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ABSTRACT 

Facial biometrics has received paramount attraction and has grabbed a unique position in the 

research area.  It is an easily accessible and convenient trait as compared to the other traits of 

biometrics. One can find substantial research in 2D biometrics; however, its outreach has 

limitations like illumination variation and pose variation. The 3D faces can overcome the 

limitations that commonly affect the 2D system as the 3D system has more spatial 

information than 2D, in the form of depth. The research in the 3D domain was an expensive 

task until the development of the low-cost 3D Kinect camera.   

Here in this thesis, we have generated a Kinect-based GU-RGB-D database having variation 

in pose (-90
0
, -45

0
, 0

0
, +45

0
, +90

0
), expressions (smile, eyes closed), occlusion (paper was 

covering half part of the face), and captured in two different environmental conditions 

(Controlled and Uncontrolled). This makes it a perfect building block to study the practical 

challenges of RGB-D systems. Here, preliminary studies using the score level fusion and 

pixel-level image fusion have been performed on the generated GU-RGB-D database and on 

the publicly available EURECOM database.  

The Kinect camera being a low resolution leads to data loss and creates holes in the image 

during the acquisition process due to various factors affecting the reflectance of IR. Filling 

these holes is an essential task as it degrades the image quality and affects the overall 

system's performance. This thesis presents kernel-based hole filling filters (LI- Filter, EA- 

Filter & WA-Filter) for the depth images at a pre-processing stage. To quantify the 

performance of the proposed filters, the experimental evaluation has been performed on the 

GU-RGB-D & on the publicly available IIITD RGBD databases using local and global 

features extractor algorithms such as PCA, HOG, LBP, LPQ, GIST, BSIF, and LogGabor.   

Further, we have used a Collaborative Representation Classifier  (CRC) and an Image Set 

Classification approach to study the performance on the RGB-D database. In CRC based 

approach, the images are first fused using 2- Discrete Wavelet Transform (2DWT) followed 

by feature extraction using PCA, HOG, LBP, LPQ, GIST, BSIF Log Gabor, and CNN. The 

obtained features are then classified using CRC. In the Image Set Classification approach, the 

images are fused using pixel-level image fusion and CNN-based image fusion, and they are 
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classified using image sets to quantify recognition performance. Here the features are 

extracted from the depth and fused images independently, and these are used to learn the set 

classification algorithms like AHISD, CSD, CDL MMD, MDA, SANP).   
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1.1 Overview 

The escalating need for security enhancement in today's world has attracted researchers to the 

area of biometrics. Traditional authentication systems that are token-based or knowledge-

based [1] are not entirely reliable and are inefficient to meet the fast-growing world's high-

security needs.  The knowledge-based systems, such as passwords, are sometimes difficult to 

remember and annoying for a user, particularly when alphanumeric or non-dictionary words 

are used. On the other hand, these passwords can easily be cracked/hacked by various 

alphanumeric combinations [2]. Similarly, token-based systems like Identity cards can be 

stolen or lost [3], making it precarious to an individual or an organization or the highly 

secured areas like the defense base. Due to several such issues with these systems and being 

independent of an individual's inherent attributes, and it varies for every individual, biometric-

based authentication/identification came into the limelight [4]. Alternatively, biometric-based 

systems offer a stable and reliable solution to recognize individuals by employing automated 

or semi-automated methods based on their biological characteristics [4].  

Biometric authentication systems can be broadly classified into physiological (such as the 

face, iris, palm, finger, etc.) and behavioral (such as signature, gait, voice, keystrokes, etc.) 

attributes of an individual depending upon the types of measurements used for computations 

[5]. Physiological characteristics are based on an individual's physical attributes such as the 

face, fingerprint, iris, palmprint, etc., while behavioral characteristics are associated with an 

individual's behavior such as voice, keystrokes, signature, etc. The physiological biometric 

traits are mostly 2-dimensional signals, and behavioral biometric traits are 1-dimensional, 

mainly time-domain signals [5]. The biometric authentication or identification systems are 

preferred over the traditional methods for various reasons, such as: An individual needs to be 

physically present at the time of authentication. These systems obviate the need to remember 

the password or to carry a token. These systems are pattern recognition-based, which 

identifies an individual by determining the authenticity of its specific physiological or 

behavioral characteristics. 
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The basic operations of the biometric system (physical or behavioral) can be classified as 

registration, pre-processing, feature extraction, and matching. These operations are briefed as 

follows [6][7]: 

 Registration/Enrollment: This is the initial process in which the biometric data is 

acquired and stored in the database as templates.  

 Pre-processing: The acquired data also has the collection of unwanted information. 

This is removed in this stage by applying the various pre-processing techniques to 

avoid the system's overall performance degradation. 

 Feature Extraction: In this stage, the best quality features are obtained from the 

acquired data using various feature extraction algorithms. 

 Matching: Here, the matching scores are computed from the obtained biometric 

training and testing features, and accordingly, the final output of the system is 

obtained.  

 

An ideal biometric trait should fulfill the following seven established 

principles/characteristics to become a part of a biometric application. [1] [8] 

 

 Universality: The trait used in the biometric application should be available with all the 

individuals/ users accessing the application.  If not, it will be a less attractive biometric 

trait and will have a reduced power of subject discrimination.  

 Uniqueness: The trait should have the ability to differentiate amongst the individual 

identities, i.e., it should be unique for every subject. The identical biometric features 

may have rare to no applications in biometric systems.  

 Permanence: The trait of biometric of an individual should not be a time variant over a 

period concerning the matching algorithms.  However, this principle may not 

withstand soft biometrics or transient biometrics as some applications don't require 

long-term biometric recognition.   
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 Measurability: The biometric trait should be acquired and digitized without causing 

any inconvenience to an individual. Moreover, the acquired data should be fit for 

extracting the representative feature sets.      

 Acceptability: The individuals using the biometric systems should be comfortable in 

providing their biometric data. The factors that can affect acceptability are the 

subject's resistance towards the measurement of a specific biometric trait, the subject’s 

trust in the system, and the privacy of the specific biometric trait. 

 Circumvention: This refers to the ease of imitating the trait of an individual using 

artifacts. A biometric system should be robust to attacks and spoofing. 

 Performance: The final performance of the system, i.e., the recognition accuracy and 

the requirement of resources, should be within the constraints of the application.   

However, none of the biometric traits are ideal, i.e., a single biometric trait does not meet all 

the above requirements, but they are admissible.  The significance of a specific biometric trait 

to some applications depends upon the nature and needs of the system design and the 

biometric trait properties [1]. 

 

1.2 Face Biometrics 

The various biometric traits can be deployed to develop identification and recognition systems 

based on human physiological or behavioral modes. One of the most active biometric traits 

used over decades for security enhancement is face recognition, as the facial trait is non-

intrusive and user-friendly [9] compared to other biometric traits [10]. Further, this 

technology is independent of human monitoring and easy to deploy and maintain. 

Face recognition is an everyday task which an individual performs quickly, accurately, and 

frequently. However, automated algorithms' implementation to achieve the same task 

becomes a challenging research problem that has received proportionate attention in the 

literature. 
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The non-intrusive properties of face biometric allow capturing face images at varying stand-

off distances without the user's co-operation in a covert manner. Further, with superior 

recognition accuracy and wide-scale utility in various applications ranging from simple access 

control to highly secure cross-border applications, face biometric have received significant 

attention in academic as well as in commercial industry sectors [11]. Therefore, even though 

the other technologies based on the traits like fingerprint and iris, which are more accurate 

and mature [12], they cannot completely replace the need for face biometrics. 

Research in the area of face recognition can be traced back to the 1960s [13]. A computer to 

recognize a human face was researched by Woodrow W. Bledsoe, Helen Chan, and Charles 

Bisson in the year 1964 to 1966. Further, Peter Hart continued this research and used a set of 

images instead of feature points to optimize the results. Later in the 1970s, Goldstein, 

Harmon, and Lesk developed an automatic human face identification system using 21 specific 

subjective markers like hair color and lip thickness. The approach had good recognition 

accuracy but was impractical to apply for many faces. Turk and Pentland [14] in 1991 

proposed a principal component analysis (PCA) based method (eigenface algorithm) to handle 

face data. Thereafter several algorithms were developed inspired by [15–17]. Christoph von 

der Malsburg [18], in 1997, designed a system that had the ability to identify people from 

non-clear photos. Followed this work, the research in the area of face recognition diverged 

into two paths. Face recognition using 3D view is proposed and implemented in systems such 

as Polar and FaceIt [19]. 

 

1.3 Related Work In 3D Face Biometrics 

Despite significant progress in the area of face recognition, the number of challenges due to 

pose and illumination variation, expressions, occlusions remains unsolved in the literature, 

which affects the system's performance [20–24], and is required to be addressed.  
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In comparison to the 2D face recognition, 3D has good robustness and high fake resistance. 

3D systems employ rich facial geometric information. It is robust to facial pose variations and 

has less effect of ambient light conditions on it. Thus, it has the potential to overcome the 

inherent limitations of 2D face recognition. Hence this is used for high-security areas [25]. 

The 3D faces have more spatial information in the form of depth which is an inherent 

property associated with 3D face recognition and is robust against the uncontrolled 

environment compared to 2D biometrics. 3D biometric has presented significant 

improvisation in 3D face acquisition and 3D face matching [11].  The improved 3D imaging 

devices and processing algorithms have attracted the researcher community towards 

developing a reliable face recognition system [23].  

In the late 1980s, a small 3D face database was engaged with a curvature-based method by 

[26] and obtained 100% recognition accuracy.  Further, in 1996, the experiments of 

combining frontal and side view performed by [27] have shown improvement in the 

recognition accuracy. Later with the development of the 3D scanning devices (specifically 

laser based and structured light technology based) of high ability, more and more 3D face 

recognition research has been proposed and also contributed to a large number of 3D 

databases. The details of the existing laser scanner-based and stereo imaging-based 3D face 

databases in literature are described in detail in chapter 3 (Table 3.1).  

The 3D biometric research was an expensive task [9] until an efficient, low-cost RGB-D 

Kinect camera was developed, which provides RGB image and depth information [28]. The 

images captured with the Kinect camera have low resolution and noise. Yet, it has more 

spatial information in the form of depth, which is a robust inherent property associated with 

3D face recognition against the uncontrolled environment. The Kinect-based RGB-D 

databases available in the literature are discussed in detail in chapter 3 (Table 3.2).   

Feature extraction is one of the essential stages in biometrics, as it is necessary to obtain high-

quality features from the raw data to have good performance of the system. The research on 

3D face recognition is mostly focused on the high-resolution data acquired using high-cost 3D 
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scanners and under-controlled environments, whereas the work based on low-resolution 

cameras such as Kinect is minimal compared to scanning devices. Min et al. [29] have 

proposed a Kinect based real-time 3D face identification system in which the face region is 

detected and segmented by thresholding the depth values. In the subsequent step, the face 

images are cropped to a standard resolution. Further, the probe is registered with several 

intermediate references using EM-ICP [30] algorithm to obtain matching. In another work, 

Min et al. [31] have generated a 3D database based on the Kinect sensor having 52 subjects 

over two sessions and has  2D, 2.5D, 3D, and video data. Here recognition rates are calculated 

for 2D, 2.5D, and 3D-based face data using standard face recognition techniques like PCA, 

LBP, SIFT, LGBP, ICP, and TPS, and also RGB and Depth images were fused using score-

level fusion. 

 Mantecon et al. [32] have presented the recognition results using only depth information 

captured from Kinect 2 sensor.  In this work, the authors have proposed the Depth Local 

Quantized Pattern [DLQP] descriptor, a modified version of the original LBP operator. This 

modification extracts the robust and high distinguishable features between different patterns. 

Further, the output of the descriptor was engaged in training and testing an SVM classifier. 

Mantecon et al. [33], in their other work, proposed a face recognition algorithm based on a 

bag of dense derivative depth patterns (Bag-D3P) which is a highly discriminative image 

descriptor. This descriptor involves four different stages; dense spatial derivatives are 

computed in the first stage to encode the 3D local structure and quantized in a face-adaptive 

fashion in the next stage. A compact vector description is created in the third stage by a  

multi-bag of words from the quantized derivatives. In the final stage, the global spatial 

information is added by the spatial block division. After that, the SVM classifier is engaged to 

obtain the recognition task.  Further, the results are compared with the different state-of-the-

art approaches: LBP + SVM, SIFT + SVM, PCA + neural networks (NN), LGBP (Gabor and 

LBP features) + NN, LPQ + SVM, HOG + SVM; a BSIF + SVM, and a DLQP (depth local 

quantized patterns) + SVM.  
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Neto et al. [34] have developed a face recognition system using the 3DLBP method for the 

data captured from the Kinect sensor. The features obtained from 3DLBP are used to train the 

SVM classifier to compute the final results. The work proposed by Li et al. [9] also presents a 

Kinect based face recognition study that utilizes both depth and RGB images.  The authors 

have generated the depth map from the point clouds obtained from Symmetric filling in his 

work. In symmetric filling, the point cloud is mirrored after correcting the pose. Here the 

Euclidean distance is computed between the point in the mirrored cloud and its closest point 

on the original image. Depending upon the Euclidean distance, the point is added to the 

original point cloud if the threshold is smaller. The RGB images are transformed to 

Discriminant Color Space (DCS) before utilizing. Further, for face recognition, the SRC 

(Sparse Representation Classifier) algorithm is applied on pre-processed depth and DCS color 

texture separately. The DCS texture comprises three channels and needs to be stacked into 

one vector before the application of SRC. The set of two obtained similarity scores are 

normalized and summed for the final result.  

Hazým Kemal Ekenel et al.; (2007) obtained 3-D face recognition approach using the discrete 

cosine transform (DCT), which is a local appearance-based model at the feature level [5]. Tri 

Huynh et al. [35] have proposed a new LBP based descriptor, namely Gradient-LBP (G-LBP), 

for gender recognition task on EURECOM and Texas database. Enrico Vezzetti et al.;(2014) 

proposed a new 3D face recognition algorithm, whose framework is based on extracting facial 

landmarks using the geometrical properties of facial shape [7]. Ajmera et al.; (2014) 

computed CRR based on modified SURF descriptors and image enhancement techniques and 

filters like adaptive histogram equalization, NLM filter, etc., for their internal database and 

compared it with EURECOM and Curtinface database and also has performed scored level 

fusion [9].  

Kim et al. [36] have developed a 3D face recognition system based on a deep convolutional 

neural network (DCNN) and a 3D augmentation technique. This approach makes use of the 

existing pre-trained version of the VGG-face, which is fine-tuned for the depth data. To train 
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the CNN network, large data is needed; thus, authors have generated the expressions and 

occlusions to deal with the shortage of data. A face recognition system developed by Lee et 

al. [37] is based on a deep learning approach. It utilizes the face images captured using a 

consumer-level RGB-D camera. Here the recognition process comprises of three parts: depth 

image recovery, deep learning for feature extraction, and joint classification. The network is 

first trained with the RGB data and then fine-tuned for the depth data for transfer learning.  

Kinect being the low-cost 3D camera has led to the development of few more 3D databases in 

addition to the conventional scanner-based databases, as mentioned in Table 1.2. This has, in 

turn, give a strong upward push to 3D research. Some of the Kinect-based work, including 

their approach, feature extraction methods, classification methods, and fusion strategies, are 

tabulated in Table 1.3.  

 

1.4 Hole Filling In 3D Face And Related Work 

The quality of a captured image plays a very important role in face recognition. The captured 

data using low-resolution cameras like Kinect, RealSense D435i has low-quality images 

compared to the high-quality scanners-based images. These cameras capture the RGB and the 

Depth images. Here, the captured RGB image quality is good, but the captured depth images 

have missing information in the form of holes [38].   

The Kinect camera uses an Infrared (IR) projector and sensor to capture the depth images. 

The  IR projector projects a structured infrared light on an object, which is received by the 

depth sensor; further, the controller estimates the depth of an object and outputs the depth 

map image. Due to the intrinsic features of the Kinect and the external environmental 

parameters changes, the captured depth image has an ineligible quality (noisy and having 

holes) to use in any computer vision application, and filling these holes becomes challenging 

work. The reasons for the appearance of holes in the depth images include [39]: 
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 The horizontal distance between IR projector and the depth sensor is centimeters 

apart; hence along the edges of objects, some occlusion areas will occur. 

 Surfaces reflect the infrared light with mirror reflection and not with diffuse reflection; 

this causes the depth image to lose the depth information in highlight surfaces. 

 The infrared-absorbed surfaces will lead to loss of information in depth images. 

 The flickering artifacts may be generated in the depth image as the structured light is 

randomly projected, and the noise will differ in each depth frame.  

 In the presence of high ambient infrared light, IR dots involved in producing the depth 

images on an object will be indiscernible to the IR camera. Thus, fewer pixels will be 

correctly captured, thereby deteriorating the image [40].  

 

The holes (missing information)in the depth images affect the overall performance of the 

system; thus, it needs to be addressed and filled at the pre-processing stage. In literature, one 

can find the contribution of Yu Mao et al. [41] towards the identification and filling of holes. 

Here the holes are identified at the initial stage and are filled based on depth histogram and 

linear interpolation and graph-based interpolation methods. A research of dis-occlusion 

removal in Depth Image-Based Rendering (DIBR), a hierarchical hole-filling (HHF), and 

depth adaptive hierarchical hole-filling tactics were used where a pyramid approach is 

followed from lower resolution estimate of 3D wrapped image to estimate the hole pixels 

value, is addressed by Mashhour Solh et al. research [42]. A hole-filling algorithm to improve 

the image quality of DIBR has been proposed by Dan Wang et al. [43, 44]. Here, the order of 

hole filling is determined by the sum of the priority calculation function and the depth 

information. Further, the gradient information is used as auxiliary information to find the best 

matching block. Litong Feng et al.[45] has worked on an adaptive background-biased depth 

map hole-filling method. Amir Atapour-Abarghouei et al. [46]have addressed hole filling by 

Fourier transform and Butterworth high/low pass filtering. Here the texture synthesis method 

is used for high-frequency details, and structural inpainting is used for inpainting the low-

frequency information. Further high-frequency depth synthesis has been performed by query 
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expansion concept with the final output and then recombined in Fourier space. Liang et al. 

[47] had proposed a segmentation-based approach for inpainting stereo images. Here the 

constraint was that the missing information in one stereo image might be filled from another 

image in both color and depth images using depth-assisted texture synthesis. Some other 

approaches have to be used to fill the holes in the depth images in the absence of stereo or 

multi-camera views. Breckon et al. [48] had proposed a surface completion technique based 

on the nonparametric propagation of existing scene information from the known /visible scene 

areas to the unknown/invisible 3D regions in combination with the preliminary underlying 

geometric surface completion. Kang Xu et al. [39] has proposed filtering method for small 

holes and occlusion area in the Kinect based depth images. In this approach the holes are 

filled using 4-neighbor-pixels interpolating algorithm. 

 

1.5 Motivation 

3D face recognition has received blooming attention and interest from the scientific 

community in recent years due to the development of low-cost Kinect cameras. The literature 

shows that the 3D face has the ability to overcome the limitations of the 2D face approach, 

i.e., limitations due to illumination and pose/angular variations, as the 3D has additional 

information in the form of depth thus it can serve as a robust approach in the areas of high 

security.  Along with security, cost efficiency and processing time also play an important role. 

The scanner-based 3D systems are expensive and time-consuming as compared to low-cost 

cameras such as Kinect. However, the Kinect-based databases available for research are very 

few as compared to the scanner-based databases.   

Considering this fact, the generation of the Kinect-based GU-RGB-D database formed the 

base of this research. The database protocol was designed with expressions, occlusion, 

angles/pose variations so as to have all possible variations in one single database. The Kinect 

being the low-resolution camera, the holes get developed (missing information) while 
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capturing the data. The literature survey directs that to obtain high performance, filling the 

holes/missing information is an important step. Thus this thesis presents variable kernel-based 

three hole filling techniques/filters for the depth images. Further to quantify the performance 

of these, extensive experimental evaluation across the GU-RGB-D and IIIT-D databases is 

performed on depth images using various state-of-the-art algorithms. The study is also 

extended for various fusion approaches and advanced classification approaches.  The aim of 

this thesis is to help in solving the difficulties in 3D face recognition by using some simple 

setups and approaches, which would be of great scientific importance for future research. 

 

1.6 Thesis Contribution 

Given the entire literature survey, the thesis entitled "Data Fusion In Depth Images: 

Application to Facial Biometrics" is the compilation of the work listed as follows: 

o Generated a Kinect-based GU-RGB-D face database with variations in pose /angles, 

expressions, occlusions, and illumination, covering all the possible variations under 

one database. The database is captured in two sessions so as to explore the scope to 

study the effect of control and uncontrolled environment. 

 

o Presented the two preliminary studies on GU-RGB-D and EURECOM database by 

using PCA as a feature extractor and having the score level and the pixel-level image 

fusion approach.   

o Designed kernel based hole-filling filters with the contribution from neighborhood 

pixels for the depth images acquired using Kinect sensor to enhance the performance 

of the 3D face recognition system. This is experimented on GU-RGB-D database with 

seven different feature extraction methods such as Principal Component Analysis 

(PCA), Histogram of Oriented Gradient (HOG), Local Binary Pattern (LBP), Local 

Phase Quantization (LPQ), GIST, Binarized Statistical Image Features (BSIF), and 
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LogGabor to demonstrate the significance of employing the hole filling techniques to 

improve the performance of the state-of-the-art face recognition methods. 

o Proposed fusion scheme based on 2D-Discrete wavelet transform and collaborative 

representation classifier (CRC). The scheme combines the RGB and depth image 

(after hole filling) using 2D-Discrete wavelet transform, which is followed by a robust 

collaborative representation classifier (CRC) for RGBD based face recognition. 

Presented an extensive experimental evaluation based on the proposed scheme and the 

designed hole filling filters on GU-RGB-D and IIIT-D databases. The verification and 

recognition rate is computed for eight different feature extraction methods such as 

Local Phase Quantization (LPQ), Local Binary Pattern (LBP), Histogram of Oriented 

Gradient (HOG), GIST, LogGabor, Binarized Statistical Image  Features (BSIF), 

Principal Component Analysis (PCA), and deep convolutional neural network features 

extracted at `conv5' layer to demonstrate the applicability of our approach for 

improved performance analysis. 

 

o Presented the Image Set Classification study based on various Image Set Classification 

algorithms i.e., MMD: Manifold-Manifold Distance MDA (Manifold Discriminant 

Analysis), CDL (Covariance Discriminative Learning), AHISD (Affine Hull Based 

Image Set Distance); CHISD (Convex Hull Based Image Set Distance), SANP (Sparse 

Approximated Nearest Point). 

 

o Presented the image set classification study on depth images, fused RGB and depth 

images using image-level pixel fusion and CNN based image fusion. The experimental 

results are computed on the GU-RGB-D database using seven different feature 

extraction algorithms like Principal Component Analysis (PCA), Histogram of Oriente 

Gradient (HOG), Local Binary Pattern (LBP), Local Phase Quantization (LPQ), GIST, 

Binarized Statistical Image Features (BSIF), and Convolution Neural Networks 

(CNN). 
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1.7 Thesis Outline 

The thesis is organized into a total of six chapters as described below:  

o Chapter-1: Introduction; presents a detailed discussion on 3D biometric face 

recognition, and related contributions in literature are summarized. Further, 

motivations and contributions are specified in this chapter about the significant 

findings of this thesis. 

o Chapter-2: Algorithms, Techniques, And Methods; presents the algorithms, 

methods, and techniques corresponding to the state-of-the-art feature extractions, 

fusion, and classification methods, used in this thesis. 

o Chapter-3: Generation Of GU-RGB-D Database & Preliminary Studies; presents 

in detail the GU-RGB-D database generation protocol and the preliminary studies 

based on score level fusion and pixel-level image fusion.  

o Chapter-4: Pre-processing And Feature Extraction Methods;  presents in detail 

the designed variable kernel-based hole filling filters and the experimental evaluation 

of the same by using different state-of-the-art feature extraction algorithms. 

o Chapter-5: Advance Classification Approach For Performance Analysis; presents 

the performance analysis using the collaborative representation classifier (CRC) based 

and Image Set Classification approach. 

o Chapter-6: Summary & Conclusion; presents the summary and the conclusive 

remarks based on the research.  
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Table 1.1: Studies based on Kinect based 3D facial Databases 

Databases Authors Year Approach Based on: 
Features 

extraction 
Classifier Fusion 

EURECOM [31] 2014 - 
PCA, LBP, SIFT, 

LGBP, ICP, TPS 
- 

Score level 

( weighted sum) 

EURECOM, 

VAP, IIIT-D 
[49] 2019 

LBP-RGB-D-MSVM 

algorithm 
LBP 

Multiclass 

Support Vector 

Machines 

(MSVM) 

Feature level 

(feature 

concatenation) 

EURECOM, 

Curtin Face 
[50] 2016 

Similarity values from 

texture images and depth 
HOG 

Joint Bayesian 

algorithm 

Score level 

(weighted sum) 

EURECOM, 

VAP, IIIT-D 
[51] 2018 

Learning complementary 

features from multiple 

modalities and common 

features between 

CNN 

AlexNet [52], 

GoogLeNet-BN 

[53], VGG-16 

[54] 

Score level 

(weighted sum) 



CHAPTER 1 

Page 15 

 

different modalities 

EURECOM, 

IIIT-D,  

HRRFaceD,  

Biwi Kinect 

Head Pose 

database 

[33] 2016 

Face image descriptor: 

bag of dense derivative 

depth patterns (Bag-D3P) 

Bag-D3P, PCA, 

LBP, HOG, LGBP, 

DLQP, SIFT, LPQ, 

BSIF 

Support Vector 

Machine (SVM) 

, Neural Network 

(NN) 

-  

EURECOM [35] 2012 Gradient-LBP (G-LBP) 
LBP. 3DLBP, 

GLBP 

Support Vector 

Machine (SVM) 
-  

Curtin Face, 

IIIT-D 
[55] 2020 

Multimodal attention 

network 

(feature-map attention 

and spatial attention) 

Convolutional 

feature extraction 

4 fully connected 

layers serve as a 

classifier 

Two-layer 

attention 

mechanism 

EURECOM, 

VAP, IIIT-D 
[28] 2014 

Entropy Maps and Visual 

Saliency Map 
HOG 

Random 

Decision Forest 

(RDF) 

Match Score 

Level Fusion 

(Weighted Sum) 

Rank Level 
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Fusion (Weighted 

Borda Count) 

IIT-K,  

EURECOM, 

Curtin Face 

[56] 2014 

modified 

SURF descriptors 
SURF - 

weighted score 

fusion 

VT-KFER  [57] 2015 Baseline feature sets 

LBP, 

Distance based 3D 

features 

SVM - 

IKFDB [58] 2021 - HOG 

Support Vector 

Machine, Multi-

Layer Neural 

Network, 

Convolutional 

Neural Network 

- 



 

 

 

 

CHAPTER 2: 
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AND METHODS 
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This chapter gives a brief description of the various publicly available databases used in our 

study and the state-of-the-art techniques/algorithms used throughout the experimental 

evaluation in this thesis. The organization of the chapter is as follows; section 2.1 describes 

the publicly available EURECOM and IIIT-D databases and their generation protocols. The 

different local and global feature extraction algorithms such as PCA, HOG, LBP, LPQ, 

GIST, BSIF, Log Gabor, and CNN, which are used for extracting features in the 

experimental protocol, are discussed in the section 2.2. Further, section 2.3 describes the 

different fusion strategies employed in this research work, such as pixel-level image fusion, 

2D-discrete wavelet transform-based image fusion, and CNN-based image fusion. The 

Collaborative Representation Classifier (CRC), a Classification technique used for the RGB-

D database, is also surveyed in section 2.4.1. Section 2.4.2 has the description of the Image 

Set Classification algorithms like Manifold-Manifold Distance (MMD), Manifold 

Discriminant Analysis (MDA), Covariance Discriminative Learning (CDL), Affine Hull 

Based Image Set Distance (AHISD), Convex Hull Based Image Set Distance (CHISD),  and 

Sparse Approximated Nearest Point. 

2.1 Databases 

This section briefly describes the publically available RGB-D face databases used in this 

study. Along with the GU-RGB-D database (described in the later chapter), we have used 

EURECOM and IIIT-D databases for performing different analyses in this thesis. 

2.1.1 EURECOM Database 

EURECOM [31] database is a collection of well-aligned 2-D, 2.5-D, 3-D, and video data, 

captured using a Kinect sensor. The database has a total of 52 subjects, including 38 males 

and 14 females from different countries. Here the data is available in two sessions, and each 

session has four types of data modalities for each subject: 2-D RGB image, 2.5-D depth map, 

3-D point cloud, and RGB-D video sequence. In both the sessions, there are nine facial 

variations: Neutral face, strong illumination, mouth open, smiling, occlusion by hand, 

occlusion by sunglasses, occlusion by paper, left and right face profile, face profile, and the 
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same acquisition protocol was maintained over the two sessions. All the images are captured 

under controlled conditions, comprised of natural light and the LED diffusion light. The 

sample images from the EURECOM database are shown in figure 2.1.       

 

 

Fig 2. 1: Sample images from EURECOM database 

2.1.2 IIIT-D RGB-D Database 

IIIT-D RGB-D [59] face database is captured using Microsoft Kinect sensor and comprises 

of total 106 male and female subjects. The database has multiple RGB-D images of each 

subject with a minimum count of 11 images and a maximum of 254 images per subject. This 

database has a total of 4605 images. The sample images from the IIIT-D RGB-D database are 

shown in figure 2.2.       

 

 

Fig 2. 2: Sample images from IIIT-D RGB-D database 

2.2 Feature Extraction Algorithms 

Feature extraction is an essential step in image processing as it extracts the most relevant 

information from the raw data and represents it in a lower dimensionality space [60]. In the 

area of facial image processing, facial features can be either extracted globally (face as a 
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whole) or locally (features like nose, eyes, etc.) from the input images. Global features 

correspond to the structural anatomy, while local features provide details in facial 

appearance. In this thesis, seven different types of feature extraction techniques are 

employed, and the same are described in subsections 2.2.1 – 2.2.8 in detail. 

2.2.1 Principle Component Analysis( PCA) 

Principle Component Analysis [61][62] is a dimensionality reduction technique used for 

feature extraction. In image or signal processing, this technique is mainly used to reduce the 

size of the feature vector, which is in turn used for solving recognition or classification 

problems. The technique preserves the important information and removes the redundant 

information from the pattern/image. In the application of face recognition, an eigenface-

based approach is used. A face contains a certain set of essential characteristic features called 

principle components or Eigenfaces and are extracted from the original image with the help 

of principle component analysis.  

 

The recognition process involves the following operations:  

i. Acquire the training set of face images.  

ii. Compute the Eigenfaces over each image from the training set, wherein around 90% 

cumulative higher eigenvalue vectors are considered, which define the face space. 

The eigenfaces can be recalculated or updated as and when the new faces are 

augmented.  

iii. Calculate the distribution in this new dimension space by projecting the face image of 

each known subject onto the face space.  

This data can be structured to be used in further processing, thereby eliminating the overhead 

of re-initializing, decreasing the computation time, and improving the system's performance 

[63].  

 

After initializing the training, the operation involved in the recognition process is as follows:   
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i. Calculate a set of weights of the input image in terms of eigenfaces by projecting the 

input image onto each of the Eigenfaces from the training set. 

ii. Determine if the image is a face or not by checking if the image is sufficiently close 

to face space. 

iii. On determining a face, classify the weight pattern as known or as an unknown 

subject.  

iv. Update the weights or eigenfaces as known or unknown (if required). 

v. If the same unknown subject/face is seen several times, its characteristic weight 

pattern can be calculated and incorporated into known faces.  

2.2.2. Histogram of Oriented Gradient (HOG) 

Histogram of Oriented Gradients [64] [65] is a feature descriptor method used to extract 

features from the images by computing the magnitude of gradient vectors. This technique 

counts the occurrences of gradient orientation in localized portions of an image which means 

the entire image is broken into smaller regions, and the gradients and orientation are 

calculated for each region. This has extensive use in image processing and computer vision. 

The main steps involved in computing HOG features are summarized as follows: 

 

i. The input image I(x,y) is divided into the blocks corresponding to M × M pixel size 

and subsequently in smaller and smaller cells. These block sizes and cell sizes can 

be customized based on the user's requirement. 

 

ii. The magnitude G(x,y) and direction θ(x, y) of the gradients for each pixel location 

within the cell is computed using x and y directional gradient i.e.  and 

As in Equation 2.1. 
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G(x,y)=  ;                  

 

θ(x, y)=                            

(2.1) 

 

Where,  = I(x + 1, y) − I(x − 1, y) and  = I(x, y + 1) − I(x, y − 1) 

depicts the details of horizontal and vertical gradients, respectively, at the given 

pixel location. 

iii. The magnitude of gradients vector computed for each pixel within the cells is placed 

in either one of the orientation bins according to the gradient angle.  

iv. Finally, all the histograms corresponding to each of the blocks are concatenated to 

obtain the final HOG descriptor. 

2.2.3 Local Binary Pattern (LBP) 

Local Binary Pattern (LBP) [66] is an effective texture descriptor for analyzing the images. 

This technique threshold the neighboring pixels based on the value of the current pixel [67] 

and efficiently captures the local spatial patterns and the grayscale contrast in an image. The 

steps involved in the computation of the LBP descriptor from an image are explained 

below[68]. 

i. In an image, I(x,y), for every pixel (x,y), choose 'N' neighboring pixels at a radius of 

R. 

ii. For the current pixel (x,y), calculate the intensity difference with its N neighboring 

pixels. 

iii. Threshold the central pixel with the neighboring pixels, and all the negative 

differences are assigned 0, and all the positive differences are assigned 1. This 



CHAPTER 2 

Page 22 

results in a binary pattern. The equation of the basic version of LBP can be given 

by equation 2.2 

 

LBP (x,y) =                                                                  (2.2) 

                                                            

Where gc is a central pixel value positioned at (x,y), gN is one of the neighboring 

pixel value within radius R. N is the total neighborhood pixel number, and the 

function S(x) is defined such that 

 

S(x)=                                                                   (2.3) 

                                                                                     

iv.  Next, the histogram is computed to determine the frequency value of the binary 

patterns. Then, depending upon the number of pixels involved in the LBP 

computation, histogram bins are determined. 

v.  All the normalized histograms are concatenated, resulting in a feature vector. 

2.2.4 Local Phase Quantization (LPQ) 

Local Phase Quantization (LPQ) is a texture descriptor method based on the blur invariance 

property of the Fourier phase spectrum [69]. It has been used as a feature descriptor to 

recognize blurred face images in biometrics [70, 71] 

 .  This method employs 2-dimensional Short-Term Fourier Transform (STFT) across the 

rectangular neighborhood of each pixel position to extract the local phase information.  

For a given image I(x,y), STFT on the local neighborhood Nx,y at each pixel position x,y of 

the image can be computed from Equation 2.4 

STFT (u,(x,y))=                                                (2.4) 
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Further, only four frequency components corresponding to u = [u1,u2,u3,u4] are considered in 

LPQ, where, u1 = [ν,0] 
T
 , u2 = [0,ν] 

T
 , u3 = [ν,ν]

 T
 u4 = [ν,−ν] 

T
 and ν is the scalar frequency 

parameters. Out of the total eight output coefficients obtained for the input image, four 

coefficients correspond to the real part while the other four corresponds to the imaginary 

part, resulting in eight binary coefficients. These binary coefficients, when represented in the 

decimal pattern it generated output ILPQ consist of phase information. Finally, the LPQ 

feature descriptor can be expressed as the histogram of these decimal values. 

2.2.5 GIST 

GIST [72, 73] is used to recognize the scene from the image by extracting local and global 

semantic information. For extracting features, the image is initially divided into several 

blocks, and the Gabor filters of different scales and different orientations are applied to these 

blocks to compute the required features. 

 The steps involved in computing the GIST features for a given image are as follows: 

i. Apply the  Gabor filters [74] (Equation 2.5) corresponding to 4 different scales and 8 

different orientations, resulting in 32 Gabor filters.  

 

                                           (2.5) 

      

Where x1 = x cosθw + y sin θw and y1 = −x sin θw +y cos θw; here ρ and θw are the 

wavelength and orientation of the sinusoidal plane wave respectively. σx and σy is 

the standard deviation of the Gaussian envelop across x−direction and y−direction, 

respectively, and w = 1,2,...,m; which represents the number of orientations, here 

m=8.  

ii. To obtain the feature map, perform a convolution operation between the input image 

and 32 Gabor filters, resulting in 32 feature maps. 
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iii. Fragment each feature map into 16 portions of 4×4 grids and average the feature 

values within each of the feature maps. 

iv. Further,  concatenated the 16 averaged values computed from 32 feature maps to 

obtain the final GIST of 512 (16 average value x 32 feature map)  dimensions. 

2.2.6 Binarized Statistical Image Feature (BSIF) 

Binarized Statistical Image Feature (BSIF) [75] is a statistical learning-based descriptor that 

computes a binary code string by thresholding. The pixel's code value is considered as the 

local descriptor of the image intensity pattern surrounding the pixel. Independent component 

analysis (ICA) is employed to extract the independent vectors from random samples of the 

training image set. To generate the BSIF features, the input image is convolved with the 

predefined textural filters formulated using a natural image database. 

The BSIF process can be summarized as follows: 

i. Conversion of the input image to a grayscale image  

ii. Patch selection from the grayscale image  

iii. Subtraction of the  mean value from all the components  

iv. Patch whitening process 

v. Estimation of ICA components 

The filter response for the input image I(x,y) and linear filter vi of size m x m is obtained by 

convolution as in equation (2.6).  

Zi = vi * I(x,y)                                                                                                                   (2.6) 

where Zi is the response of the i-th filter, and the binarized features bi is obtained by 

assigning bi=1 if Zi >0 and bi =0 otherwise.  
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2.2.7. Log-Gabor 

Log-Gabor [76, 77] is a feature descriptor in line with GIST, which uses banks of Gabor 

filter of different scales and orientations. The filter response of the Log-Gabor filter is 

Gaussian in nature on a logarithmic frequency scale, allowing it to capture more significant 

characteristics features in the higher frequency region. The equation (2.7) gives the transfer 

function of Log Gabor on a linear frequency scale. 

                                                                                                 ( 2.7) 

where  is the central frequency component of the filter, and m is the bandwidth scaling 

factor. Further, to maintain the consistency in filter shape, the ratio  must be kept constant.   

2.2.8 Convolution Neural Network (CNN) 

Convolutional neural networks (CNN) [78, 79] is a feed-forward Artificial Neural Network 

widely used for image processing and computer vision applications. In CNN, interneuron 

connections are inspired by the biological animal visual cortex (a visual mechanism) [80]. 

CNN recognizes the visible pattern directly from the pixel images with minimal pre-

processing.  Like other neural networks, CNN comprises an input layer, multiple hidden 

layers, and an output layer. The hidden layer comprises of Convolution layers, Pooling 

Layers, ReLU, and fully connected layers, thus helps to learn higher-order features in data. 

Each of the hidden layers learns to extract complex features of any given set of input images. 

The processing capacity of this network depends on the number of hidden layers; thus, it can 

be refined by varying depth and breadth. The detailed description of architectural layers of 

CNN and working is as given below:   

i. Convolution Layers: These are the basic building blocks of CNNs that extract the 

features from the input image. The first convolution layer extracts the low-level 

features like edges, lines, corners, etc. This layer convolves the input image with a set 
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of kernels corresponding to the features to be extracted (learnable filters) to produce 

feature maps. The kernel moves pixel by pixel (one pixel at a time) from left to right 

of the input image, starting from the top left corner. On reaching the top right corner 

of the image, it moves down to the first element of the next row and again moves 

from left to right. This process continues till it reaches the bottom right. Small sets of 

pixels are used for computations depending upon the size of the kernel, thus 

preserving the spatial relation between the pixels. The size of the feature map is 

controlled by three parameters depth, stride, and zero paddings.  

 

ii. Pooling Layer: This layer acts as a nonlinear down sampling layer. Max pooling is 

the common down sampling technique used in these layers. Here each input image is 

divided into non-overlapping sub-regions (two-dimensional spaces), and the 

maximum value of each is recorded [81]. The pooling layer gradually reduces the 

number of parameters and computations (controls overfitting) by reducing the size of 

the representation. Other pooling techniques used are average, sum, etc. 

 

iii. ReLU Layer: Rectified Linear Unit is an element-wise nonlinear operation applied to 

every pixel, and the negative pixel values in the feature map are replaced by zero. 

This layer increases the nonlinear properties of the decision function and the entire 

network without affecting the receptive field of the convolution layer.  

 

iv. Fully connected layer: The term fully connected implies the connection of every 

neuron from the previous layer to the next layer. The output of multiple convolutions 

and max-pool layers is a high-level feature of the input image. This layer classifies 

the input image into various trained classes depend on the extracted features. Finally, 

a classifier like softmax or some other classifying technique is used to classify the 

inputs. 
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2.3 Image Fusion  

Image fusion techniques integrate the complementary data from the multiple input images 

generated, usually using various modalities. As a result, the resultant image will be more 

informative and complete than any of the input images [82]. Furthermore, image fusion helps 

improve geometric corrections, sharpen the image, replace the defective data, enhances 

invisible features, and provide a better dataset for decision-making [83]. Image fusion can be 

divided into two groups; spatial domain fusion, where the input image pixels are directly 

taken into consideration, and Transform domain fusion, where the frequency domain of the 

input image is considered [82]. We have employed image fusion techniques over two 

modalities to fuse RGB and depth images to improve the performance of the face recognition 

algorithms. The employed fusion techniques, i.e., Pixel-level image fusion, 2D-discrete 

wavelet transform-based image fusion, and CNN-based image fusion, are briefly described in 

this section.  

2.3.1 Pixel-Level Image Fusion 

In pixel-level average image fusion, the fused image I3(x,y) is obtained by averaging the pixel 

intensities of both the input images I1(x,y) and I2(x,y)and can be formulated as equation (2.8) 

  ∀ (x,y)                                                                                        (2.8) 

2.3.2 Discrete Wavelet Transform (DWT) Based Image Fusion 

In Discrete Wavelet Transform, the input image is decomposed into approximate and 

informative components that convert the image from spatial domain to frequency domain. 

Image fusion using DWT can be generalized as follows [82]; 

i. DWT is performed on both the input images to be fused to obtain wavelet lower 

decomposition. 

ii. These decomposition levels are further fused by implementing different fusion rules, 

using suitable operators. 
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iii. Finally, Inverse Discrete Wavelet Transform is performed on the fused decomposed 

level to reconstruct and obtain the final fused image.  

We have employed a 2-Level  Discrete Wavelet Transform carried out using the Haar mother 

wavelet function in our work. The result of wavelet decomposition obtains the wavelet 

coefficients in seven sub-band images [84] that correspond to one approximation, two 

horizontal, two vertical, and two diagonal coefficient details. 

2.3.3 Convolutional Neural Network (CNN) Based Image Fusion 

Convolutional Neural Network (CNN) is basically a deep learning model which learns the 

hierarchical feature representation for image/signal data with different levels of abstraction. 

As the basic operation of the CNN is convolution, thus it is feasible to apply CNN for image 

fusion [153]. The fusion approach can be described in the following steps: 

i. Focus detection: Here, the pre-trained CNN model is fed with the input image 

to generate the score map. The score map consists of focus information, i.e., 

each coefficient indicates the focus property. Further, the focus map of the 

same size as the input images of the two or more modalities are generated by 

averaging the overlapping patches from the score map.   

ii. Initial segmentation: The generated fused focus map is segmented into a 

binary map. 

iii.  Consistency verification: The popular consistency verification approaches, 

i.e., small region removal and guided image filtering, are employed to refine 

the binary segmented map and to generate the decision map ‘Z’ further.  

iv. Fusion: The obtained decision map Z is used to calculate the final fused image 

T using pixel-wise weighted-average rule and can be given as in equation 

(2.9). 

                                   (2.9) 

where,  I1 and I2 are the input images from the two modalities. 
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2.4. Feature Classification Techniques 

Feature classification is a prime step in image processing as it measures the level of 

similarity or dis-similarity within the feature vectors obtained from the images. This section 

briefly described the feature classification technique employed in this thesis apart from 

simple distance metrics.  

2.4.1 Collaborative Representation Classifier (CRC) 

Collaborative Representation Classifier (CRC) [85] has emerged as one of the robust feature 

classification methods in the face recognition domain. It is an extended version of the Sparse 

Representation Classifier (SRC) and computes the maximum likelihood ratio between the 

test sample image and the other classes in a joint manner.  In order to perform the final 

feature classification, the maximum likelihood of the test sample is computed against the 

other classes from the training set. Let the equation (2.10) represent the feature vector (m 

dimensions) of each image;    

                                                                                         (2.10) 

where b is the total number of classes and N is the total number of images across the classes.  

The expression for CRC can be represented by a general modal as follows: 

                                                                     (2.11) 

where α= α1…. αb is the coefficient vector, µ is the regularization parameter, and ‘I ’ is an 

input test image is given by I ϵ 
m
. 

2.4.2 Image Set Classification Algorithms 

Image set classification is a technique where a set of images represents each class as 

compared to the traditional recognition or classification problems, where a single image is 

involved in the learning process [86, 87]. Here a set of test images are assigned to the label of 
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the nearest training set using distance criteria. The image set classification procedure can be 

briefly described as follows [86]: 

i. Images belonging to the same class are considered as an image set. 

ii. The most representative sample images are extracted from the set. 

iii. The intrinsic property of this set is learned through a proper probability distribution.  

Basically, image set classification is the measure of similarity between the most similar two 

sets of the same class and having the most similar output responses of the probability 

distribution models. Even though the images belong to the same class, there may be a 

remarkable difference due to various conditions such as lighting, posture, etc. thus, the image 

set classification is used to draw the intrinsic property from a set of images. We have 

employed six different image set classification techniques; namely, Affine Hull Based Image 

Set Distance (AHISD), Covariance Discriminative Learning (CDL), Convex Hull Based 

Image Set Distance (CHISD), Manifold-Manifold Distance (MMD), Manifold Discriminant 

Analysis (MDA) and Sparse Approximated Nearest Point (SANP). The details related to 

each of the technique are explained in the section 2.4.2.1 to 2.4.2.6 in the following section. 

2.4.2.1 Affine Hull Based Image Set Distance (AHISD) & Convex Hull Based Image Set 

Distance (CHISD) 

These techniques treat a set of images in linear space and characterize each set by the affine 

or convex hull (a convex geometric region) spanned by its feature points. Here to compare 

the different sets, the distance of closet approach (geometric distance) is employed between 

the convex models.  

 

Let the set of samples be Zci  = { Zc1, Zc2, Zc3,…, Zcm}  ϵ  ℝ
d
 corresponds to the class 'c', and 

each sample image can be expressed in 'd’ dimensional feature vector. For the given set, the 

affine or Convex hull is formulated as follows [87, 88]: 

 

                                                                    (2.12) 
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Further, the affine hull can be parametrized by choosing some point µc as a reference point in 

affine space where 

µc =                                                                                                                 (2.13) 

 

and the equation (2.12) can be rewritten as  

                                                                              (2.14) 

Where UC is the feature vector in the affine subspace and vc is a  vector of free parameters 

expressed with respect to Uc of reduced dimensions within the subspace. 

By introducing the upper bound ‘U’ and the lower bound ‘L’ on the allowable coefficient β, 

the equation (2.15) can be modified as the equation for the convex hull approximation. 

 

                                          (2.15) 

 

Where L = 0 and U ≥ 1 

2.4.2.2 Covariance Discriminative Learning (CDL) 

In Covariance Discriminative Learning (CDL) [89] approach, the image set Z={Z1, Z2, Z3, 

….Zm} ϵ ℝ
d
 is represented by its natural second-order statistic (covariance matrix, C). The 

covariance matrix of each set is computed using equation (2.16 ) 

 

C =                                                                                  (2.16) 

 

Where m is the number of samples in the image set, Zk denotes the k-th image and is the 

mean of the image samples. Further, the Log-Euclidean distance approach is adopted to map 

the covariance matrix from the Riemannian manifold to a Euclidean space. This approach is 
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adopted as the classic learning algorithm is operated in the vector spaces associated with the 

Euclidean matrix and cannot take the direct input point from the manifold. Kernel Linear 

Discriminant Analysis (KLDA) [90] and Partial Least Squares (PLS) [91] are the two 

classification algorithms used in this algorithm 

2.4.2.3 Manifold-Manifold Distance (MMD) 

The Image set containing images pertaining to the same subject and having large variations is 

modeled as a manifold, and the distance between the two manifolds is computed in 

Manifold-Manifold Distance (MMD) [87, 92, 93] approach. Manifold can be considered as 

an extended subspace and can be modeled with the collection of local linear models due to 

the fact that the local linearity holds across the global nonlinear manifold. Consider two 

manifolds, M1 and M2 : 

M1 = {Cu : u = 1, 2, 3,… , m}   

M2 = {C′v : v = 1, 2, 3,… , n} 

Where u and v are the u-th and the v-th component subspaces of manifold M1 by Cu and M2 

by C′v, respectively, and m and n are the number of a local linear subspace in M1 and M2, 

respectively. The distance between the two manifolds M1 and M2 is computed using equation 

(2.17) 

d(M1 , M2) =  , 

            such that                                                                 (2.17) 

From the above equation, it can be seen that the MMD computation has three essential 

components:  

i. Local linear model construction Cu and C′v (component subspaces) 

ii. Subspace to Subspace Distance measurement d (Cu, C′v) (local model distance) ;  

iii. Global integration of local distances;  fuv ( choice of weights). 
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2.4.2.4 Manifold Discriminant Analysis (MDA) 

Manifold Discriminant Analysis (MDA) [87, 94] is a discriminative learning method that 

enhances the compactness of local data within each manifold and maximizes the margin of 

manifolds. The two key points involved in the computation of MDA are as follows: 

i. Local Linear Model: An effective clustering method is employed to extract the cluster 

set for each manifold, and each cluster is a local liner model. This local liner 

model characterizes the margin between the global nonlinear manifolds. 

ii. Discriminative learning: MDA maps the multiclass manifolds into an embedding 

space by learning a linear discriminant function. 

The main aim of obtaining the maximum separability between-class and to enhance the 

compactness within-class can be obtained from the following equations. 

                                        ( 2.18) 

                                      (2.19) 

Maximize J(u) =                                                                                   (2.20) 

Where xp  ϵ Ci,k and xq ϵ Cj,k the local models, D and D′ are the diagonal matrices with         

dp,p = and d′p,p =  diagonal elements. Lw=D-W and  Lb=D′-W′ are the 

Laplacian matrices corresponding to Sw and Sb, respectively. 

2.4.2.5 Sparse Approximated Nearest Point (SANP) 

The Sparse Approximated Nearest Point (SANP) to compute the between–set distance can be 

defined as a pair of nearest points on the image sets, which can be sparsely approximated by 

the sample images of the respective individual set. SNAPs points should satisfy the following 

constraints: 

i. The two points should have a small Euclidean distance between them. 
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ii. Each of the two points should be able to be approximated by a sparse combination of 

sample images in the corresponding image set. 

To obtain the SANPs of the two image sets, consider the affine hull models of two image sets 

(µm,Um) and (µn,Un) corresponding to the data matrices Xm and Xn. The process is formulated 

as follows; 

, 

  , 

                                                                             (2.21) 

                                  (2.22) 

where  is the distance between images m and n, the individual fidelities between these 

two points, and their sample approximations are preserved by   and  respectively, 

and  are used to enforce the approximations to be sparse.  
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Face recognition [23] is one of the prominent areas of research as the acquisition of the facial 

trait is a non-intrusive, easily obtainable, and convenient biometric trait compared to the 

other biometric traits like iris, voice, gait, etc. The 2D facial images have well-defined roots 

in the world of biometric research due to the low cost of its acquisition system and wide 

availability. But, the 2D face recognition system faces its limitations when it comes to mostly 

illumination and pose variation [95]. In order to overcome these shortcomings of 2D 

recognition, the 3D recognition system captured the market due to high-security concerns 

from the local to the defense level. However, research in 3D biometric was an expensive task 

as the expense of system requirements for acquiring 3D images was very high and time-

consuming [9] until the development of an efficient, low-cost RGB-D Kinect camera. This 

system provides 2D RGB images and depth information, i.e., distance from each object pixel 

to the sensor [28]. The essential requirement of any research problem is a set of data needed 

to train a system (such as a machine learning model) and perform various analyses to 

quantify the system's performance. 

In biometrics, databases are essential in developing reliable and robust recognition systems. 

In addition, they serve as the standard platform for evaluating the various state–of–the–art 

recognition algorithms [96]. Considering these facts, a large number of face databases are 

developed to serve the two primary purposes [31]:  

i. To test the robustness of the face recognition algorithms for single or multiple 

variations (Yale Face Database B [97] is one example of this where the database has 

405 viewing conditions, i.e., 9 pose and 45 illumination conditions). 

ii. To help in the development of face recognition algorithms for a particular data 

modality (for example, the Honda/UCSD [98, 99] video frame database was 

developed for video-based face recognition problems.   

Some of the face databases used for different analysis and study purpose in the literature 

includes:  FERT database [100], FRGC database [101], AR database [102], Olivetti Research 

Lab (ORL) database [103], pose-illumination-expression (PIE) database [104], labeled face 

in wild (LFW) [105], surveillance cameras face (SCface) database [106], MOBIO (mobile 



CHAPTER 3 

  Page 36 

biometry) database [107], etc. A more detailed list of the face databases and their 

descriptions can be found in  [108].   

 

There is a wide collection of 2D face databases, whereas the number of 3D face databases is 

relatively less in literature. Most of the existing 3D face databases like ND-2006, FRGC, 

BJUT-3-D, GavabDB, UMB-DB, etc., have used a high-quality laser scanner to acquire the 

data. These high-quality laser scanners provide very accurate details of the face, but they 

have a high acquisition time and hence need careful cooperation from the subject. On the 

other hand, the databases captured using high-quality stereo imaging systems such as BU-3-

DFE, Texas 3-DFRD, XM2VTSDB, etc., also give similar performance accuracy as that of 

the laser scanners. A brief description of some of the 3D face datasets captured using laser 

scanners, and stereo imaging systems in the literature are as follows: 

 

 ND-2006 [109] is a collection of 13450 images captured from 888 subjects. A 

maximum of 63 images was scanned per subject, and it has 6 different types of 

expressions, i.e., neutral, happiness, sadness, surprise, disgust, and other.  

 

 FGRC [101] database is one of the widely accepted standard database to evaluate the 

3D face recognition algorithms. This database is divided into FRGC v 1.0, where the 

training set has 943 images obtained from 273 subjects, and FRGC v 2.0, where the 

training set contains 4007 images of 466 subjects and additional expressions. 

 

 BJUT-3D [110] database is a Chinese database comprises of 500 subjects (an equal 

number of male and female subjects). This database is generated using CyberWare 

3030 RGB/PS laser scanner, which stores texture information along with the shape.  

 

 GavabDB database [111, 112] has a total of 549 three-dimensional images/mesh 

surfaces corresponding to 61 subjects. Each subject has 9 variations, i.e., 2 frontal, 4 

rotated images without expressions, and 3 frontal with different expressions. This 
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database has captured intrinsic variations like pose, expressions, and extrinsic 

variations in changing background, light effects, etc.     

 

 UMB-DB database [113] is a collection of 1473 2D, and 3D front images scanned 

from 143 subjects. There are minimum 9 acquisitions per subject, including 3 neutral 

expressions, 3 expressions, i.e.smile, bored and angry, and 3 face occlusion with 

different objects like hat, scarf, and hands. This database also has occlusion such as 

eyeglasses, holding phones, partially occluded by the hair, and other miscellaneous 

objects. 

 

 BU-3DFE database [114] has a total of 2500 3D scans and 2D texture information of 

100 subjects obtained using the stereo photography technique. This database has 6 

variations of expressions, i.e., happiness, anger, sadness, surprise, fear, and disgust. 

 

 Texas 3DFRD, i.e., Texas 3D Face Recognition Database [115], is a collection of 

1149 pairs of face texture information and scanned images of 118 subjects. The said 

database is generated using an MU-2 stereo imaging system at a high spatial 

resolution of 0.32 mm.  

 

More details about the 3D face database acquired using 3D scanners, or stereo photographic 

techniques are provided in Table 3.1. As mentioned earlier, obtaining the 3D database was an 

expensive and time-consuming task until the development of the Kinect camera. The details 

regarding the Kinect camera based 3D databases are organized in Table 3.2. A brief 

description of the Kinect camera based databases and the feature extractions are  discussed as 

follows:  

 

 Rui Min et al. [31] have generated a 3D database based on the Kinect sensor having 

52 subjects captured over two sessions for 2D, 2.5D, 3D, and video. Here recognition 

rates are calculated for 2D, 2.5D, and 3D-based face data using standard face 



CHAPTER 3 

  Page 38 

recognition techniques like PCA, LBP, SIFT, LGBP, ICP, and TPS, and also RGB 

and Depth images were fused using score-level fusion.  

 

 Ajmera et al. [56] have computed CRR based on modified SURF descriptors and 

image enhancement techniques and filters like adaptive histogram equalization, NLM 

filter, etc., for their internal database. The internal database (IIT-K) is a collection of 

100 male and female subjects captured at 0º, 15º, 30º, 45º, 60º, 75º, and 90º pose 

angles. These results are compared with Eurecom and Curtin face database. The 

authors have also performed the study based on scored level fusion.  

 

  R.I. Hg et al. [116] have developed an RGB-D Face database (VAP database) of 31 

subjects containing 1581 RGB images (and their depth images). The said database 

has 17 different pose variations and facial expressions captured using Kinect sensor. 

The capturing process was repeated three times per subject. Here the authors have 

developed a face detection protocol using the curvature analysis technique and 

reported its performance on the VAP database. 

  

 Gaurav Goswami et al. [59] had generated an IIIT-D RGB-D face database of 106 

subjects with multiple images per subject. The number of images per subject varies 

from 11 to 254 images making the total count as 4605 images. The authors have also 

proposed an algorithm for 3D face recognition, which involves computation of 

entropy map and visual saliency map followed by  HOG descriptor for feature 

extraction and the use of Random Decision Forest (RDF) classifier for establishing 

identity. The algorithm was tested for IIIT-D and EURECOM databases. 

 

 Merget, Daniel et al. have generated a Face-Grabber database [117] based on the 

facial expressions of 40 subjects. The database is captured using Kinect v2 and 

consists of 67,159 frames of color and depth images. It has six emotion variations, 

i.e., sadness, disgust, fear, happiness, anger, and surprise. It also consists of a 
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sequence of six-second head scan with a neutral expression and random facial 

expression frames of ten seconds.  

 RAP3DF [118] database is generated by  Rafael Alexandre Piemontez et al. and has a 

collection of 267 samples obtained from 64 subjects. This database has the collection 

of two groups of images of the participants. The first group has captured images of 

frontal position without any expression, while the second group has 6 different facial 

expressions, i.e., surprise, happiness, fear, anger, sadness, and disgust. Further, each 

sample in the database has three types of images, i.e., an infrared image, a visible 

image, and a depth image.   

 

 Seyed Muhammad Hossein Mousavi et al. [58] have generated a Kinect v.2 based 

IKFDB, i.e., Iranian Kinect face database consisting of 40 subjects. The database has 

a collection of more than 100000 recorded color and depth frames. Seven main 

expressions are captured between frames 150-250. In addition, pitch and yaw action 

has been considered in the databases to resolve the recognition problem from any 

angle. The authors have used HOG descriptor for feature extraction followed by 

Support Vector Machine  (SVM) [119], Multi-Layer Neural Network (MLNN) [120], 

and Convolutional Neural Network (CNN) [120] algorithms for classification 

purpose.   
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Table 3. 1: Existing Laser scanner based and stereo imaging-based 3D facial databases  [31, 121–123] 

Databases Scanner 

Number 

of 

subjects 

Total 

Images 
Pose Variations Occlusion Expressions Reference 

3DRMA 
Structural Light-based 

3D face scanner 
120 360 

Frontal, up/down, 

limited left/right 
- - [124] 

FUS Minolta Vivid 700 37 222 - - 

Neutral, smile, 

scared, angry, 

squint, frown 

[125] 

GavabDB 
Minolta Vi-700 laser 

range scanner 
61 549 

Frontal, left profile, 

right profile, 

looking up, looking 

down 

- 

Neutral, smile, 

accentuated 

laugh, random 

gesture 

[111] 

FRGC v 

1.0 

Minolta Vivid 3D 

scanner 
273 943 - - - [101] 

FRGC v 

2.0 

Minolta Vivid 900/910 

3D scanner 
466 4007 - - 

Neutral, 

surprise, 

happy, puffy 

cheeks, anger, 

[101] 
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frown 

BU3D-FE 
Stereo photography, 

3DMD digitizer 
100 2500 - - 

Neutral, angry, 

fear, sadness, 

disgust, 

happiness, 

surprise 

[114] 

CASIA 
Minolta Vivid 910 range 

scanner 
123 4059 

Frontal, tilt left and 

right 20◦−30◦, up 

and down, 20◦−30◦, 

left and right 

20◦−30◦, left and 

right, 50◦−60◦, left 

and right 80◦−90◦ 

- 

Neutral, smile, 

eyes closed, 

anger, laugh, 

surprise 

[126] 

FRAV3D 
Minolta Vivid 700 red 

laser light scanner 
105 1696 

Frontal looking up 

and down in X-axis 

direction, 25◦ Y-

axis right turn, 5◦ 

Y-axis left turn, 

small and severe Z-

- 

Neutral, open 

mouth, smile, 

and gesture 

[127] 
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axis right turn 

ND 2006 
Minolta Vivid 910 range 

scanner 
888 13450 - - 

Neutral, 

surprise, 

sadness, 

disgust, 

happiness, 

undetermined 

[109] 

MSU 
Minolta Vivid 910 range 

scanner 
90 533 - - Neutral , Smile [128] 

ZJU-

3DFED 

InSpeck 3D MEGA 

Capturor DF 
40 360 - - 

Neutral, smile, 

surprise, sad 
[129] 

Bosphorus 
The Inspeck Mega 

Capturor II 3D scanner 
105 4652 

13 yaw, pitch & 

cross rotation 

Hair, 

mouth, eye, 

eyeglasses 

34 expressions [123] 

University 

of York 
Stereo vision 3D camera 350 5250 Frontal, up, down - 

Neutral, eyes 

closed, 

eyebrows 

[130] 
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raised, happy, 

anger 

BJUT -3D 
CyberWare 3030RGB/PS 

laser scanner 
500 - - - - [114] 

Texas 3-D 
MU-2 stereo imaging 

system 
118 1149 - - 

Neutral, 

smile/talk with 

open/closed 

eyes and/or 

open/closed 

mouth 

[115] 

UMB-DB 
Minolta Vivid 900 laser 

scanner 
143 1473 - 

Scarf, hat, 

hands in 

random 

positions, 

eyeglasses, 

hair, 

miscellane

ous 

Neutral, smile, 

angry, bored 
[113] 

3D TEC Minolta scanner 214 428 - - Neutral, smile [131] 
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Table 3. 2: Existing Kinect based 3D facial databases 

Database 
No. of 

Subjects 
Sessions 

Variations 

Reference 

Angles/Poses Occlusion Expressions Illumination 

EURECOM  52 2 
Neutral face, Right, 

Left 

Paper & Hand 

on face, 

Sunglasses 

Smiling, Mouth open Single pose [31] 

VAP  31 3 

combination of 17 

vertical and horizontal 

face poses 

- 
Smile, Sad, Yawn, 

Anger 
- [116] 

Curtin Face  52 1 various poses Sunglasses Various expressions Yes [9] 

IIIT-D  106 1 various poses - Various expressions Yes [59] 

IIT-K  100 1 
0°,15°,30°,45°,60°,75°,

90° 
- - Yes [56] 
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VT-KFER  32 1 Frontal, Right, Left - 
6 random facial 

expressions 
- [57] 

Face-

Grabber  
40 1 - - 

Sadness, Disgust, 

Fear, Happiness, 

Anger, and Surprise; 

Neutral & Random 

facial expression 

- [117] 

KaspAROV 

RGB-D 

video face 

database  

108 1 Yes - Yes Yes [132] 

RAP3DF  64 1 Arbitrary poses - 

Happiness, Surprise, 

Fear, Sadness, Anger, 

Disgust. 

- [118] 

IKFDB  40 1 Pitch and Yaw action - 7 Facial expressions - [58] 
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3.1 Contributions 

With the literature background of the various 3D facial databases, we have generated the 

Kinect-based GU-RGB-D database having variations in pose/angles, expression, and 

occlusion to cover all possible variations under one database. This database also has the 

scope to study the effect of controlled and uncontrolled environments on the RGB-D 

database. Further, the preliminary study on the GU-RGB-D and EURECOM database has 

been performed using Principle Component Analysis (PCA) based feature extraction 

algorithm. The contributions can be summarized as follows: 

o Generation of Kinect-based GU-RGB-D database having variation in pose /angles, 

expressions, occlusions, illumination and captured under controlled and uncontrolled 

environmental conditions. 

o Preliminary study on GU-RGB-D and EURECOM database using Principle 

Component Analysis (PCA) algorithm as a feature extraction method. 

o Presented study based on score level fusion for RGB and depth images of both the 

databases. 

o Presented study based on Pixel level image fusion of RGB and depth images.  

The rest of the chapter is distributed as follows; section 3.2 gives the entire GU-RGB-D 

database generation process under which sub-section 3.2.1 describes the 3D imaging setup, 

sub-section 3.2.2 provides the basic working principle of the Kinect camera, and subsection 

3.2.3 describes the data acquisition protocol. Next, section 3.3 describes the preliminary 

study on the GU-RGB-D and EURECOM database with two different methodologies (based 

on score level fusion & Pixel level image fusion ). Then, sub-section 3.3.1 provides the study 

based on score level fusion (methodology 1), and the results w.r.t the GU-RGB-D and 

EURECOM databases are given in the subsections of 3.3.2. Finally, the study based on Pixel 

level image fusion is described in subsection 3.3.3, and its results are discussed in a 

subsection of 3.3.4.  

 



CHAPTER 3 

  Page 47 

3.2 Generation Of GU-RGB-D database Using Kinect Camera 

This section gives the details of the GU-RGB-D database generation process, including the 

image setup used for capturing images under the controlled and uncontrolled environment, 

the basic principle of Kinect camera, and the data acquisition protocol of the GU-RGB-D 

database.  

 

 

Fig 3. 1: Pictorial view of the 3-D imaging set up for a generation of GU-RGB-D database 

3.2.1   3D Imaging Setup 

The 3D biometric imaging laboratory has been set up at our workplace in a dark room and is 

equipped with the Xbox 360 Kinect depth camera from Microsoft, QTH light sources, and a 

computer system. The laboratory is facilitated with controlled and uncontrolled 

environmental conditions in order to capture the images in the same manner. The Xbox 360 
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Kinect depth camera consists of two parts; the RGB camera used to capture 2D image 

information and an infrared projector combined with a monochrome CMOS sensor, which 

acquires depth information, which is the distance between subject and sensor, i.e., depth. The 

pictorial view of the 3-D imaging setup for the generation of the GU-RGB-D database is 

given in Figure 3.1. 

 

Fig 3. 2: Kinect camera-based 3D imaging laboratory: Controlled condition 

 

Fig 3. 3: Kinect camera-based 3D imaging laboratory:  Uncontrolled condition (window 

open) 
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The Kinect sensor is mounted parallel to the ground at the height of 1.5 meters and 

approximately at a distance of 1.25 meters from the subject. A white muslin cloth backdrop 

is placed behind the subject to maintain a uniform background and equal illumination on all 

sides. To capture the data under the controlled environmental condition (Figure 3.2), the two 

QTH light sources of 600 watts are placed at an angle 45
0
 normal to the subject's position. 

The direct projection of light on the subject is avoided with the white muslin cloth umbrellas 

mounted in front of light sources. The uncontrolled environmental conditions (Figure 3.3) 

were obtained by exposing the subject to the ambient light by opening the windows while 

capturing the images.  

3.2.2 Basic Principle of Kinect Camera 

Microsoft Kinect camera is a light-coded range camera that can estimate the 3D geometry of 

an acquired seen. It consists of an RGB camera, an infrared (IR) emitter/projector, an 

infrared (IR) camera/sensor, and a multi-array microphone. RGB images are captured by the 

RGB camera directly, whereas the IR projector and IR sensor act together to capture a depth 

image.  The IR projector projects an IR light pattern (predesign pattern of spots) on the scene 

at the wavelength of 830 nm, and the reflected pattern is captured by the IR camera sensor 

working on the same wavelength. This captured pattern is further compared with the known 

pattern to produce the disparity map ID having disparity value 'd' at each point. This disparity 

map is further used to compute the depth map via the active triangulation method, which 

serves as the basic principle of the system [31][133]. The detailed process, along with the 

mathematical formulations, is available in [134] and [135]. 

3.2.3   3D Image Acquisition Protocol for GU-RGB-D Database Generation 

After proper calibration of the camera, the image acquisition was performed to maintain and 

confirm the protocol of the experiment. The highest resolution for Kinect color sensor 

(1280x960) and Kinect depth sensor (640x480) has been selected among the resolution 

parameters while capturing the database. The GU-RGB-D Database is collected in two 
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sessions under controlled and uncontrolled environmental conditions for our institution 

students and staff. The image capturing protocol is designed as shown in Figure 3.4. In the 

database, we have introduced a total of eight variations per subject in the image acquisition 

process, having variation in pose (-90
0
, -45

0
, 0

0
, +45

0
, +90

0
), variation in expressions (smile, 

eyes closed), and occlusion (paper was used to cover the vertical half part of the face).  

 

 

Fig 3. 4: 3D image acquisition protocol 

 

 

Fig 3. 5: Images from GU-RGB-D database 
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The GU-RGBD database is collected for 64 subjects, out of which 15 are females and 49 are 

males from various age groups captured in two different sessions. Session 1 as controlled 

environmental conditions and session 2 as un-controlled environmental conditions. A total of 

16 images were captured for every subject, i.e., eight RGB and eight depth images, in every 

session. The sample images of the database are shown in Figure 3.5. The database has a total 

of 2048 images, i.e., 64(subjects) x 32(images per subject) = 2048. The details of the GU-

RGBD database as per the designed acquisition protocol are given in Table 3.3. 

Table 3. 3: Details of GU-RGB-D database 

Facial Variants 

RGB Images Depth Images 

Subjects Session Samples 
Total 

Images 
Subjects Session Samples 

Total 

Images 

Front 0º 64 2 1 128 64 2 1 128 

Pose/Angles 

+45º 64 2 1 128 64 2 1 128 

-45 º 64 2 1 128 64 2 1 128 

+90 º 64 2 1 128 64 2 1 128 

-90 º 64 2 1 128 64 2 1 128 

Expression 

Smile 64 2 1 128 64 2 1 128 

Eyes 

Closed 
64 2 1 128 64 2 1 128 

Occlusion 
Paper 

on face 
64 2 1 128 64 2 1 128 

3.3 Preliminary Study On RGB-D Databases 

We have experimented on the in-house generated GU-RGB-D database and the publicly 

available EURECOM database for preliminary study and analysis. The said databases have 

the collection of the multimodal facial images captured using a Kinect camera of 64 subjects 

(15 females, 49 males) and 52 subjects (14 females, 38 males), respectively. The databases 

are captured in two sessions and have facial images with different facial expressions, 

different lighting conditions, and occlusions: neutral, open mouth, smile, left profile, right 

profile, occlusion mouth, occlusion eyes, occlusion paper, and light on condition. 

The fusion of various biometric traits is one of the security enhancement schemes in which 

two or more biometric modalities/traits are fused [136]. Kinect-based imaging setup captures 

2D RGB images as well as depth images.  The fusion of these two modes would ultimately 
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have the upper hand in the performance of biometric systems leading to higher security. 

There are four basic fusion schemes: sensor level, feature extraction level, matching 

similarity score level, and decision level fusion [136]. Fusion at the sensor level is done by 

combining the raw output of the sensors themselves and can be applied under very limited 

conditions. Fusion at the feature extraction level is quite restricted because if features are 

homogenous, then they can be combined into a single feature vector, but if inputs are not 

homogenous, then it becomes challenging to combine them. Fusion in the most multimodal 

biometric system is often implemented at the matching score level, as it is simple to access 

and combine the scores generated by the matching module. Also, decision-level fusion can 

be implemented, but here a small amount of information is available, i.e., merging of 

multiple accept/reject output into a single decision; therefore, it is not a very accurate fusion 

strategy alone. However, decision-level fusion is more effective when it is combined with 

other fusion techniques. Here in this study, we have implemented matching score level fusion 

of the scores generated using PCA [61][62]. 

Using the PCA algorithm, one can express the large 1-D vector of pixels from a 2-D image 

into a reduced principle component of the feature space called eigenspace projection. 

Eigenspace is calculated by identifying the eigenvectors of the covariance matrix derived 

from a set of facial images (vectors). The eigenvectors corresponding to nonzero eigenvalues 

of the covariance matrix produce an orthonormal basis for the subspace within which most 

image data can be represented with a small amount of error. The eigenvectors are sorted from 

high to low according to their corresponding eigenvalues. The eigenvector associated with 

the largest eigenvalues reflects the greatest variance in the image, and the smallest 

eigenvalues are associated with the least variance. 

3.3.1 Methodology 1: Study Based On Score Level Fusion 

The framework of methodology 1 can be seen in Figure 3.6. The two databases were cropped 

manually to obtain the region of interest in the preprocessing stage. This is followed by 

feature extraction using the Eigen face-based Principle Component Analysis (PCA) 

algorithm, one of the well-known dimension reduction techniques.  
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Fig 3. 6: Framework of implemented methodology 1 and fusion system 

 

The RGB and Depth datasets have different variations such as pose variation, smile, 

occlusion, and various angles. The features from each variation are extracted using the PCA 

algorithm, and the similarity scores are obtained by testing them against the RGB and depth 

training dataset of a fixed variation, respectively. Finally, the similarity scores are fused 

together using complementary fusion in order to obtain the enhancement in recognition rate. 

In the complementary fusion approach, the weightages of the filter for RGB and depth 

images are varied based on the value of 'α' as given in Equation.3.1. 

         Fscore= (1- α)*RGBscore + α*Depthscore                                                               (3.1)     

The complementary fusion is selected in this study as it implicitly implements the sum/mean 

fusion at α= 0.5 and weighted fusion otherwise. 
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3.3.2 Results and Discussion 

We have considered the data of only 25 subjects from the EURECOM database out of 

available 52 subjects for computing the preliminary study and the analysis. Similarly, data of 

25 subjects from the GU-RGBD database out of available 64 subjects are engaged separately 

for processing the results. The images from both databases were cropped and downscaled to 

96 x 96 dimensions to reduce computational time. The set of neutral images (front face) from 

session 1 of the respective databases are used as the training set. And the rest of the database, 

including all the variations from session 1 and session 2, are used for testing. The protocol 

detail can de be seen in Table 3.4. 

The features are extracted from the training and the testing datasets using Principle 

Component Analysis (PCA) to compute similarity scores. The computed scores are used to 

calculate the recognition rates of different variations against the respective training set. The 

complementary fusion is implimented as per Equation (3.1) for five different values of 'α' (α  

= 0.3, 0.4, 0.5, 0.6, 0.7), i.e., by varying the weightage of the RGB or Depth scores. When α 

= 0.5, equal weightages are given to RGB and Depth Scores. For α = 0.3 & 0.4, the scores of 

the RGB component is at the higher weightage as compared to the depth and its other way 

round when α = 0.6 & 0.7. The computed recognition rates for RGB, Depth, and Fusion at 

Rank - 5 are tabulated in Tables 3.5 & 3.6. 

It can be seen that engaged fusion methodology has enhanced the recognition rate as 

compared to the recognition rate obtained for RGB and depth independently. It can be further 

noted that by using complementary fusion, i.e., by changing the weightage of either RGB or 

Depth, the system performance can be improved to a higher level of security. This can be 

considered as a method to compensate for the system's performance degradation due to the 

low quality of either depth or RGB images.  
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Table 3. 4: Evaluation protocol 

Pose/Variation 
Session Total Subjects 

GU-RGB-D EURECOM 

Training Dataset 

0° pose/Front Neutral Session I 25 

Testing Dataset 

0° pose/Front Neutral Session I 25 

45° pose Illumination Session I & II 25 each 

90° pose 
Occlusion by 

Sunglasses 
Session I & II 25 each 

(-45)° pose Occlusion by Hand Session I & II 25 each 

(-90)° pose Smiling Session I & II 25 each 

Paper on face Open  mouth Session I & II 25 each 

Eyes closed Occlusion by Paper Session I & II 25 each 

Smile Left Session I & II 25 each 

- Right Session I & II 25 each 
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3.3.2.1 Evaluation of EURECOM Database 

The recognition rates computed for RGB, depth, and fusion using the described methodology 

for the EURECOM database are tabulated in Table 3.5. Some of the major observations from 

Table 3.5 are as follows: 

 When the 'occlusion by hand' variation of session 1 is tested against the training set, it 

gives a higher recognition rate for fusion, i.e., 96% for the combination of depth and  

RGB scores for α = 0.3 & 0.4. A similar trend can be seen in the case of the variation 

'smiling' of session 1 and session 2 and the variation 'mouth open' of session 2. 

 

 Further, 'occlusion by sunglasses' gives better performance 96% when it is having 

equal weightage for both RGB and depth. The variation 'neutral' of session 2 is, 

when tested against the training set, performs 84% for 0.4, 0.5, and 0.6 values of 

alpha.  

 

 Individual recognition rates in the case of 'left' and 'right' variation in both the 

sessions are quite lower as only the partial face triangle is available for the 

computation. However, complementary fusion has improved its performance to some 

extent.  
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Table 3. 5: Recognition Rates computed at Rank 5 for EURECOM database using a 

complementary fusion approach 

Variations RGB Depth 

Fusion 

(0.3) (0.4) (0.5) (0.6) (0.7) 

Session 1 

Neutral - - - - - - - 

Illumination 96 36 96 96 96 80 76 

Occlusion by Sunglasses 80 56 88 88 92 76 72 

Occlusion by Hand 88 52 96 96 88 84 76 

Smile 100 68 100 100 96 96 92 

Open  mouth 96 92 100 100 100 100 100 

Occlusion by Paper 36 24 44 52 48 40 40 

Left 44 24 44 48 40 28 28 

Right 32 20 32 32 28 28 32 

Session 2 

Neutral 72 64 80 84 84 84 76 

Illumination 64 64 80 80 76 76 72 

Occlusion by Sunglasses 56 64 68 68 72 72 76 

Occlusion by Hand 60 56 60 68 64 64 72 

Smile 76 64 80 80 76 76 72 

Mouth Open 56 52 72 72 68 60 52 

Occlusion by Paper 36 36 48 40 40 48 56 

Left 20 16 32 28 24 24 28 

Right 28 28 32 32 32 32 40 



CHAPTER 3 

  Page 58 

 

Fig 3. 7: Receiver Operating Curve (ROC) plot  demonstrating the performance on variation 

'smile' (session 1) using complementary fusion for α = 0.3 & 0.7 

 

Fig 3. 8: Receiver Operating Curve (ROC) plot  demonstrating the performance of variation 

'mouth open' (session 1) using complementary fusion for α = 0.3 & 0.7 
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Fig 3. 9: Receiver Operating Curve (ROC) plot  demonstrating the performance of 'neutral 

face'  (session 2) using complementary fusion for α = 0.3 & 0.7 

 

Fig 3. 10: Receiver Operating Curve (ROC) plot  demonstrating the performance of variation 

'illumination' (session 2) using complementary fusion for α = 0.3 & 0.7 



CHAPTER 3 

  Page 60 

The ROC curves of FMR (False Match Rate) v/s GMR (Genuine Match rate) for the different 

variations and various α values are plotted to represent the verification rates. From these 

ROC curves, it can be noted that varying the 'α' parameter fusion marks better performance. 

For variations like a smile from session 1 (Figure 3.7), mouth open (Figure 3.8), neutral face 

from session 2 (Figure 3.9), illumination variation (Figure 3.10) has better performance as 

compared to the individual RGB and Depth performance. As in these variations, the full 

facial triangle is available for computation when compared with the full face triangle of the 

training dataset.  

 The fusion method's performance is lower for variations like 'paper occlusion', 'left', and 

'right as in these cases, only 50% of the face or even less than that is available in the testing 

set. But the complementary fusion of the RGB and the depth images have enhanced the 

performances compared to the individual RGB and Depth verification rates for these 

variations. 

3.3.2.2 Evaluation on GU-RGB-D Database 

Similar performance as that of the EURECOM datasets can be seen with the GU-RGB-D 

dataset with respect to complementary fusion, i.e., performance has been enhanced with the 

complementary combinations of RGB and Depth scores. The recognition rates computed for 

the GU-RGB-D database as per methodology 1 are presented in Table 3.6. Some of the 

observations based on Table 3.6 are as follows: 

 The variation like ‘eyes close’ from session I and II and ‘front’ from session II has 

obtained maximum recognition rates of  100%, 84%, and 96 %, respectively.  

 

 The performance improvement has also been noted in the pose/angle variations like 

45º, -45º, 90º, -90º with the implementation of complementary fusion even though the 

base results of these variations are very low.  
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Table 3. 6: Recognition Rates computed at Rank 5 for GU-RGB-D database using a 

complementary fusion approach 

Variations RGB Depth 
Fusion 

(0.3) (0.4) (0.5) (0.6) (0.7) 

Session I 

Front  
      

45º 40 52 44 44 44 52 64 

90 º 28 44 36 40 40 48 48 

-45º 40 40 48 48 48 44 48 

-90º 20 24 24 32 32 40 36 

Smile 76 96 84 88 92 96 96 

Eyes Close 84 96 96 96 100 100 100 

Paper Occlusion 28 40 32 36 40 52 48 

Session II 

Front 76 80 88 92 92 96 92 

45º 44 40 44 44 44 44 48 

90º 32 44 32 36 36 40 48 

-45º 36 24 40 40 32 32 32 

-90º 24 20 24 24 24 24 24 

Smile 64 80 68 72 72 72 76 

Eyes Close 64 64 72 80 84 88 80 

Paper Occlusion 32 44 40 40 52 56 56 

 

The verification rates for different variations of the GU-RGB-D database and for the 

different values of α are represented through the ROC curves of FMR (False Match Rate) v/s 

GMR (Genuine Match rate) and are given in Figures 3.11 – 3.14. It is observed from the 

figures that the performance of full face variations like smile (Figure 3.11), eyes close 

(Figure 3.12), front face (3.13), etc., are having better performance with the application of the 

fusion approach. The angular variations and occlusion (Figure 3.14) have low performance. 

In these cases, the full face is not available for computation; however, the performance 

increase is also noted with the application of the complementary fusion approach.   
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Fig 3. 11: Receiver Operating Curve (ROC) plot  demonstrating the performance of variation 

‘smile’ (session 1) using complementary fusion for α = 0.3 & 0.7 

 

Fig 3. 12: Receiver Operating Curve (ROC) plot  demonstrating the performance of variation 

‘eyes close’ (session 1) using complementary fusion for α = 0.3 & 0.7 
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Fig 3. 13: Receiver Operating Curve (ROC) plot  demonstrating the performance of ‘front 

face’ (session 2) using complementary fusion for α = 0.3 & 0.7 

 

Fig 3. 14: Receiver Operating Curve (ROC) plot  demonstrating the performance of 45º pose 

variation (session 2) using complementary fusion for α = 0.3 & 0.7 
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3.3.3 Methodology 2: Study Based On Image Level Fusion 

Here in this study, the cropped images from GU-RGB-D (all 64 subjects) and EURECOM 

(all 52 subjects) database were taken as input to the gradient filter at the preprocessing stage. 

The RGB and the depth image outputs obtained from the gradient filter are fused using  Pixel 

level image fusion, where both images' pixel intensities are fused. The gradient filter 

provides the directional change of image intensity and sharpness of the image [137]. The 

original image is generally convolved with the pre-defined filter to measure the intensity 

change of each pixel in the given direction to obtain the gradient image. As mentioned 

earlier, feature extraction is an essential task in image processing; thus, the features are 

obtained using PCA in this work. Finally, the recognition rates are computed for different 

variations in the said databases by calculating the similarity scores from the obtained 

features. The pictorial description of the workflow can be seen in Figure 3.15. 

 

Fig 3. 15: Framework of implemented methodology 2 and fusion system 

3.3.4 Results and Discussion 

In this approach, we have engaged the entire databases to perform the experiment and to 

evaluate results, i.e., images of all 52 subjects from the EURECOM database and 64 subjects 

from the GU-RGB-D database.  Similar to the previous approach (section 3.3.1), the cropped 

images from both databases are downscaled to 96x96 dimensions (to reduce computational 
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time). The training set is generated using the neutral images (front face) from session 1 of the 

respective databases. The rest of the database, including all the variations across the sessions 

(session 1 and session 2), are used as the testing datasets. The same protocol as mentioned in 

Table 3.4 is used in this approach (section 3.3.2). However, all the images (not only 25) from 

GU-RGB-D and EURECOM database are engaged to perform this study. Further, the RGB 

and the depth images obtained after the gradient filter application are fused together to 

enhance the overall performance, and the same can be seen in Tables 3.7 and 3.8.   

3.3.4.1 Evaluation Of The EURECOM Database 

Table 3.7 gives the recognition rate computed using the PCA algorithm for the EURECOM 

database as per the methodology described above. It is seen that the application of Gradient 

filter to the depth images has improved the performance of the system almost in all the cases 

precisely where the entire facial triangle is available for computation. This is due to the 

enhancement of the sharpness of the images with the gradient filter. Further, the fusion of 

RGB and the depth components have improved the results. The major observations wrt to the 

Table 3.7 are as follows: 

o The base results of the smile variation in session 1 are 33.33 %. With the application 

of the gradient filter, the performance has increased to 88.24 %, and the maximum 

enhancement of 98.04% has been obtained. A similar trend is seen in the smile 

variation in session 2 and in the other places where the entire facial triangle is 

available.   

 

o The variations with the face occlusions have also shown enhancement with respect to 

gradient and fusion approach. Occlusion by sunglasses of session 1 has reported the 

maximum recognition rate of 76.47%  among the other occlusions, with the fusion 

method. 

 

o The left and right face profile performance are marginal as the entire facial triangle is 

not available for the feature extraction with respect to the ‘front face’.  
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Table 3. 7: Recognition Rates computed at Rank 5 for  EURECOM database using an 

Image-Level Fusion approach 

Variations/Pose Depth 
Depth with application of 

Gradient filter 
RGB-D Fusion 

Session 1 

Neutral - - - 

Illumination 52.94 64.71 84.31 

Occlusion by 

Sunglasses 
66.67 72.55 76.47 

Occlusion by Hand 45.10 47.06 60.78 

Occlusion by Paper 15.69 31.37 29.41 

Smile 33.33 88.24 98.04 

Mouth Open 54.90 39.22 49.02 

Left 11.76 13.73 17.65 

Right 11.76 29.41 29.41 

Session 2 

Neutral 25.49 62.75 74.51 

Illumination 27.45 64.71 74.51 

Occlusion by 

Sunglasses 
27.45 56.86 52.94 

Occlusion by Hand 37.25 37.25 43.14 

Occlusion by Paper 13.73 21.57 25.49 

Smile 43.14 52.94 64.71 

Mouth Open 25.49 25.49 27.45 

Left 9.80 9.80 13.73 

Right 19.61 25.49 21.57 
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3.3.4.2 Evaluation on GU-RGB-D Database 

Table 3.8 has provided the recognition rates computed for the GU-RGB-D database using the 

methodology as described in section 3.3.3. The recognition rate performance and the trends 

are similar to that of the trends seen in the case of the EURECOM database. However, the 

overall performance of the database is less as the database consist of more angular images. 

  

Table 3. 8: Recognition Rates computed at Rank 5 for GU-RGB-D database using an Image-

Level Fusion approach 

Variations / Pose Depth 
Depth with application of 

Gradient filter 
RGB-D Fusion 

Session 1 

Front - - - 

45 º 29.69 18.75 17.19 

90 º 20.31 9.38 7.81 

-45 º 26.56 23.44 20.31 

-90 º 12.50 17.19 17.19 

Smile 87.50 82.81 93.75 

Eyes Close 81.25 76.56 89.06 

Paper Occlusion 34.38 48.44 57.81 

Session 2 

Front 32.81 42.19 78.13 

45 º 15.63 9.38 10.94 

90 º 9.38 4.69 7.81 

-45 º 9.38 21.88 15.63 

-90 º 14.06 7.81 10.94 

Smile 32.81 39.06 79.69 

Eyes Close 39.06 40.63 81.25 

Paper 25.00 17.19 28.13 
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The major observations from Table 3.8 are as follows: 

o  The application of the gradient filter has shown marginal improvement even in some 

cases where the entire facial triangle is available for evaluation. The performance 

degradation is mainly because of the multiple holes which are developed in the 

images during capturing, and the same has also been reported in the literature. 

However, with the fusion of the RGB component with the depth, the performance has 

been enhanced in both the sessions for variations with the entire face triangle. 

 

o For the angular facial images, the performance with the fusion is marginal as the 

partial face is available for feature extraction and computations.  

 

The issues of the low performance of the system due to the holes (missing pixels) in the 

depth images need to be resolved to enhance the performance and the reliability of the 

system. The necessary approach/attempt to resolve this issue has been designed, and the 

details of the same are described in chapter 4.   
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Research in 3D biometric was an expensive task as the expense of system requirements for 

acquiring 3D images was very high and time-consuming [3] until the development of an 

efficient, low-cost RGB-D Kinect camera. The captured 3D images have the proficiency in 

overcoming the limitations due to illumination variation and posing variation, which 

commonly affects the 2D imaging system [1]. This is mainly because of the inherent property 

associated with 3D faces, i.e., 3D camera systems can capture more spatial information than 

2D systems in the form of depth images (distance from each pixel to the sensor) along with 

RGB images [2]. The Kinect camera has employed VGA resolution for capturing RGB 

images, and the depth information is captured with the help of an infrared projector and 

sensor [8,9]. Both sensors captured images are of low resolution and noisy [6].  

The Kinect sensor has low-resolution images, incorporating some noise and inaccuracies in 

the captured images [15]. Thus, holes (zero pixel values) tend to develop in the captured depth 

images. Also, the resultant artifacts in the depth image are primarily due to the perturbation in 

the distance between subject and sensor. The other reason could be due to the low reflectance 

of the surface to the projected Infra-Red (IR) light. Therefore, the absence of pixel 

information degrades the image quality and affects the image recognition performance 

accuracy. 

4.1 Contributions 

The Literature survey on hole filling in chapter 1 directs that filling holes/missing information 

is necessary to obtain better performance. Here we present interpolation-based hole filling 

techniques/filters for computing the missing pixels in the depth images. We have engaged the 

RGB and Depth images from our own GU-RGB-D database to demonstrate the study. An 

extensive study has been performed to compute the identification and verification rate of the 

depth images and the fused RGB-D images by engaging various state-of-the-art feature 

extraction algorithms such as Histogram of Oriented Gradient (HOG) [11], Principal 

Component Analysis (PCA) [12], GIST [13], Local Binary Pattern (LBP) [14], LogGabor 

[15], Local Phase Quantization (LPQ) [16] and Binarized Statistical Image Features (BSIF) 

[17]. The RGB and Depth images are fused using the Pixel level Average Image fusion 

technique. Further, to demonstrate the significance of our approach, we present the 
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performance evaluation results on depth images, RGB-D fused images (Fusion of depth is 

performed after hole filling), and score level fusion (On two best performing algorithms). 

Further in due course of this work summarizes the number of contributions as follows: 

o A hole filling approach in the depth images acquired from Kinect sensor to enhance 

the performance of 3D face recognition system.  

o A simple and effective approach based on variable kernel size for filling the holes 

with the contribution from neighborhood. 

o The study presenting the significance of employing hole filling techniques to 

improve the performance of the state-of-the-art face recognition methods.  

o Experimented on seven different feature extraction methods such as Principal 

Component Analysis (PCA), Histogram of Oriented Gradient (HOG), Local Binary 

Pattern (LBP), Local Phase Quantization (LPQ), GIST, Binarized Statistical Image 

Features (BSIF), and LogGabor to demonstrate the applicability of our approach 

for improved performance analysis. 

o Presents the performance evaluation results in the form of recognition rate and 

verification rate on depth images alone, a fusion of RGB with Depth images, and 

Score level fusion extensively. 

The rest of the chapter is structured as follows: Section 4.2 presents the mathematical details 

and description of the different designed hole filling filters (linear interpolation, exponential 

averaging, and weighted averaging) employed in this work. Experimental protocols are 

described in section 4.2. Section 4.3 gives the exhaustive experimental evaluation results in 

verification and recognition rate using seven different state-of-the-art methods for RGB-D 

face recognition.  

4.2 Hole Filling Filter Design 

This section presents the method employed to fill the holes in the depth images captured using 

a Kinect sensor. As said earlier, the Kinect sensor's low resolution incorporates some noise 
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and inaccuracies in the captured images [21], which results in the missing pixels and affects 

the overall performance accuracy. 

 

Further, we strongly believe that the neighboring pixel information can be valuable in filling 

up the missing pixel (Zero pixel) values in place of holes. We, therefore, developed three 

different hole-filling approaches based on: Linear Interpolation method, Exponential Average 

method, and Weighted Average method independently in our work. However, the depth 

images obtained after linear interpolation, exponential average, and the weighted average 

filter will be represented by the acronyms `LI-Filter', `EA- Filter', and `WA-Filter' 

respectively, for simplicity. On the other hand, depth images without filtering will be 

represented by the acronym `WO-Filter'. Table 4.1 provides a detailed description of each of 

these acronyms used in our work. 

 

Table 4. 1: Summary of acronym illustrating the description of three different filters 

used for hole filling 

Acronym Description 

WO Depth images without filtering 

LI- Filter Linear interpolation-based filtered depth images 

EA- Filter Exponential averaging based filtered depth images 

WA- Filter Weighted averaging based filtered depth images. 

 

Conceptually, in our work, we first take the depth image of m x m dimension and then append 

the dummy rows and columns of m/4 pixels to outspread the depth images of the m x m 

dimension to the higher dimension. This is done so as to circumvent the occurrence of 

computational errors at the peripheral pixels of the depth images due to the expanding factor 

of the kernel function used in the algorithm. At the same time,  there shall be no contribution 
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of these dummy pixel elements in the hole filling; thus, these elements are allotted with 'NaN' 

values to avoid false computations.  

 

Further, to fill holes in the depth image, we traverse through the image to locate the zero-

depth pixel value (which is a hole, consists of zero pixel value) that needs to be filled using 

the interpolation technique employed in our work. To fill the hole, we use the contribution of 

the neighborhood pixels value by introducing a kernel function. In the context of this work, 

the kernel is a rectangular window employed to select the region to surround the pixel (zero-

valued pixel or hole) in a depth image. Thus, using the kernel function, the filtering operations 

are introduced, which will take the contribution of neighboring pixel value with a region 

specified by the kernel to represent the missing pixel value (to fill the hole) in the depth 

image. Further, the kernel size automatically expands depending upon the size of the hole. 

The kernel expands until 95% of neighborhood contributing pixels are of non-zero values so 

as to give the higher importance to the populace of the non zero pixels and to have an overall 

contribution from different regions of the kernel, thereby giving weighted importance to each 

non zero pixels to obtain the final missing pixel value in depth image. We also introduced the 

weighted contribution either with a linear or exponential approach in our work. In a similar 

manner, we fill the other holes in the depth images. Figure 4.1 present the conceptual 

illustration of the hole-filling approach employed in this work. Specifically, Figure 4.1 details 

the pictorial view of the working of hole filling technique's at different locations in the depth 

image and for different sizes of holes. The mathematical details related to the three designed 

hole-filling techniques employed in this work are explained in the following sub-sections. 

 

Let u(x, y) ∈ R be the depth image after pre-processing of dimension m x m, acquired using 

Kinect sensor with a noisy image having holes, where (x, y) be the spatial coordinates of a 

depth image. Further, to apply the filtering operation in order to fill the holes, we need to 

define the kernel function of a rectangular window on depth image u(x, y) such that a specific 

region surrounds the hole is selected for processing. Let the expression for kernel function for 

the pixel u (x,y) in a given image can be given using Equation 4.1 as follow: 

 



CHAPTER 4 

   Page 73 

uk (i, j) = u [(x − k : x + k), (y − k : y + k)]                                                              (4.1) 

Where 

Kernel=  

and i = x - k : x + k, j = y - k : y + k. Once the kernel is defined, we then perform the 

interpolation operation to fill the hole. In the next sub-sections, we will discuss the filtering 

methods using the kernel window function defined in Equation 4.1. 
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Fig 4. 1: Conceptual illustration of working of the filter using the kernel to fill the holes in a depth image: (a) Presents the labeling of 

regions such as appending dummy frame, image, kernel, etc., (b) The hole is surrounded by a high population of non-zero depth 

values (In the figure it shows the window of size 3 x 3 is used for filling the hole), (c) Hole with the kernel is densely surrounded by 

zeros; thus the kernel function (window) needs to be expanded until the condition (95% and 5% contribution from non-zero and zero 

pixel values respectively) is reached,(d) Hole is at the corner position, where kernel expand across the dummy rows and columns 

crossing the image boundaries 
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4.2.1 LI-Filter: Linear Interpolation 

Linear interpolation is one of the simplest filtering method used to fill the missing 

information. It has been widely used in digital image processing to resize or remap the 

image from the one pixel grid to another. The method is used in an application where there 

is a need to increase or decrease the total number of pixels, thereby remapping the image to 

a new dimension. We use the potential of linear interpolation to fill the hole in a depth 

image in our work. The linear interpolation method is applied on the kernel function 

defined in Equation 4.1. In this filtering method, we employ linear interpolation for 

missing pixels only when the number (nos) of non-zero pixels is 95%, and the zero pixels 

value is 5% in the expanded kernel. Specifically, we expand the kernel window size until 

95% of the contribution is obtained from the non-zero pixel value to compute the missing 

pixel value. 

Let the zero elements within the kernel be denoted by uko (i, j) and non-zero elements 

within the kernel ukō
(i, j). In our experiment, the kernel window function is expanded till 

we have 95% of non-zero elements ukō  (i, j), and 5% of zero elements uko (i, j) is 5%, to 

compute the linear interpolation to fill the missing pixel in the given image. Therefore, 

Kernel function is expanded and restricted by the condition  n1*nos(uko
(i, j)) ≤ n2*nos(ukō  

(i, j),  here in or work we have selected n1 = 0.05 and n2 = 0.95. Once the condition is 

fulfilled, linear interpolation is employed. The expression for the image after linear 

interpolation is given by Equation 4.2. 

k (i, j) =                                                                                         (4.2) 

Where a pixel in the interpolated image is 

k  (i,j)=  
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After computing, the value of k is assigned to the new matrix LI (x, y) to represent the final 

filtered depth image. Further, more details related to this approach is given in Algorithm 1. 

 

4.2.2 EA-Filter: Exponential Averaging 

In the case of exponential average filtering, we start the filter computation for the kernel size 

where the first non-zero pixel is encountered and continue the computations for all subsequent 

kernel expansion by counting the number of expansions. We stop the computation once 95% 

of the elements are non-zero within the kernel. We then combine the filter's contribution 

exponentially, giving the highest weightage to the nearest neighborhood pixel surrounding the 

hole to the farthest pixel surrounding the hole.  
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Similar to the previous process, we first initialize the kernel function surround the hole and 

count the zeros elements uko (i, j) and non-zeros elements ukō
(i, j) in the kernel. We start 

employing the filter soon we get the non-zero element (nos(ukō  (i, j) ) as we expand the 

kernel size. However, we continue the computation until the condition  n1*nos(uko
(i, j)) ≤ 

n2*nos(ukō  (i, j),  where,  n1  = 0.05 and n2 = 0.95 is satisfied. Here the weightage is given for 

every expanded kernel stage. Therefore to meet the requirement, we introduce the  variable 
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(where α is a constant, here we have chosen α= 0.9 and k is the number of kernel expansions)  

in the Equation 4.2 to define the exponential average filter using the Equation 4.3 as follows: 

k (i, j) =                                                                                      (4.3) 

Where pixel in the interpolated image is  

k  (i,j)=  

The detail represented can be obtained from Algorithm 2. After computing the pixel value of 

k is assigned to the new matrix EA (x, y) to represent the final filtered depth image with 

exponential average filtering. 

4.2.3  WA-Filter: Weighted Averaging 

Similar to the exponential average filtering, we introduce the weighted average filter over the 

expanding kernel in this section. The process of applying the filter is the same as that of the 

exponential average filter (Section 4.2.2). Here the weighted average filtering method is a 

linear approach, and the exponential average filtering is a non-linear approach. Thus instead 

of gradually giving the non-linear importance to the non-zero elements of the expanding 

kernel, we introduce linearity, in which the highest weightage is given to the nearest non-zero 

pixel and the lowest weightage to the farthest non-zero pixel over expanding the kernel 

function.  

Mathematically we present weighted average filtering by equation 4.4, after modifying 

Equation 4.3 as follows: 

k (i, j) =                                                                          (4.4) 

where pixel in the interpolated image is 

k  (i,j)=  

and α is a constant (here we have chosen α= 0.9), and k is the number of kernel expansions. 



CHAPTER 4 

   Page 79 

 

 

Finally, the value obtained by computing  kc, which is a weighted sum, is then assigned to 

the new matrix WA (x, y) to represent the depth image. The detailed image representation 

related to this filtering approach can be obtained from Algorithm 3. Further, the graphical 

demonstration of filling the hole using LI-Filter: Linear Interpolation, EA-Filter: Exponential 

Averaging, and WA-Filter: Weighted Averaging is illustrated in Figure 4.2. Figure 4.2 

clearing showing the successful application of our approach in filling the missing pixel 

values. 
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4.3 Experimental Protocol 

This section presents in detail the experimental methodology (Figure 4.3), evaluation protocol 

(Table 4.2), and related results obtained in this work. Basically, we perform the hole filling on 

the depth image using three different designed filters, i.e., LI-Filter: Linear Interpolation, EA-

Filter: Exponential Averaging, and WA-Filter: Weighted Averaging. Further, we make use of 

the kernel window function to give proper weightage to the neighborhood pixels in the kernel 

while employing the filtering method. The experimental evaluation results are presented on a 

GU-RGB-D database consisting 64 subjects. To demonstrate the application of kernel-based 

filtering approach, we present systematic results on seven different state-of-the-art feature 

extraction methods, namely, Principal Component Analysis (PCA), Histogram of Oriented 

Gradient (HOG), Local Binary Pattern (LBP), Local Phase Quantization (LPQ), GIST, 

Binarized Statistical Image Features (BSIF) and LogGabor, employed on depth images. We 

present the evaluation results in the form of recognition rate and verification rate in tabular 

and graphical form.

 

 

Fig 4. 2: Experimental methodology for evaluating the proposed filters using different feature 

extraction algorithms 
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Fig 4. 3: Conceptual illustration of the filter's working using the kernel function to fill the holes in a depth image (point cloud view). 

(a) Point cloud with the 7 x 7 hole. (b) Hole filing using LI-Filter: Linear Interpolation. (c) Hole filing using EA-Filter: Exponential 

Averaging. (d) Hole filing using WA-Filter: Weighted Averaging 
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Table 4. 2: Experimental protocol used to study the effect of the three designed hole-filling 

filters on the GU-RGB-D database 

Pose/Variation Session Total Subjects 

Training Dataset 

0° pose Session I 64 

Testing Dataset 

0° pose Session I 64 

45° pose Session I & II 64 each 

90° pose Session I & II 64 each 

(-45)° pose Session I & II 64 each 

(-90)° pose Session I & II 64 each 

Paper on face Session I & II 64 each 

Eyes closed Session I & II 64 each 

Smile Session I & II 64 each 

4.4 Evaluation Protocol & Discussion 

The experimental evaluation protocol for the database is as described in Figure 4.3. The RGB 

and depth images from the GU-RGB-D database were cropped to 256 x 256 dimensions using 

Matlab script. In most of the pose/variations of the RGB-D database, only partial faces are 

visible, and hence it restricts the use of existing automatic face detection algorithms for 

cropping. The cropping of RGB and depth images was performed by resizing them to 96 x 96 

dimensions to enhance the computational time. Using the GU-RGBD database, we partitioned 

our data into the training and testing dataset. Training set consists of 64 subjects 

corresponding to front face (0
◦
 pose), including their samples from session 1 of the database, 

while the testing set consists of corresponding 64 subjects belong to pose/variations over 

either 45
◦
, -45

◦
, 90

◦
, -90

◦
, smile, eye closed, paper on face occlusion from session 1 of the 



CHAPTER 4 

  Page 83 

database independently when operated on seven different feature extraction methods 

discussed above. In a similar manner, we also generated the results when the training set 

belongs to session 1 of the database, and the testing set belongs to session 2 of the database. 

The details of the training and the testing datasets are given in Table 4.2. 

Using the experimental protocol, we present the three sets of evaluations to demonstrate our 

hole-filling approach. Evaluation 1 presents the results related to depth images. Evaluation 2 

presents the results related to the fusion of RGB and Depth images (after filtering). Evaluation 

3 illustrates the score level fusion best performing algorithm separately on depth image and 

on RGB image fused with depth. Also, in our experimental evaluation, the RGB image was 

first converted to a grayscale image for the sake of processing. 

4.4.1. Evaluation 1:  Depth Images 

In this section, we present the performance accuracy of three different filters using seven 

feature extraction methods. The idea is to demonstrate the performance accuracy of the face 

recognition using three different filters and to compare with the raw depth images (without 

filtering). Thus, in this section, we present the benchmark results on eight different facial 

variants to present the significance of our approach. Table 4.3, 4.4, and 4.5 presents the 

recognition rates at Rank-5 for session 1, Figure 4.4 presents the Cumulative Match Curve 

(CMC) plots, and Figure 4.5 presents the Receiver Operating Curve (ROC) for this set of 

evaluations. Similarly, Tables 4.6, 4.7 and 4.8, presents the recognition rates computed for 

session 2 of GU-RGB-D at rank-5. Clearly, a reasonable improvement in performance 

accuracy of the face recognition system can be seen based on our proposed hole filling 

approach compared to the depth image without filters. Also, the major improvement with 

exponential average and weighted average can be observed compared to linear interpolation 

filtering. This further validates our idea of employing kernel-based filtering to give weighted 

importance to the neighboring pixel values in filling the hole. Further, based on the evaluation 

results obtained for facial expression, we present our major observations as follows:  

 The variations such as smile, eyes closed (in both the sessions), and ‘0° pose’ variation 

(in session 2), the obtained recognition rates at rank-5 are higher as compared to 
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other existing facial variants. The better performance in these cases is due to the 

presence of full-face geometry compared to the reference depth map image of the 

frontal face, which is similar in nature.  

 Specifically, the recognition rates obtained for variation ‘smile, in session 1 using 

PCA algorithm is 89.06% (without filter) and 90.63% (with LI-filter and WA-

filter). Using HOG, the recognition rate obtained is 93.75% (without filter) and 

96.88% (with WA-filter ), while the lower performance is noted for EA-filter and 

LI-filter. Further, with LBP, the recognition rate is 48.44% (without filter), and 50% 

(with LI-filter) compared to the highest recognition rate of 54.69% with EA-filter 

and WA- filter. On the other hand, the recognition rate of LPQ without filter is 

poor, but significant improvement can be generated using filters (42.19% (without 

filter) and 62.50% (with LI-filter and EA-filter), while further maximum 

enhancement was seen for WA-filter having 64.06% recognition rate). Similarly, 

the methods such as GIST, BSIF, LogGabor (LG) indicate better results compared 

to LBP and LPQ, demonstrating the robustness of these methods for face 

recognition. The maximum recognition rate of 89.06%, 84.38%, and 92.19% has 

been noted using the GIST algorithm (with LI-filter and EA-filter), BSIF (with EA-

filter and WA-filter), and LogGabor (with LI-filter), respectively. Thus, overall it 

can be seen that the recognition rate for smile using all three designed filters 

outperforms the baseline results without filter for face recognition algorithms used 

in this work. 

 A similar enhancement trend for ‘smile’ variation in session 2 (table 4.6, 4.7, and 4.8) 

can be seen, thus enhancing the liability of the filters across the sessions, i.e., across 

the environmental and behavioral conditions. 

 As mentioned earlier, the 0º pose variation, i.e., the front face from session 2 (Table 

4.6, 4.7, and 4.8) has also shown the improvement or has maintained the same 

performance as that of the base results for almost all the algorithms across all the 

three designed hole filling techniques with some exceptions. 
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 On the other hand recognition rate for 45
◦
 and -45

◦
 pose variation is dominant as 

compared to 90
◦
 and -90

◦
 pose variation. As expected, this decrease in the 

performance is due to the larger angular variation with ±90
◦ 
as compared to ± 45

◦ 
for 

all the three filters. While we note that from the observation table, with the 

application of filters, the performance is improved reasonably well across most of 

the face recognition algorithms. Although, due to angular face variability, the 

performance of 45
◦
 and -45

◦
 is lower than the full face, the effect of the filters has 

shown a remarkable noted improvement in the performance accuracy. For the 45° 

variation from session 1 the performance has been enhanced from 17.19% to 

18.75% (by EA filter), from 18.75% to 23.31% (by LI filter ), and from 10.94% to 

17.91% (by LI filter) for HOG, LBP& LPQ respectively. Similar levels of 

enhancements are noted in the 90º variation in both sessions, with some exceptions.  

 Overall, the application of the filters ( at least one of the three) has improved the 

performance in terms of recognition rate. Even for the angle like 90º pose variation, 

the filter has shown good performance over base results in both the sessions for the 

depth images with exceptions at few places.  

 

 

 

 

 

 

 

 



CHAPTER 4 

  Page 86 

Table 4. 3: Recognition rate at Rank-5 using depth image after employing LI-Filter    

(Session 1) 

Variation  Filter PCA HOG LBP LPQ GIST BSIF LG 

45º 
WO 21.88 17.19 18.75 10.94 20.31 18.75 18.75 

LI 21.88 10.94 20.31 17.19 26.56 17.19 12.50 

90º 
WO 15.63 14.06 14.06 12.50 14.06 15.63 12.50 

LI 15.63 14.06 17.19 14.06 18.75 17.19 10.94 

-45º 
WO 17.19 18.75 17.19 14.06 18.75 14.06 9.38 

LI 17.19 10.94 25.00 12.50 14.06 15.63 7.81 

-90º 
WO 12.5 14.06 14.06 14.06 15.63 12.50 17.19 

LI 15.63 9.38 21.88 6.25 12.50 9.38 14.06 

Smile 
WO 89.06 93.75 48.44 42.19 89.06 82.81 92.19 

LI 90.63 90.63 50.00 62.50 89.06 79.69 92.19 

Eyes 

closed 

WO 89.06 89.06 34.38 37.50 89.06 78.13 90.63 

LI 85.94 90.63 53.13 54.69 84.38 78.13 89.06 

Paper on 

face 

WO 32.81 46.88 7.81 7.81 18.75 7.81 31.25 

LI 21.88 23.44 10.94 9.38 14.06 10.94 18.75 

 

Table 4. 4: Recognition rate at Rank-5 using depth image after employing EA-Filter   

(Session 1) 

Variation Filter  PCA HOG LBP LPQ GIST BSIF LG 

45º 
WO 21.88 17.19 18.75 10.94 20.31 18.75 18.75 

EA 15.63 18.75 10.94 15.63 21.88 17.19 12.50 

90º 
WO 15.63 14.06 14.06 12.50 14.06 15.63 12.50 

EA 18.75 12.50 20.31 14.06 17.19 21.88 15.63 

-45º 
WO 17.19 18.75 17.19 14.06 18.75 14.06 9.38 

EA 23.44 14.06 10.94 20.31 14.06 20.31 9.38 

-90º 
WO 12.5 14.06 14.06 14.06 15.63 12.50 17.19 

EA 15.63 7.81 9.38 9.38 10.94 9.38 4.69 

Smile 
WO 89.06 93.75 48.44 42.19 89.06 82.81 92.19 

EA 89.06 90.63 54.69 62.50 89.06 84.38 90.63 

Eyes 

closed 

WO 89.06 89.06 34.38 37.50 89.06 78.13 90.63 

EA 87.50 90.63 53.13 51.56 85.94 75.00 89.06 

Paper on 

face 

WO 32.81 46.88 7.81 7.81 18.75 7.81 31.25 

EA 31.25 28.13 10.94 7.81 21.88 20.31 21.88 
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Table 4. 5: Recognition rate at Rank-5 using depth image after employing WA-Filter 

(Session 1) 

Variation Filter  PCA HOG LBP LPQ GIST BSIF LG 

45º 
WO 21.88 17.19 18.75 10.94 20.31 18.75 18.75 

WA 18.75 18.75 18.75 9.38 21.88 15.63 17.19 

90º 
WO 15.63 14.06 14.06 12.50 14.06 15.63 12.50 

WA 18.75 15.63 20.31 15.63 12.50 20.31 20.31 

-45º 
WO 17.19 18.75 17.19 14.06 18.75 14.06 9.38 

WA 21.88 15.63 18.75 17.19 18.75 18.75 6.25 

-90º 
WO 12.5 14.06 14.06 14.06 15.63 12.50 17.19 

WA 17.19 10.94 7.81 10.94 10.94 10.94 7.81 

Smile 
WO 89.06 93.75 48.44 42.19 89.06 82.81 92.19 

WA 90.63 96.88 54.69 64.06 84.38 84.38 87.5 

Eyes 

closed 

WO 89.06 89.06 34.38 37.50 89.06 78.13 90.63 

WA 85.94 90.63 48.44 53.13 87.50 78.13 85.94 

Paper on 

face 

WO 32.81 46.88 7.81 7.81 18.75 7.81 31.25 

WA 26.56 25.00 9.38 7.81 12.50 17.19 14.06 

 

Table 4. 6: Recognition rate at Rank-5 using depth image after employing LI-Filter    

(Session 2) 

Varation Filter  PCA HOG LBP LPQ GIST BSIF LG 

0º 
WO 73.44 65.63 18.75 20.31 25.00 35.94 53.13 

LI 73.44 65.63 23.44 31.25 25.00 43.75 50.00 

45º 
WO 23.44 17.19 12.50 9.38 10.94 17.19 17.19 

LI 21.88 17.19 15.63 21.88 10.94 12.50 14.06 

90º 
WO 17.19 10.94 10.94 12.50 10.94 15.63 10.94 

LI 18.75 10.94 14.06 7.81 12.50 15.63 9.38 

-45º 
WO 14.06 15.63 10.94 17.19 12.50 6.25 15.63 

LI 10.94 15.63 15.63 10.94 12.50 7.81 10.94 

-90º 
WO 10.94 7.81 10.94 12.50 10.94 10.94 9.38 

LI 10.94 7.81 14.06 12.50 12.50 12.50 9.38 

Smile 
WO 73.44 62.50 14.06 14.06 28.13 42.19 54.69 

LI 67.19 62.50 29.69 37.50 29.69 46.88 45.31 

Eyes 

closed 

WO 78.13 60.94 15.63 26.56 26.56 51.56 54.69 

LI 76.56 60.94 35.94 35.94 26.56 50.00 51.56 

Paper on 

face 

WO 37.50 45.31 17.19 10.94 21.88 9.38 26.56 

LI 34.38 45.31 7.81 18.75 18.75 14.06 20.31 
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Table 4. 7: Recognition rate at Rank-5 using depth map image after employing EA-Filter 

(Session 2) 

Variation Filter  PCA HOG LBP LPQ GIST BSIF LG 

0º 
WO 73.44 65.63 18.75 20.31 25.00 35.94 53.13 

EA 73.44 73.44 20.31 35.94 25.00 45.31 53.13 

45º 
WO 23.44 17.19 12.50 9.38 10.94 17.19 17.19 

EA 18.75 20.31 15.63 18.75 9.38 12.50 14.06 

90º 
WO 17.19 10.94 10.94 12.50 10.94 15.63 10.94 

EA 17.19 14.06 12.50 9.38 10.94 9.38 10.94 

-45º 
WO 14.06 15.63 10.94 17.19 12.50 6.25 15.63 

EA 12.50 10.94 12.50 15.63 14.06 6.25 12.50 

-90º 
WO 10.94 7.81 10.94 12.50 10.94 10.94 9.38 

EA 9.38 9.38 12.50 15.63 10.94 7.81 9.38 

Smile 
WO 73.44 62.50 14.06 14.06 28.13 42.19 54.69 

EA 70.31 73.44 28.13 37.50 28.13 48.44 46.88 

Eyes 

closed 

WO 78.13 60.94 15.63 26.56 26.56 51.56 54.69 

EA 78.13 70.31 28.13 37.50 28.13 51.56 53.13 

Paper on 

face 

WO 37.50 45.31 17.19 10.94 21.88 9.38 26.56 

EA 37.50 32.81 7.81 21.88 17.19 17.19 18.75 

Table 4. 8: Recognition rate at Rank-5 using depth map image after employing WA-Filter 

(Session 2) 

Variation Filter  PCA HOG LBP LPQ GIST BSIF LG 

0º 
WO 73.44 65.63 18.75 20.31 25.00 35.94 53.13 

WA 71.88 76.56 21.88 34.38 28.13 39.06 57.81 

45º 
WO 23.44 17.19 12.50 9.38 10.94 17.19 17.19 

WA 20.31 23.44 10.94 17.19 7.81 14.06 12.50 

90º 
WO 17.19 10.94 10.94 12.50 10.94 15.63 10.94 

WA 17.19 12.50 17.19 10.94 9.38 9.38 7.81 

-45º 
WO 14.06 15.63 10.94 17.19 12.50 6.25 15.63 

WA 14.06 9.38 17.19 14.06 10.94 7.81 9.38 

-90º 
WO 10.94 7.81 10.94 12.50 10.94 10.94 9.38 

WA 12.50 12.50 14.06 12.50 9.38 10.94 12.50 

Smile 
WO 73.44 62.50 14.06 14.06 28.13 42.19 54.69 

WA 68.75 71.88 35.94 39.06 26.56 43.75 57.81 

Eyes 

closed 

WO 78.13 60.94 15.63 26.56 26.56 51.56 54.69 

WA 79.69 73.44 32.81 37.50 28.13 51.56 56.25 

Paper on 

face 

WO 37.50 45.31 17.19 10.94 21.88 9.38 26.56 

WA 35.94 31.25 6.25 21.88 14.06 17.19 17.19 
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(a) Cumulative Match Curve (CMC) plots generated using PCA as feature extraction 

algorithm 

 

 

(b) Cumulative Match Curve (CMC) plots generated using HOG as feature extraction 

algorithm 
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(c) Cumulative Match Curve (CMC) plots generated using GIST as feature extraction 

algorithm 

 
(d) Cumulative Match Curve (CMC) plots generated using BSIF as feature extraction 

algorithm 

Fig 4. 4:  Cumulative Match Curve (CMC) plots demonstrate the face recognition 

performance on depth images using three different filters and without filter. The best results 

related to facial variation smile is presented here in (a) – (d) 
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(a) Receiver Operating Curve (ROC) plots generated using PCA as feature extraction 

algorithm 

 

 

(b) Receiver Operating Curve (ROC) plots generated using HOG as feature extraction 

algorithm 
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(c) Receiver Operating Curve (ROC) plots generated using GIST as feature extraction 

algorithm 

 
(d) Receiver Operating Curve (ROC) plots generated using BSIF as feature extraction 

algorithm 

Fig 4. 5: Receiver Operating Curve (ROC) plots demonstrate the face recognition 

performance on depth images using three different filters and without filter. The best results 

related to facial variation smile is presented here in (a) - (d) 
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4.4.2 Evaluation 2: Fused (RGB + Depth) Image 

This section describes the performance analysis based on fusing RGB image and Depth 

image; here, the depth images used for fusion are after employing the filters. Although a depth 

image gives more information than an RGB image, a depth presents less variability among the 

subjects as compared to the RGB image; thus, combining the RGB and depth map image can 

improve the performance reasonably. In this evaluation, we used a simple yet effective 

method to fuse the two images by averaging RGB and depth images. Further, the recognition 

rates are computed based on the evaluation protocol across seven different face recognition 

algorithms mentioned earlier. Table 4.9, 4.10, and 4.11 presents the computed recognition 

rates for session 1 at Rank-5; Figure 4.6 presents the Cumulative Match Curve (CMC) plots, 

and Figure 4.7 presents the Receiver Operating Curve (ROC) for the said set of evaluations on 

smile variation. Similarly, Tables 4.12, 4.13 and 4.14, presents the recognition rates computed 

for session 2 of GU-RGB-D at rank 5 using the said evaluation protocol. The CMC plot 

demonstrating the face recognition performance on 0º pose variation (session 2) is presented 

in Figure 4.8. Further to have a fair comparison, we also compute the results on the fusion of 

RGB and depth images when filters are not employed.  

Table 4. 9: Recognition rate at Rank-5 using fused (RBG + Depth) image after employing LI-

Filter (Session 1) 

Variation Filter PCA HOG LBP LPQ GIST BSIF LG 

45º 
WO 25.00 17.19 15.63 25.00 31.25 26.56 15.63 

LI 25.00 18.75 12.50 23.44 32.81 21.88 18.75 

90º 
WO 14.06 12.50 10.94 7.81 14.06 18.75 7.81 

LI 14.06 10.94 7.81 9.38 7.81 9.38 10.94 

-45º 
WO 21.88 18.75 18.75 10.94 14.06 20.31 18.75 

LI 23.44 14.06 14.06 7.81 9.38 18.75 20.31 

-90º 
WO 15.63 14.06 10.94 7.81 17.19 10.94 15.63 

LI 18.75 6.25 10.94 7.81 18.75 15.63 14.06 

Smile 
WO 95.31 98.44 73.44 81.25 96.88 96.88 98.44 

LI 95.31 96.88 59.38 81.25 92.19 92.19 100.00 

Eyes closed 
WO 92.19 93.75 79.69 82.81 90.63 93.75 96.88 

LI 93.75 95.31 67.19 82.81 90.63 93.75 96.88 

Paper on face 
WO 45.31 51.56 10.94 28.13 26.56 15.63 18.75 

LI 28.13 32.81 10.94 14.06 21.88 21.88 15.63 
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Table 4. 10: Recognition rate at Rank-5 using fused (RGB + Depth) image after employing 

EA-Filter (Session 1) 

Variation Filter PCA HOG LBP LPQ GIST BSIF LG 

45º 
WO 25.00 17.19 15.63 25.00 31.25 26.56 15.63 

EA 23.44 20.31 14.06 18.75 29.69 15.63 17.19 

90º 
WO 14.06 12.50 10.94 7.81 14.06 18.75 7.81 

EA 17.19 10.94 10.94 7.81 7.81 14.06 10.94 

-45º 
WO 21.88 18.75 18.75 10.94 14.06 20.31 18.75 

EA 20.31 15.63 17.19 7.81 12.50 17.19 18.75 

-90º 
WO 15.63 14.06 10.94 7.81 17.19 10.94 15.63 

EA 18.75 7.81 10.94 7.81 21.88 12.50 15.63 

Smile 
WO 95.31 98.44 73.44 81.25 96.88 96.88 98.44 

EA 95.31 98.44 56.25 81.25 93.75 96.88 100.00 

Eyes closed 
WO 92.19 93.75 79.69 82.81 90.63 93.75 96.88 

EA 93.75 96.88 67.19 75.00 90.63 96.88 96.88 

Paper on face 
WO 45.31 51.56 10.94 28.13 26.56 15.63 18.75 

EA 40.63 53.13 17.19 18.75 25.00 17.19 18.75 

 

Table 4. 11: Recognition rate at Rank-5 using fused (RGB + Depth) image after employing 

WA-Filter (Session 1) 

Variation Filter PCA HOG LBP LPQ GIST BSIF LG 

45º 
WO 25.00 17.19 15.63 25.00 31.25 26.56 15.63 

WA 26.56 25.00 14.06 20.31 20.31 21.88 17.19 

90º 
WO 14.06 12.50 10.94 7.81 14.06 18.75 7.81 

WA 18.75 12.50 10.94 7.81 4.69 18.75 12.50 

-45º 
WO 21.88 18.75 18.75 10.94 14.06 20.31 18.75 

WA 21.88 17.19 21.88 7.81 12.50 15.63 20.31 

-90º 
WO 15.63 14.06 10.94 7.81 17.19 10.94 15.63 

WA 18.75 10.94 12.50 9.38 12.50 9.38 9.38 

Smile 
WO 95.31 98.44 73.44 81.25 96.88 96.88 98.44 

WA 93.75 96.88 68.75 76.56 90.63 96.88 96.88 

Eyes closed 
WO 92.19 93.75 79.69 82.81 90.63 93.75 96.88 

WA 90.63 95.31 67.19 78.13 93.75 98.44 95.31 

Paper on face 
WO 45.31 51.56 10.94 28.13 26.56 15.63 18.75 

WA 37.50 56.25 20.31 23.44 15.63 21.88 12.50 
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Table 4. 12: Recognition rate at Rank-5 using fused (RGB + Depth) image after employing 

LI-Filter (Session 2) 

Variation Filter PCA HOG LBP LPQ GIST BSIF LG 

0º 
WO 87.50 93.75 35.94 54.69 45.31 68.75 73.44 

LI 92.19 95.31 40.63 48.44 42.19 70.31 73.44 

45º 
WO 23.44 12.50 7.81 15.63 12.50 10.94 18.75 

LI 25.00 15.63 14.06 18.75 10.94 20.31 17.19 

90º 
WO 15.63 20.31 7.81 6.25 9.38 17.19 9.38 

LI 12.50 18.75 9.38 7.81 14.06 14.06 12.50 

-45º 
WO 14.06 15.63 6.25 7.81 14.06 10.94 17.19 

LI 17.19 14.06 6.25 9.38 12.50 17.19 12.50 

-90º 
WO 9.38 6.25 6.25 6.25 9.38 12.50 7.81 

LI 9.38 9.38 6.25 7.81 10.94 14.06 7.81 

Smile 
WO 82.81 93.75 39.06 51.56 50.00 62.50 70.31 

LI 84.38 92.19 39.06 51.56 43.75 70.31 68.75 

Eyes closed 
WO 82.81 93.75 34.38 51.56 48.44 56.25 70.31 

LI 85.94 93.75 34.38 46.88 39.06 67.19 73.44 

Paper on face 
WO 29.69 48.44 10.94 18.75 25.00 26.56 29.69 

LI 25.00 54.69 15.63 15.63 18.75 26.56 29.69 

 

Table 4. 13: Recognition rate at Rank-5 using fused (RGB + Depth) image after employing 

EA-Filter (Session 2) 

Variation Filter PCA HOG LBP LPQ GIST BSIF LG 

0º 
WO 87.50 93.75 35.94 54.69 45.31 68.75 73.44 

EA 92.19 93.75 39.06 51.56 42.19 70.31 73.44 

45º 
WO 23.44 12.50 7.81 15.63 12.50 10.94 18.75 

EA 21.88 15.63 12.50 17.19 12.50 17.19 18.75 

90º 
WO 15.63 20.31 7.81 6.25 9.38 17.19 9.38 

EA 14.06 17.19 7.81 6.25 14.06 15.63 12.50 

-45º 
WO 14.06 15.63 6.25 7.81 14.06 10.94 17.19 

EA 15.63 14.06 4.69 6.25 10.94 9.38 15.63 

-90º 
WO 9.38 6.25 6.25 6.25 9.38 12.50 7.81 

EA 9.38 9.38 6.25 9.38 12.50 12.50 7.81 

Smile 
WO 82.81 93.75 39.06 51.56 50.00 62.50 70.31 

EA 81.25 92.19 35.94 54.69 46.88 62.50 68.75 

Eyes closed 
WO 82.81 93.75 34.38 51.56 48.44 56.25 70.31 

EA 84.38 93.75 34.38 50.00 43.75 67.19 73.44 

Paper on face 
WO 29.69 48.44 10.94 18.75 25.00 26.56 29.69 

EA 28.13 46.88 15.63 17.19 18.75 26.56 31.25 
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Table 4. 14: Rognition rate at Rank-5 using fused (RGB + Depth) image after employing 

WA-Filter (Session 2) 

Variation Filter PCA HOG LBP LPQ GIST BSIF LG 

0º 
WO 87.50 93.75 35.94 54.69 45.31 68.75 73.44 

WA 92.19 96.88 37.50 54.69 50.00 73.44 79.69 

45º 
WO 23.44 12.50 7.81 15.63 12.50 10.94 18.75 

WA 23.44 15.63 15.63 12.50 12.50 18.75 21.88 

90º 
WO 15.63 20.31 7.81 6.25 9.38 17.19 9.38 

WA 12.50 20.31 9.38 6.25 6.25 12.50 15.63 

-45º 
WO 14.06 15.63 6.25 7.81 14.06 10.94 17.19 

WA 14.06 14.06 7.81 12.50 12.50 10.94 14.06 

-90º 
WO 9.38 6.25 6.25 6.25 9.38 12.50 7.81 

WA 10.94 10.94 7.81 10.94 10.94 14.06 10.94 

Smile 
WO 82.81 93.75 39.06 51.56 50.00 62.50 70.31 

WA 85.94 93.75 35.94 53.13 51.56 60.94 75.00 

Eyes closed 
WO 82.81 93.75 34.38 51.56 48.44 56.25 70.31 

WA 84.38 93.75 26.69 51.56 50.00 65.63 75.00 

Paper on face 
WO 29.69 48.44 10.94 18.75 25.00 26.56 29.69 

WA 28.13 50.00 15.63 18.75 15.63 25.00 32.81 

 

As expected the overall results based on fusing RGB and depth shows the considerable 

improvements in the performance across all the algorithm, while facial variations such as 

smile show overall highest recognition accuracy.  

Here, we present the specific observation related to different variants in comparison with the 

previous evaluation result obtained only with depth, as follow: 

 For the smile variation from session 1, the implementation of the PCA algorithm has 

marked the highest recognition rate of 95.31% for fusion approach using LI, EA 

filter compared to 90.63%, 89.06% recognition rate noted using LI, EA filter for 

only depth image. For HOG, the highest recognition rate of 98.44% for the fusion 

approach using EA-filter compared to 90.63%, the recognition rate was noted using 

EA filter for only depth image. For LBP, the highest recognition rate of 68.75% for 

the fusion approach using WA-filter compared to the 54.69% recognition rate noted 

using WA filter for only depth image. For LPQ, the highest recognition rate of 
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81.25% for fusion approach using LI, EA-filter compared to 62.50% recognition 

rate noted using LI, EA-filter for only depth image. Compared to the algorithms 

employed in this work, GIST, BSIF, LG demonstrates the consistently higher 

performance analysis as compared to the base results for depth images. For GIST, 

the highest recognition rate of 93.75% for fusion approach using WA-filter 

compared to 84.38%, recognition rate noted for depth image. For BSIF, the highest 

recognition rate of 96.88% for fusion approach using EA& WA filter compared to 

84.38%, recognition rate noted for only depth image. Similarly, for LG, the highest 

recognition rate of 100% for fusion approach using LI, EA-filter compared to 

92.19%, 90.63%, recognition rate noted using LI, EA filter for only depth image. 

This observation has been summarized in Table 4.15. 

Table 4. 15: Representation of the maximum improvement on smile variation using 

RGB+Depth fusion 

Feature 

Extraction 

Algorithm 

Designed 

Filter 

Recognition rate 

computed on Depth 

Images 

Maximum Recognition rate 

computed on RGB+Depth 

Fused Images 

PCA 
LI 90.68 95.31 

WA 89.06 95.31 

HOG EA 90.63 98.44 

LBP WA 54.69 68.75 

LPQ 
LI 62.50 81.25 

EA 62.50 81.25 

GIST WA 84.38 93.75 

BSIF 
EA 84.38 96.88 

WA 84.38 96.88 

LG 
LI 92.19 100.00 

EA 90.63 100.00 
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 For 45° pose & -45° pose variation the trend is somewhat similar although the 

performance is marginal but the effect of the fusion methodology can be 

experienced for most of the algorithms. For 45° the computed recognition rate of 

21.88% has been enhanced to 26.56% by application of WA filter using PCA. The 

maximum performance of 25% (with WA filter), 23.44% (with LI filter), 32.81% 

(with LI filter), 18.75% (with LI filter) for HOG, LPQ, GIST, & LogGabor, 

respectively, has been noted for the fused images among the applied filters. Similar 

marginal enhancement can also be noted for the other angular poses in both 

sessions, thus justifying the use of filters. 

 The enhancement effect in session 2 for 0° pose variation(front face) at rank-5 is 

demonstrated in Figure 4.8 (a) - (n), representing the CMC curves of the 0° pose 

variation for various algorithms over depth and fused RGB-D image. Figure 4.8 (a) 

determines that the recognition rate is maintained as 73.44 by LI & EA filter using 

PCA. Further on fusion (Figure 4.8 (b)), the performance has been hiked to 92.19%. 

Using HOG (Figure 4.8 (c) & (d), the recognition rate of 65.63% (WO) has been 

increased to the maximum of 76.56% with WA filter, and the fusion approach has 

enhanced the performance in the range of 93% to 96.88%. Using LBP (Figure. 4.8 

(e) & (f)) the performance of 18.75% has been an increase of 23.44 % with LI filter, 

and the maximum increase with the fusion approach is 40.62% with LI filter. Using 

LPQ (Figure 4.8 (g) & (h)), the lowest performance of 20.31% has been increased 

to 35.94% with EA filter, and the maximum increase of 54.69% can be seen with 

the fusion approach. Using GIST, the maximum increase can be seen in Figure 4.8 

(i) at WA filter, i.e., 28.13% over 25% and the maximum performance on fusion is 

50% with WA filter in Figure 4.8 (j). The maximum performance for BSIF can be 

seen in Figure 4.8 (k) with EA filter, i.e., 45.31 %, and the maximum enhancement 

due to fusion is 73.44% in Figure 4.8 (l). Similarly, the maximum performance 

obtained by using Log Gabor (Figure. 4.8 (m) & (n)) is 57.81% for depth images 

with WA filter, and it got enhanced to 79.69% on fusion.  
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(a) Cumulative Match Curve (CMC) plots generated using PCA as feature extraction 

algorithm 

 

 

(b) Cumulative Match Curve (CMC) plots generated using HOG as feature extraction 

algorithm 
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(c) Cumulative Match Curve (CMC) plots generated using GIST as feature extraction 

algorithm 

 

(d) Cumulative Match Curve (CMC) plots generated using BSIF as feature extraction 

algorithm 

Fig 4. 6: Cumulative Match Curve (CMC) plots demonstrate the face recognition performance 

on Fused (RGB + Depth) image using three different filters and without filter. The best results 

related to facial variation smile is presented here in (a)-(d) 
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(a) Receiver Operating Curve (ROC) plots generated using PCA as feature extraction 

algorithm 

 

 

(b) Receiver Operating Curve (ROC) plots generated using HOG as feature extraction 

algorithm 
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(c) Receiver Operating Curve (ROC) plots generated using GIST as feature extraction 

algorithm 

 
(d) Receiver Operating Curve (ROC) plots generated using BSIF as feature extraction 

algorithm 

Fig 4. 7: Receiver Operating Curve (ROC) plots demonstrate the face recognition 

performance on Fused (RGB + Depth) image using three different filters and without filter. 

The best results related to facial variant smile is presented here in (a) - (d) 
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(a) Cumulative Match Curve (CMC) plots generated using PCA as feature extraction 

algorithm for depth images 

 

 

(b) Cumulative Match Curve (CMC) plots generated using PCA as feature extraction 

algorithm for RGB + depth images 
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(c) Cumulative Match Curve (CMC) plots generated using HOG as feature extraction 

algorithm for depth images 

 

 

(d) Cumulative Match Curve (CMC) plots generated using HOG as feature extraction 

algorithm for RGB + depth images 
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(e) Cumulative Match Curve (CMC) plots generated using LBP as feature extraction 

algorithm for depth images 

 

 

 

(f) Cumulative Match Curve (CMC) plots generated using LBP as feature extraction 

algorithm for RGB + depth images 
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(g) Cumulative Match Curve (CMC) plots generated using LPQ as feature extraction 

algorithm for depth images 

 

 

(h) Cumulative Match Curve (CMC) plots generated using LPQ as feature extraction 

algorithm for RGB + depth images 



CHAPTER 4 

  Page 107 

                        

 

(i) Cumulative Match Curve (CMC) plots generated using GIST as feature extraction 

algorithm for depth images 

 

 

(j) Cumulative Match Curve (CMC) plots generated using GIST as feature extraction 

algorithm for RGB + depth images 
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(k) Cumulative Match Curve (CMC) plots generated using BSIF as feature extraction 

algorithm for depth images 

 

 

(l) Cumulative Match Curve (CMC) plots generated using BSIF as feature extraction 

algorithm for RGB + depth images 
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(m) Cumulative Match Curve (CMC) plots generated using LG as feature extraction 

algorithm for depth images 

 
(n) Cumulative Match Curve (CMC) plots generated using LG as feature extraction 

algorithm for RGB + depth images 

 

Fig. 4.8: Cumulative Match Curve (CMC) plots demonstrate the face recognition 

performance on Depth and Fused (RGB + Depth) image using three different filters and 

without filter for various state-of-the-art algorithms. The best results related to facial variant 

0º pose (session 2) are presented here in (a) – (n) 
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4.4.3 Evaluation 3: Fusion Based On Scores 

Similar to the previous section, we present the evaluation results based on score level fusion. 

Precisely, we fused the scores of the best performing algorithm based on the previous two 

evaluation results. Based on the previous results, we employed PCA and HOG score level 

fusion approach to demonstrate the set of results. Further, the results were repeated for depth 

images alone and fusion of RGB with depth images. The scores are fused using a simple sum 

rule to demonstrate the results for session 1 and session 2. Table 4.16, and Table 4.17, 

presents the recognition rate at Rank-5 for depth images and the fusion of RGB with depth 

images. 

The results obtained with the score level fusion are found to be better in almost all the 

evaluation results performed in this experiment with some exceptional cases. Hence we 

present the observation related to some varients in this section: 

 In comparison with the smile of Session 1 (PCA and HOG Column), it is observed 

that the base result for PCA without filter is 89.06% and for HOG is 93.75%, and it 

has increased maximum to 90.63% for PCA and 96.88% for HOG using filters 

whereas by fusing the scores of PCA and HOG for the depth images the base results 

obtained are 93.75% (without filter), while but with the application of WA-filter the 

performance has enhanced to 98.44%. Similarly, the maximum value of 98.44% has 

been noted for the RGB & depth image fusion.  

 For 0° pose variation of session 2, an enhancement in results can be seen. Here the 

base results (refer Table 4.6)  for depth images using PCA and HOG without filters 

are 73.44% and 65.63%, respectively, which has been enhanced maximum to 

76.56% for HOG using WA filter (refer Table 4.8), and the further enhancement up 

to 78.13% by fusing the scores of the two algorithms.  For the fused RGB-D (refer 

Table 4.12) images, the base result of PCA is 87.50% while   HOG is 93.75%, 

which is increased to 92.19% for EA filter (refer Table 4.13) and 96.88% for WA 

filter (refer Table 4.14), for PCA, and HOG, respectively, using filters. These 

results are further enhanced to 98.44% (refer Table 4.17) by WA filter, with score 
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level fusion. A similar trend is obtained for most of the variations in the table, with 

some exceptions. 

 

Table 4. 16: Recognition rates of depth images computed at Rank-5 after score level fusion of 

PCA+HOG, with its implicit designed filters 

Variation Session 1 Session 2 

 
WO LI EA WA WO LI EA WA 

0° - - - - 71.88 78.13 76.56 78.13 

45° 26.56 26.56 25.00 26.56 25.00 23.44 23.44 23.44 

90° 17.19 15.63 20.31 21.88 15.63 14.06 17.19 14.06 

-45° 15.63 18.75 18.75 23.44 9.38 12.50 7.81 12.50 

-90° 12.50 20.31 18.75 17.19 9.38 12.50 9.38 9.38 

Smile 93.75 95.31 96.88 98.44 78.13 82.81 82.81 76.56 

Eyes 

Closed 
92.19 90.63 92.19 90.63 76.56 85.94 85.94 81.25 

Paper on 

face 
35.94 25.00 34.38 32.81 48.44 45.31 48.44 46.88 

 

Table 4. 17: Recognition rates of RGB-D (Fused) images computed at Rank 5 after score 

level fusion of PCA+HOG, with its implicit designed filters designed filters 

Variation Session 1 Session 2 

 WO LI EA WA WO LI EA WA 

0° - - - - 98.44 96.88 96.88 98.44 

45° 32.81 32.81 37.50 35.94 28.13 25.00 25.00 26.56 

90° 18.75 15.63 18.75 17.19 17.19 15.63 15.63 20.31 

-45° 28.13 28.13 32.81 29.69 17.19 17.19 20.31 18.75 

-90° 14.06 14.06 12.50 17.19 4.69 6.25 7.81 7.81 

Smile 98.44 98.44 98.44 96.88 95.31 95.31 95.31 95.31 

Eyes Closed 96.88 96.88 96.88 98.44 95.31 93.75 93.75 93.75 

Paper on face 64.06 43.75 60.94 59.38 54.69 56.25 56.25 56.25 
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To summarize, employing filters based on kernel function indicates the improvement in the 

performance accuracy, demonstrating the applicability of our approach for 3D depth images; 

the presence of holes in the image significantly degrades the quality and overall performance 

of the biometric face recognition system. The improvement has been noted for almost all 

poses and angles, with some exceptions where the full-face triangle is not available. It may be 

noted that the other published results also indicate the poor performance for the angular 

variation and occlusions. Hence the results obtained are in unison with the published results in 

the literature [11]. The implementation of the above discussed fusion strategies has further 

shown the improvement in the computed results. 
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5.1: Classification With Collaborative Representation  

Image/pattern recognition has attracted attention due to various practical applications in 

face recognition, medical diagnoses, etc., and accordingly, multiple methods are 

developed for attending the classification task. The conventional methods applied for 

image classification problems are nearest neighbor (NN) [138] and Nearest subspace 

(NS) [139], where the testing sample is represented with the training samples and then 

assigned to the nearest class. Furthermore, the sparse representation based classification 

(SRC) method has been developed by Wright et al. [140], which gives the sparse 

representation of the testing sample with the training samples and assigns the sample to 

the class with the least residual error. Further, Collaborative Representation Classifier 

(CRC) [85] has emerged as a robust feature classification method in the face recognition 

domain. It is an extended version of the Sparse Representation Classifier (SRC), where 

the l1-norm in SRC is replaced by l2-norm. This approach computes the maximum 

likelihood ratio between the test sample image and the other classes in a joint manner and 

classifies the test sample to a class with the least reconstruction error.  In order to perform 

the final feature classification, the maximum likelihood of the test sample is computed 

against the other classes from the training set. 

The study has been performed on the GU-RGB-D [141] database and  IIIT-D [59] 

database.  The proposed hole-filling techniques are used in the pre-processing stage for 

filling the holes in the depth images in both databases. The resultant depth images are 

then fused with the RGB image (we used the grayscale image) using 2D-Discrete 

Wavelet transform. The fused composite images corresponding to the training set and the 

testing set is processed to extract features using feature extraction algorithms mentioned 

in the previous chapter. The study has been extended for feature extraction using 

Convolution Neural Network. 

Further, the comparison based on collaborative subspace is implemented, and the set of 

obtained scores are treated as comparison scores to either accept or reject the subject. 

Employing the proposed scheme based on fusing the depth and RGB image, followed by 

a collaborative representation classifier, presents the recognition system's improvement 

and applicability of our RGBD face recognition approach. 
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5.1.1 Contributions 

This chapter presents the proposed scheme where the RGB images and filtered depth 

(filtered using the designed hole filling filters described in chapter 4)  images are fused 

using 2D-Discrete wavelet transform, followed by a collaborative representation classifier 

for RGBD face recognition. To the best of our knowledge, CRC is introduced for the first 

time for RGBD face recognition. Further, to demonstrate our study and the significance 

of using the hole filling method of kernel size, we present an extensive experimental 

evaluation based on our GU-RGB-D database and publicly available IIIT-D database. The 

GU-RGB-D database comprises a series of challenges such a pose variation, occlusion, 

and expression, while the IIIT-D database is frontal, having slight variations in the pose. 

Also, to present the significance of our approach, the proposed scheme is demonstrated 

on eight different state-of-the-art feature extraction methods, including Histogram of 

Oriented Gradient (HOG) [64], Local Phase Quantization (LPQ) [70], GIST [72], Local 

Binary Pattern (LBP) [142], LogGabor [77], Principal Component Analysis (PCA) [14], 

Binarized Statistical Image Features (BSIF) [75], and deep convolutional neural network 

features extracted at `conv5' layer, so as to have a fair comparison, with the algorithms 

and the three hole-filling filters employed in this work. All the evaluation results are 

presented in the form of verification rate and recognition rate at Rank5 using the GU-

RGB-D and IIIT-D databases. The contributions can be summarised as follows: 

 

o Present a proposed scheme that combines the RGB and depth image (after hole 

filling) using 2D-Discrete wavelet transform, which is followed by a robust 

collaborative representation classifier (CRC) for RGBD based face recognition. 

 

o Present extensive experimental evaluation based on designed hole filling filters on 

our GU-RGB-D and IIIt-D databases. 

 

o An experiment in the form of verification and recognition rate is performed on 

eight different feature extraction methods such as Local Phase Quantization 

(LPQ), Local Binary Pattern (LBP), Histogram of Oriented Gradient (HOG), 

GIST, LogGabor, Binarized Statistical Image  Features (BSIF), Principal 
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Component Analysis (PCA), and deep convolutional neural network features 

extracted at `conv5' layer to demonstrate the applicability of our approach for 

improved performance analysis. 

 

The rest of section 5.1 is structured as followed; sub-section 5.1.2 describes the proposed 

RGBD face recognition scheme using wavelet transform and Collaborative representation 

classifier. Sub-section 5.1.3 introduces the experimental evaluation results in the form of 

verification and recognition rate using eight different state-of-the-art methods to present 

the potential of our scheme for RGB-D face recognition.  

5.1.2 Scheme of Evaluation 

This section presents the detailed proposed scheme for RGB-D face recognition 

employed in this work. Figure 5.1 illustrates the conceptual representation of our 

proposed scheme. In general, this section presents the proposed scheme for comparing 

train RGB-D face image against the test RGB-D face image. The samples corresponding 

to the training set and testing set are disjoint. The training set and testing set consist of 

RGB-D images processed using wavelet transform to form a composite image. 

Specifically, the depth image is processed independently through the hole filling filters, 

which is then fused with RGB image (we used grayscale image) using 2D-Discrete 

wavelet transform to form a training set. In a similar line, the test composite RGB-D 

image is formed using wavelet transform to form a testing set. The composite images 

corresponding to the training set and testing set are processed to extract features using 

feature extraction methods (we used eight different feature extraction methods) and 

perform the comparison based on collaborative subspace. The set of obtained scores are 

treated as comparison scores, to either accept or reject the subject. A detailed discussion 

of the mathematics of the proposed scheme employed in this work is presented as 

follows:
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Fig 5.1: Schematic block diagram illustrating the proposed framework based on DWT and CRC 
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Let the  represents the depth image obtained after applying the filter, and R(x, y) 

represents the color image (we have converted the RGB image to a grayscale image in this 

work). Using the depth and color image, we employ 2-Level Discrete Wavelet Transform 

(DCT) to process the complementary image information into a single composite image 

[143][144]. The idea is to extract another set of features in a composite manner. In this work, 

we have used 2-Level  Discrete Wavelet Transform carried out using Haar mother wavelet 

function. The output of Wavelet decomposition provides the wavelet coefficients in seven 

sub-band images that correspond to one approximation, two horizontal, two vertical, and two 

diagonal coefficient details. Mathematically, 2-Level DCT can be represented by using 

Equation 5.1. 

 

                                                                                                    (5.1) 

where a - wavelet coefficient represents the approximation detail; h, h' - wavelet coefficient 

represents the horizontal details; v, v' - wavelet coefficient represents the vertical details; and 

d, d' -  wavelet coefficient represents the horizontal details. The final composite image 

comprises the depth and color image information is obtained by performing the weighted 

average of wavelet coefficients corresponding to depth and color image. It can be 

mathematically expressed as follows using Equation 5.2. 

 

           (5.2)                                                       

 

where {  } represents the wavelet coefficients belongs to depth 

images and { } represents the wavelet coefficients belongs to the 

color image. The final composite image is then obtained after performing an inverse wavelet 

transform on the output of Equation 5.2, and we represent this output by variable K(x, y). 
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Further, to extract dominant local and global features from the composite image, texture 

descriptor methods are employed. In general, we have employed eight feature extraction 

methods such as Local Binary Pattern (LBP), Histogram of Oriented Gradient (HOG) , Local 

Phase Quantization (LPQ), Binarized Statistical Image Features (BSIF), LogGabor, Principal 

Component Analysis (PCA), GIST, and deep convolutional neural network features extracted 

at `conv5' layer. In this work, we independently employed the feature extraction method to 

perform the evaluation results. 

 

Further, we make use of the Collaborative Representation Classifier in our work to compare 

the training sample against the testing sample for RGB-D face recognition. In CRC, a test 

image is generated as a collaborative representation that belongs to training samples. The 

algorithm then classifies a test image to a class that has a minimum distance between the 

collaborative represented test image and its projection within the class. In this work, the 

features of composite RGB-D images are obtained using the above texture descriptor 

methods, and the extracted feature vectors can be represented by Equation 5.3 as 

 

                                                                                         (5.3) 

 

where: b - total no of classes, m - dimension of the feature vector of each image, N - total 

number of images across b classes. 

 

The expression for CRC can be represented by a general model given by Equation 5.4. 

 

                                                                     (5.4) 

where α= α1…. αb is the coefficient vector, µ is the regularization parameter, and x is the 

input test image is given by x ϵ 
m
. 

 

The solution of Equation 5.4 by Least Square Method is given by Equation 5.5 
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                                                                                                (5.5) 

 

The residual between the input test image and each class is given by Equation 5.6 

 

                                                                                                                    (5.6) 

 

 where:  - residual corresponding to each class, s – 1, 2, 3, . . . , b 

 

The class is attributed to each input test image by computing the minimum residual between 

the input test image and each class given by Equation 5.7. 

 

                                                                                                  (5.7) 

 

 All the expressions in this chapter are simplified for the sake of convenience. The detailed 

information regarding the method is available in the paper [32]. 

 

5.1.3 Experiment Protocol And Results  

This section presents the experimental evaluation protocol and related experiments 

performed in this work for RGBD face recognition. Basically, the entire results are based on 

the proposed scheme for RGB-D based face recognition. The approach combines filtered 

depth image with the color image using 2-Discrete Wavelet Transform to form a composite 

image, followed by a collaborative representation classifier for RGBD face recognition. The 

experimental results are based on the GU-RGB-D database and IIIT-D publicly available 

database consisting of depth and color images collected from the Kinect sensor. To 

demonstrate the applicability of using kernel-based filtering approach along with the 

proposed scheme, the systematic results on eight different state-of-the-art feature extraction 
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methods like Local Phase Quantization (LPQ), Local Binary Pattern (LBP),  Histogram of 

Oriented Gradient (HOG), GIST, LogGabor (LG), Binarized Statistical Image Features 

(BSIF), Principal Component Analysis (PCA), and deep convolutional neural network 

features obtained at layer `CONV5' are presented. The said evaluation results are presented in 

the form of recognition rate in tabular and graphical form. Since the results are obtained 

using two different databases, the evaluation protocol and results, along with the discussions, 

are presented in the following two subsections. 

 

Table 5. 1: Recognition rate at Rank-5 on GU-RGB-D and IIIT-D face database using      

WO-Filter across eight different feature descriptor methods. 

METHODS 

GU-RGB-D IIIT-D 

45 90 -45 -90 Smile 
Close 

Eyes 
Occlusion 

Frontal Random 

Images 

LBP-CRC 14.84 8.59 17.19 8.59 65.63 57.81 13.28 7.17 

LPQ-CRC 12.50 8.59 16.41 9.38 75.78 75.00 12.5 11.32 

HOG-CRC 12.50 13.28 7.03 11.72 94.53 95.31 32.81 11.89 

GIST-CRC 10.94 8.59 11.72 7.81 41.41 35.94 18.75 9.43 

LG-CRC 24.22 14.06 19.53 15.63 95.31 97.66 33.59 64.91 

BSIF-CRC 21.09 17.19 14.06 14.84 92.97 94.53 25.78 20.19 

PCA-CRC 18.05 8.59 12.50 9.38 89.84 91.41 18.75 54.53 

CONV5-

CRC 
21.88 17.97 20.31 15.63 92.19 96.09 48.44 96.42 
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Table 5. 2: Recognition rate at Rank-5 on GU-RGB-D and IIIT-D face database using         

LI-Filter across eight different feature descriptor methods. 

METHODS 

GU-RGB-D IIIT-D 

45 90 -45 -90 Smile 
Close 

Eyes 
Occlusion 

Frontal Random 

Images 

LBP-CRC 25.78 10.16 21.88 14.84 76.56 82.03 19.53 4.91 

LPQ-CRC 33.59 13.28 25.78 15.63 100.00 98.44 38.28 11.89 

HOG-CRC 14.06 10.16 14.84 11.72 98.44 99.22 73.44 16.056 

GIST-CRC 19.53 13.28 13.28 14.84 92.97 89.06 35.16 8.87 

LG-CRC 38.28 15.63 18.75 17.19 99.22 100.00 46.09 63.21 

BSIF-CRC 31.25 9.38 28.91 15.63 100.00 100.00 68.75 18.30 

PCA-CRC 25.00 13.28 14.06 10.16 95.31 98.44 10.94 54.34 

CONV5-

CRC 
33.59 17.97 26.56 14.06 100.00 100.00 71.88 96.98 

 

 

 

Table 5. 3: Recognition rate at Rank-5 on GU-RGB-D and IIIT-D face database using        

EA-Filter across eight different feature descriptor methods. 

METHODS 

GU-RGB-D IIIT-D 

45 90 -45 -90 Smile 
Close 

Eyes 
Occlusion 

Frontal Random 

Images 

LBP-CRC 28.13 10.94 25.78 12.5 77.34 84.38 26.56 5.47 

LPQ-CRC 32.81 14.06 25.78 15.63 100.00 98.44 36.72 11.89 

HOG-CRC 14.06 10.94 14.06 10.16 98.44 100.00 70.31 11.32 

GIST-CRC 11.72 10.16 11.72 8.59 88.28 87.5 29.69 8.68 

LG-CRC 38.28 15.63 18.75 17.19 99.22 100.00 45.31 63.02 

BSIF-CRC 31.25 9.38 29.69 14.84 100.00 99.22 71.09 19.62 

PCA-CRC 25.00 13.28 14.06 10.16 95.31 98.00 10.94 53.96 

CONV5-

CRC 
32.81 17.97 27.34 14.06 99.22 100.00 71.88 96.79 
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Table 5. 4: Recognition rate at Rank-5 on GU-RGB-D and IIIT-D face database using WA-

Filter across eight different feature descriptor methods. 

METHODS 

GU-RGB-D IIIT-D 

45 90 -45 -90 Smile 
Close 

Eyes 
Occlusion 

Frontal Random 

Images 

LBP-CRC 24.22 13.28 24.22 14.06 77.34 80.47 24.22 5.09 

LPQ-CRC 32.03 14.84 26.56 15.63 100.00 98.44 35.16 13.4 

HOG-CRC 13.28 9.38 13.28 10.16 98.44 99.22 72.66 17.92 

GIST-CRC 13.28 10.94 10.94 9.38 89.06 92.97 38.28 8.87 

LG-CRC 38.28 15.63 18.75 17.19 99.22 100.00 38.28 63.58 

BSIF-CRC 32.03 9.38 28.13 14.06 100.00 100.00 68.75 19.43 

PCA-CRC 25 13.28 14.06 10.16 95.31 98.44 10.94 53.77 

CONV5-

CRC 
32.03 17.97 26.56 14.06 100.00 100.00 72.66 96.42 

 

 

5.1.3.1 Evaluation Based on GU-RGB-D Database 

The evaluation results based on the GU-RGB-D face database are presented in this section. 

The said face database is partitioned into a training and testing set. The training set consists 

of 64 subject correspondings to front face (0º pose), including the samples from session 1 and 

session 2, while the test set consists of 64 subjects belongs to 45º, -45 º, 90 º, -90 º, smile, eye 

closed, paper occlusion variations from session 1 and session 2 operated independently using 

eight different feature extraction methods mentioned above. Based on this evaluation 

protocol (Table 5.5), this section presents the experimental result independently with three 

different designed hole filling filters discussed in chapter 4 and the benchmark results 

performed without employing filter to have a fair comparison with our proposed approach. 

Table 5.2, 5.3, 5.4, presents the recognition rate at Rank-5, and Figure 5.2 presents graphical 

representation results in the form of Cumulative Match Rate (CMC). On the other hand, 
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Table 5.1 presents the recognition rate at Rank-5 and corresponding CMC plots in Figure 5.2, 

representing the benchmark results without employing filter operation.  

  

Table 5. 5: Evaluation protocol 

 Training Testing 

Variation 
Front face 

(0º pose) 
45º 90º -45º -90º Smile 

Eyes 

Closed 

Paper on 

face 

occlusion 

Number 

of 

subjects 

64 64 64 64 64 64 64 64 

Session Session 1 & 2 Session 1 & 2 

 

 

Based on the obtained results using the GU-RGB-D database, we present our major 

observations as follow: 

 

 The overall results obtained based on three different hole-filling algorithms and our 

proposed RGBD face recognition scheme demonstrate the improvement in 

recognition accuracy compared to output results obtained without employing any 

filter, thus presenting the significance of our proposed approach in this work. This 

improvement in the performance analysis can be observed clearly in Figure 5.2. 

 

 The highest recognition rate at Rank-5 obtained for WO - Filter is 97.66% for `Close 

Eye' variation using the LG-CRC algorithm. In comparison, 100% accuracy is 

obtained with all the three filters, i.e., LI-Filter, EA-Filter, and WA-Filter, for the 

same variation and algorithm. Further, one can also note that the 100% recognition 

rate is also obtained for other algorithms such as LPQ-CRC, BSIF-CRC, CONV5-

CRC for `Smile' variation using three proposed hole-filling filters. 
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 Among the algorithms, except for the LBP-CRC algorithm, the rest of the algorithm 

performs reasonably better for `Smile' and `Close Eyes' variation. At the same time, 

the performance of all the employed feature extraction methods degrades for 

variations such as angle and occlusion, where the entire face triangle is not available 

for computation. Even though the performance is low in these variations, it is 

reasonably better with three filters than without applying filter results. 

 

 Although all the filtering technique proposed in this work outperforms the without 

filtering, non of the technique outperforms each other, showing the similar 

performance behavior. 

 

     

                       (a) LBP – CRC                                               (b) LPQ - CRC 

    

                       (c) HOG – CRC                                              (d) GIST - CRC  
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                          (e) LG – CRC                                                (f) BSIF - CRC 

   

            (g) PCA – CRC                                            (h) CONV5 – CRC 

 

Fig 5.  2: Cumulative Match Curve (CMC) plots demonstrating RGB-D face recognition on 

GU-RGB-D face database using three different filters and without filter. For simplicity, the 

best results corresponding to the `Close Eye' variation are presented. 

 

5.1.3.2 Evaluation Based on IIIT-D Database 

This section presents the experimental results based on the publicly available IIIT-D face 

database. Compared to other publicly available RGB-D databases such as the EURECOM 

database, the IIIT-D database has been selected in this work for evaluation. The IIIT-D 

database has a reasonable amount of holes in the depth images, while the EURECOM 

database is available in the prepossessed form without having holes in the depth images, 
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which is the reason why we intended to use the IIIT-D database in this work to demonstrate 

the potential of our proposed filters. Considering the IIIT-D database, having 106 subjects 

having a minimum of 11 to a maximum of 254 images per subject over a single sessions, 

here presented an evaluation protocol which consists of training set having randomly selected 

four images per subject, while the remaining samples of the database form the testing set.  

 

   

                      (a) LBP – CRC                                              (b) LPQ - CRC 

   

                     (c) HOG – CRC                                             (d) GIST - CRC 
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                         (e) LG – CRC                                              (f) BSIF - CRC 

   

                       (g) PCA – CRC                                            (h) CONV5 - CRC  

Fig 5.  3: Cumulative Match Curve (CMC) plots demonstrating RGB-D face recognition on 

IIIT-D face database using three different filters and without filter. 

 

Table 5.2, 5.3, 5.4 presents the recognition rate at Rank-5, and Figure 7 presents a graphical 

representation of results in the form of Cumulative Match Rate (CMC). On the other hand, 

Table 5.1 presents the recognition rate at Rank-5 and corresponding CMC plots in Figure 5.3, 

represents the benchmark results without employing filter operation. Based on the obtained 

results using the IIIT-D face database, the significant observations are as follow: 
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 As expected, the evaluation results obtained indicate the significance of the filter and 

proposed scheme for RGB-D face recognition. However, we observe a marginal 

improvement in the recognition accuracy at Rank-5 with all three filters compared to 

without filters. This may be due to the fact that depth images in the IIIT-D database 

have bigger holes, as a result of which these filtering techniques present the lower 

performance. Thus restricting the designed hole-filling approach to the holes of 

smaller dimensions in the depth images. 

 

The highest recognition rate at Rank-5 is obtained for WO-Filter is 96.42% using CONV5-

CRC algorithm, while 96.98%, 96.79%, 96.42% recognition accuracy with LI-Filter, EA-

Filter, and WA-Filter respectively for same CONV5-CRC algorithm, demonstrating the 

potential of employing deep learning feature obtained using convolutional neural network 

features at CONV5 layer. While we also note that except for CONV5 features, LG-CRC and 

PCA-CRC, and other methods show poor performance. 
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5.2: Classification With Image Set Algorithms  

Face recognition based on multiple images can be formulated as an Image Set Classification 

problem. Each set contains images belonging to the same subject but consisting of a wide 

range of variations, for example, the images captured using a video-based surveillance 

system, multiple modalities, images acquired from multiple image cameras, etc. Generally, 

the image set classification has two significant steps: i) Finding the way to represent the set 

images. ii) applying necessary distance matrics to these representations. The image set 

methods are classified into parametric and non-parametric model methods considering the 

type of image representations. 

 In parametric model methods [145], the image set is represented in terms of certain 

parametric distribution (statistical distribution) followed by similarity measurement between 

the two image sets. Kull-back-Leibler (KL) divergence approach is used in these techniques 

to measure the similarity between the distributions. However, there is a need for a strong 

statistical relationship between training and testing image sets of the parametric model 

methods for obtaining good performance, and this acts as the limitation of this approach. To 

overcome these limitations, the non-parametric methods for image set classification have 

been developed, independent of any statistical assumptions of the data.   

The non-parametric model methods approximate an image set in several different ways, 

including the set mean, a linear subspace, adaptively learnt set samples, a mixture of 

subspaces, and complex non-linear manifolds. Depending upon the type of representations, 

different matrices determine the distance between the sets distance. For example, the distance 

between the sets can be defined by the Euclidian distance between the set representatives, 

such as adaptively [88] or the set mean [92]. Cevikalp et al. [88] has termed the set to set 

distance as Affine Hull Image Set Distance (AHISD) or Convex Hull Image Set Distance 

(CHISD), which learn the set samples from the affine hull or convex hull models of the set 

images. A principle angle approach is used to determine the distance between the image sets 

represented by a linear subspace. The principle angle is the smallest angle between any 
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vectors in the two given subspaces. Further, the sum of cosines of the principle angles 

defines the similarities between the sets. Distance metrics such as the geodesic distance 

[146], the projection kernel metric [147] are adopted for image set representations on the 

Grassmann manifold and the log-map distance metric [148] on the Lie group of Riemannian 

manifold. 

 

Non-parametric methods also have various classification strategies to decide the class of an 

image set and are divided into two categories: 

i) The method which makes the decision based on Nearest Neighbor (NN) classification 

by computing the one-to-one set distance. Here the one to one set distance is 

computed between the set representatives such as set mean (Manifold to Manifold 

Distance (MMD) [92]), subspace or mixture of subspaces (Mutual Subspace Method 

(MSM) [149], Orthogonal Subspace Method  (OSM) [150]), adaptively learnt set 

samples (e. g. AHISD and CHISD [88]), etc. However, these methods could be 

computationally slow as one to one match of the testing set with all the training sets 

is needed.  

ii) The method where the discriminant function is learnt first, and then this function is 

used to classify the image set. The examples of these methods include Covariance 

Discriminative Learning (CDL) [89],  Discriminative Canonical Correlations (DCC) 

[151], Manifold Discriminant Analysis (MDA) [94], and Graph Embedding 

Discriminant Analysis (GEDA) [152]. 

5.2.1 Contributions: 

Section 5.2 of chapter 5 presents the study performed on the three sets of images, i.e., depth 

image, RGB-D image fused using pixel-level image fusion (averaging), and RGBD image 

fused using CNN fusion. We have not used the set of RGB images separately as our focus is 

on depth images. The said fusion methodologies are used to fuse the RGB and the depth 

images after employing the hole-filling filters on the depth images (mentioned in chapter 4). 

Further, the features are extracted by the state-of-the-art algorithms, and then these features 
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are given as the inputs to the Image set classification algorithms for classification. The results 

show that for the RGBD images, fused using pixel-level average image fusion and CNN 

fusion improves the performance of most of the Image Set Classification algorithms for 

various feature extraction methods with hole-filling filters. 

The major contributions of section 5.2 of chapter 5 are as follows: 

o Present Image Set Classification study based on various Image Set Classification 

algorithms, i.e., MMD: Manifold-Manifold Distance [92], MDA (Manifold 

Discriminant Analysis) [94], CDL (Covariance Discriminative Learning), AHISD 

(Affine Hull Based Image Set Distance) [88]; CHISD (Convex Hull Based Image Set 

Distance) [88], SANP (Sparse Approximated Nearest Point) [86]. 

 

o Present image set classification study on depth images, fused RGB and depth images 

using image-level pixel fusion and CNN based image fusion.  

 

o Presents experimental results performed using seven different feature extraction 

algorithms, i.e., Histogram of Oriente Gradient (HOG), Principal Component 

Analysis (PCA), Local Phase Quantization (LPQ), GIST, Binarized Statistical Image 

Features (BSIF), Local Binary Pattern (LBP), and Convolution Neural Networks 

(CNN). 

 

o The study is presenting the significance of employing hole filling techniques to 

improve the performance of the system. 

The rest of the flow is as follows: section 5.2.2 presents the experimental protocol used to 

perform the image set classification study. The pixel-level image fusion-based evaluation 

protocol has been explained along with the computed results in section 5.2.3. Similarly, 

section 5.2.4 presents the evaluation protocol based on CNN-based fusion and the computed 

results.   
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5.2.2 Experimental Protocol And Results 

This section presents the experimental evaluation protocol and related experimental results 

obtained in this work. The experimental study and evaluation of Image Set Classification 

algorithms have been performed on the GU-RGB-D database. The database is divided into 

training and testing sets. In the training set, the eight variations (i.e., front face, 45, -45º, 90º, 

-90º, smile, close eyes, and occlusion) per subject (total 64 subjects) from session 1 are 

grouped together to form the sets of images. While the similar sets generated protocol is used 

for session 2 for the generation of testing sets. 

 Initially,  at the pre-processing stage, the designed hole-filling operations, i.e., LI-Filter: 

Linear Interpolation, EA-Filter: Exponential Averaging, and WA-Filter: Weighted Averaging 

are performed over the depth image.  Here the kernel function gives proper weightage to the 

neighboring pixels in order to fill the hole by computing the appropriate missing value/s.  

Further in the experiment, the fusion methodologies are employed to enhance the 

performance of the system.  Here the RGB component of the Image is fused with the depth 

image using Pixel level image fusion (averaging) and Convolution Neural Network (CNN) 

based fusion independently.   

In the face recognition system, feature extraction is one of the essential stages, and the same 

have been extracted from the depth and fused images independently using seven different 

state-of-the-art feature extraction methods, namely, Principal Component Analysis (PCA), 

Histogram of Oriented Gradient (HOG), Local Binary Pattern (LBP), Local Phase 

Quantization (LPQ), GIST, Binarized Statistical Image Features (BSIF), LogGabor and CNN 

(Conv-5). The extracted features are further given as inputs to the different image set 

classification algorithms, namely, MMD: Manifold-Manifold Distance MDA (Manifold 

Discriminant Analysis), CDL (Covariance Discriminative Learning), AHISD (Affine Hull 

Based Image Set Distance); CHISD (Convex Hull Based Image Set Distance) and SRC 

(Sparse Approximated Nearest Point) to compute the final performance of the system, i.e., 

the recognition rate. The schematic view of the experimental protocol is presented in Figure 

5.4. 
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Fig 5.  4: Schematic block diagram illustrating the Framework of Image Set Classification approach 
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Table 5. 6: Evaluation protocol 

Data Number of Image Sets Number of Images per set 

Training (Session 1) 64 8 

Testing (Session 2) 64 8 

 

Using this experimental protocol, the following sections present the two sets of experimental 

evaluations to demonstrate the effect of the hole-filling and fusion approach on image set 

classification. Evaluation 1 presents the results at rank-5 related to image set classification 

algorithms for depth and fused images obtained from the implementation of pixel-level 

image fusion. Evaluation 2 presents the results at rank-5 related to the image set 

classification algorithms for depth and fused images obtained from Convolution Neural 

Network (CNN) based image fusion  

5.2.2.1 Evaluation 1: Pixel Level Image Fusion (Averaging) 

This section discusses the results obtained from the pixel-level fusion methodology 

employed for generating data for Image Set Classification. After hole filling with the 

designed filters at the pre-processing level, the depth images are fused with the RGB images.  

The pixel-level image fusion strategy using averaging approach has been employed to obtain 

a fused image. This is followed by feature extraction algorithms and the Image Set 

Classification algorithms as discussed in section 5.2.2. The evaluation results are presented in 

the form of recognition rate in tabular form for the various state-of-the-are image set 

classification algorithms, i.e., AHSID, CHSID, CDL, MMD, MDA, and SANP  employed on 

the features extracted by seven feature extraction algorithms independently. Finally, the 

results demonstrate the effect of the designed filters on the depth and the fused images. 

Tables 5.7, 5.10, 5.13, 5.16, 5.19, 5.22 presents the recognition rates computed for depth 

images at Rank-5 using the different image set classification algorithms after employing 

hole-filling filters and seven feature extraction algorithms. Tables 5.8, 5.11, 5.14, 5.17, 5.20, 
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5.23 presents the recognition rates computed for pixel-level image fusion at Rank-5 using the 

different image set classification algorithms after employing hole-filling filters and seven 

feature extraction algorithms. The major observations deduced from the tables are as 

followed: 

 Overall it has been noted that the base results of depth images for different Image set 

classification algorithms without application of the hole filling filter have been 

improved with the LI, EA, and WA hole-filling filters for all the feature extraction 

algorithms with very few exceptions. This improvement effect has also been noted 

with respect to the filters for the fused images, thus justifying the applicability of the 

proposed filters. For example, consider the AHISD algorithm where the without filter 

results for the BSIF feature extraction algorithm is 62.50% which is enhanced to 

65.63% with filter (WA) for the depth images. Further, for the RGB and depth fused 

images, the filter results are 100% as compared with 96.88%. 

 

 The fusion results obtained for different image set classification algorithms are much 

higher than the base results computed on depth images almost for all the feature 

extraction algorithms.  For example, using PCA for CHISD algorithm, the recorded 

performance for WO-filter, LI-filter, EA-filter, and WA-filter is 62.50%, 68.75%, 

65.63% and 75.00%, respectively. On the other hand, the enhanced results on fusion 

are 92.19%, 98.44%, 96.88%, and 98.44% for WO-filter, LI-filter, EA-filter, and 

WA-filter, respectively. This trend can be seen for all the image set classification 

algorithms, i.e., AHISD, CHISD, CDL, MDA, MMD, and SNAP.  

 

 There are very few cases in the tables where the effect of filters is not seen on the 

fused images, i.e., there is no improvement in the performance. However, these 

results are still higher than the depth image results. For example, the performance of 

CDL for LBP feature extraction is 40.63% for LI-filter, 50% for EA- filter, and 

48.44% for WA-filter, which is lower than 54% of without filter (Table5.13). 
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However, these results are much higher than the 20.31% of without filter, 17.19% of 

LI-filter, 15.63% of EA-filter, and 25% of WA-filter results obtained from depth 

images (Table 5.14).      

 

 BSIF has recoded the highest performance of 100% for the fused images for AHISD 

(with all three filters),  CHISD (with all three filters), MMD (with LI and WA filter), 

and SNAP (with LI filter). 

 

 The results obtained using CNN as a feature extraction method are also quite 

promising. It can be seen that CNN shows improvement in the results of depth and 

fused images (with the application of filter). Further, the trend of improvement due to 

fusion over the depth images is also noted here. CNN has shown result enhancement 

for all the image set classification algorithms for all three hole filling filters accept for 

MDA fused images; however, these fused images results are much higher than the 

depth image results. 

 

 Overall this evaluation protocol has generated well distinguishable and promising 

results for almost all the image set classification algorithms employed over the 

features extracted from different state-of-the-art feature extraction algorithms.   

 

Table 5. 7: Recognition rate computed for depth images at Rank-5 using AHISD algorithm 

after employing hole-filling filters  and seven feature extraction algorithms  

 PCA HOG LBP BSIF LPQ GIST CNN 

WO- Filter 76.56 18.75 20.31 62.50 35.94 29.69 37.50 

LI Filter 71.88 20.31 18.75 62.50 31.25 20.31 43.75 

EA Filter 84.38 18.75 18.75 62.50 40.63 23.44 39.06 

WA Filter 82.81 20.31 14.06 65.63 40.63 26.56 42.19 
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Table 5. 8: Recognition rate computed for pixel level fused (RGB+D) images at Rank-5 

using AHISD algorithm after employing hole-filling filters  and seven feature extraction 

algorithms 

 PCA HOG LBP BSIF LPQ GIST CNN 

WO- Filter 93.75 46.88 39.06 96.88 67.19 45.31 75.00 

LI Filter 95.31 46.88 29.69 100.00 65.63 53.13 84.38 

EA Filter 95.31 43.75 31.25 100.00 68.75 51.56 82.81 

WA Filter 95.31 60.94 32.81 100.00 79.69 57.81 89.06 

 

Table 5. 9: Recognition rate computed for CNN based fused (RGB+D) images at Rank-5 

using AHISD algorithm after employing hole-filling filters  and seven feature extraction 

algorithms 

AHISD PCA HOG LBP BSIF LPQ GIST CNN 

WO- Filter 89.25 46.88 35.94 96.88 67.19 40.63 67.19 

LI Filter 92.23 45.31 26.56 100.00 67.19 46.88 89.06 

EA Filter 90.25 43.75 34.38 100.00 70.31 48.44 82.81 

WA Filter 95.23 53.13 39.06 100.00 76.56 51.56 96.88 

 

Table 5. 10: Recognition rate computed for depth images at Rank-5 using CHISD algorithm 

after employing hole-filling filters  and seven feature extraction algorithms 

 
PCA HOG LBP BSIF LPQ GIST CNN 

WO- Filter 62.50 20.31 14.06 62.50 35.94 26.56 39.06 

LI Filter 68.75 20.31 17.19 62.50 29.69 20.31 43.75 

EA Filter 65.63 20.31 20.31 62.50 40.63 23.44 39.06 

WA Filter 75.00 20.31 15.63 65.63 40.63 26.56 42.19 
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Table 5. 11: Recognition rate computed for pixel level fused (RGB+D) images at Rank-5 

using CHISD algorithm after employing hole-filling filters  and seven feature extraction 

algorithms 

 
PCA HOG LBP BSIF LPQ GIST CNN 

WO- Filter 92.19 43.75 39.06 96.88 67.19 43.75 75.00 

LI Filter 98.44 45.31 32.81 100.00 65.63 53.13 84.38 

EA Filter 96.88 42.19 29.69 100.00 68.75 51.56 84.38 

WA Filter 98.44 59.38 39.06 100.00 79.69 59.38 89.06 

 

Table 5. 12: Recognition rate computed for CNN based fused (RGB+D) images at Rank-5 

using CHISD algorithm after employing hole-filling filters  and seven feature extraction 

algorithms 

CHISD PCA HOG LBP BSIF LPQ GIST CNN 

WO- Filter 90.63 45.31 40.63 96.88 65.63 43.75 65.63 

LI Filter 98.44 48.44 28.13 100.00 67.19 46.88 89.06 

EA Filter 96.88 42.19 37.50 100.00 68.75 48.44 82.81 

WA Filter 96.88 56.25 39.06 100.00 76.56 54.69 95.31 

 

Table 5. 13: Recognition rate computed for depth images at Rank-5 using CDL algorithm 

after employing hole-filling filters  and seven feature extraction algorithms  

 PCA HOG LBP BSIF LPQ GIST CNN 

WO- Filter 26.56 37.50 20.31 39.06 20.31 46.88 34.38 

LI Filter 20.31 37.50 17.19 46.88 35.94 46.88 35.94 

EA Filter 20.31 37.50 15.63 48.44 37.50 60.94 34.38 

WA Filter 25.00 40.63 25.00 45.31 37.50 51.56 37.50 
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Table 5. 14: Recognition rate computed for pixel level fused (RGB+D) images at Rank-5 

using CDL algorithm after employing hole-filling filters  and seven feature extraction 

algorithms 

 PCA HOG LBP BSIF LPQ GIST CNN 

WO- Filter 67.19 81.25 54.69 89.06 79.69 82.81 59.38 

LI Filter 64.06 78.13 40.63 96.88 68.75 81.25 62.50 

EA Filter 70.31 81.25 50.00 95.31 81.25 76.56 65.63 

WA Filter 67.19 92.19 48.44 100 84.38 92.19 84.38 

 

Table 5. 15: Recognition rate computed for CNN based fused (RGB+D) images at Rank-5 

using CDL algorithm after employing hole-filling filters  and seven feature extraction 

algorithms 

CDL PCA HOG LBP BSIF LPQ GIST CNN 

WO- Filter 70.31 82.81 56.25 89.06 76.56 84.38 67.19 

LI Filter 68.75 79.69 43.75 96.88 70.31 81.25 96.88 

EA Filter 71.88 82.81 50.00 95.31 85.94 76.56 96.88 

WA Filter 67.19 92.19 60.94 100.00 84.38 92.19 98.44 

 

Table 5. 16: Recognition rate computed for depth images at Rank-5 using MDA algorithm 

after employing hole-filling filters  and seven feature extraction algorithms  

 PCA HOG LBP BSIF LPQ GIST CNN 

WO- Filter 17.19 29.69 23.44 12.50 34.38 20.31 10.94 

LI Filter 10.94 28.13 20.31 6.25 29.69 10.94 14.06 

EA Filter 12.50 21.88 17.19 14.06 40.63 17.19 15.63 

WA Filter 12.50 29.69 21.88 9.38 42.19 20.31 15.63 
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Table 5. 17: Recognition rate computed for pixel level fused (RGB+D) images at Rank-5 

using MDA algorithm after employing hole-filling filters  and seven feature extraction 

algorithms 

 PCA HOG LBP BSIF LPQ GIST CNN 

WO- Filter 6.25 53.13 29.69 17.19 56.25 17.19 34.38 

LI Filter 12.50 53.13 25.00 10.94 62.50 25.00 28.13 

EA Filter 7.81 64.06 25.00 10.94 45.31 34.38 15.63 

WA Filter 10.94 48.44 25.00 21.88 50.00 25.00 23.44 

 

Table 5. 18: Recognition rate computed for CNN based fused (RGB+D) images at Rank-5 

using MDA algorithm after employing hole-filling filters  and seven feature extraction 

algorithms 

MDA PCA HOG LBP BSIF LPQ GIST CNN 

WO- Filter 10.94 56.25 34.38 23.44 59.38 14.06 17.19 

LI Filter 12.50 67.19 31.25 18.75 53.13 29.69 42.19 

EA Filter 6.25 65.63 31.25 15.63 51.56 32.81 40.63 

WA Filter 9.38 62.50 29.69 17.19 59.38 21.88 51.56 

 

Table 5. 19: Recognition rate computed for depth images at Rank-5 using MMD algorithm 

after employing hole-filling filters  and seven feature extraction algorithms  

 PCA HOG LBP BSIF LPQ GIST CNN 

WO- Filter 23.44 23.44 9.38 78.13 4.69 39.06 31.25 

LI Filter 21.88 21.88 18.75 76.56 20.31 46.88 42.19 

EA Filter 18.75 18.75 20.31 76.56 26.56 35.94 40.63 

WA Filter 18.75 18.75 17.19 78.13 26.56 45.31 43.75 
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Table 5. 20: Recognition rate computed for pixel level fused (RGB+D) images at Rank-5 

using MMD algorithm after employing hole-filling filters  and seven feature extraction 

algorithms 

 PCA HOG LBP BSIF LPQ GIST CNN 

WO- Filter 68.75 68.75 42.19 98.44 21.88 75.00 71.88 

LI Filter 65.63 65.63 34.38 100.00 20.31 65.63 79.69 

EA Filter 67.19 67.19 37.50 98.44 21.88 71.88 78.13 

WA Filter 76.56 76.56 43.75 100.00 28.13 81.25 85.94 

 

Table 5. 21: Recognition rate computed for CNN based fused (RGB+D) images at Rank-5 

using MMD algorithm after employing hole-filling filters  and seven feature extraction 

algorithms 

MMD PCA HOG LBP BSIF LPQ GIST CNN 

WO- Filter 56.25 70.31 50.00 98.44 21.88 68.75 12.50 

LI Filter 67.19 60.94 40.63 100.00 23.44 60.94 18.75 

EA Filter 62.50 65.63 48.44 98.44 20.31 68.75 21.43 

WA Filter 71.88 75.00 42.19 100.00 31.25 76.56 18.75 

 

Table 5. 22: Recognition rate computed for depth images at Rank-5 using SANP algorithm 

after employing hole-filling filters  and seven feature extraction algorithms  

 PCA HOG LBP BSIF LPQ GIST CNN 

WO- Filter 34.38 18.75 10.94 60.94 32.81 25.00 32.81 

LI Filter 29.69 18.75 18.75 64.06 28.13 20.31 51.56 

EA Filter 43.75 18.75 18.75 62.50 39.06 23.44 45.31 

WA Filter 37.50 18.75 15.63 68.75 32.81 23.44 45.31 
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Table 5. 23: Recognition rate computed for pixel level fused (RGB+D) images at Rank-5 

using SANP algorithm after employing hole-filling filters  and seven feature extraction 

algorithms 

 PCA HOG LBP BSIF LPQ GIST CNN 

WO- Filter 67.19 43.75 40.63 95.31 59.38 48.44 76.56 

LI Filter 70.31 43.75 25.00 100.00 45.31 48.44 79.69 

EA Filter 68.75 45.31 25.00 96.88 60.94 48.44 76.56 

WA Filter 76.56 56.25 37.50 98.44 76.56 54.69 84.38 

 

Table 5. 24: Recognition rate computed for CNN based fused (RGB+D) images at Rank-5 

using SANP algorithm after employing hole-filling filters  and seven feature extraction 

algorithms 

SANP PCA HOG LBP BSIF LPQ GIST CNN 

WO- Filter 62.50 40.63 34.38 95.31 54.69 40.63 64.06 

LI Filter 76.56 42.19 23.44 100.00 45.31 43.75 70.25 

EA Filter 70.31 45.31 32.81 96.88 62.50 43.75 67.33 

WA Filter 76.56 51.56 35.94 98.44 75.00 50.00 74.56 

 

5.2.2.2 Evaluation 2: Convolution Neural Network  (CNN) Based Image Fusion 

This section presents the Image Set Classification results obtained from the set of data after 

implementing Convolution Neural Network (CNN) based image fusion. First, as discussed 

earlier, the designed hole-filling filters are applied to the depth images at the pre-processing 

level. These filtered depth images are then fused with the RGB component of the image 

using the CNN based image fusion. In the next level, the features are extracted using the 

seven feature extraction algorithms employed in this study, i.e., PCA, HOG, LBP, LPQ, 
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GIST, BSIF, and CNN. These extracted features are then independently engaged in the 

different state-of-the-art Image Set Classification algorithms (AHISD, CHISD, CDL, MMD, 

MDA, and SANP) to compute the system's performance in the form of recognition rate and 

verification rate. The computed results are presented in the tabular form, and they 

demonstrate the effect of hole-filling filters and the CNN based fusion approach.  Tables 5.9, 

5.12, 5.15, 5.18, 5.21, 5.24 presents the recognition rates computed for CNN based image 

fusion at Rank-5 using the different image set classification algorithms after employing hole-

filling filters and seven feature extraction algorithms. The major observations deduced from 

the tables are as followed:  

 At first glance on comparing with the Pixel Level Image Fusion (averaging), it is 

observed that a similar trend of increase in the result with the application of designed 

hole-filling filters has been maintained. Further, these CNN based image fusion 

results are also higher than the results obtained for the depth images. For example, for 

CIHSD using PCA, the results obtained for WO, LI, EA, and WA filters are 62.50%, 

68.75%, 65.63%, and 75%, and these are enhanced to 90.63%, 98.44%, 96.88%, and 

98.88% respectively using the CNN based image fusion approach.   

  Overall, the system has shown a great enhancement in performance regarding HOG, 

BSIF, LPQ, GIST, and CNN feature extraction algorithms for almost all the image set 

classification, with BSIF having a maximum of 100% performance on many 

occasions in the tables.  

 As discussed earlier, the cases where the results for depth images were not that 

promising with respect to the designed filters have also shown good performance with 

the CNN fusion, same as that of other pixel-level image fusion approach. 

  CNN based image fusion followed by feature extraction using CNN has shown 

higher performance than the pixel-based image fusion followed by CNN feature 

extraction. This justifies the ability of CNN based approaches to enhance the system 

performances.  
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The technological advancement and the low-cost acquisition system have made the biometric 

community explore 3D biometrics research much deeper. Authentication based on facial 

biometric traits has been widely used in various security applications due to its non-intrusive 

nature of image capture in a covert manner. Although face recognition shows great potential, 

face recognition performance is challenged by multiple covariates such as pose, expression, 

illumination, etc. Considering these issues, 3D biometric finds an alternative approach over 

traditional face recognition methods operated in 2D.  

 

We have generated and added one more RGB-D database to the 3D biometrics researcher 

community through this thesis, i.e., the GU-RGB-D database. The said database has a wide 

variation in pose (-90
0
, -45

0
, 0

0
, +45

0
, +90

0
), expressions (smile, eyes closed), and occlusion 

(paper covering half part of the face) and was collected in two sessions. Also, presented 

kernel-based hole filling filters for the depth images at the pre-processing level that enhanced 

the recognition performance of the system. The experimental evaluation was performed on 

the GU-RGB-D database and also on the publicly available EURECOM & IIITD RGB-D 

databases.  The state-of-the-art local and global features extractor algorithms such as PCA, 

HOG, LBP, LPQ, GIST, BSIF Log Gabor, and CNN were engaged to extract the features. 

These features are further used to compute the recognition rate and the verification rates for 

the depth images.  

A similar protocol has been enforced on the fused RGB-D images obtained by fusing the 

RGB and the depth images by the pixel-level average image fusion, Wavelet fusion, and 

CNN fusion. Further, the Euclidian distance and collaborative representation classifier-based 

approach has been implemented for the computation of scores. The classification study has 

also been performed on the depth and RGB-D databases using image set classification 

algorithms. It is observed that the recognition rates were enhanced by the implementation of 

various methodologies discussed, and then designed hole filling filters seem to be performed 

quite promising and have fulfilled the purpose.  
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6.1 Conclusion of Chapter 3 

For the development of any real-time solution, background research is essential, and it is only 

possible when the databases of all the practical scenarios are available. With the literature 

survey, it is understood that the Kinect-based 3D face databases are limited as compared to 

the 3D face databases acquired from other expensive 3D scanning devices. In this research 

work, we have presented a Kinect-based GU-RGB-D database. Here in this database, we 

have tried to cover most practical scenarios like pose/angle variations, expression variations, 

occlusion, and the effect of controlled and uncontrolled environmental conditions so as to 

improve the robustness of the performance algorithm for a good piece of research work.  

Two preliminary studies are performed on the GU-RGB-D database and also on the publicly 

available EURECOM database. In the first study, the features are extracted from the depth 

and RGB images using the PCA algorithm, and the computed scores are fused using 

complementary fusion. Thereafter, the recognition rates are computed. It is observed that the 

complementary fusion strategy has enhanced the recognition rates almost for all the 

variations of the EURECOM  database depending upon the weightages of the RGB and depth 

images. The performance enhancement has also been noted for the GU-RGB-D database but 

has a lower performance as compared to the EURECOM database. 

In the second study, the RGB and the depth images are pre-processed with the gradient filter, 

and the images are fused using pixel-level image fusion. The fused images are further used 

for feature extraction using PCA, and subsequently, the recognition rates are computed.  It is 

observed that with the application of gradient image, the performance has been enhanced, 

and further improvement is observed with the fusion strategy.  In the case of the GU-RGB-D 

database, the performance enhancement due to the application of gradient filter is not 

uniform across the variations. This is mainly because the database has more angular 

variations and missing information in the form of holes. Thus, making it more challenging 

for research problems and more suitable for performing realistic, practical scenarios base 

research.    
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6.2 Conclusion of Chapter 4 

The depth captured using the Kinect sensor, having holes in it, significantly degrades the 

overall biometric system's performance. This thesis presents three different filtering 

techniques: linear interpolation, exponential averaging, and weighted averaging filter for 

depth images. Further, we used the kernel function to demonstrate the filtering technique 

efficiently. Specifically, we employ filters on variable kernel size to give appropriate 

weightage to the nearest neighbors that surround the hole such that the contribution of the 

neighborhood pixels is considered to fill the missing pixel values.  

We experimented on our GU-RGB-D database consisting of 64 subjects collected 

across seven facial variants such as 45
0
, -45

0
, 90

0
, -90

0
 , smile, close eyes, and paper on face 

occlusion. To present our results, using three different filtering approaches, we presented the 

results with seven different face recognition algorithms such as PCA, HOG, LBP, LPQ, 

GIST, BSIF, and Log Gabor used in 3D biometrics. The extensive experimental analysis is 

obtained independently with depth image, fusion of RGB and depth, and score level fusion of 

two best-performing algorithms. All the results related to the each of the evaluation is 

presented using recognition rate and verification rate. The results obtained after employing 

kernel-based filtering outperform the without filtered depth image performance. 

6.3 Conclusion of Chapter 5 

The study based on a collaborative representation classifier and image set classification 

approach has been presented in this thesis.  The collaborative representation approach has 

been performed on GU-RGB-D and IIIT-D databases. Here the filtered training and testing 

depth images (filtered using LI, EA, & WA filters) are fused with their corresponding RGB 

images using Discrete Wavelet Transform fusion independently. Further, these fused images 

are employed with the eight feature extraction algorithms, i.e., PCA, HOG, LBP, LPQ, GIST, 

BSIF, Log Gabor, and CNN (conv5). These obtained features are classified using a 

collaborative representation classifier. The extensive experimental analysis is obtained 

independently with LI, WA & EA filters and without filter data. It is observed that the results 
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obtained after employing filters outperform the without filtered depth image performance. 

Mostly in the cases where the full face triangle is available for computation in the GU-RGB-

D database. Further, the feature extraction using CNN has also shown enhancement on 

filtered images as compared to the WO (without filter). Improvement in performance over 

the IIIT-D database is marginal; however, the effect of the filter can be seen on it.  

The image set classification approach has been performed on the GU-RGB-D database. Here 

the filtered depth images are fused with the RGB images using pixel-level image fusion and 

CNN based image fusion. The features are extracted from the fused images using PCA, 

HOG, LBP, LPQ, GIST, BSIF, and CNN, and these features are used to learn the different 

image set classifiers (AHSID, CHSID, CDL, MMD, MDA, SANP). Further, the test features 

are compared with these learnt classifiers to quantify the performance.  It is observed that the 

system outperforms most of the cases with respect to filters. Further, the performance 

obtained using both the fusion approaches is almost similar in most of the cases.  

Overall, it can be concluded that the proposed filter LI, EA & WA can enhance the quality of 

the RGB-D databases and the performance of the system. Different studies and schemes 

based on feature extractions, fusions, classifications have outperformed and have justified the 

objective of the research.        
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Future Works 

The 3D facial biometric has the ability to be in line with the ever-increasing needs of high 

security from an individual level to the highly confidential areas (defense system) to the best 

of its capacity. The day-to-day research development in 3D face biometrics has provided the 

public domains with highly secure security systems. The major challenge to these systems 

could be spoofing, disguise, and presentation attacks from the 3D models or 3D masks. This 

area needs to be more explored and experimented on to develop robust algorithms and 

systems free from presentation attacks. Future plans will be to initiate research in the line of 

3D disguise and spoofing as an extension of this research work.  
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