx − ωtt)x′ + (Υxx − 2ωtx)x′2 − ωxxx′3 + (Υx − 2ωt)x′′ − 3ωxx′x′′. (8.4)

The above obtained equation (8.4) is a Lie type invariance condition.

We can define a prolonged operator (the general infinitesimal generator associated with
the Lie algebra) for the second order neutral differential equation as:
ζ = ω

∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂x(t− r) .

We then, naturally define the extended operator, for second order neutral differential
equations as:

ζ(1) = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂x(t− r) + Υ[t]
∂

∂x′
+ Υ r[t]

∂

∂x′(t− r) + Υ[tt]
∂

∂x′′
+ Υ r[tt]

∂

∂x′′(t− r) .

(8.5)
Defining, ∆ = x′′(t)− F (t, x(t), x(t− r), x′(t), x′(t− r), x′′(t− r)) = 0, we get,

ζ(1)∆ = Υ[tt] − ωFt − ΥFx − Υ rFx(t−r) − Υ[t]Fx′(t) − Υ r[t]Fx′(t−r) − Υ
r
[tt]Fx′′(t−r). (8.6)

Comparing equation (8.6) and equation (8.4), we get,
Υ[tt] = Υtt + (2Υtx − ωtt)x′ + (Υxx − 2ωtx)x′2 − ωxxx′3 + (Υx − 2ωt)x′′ − 3ωxx′x′′.
On substituting x′′ = F into ζ(1)∆ = 0, we get an invariance condition for the second
order neutral differential equation which is ζ(1)∆ |∆=0= 0, from which we shall obtain
the determining equations.

Remark 8.2.1. If the term x′′(t−r) is absent, then the corresponding second order neutral
differential equation reduces to a second order delay differential equation.

We conclude this section by proving two very elementary results which we shall be using
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in our subsequent sections:

Proposition 8.2.1. If the linear functional differential equation is given by

x′′(t) + bx′(t) + cx′(t− r) + dx′′(t− r) + ex(t) + jx(t− r) = m(t), (8.7)

then by employing a change of variables namely t̄ = t, x̄ = x− x̃, where x̃ is a solution of
equation (8.7), we can convert the given non-homogeneous linear functional differential
equation to a homogeneous one, namely
x′′(t) + bx′(t) + cx′(t− r) + dx′′(t− r) + ex(t) + jx(t− r) = 0.

Proof. The proposition easily follows by substituting t = t̄ and x(t) = x̄+ x̃(t̄) in (8.7),
by noting that x̃′′(t) + bx̃′(t) + cx̃′(t− r) + dx̃′′(t− r) + ex̃(t) + jx̃(t− r) = m(t).

The next proposition is particularly useful in simplifying second order functional differ-
ential equations.

Proposition 8.2.2. If the linear functional differential equation is given by

x′′(t) + bx′(t) + cx′(t− r) + dx′′(t− r) + ex(t) + jx(t− r) = 0, (8.8)

then by employing a suitable transformation, we can convert the given non-homogeneous
linear functional differential equation to a one in which the first derivative (ordinary
derivative) term is missing, that is to the equation

x′′(t) + cx′(t− r) + dx′′(t− r) + ex(t) + jx(t− r) = 0. (8.9)

Proof. We have seen a proof of this proposition in chapter 6.

Remark 8.2.2. It should be noted that this transformation does not affect the symmetries
of equation (8.8).

8.3 Classification of Second Order Delay Differential Equa-
tions to Solvable Lie Algebras

8.3.1 The Linear Case

We shall make a classification of

x′′(t) + αx′(t) + βx′(t− r) + γx(t) + ρx(t− r) = 0. (8.10)
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By using Proposition 8.2.2, we make a classification of

x′′(t) + βx′(t− r) + γx(t) + ρx(t− r) = 0. (8.11)

The extension and prolongation operator for equation (8.11) is given by,

ζ(1) = ω
∂

∂t
+ ωr

∂

∂(t− r) + Υ
∂

∂x
+ Υ r

∂

∂x(t− r) + Υ[t]
∂

∂x′
+ Υ r[t]

∂

∂xr ′
+ Υ[tt]

∂

∂x′′
. (8.12)

Applying the operator defined by equation (8.12), to the delay equation g(t) = t− r, we
get ω(t, x) = ω(t− r, x(t− r)).
Applying the operator defined by equation (8.12), to equation (8.11), we get,

Υtt+(2Υtx−ωtt)x′+(Υxx−2ωtx)x′2−ωxxx′3 +(Υx−2ωt)(−βx′(t−r)−γx−ρx(t−r))

−3ωxx′(−βx′(t− r)−γx−ρx(t− r)) +β(Υ rt + (Υ rx −ωrt )xr ′−ωrxxr
′2) +γΥ +ρΥ r = 0.

(8.13)

Splitting equation (8.13) with respect to the constant term we get,

Υtt + βΥ rt + γΥ + ρΥ r = 0. (8.14)

Splitting equation (8.13) with respect to x we get,

γ(Υx − ωt) = 0. (8.15)

Splitting equation (8.13) with respect to x′ we get,

2Υtx = ωtt. (8.16)

Splitting equation (8.13) with respect to x′2 we get,

Υxx = 2ωtx. (8.17)

Splitting equation (8.13) with respect to x′3 we get,

ωxx = 0. (8.18)

Splitting equation (8.13) with respect to x′xr ′, xx′ or x′xr, we get,

ωx = 0. (8.19)

Splitting equation (8.13) with respect to xr we get,

− ρ(Υx − 2ωt) = 0. (8.20)
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Splitting equation (8.13) with respect to xr′2 we get,

− βωrx = 0. (8.21)

Splitting equation (8.13) with respect to xr′ we get,

− β(Υx − 2ωt) + β(Υ rx − ωrt ) = 0. (8.22)

From equation (8.19) and (8.21), we get ω = ω(t).
From equation (8.17), Υ = A(t)x+ θ(t).
From equation (8.15) or (8.20), we get,

ωt = 1
2A(t). (8.23)

From equation (8.22) and using equation (8.23), we get Υ r = 1
2A(t)x+ ψ(t− r).

The following theorems make a complete classification of the second order delay differential
equation to solvable Lie algebras. The notation u is used to denote xr.

Theorem 8.3.1. The delay differential equation given by equation (8.11) for which
β 6= 0, γ 6= −ρ2 admits a three dimensional group generated by

S1 = ∂

∂t
, S2 = x

∂

∂x
, S3 = x

∂

∂u
,

with the infinite dimensional Lie sub-algebra given by

Si4 = −

 1
2(γ + ρ

2)
+

4(γ + ρ

2)

β
A

 ∂

∂t
+

θ − x
 2
β
At +

4(γ + ρ

2)

β
ω


 ∂

∂x

+

ψ − x
 1
β
At +

2(γ + ρ

2)

β
ω


 ∂

∂u
.

Proof. Let β, γ, ρ be arbitrary non-zero constants, γ 6= −ρ2 . Then from equation (8.14),
we get,

Att + β

2At + γA+ ρ

2A = 0, (8.24)

and θtt + βψt + γθ + ρψ = 0.
Solving equation (8.24) using equation (8.23), we get,

ω = c1 −
At + β

2A

2(γ + ρ

2)
, (8.25)
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where c1 is an arbitrary constant. From equation (8.25),

A(t) = c2 −
2
β
At −

4ω(γ + ρ

2)

β
, (8.26)

where c2 =
4c1(γ + ρ

2)

β
.

This yields,

Υ =

c2 −
2
β
At −

4ω(γ + ρ

2)

β

x+ θ, (8.27)

and,

Υ r =

c3 −
1
β
At −

2ω(γ + ρ

2)

β

x+ ψ, (8.28)

where c3 = c2
2 .

The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

=

c1 −
At + β

2A

2(γ + ρ

2)

 ∂

∂t
+


c2 −

2
β
At −

4ω(γ + ρ

2)

β

x+ θ

 ∂

∂x

+


c3 −

1
β
At −

2ω(γ + ρ

2)

β

x+ ψ

 ∂

∂xr
.

The Lie algebra is spanned by S1 = ∂

∂t
, S2 = x

∂

∂x
, S3 = x

∂

∂u
.

With g = 2ωt, we get

S4 = −

 1
2(γ + ρ

2)
+ β

4(γ + ρ

2)
A

 ∂

∂t
+

θ − x
 2
β
At +

4(γ + ρ

2)

β
ω


 ∂

∂x

+

ψ − x
 1
β
At +

2(γ + ρ

2)

β
ω


 ∂

∂u

is the infinite dimensional Lie sub-algebra.

The commutator table is given by
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S1 S2 S3

S1 0 0 0

S2 0 0 S3

S3 0 −S3 0

.

Then L = {S1, S2, S3} is a solvable Lie algebra.

Theorem 8.3.2. The delay differential equation given by equation (8.11) for which
β 6= 0, γ = −ρ2 admits a four dimensional group generated by

S1 = t
∂

∂t
, S2 = ∂

∂t
, S3 = tx

[
∂

∂x
+ 1

2
∂

∂u

]
, S4 = x

[
∂

∂x
+ 1

2
∂

∂u

]
,

with the infinite dimensional Lie sub-algebra given by

Si5 = −A
β

∂

∂t
+ (θ − βxω) ∂

∂x
+ (ψ − βxω

4 ) ∂
∂u
.

Proof. Let β, γ, ρ be arbitrary non-zero constants, γ = −ρ2 . Then from equation (8.14),
we get,

ωttt + β

2ωtt = 0, (8.29)

and θtt + βψt + ρ

2θ + ρψ = 0.
Solving equation (8.29) we get,

ω = c6t+ c7 −
A

β
, (8.30)

where c4, c5 are arbitrary constants and c6 = 2c4
β
, c7 = 2c5

β
. From equation (8.30),

A(t) = c8t+ c9 − βω, (8.31)

where c8 = βc6, c9 = βc7. This yields,

Υ = (c8t+ c9 − βω)x+ θ(t), (8.32)

and,
Υ r = 1

2(c8t+ c9 − βω)x+ ψ(t− r). (8.33)



Chapter 8. Classification of Second Order Functional Differential
Equations With Constant Coefficients to Solvable Lie Algebras 154

The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

=
(
c6t+ c7 −

A

β

)
∂

∂t
+ [(c8t+ c9 − βω)x+ θ] ∂

∂x
+ [12(c8t+ c9 − βω)x+ ψ] ∂

∂xr
.

The Lie algebra is spanned by S1 = t
∂

∂t
, S2 = ∂

∂t
,

S3 = tx

[
∂

∂x
+ 1

2
∂

∂u

]
, S4 = x

[
∂

∂x
+ 1

2
∂

∂u

]
with

S5 = −A
β

∂

∂t
+ (θ− βxω) ∂

∂x
+ (ψ − βxω

4 ) ∂
∂u

as the infinite dimensional Lie sub-algebra.

The commutator table is given by

S1 S2 S3 S4

S1 0 −S2 S3 0

S2 S2 0 S4 0

S3 −S3 −S4 0 0

S4 0 0 0 0

.

Then L = {S1, S2, S3, S4} is a solvable Lie algebra.

Theorem 8.3.3. The delay differential equation given by equation (8.11) for which
β = 1, γ = 0 = ρ admits a three dimensional group generated by

S1 = t
∂

∂t
+ tx

[
∂

∂x
+ 1

2
∂

∂u

]
, S2 = ∂

∂t
+ x

[
∂

∂x
+ 1

2
∂

∂u

]
, S3 = ∂

∂u
,

with the infinite dimensional Lie sub-algebra given by

Si4 = −A ∂

∂t
+ (θ − xω) ∂

∂x
−
(
θt + xω

2

)
∂

∂u
.

Proof. Let β = 1, γ = 0 = ρ. Then equation (8.14) becomes Υtt + Υ rt = 0, which yields,

Att + 1
2At = 0, (8.34)

and ψ = −θt + c10.

Solving equation (8.34) we get,

ω = c11t+ c12 −A(t), (8.35)
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where c10, c11, c12 are arbitrary constants. From equation (8.35),

A(t) = c11t+ c12 − ω. (8.36)

This yields,
Υ = (c11t+ c12 − ω)x+ θ(t), (8.37)

and,
Υ r = 1

2(c11t+ c12 − ω)x+ c10 − θt. (8.38)

The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

= (c11t+ c12 −A(t)) ∂
∂t

+ [(c11t+ c12 − ω)x+ θ(t)] ∂
∂x

+ [12(c11t+ c12 − ω)x+ c10 − θt]
∂

∂xr
.

The Lie algebra is spanned by
S1 = t

∂

∂t
+ tx

[
∂

∂x
+ 1

2
∂

∂u

]
, S2 = ∂

∂t
+ x

[
∂

∂x
+ 1

2
∂

∂u

]
, S3 = ∂

∂u
,

with S4 = −A ∂

∂t
+(θ−xω) ∂

∂x
−
(
θt + xω

2

)
∂

∂u
as the infinite dimensional Lie sub-algebra.

The commutator table is given by

S1 S2 S3

S1 0 −S2 0

S2 S2 0 0

S3 0 0 0

.

Then L = {S1, S2, S3} is a solvable Lie algebra.

Theorem 8.3.4. The delay differential equation given by equation (8.11) for which
β 6= 0, γ = 0 = ρ admits a five dimensional group generated by

S1 = t
∂

∂t
, S2 = ∂

∂t
, S3 = tx

[
∂

∂x
+ 1

2
∂

∂u

]
,

S4 = x

[
∂

∂x
+ 1

2
∂

∂u

]
, S5 = ∂

∂u
,
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with the infinite dimensional Lie sub-algebra given by

Si6 = −A
β

∂

∂t
+ (θ − βxω) ∂

∂x
+
(
θt
β

+ βxω

)
∂

∂u
.

Proof. Let γ = 0 = ρ, β be an arbitrary non zero constant. Then equation (8.14) becomes
Υtt + βΥ rt = 0, which yields,

Att + β

2At = 0, (8.39)

and ψ = c14 −
θt
β
, where c13 is an arbitrary constant and c14 = c13

β
.

Solving equation (8.39) we get,

ω = c17t+ c18 −
θ

β
, (8.40)

where c15, c16 are arbitrary constants and c17 = c15
β
, c18 = c16

β
. From equation (8.40),

A(t) = c15t+ c16 − βω. (8.41)

This yields,
Υ = (c15t+ c16 − βω)x+ θ(t), (8.42)

and,
Υ r = 1

2(c15t+ c16 − βω)x+ c14 −
θt
β
. (8.43)

The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

= (c17t+ c18 −
θ

β
) ∂
∂t

+ [(c15t+ c16 − βω)x+ θ(t)] ∂
∂x

+
[1

2(c15t+ c16 − βω)x+ c14 −
θt
β

]
∂

∂xr
.

The Lie algebra is spanned by S1 = t
∂

∂t
, S2 = ∂

∂t
,

S3 = tx

[
∂

∂x
+ 1

2
∂

∂u

]
, S4 = x

[
∂

∂x
+ 1

2
∂

∂u

]
, S5 = ∂

∂u
with

S6 = −A
β

∂

∂t
+(θ−βxω) ∂

∂x
+
(
θt
β

+ βxω

)
∂

∂u
as the infinite dimensional Lie sub-algebra.

The commutator table is given by
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S1 S2 S3 S4 S5

S1 0 −S2 S3 0 0

S2 S2 0 S4 0 0

S3 −S3 −S4 0 0 0

S4 0 0 0 0 0

S5 0 0 0 0 0

.

Then L = {S1, S2, S3, S4, S5} is a solvable Lie algebra.

8.3.2 A Nonlinear Case

We make a classification of

x′′(t) + x′(t) + x′(t− r)x(t) = 0. (8.44)

Applying the operator defined by equation (8.11), to the delay equation g(t) = t− r, we
get equation ω(t, x) = ω(t− r, x(t− r)).
Applying the operator defined by equation (8.11), to equation (8.44), we get,

Υtt+(2Υtx−ωtt)x′+(Υxx−2ωtx)x′2−ωxxx′3 +(Υx−2ωt)x′′−3ωxx′x′′+Υt+(Υx−ωt)x′

− ωxx′2 + xr ′Υ + x[Υ rt + (Υ rx − ωrt )xr ′ − ωrxxr
′2] = 0. (8.45)

Splitting equation (8.45) with respect to constant term, x′, x′2, x′3, x′′, x′x′′, xr ′ and
xr
′2 respectively, we get,

Υtt + Υt + xΥ rt = 0, (8.46)

2Υtx − ωtt + Υx − ωt = 0, (8.47)

Υxx − 2ωtx − ωx = 0, (8.48)

ωxx = 0, (8.49)

Υx − 2ωt = 0, (8.50)

ωx = 0, (8.51)

Υ + x(Υ rx − ωrt ) = 0, (8.52)

xωrx = 0. (8.53)

From these equations we get, ω = ω(t), Υ = A(t)x+ θ(t), Υ r = 1
2A(t)x+ ψ(t− r),

where A(t) = 2ωt.
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Substituting the values of Υ, Υ r in equation (8.46) and solving it, we get,
A(t) = c19, ψ = c20, θ = c21 − θt, and

ω = c22t+ c23, (8.54)

Υ = c19x+ c21 − θt, Υ r = c24x+ c20, (8.55)

where c19, c20, c21, c22, c23, c24 are arbitrary constants.
The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

= (c22t+ c23) ∂
∂t

+ (c19x+ c21 − θt)
∂

∂x
+ (c24x+ c20) ∂

∂xr
.

The Lie algebra is spanned by
S1 = x

∂

∂x
, S2 = ∂

∂x
, S3 = t

∂

∂t
,

S4 = ∂

∂t
, S5 = x

∂

∂u
, S6 = ∂

∂u
with S7 = −θt

∂

∂x
as the infinite dimensional Lie

sub-algebra.

The commutator table is given by

S1 S2 S3 S4 S5 S6

S1 0 −S2 0 0 S5 0

S2 S2 0 0 0 S6 0

S3 0 0 0 −S4 0 0

S4 0 0 S4 0 0 0

S5 −S5 −S6 0 0 0 0

S6 0 0 0 0 0 0

.

Then L = {S1, S2, S3, S4, S5, S6} is a solvable Lie algebra.

Remark 8.3.1. For the non-homogeneous nonlinear second order delay differential equation
x′′(t) + x′(t) + x′(t − r)x(t) = h(t), we get exactly the same generators as in the
homogeneous case, only that S7 = (θt − y) ∂

∂x
is the corresponding infinite dimensional

Lie sub-algebra, where y = c22
∫
t h′dt+ c23h.
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8.4 Classification of Second Order Neutral Differential
Equations to Solvable Lie Algebras

8.4.1 The Linear Case

We shall make a classification of

x′′(t) + αx′(t) + βx′(t− r) + γx(t) + ρx(t− r) + κx′′(t− r) = 0. (8.56)

By using the Theorem 8.2.1, we make a classification of

x′′(t) + βx′(t− r) + γx(t) + ρx(t− r) + κx′′(t− r) = 0. (8.57)

The extension and prolongation operator for equation (8.11) is given by,

ζ(1) = ω
∂

∂t
+ωr

∂

∂(t− r) +Υ
∂

∂x
+Υ r

∂

∂x(t− r) +Υ[t]
∂

∂x′
+Υ r[t]

∂

∂xr ′
+Υ[tt]

∂

∂x′′
+Υ r[tt]

∂

∂xr ′′
.

(8.58)
Applying the operator defined by equation (8.58), to the delay equation g(t) = t− r, we
get equation ω(t, x) = ω(t− r, x(t− r)).
Applying the operator defined by equation (8.58), to equation (8.57), we get,

0 = Υtt+(2Υtx−ωtt)x′+(Υxx−2ωtx)x′2−ωxxx′3+(Υx−2ωt)(−βx′(t−r)−γx−ρx(t−r)

−κx′′(t−r))−3ωxx′(−βx′(t−r)−γx−ρx(t−r)−κx′′(t−r))+β
[
Υ rt +(Υ rx−ωrt )xr ′−ωrxxr

′2]
+γΥ+ρΥ r+κ

[
Υ rtt+(2Υ rtx−ωrtt)xr ′+(Υ rxx−2ωrtx)xr′2−ωrxxxr

′3+(Υ rx−2ωrt )xr
′′−3ωrxxr ′xr

′′]
.

(8.59)

Splitting equation (8.59) with respect to the constant term we get,

Υtt + βΥ rt + γΥ + ρΥ r + κΥ rtt = 0. (8.60)

Splitting equation (8.59) with respect to x we get,

γ(Υx − 2ωt) = 0. (8.61)

Splitting equation (8.59) with respect to x′ we get,

2Υtx − ωtt = 0. (8.62)

Splitting equation (8.59) with respect to x′2 we get,

Υxx − 2ωtx = 0. (8.63)
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Splitting equation (8.59) with respect to x′3 we get,

ωxx = 0. (8.64)

Splitting equation (8.59) with respect to x′xr ′, xx′, x′xr, or x′xr ′′ we get,

ωx = 0. (8.65)

Splitting equation (8.59) with respect to xr we get,

− ρ(Υx − 2ωt) = 0. (8.66)

Splitting equation (8.59) with respect to xr′2 we get,

− βωrx + κ(Υ rxx − 2ωrtx) = 0. (8.67)

Splitting equation (8.59) with respect to xr′ we get,

− β(Υx − 2ωt) + β(Υ rx − ωrt ) + κ(2Υ rtx − ωrtt) = 0. (8.68)

Splitting equation (8.59) with respect to xr′3 we get,

− κωrxx = 0. (8.69)

Splitting equation (8.59) with respect to xr ′ or xr ′′ we get,

− κωrx = 0. (8.70)

Splitting equation (8.59) with respect to xr ′′ we get,

− κ(Υx − 2ωt) + κ(Υ rx − 2ωrt ) = 0. (8.71)

From equation (8.65), we get ω = ω(t).
From equation (8.63), Υ = A(t)x+ θ(t).
From equation (8.61) or (8.66), we get,

ωt = 1
2A(t). (8.72)

From equation (8.71) and using equations (8.70) and (8.72), we get Υ r = A(t)x+ψ(t−r).

The following theorems make a complete classification of the second order neutral
differential equation to solvable Lie algebras. The notation u is used to denote xr:

Theorem 8.4.1. The neutral differential equation given by equation (8.57) for which
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β 6= 0, κ 6= 0, γ 6= −ρ admits a two dimensional group generated by

S1 = ∂

∂t
, S2 = x

(
∂

∂x
+ ∂

∂u

)
,

with the infinite dimensional Lie sub-algebra given by

Si3 = −
( 1 + κ

2(γ + ρ)gt + β

2(γ + ρ)A
)
∂

∂t
+
[
θ − x

(1 + κ

β
At + 2(γ + ρ)

β
ω

)]
∂

∂x

+
[
ψ − x

(1 + κ

β
At + 2(γ + ρ)

β
ω

)]
∂

∂u
.

Proof. Let β, γ, ρ, κ be arbitrary non-zero constants, γ 6= −ρ. Then from equation (8.60),
we get,

(1 + κ)Att + βAt + (γ + ρ)A = 0, (8.73)

and θtt + βψt + γθ + ρψ + κψtt = 0.
Solving equation (8.73) by using equation (8.72), we get,

ω = c2 −
1 + κ

2(γ + ρ)At −
β

2(γ + ρ)A, (8.74)

where c1 is an arbitrary constant and c2 = c1
γ + ρ

. From equation (8.74),

A(t) = c3 −
1 + κ

β
At −

2(γ + ρ)
β

ω, (8.75)

where c3 = 2c2(γ + ρ)
β

.

This yields,
Υ =

(
c3 −

1 + κ

β
At −

2(γ + ρ)
β

ω

)
x+ θ, (8.76)

and,
Υ r =

(
c3 −

1 + κ

β
At −

2(γ + ρ)
β

ω

)
x+ ψ. (8.77)

The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

=
(
c2 −

1 + κ

2(γ + ρ)At −
β

2(γ + ρ)A
)
∂

∂t
+
[(
c3 −

1 + κ

β
At −

2(γ + ρ)
β

ω

)
x+ θ

]
∂

∂x

+
[(
c3 −

1 + κ

β
At −

2(γ + ρ)
β

ω

)
x+ ψ

]
∂

∂xr
.

The Lie algebra is spanned by S1 = ∂

∂t
, S2 = x

(
∂

∂x
+ ∂

∂u

)
.
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With g = 2ωt, we get

S3 = −
( 1 + κ

2(γ + ρ)At + β

2(γ + ρ)A
)
∂

∂t
+
[
θ − x

(1 + κ

β
At + 2(γ + ρ)

β
ω

)] ∂
∂x

+
[
ψ − x

(1 + κ

β
At + 2(γ + ρ)

β
ω

)]
∂

∂u

is the infinite dimensional Lie sub-algebra.

The commutator table is given by

S1 S2

S1 0 0

S2 0 0

.

Then L = {S1, S2} is a solvable Lie algebra.

Corollary 8.4.1. For the neutral differential equation given by equation (8.57), we
obtain the same result as in Theorem 8.4.1, if either γ or ρ is 0.

Theorem 8.4.2. The neutral differential equation given by equation (8.57) for which
β 6= 0, γ = −ρ, κ 6= −1, admits a four dimensional group generated by

S1 = t
∂

∂t
, S2 = ∂

∂t
, S3 = tx

[
∂

∂x
+ ∂

∂u

]
, S4 = x

[
∂

∂x
+ ∂

∂u

]
,

with the infinite dimensional Lie sub-algebra given by

Si5 = −1 + κ

2β A
∂

∂t
+
[
θ − 2βωx

1 + κ

]
∂

∂x
+
[
ψ − 2βxω

1 + κ

]
∂

∂u
.

Proof. Let β, γ, ρ, κ be arbitrary non-zero constants, γ = −ρ, κ 6= −1. Then from
equation (8.60), we get,

(1 + κ)ωttt + βωtt = 0, (8.78)

and θtt + βψt + γ(θ − ψ) + κψtt = 0.
Solving equation (8.78) we get,

ω = c6t+ c7 −
1 + κ

2β A, (8.79)

where c4, c5 are arbitrary constants and c6 = c4
β
, c7 = c5

β
. From equation (8.79),

A(t) = c8t+ c9 −
2β
A
ω, (8.80)



Chapter 8. Classification of Second Order Functional Differential
Equations With Constant Coefficients to Solvable Lie Algebras 163

where c8 = 2c1
1 + κ

, c9 = 2c2
1 + κ

. This yields,

Υ =
(
c8t+ c9 −

2β
A
ω

)
x+ θ(t), (8.81)

and,
Υ r =

(
c8t+ c9 −

2β
A
ω

)
x+ ψ(t− r). (8.82)

The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

=
(
c6t+ c7 −

1 + κ

2β A

)
∂

∂t
+
[(
c8t+ c9 −

2β
A
ω

)
x+ θ

]
∂

∂x

+
[(
c8t+ c9 −

2β
A
ω

)
x+ ψ

]
∂

∂xr
.

The Lie algebra is spanned by S1 = t
∂

∂t
, S2 = ∂

∂t
,

S3 = tx

[
∂

∂x
+ ∂

∂u

]
, S4 = x

[
∂

∂x
+ ∂

∂u

]
with

S5 = −1 + κ

2β A
∂

∂t
+
[
θ − 2βωx

1 + κ

]
∂

∂x
+
[
ψ − 2βxω

1 + κ

]
∂

∂u
as the infinite dimensional Lie

sub-algebra.

The commutator table is given by,

S1 S2 S3 S4

S1 0 −S2 S3 0

S2 S2 0 S4 0

S3 −S3 −S4 0 0

S4 0 0 0 0

.

Then L = {S1, S2, S3, S4} is a solvable Lie algebra.

Theorem 8.4.3. The neutral differential equation given by equation (8.57) for which
β 6= 0, γ = −ρ, κ = −1, admits a three dimensional group generated by

S1 = t
∂

∂t
, S2 = ∂

∂t
, S3 = x

[
∂

∂x
+ ∂

∂u

]
,



Chapter 8. Classification of Second Order Functional Differential
Equations With Constant Coefficients to Solvable Lie Algebras 164

with the infinite dimensional Lie sub-algebra given by

Si4 = θ
∂

∂x
+ ψ

∂

∂u
.

Proof. Let β, γ, ρ, κ be arbitrary non-zero constants, γ = −ρ, κ = −1. Then equation
(8.60) becomes Υtt + βΥ rt + γ(Υ − Υ r)− Υ rtt = 0, which yields,

Att = 0, (8.83)

and θtt + βψt + γ(θ − ψ)− ψtt = 0.
Solving equation (8.83) we get,

ω = c10t+ c11, (8.84)

where c10, c11 are arbitrary constants. From equation (8.84),

A(t) = c12, (8.85)

where c12 = 2c10.
This yields,

Υ = c12x+ θ(t), (8.86)

and,
Υ r = c12x+ ψ. (8.87)

The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

= (c10t+ c11) ∂
∂t

+ (c12x+ θ) ∂
∂x

+ (c12x+ ψ) ∂

∂xr
.

The Lie algebra is spanned by
S1 = t

∂

∂t
, S2 = ∂

∂t
, S3 = x

[
∂

∂x
+ ∂

∂u

]
with

S4 = θ
∂

∂x
+ ψ

∂

∂u
as the infinite dimensional Lie sub-algebra.

The commutator table is given by

S1 S2 S3

S1 0 −S2 0

S2 S2 0 0

S3 0 0 0

.



Chapter 8. Classification of Second Order Functional Differential
Equations With Constant Coefficients to Solvable Lie Algebras 165

Then L = {S1, S2, S3} is a solvable Lie algebra.

Theorem 8.4.4. The neutral differential equation given by equation (8.57) for which
β 6= 0, γ = 0 = ρ, κ 6= 0, admits a five dimensional group generated by

S1 = t
∂

∂t
, S2 = ∂

∂t
, S3 = tx

[
∂

∂x
+ ∂

∂u

]
,

S4 = x

[
∂

∂x
+ ∂

∂u

]
, S5 = ∂

∂u
,

with the infinite dimensional Lie sub-algebra given by

Si6 = −1 + κ

2β A
∂

∂t
+
[
θ − 2βωx

1 + κ

] ∂
∂x
−
[
κ

β
ψt + 1

β
+ 2βω

1 + κ

]
∂

∂u
.

Proof. Let β, κ be arbitrary non-zero constants, γ = 0 = ρ.
Then equation (8.60) becomes Υtt + βΥ rt + κΥ rtt = 0, which yields,

(1 + κ)Att + βAt = 0, (8.88)

and ψ = c13 −
κ

β
ψt −

1
β
θt, where c13 is an arbitrary constant.

Solving equation (8.88) we get,

ω = c16t+ c17 −
1 + κ

2β A, (8.89)

where c14, c15 are arbitrary constants and c16 = c14
β
, c17 = c15

β
. From equation (8.89),

A(t) = c18t+ c19 −
2β

1 + κ
ω, (8.90)

where c18 = 2c16β

1 + κ
and c19 = 2c17β

1 + κ
. This yields,

Υ =
(
c18t+ c19 −

2β
1 + κ

ω

)
x+ θ, (8.91)

and,
Υ r =

(
c18t+ c19 −

2β
1 + κ

ω

)
x+ c13 −

κ

β
ψt −

1
β
θt. (8.92)

The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

=
(
c16t+ c17 −

1 + κ

2β A

)
∂

∂t
+
[(
c18t+ c19 −

2β
1 + κ

ω

)
x+ θ

]
∂

∂x

+
[(
c18t+ c19 −

2β
1 + κ

ω

)
x+ c13 −

κ

β
ψt −

1
β
θt

]
∂

∂xr
.
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The Lie algebra is spanned by S1 = t
∂

∂t
, S2 = ∂

∂t
,

S3 = tx

[
∂

∂x
+ ∂

∂u

]
, S4 = x

[
∂

∂x
+ ∂

∂u

]
, S5 = ∂

∂u
with

S6 = −1 + κ

2β A
∂

∂t
+
[
θ − 2βωx

1 + κ

]
∂

∂x
−
[
κ

β
ψt + 1

β
+ 2βω

1 + κ

]
∂

∂u

as the infinite dimensional Lie sub-algebra.

The commutator table is given by

S1 S2 S3 S4 S5

S1 0 −S2 S3 0 0

S2 S2 0 S4 0 0

S3 −S3 −S4 0 0 0

S4 0 0 0 0 0

S5 0 0 0 0 0

.

Then L = {S1, S2, S3, S4, S5} is a solvable Lie algebra.

Theorem 8.4.5. The neutral differential equation given by equation (8.57) for which
β = 1, κ = 1, admits a three dimensional group generated by

S1 = t
∂

∂t
+ tx

[
∂

∂x
+ ∂

∂u

]
, S2 = ∂

∂t
+ x

[
∂

∂x
+ ∂

∂u

]
, S3 = ∂

∂u
,

with the infinite dimensional Lie sub-algebra given by

Si4 = −A ∂

∂t
+ [θ − ωx] ∂

∂x
− [ωx+ (θt + ψt)]

∂

∂u
.

Proof. Let β = 1 = κ, γ = −ρ, κ 6= −1. Then equation (8.60) becomes Υtt+Υ rt +Υ rtt = 0,
which yields,

2Att +At = 0, (8.93)

and ψ = c20 − (θt + ψt), where c20 is an arbitrary constant.
Solving equation (8.93) we get,

ω = c21t+ c22 −A, (8.94)
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where c21, c22 are arbitrary constants. From equation (8.94),

A(t) = c21t+ c22 − ω. (8.95)

This yields,
Υ = (c21t+ c22 − ω)x+ θ, (8.96)

and,
Υ r = (c21t+ c22 − ω)x+ c20 − (θt + ψt). (8.97)

The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

= (c21t+ c22 −A) ∂
∂t

+ [(c21t+ c22 − ω)x+ θ] ∂
∂x

+ [(c21t+ c22 − ω)x+ c20 − (θt + ψt)]
∂

∂xr
.

The Lie algebra is spanned by S1 = t
∂

∂t
+ tx

[
∂

∂x
+ ∂

∂u

]
,

S2 = ∂

∂t
+ x

[
∂

∂x
+ ∂

∂u

]
, S3 = ∂

∂u
with

S4 = −A ∂

∂t
+[θ−ωx] ∂

∂x
− [ωx+(θt+ψt)]

∂

∂u
as the infinite dimensional Lie sub-algebra.

The commutator table is given by

S1 S2 S3

S1 0 −S2 0

S2 S2 0 0

S3 0 0 0

.

Then L = {S1, S2, S3} is a solvable Lie algebra.

8.4.2 A Nonlinear Case

We make a classification of

x′′(t) + x′′(t− r) + x′(t− r) + x′(t)x(t) = 0. (8.98)

Applying the operator defined by equation (8.57), to the delay equation g(t) = t− r, we
get equation ω(t, x) = ω(t− r, x(t− r)).
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Applying the operator defined by equation (8.57), to equation (8.98), we get,

Υtt+(2Υtx−ωtt)x′+(Υxx−2ωtx)x′2−ωxxx′3+(Υx−2ωt)x′′−3ωxx′x′′+Υ rtt+(2Υ rtx−ωrtt)xr ′

+ (Υ rxx − 2ωrtx)xr′2 − ωrxxxr
′3 + (Υ rx − 2ωrt )xr ′′ − 3ωrxxr ′xr ′′ + Υ rt + (Υ rx − ωrt )xr ′ − ωrxxr

′2

+ x′Υ + x[Υt + (Υx − ωt)x′ − ωxx′2] = 0. (8.99)

Splitting equation (8.99) with respect to constant term, x′, x′2, x′3, x′′, x′x′′, xr ′, xr′2,
xr
′3, xr ′′ and xr ′xr ′′ respectively, we get,

Υtt + Υ rtt + Υ rt + xΥt = 0, (8.100)

2Υtx − ωtt + Υ = 0, (8.101)

Υxx − 2ωtx = 0, (8.102)

ωxx = 0, (8.103)

Υx − 2ωt = 0, (8.104)

ωx = 0, (8.105)

2Υ rtx − ωrtt + Υ rx − ωrt = 0, (8.106)

Υ rxx − 2ωrtx − ωrx = 0, (8.107)

ωrxx = 0, (8.108)

Υ rx − 2ωrt = 0, (8.109)

ωrx = 0. (8.110)

From these equations we get, ω = ω(t), Υ = A(t)x+ θ(t), Υ r = 1
2A(t)x+ ψ(t− r),

where A(t) = 2ωt.
Substituting the values of Υ, Υ r in equation (8.100) and solving it, we get,
A(t) = c23, θ = c24, ψ = c25 − ψt, and,

ω = c26t+ c27, (8.111)

Υ = c23x+ c24, Υ r = c23x+ c25 − ψt, (8.112)

where c23, c24, c25, c27 are arbitrary constants and c26 = c23
2 .

The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

= (c26t+ c27) ∂
∂t

+ (c23x+ c24) ∂
∂x

+ (c23x+ c25 − ψt)
∂

∂xr
.
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The Lie algebra is spanned by
S1 = t

∂

∂t
, S2 = ∂

∂t
, S3 = x

[ ∂
∂x

+ ∂

∂u

]
,

S4 = ∂

∂x
, S5 = ∂

∂u
with S6 = −ψt

∂

∂u
as the infinite dimensional Lie sub-algebra.

The commutator table is given by

S1 S2 S3 S4 S5

S1 0 −S2 0 0 0

S2 S2 0 0 0 0

S3 0 0 0 −S4 − S5 0

S4 0 0 S4 + S5 0 0

S5 0 0 0 0 0

.

Then L = {S1, S2, S3, S4, S5} is a solvable Lie algebra.

Remark 8.4.1. For the non-homogeneous nonlinear second order neutral differential
equation x′′(t) + x′′(t − r) + x′(t − r) + x′(t)x(t) = h(t), we get exactly the same
generators as in the homogeneous case, only that S6 = (y − ψt)

∂

∂xr
is the corresponding

infinite dimensional Lie sub-algebra, where y = c26
∫
t h′dt+ c27h.

8.5 Summary

With the notation Lmn , where m denotes the dimension of the solvable Lie algebra and
Si to mean the infinite dimensional Lie sub-algebra, the entire classification of second
order functional differential equations with constant coefficients to solvable Lie algebras
is summarized in Table 8.1 and Table 8.2 below:
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Table 8.1: Group Classification of Second Order Functional Differential Equations

Type of Functional
Differential Equation Basis for the Lie Algebra Solvable

Lie algebra

x′′(t)+βx′(t−r)+γx(t)+
ρx(t− r) = 0,
γ 6= ρ

2 .

S1 = ∂

∂t
, S2 = x

∂

∂x
, S3x

∂

∂u
,

Si4 = −

 1
2(γ + ρ

2)
+

4(γ + ρ

2)

β
A

 ∂

∂t

+
[
θ − x

 2
β
At +

4(γ + ρ

2)

β
ω

] ∂
∂x

+

ψ − x
 1
β
At +

2(γ + ρ

2)

β
ω


 ∂

∂u
.

L3
1

x′′(t) + βx′(t − r) +
ρ

2x(t) + ρx(t− r) = 0.

S1 = t
∂

∂t
, S2 = ∂

∂t
,

S3 = tx

[
∂

∂x
+ 1

2
∂

∂u

]
,

S4 = x

[
∂

∂x
+ 1

2
∂

∂u

]
,

Si5 = −A
β

∂

∂t
+(θ−βxω) ∂

∂x
+(ψ−βxω4 ) ∂

∂u
.

L4
2

x′′(t) + x′(t− r) = 0.

S1 = t
∂

∂t
+ tx

[
∂

∂x
+ 1

2
∂

∂u

]
,

S2 = ∂

∂t
+ x

[
∂

∂x
+ 1

2
∂

∂u

]
, S3 = ∂

∂u
,

Si4 = −A ∂

∂t
+(θ−xω) ∂

∂x
−
(
θt + xω

2

)
∂

∂u
.

L3
3

x′′(t) + βx′(t− r) = 0.

S1 = t
∂

∂t
, S2 = ∂

∂t
,

S3 = tx

[
∂

∂x
+ 1

2
∂

∂u

]
,

S4 = x

[
∂

∂x
+ 1

2
∂

∂u

]
, S5 = ∂

∂u
,

Si6 = −A
β

∂

∂t
+ (θ − βxω) ∂

∂x
+(

θt
β

+ βxω

)
∂

∂u
.

L5
4

x′′(t) + x′(t) + x′(t −
r)x(t) = v(t).

S1 = x
∂

∂x
, S2 = ∂

∂x
,

S3 = t
∂

∂t
, S4 = ∂

∂t
,

S5 = x
∂

∂u
, S6 = ∂

∂u
,

Si7 = (θt − y) ∂
∂x

.

L6
5



Chapter 8. Classification of Second Order Functional Differential
Equations With Constant Coefficients to Solvable Lie Algebras 171

Table 8.2: Group Classification of Second Order Functional Differential Equations

Type of Functional
Differential Equation Basis for the Lie Algebra Solvable

Lie algebra

x′′(t)+βx′(t−r)+γx(t)+
ρx(t−r)+κx′′(t−r) = 0,
γ 6= −ρ.

S1 = ∂

∂t
, S2 = x

(
∂

∂x
+ ∂

∂u

)
,

Si3 = −
( 1 + κ

2(γ + ρ)gt + β

2(γ + ρ)A
)
∂

∂t

+
[
θ − x

(1 + κ

β
At + 2(γ + ρ)

β
ω

)] ∂
∂x

+
[
ψ − x

(1 + κ

β
At + 2(γ + ρ)

β
ω

)]
∂

∂u
.

L2
6

x′′(t) + βx′(t − r) +
γ(x(t) − x(t − r)) +
κx′′(t− r) = 0,
κ 6= −1.

S1 = t
∂

∂t
, S2 = ∂

∂t
,

S3 = tx

[
∂

∂x
+ ∂

∂u

]
, S4 = x

[
∂

∂x
+ ∂

∂u

]
,

Si5 = −1 + κ

2β A
∂

∂t
+
[
θ − 2βωx

1 + κ

]
∂

∂x
+[

ψ − 2βxω
1 + κ

]
∂

∂u
.

L4
7

x′′(t) + βx′(t − r) +
γ(x(t)−x(t−r))−x′′(t−
r) = 0.

S1 = t
∂

∂t
, S2 = ∂

∂t
,

S3 = x

[
∂

∂x
+ ∂

∂u

]
,

Si4 = θ
∂

∂x
+ ψ

∂

∂u
.

L3
8

x′′(t) + βx′(t − r) +
κx′′(t− r) = 0.

S1 = t
∂

∂t
, S2 = ∂

∂t
,

S3 = tx

[
∂

∂x
+ ∂

∂u

]
,

S4 = x

[
∂

∂x
+ ∂

∂u

]
, S5 = ∂

∂u
,

Si6 = −1 + κ

2β A
∂

∂t
+
[
θ − 2βωx

1 + κ

] ∂
∂x

−
[
κ

β
ψt + 1

β
+ 2βω

1 + κ

]
∂

∂u
.

L5
9

x′′(t)+x′(t−r)+x′′(t−
r) = 0.

S1 = t
∂

∂t
+ tx

[
∂

∂x
+ ∂

∂u

]
,

S2 = ∂

∂t
+ x

[
∂

∂x
+ ∂

∂u

]
, S3 = ∂

∂u
,

Si4 = −A ∂

∂t
+ [θ − ωx] ∂

∂x
− [ωx + (θt +

ψt)]
∂

∂u
.

L3
10

x′′(t)+x′′(t−r)+x′(t−
r) + x′(t)x(t) = v(t).

S1 = t
∂

∂t
, S2 = ∂

∂t
, S3 = ∂

∂x
,

S4 = x
[ ∂
∂x

+ ∂

∂u

]
, S5 = ∂

∂u
,

Si6 = (y − ψt)
∂

∂u
.

L5
11
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9.1 Introduction

The Burger equation also known as Bateman-Burger equation is a fundamental partial
differential equation most commonly occuring in fluid mechanics, nonlinear acoustics,
gas dynamics and traffic flow. For a given field u(t, x) and diffusion coefficient ν, the
general form of the Burgers’ equation is

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2 .

When the diffusion term is absent, the Burgers’ equation becomes the Inviscid Burger
equation

∂u

∂t
+ u

∂u

∂x
= 0,

which is a prototype for conservation laws that can develop discontinuities called shock
waves.
Literature on the Burger equation with its applications can be found in [6]. Further
periodic wave shock solutions for the Burgers’ equation can be found in [4]. Also in
[52] we can find numerical solutions of the non-homogeneous and nonlinear one dimen-
sional Burgers’ equation. As differential equations with delay cannot easily be solved,
our biggest motivation was to apply symmetry methods in finding a representation
of analytic solutions to the Burgers’ equation with delay. These solutions obtained
will be of utmost importance to researchers in fluid mechanics. The group methods
indeed help us in studying the properties of solutions of this partial differential equation
with delay. The analytic solutions obtained can further be studied to understand their
qualitative properties which will help in better modelling of the physical problem at hand.

Not many research papers on symmetry analysis of partial differential equations with
delay are available. Symmetry ideas and techniques for solutions of partial differential
equations are presented in [62]. In [16] symmetry analysis is used to reduce the number
of independent variables of time fractional partial differential equations and obtain
some exact solutions. Approximate symmetries of a class of nonlinear reaction-diffusion
equations are comprehensively analyzed in [44] and also one-dimensional sub algebras
are constructed. Lie symmetry theory is extended to the class of space-time fractional
differential equations with a delay in [46] and the admitted symmetries of the time
fractional Poisson equation with constant delay have been found. Group analysis to the
reaction-diffusion delay differential equation has been applied in [35] and the complete
group classification of the reaction-diffusion equation with delay is made. The research
interest in group analysis of differential equations is so much that admitted Lie groups
for stochastic differential equations have been defined in [56] and stochastic differential
equations with multi-Brownian motion have been studied. New exact explicit solutions of
(2+1)-dimensional dispersive long wave equations using similarity transformation method
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are obtained in [55]. The method therein, reduces the dimension of the partial differential
equations by one. Further, very recently in [10] Lie group theoretic method is used
to carry out the similarity reduction and solitary wave solutions of (2+1)-dimensional
Date–Jimbo–Kashiwara–Miwa equation. The infinitesimal generators for the governing
equation have been obtained therein. These papers add to the motivation for applying
symmetry analysis to differential equations with delay as many systems are accurately
modelled by delay differential equations and finding analytic solutions to them become
of paramount importance. The existing computational technique to obtain symmetries
of delay differential equations are based on the Lie-Bäcklund operator and result in
magnification in the delay term when obtaining the determining equations. No such
magnification appears while using our technique obtained from Taylor’s theorem for a
function of several variables.

In this chapter, we perform group analysis of the Inviscid Burgers’ type equation with
delay, which is of the form,

∂u

∂t
(t, x) + u(t, x)∂u

∂x
(t, x) = G(u(t− r, x)), (9.1)

where u is a real valued function defined on I ×D, and where I is an open interval in R
and D is an open set in R.
Equation (9.1) under study is a nonlinear first-order partial differential equation with
delay and an arbitrary differentiable functional G.
We have used Taylor’s theorem for a function of several variables to obtain a Lie type
invariance condition for first-order partial differential equations with delay. We have
studied the Inviscid Burgers’ type equation with delay and an arbitrary differentiable
functional and have obtained its symmetries and made a group classification. Further,
we have found the kernel and extensions of the kernel to classify (9.1) with respect to its
symmetries for an arbitrary and the special case for its functional G. We have obtained a
representation of solutions from the invariants and used these representations to reduce
the equations to ordinary functional differential equations.

9.2 Lie Type Invariance Condition for First Order Partial
Differential Equations With Delay

Let u = u(t, x). Then we consider transformations of the form,

t̄ = f1(t, x, u; δ), x̄ = f2(t, x, u; δ), ū = f3(t, x, u; δ),
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where f1, f2, f3 are smooth functions of t, x, u having a convergent Taylor series in δ.

Defining,

T (t, x, u) = ∂f1
∂δ

∣∣∣∣∣
δ=0

, X(t, x, u) = ∂f2
∂δ

∣∣∣∣∣
δ=0

, U(t, x, u) = ∂f3
∂δ

∣∣∣∣∣
δ=0

,

we can write the transformations as,
t̄ = t+ δT (t, x, u) +O(δ2),

x̄ = x+ δX(t, x, u) +O(δ2),

ū = u+ δU(t, x, u) +O(δ2).

We establish the following Lie type invariance condition for first-order partial differential
equations with delay using Taylor’s theorem for a function of several variables:

Theorem 9.2.1. Consider the first-order partial differential equation with delay

F

(
t, t− r, x, u, u(t− r, x), ∂u

∂t
(t, x), ∂u

∂x
(t, x), ∂u

∂x
(t− r, x)

)
= 0, (9.2)

where F is defined on a 8-dimensional space I × I − r ×D6, where D is an open set in
R, I is any interval in R, and I − r = {y − r : y ∈ I}. Then the Lie type invariance
condition is given by

TFt + T rFtr +XFx + UFu + U rFur + U[t]Fut + U[x]Fux + U r[x]Furx = 0,

where T r = T (t− r, x, u(t− r, x)), U r = U(t− r, x, u(t− r, x)) and the total differential
operators given by,

Dt = ∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ utx

∂

∂ux
+ · · · ,

and,
Dx = ∂

∂x
+ ux

∂

∂u
+ utx

∂

∂ut
+ uxx

∂

∂ux
+ · · · .

The extended infinitesimals are given by,

U[t] = Dt(U)− utDt(T )− uxDt(X),

U[x] = Dx(U)− utDx(T )− uxDx(X),

U r[x] = U rx + urxU
r
ur − urtr(T rx + urxT

r
ur)− urx(Xr

x + urxX
r
ur).

Proof. We seek the invariance of equation (9.2) under Lie group of infinitesimal transfor-
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mations given by,
t̄ = t+ δT (t, x, u) +O(δ2),

x̄ = x+ δX(t, x, u) +O(δ2),

ū = u+ δU(t, x, u) +O(δ2).

Then, it naturally follows that,

t− r = t− r + δT (t− r, x, u(t− r, x)) +O(δ2),

ū(t− r, x̄) = u(t− r, x) + δU(t− r, x, u(t− r, x)) +O(δ2).

Let T (t−r, x, u(t−r, x)) = T r, X(t−r, x, u(t−r, x)) = Xr, U(t−r, x, u(t−r, x)) = U r.

As the partial differential equation given by equation (9.2) contains first-order deriva-
tives ∂u

∂t
(t, x) = ut(t, x) and ∂u

∂x
(t, x) = ux(t, x), it is necessary to obtain extended

transformations for these.
In analogy with ordinary differential equations, we define the extended transformations
ūt̄ and ūx̄ as,

ūt̄ = ut + δU[t] +O(δ2),

ūx̄ = ux + δU[x] +O(δ2).

We introduce the total differential operators Dt and Dx where,

Dt = ∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ utx

∂

∂ux
+ · · · ,

Dx = ∂

∂x
+ ux

∂

∂u
+ utx

∂

∂ut
+ uxx

∂

∂ux
+ · · · .

We can write equation (9.2) as F (t, t− r, x, u, ur, ut, ux, urx) = 0 where ur = u(t− r, x).
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We shall now construct the extended transformations for ut and ux as follows,

ūt̄ = ∂(ū, x̄)
∂(t̄, x̄)

= ∂(ū, x̄)
∂(t, x)

/
∂(t̄, x̄)
∂(t, x)

=

∣∣∣∣∣∣∣∣
ūt ūx

x̄t x̄x

∣∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣∣

t̄t t̄x

x̄t x̄x

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
ut + δDt(U) +O(δ2) ux + δDx(U) +O(δ2)

δDt(X) +O(δ2) 1 + δDx(X) +O(δ2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 + δDt(T ) +O(δ2) δDx(T ) +O(δ2)

δDt(X) +O(δ2) 1 + δDx(X) +O(δ2)

∣∣∣∣∣∣∣∣
= ut + δ[Dt(U) + utDx(X)− uxDt(X)] +O(δ2)

1 + δ[Dt(T ) +Dx(X)] +O(δ2)
= ut + δ[Dt(U)− utDt(T )− uxDt(X)] +O(δ2).

Thus we define,
U[t] = Dt(U)− utDt(T )− uxDt(X),

U[x] = Dx(U)− utDx(T )− uxDx(X).

Then,
ū(t− r, x) = ux(t− r, x) + δU[x](t− r, x, u(t− r, x)) +O(δ2).

Now,
U[t] = Ut + utUu − ut(Tt + utTu)− ux(Xt + utXu), (9.3)

and,
U[x] = Ux + uxUu − ut(Tx + uxTu)− ux(Xx + uxXu). (9.4)

U r[x] = Ux(t− r, x, u(t− r, x))

+ ux(t− r, x)Uu(t−r,x)(t− r, x, u(t− r, x, u(t− r, x)))

− ut−r(t− r, x)(Tx(t− r, x, u(t− r, x))

+ ux(t− r, x)Tu(t−r,x)(t− r, x, u(t− r, x)))

− ux(t− r, x)(Xx(t− r, x, u(t− r, x))

+ uxXu(t−r,x)(t− r, x, u(t− r, x))).

Then,
U r[x] = U rx + urxU

r
ur − urtr(T rx + urxT

r
ur)− urx(Xr

x + urxX
r
ur).
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Then, it follows that,

ūx(t− r, x) = ux(t− r, x) + δU r[x] +O(δ2).

For invariance, we need to have,

0 = F (t̄, t− r, x̄, ū, ūr, ūt̄, ūx̄, ūrx̄)

= F (t+ δT +O(δ2), t− r + δT r +O(δ2), x+ δX +O(δ2),

u+ δU +O(δ2), ur + δU r +O(δ2), ut + δU[t] +O(δ2),

ux + δU[x] +O(δ2), urx + δU r[x] +O(δ2))

= F (t, t− r, x, u, ur, ut, ux, urx) + δ(TFt + T rFtr +XFx + UFu + U rFur

+ U[t]Fut + U[x]Fux + U r[x]Furx) +O(δ2).

Equating the coefficient of δ, we get,

TFt + T rFtr +XFx + UFu + U rFur + U[t]Fut + U[x]Fux + U r[x]Furx = 0.

The infinitesimal generator of the admitted group for the equation given by (9.2) is,

ζ∗ = T
∂

∂t
+X

∂

∂x
+ U

∂

∂u
.

The system of characteristics for this is

dt

T
= dx

X
= du

U
. (9.5)

The first extension is given by,

ζ(1) = T
∂

∂t
+ T r

∂

∂tr
+X

∂

∂x
+ U

∂

∂u
+ U r

∂

∂ur
+ U[t]

∂

∂ut
+ U[x]

∂

∂ux
+ U r[x]

∂

∂urx
. (9.6)

The Lie type invariance condition is given by ζ(1)∆ |∆=0= 0, where
∆ = F (t, t− r, x, u, ur, ut, ux, urx) = 0.

9.3 Symmetries of the Inviscid Burgers’ Equation With
Delay

In this section, we shall obtain symmetries of the Invisid Burgers’ equation with delay
given by equation (9.1). We can rewrite equation (9.1) as ut + uux = G(ur). Here,
∆ = ut + uux −G(ur) = 0.
We establish the following result:
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Theorem 9.3.1. The time-delayed Inviscid Burgers’ equation given by equation (9.1)
admits the three dimensional Lie group generated by

ζ∗1 = ∂

∂t
, ζ∗2 = x

∂

∂x
+ u

∂

∂u
, ζ∗3 = ∂

∂x
.

Proof. Applying the first extension ζ(1) to the delay condition h(t) = t − r, we get,
T (t, x, u) = T r.

Applying the Lie type invariance condition given by equation (9.6) to equation (9.1), we
get,

uxU −G′(ur)U r + U[t] + uU[x] = 0.

Using equations (9.3) and (9.4), we get the determining equation,

uxU −G′(ur)U r + Ut + utUu − utTt − u2
tTu − uxXt − uxutXu

+ u(Ux + uxUu − utTx − uxutTu − uxXx − u2
xXu) = 0. (9.7)

Since ux, uux, uut and ut are independent variables, we can split (9.7) with respect to
these variables.
Splitting equation (9.7) with respect to u2

x we get Xu = 0 which can be solved to give,

X(t, x, u) = A(t, x). (9.8)

Splitting equation (9.7) with respect to u2
t we get Tu = 0 which can be solved to give,

T (t, x, u) = B(t, x). (9.9)

Splitting equation (9.7) with respect to uux and solving we get Uu = Ax(t, x) which can
be solved to give,

U(t, x, u) = Ax(t, x)u+ C(t, x). (9.10)

Substituting equations (9.8), (9.9) and (9.10) in equation (9.7), we get,

2Ax(t, x)G(ur)−Ax(tr, x)urG′(ur) + u2Axx(t, x) + uxC(t, x) + uCx(t, x)

+ uAxt(t, x)− uxAt(t, x) + Ct(t, x)− utBt(t, x)− uutBx(t, x)−G′(ur)C(tr, x) = 0.
(9.11)

Equating the coefficient of u2 to 0, we get Axx(t, x) = 0, which can be solved to give,

A(t, x) = a1tx+ b1(t). (9.12)

Equating the coefficient of u to 0, we get,

Cx(t, x) +Axt(t, x)− utBx(t, x) = 0. (9.13)
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Splitting equation (9.13) with respect to ut, we get, Bx(t, x) = 0, which can be solved to
give,

B = B(t). (9.14)

Using equations (9.12) and (9.14), equation (9.13) gives,

C(t, x) = −a′1(t)x+ a3(t). (9.15)

Splitting equation (9.11) with respect to ut, we get,

B(t, x) = c1, (9.16)

where c1 is an arbitrary constant.
Splitting equation (9.11) with respect to ux, we get,

C(t, x) = At(t, x). (9.17)

Using equations (9.12) and (9.15), equation (9.17) can be solved to give, a1(t) = c2,

where c2 is a constant, and b′1(t) = a3(t).
Hence equation (9.15) gives,

C(t, x) = a3(t). (9.18)

So far we have obtained,

A(t, x) = a1x+ b1(t), B(t, x) = c1, C(t, x) = a3(t).

With these values of A,B,C equation (9.11), simplifies to

c2[urG′(ur)− 2G(ur)] = 0, (9.19)

and,
a′3(t) = G′(ur)a3(tr). (9.20)

Since equation (9.20) is true for any functional G, we conclude that a3(t) = 0. Conse-
quently, b1(t) = c3, where c3 is an arbitrary constant.
Hence we get the coefficients of the infinitesimal transformation as

T (t, x, u) = c1, X(t, x, u) = c2x+ c3, U(t, x, u) = c2u.

Thus, the infinitesimal generator of the admitted Lie group is given by

ζ∗ = T
∂

∂t
+X

∂

∂x
+ U

∂

∂u
(9.21)

= c1
∂

∂t
+ (c2x+ c3) ∂

∂x
+ c2u

∂

∂u
. (9.22)
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9.4 Kernel of the Admitted Generators

Definition 9.4.1. A kernel of admitted generators is the set of symmetries, which are
admitted for any functional G appearing in the equation.

This implies that for the Inviscid Burgers’ equation with delay (9.1) the coefficients of
G′ur and G vanish. Therefore, c2 = 0. Thus,

T (t, x, u) = c1, X(t, x, u) = c3, U(t, x, u) = 0.

Thus, the obtained infinitesimal generator (which is admitted for any functional G) is
given by,

ζ∗ = c1
∂

∂t
+ c3

∂

∂x
. (9.23)

We have just obtained the following result:

Theorem 9.4.1. The kernel of the admitted Lie group for the time-delayed Inviscid
Burgers’ equation (9.1) is two dimensional with generators

ζ∗1 = ∂

∂t
, ζ∗2 = ∂

∂x
.

To obtain the symmetry derived by this infinitesimal generator, we need to solve,
dt̄

dδ
= T (t̄, x̄, ū) = c1, subject to t̄ = t, when δ = 0,

dx̄

dδ
= X(t̄, x̄, ū) = c3, subject to x̄ = x, when δ = 0,

dū

dδ
= U(t̄, x̄, ū) = 0, subject to ū = u, when δ = 0.

Solving this, we get,
t̄ = t+ δc1, x̄ = x+ δc3, ū = u. (9.24)

9.5 Extensions of the Kernel

Definition 9.5.1. Extensions are symmetries for the particular functional G only.

In the case of the Inviscid Burgers’ equation with delay (9.1), ∃ G(ur) satisfying equation
(9.19).
Here the extensions of the kernel given by (9.23) will be considered.
Since T (t, x, u) = c1, X(t, x, u) = c3, U(t, x, u) = 0, are considered in the case of the
kernel, the functions for this case are,

T (t, x, u) = 0, X(t, x, u) = c3x, U(t, x, u) = c3u.
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For the non-trivial case c2 6= 0, we seek a solution of equation (9.19), which is

urG′(ur) = 2G(ur).

This is a separable equation, which can be solved to give,

G(ur) = (ur)2c4,

where c4 is an arbitrary non-zero constant.
Then the extension of the kernel given by equation (9.23) is

ζ∗ = c2

[
x
∂

∂x
+ u

∂

∂u

]
. (9.25)

We have just proved the following result:

Theorem 9.5.1. The admitted Lie group for the extensions of the kernel of the time-
delayed Inviscid Burgers’ equation (9.1) is one dimensional with generator

ζ∗1 = x
∂

∂x
+ u

∂

∂u
.

To obtain the symmetry derived from equation (9.25) we solve,
dt̄

dδ
= T (t̄, x̄, ū) = 0, subject to t̄ = t, when δ = 0,

dx̄

dδ
= X(t̄, x̄, ū) = c2x̄, subject to x̄ = x, when δ = 0,

dū

dδ
= U(t̄, x̄, ū) = c2ū, subject to ū = u, when δ = 0.

Solving this, we get the symmetries derived from equation (9.25) which are given by,

t̄ = t, x̄ = xec2δ, ū = uec2δ. (9.26)

9.6 Representations of Analytical Solutions for the Time-
Delayed Inviscid Burgers’ Equation

In this section, we obtain the representation of invariant solutions for equation (9.1)
which is given in our following result:

Theorem 9.6.1. The representation of invariant solutions for the time-delayed Inviscid
Burgers’ equation given by equation (9.1), for which

1. G(ur) is arbitrary is u(t, x) = φ1(c3t− c1x).

2. G(ur) = c4(ur)2 and for which

(a) c1 = 0 is u(t, x) = (x+ c5)φ2(t).
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(b) c1 6= 0 is u(t, x) = ec6tφ3((x+ c5)e−c6t),

where φ1, φ2, φ3 are arbitrary functions.

Proof. We give a proof as follows:

9.6.1 Representations of Solutions for
ut(t, x) + u(t, x)ux(t, x) = G(u(t− r, x)) for an Arbitrary Functional
G.

The system of characteristics for equation (9.23) is given by

dt

c1
= dx

c3
= du

0 . (9.27)

Solving equation (9.27) we get, u = constant and c3t− c1x = constant.
Hence the invariants are u and c3t− c1x.

For constructing a representation of solutions, the relation between these two invariants
is

u(t, x) = φ1(c3t− c1x), (9.28)

where φ1 is an arbitrary function.
We call u in equation (9.28) as a representation of solutions of equation (9.1) for the
infinitesimal generator given by equation (9.23).
At the outset we immediately observe that, if φ1 is bounded, then all solutions u(t, x)
are also bounded.
We now discuss the solution for some choices of the function φ1:
Case i Let φ1(.) = e(.).

Then, u(t, x) = ec3t−c1x.

We observe that if c3 < 0, then all solutions are positive, decrease with time and
eventually tend to zero, as t tends to infinity.
However, if c3 > 0, then all solutions increase exponentially with time and eventually
tend to infinity, as t tends to infinity.
Case ii Let φ1(.) = (.)m, for any m ∈ N.
In this case, all solutions tend to infinity as t→∞.
The graphical representations of the analytical solutions for some choices of φ1 are shown
in Figure 9.4. Here t varies over [−10, 10] and x varies over [−5, 5].

9.6.2 Representations of solutions of
ut(t, x) + u(t, x)ux(t, x) = G(u(t− r, x)) for G = c4(ur)2.

The infinitesimal generator for the equation

ut(t, x) + u(t, x)ux(t, x) = c4u
2(t− r, x), (9.29)
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Figure 9.1: φ1(.) = e(.), c3 = −3, c1 = −2.

Figure 9.2: φ1(.) = sin (.), c3 = 5, c1 = −7.

Figure 9.3: φ1(.) = (.)2, c3 = 1, c1 = 4.

Figure 9.4: Graphical representation of solutions for some choices of φ1.
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is a linear combination of the kernel given by equation (9.23) and extension of kernel
given by equation (9.25). Thus,

ζ∗ = c1
∂

∂t
+ (c2x+ c3) ∂

∂x
+ c2u

∂

∂u
. (9.30)

The system of characteristics for the infinitesimal generator given by equation (9.30) is

dt

c1
= dx

c2x+ c3
= du

c2u
. (9.31)

Case 1: Let c1 = 0.
Then solving the equation relating the first and third term of equation (9.31) we get,
t = constant.
Solving the equation relating the second and third term of equation (9.31) we get,

u

x+ c3/c2
= constant.

In this case, the invariants are t and u

x+ c3/c2
.

Since c2 and c3 are arbitrary constants and c2 6= 0, we shall denote c5 = c3
c2
.

Hence a representation of solutions of equation (9.29) is

u

x+ c5
= φ2(t).

That is a representation of solutions for equation (9.29) in this case, is given by

u(t, x) = (x+ c5)φ2(t), (9.32)

where φ2 is an arbitrary function and c5 is an arbitrary constant.
We immediately observe that if φ2 is a bounded function, then all solutions u(t, x) are
bounded if and only if, x belongs to a bounded set.
We now discuss the solution by taking certain choices for the function φ2:
Case i: Let φ2(t) = eαt, α ∈ R.
In this case, all solutions u(t, x) tend to 0 as t→∞, provided α < 0.
On the other hand, all solutions u(t, x) tend to ∞ as t→∞, if α > 0.
Case ii: Let φ2(t) = tm,m ∈ N.
In this case, all solutions u(t, x) tend to ∞ as t→∞.
The graphical representations of the analytical solutions for some choices of φ2 are shown
in Figure 9.8. Here t varies over [−20, 20] and x varies over [−10, 10].

Case 2: Let c1 6= 0.
Then solving the equation relating the first and second term of equation (9.31) we get,
(x+ c5)e−c2t/c1 = constant.
Solving the equation relating the first and third term of equation (9.31) we get, ue−c2t/c1 =
constant.
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Figure 9.5: φ2(t) = eαt, α = −4, c5 = 5.

Figure 9.6: φ2(t) = sin(t), c5 = −4.

Figure 9.7: φ2(t) = t3, c5 = 0.

Figure 9.8: Graphical representation of solutions for some choices of φ2.
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In this case the invariants are (x+ c5)e−c2t/c1 and ue−c2t/c1 .

A representation of solutions of equation (9.29) in this case is

u = ec2t/c1φ3
(
(x+ c5)e−c2t/c1

)
,

where φ3 is an arbitrary function. Letting c6 = c2
c1
, we get a representation of solutions

for equation (9.29) as
u(t, x) = ec6tφ3

(
(x+ c5)e−c6t

)
. (9.33)

We discuss the behavior of the solutions with passing time for some choices of φ3 :
Case i: We first note that if φ3 is bounded and c6 < 0, then all solutions tend to zero,
with increase in time, that is, as t tends to infinity.
Case ii: If φ3 is bounded and c6 > 0, then all solutions increase with increase in time,
become unbounded and approach infinity as t tends to infinity.
Case iii: If φ3 is an identity function, i.e φ3(.) = (.), then u(t, x) = x+ c5. In this case, we
see that the solution is independent of time, and represents the “steady state” solution.
Case iv: Let φ3(.) = e(.).

Then, u(t, x) = ec6te(x+c5)e−c6t .

We deduce from here that, if c6 > 0, then all solutions are positive, become unbounded
and tend to infinity as time increases to infinity.
However, if c6 < 0, then all solutions exponentially decrease to 0 as t → ∞, provided
x+ c5 is non-positive.
The graphical representations of the analytical solutions for some choices of φ3 are shown
in Figure 9.12. In Figure 9.9 and Figure 9.10, t varies over [−30, 30] and x varies over
[−15, 15] while in Figure 9.11, t varies over [−0.3, 0.3] and x varies over [−0.1, 0.1].

9.7 Reduced Equations

Representations of solutions that we have obtained simplify the Inviscid Burgers’ equation
with delay (9.1). They reduce the number of independent variables appearing in the
equation. The representation when substituted in equation (9.1) reduces it to an ordinary
functional differential equation called a reduced equation.

Case 1: Let u = φ1(c3t− c1x).
Then by substituting this, equation (9.1) becomes

c3φ
′
1(c3t− c1x)− c1φ

′
1(c3t− c1x)φ1(c3t− c1x) = G(φ1(c3(t− r)− c1x)).
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Figure 9.9: φ3(.) = (.), c5 = 2.

Figure 9.10: φ3(.) = sin (.), c5 = 3, c6 =
−1.

Figure 9.11: φ3(.) = e(.), c5 = 4, c6 = −5.

Figure 9.12: Graphical representation of solutions for some choices of φ3.
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Putting ξ = c3t− c1x and simplifying the above equation we get,

φ′1(ξ) = G(φ1(ξ − c3r))
c3 − c1φ1(ξ) . (9.34)

Case 2: Let u = (x+ c5)φ2(t).
Then by substituting this, equation (9.29) becomes

(x+ c5)φ′2(t) + (x+ c5)[φ2(t)]2 = c4(x+ c5)2[φ2(t− r)]2,

which can be solved to give

φ′2(t) = c4(x+ c5)[φ2(t− r)]2 − [φ2(t)]2. (9.35)

Case 3: Let u = ec6tφ3
(
(x+ c5)e−c6t

)
.

Then by substituting this and putting η = (x+ c5)e−c6t, equation (9.29) becomes

−c6ηe
c6tφ′3(η) + c6e

c6tφ3(η) + ec6tφ3(η)φ′3(η) = c4e
c6(t−r)φ3

(
(x+ c5)e−c6(t−r)

)
,

which gives,
−c6φ

′
3(η) + c6φ3(η) + φ3(η)φ′3(η) = c4e

−c6rφ3(ηec6r),

which on simplification yields,

φ′3(η) = c4e
−c6rφ3(ηec6r)− c6φ3(η)

φ3(η)− ηc6
. (9.36)

Remark 9.7.1. It should be noted that equations (9.34), (9.35) and (9.36) are nonlinear
ordinary functional differential equations.

9.8 Summary

The following are our results of symmetry analysis of inviscid Burgers’ equation with
delay (9.1):

1. The inviscid Burgers’ equation with delay (9.1) admits the three dimensional Lie
algebra with generators

ζ∗1 = ∂

∂t
, ζ∗2 = x

∂

∂x
+ u

∂

∂u
, ζ∗3 = ∂

∂x
.

2. The kernel of the admitted Lie group is two dimensional with generators

ζ∗1 = ∂

∂t
, ζ∗2 = ∂

∂x
.
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3. The extensions of the kernel of the admitted Lie group is one dimensional with
generator

ζ∗1 = x
∂

∂x
+ u

∂

∂u
.

4. The symmetry (admitted Lie group) for the inviscid Burgers’ equation with delay
(9.1) for an arbitrary function G is given by (9.24).

5. The symmetry (admitted Lie group) for the inviscid Burgers’ equation with delay
(9.1) for G = c4u

2(t− r, x) is given by (9.26).

6. A representation of solutions for the inviscid Burgers’ equation with delay (9.1) for
an arbitrary function G is given by (9.28), while a representation of solutions for
the inviscid Burgers’ equation with delay (9.1) for G = c4u

2(t− r, x) is given by
(9.32) and (9.33).

7. The further analysis of these solutions discussed will aid researchers studying
Burgers’ equation with delay to accurately model and predict the behavior of the
system with the passage of time.

8. The reduced equations of the inviscid Burgers’ equation with delay (9.1) are found
and given by equations (9.34), (9.35) and (9.36).
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10.1 Introduction

Existing research on symmetry analysis of partial differential equations with delay include
the complete group classification of the reaction-diffusion equation with delay. More
literature on symmetry analysis of first order partial differential equations with delay,
using Lie-Bäcklund operators can be found in [58]. Wave equations with delay are
discussed in [29, 63].

In this chapter, we perform group analysis of the one-dimensional wave equation with
delay, which is of the form,

∂2u

∂t2
(t, x)− c2∂

2u

∂x2 (t, x) = G(u(t− r, x)). (10.1)

Here u is a real valued function defined on I × D, I is an open interval in R and D

is an open set in R. Equation (10.1) is a nonlinear second order partial differential
equation with delay term in the arbitrary differentiable nonzero functional G, with c as
the constant speed.
Wave equations find applications in modeling the air column of a clarinet or organ pipe,
modeling tension via springs, motion of a vibrating string, study of damping, elastic
waves in a rod, acoustic model for seismic waves, sound waves in liquids and gases, etc.
We have used Taylor’s theorem for a function of several variables to obtain a Lie type
invariance condition for second order partial differential equations with delay. The
procedure of getting and splitting the determining equations is different from any
literature on symmetry analysis of partial differential equations with delay. We have
studied the wave equation with delay and an arbitrary functional and have obtained
its symmetries and made a group classification. Further we have found the kernel and
extensions of the kernel to classify (10.1) with respect to its symmetries for an arbitrary
and the special case for its functional G.

10.2 Lie Type Invariance Condition For Second Order Par-
tial Differential Equations With Delay

Let u = u(t, x). Then we consider transformations of the form,

t̄ = f1(t, x, u; δ), x̄ = f2(t, x, u; δ), ū = f3(t, x, u; δ),

where f1, f2, f3 are smooth functions of t, x, u having a convergent Taylor series in δ.

Defining,

T (t, x, u) = ∂f1
∂δ

∣∣∣∣∣
δ=0

, X(t, x, u) = ∂f2
∂δ

∣∣∣∣∣
δ=0

, U(t, x, u) = ∂f3
∂δ

∣∣∣∣∣
δ=0

,
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we can write the transformations as,
t̄ = t+ δT (t, x, u) +O(δ2),

x̄ = x+ δX(t, x, u) +O(δ2),

ū = u+ δU(t, x, u) +O(δ2).

We establish the following Lie type invariance condition for second order partial differential
equations with delay using Taylor’s theorem for a function of several variables:

Theorem 10.2.1. Consider the second order partial differential equation with delay

F
(
t, x, u, t− r, u(t− r, x), ∂u

∂t
(t, x), ∂u

∂x
(t, x), ∂u

∂x
(t− r, x),

∂2u

∂t2
(t, x), ∂

2u

∂x2 (t, x), ∂
2u

∂x2 (t− r, x), ∂
2u

∂t∂x
(t, x)

)
= 0, (10.2)

where F is defined on a 12-dimensional space I ×D2 × I − r ×D8, D is an open set
in R, I is any interval in R, and I − r = {y − r : y ∈ I}. Then, the Lie type invariance
condition is given by

TFt + T rFtr +XFx + UFu + U rFur + U[t]Fut + U[x]Fux

+ U r[x]Furx + U[tt]Futt + U[xx]Fuxx + U r[xx]Furxx + U[tx]Futx = 0, (10.3)

where, T r = T (t− r, x, u(t− r, x)), U r = U(t− r, x, u(t− r, x)), and the total differential
operators given by,

Dt = ∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ utx

∂

∂ux
+ · · · ,

and,
Dx = ∂

∂x
+ ux

∂

∂u
+ utx

∂

∂ut
+ uxx

∂

∂ux
+ · · ·

the extended infinitesimals are given by,

U[t] = Dt(U)− utDt(T )− uxDt(X),

U[x] = Dx(U)− utDx(T )− uxDx(X),

U r[x] = U rx + urxU
r
ur − urtr(T rx + urxT

r
ur)− urx(Xr

x + urxX
r
ur),

U[tt] = Dt(U[t])− uttDt(T )− utxDt(X),

U[xx] = Dx(U[x])− utxDx(T )− uxxDx(X),
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U r[xx] = U rxx − urtrT rxx + urx(2U rxur −Xr
xx)− 2urtrurxT rxur + (urx)2(U rurur − 2Xr

xur)

− urtr(urx)2T rurur − (urx)3Xr
urur − 2urtrxT rx + urxx(U rur − 2Xr

x)− 2urxurtrxT rur

− urtrurxxT rur − 3urxurxxXr
ur ,

U[tx] = Dt(U[x])− utxDt(T )− uxxDt(X) = Dx(U[t])− uttDx(T )− utxDx(X).

Proof. Extending transformations to partial differential equations, we seek invariance of
equation (10.2) under Lie group of infinitesimal transformations given by,

t̄ = t+ δT (t, x, u) +O(δ2),

x̄ = x+ δX(t, x, u) +O(δ2),

ū = u+ δU(t, x, u) +O(δ2).

It naturally follows that,

t− r = t− r + δT (t− r, x, u(t− r, x)) +O(δ2),

ū(t− r, x̄) = u(t− r, x) + δU(t− r, x, u(t− r, x)) +O(δ2).

Let, T (t−r, x, u(t−r, x)) = T r, X(t−r, x, u(t−r, x)) = Xr, U(t−r, x, u(t−r, x)) =
U r.

As the partial differential equation given by equation (10.2) contains first order deriva-
tives ∂u

∂t
(t, x) = ut(t, x) and ∂u

∂x
(t, x) = ux(t, x), it is necessary to obtain extended

transformations for these.
In analogy with existing work for partial differential equations without delay, we define
the extended transformations ūt̄ and ūx̄ as,

ūt̄ = ut + δU[t] +O(δ2),

ūx̄ = ux + δU[x] +O(δ2).

Equation (10.2) can be written as F (t, t − r, x, u, ur, ut, ux, u
r
x, utt, uxx, u

r
xx, utx) = 0,

where ur = u(t− r, x).
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We shall now construct the extended transformations for ut and ux as follows

ūt̄ = ∂(ū, x̄)
∂(t̄, x̄)

= ∂(ū, x̄)
∂(t, x)

/
∂(t̄, x̄)
∂(t, x)

=

∣∣∣∣∣∣∣∣
ūt ūx

x̄t x̄x

∣∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣∣

t̄t t̄x

x̄t x̄x

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
ut + δDt(U) +O(δ2) ux + δDx(U) +O(δ2)

δDt(X) +O(δ2) 1 + δDx(X) +O(δ2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 + δDt(T ) +O(δ2) δDx(T ) +O(δ2)

δDt(X) +O(δ2) 1 + δDx(X) +O(δ2)

∣∣∣∣∣∣∣∣
= ut + δ[Dt(U) + utDx(X)− uxDt(X)] +O(δ2)

1 + δ[Dt(T ) +Dx(X)] +O(δ2)
= ut + δ[Dt(U)− utDt(T )− uxDt(X)] +O(δ2).

Thus we define,
U[t] = Dt(U)− utDt(T )− uxDt(X),

U[x] = Dx(U)− utDx(T )− uxDx(X).

Then,
ū(t− r, x) = ux(t− r, x) + δU[x](t− r, x, u(t− r, x)) +O(δ2).

Now,
U[t] = Ut + utUu − ut(Tt + utTu)− ux(Xt + utXu), (10.4)

and,
U[x] = Ux + uxUu − ut(Tx + uxTu)− ux(Xx + uxXu). (10.5)

Let tr = t− r, ur = u(t− r, x). It can then be seen that,

U r[x] = U rx + urxU
r
ur − urtr(T rx + urxT

r
ur)− urx(Xr

x + urxX
r
ur). (10.6)

It then follows that,

ūx(t− r, x) = ux(t− r, x) + δU r[x] +O(δ2).

In line with the procedure described above, we can obtain the second order extended
transformations. We obtain the extended transformation to utt. Similar analysis can be
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used to obtain the extended transformations for uxx, urxx, utx.

ūtt = ∂(ūt̄, x̄)
∂(t̄, x̄)

= ∂(ūt̄, x̄)
∂(t, x)

/
∂(t̄, x̄)
∂(t, x)

=

∣∣∣∣∣∣∣∣
(ūt̄)t (ūt̄)x

x̄t x̄x

∣∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣∣

t̄t t̄x

x̄t x̄x

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
utt + δDt(U[t]) +O(δ2) utx + δDx(U[t]) +O(δ2)

δDt(X) +O(δ2) 1 + δDx(X) +O(δ2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 + δDt(T ) +O(δ2) δDx(T ) +O(δ2)

δDt(X) +O(δ2) 1 + δDx(X) +O(δ2)

∣∣∣∣∣∣∣∣
=
utt + δ[uttDx(X) +Dt(U[t])− utxDt(X)] +O(δ2)

1 + δ[Dt(T ) +Dx(X)] +O(δ2)
= utt + δ[Dt(U[t])− uttDt(T )− utxDt(X)] +O(δ2).

Thus we have obtained,

ūtt = utt + δ(Dt(U[t])− uttDt(T )− utxDt(X)) +O(δ2),

ūxx = uxx + δ(Dx(U[x])− utxDx(T )− uxxDx(X)) +O(δ2),

ūtx = utx + δ(Dt(U[x])− utxDt(T )− uxxDt(X)) +O(δ2),

= utx + δ(Dx(U[t])− uttDx(T )− utxDx(X)) +O(δ2).

Using the expressions for Dt and Dx, we see that,

U[tt] = Utt + ut(2Utu − Ttt)− uxXtt − 2utuxXtu + u2
t (Uuu − 2Ttu)− uxu2

tXuu

− u3
tTuu − 2utxXt + utt(Uu − 2Tt)− 2ututxXu − uxuttXu − 3ututtTu, (10.7)

U[xx] = Uxx − utTxx + ux(2Uxu −Xxx)− 2utuxTxu + u2
x(Uuu − 2Xxu)− utu2

xTuu

− u3
xXuu − 2utxTx + uxx(Uu − 2Xx)− 2uxutxTu − utuxxTu − 3uxuxxXu,

(10.8)

U r[xx] = U rxx − urtrT rxx + urx(2U rxur −Xr
xx)− 2urtrurxT rxur + (urx)2(U rurur − 2Xr

xur)

− urtr(urx)2T rurur − (urx)3Xr
urur − 2urtrxT rx + urxx(U rur − 2Xr

x)− 2urxurtrxT rur

− urtrurxxT rur − 3urxurxxXr
ur , (10.9)
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For invariance, we need to have,

0 = F (t̄, t− r, x̄, ū, ūr, ūt̄, ūx̄, ūrx̄, ūtt, ūxx, ū
r
xx, ūtx)

= F (t+ δT +O(δ2), t− r + δT r +O(δ2), x+ δX +O(δ2),

u+ δU +O(δ2), ur + δU r +O(δ2), ut + δU[t] +O(δ2),

ux + δU[x] +O(δ2), urx + δU r[x] +O(δ2),

utt + δU[tt] +O(δ2), uxx + δU[xx] +O(δ2), urxx + δU r[xx] +O(δ2), utx + δU[tx] +O(δ2))

= F (t, t− r, x, u, ur, ut, ux, urx, utt, uxx, urxx, utx) + δ
(
TFt + T rFtr +XFx + UFu

+ U rFur + U[t]Fut + U[x]Fux + U r[x]Furx + U[tt]Futt + U[xx]Fuxx + U r[xx]Furxx + U[tx]Futx

)
+O(δ2)

Equating the coefficient of δ, we get equation (10.3) which proves the theorem.

The infinitesimal generator of the admitted group for the equation given by (10.2) is,

ζ∗ = T
∂

∂t
+X

∂

∂x
+ U

∂

∂u
.

The extension is given by,

ζ(1) = TFt + T rFtr +XFx + UFu + U rFur + U[t]Fut + U[x]Fux

+ U r[x]Furx + U[tt]Futt + U[xx]Fuxx + U r[xx]Furxx + U[tx]Futx = 0.

The Lie type invariance condition is given by ζ(1)∆ |∆=0= 0, where
∆ = F (t, tr, x, u, ur, ut, ux, urx, utt, uxx, urxx, utx) = 0.

10.3 Symmetry Analysis of the Wave Equation with Delay

We shall be making a complete group classification of

utt(t, x)− c2uxx(t, x) = G(u(t− r, x)) (10.10)

Applying the operator defined by equation (10.3) on the delay term g(t) = t− r, we get
T = T r.

The Lie type invariance condition for the time-delayed wave equation (10.10) gives

U[tt] − c2U[xx] = U rG′(ur). (10.11)
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Using equations (10.7) and (10.8), we get,

Utt +ut(2Utu−Ttt)−uxXtt− 2utuxXtu +u2
t (Uuu− 2Ttu)−uxu2

tXuu−u3
tTuu− 2utxXt

+ utt(Uu − 2Tt)− 2ututxXu − uxuttXu − 3ututtTu − c2
(
Uxx − utTxx + ux(2Uxu −Xxx)

− 2utuxTxu +u2
x(Uuu− 2Xtu)− utu2

xTuu− u3
xXuu− 2utxTx + uxx(Uu− 2Xx)− 2uxutxTu

− utuxxTu − 3uxuxxXu

)
= U rG′(ur). (10.12)

Substitute utt = c2uxx +G(ur) in equation (10.12), we get,

Utt +ut(2Utu−Ttt)−uxXtt− 2utuxXtu +u2
t (Uuu− 2Ttu)−uxu2

tXuu−u3
tTuu− 2utxXt

+ c2uxxUu − 2c2uxxTt +G(ur)Uu − 2G(ur)Tt − 2ututxXu − c2uxuxxXu − uxG(ur)Xu

− 3c2utuxxTu − 3utG(ur)Tu − c2
(
Uxx − utTxx + ux(2Uxu −Xxx)− 2utuxTxu

+ u2
x(Uuu − 2Xxu)− utu2

xTuu − u3
xXuu − 2utxTx + uxx(Uu − 2Xx)− 2uxutxTu

− utuxxTu − 3uxuxxXu

)
= U rG′(ur). (10.13)

Splitting equation (10.13) with respect to u3
t , we get,

Tuu = 0,

which can be solved to give,

T (t, x, u) = A(t, x)u+B(t, x). (10.14)

Splitting equation (10.13) with respect to u3
x, we get,

c2Xuu = 0,

which can be solved to give,

X(t, x, u) = C(t, x)u+D(t, x). (10.15)

Splitting equation (10.13) with respect to ut we get,

2Utu − Ttt − 3G(ur)Tu + c2Txx = 0. (10.16)

Splitting equation (10.13) with respect to ux we get,

−Xtt −G(ur)Xu − 2c2Uxu + c2Xxx = 0. (10.17)
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Splitting equation (10.13) with respect to uxx we get,

2c2(Xx − Tt) = 0. (10.18)

Splitting equation (10.13) with respect to uxt we get,

2(c2Tx −Xt) = 0. (10.19)

Splitting equation (10.13) with respect to u2
x we get,

c2(2Xxu − Uuu) = 0. (10.20)

Splitting equation (10.13) with respect to u2
t we get,

Uuu − 2Ttu = 0. (10.21)

Splitting equation (10.13) with respect to u2
tux we get,

−Xuu = 0. (10.22)

Splitting equation (10.13) with respect to utu2
x we get,

c2Tuu = 0. (10.23)

Splitting equation (10.13) with respect to utux we get,

− 2Xtu + 2c2Txu = 0. (10.24)

Splitting equation (10.13) with respect to utuxt we get,

− 2Xu = 0. (10.25)

Splitting equation (10.13) with respect to uxuxt we get,

2c2Tu = 0. (10.26)

Splitting equation (10.13) with respect to utuxx we get,

− 2c2Tu = 0. (10.27)

Splitting equation (10.13) with respect to uxuxx we get,

2c2Xu = 0. (10.28)
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Splitting equation (10.13) with respect to the constant term we get,

Utt +G(ur)Uu − 2G(ur)Tt − c2Uxx − U rG′(ur) = 0. (10.29)

From equations (10.14) and (10.26), we get, A(t, x) = 0.
From equations (10.15) and (10.28), we get, C(t, x) = 0.
Hence,

T (t, x, u) = B(t, x), X(t, x, u) = D(t, x). (10.30)

From equations (10.20) and (10.30), we get,

U(t, x, u) = E(t, x)u+ F (t, x). (10.31)

From equations (10.18) and (10.19), we get,

c2Bx = Dt, Dx = Bt. (10.32)

As T = T r, from equation (10.32) we see that X = Xr.

From equation (10.16) we get,

2Et −Btt + c2Bxx = 0. (10.33)

From equation (10.17) we get,

−Dtt − 2c2Ex + c2Dxx = 0. (10.34)

Using equation (10.32), equations (10.33) and (10.34) give E(t, x) = H, a constant.
Hence, equation (10.31) gives

U(t, x, u) = Hu+ F (t, x). (10.35)

It follows that, U r = Hur + F r, where F r = F (t− r, x).
Solving the system of first order partial differential equations given by equation (10.32),
we get,

T (t, x, u) = 1
c
f(−ct−x)+ 1

c
g(−ct+x), X(t, x, u) = f(−ct−x)−g(−ct+x). (10.36)

Since T = T r and X = Xr, it follows that f and g are periodic, that is, f(t) = f(t− r)
and g(t) = g(t− r).
Using equations (10.35) and (10.36), equation (10.29) gives,

G′(ur)[Hur + F r]− [2(f ′ + g′) +H]G(ur) + [c2Fxx − Ftt] = 0. (10.37)
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The infinitesimal generator of the admitted Lie group for the wave equation with delay
given by equation (10.10) is

ζ∗ =
[1
c
f(−ct− x) + 1

c
g(−ct+ x)

]
∂

∂t
+ [f(−ct− x)− g(−ct+ x)] ∂

∂x

+ [Hu+ F (t, x)] ∂
∂u
. (10.38)

10.4 Kernel of the Admitted Lie Group

Definition 10.4.1. A kernel of admitted generators are the set of symmetries, which
are admitted for any functional G appearing in the equation.

We prove our following result:

Theorem 10.4.1. The symmetry of the wave equation given by (10.1) admit a two-
dimensional Lie group generated by

ζ∗1 = ∂

∂t
, ζ∗2 = ∂

∂x
.

Further the representation of the invariant solution is found to be u(t, x) = g1(c5t− c4x),
where c4, c5 are arbitrary constants and g1 is an arbitrary function.

Proof. We assume that equation (10.37) is valid for an arbitrary functional G. Without
loss of generality we consider the particular case,

G(ur) = a0 + a1u
r + a2(ur)2 + a3(ur)3,

where ai, 0 ≤ i ≤ 3 are arbitrary constants.
Substituting this value of G(ur) in equation (10.37) we get

2a3[H − (f ′ + g′)](ur)3 + [3a3F
r +Ha2 − 2a2(f ′ + g′)](ur)2

+ 2[a2F
r − a1(f ′ + g′)]ur + [a1F

r −Ha0 − 2a0(f ′ + g′) + c2Fxx − Ftt] = 0. (10.39)

Since ur is arbitrary, equating the various powers of ur to zero, we get,

f ′+g′ = H, a3F
r+H = 0, a2F

r−a1K = 0, a1F
r−3a0H+c2Fxx−Ftt = 0. (10.40)

From the second equation in (10.40), we see that F r must be a constant. Further since
a3 is arbitrary H = F = 0.
Therefore, U(t, x, u) = 0 and g′(−ct+ x) = −f ′(−ct− x). Hence,

g(−ct+ x) = c1(−ct+ x) + c2, f(−ct− x) = −c1(−ct− x) + c3, (10.41)
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where c1, c2, c3 are arbitrary constants. But since g(t) = g(t− r) and f(t) = f(t− r), we
must have c1 = 0. Thus,

g(−ct+ x) = c2, f(−ct− x) = c3. (10.42)

Consequently, using equations (10.36) and (10.42) we get,

T (t, x, u) = c4, X(t, x, u) = c5, U(t, x, u) = 0, (10.43)

where c4 = 1
c

(c2 + c3) and c5 = c3− c2. The general form of the infinitesimal generator is

ζ∗ = c4
∂

∂t
+ c5

∂

∂x
. (10.44)

Hence the Kernel of the admitted Lie group is defined by the infinitesimal generators,

ζ∗1 = ∂

∂t
, ζ∗2 = ∂

∂x
.

A solution which is invariant with respect to this generator has to satisfy the equation
ζ∗u(t, x) = 0. Hence solving the corresponding system, namely

dt

T (t, x, u) = dx

X(t, x, u) = du

U(t, x, u) , (10.45)

that is, by solving,
dt

c4
= dx

c5
= du

0 ,

we get the representation of an invariant solution namely u(t, x) = g1(c5t− c4x). This
solution is a travelling wave which reduces equation (10.1) to the second order ordinary
functional differential equation

g′′1(θ) = G(g1(θ − c5r))
c2

5 − c2c2
4

,

where θ = c5t− c4x and g1 is an arbitrary function.

10.5 Extensions of the Kernel

Definition 10.5.1. Extensions are symmetries for the particular functional G only.

We establish the following result:

Theorem 10.5.1. The wave equation with delay utt + c2uxx = G(ur) for which
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1. G(ur) = K1e
−K2ur admits the infinitesimal generator given by

ζ∗ = 1
c

(f + g) ∂
∂t

+ (f − g) ∂
∂x
− 2
K2

(f ′ + g′) ∂
∂u
.

Further a representation of the invariant solution is given by

u(t, x) = 2
K2

ln |f(−ct− x) + g(−ct+ x)|+ g2
(
c

∫
(f(−ct− x)− g(−ct+ x))dt

−
∫

(f(−ct− x)− g(−ct+ x))dx
)
,

where K2 is a non-zero constant and g2 is an arbitrary function.

2. G(ur) = K11u
r +K12 admits the infinitesimal generator given by

ζ∗ = c8
∂

∂t
+ c9

∂

∂x
+ [Hu+ F (t, x)] ∂

∂u
,

where H is an arbitrary constant and F solves
K11F

r−HK12 = Ftt−c2Fxx, with K11 as a non-zero constant. Further a represen-
tation of the invariant solution is given by u = 1

H

[
eH(t−c8g3(c9t−c8x))/c8 − F (t, x)

]
,

where c8, c9 are arbitrary constants and g3 is an arbitrary function.

Proof. Differentiating equation (10.37) with respect to ur we get

HurG′′(ur) + F rG′′(ur)− 2(f ′ + g′)G′(ur) = 0,

which can be written as
Hα+ F rβ − 2(f ′ + g′)γ = 0. (10.46)

That is,
< H,F r,−2(f ′ + g′) > . < α, β, γ >= 0, (10.47)

where α = urG′′, β = G′′, γ = G′. Analysis of equation (10.46) is similar to the
analysis given for gas dynamics in [49].

Let us consider the vector space V = span{< α, β, γ >}.

10.5.1 dim(V) = 3

Then from equation (10.46), using the fact that α, β, γ are linearly independent, we get

H = 0, F r = 0, f ′ + g′ = 0,
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which implies that,

f(t, x) = c1(−ct− x) + c2, g(t, x) = −c1(−ct+ x) + c3.

Since f(t) = f(t− r) and g(t) = g(t− r), we get c1 = 0.
Consequently using equation (10.36), we see that T (t, x, u) and X(t, x, u) are constants.
Also U(t, x, u) = 0 and hence in this case there is no extension of the Kernel.

10.5.2 dim(V) = 2

if dim(V) = 2, then by the Gram-Schmidt orthogonalisation process there exists a
non-zero constant < ξ, η, ς > which is orthogonal to V.
That is, < ξ, η, ς > . < α, β, γ >= 0, which implies

ξurG′′ + ηG′′ + ςG′ = 0.

Letting z = G′, we get
(ξur + η)z′ + ςz = 0. (10.48)

We discuss the following cases:

Case 1: Let ξ = 0. Then necessarily η 6= 0, and

ηz′ = −ςz, (10.49)

which can be solved to give,

z = G′(ur) = K1e
−K2ur , (10.50)

where K1 is a non-zero constant and K2 = ς

η
.

Since the integration for z depends on K2, we consider the following two cases:

Case 2: If K2 = 0, then from equation (10.49), we get G(ur) = K3u
r + K4, where K3

and K4 are arbitrary constants.
This implies that dim(V) = 0 which contradicts the fact that dim(V) = 2.

Case 3: If K2 6= 0, then from equation (10.49), we get z = G′(ur) = K1e
−K2ur .

Integrating this equation with respect to ur, we get,

G(ur) = −K1
K2

e−K2ur +K5, (10.51)

where K5 is an arbitrary constant.
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Substituting equation (10.51) in equation (10.37) we get,

(Hur+F r)(K1e
−K2ur)−[2(f ′+g′)+H]

(
−K1
K2

e−K2ur +K5

)
+c2Fxx−Ftt = 0. (10.52)

Splitting equation (10.52) with respect to ure−K2ur and using the fact that K1 6= 0, we
get H = 0.
Splitting equation (10.52) with respect to e−K2ur and using the fact that H = 0, we get
F r = − 2

K2
[g′(−ct+ x)− f ′(−ct− x)].

Splitting equation (10.52) with respect to the constant term we get
c2Fxx − Ftt − 2K5(g′(−ct+ x) + f ′(−ct− x)) = 0.
Thus from these equations we get

K5(g′(−ct+ x) + f ′(−ct− x)) = 0.

We shall study two cases according to K5.

Case 4: If K5 6= 0, then this lead to f and g being constants, which does not extend the
Kernel of the admitted Lie group.

Case 5: If K5 = 0, then,

T (t, x, u) = 1
c

[g(−ct+ x) + f(−ct− x)], X(t, x, u) = f(−ct− x)− g(−ct+ x)

and
U(t, x, u) = Hu+ F r = F r = − 2

K2
[g′(−ct+ x) + f ′(−ct− x)].

Thus the admitted infinitesimal generator in this case is

ζ∗ = 1
c

(g + f) ∂
∂t

+ (f − g) ∂
∂x
− 2
K2

(f ′ + g′) ∂
∂u
. (10.53)

An invariant solution of equation utt − c2uxx = K1e
−K2ur is obtained by solving the

corresponding system, namely equation (10.45) that is, by solving,

cdt

f(−ct− x) + g(−ct+ x) = dx

f(−ct− x)− g(−ct+ x) = −K2
2

du

f ′(−ct− x) + g′(−ct+ x) ,

we get the representation of an invariant solution namely

u(t, x) = 2
K2

ln |f(−ct− x) + g(−ct+ x)|+ g2
(
c

∫
(f(−ct− x)

− g(−ct+ x))dt−
∫

(f(−ct− x)− g(−ct+ x))dx
)
, (10.54)
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where g2 is an arbitrary function.

Case 6: If ξ 6= 0, then from equation (10.48) we get (ξur +η)z′ = −ςz, which ca be solved
to give

z = G′(ur) = K6(ξur + η)−ς/ξ, (10.55)

where K6 is a non-zero constant.
Since further integration depends on − ς

ξ
, we study two cases:

Case 7: If ς
ξ
6= 1, then integrating equation (10.55) we get

G(ur) = K6
(ξur + η)(ξ−ς)/ξ

ξ − ς
+K7, (10.56)

where K7 is an arbitrary constant.
Differentiating equation (10.56) with respect to ur we get

G′(ur) = K6(ξur + η)−ς/ξ. (10.57)

Substituting equations (10.56) and (10.57) in equation (10.37), we get

K6[Hur+F r](ξur+η)−ς/ξ−[2(f ′+g′)+H]
[
K6(ξur + η)(ξ−ς)/ξ

ξ − ς
+K7

]
+c2Fxx−Ftt = 0.

(10.58)
Differentiating equation (10.58) with respect to ur we get

ςHur + ςF r

ξur + η
+ 2(f ′ + g′) = 0. (10.59)

Differentiating equation (10.59) with respect to ur we get

ς(F rξ − ηH) = 0. (10.60)

We consider two cases depending on ς.

Case 8: If ς = 0, then from equation (10.55), we get G′(ur) = K6, which yields
G(ur) = K6u

r +K8, where K8 is an arbitrary constant.
This implies that dim(V) = 0 and contradicts the assumption that dim(V) = 2.

Case 9: If ς 6= 0, then from equation (10.59), we get

ςHur + ςF r = −2(f ′ + g′)(ξur + η).
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Splitting this equation with respect to ur we get

f ′ + g′ = − ςH2ξ (10.61)

This implies that H = 0. Further as f(t) = f(t− r) and g(t) = g(t− r), this case does
not give extensions of the Kernel.

Case 10: If ξ = ς, then from equation (10.61) we get

f ′ + g′ = −H2 ,

which again implies that H = 0 and hence does not give an extension of the Kernel.

10.5.3 dim(V) = 1

This implies the existence of a non-zero constant vector < ξ, η, ς > such that

< α, β, γ >= f(ur) < ξ, η, ς >,

where f is any arbitrary non-constant function.
Without loss of generality assume that ς = 1.
From equation (10.47) we see that

< urG′′, G′′, G′ >= f(ur) < ξ, η, ς >,

from which it follows that ξ = ηur which gives η = 0 and consequently ξ = 0.
Hence G′ has to be a constant say K9, which implies that G(ur) = K9u

r + K10, with
K10 as an arbitrary constant, contradicting the dimension of V = 1.

Remark 10.5.1. If G′ is a constant or G is linear with respect to ur then dim(V) = 0.

10.5.4 dim(V) = 0

This implies that < α, β, γ > is a constant vector say < ξ, η, ς > .

That is < urG′′, G′′, G′ >=< ξ, η, ς >, which gives ξ = η = 0. Without loss of generality
assume that ς 6= 0.
Then G(ur) = ςur +K12 = K11u

r +K12, where K11 = ς and K12 are arbitrary constants.
Substituting this value of G(ur) in equation (10.37) we get

K11(Hur + F r)− [2(f ′ + g′) +H](K11u
r +K12) + c2Fxx − Ftt = 0. (10.62)

Splitting equation (10.62) with respect to ur we get f ′ + g′ = 0.
As f(t) = f(t− r) and g(t) = g(t− r), we get f and g are constants say
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f(t, x) = c6, g(t, x) = c7.

Consequently T (t, x, u) = c8, X(t, x, u) = c9, where c8 = 1
c

(c6 + c7), c9 = c7 − c6.

Splitting equation (10.62) with respect to the constant term we get

K11F
r −HK12 = Ftt − c2Fxx. (10.63)

Hence the infinitesimal generator is given by

ζ∗ = c8
∂

∂t
+ c9

∂

∂x
+ [Hu+ F ] ∂

∂u
, (10.64)

where F is an arbitrary solution of equation (10.63). An invariant solution of equation
utt − c2uxx = K11u

r + K12 is obtained by solving the corresponding system, namely
equation (10.45) that is, by solving,

dt

c8
= dx

c9
= du

Hu+ F
,

we get the representation of an invariant solution namely

u(t, x) = 1
H

[
eH(t−c8g3(c9t−c8x))/c8 − F (t, x)

]
. (10.65)

This solution reduces equation (10.1) to the second order ordinary functional differential
equation

g′′3(ψ) =
c2

8e
−τ
[
G

( 1
H

(eτr − F r)
)

+ 1
H

(Ftt − c2Fxx)
]

+H
[
c2c4

8[g′3(ψ)]2 − (1− c8c9g
′(ψ))2]

c2
8(c2c2

8 − c2
9)

,

where ψ = c9t− c8x, τ(t, x) = H

c8
(t− c8g3(c9t− c8x)), τ(t− r, x) = τ r and g3 is an

arbitrary function.

10.6 Summary

This chapter deals with the symmetry analysis of the one-dimensional wave equation
with delay and constant speed given by

∂2u

∂t2
(t, x)− c2∂

2u

∂x2 (t, x) = G(u(t− r, x)).

The complete group classification is given in Table 10.1 below.
Further this classification leads to the complete set of invariant solutions given Table
10.2 below.
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Table 10.1: Group classification of utt − c2uxx = G(ur).

Functional G(ur) Generator

G(ur) is arbitrary ζ∗ = c4
∂

∂t
+ c5

∂

∂x
.

G(ur) = K11u
r +K12 ζ∗ = c8

∂

∂t
+ c9

∂

∂x
+ [Hu+ F (t, x)] ∂

∂u
.

G(ur) = K1e
−K2ur ζ∗ = 1

c
(f + g) ∂

∂t
+ (f − g) ∂

∂x
− 2
K2

(f ′ + g′) ∂
∂u
.

Table 10.2: Representation of invariant solutions of utt − c2uxx = G(ur).

Functional G(ur) Representation of the invariant solution of utt −
c2uxx = G(ur)

G(ur) is arbitrary u = g1(ct − c4x).

G(ur) = K11u
r +K12 u = 1

H

[
eH(t−c8g3(c9t−c8x))/c8 − F (t, x)

]
.

G(ur) = K1e
−K2ur u = 2

K2
ln |f + g|+ g2(c

∫
(f − g)dt−

∫
(f + g)dx).



Future Scope

Symmetry analysis can be applied to

1. Classify ordinary functional differential equations with variable coefficients to
solvable Lie algebras.

2. Integro-differential equations with delay specifically arising in population dynamics
of species and prey-predator models.

3. Systems of delay differential equations.

4. Linear, semi-linear and quasilinear partial differential equations with delay.

5. Classify partial differential equations with delay and with constant and variable
coefficients to solvable Lie algebras.

6. Neutral partial differential equations.

to obtain Lie type invariance conditions and study their group classification/invariant
solutions.

In addition special partial differential equations with delay like the Laplace equation,
Potential Burgers’ equation, Chaplygin’s equation, Korteweg de Vries equation, Boussi-
nesq quation, etc. can be studied using Lie group analysis and provided with their group
classification and invariant solutions depending on the dimensions of the underlying
Vector Space. Research in this area can also be extended to systems of partial differential
equations with delay.

Finally symmetry analysis can be applied to discrete systems and a study of difference
equations can be done.
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