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Chapter 1: Introduction 

1.1 Mangrove ecosystem 

Mangroves form a plant community growing in saline habitats of tropical and subtropical 

regions. The term ‘mangrove’ describes both the ecosystem and the plants that have 

adapted to tolerate extreme tides, fluctuating salinity, high temperatures, and low oxygen 

(Arunprasath and Gomathinayagam 2014; Hogarth 2015). Mangrove plants are classified 

into two subgroups viz., true- and associate- mangrove plants. True mangroves inhabit the 

intertidal zones, while associate mangroves occupy the landward fringes of mangrove 

habitats or (Alongi 2014) terrestrial marginal zones  (Wu et al. 2008). Based on salt 

tolerance, true mangroves are considered halophytes while their associates are glycophytes 

(Wang et al. 2010b). These forests are most diverse and productive tropical ecosystems in 

the World (Kathiresan 2000). They serve as breeding and nurturing sites for not only 

marine organisms but also for terrestrial ones (Igulu et al. 2014; Alongi 2012). Mangrove 

ecosystem is known as ‘carbon sinks’ where C is decomposed and exported to 

neighbouring habitats (Alongi 2012). These forests also provide economic benefits in the 

form of food sources, timber, fuel, and medicine (Alongi 2002). Besides all these 

ecological and economic services, they play a major role in offering protection against 

natural calamities such as tsunami, cyclones, and tidal bores (Alongi 2008; Alongi 2014). 

Anthropological pressure such as aquaculture, mining, and overexploitation of timber, 

fuelwood, fodder, and other non-wood forest products (NWFPs) and climate change (sea 

level rise) constitute key threats for the degradation of mangrove habitats (Ellison and 

Zouh 2012).  

The mangrove areas of India account for about 3% of the World’s total mangrove 

vegetation, comprising of three diverse zones viz., East coast, West coast, and Island 

territories. Sundarbans, in the West Bengal is the World’s largest mangrove forest (2,136 

km2) located on the east coast of India. About 60% of Indian mangroves present on the east 

coast, 27% on the west coast, and 13% on Andaman and Nicobar Islands (Singh et al. 

2012). Mangrove covers approximately 2539 ha of Goa’s total land area of 370,200 ha. A 

total of 178 ha of thick mangrove area at Chorao, Goa, has been declared a Reserved 

Forest under the Indian Forest Act, 1927 to protect and conserve the system. Later in 1988, 

the area was declared as a Bird Sanctuary (Hisham et al. 2013). 
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Pichavaram mangrove forest is known to be the world’s second-largest mangrove forest 

(Mariappan et al. 2016) with Avicennia marina and Rhizophora species being predominant 

(Kathiresan 2000). The Pichavaram mangrove forest is situated between Vellar estuary 

(North) and Coleroon estuary (South) (Srivastava et al. 2012) on the Coromandal coast 

(Bay of Bengal Sea Board) (Lingan, et al. 1999). It receives three types of waters viz., 

neritic, brackish, and freshwater from the Bay of Bengal, Vellar-Coleroon estuaries, and 

irrigation and main channel of Coleroon river respectively (Kathiresan 2000). It covers an 

area of about 400 hectares and has many islands separated by intricate waterways 

(Arunprasath and Gomathinayagam 2014). The southern region of Pichavaram forest is 

covered with mangrove vegetation whereas, the northern region comprises mainly of mud-

flats (Kathiresan 2000). 

1.2 Arbuscular mycorrhizal (AM) fungi 

Arbuscular mycorrhizal fungi are obligate symbionts belonging to the phylum 

Glomeromycota having a ubiquitous worldwide distribution in various ecosystems 

(Redecker et al. 2000b). In this association, the fungus receives sugars from the plant while 

facilitating the plant uptake of nutrients (Schüßler et al. 2007). It is estimated that around 

90% of higher plants form this type of association (Loccoz et al. 2015). Janse (1897) 

named the intra-matrical spores as ‘vesicles’ and Gallaud (1905) named the intercellular 

structures ‘arbuscules’. Accordingly, the name ‘vesicular-arbuscular mycorrhiza’ was 

determined which persisted until recently (Goltapeh et al. 2008). However, species 

belonging to the family Gigasporaceae (Scutellospora and Gigaspora) do not produce 

vesicles and hence the name ‘arbuscular mycorrhiza’ persisted (Smith and Read 2008). 

1.3 Significance of AM fungi in mangroves 

Various biotic and abiotic factors such as tidal inundation, soil type, microbe activity in 

soil, plant species, litter production, and decomposition control the availability of nutrients 

to mangrove plants. Nitrogen (N) and phosphorus (P) are the nutrients that limit plant 

growth in mangroves (Reef et al. 2010). Being highly immobile, P is adsorbed by soil 

particles, forming a phosphate-free zone around plant roots (Bolduc 2011) and thus 

unavailable for plant use. Therefore, organisms that mobilize P play an important role in 

plant growth. Arbuscular mycorrhizal fungi help in plant nutrition especially P (Aggarwal 

et al. 2012 (Willis et al. 2013). Extraradical hyphae of AM fungi can penetrate beyond the 
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P depletion zone thereby extending the absorption area of the host roots for the uptake of P 

(Xie et al. 2014). 

 

Fig. 1.1: Diagrammatic representation of various events in mangrove ecosystem 

(https://scialert.net/fulltextmobile/?doi=jest.2016.198.207) 

It has been suggested AM fungi play a marginal role in wetland ecosystems due to the 

anaerobic conditions that decrease fungal activity (Šraj-Kržič et al. 2006). However, recent 

studies have shown that AM fungi can colonize the roots of wetland plants (Radhika and 

Rodrigues 2007), increasing nutrient uptake and photosynthetic activity, and therefore the 

diversity and productivity of mangrove ecosystems (Wang et al. 2010a). According to 

(Wang et al. 2011), AM fungi obtain oxygen from the root aerenchyma of mangrove plants 

during flooded conditions. Soil salinity also affects AM fungal spore germination, root 

colonization, and hyphal growth. However, many AM fungal species are salinity tolerant 

(Aggarwal et al. 2012). 

Several studies have been carried out to investigate AM fungal status in various Indian 

mangrove habitats (Sengupta and Chaudhuri 2002; (Shalini et al. 2006; Kumar and Ghose 

2008; Sridhar et al. 2011). 
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1.4 Origin and evolution of AM fungi 

Fossil records resembling AM fungal spores appeared as early as the Silurian and 

Ordovician (440-410 million years ago) (Redecker et al. 2000b) as plants started land 

colonization. Whereas, Glomus-like spores were found in plant axes and decaying plant 

material from Rhynie Chert flora date back to approximately 400 million years ago 

(Kidston and Lang 1921). Research on AM fungal fossil records revealed the structures 

like intercellular hyphae, arbuscules, and vesicles in the protosteles of the sporophyte of 

Aglaeophyton major. Previously, AM associations were also discovered in cyanobacterial 

symbiosis Geosiphon as well as in many existing liverworts (Selosse 2005). Their 

perseverance indicates their coherent strategies to recompense the lack of spore 

germination and to allow the individuals and community to survive (Giovannetti 2002). 

The AM fungi exhibit low host specificity which shows their strategy to contact with a 

wider host range. Furthermore, the mycelial anastomoses during pre-symbiosis and 

symbiosis with compatible mycelia, forming an extensive hyphal network suggest their 

mechanism to increase the chance of contacting host roots (Giovannetti 2001). 

Fossil records from late carboniferous deposits exposed various gymnosperm fossils with 

AM fungal symbiotic structures. The best-preserved plant species is Amyelon radicans 

which shared similar AM fungi of living gymnosperm (Smith and Read 2008). 

Antarcticycas, a plant from Triassic flora found in Antarctica exhibited septate as well as 

aseptate hyphae and other structures resembling arbuscules and vesicles (Phipps and 

Taylor 1996). (Redecker et al. 2000a) have documented spores from the Ordovician period 

similar to existing Glomalean spores, indicating probable associations with primitive non-

vascular plants.  

1.5 Taxonomy or AM fungi 

Initial phases of AM fungal taxonomy merely dependent on a couple of morphological 

characters viz. sporocarp. Later, after the discovery of single spores, the wet sieving and 

decanting method Gerdemann and Nicolson (1963) was used for the extraction of AM 

fungal spores, and these extracted spores were further used for identification (Kehri et al. 

2018). 

Primary phase of taxonomy – the first-ever AM fungi discovered was Endogone sp. by 

Link (1809). Later, Tulsane and Tulsane (1845) described two species of Glomus viz., G. 

microcarpus and G. macrocarpus which were subsequently shifted to genus Endogone by 
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Tulsane and Tulsane (1851) due to similarity in the type of spores. Berkeley and Broome 

(1873) found the genus Sclerocystis which formed spores in compact sporocarps. These 

two genera were placed in a single-family Endogonaceae. Thaxter (1922) incorporated four 

genera in Endogonaceae viz., Endogone, Glaziella, Sclerocystis, and Sphaeroceras. The 

first mycorrhizal colonization was observed by Mosse (1953) in strawberry plants which 

were inoculated with Endogone sp. that was later named Endogone mosseae (now 

Funneliformis mosseae) (Kehri et al. 2018).  

Intermediate phase of taxonomy – the very first key for the identification of AM fungal 

spores was prepared by Mosse and Bowen (1968). It included seven genera (Glomus, 

Sclerocystis, Acaulospora, Gigaspora, Endogone, Glaziella, and Modicella) with 44 

species in the Endogonaceae family. The genus Glomus was then separated from 

Endogone (Kehri et al. 2018). As Glaziella and Modicella did not form AM fungal 

associations, they were later deleted from the Endogonaceae family (Trappe 1982; Gibson 

et al. 1986). 

In 1979, Ames and Schneider described the genus Entrophospora with the species E. 

infrequence in Endogonaceae. It showed similar features of Acaulospora forming 

sporiferous saccule. However, the location of the spore on the neck and not on the side of 

the neck was the key feature of Entrophospora formation (Kehri et al. 2018). Later, 

Walker and Sanders (1986) defined the new genus Scutellospora which was separated 

from Gigaspora (defined by Gerdemann and Trappe 1974) due to the presence of 

‘germination shield’ in Scutellospora while it was absent in Gigaspora.  

Morton and Benny (1990) positioned arbuscule producing mycorrhizae in order Glomales 

(now Glomerales) with three families viz., Glomeraceae, Acaulosporaceae, and 

Gigasporaceae. The Glomeraceae and Acaulosporaceae were differentiated from 

Gigasporaceae by the formation of vesicles that are not produced by Gigasporaceae. 

Due to the uncertain position of AM fungi in the order Endogonales (Gerdemann and 

Trappe 1974) and Glomerales (Morton and Benny 1990), Cavalier-Smith (1998) placed all 

AM fungi in a new class Glomeromycetes.  

Molecular taxonomy – Morton and Redecker (2001) described two novel families viz. 

Archaeosporaceae and Paraglomaceae based on morphological, biochemical, and 

molecular data. Oehl and Sieverding (2004) documented four new species and positioned 
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them in the genus Pacispora. (Schüßler and Walker 2010) propounded a classification 

having single class Glomeromycetes with four orders, 11 families, and 18 genera. 

However, Oehl et al. (2011) proposed a new classification where phylum Glomeromycota 

was divided into three classes viz., Glomeromycetes, Archaesporomycetes, and 

Paraglomeromycetes with five orders, 14 families and 29 genera. Further, Goto et al. 

(2012) proposed a new classification formed based on both morphological and molecular 

studies introducing a new family Intraornatosporaceae with two new genera 

Intraornatospora and Paradentiscutata.  

Recently, (Redecker et al. 2013) proposed a new classification and rejected the splitting of 

the phylum Glomeromycota by Oehl et al. (2011) into three classes (Fig. 2). 
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Fig. 1.2: Consensus classification of AM fungi by Redecker et al. 2013. (* designates 

the uncertain position of genera). 
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1.6 Development of AM fungi 

Arbuscular mycorrhizal fungi colonize the host roots by undergoing series of complex 

morphogenetic changes such as spore germination, hyphal differentiation, appressorium 

formation, root penetration, intercellular growth, arbuscule formation, and nutrient 

transport (Giovannetti 2000). The morphological stages of development vary, depending 

on plant species. For a successful interaction, the signaling is established before the 

physical contact between the symbionts. Plant root exudates contain the compounds 

‘strigolactones’ which stimulate hyphal branching and facilitate contact with the host plant 

(Navazio et al. 2020). Successful recognition is followed by the formation of appressorium 

(hyphopodium) on the root epidermal layer (Gadkar et al. 2001). The fungus produces 

hydrolytic enzymes which help in the degradation of the host cell wall. The action of 

hydrostatic pressure by the hyphal tip allows penetration (Bonfante and Perotto 1995). 

Within 4-5 hours after the formation of fungal hyphopodium, the plant cell forms a 

prepenetration apparatus (PPA). The plant nucleus travels towards the vicinity of the 

contact site (Genre et al. 2005). Subsequently, the reorganization of the endoplasmic 

reticulum, cytoskeleton, and polarization of microfilaments takes place. Next, the nucleus 

migrates towards the cortex forming a ‘transcellular tunnel’ which allows hyphal 

penetration (Siciliano et al. 2007). With the commencement of symbiosis, mycelia grow 

within and outside the roots in the soil, thus eventually causing the formation of 

multinucleate spores on the hyphal tips (Shah 2014). 

Intraradical hyphae 

Development: After penetration through epidermal cells, intra-radical hyphae start 

branching in the outer cortex initiating the development of other AM fungal structures 

within the host root (Peterson et al. 2004). 

Functions: The conversion of much of C into triglycerides takes place in intra-radical 

hyphae (Siddiqui and Pichtel 2008). The persistence of these hyphae in decaying root 

pieces in the soil serves as an inoculum for the colonization of new host roots. 

Arbuscules 

Development: The intra-radical hyphae penetrate and spread in the cortex region forming 

highly branched structures named arbuscules. Arbuscules are ephemeral structures 

degenerating within 4-5 days after formation (Brundrett et al. 1985). 
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Arum-type: A branch of an intra-cellular or inter-cellular hypha penetrates the wall of 

cortical cells forming intricate tree-like branches. Mostly, they occupy the inner cortex 

adjoining endodermis and vascular tissue. The host-derived plasma membrane surrounding 

these arbuscules is called a ‘periarbuscular membrane’ (PAM). This membrane separates 

arbuscules from host cell cytoplasm which helps in the transfer and temporary storage of 

mineral nutrients and sugars (Peterson et al. 2004; Harrison 2005; Ramos et al. 2008). 

Paris-type: This type of arbuscules is generally formed in plants with no inter-cellular 

spaces in their roots. This results in the presence of only intra-cellular hyphae. These 

hyphae develop coils with lateral branches collectively known as arbusculate coils.  

The branched structure of arbuscules increases the surface area of the plant cell thereby 

enhancing nutrient uptake. The exchange of both sucrose and phosphates occurs in the 

periarbuscular membrane (van Aarle et al. 2005). 

Intra-radical vesicles 

The swelling of hyphal tips or lateral branches develops into vesicles. These are formed 

either inside the cell or in intercellular spaces of the root. Depending upon the fungal 

species, vesicles are of variable shapes like ovoid, lobed, or box-shaped (Smith and Read 

2008). Abundant vesicles are formed towards the end of the host growing season. Matured 

vesicles are filled with lipid bodies and numerous nuclei. Vesicles of some AM species are 

also known to shelter bacteria (Peterson et al. 2004).  

Vesicles act as storage organs storing lipids about 58% of their dry mass and also acts as 

chlamydospores. 

Auxiliary cells 

Auxiliary cells are produced exclusively by species belonging to the family Gigasporaceae. 

These are globose-shaped clusters of varying colour and ornamentation formed on the 

lateral branches of extra-radical mycelium. Ornamentation on the wall is used as a 

taxonomic character for AM fungal identification. The auxiliary cells in Gigaspora species 

are echinulate, while they are knobby in Scutellospora species (Bentivenga and Morton 

1995). 

The function of auxiliary cells remains speculative. However, various studies have 

predicted that they might support the storage of lipids due to the presence of high lipid 

content (Jabaji-Hare 1988) or in reproduction (Pons and Pearson 1985). De Souza and 

Declerck (2003) implied a potential role of auxiliary cells in C storage which can be used 
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for spore germination and development of hyphae. In an in vitro experiment conducted by 

Declerck et al. 2004, auxiliary cells of Scutellospora reticulata showed hyphal regrowth 

but failed to colonize the root. 

Extra-radical mycelium 

Terms like ‘runner hyphae or absorptive hyphal networks’ are used to describe extraradical 

mycelium (Dodd et al. 2000). After primary colonization, these hyphae assist in serving as 

a source of inoculum for colonizing root systems of the same or different plants (Smith and 

Read 2008). 

The extraradical hyphae help in the uptake of nutrients from the soil and translocate them 

to the host roots. The highly ramified structure of these hyphae increases surface area for 

nutrient transfer. Hyphae can grow over long distances away from the nutrient depletion 

zone for the absorption of water and nutrients. 

1.7 Stages of AM life cycle 

Spore dormancy 

Spore dormancy assists the AM fungal species to thrive in adverse environmental 

conditions. A dormant spore is the one that is unable to germinate when exposed to 

physiochemical conditions supporting the germination of similar spores, called quiescent 

spores (Giovannetti et al. 2010). The breaking of dormancy by storage is described by 

several authors. (Gazey et al. 1993) demonstrated breaking of spore dormancy in 

Acaulospora laevis by germinating them after storage of six months. Whereas, some of the 

other species of Acaulospora could overcome dormancy after two months of storage at 

23˚C in soil (Douds and Schenck 1991).  

Dormancy is sometimes considered to be a mechanism to synchronize spore germination 

with the root growth and suitable environments for colonization in temperate regions 

(Tommerup 1985). All AM species do not exhibit spore dormancy. Koske and Gemma 

1996 reported spores of Gigaspora gigantea collected all over the year from dune habitats 

could germinate in a day after inoculation. As limited information is available on spore 

dormancy, the understanding of the whole phenomenon remains unclear. 

Triggers for spore germination 

Spores of different AM species germinate differently. Most of the species belonging to 

Glomeraceae germinate through hyphal attachments. They can either produce many germ 

tubes (Rhizophagus clarus) or a single one (F. mosseae and F. caledonium). In G. 
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viscosum, the spore germinates by producing bulbous swelling at the broken end of the 

hyphae (Godfrey 1957; Walker et al. 1995). Whereas, in the species of Acaulosporaceae 

and Gigasporaceae the germ tubes emerge via spore wall (Mosse 1970); Siqueira et al. 

1985). Besides, germination in Scutellospora spores occurs through the germination shield 

(Walker and Sanders 1986). 

The molecular signals triggering spore germination are poorly understood. Based on the 

evidence, it is shown that the quality and source of the exudate have a vital role to play in 

triggering spore germination. For example, exudate from Brassica spp. (non-mycorrhizal 

plant), could not stimulate germination (Giovannetti et al. 1993). The occurrence of pre-

symbiotic signals between the host plant and the fungus was demonstrated by Mosse and 

Hepper 1975. Nagahashi and Douds 2000 designed an in vitro based experiment in 

Gigaspora species to purify and identify the signaling compound. Later, Buee et al. 2000 

carried out semi-purification of active fraction from the exudate of carrot roots. Later, 

Akiyama et al. 2005 purified and identified the germination factor from Lotus japonicas as 

5-deoxy-strigol. The compound is a secondary metabolite belonging to the ‘strigolactone’ 

family. Moreover, environmental factors such as pH, temperature, nutrient content, host 

plant, and soil microbes influence spore germination (Siqueira et al. 1985; Mayo et al. 

2018). Strigolactones were identified in the 1970s as compounds released from the plant 

roots that can germinate seeds of parasitic plants. However, since AM fungi are far more 

ancient than parasitic angiosperms, these rhizosphere signals facilitated by strigolactones 

must probably have first used for AM symbiosis and later exploited by parasitic plants to 

sense their host (Rochange 2010). 

Growth of pre-symbiotic mycelium 

Succeeding germination, hyphae follow straight, linear growth-producing regular, right-

angled branches. Hyphae consist of thick walls and are aseptate with numerous nuclei. 

Cytoplasm, as well as nuclei, migrate in the hyphae. The hyphae then elongate forming a 

mycelial network (Giovannetti 2010). To develop various inter-cellular structures and to 

establish successful colonization, AM hyphae have to form contact with the surface of root 

epidermal cells of the host. At the entry point, the growing hyphae form appressorium 

attaching to the cuticle of the host roots (Giovannetti et al. 1993). During the contact, 

hypha can form more than one entry point. Appressoria are multi-nucleate possessing 

small vacuoles. Hyphal sources initiating the colonization could be either germinating 
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spores, prevailing hyphae in the soil attached to roots, or hyphae growing from colonized 

root fragments that were remained in the soil as plants died (Peterson et al. 2004). 

In the absence of host-derived signals, the hyphae undergo programmed growth arrest 

retaining long-term viability and ability to regerminate and colonize the living host 

(Goltapeh et al. 2008). Correspondingly, the capability of AM fungi to form anastomoses 

with self-compatible hyphae signifies their fundamental strategy for a wider range of 

symbiosis with the host plants (Giovannetti 2001). 

1.8 Arbuscular mycorrhizal P uptake 

Phosphorus (P) is a vital nutrient for plant growth but is a limiting factor in most habitats 

(Bucher 2007). It is present in the soil as inorganic (Pi) and organic (Po). Inorganic P is 

sequestered by cations like Fe, Al at lower pH levels and by Ca at higher pH which are 

insoluble forms. This results in a reduction of sequestered phosphate mobility thus making 

P unavailable to plants (Smith and Read 2008). 

Mycorrhizal plants possess two pathways of nutrient uptake viz., direct pathway in which 

nutrients from the rhizosphere are taken up by epidermal cells and the mycorrhiza-

associated pathway which functions via AM fungal partners in AM plants (Smith et al. 

2003). AM fungi help their host in the uptake of P, N, Cu, Zn, etc. However, it is suggested 

that P acquisition occurs at higher levels (Harrison et al. 2010). Non-mycorrhizal plants 

solely depend upon direct uptake by Pi transporters that are expressed in the epidermal 

cells while functioning of both the pathways take place in AM plants wherein Pi 

transporters are expressed in a cortical cell of colonized roots (Javot et al. 2006). Phosphate 

transporter genes (Pht1) get activated at the commencement of colonization by extra-

radical hyphae of AM fungi (Karandashov and Bucher 2005; Bucher 2007; Javot et al. 

2006). The transporters involved in the Pi transfer are H+ symporters whose function is 

regulated by the H+ gradient released by H+-ATPase in the plasma membrane (Ferrol et al. 

2002a). After P uptake by extra-radical hyphae, a substantial quantity of polyphosphates is 

synthesized. Besides, some amount of these polyphosphates are stored in fungal vacuoles 

(Dexheimer et al. 1996). It is suggested that the polyphosphates are hydrolyzed by 

phosphatases confined in the intra-radical hyphal vacuoles (Tisserant et al. 1993). Based on 

the earlier explanations (Rosewarne et al. 1999); (Ferrol et al. 2002b; Buee et al. 2000), it 

can be inferred that peri-arbuscular membrane (PAM) plays a vital role in delivering 

phosphate to cortical cells of their host plant (Ferrol et al. 2002a). 
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1.9 Benefits of mycorrhiza  

Arbuscular mycorrhizal fungi play an extensive role in the growth and development of 

their host plants even under extreme environmental conditions (Hemalatha et al. 2010). In 

environments that are distinguished by various biotic and abiotic stresses, the AM plants 

can thrive better than non-mycorrhizal plants. Hence, AM fungi can promote inter- and 

intra-specific competitions then favouring mycorrhizal plants (Genre et al. 2005). An 

individual plant can be colonized by several AM fungi and vice versa, bringing about 

common mycorrhizal networks (CMN) (Jakobsen and Hammer 2015). The 

interconnections between plant communities can expand stability as weaker plants could 

gain nutrient supply through CMN at the cost of stronger individuals that entertain CMN 

(Van der Heijden and Horton 2009). 

Nutrient uptake – the association of plants with their fungal partners can establish an 

enhanced uptake of nutrients such as P, Cu, Zn, S, Mg, Mn, Fe, etc. that are essential for 

their growth. Also, they are known to help in N transport taken from organic matter to the 

host (Leigh et al. 2008). It has been proved that the increase in C supply often upturns the 

absorption of P by the AM fungi and transfer it to their host (Smith and Read 2008). 

Stress tolerance – AM fungi are known to offer an ecological competitive benefit to their 

host plants in enabling survival and improved plant growth under environmental stress 

conditions such as temperature, pH, moisture, salinity, etc. (Mohammadi et al. 2011). They 

can also improve the response of a plant to water scarcity by enhancing the uptake of water 

from the soil by hyphal extensions (Entry et al. 2002). Nevertheless, it is evident from 

previous studies that, AM fungi can uphold plant salinity tolerance by various mechanisms 

such as improving uptake of nutrients (Evelin et al. 2012), by regulating the plant 

physiology (Chang et al. 2018), etc.  

Reducing soil erosion and leaching of nutrients – AM fungi are capable of modifying the 

soil structure by developing ramified hyphal networks that entangle and bind soil particles 

together forming stabilized aggregates of soil (Leifheit et al. 2014). Collectively, this 

results in increased water holding capacity that assists in better plant growth besides 

enhanced nutrient uptake (Chen et al. 2018). Correspondingly, it is known that AM fungi 

help in the reduction of nutrient leaching by sequestration of nutrients in soil aggregates 

and by absorption of soil nutrients (Clark and Zeto 2008; George 2000).  
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1.10 Interaction of AM fungi with other rhizosphere microbes 

Mycorrhizal symbiosis is not just a bipartite association between the fungus and plant but 

AM fungi also interact with the other associated microorganisms (Tarkka and Frey-Klett 

2008). These microorganisms have a mutual impact on each other forming a zone called 

‘mycorrhizosphere’ (Frey-Klett and Garbaye 2005). Some of the bacteria that can support 

the growth of mycorrhiza are known as ‘mycorrhiza helper bacteria’ (MHB) (Fitter and 

Garbaye 1994). Furthermore, AM fungi also interact with phosphate solubilizing bacteria 

(PSBs) by taking up the released P ions that are solubilized from the insoluble form of P by 

these bacteria (Rodríguez and Fraga 1999). 

1.11 Phosphate solubilizing bacteria  

As phosphate ions have a negative charge, they can easily form insoluble complexes with 

aluminium and iron in acidic and calcium in calcareous soils (Khan et al. 2007). Soil 

microbes can solubilize and mineralize insoluble P into available form thus contributing 

towards better plant growth (Bhattacharya and Jha 2012). The inundation of the mangrove 

ecosystem with saline water for longer periods form unfavourable conditions for microbial 

growth that are important in nutrient mineralization (Shalini et al. 2006).  

Phosphate solubilizing bacteria (PSB) are considered to be the most active microorganism 

assisting in the favourable supply of P to the plants (Solanki et al. 2018). Bacillus and 

Pseudomonas form the important genera of PSBs (Khan et al. 2010). Bacterial 

solubilization of P takes place by excretion of organic acids and their hydroxyl and 

carboxyl groups help in the chelation of phosphate bound cations (Khan et al. 2007). These 

organic acids are presumed to solubilize insoluble phosphate to soluble form 

(orthophosphate) thereby increasing its availability for plants (Vazquez et al. 2000). 

Gluconic acid is the most common among all the organic acids to solubilize mineral 

phosphates. Gram-negative bacteria directly oxidizes glucose to gluconic acid (Alori et al. 

2017). The mineralization of organic P (phytate, phospholipids, nucleic acids, and 

phosphoric esters) by PSBs occurs due to the production of phosphatases either acid or 

alkaline (Rodríguez and Fraga 1999).  

Various soil factors can influence the transformation of organic and inorganic P. PSBs 

from several extreme environments (saline, nutrient deficient, high-temperature ranges) 

have greater efficiency to solubilize phosphate than those in moderate environments (Zhu 

et al. 2011). Apart from P solubilization, PSBs provide other benefits to the plants such as 



Chapter 1: Introduction 

15 
 

better seed germination, photosynthesis, tolerance to environmental stresses, disease 

resistance, sequestration of Fe through siderophore production and production of plant 

hormones (Sharma and Baishya 2017; Adesemoye and Kloepper 2009).  

1.12 Monoxenic culture of AM fungi 

Monoxenic culture technique is an advanced, powerful, and promising tool for the 

production of contamination-free inoculum of AM fungi. Wide numbers of AM fungal 

species have been successfully cultured monoxenically by root organ culture (ROC) using 

Ri T-DNA transformed roots of various host species. The root organ culture method 

provides extensive spore production in a small space and within a short period, thus 

increasing the spore load to be inoculated in the field influencing the production of 

agricultural and horticultural crops (Srinivasan et al. 2014).  Factors such as pH, 

temperature, moisture, minerals, and organic nutrients play roles in spore germination and 

germ tube growth (Clark and Zeto 2008). 

Only a few AM fungal species belonging to Glomeraceae and Gigasporaceae and single 

species belonging to Acaulosporaceae have been successfully cultured on ROC  

(Rodrigues and Rodrigues 2013). Ever since the 1980s, progress in the development of 

monoxenic methods and the media used for the cultivation of AM fungi on ROC has been 

limited (Abdellatif et al. 2019). Scientists have modified White’s medium to produce 

modified Strullu Romand (MSR) medium (Strullu and Romand 1986; Declerck et al. 1998) 

and minimal (M) medium (Bécard and Fortin 1988). A new medium i.e. IH medium 

comprising of palmitic acid was developed for the better monoxenic culture of AM fungi 

(Ishii 2012). Trépanier et al. (2005) suggested that palmitic acid serves as an essential 

constituent for the production of AM fungal lipids. 

Ri T-DNA transformed roots have been efficiently employed in recent decades to prepare 

the dual culture of AM fungi and host roots. A naturally obtained genetic transformation of 

plants using Agrobacterium rhizogenes Conn. results in the formation of hairy roots. The 

modifications in their hormones, allow them to grow profusely on the artificial media 

(Fortin et al. 2002). 

AM fungal inocula containing spores (extra-radical), colonized fragments of root or 

isolated vesicles can be used for their monoxenic cultivation (Rodrigues and Rodrigues 

2013). However, some of the AM fungal species producing no vesicles (Gigasporaceae) 

have been cultured using spores (Fortin et al. 2002). 
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The only study on the occurrence and diversity of AM fungi in mangroves of Goa was 

reported by (D'Souza and Rodrigues 2013a; 2013b). However, the location investigated in 

the present study has never been subjected to similar investigations previously. It is also 

proposed to explore the transformation of AM fungal diversity associated with the 

mangrove plants of the Pichavaram forest which were earlier reported as non-mycorrhizal. 

To understand the ecology of the habitat and to develop conservation strategies, it is 

necessary to measure the biodiversity associated with the habitat. Therefore, the present 

study was conducted to quantify the AM fungal diversity and to identify dominant AM 

fungal species in mangroves of Chorao Island and Pichavaram forest. Also, using 

bioinoculants to investigate their effects on the growth and biomass of selected mangrove 

plant species and to discuss the potential application of bioinoculants in the recovery and 

revegetation of the mangrove ecosystem. The present study proposes the following 

objectives: 

a. To identify the AM fungal diversity in mangrove plant species found in Chorao 

Island. 

b. Preparation of trap and pure cultures. 

c. Preparation of monoxenic cultures of dominant AM species. 

d. Isolation, identification, and activity of phosphate solubilizing bacteria (PSB). 

e. Mass multiplication and preparation of inocula. 

f. Screening of efficient AM species for selected mangrove plant species. 
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Chapter 2: Review of literature 

AM fungal diversity studies in mangroves. 

Authors Site/host plant Inference/major findings 

Sengupta and 

Chaudhuri 2002 

Ganges river estuary, 

India 

Rhizosphere soils of 31 species of true- 

and associate- mangrove plants were 

investigated for AM fungal 

associations. They reported that the 

colonization rates varied among species 

and their situation of occurrence, being 

highly colonized in dry and less saline 

mangrove sites. 

Gupta et al. 2002 Bhitarkanika, Orissa, 

India 

A study of 12 mangrove and 18 non-

mangrove plants was carried out. The 

maximum colonization was shown by 

Heritiera fomes. The colonization was 

absent in herbaceous mangrove plants.  

Shalini et al. 2006 Nicobar Island, India Five Glomus species were recovered 

from the mangrove rhizosphere of Great 

Nicobar Island. They concluded that the 

colonization of aerenchymatous cells 

signifies the role of mangrove plants in 

providing oxygen to AM fungi in 

anoxic conditions. 

Kumar and Ghose 

2008 

Sundarban 

mangroves, West 

Bengal, India 

The rhizosphere soil of 15 true- and one 

associate-mangrove plant from three 

different inundation types was analyzed 

to examine the status of AM fungi. 

Forty-four AM species belonging to six 

genera viz. Acaulospora, 

Entrophospora, 

Gigaspora, Glomus, Sclerocystis, and 

Scutellospora were recovered. Glomus 
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mosseae showed the highest frequency. 

They concluded that the host plant had a 

greater impact on the percent 

colonization and spore density than that 

of the inundation period.  

Wang et al. 2011 Zhuhai mangrove 

area, China 

Amplification of SSU-ITS-LSU of AM 

fungal colonized roots of three 

mangrove plant species across a tidal 

gradient was conducted. A total of 23 

phylotypes of AM fungi were obtained, 

out of which 22 belonged to 

Glomeraceae and one Acaulosporaceae. 

They suggested that the duration of 

flooding has an impact on the diversity 

of AM fungi. 

Sridhar et al. 2011 South west coast, 

India 

The rhizosphere soil of eight mangrove 

plant species from the Netravathi 

mangrove forest was evaluated for the 

presence of AM fungi. An associate 

mangrove (Derris trifolium) showed the 

highest root colonization as well as 

maximum spore density. They inferred 

that the soil factors such as pH and 

salinity have an impact on root 

colonization. 

Balachandran and 

Mishra 2012 

Western coast, 

Maharashtra, India 

AM fungi and glomalin content were 

assessed in the rhizosphere soils of 

heavy metal polluted areas of mangrove 

forests in Mumbai, Thane, and Raigad. 

Permissible levels of Ni, Pb, and Cr 

were present at the studied site. Root 

colonization and spore density of AM 

fungi were high at all the polluted sites. 
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The correlation between glomalin and 

heavy metal content was significantly 

positive, which confirmed that the 

glomalin helps in the sequestration of 

heavy metals. 

D'Souza and 

Rodrigues 2013 

Rivers - Terekhol, 

Chapora, Mandovi, 

Zuari, Sal, Talpona 

and Galgibag, Goa, 

India 

A Survey of 17 mangrove species from 

seven rivers of Goa was performed to 

investigate AM fungal associations. 

Excoecaria agallocha recorded the 

highest root colonization, whereas the 

least colonization was observed in 

Avicennia marina. Twenty-eight AM 

fungal species belonging to the genus 

Glomus, Acaulospora, Scutellospora, 

Gigaspora, and Entrophospora were 

recovered.  The study indicates the 

dominance of two AM fungal species 

viz., Glomus intraradices and 

Acaulospora laevis.  

D’Souza and 

Rodrigues 2013 

Rivers – Terekhol and 

Zuari, Goa, India 

Effect of season on the diversity AM 

fungi in three mangrove plant species 

viz. Acanthus ilicifolius, Excoecaria 

agallocha, and Rhizophora mucronata 

from two different locations were 

examined. The maximum number of 

AM fungal spores and species was 

recorded during the pre-monsoon 

season, indicating that the season had a 

profound effect on AM fungal diversity. 

Wang et al. 2014a Qi’Ao mangrove 

forest, China 

Molecular sequencing of each spore 

morphotype isolated from the mangrove 

rhizosphere and the roots of semi-

mangrove plant species was carried out. 
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Eleven new sequences from spores and 

172 from the roots were derived. They 

concluded that the composition of AM 

fungal genera in semi-mangrove habitat 

was similar to those present in intertidal 

zones of mangrove habitats.  

Hu et al. 2015 Mangrove forest, 

Southern China 

They explored the occurrence of AM 

fungi in the rhizosphere of Aegiceras 

corniculatum and Acanthus ilicifolius. 

This study revealed that the available 

soil P and salinity are influencing 

factors for the development of AM in 

mangroves. 

Gupta 2016 Bhitarkanika, Orissa, 

India 

Assessment of AM fungal diversity in 

various salinity zones was carried out at 

16 sites of Bhitarkanika mangrove 

forest. The maximum number of AM 

species was recovered from less saline 

zones. Genus Glomus was found to be 

dominant in all the salinity zones. 

Gopinathan et al. 

2017a 

Muthupet mangrove 

area, Tamil Nadu, 

India 

The occurrence of AM fungi in the 

rhizosphere of Avicennia marina was 

investigated. A total of 14 AM fungal 

species were isolated, with Glomus 

being the dominant genus. 
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Monoxenic culture of AM fungi. 

Authors AM species Inference/major findings 

Declerck et al. 2000 Rhizophagus proliferus The association of R. proliferus with 

transformed Daucus. carotaroots were 

obtained on Modified Strullu and 

Romand (MSR) medium. The 

sporulation was initiated one week after 

the preparation of dual cultures. 

Gadkar and 

Adholeya 2000 

Gigaspora margarita An in vitro culture was established with 

G. margarita and transformed roots of 

D. carota on Minimal (M) medium to 

examine the growth and physiology of 

the fungal spore. Mostly single spores 

were formed in 18-20 months old 

cultures. 

Karandashov et al. 

2000 

Funneliformis 

caledonium 

The spores of F. caledonium were 

grown in dual culture with transformed 

roots of D. carota on M medium (pH 

6.5). the spores were produced after 2-3 

days of contact (within 1-3 weeks after 

spore germination) with the roots. 

Dalpé and Declerck 

2002 

Acaulospora rehmii The spores of A. rehmii were grown 

monoxenically on a Petriplate 

containing MSR medium with the 

transformed roots of D. carota.  

Bi et al. 2004 Sclerocystis sinuosa They established monoxenic culture of 

S. sinuosa using transformed roots of D. 

carota (carrot) on M medium. The 

sporocarps were formed after four 

months.  

Kandula et al. 2006 Scutellospora 

calospora 

This study reports the cultivation of S. 

calospora spores on MSR medium 

using ROC of D. carota. Only four 
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spores were formed eight months after 

the preparation of dual culture.  

Eskandari and 

Danesh 2010 

Rhizophagus 

intraradices 

An experiment was performed to study 

the life cycle of R. intraradices using 

the root organ culture of D. carota on 

MSR medium. The sporulation occurred  

25 days after contact with the roots.  

Bidondo et al. 2012 Gigaspora decipiens A successful in vitro culture of G. 

decipiens was obtained using 

transformed roots of D. carota. The 

sporulation occurred after five months 

of inoculation on M medium. 

Costa et al. 2013 Gigaspora decipiens 

and Rhizophagus clarus 

An in vitro experiment for the 

verification of temperature and pH 

effect on the sporulation of G. decipiens 

and R. clarus was conducted using the 

transformed roots of D. carota on M 

medium. The sporulation increased at 

22 °C and decreased at 28 °C and 32 

°C. G. decipiens showed the highest 

sporulation at pH 6.5, whereas in R. 

clarus sporulation was higher at pH 4.0. 

Rodrigues and 

Rodrigues 2015 

Funneliformis mosseae A monoxenic culture of F. mosseae 

spores was successfully established on 

MSR medium using Linum 

usitatissimum. The colonization 

occurred five days after co-cultivation. 

The spores produced showed 83% of 

viability. 
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Phosphate solubilizing bacteria (PSB) in mangroves. 

Authors Site Inference/major findings 

Vazquez et al. 2000 Laguna de Balandra, 

California, Mexico 

They isolated 13 PSB isolates from 

two mangrove plant species viz., 

Avicennia germinans, and 

Laguncularia racemosa. The 

results indicated that Vibrio 

proteolyticus was the most active 

PSB isolate. 

Ravikumar et al. 2007 Manakudi mangroves, 

Tamil Nadu, India 

Diversity studies of 

phosphobacteria in the soil as well 

as in root samples of Manakudi 

mangroves. The number of 

phosphobateria was higher in roots 

than that in soil samples. A total of 

nine species of phosphobacteria 

belonging to seven genera were 

isolated, which were found to be 

sensitive to heavy metals (Hg and 

Zn). The P solubilizing activity 

was decreased with increased 

concentrations of heavy metals. 

Subhashini and Kumar 

2014 

Corangi mangroves, 

Andhra Pradesh, India 

15 strains of P solubilizing 

Streptomyces sp. were isolated 

from rhizosphere soil of Ceriops 

decandra on ISP-5 medium. St-3 

was found to be the most efficient 

P solubilizing strain, which 

solubilized a maximum of 48.28 

µg/mL of inorganic P at 30ºC with 

3% of NaCl in the growth medium. 

Behera et al. 2016 Mahanadi river delta, 

Odisha, India 

In this study, a total of 48 strains 

of PSBs were isolated from 
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mangrove soil on NBRIP medium 

belonging to genera Pseudomonas, 

Bacillus, Alcaligens, Klebsiella, 

Serratia, Azotobacters, and 

Micrococcus. The P solubilizing 

ability ranged from 8.21 to 48.70 

µg/mL. 

Behera et al. 2017a Mahanadi river delta, 

Odisha, India 

A strain of PSB was isolated from 

mangrove soil on NBRIP medium, 

which was further identified as 

Serratia sp. Maximum 44.84 

µg/mL of P was solubilized with a 

decrease in pH from 7.0 to 3.15. 

Behera et al. 2017b Mahanadi river delta, 

Odisha, India 

A PSB identified as Alcaligenes 

faecalis was isolated from 

mangrove soil of Mahanadi delta 

on NBRIP medium supplemented 

with tricalcium phosphate. The P 

solubilizing activity was found to 

be 48 µg/mL, with a decrease in 

pH of the medium from 7.0 to 3.2. 

Organic acids such as oxalic acid, 

citric acid, malic acid, succinic 

acid, and acetic acid were detected 

in broth culture. Alkaline 

phosphatase activity was found to 

be 93.7 µg/mL.  
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Screening of efficient AM fungal species for mangrove plant species. 

Authors Site Inference/major findings 

Wang et al. 2010 Pearl River, South China 

Host plant – Sonneratia 

apetala 

The AM fungal symbiosis in two 

mangrove swamps was examined and 

reported six AM fungal species 

(Glomus and Acaulospora). Also, a 

greenhouse experiment was performed 

using S. apetala as a host plant. It was 

reported that AM inoculated plants 

had better growth and biomass with 

improved levels of N, P, and K. 

Wang et al. 2014b Futian Nature Reserve of 

Shenzhen, South China 

Host plant – Kandelia 

obovata and Aegiceras 

corniculatum 

The effect of municipal sewage 

discharge on the extent of AM fungal 

and mangrove plant symbiosis was 

estimated first by the construction of 

two mangrove belts and secondly by a 

pot-based experiment. A. corniculatum 

showed greater intensities of AM 

colonization. The vesicles and 

arbuscules had an inhibitory effect, 

whereas hyphae were more tolerant of 

wastewater discharge.  

Xie et al. 2014 Kandelia obovata They evaluated the effect of AM fungi 

and P supply on soil phosphatases, 

plant growth, and nutrient uptake in 

host plant K. obovata. The P supply 

(KH2PO4) enhanced the height and 

biomass of the plant, thereby partly 

inhibiting the activity of acid and 

alkaline phosphatases. In contrast, 

inoculation of plants with AM fungi 

increased root strength and plant 
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biomass, controlled phosphatase 

activities, and increased nutrient 

uptake. 

D’Souza and 

Rodrigues 2016 

Ceriops tagal An experiment was conducted to study 

the effect of three AM fungi viz., 

Rhizophagus clarus, R. intraradices, 

and Acaulospora laevis on the growth 

of C. tagal. The study revealed that R. 

clarus is the most efficient AM fungi, 

which increased the biomass of the 

selected plant. 
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Chapter 3: To identify the AM fungal diversity in mangrove 

plant species. 

3.1: INTRODUCTION 

Mangroves are rich and diverse in living resources and hence increase the economic and 

ecological value of the ecosystem (Kathiresan 2000). The mangrove ecosystem has 

become a vital element for many conservation and environmental issues (Gopinathan et al. 

2017b). Mangroves show substantial tolerance to salinity, inundation, and nutrient stress. 

However, they have degenerated drastically all over the world, mainly due to nutrient 

limitations (Xie et al. 2014). Hence, protecting and reconstructing the mangrove ecosystem 

has become a global concern (Krauss et al. 2008). Several geophysical and 

geomorphologic processes viz., salinity, sulfide, pH, nutrients, light, space, and 

hydroperiod control mangrove productivity (Twilley 2009).  Islands are considered to be 

crucial habitats to perform ecological studies (Walter 2004), which might sometimes 

connect to the mainland contributing to species sharing (Triantis et al. 2012). 

Various AM fungal species colonizing the roots of different plant species play a crucial 

role in the regeneration, diversity, and distribution of plant communities (Nandi et al. 

2014). They are known to maintain plant diversity and contribute to ecological processes 

(Francis and Read 1994).  AM fungi play a significant role in soil nitrogen (N) and carbon 

(C) cycles and also helps in the reduction in plant uptake of phytotoxic heavy metals 

(Willis et al. 2013).  It increases plant productivity, diversity, and enhances the plant 

resistance to biotic and abiotic stresses (Ijdo et al. 2011).  It has been recommended that 

mixed communities of AM fungi have a more significant effect on plant growth than on 

individual species (Alkan et al. 2006). 

Limited studies have been carried out on AM fungal diversity in Island environments 

(Schmidt and Scow 1986; Trufem 1990; Koske and Gemma 1996; Shalini et al. 2006; 

Stürmer et al. 2013).  Thus, investigation of AM fungal occurrence and distribution in such 

environments would expand the knowledge about biogeographical patterns of these fungi, 

particularly in poorly explored habitats of the tropical region (Rodríguez-Echeverría et al. 

2017). Therefore, in the present chapter, the quantification of AM fungal diversity and 

identification of dominant AM fungal species in true- and associate-mangroves of Chorao 

Island and Pichavaram forest was initiated. 
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3.2: MATERIALS AND METHODS 

3.2.1: Study sites  

For the study on the diversity of AM fungi in mangrove habitat, the two sites viz., Chorao 

Island, Goa (Plate 3.1), and Pichavaram mangrove forest, Tamil Nadu (Plate 3.2), were 

selected. 

Chorao Island (15° 32’ N, 73° 52´ E): it is located on the West Coast of India in the 

Mandovi River at an elevation of 8 m AMSL (Fig. 3.1). The total area of the Island is 

423.75 ha which has a mangrove cover of about 250 ha and has an average annual rainfall 

of approximately 2500 mm (https://www.spectrumtour.com/south-india-tourism/chorao-

island-goa.htm). The Island is divided by creeks and backwaters with continuous tidal 

variations and is formed from a confluence of the Mandovi River and its tributary, the 

Mapusa River (Sappal et al. 2014). The mangrove flora of the Island is represented by 17 

plant species belonging to 10 families with Rhizophora mucronata, Avicennia marina, 

Sonneratia alba, and Excoecaria agallocha being dominant.   
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Fig. 3.1: Map showing Chorao Island. 

Pichavaram mangrove forest (11° 29' N, 79° 46' E): it is situated on the southeast coast 

of India. It is a mangrove swamp located in the Vellar-Coleroon estuarine complex. The 

total area of the Pichavaram forest is 1100 ha traversed by 51 islets (Kathiresan 2000). 

About 241 ha of the entire forest is occupied by dense mangrove cover (Arunprasath and 

Gomathinayagam 2014). The average annual rainfall is 1310 mm (Selvam et al. 2003).  

The plant and soil samples were collected from three mangrove sites of Pichavaram forest 

viz., Pichavaram extension (PE), Pichavaram Reserved Forest (PRF), and Killai Reserved 

Forest (KRF) (Fig. 3.2). 
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Fig. 3.2: Map of Pichavaram forest showing the sampling locations. 

3.2.2: Sample collection 

In the present study, 17 and 18 mangrove species from Chorao Island and Pichavaram 

forest respectively, were investigated (Plate 3.3 to 3.7). At Chorao Island, 11 species were 

true mangroves, while six were mangrove associates, which belonged to 10 families. 

Whereas, at Pichavaram forest, nine each were true- and associate- mangroves that 

belonged to 12 different families. Rhizosphere samples were collected from the depth of 0-

30 cm using soil corer (5 cm diameter). During the collection, roots of the trees were traced 

by digging and removed to ensure that the collected roots belong to the same plant species. 

Three rhizosphere soil samples were collected from each plant species, placed in separate 

sealed bags, labeled, and brought to the laboratory. These three samples of each plant 

species were then thoroughly mixed to form a composite sample. The roots were separated 

from adhering soil, washed, and used for estimation of AM colonization. Each composite 
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sample was divided into two parts, one part for AM spore isolation, enumeration, and 

identification, the other as inoculum to prepare trap cultures. 

To investigate the seasonal dynamics of AM fungal diversity in the west and east coast of 

India, the soil samples were collected from both Chorao Island and Pichavaram forest. The 

years arranged into three seasons are different for the east and west coasts. The seasonal 

months for the east coast are June to September (Pre-monsoon), October to December 

(Monsoon), and January to May (Post-monsoon). Whereas, for the west coast, it is 

February to May (Pre-monsoon), June to October (Monsoon), and November to January 

(Post-monsoon). 

Soil and root samples of three common plants viz., Avicennia marina, Bruguiera 

cylindrica, and Excoecaria agallocha from both the sites were collected during all three 

seasons. The method used for sample collection was the same as described above. 

3.2.3: Soil analyses 

For this analysis, soil samples were randomly collected in triplicates from true- and 

associate- mangrove areas of Chorao Island and three sites of Pichavaram Forest and were 

analyzed separately. Also, the soil samples were collected during different seasons from 

the two sites. Soil texture was analyzed by the pipette method (Folk 1974). Soil pH and 

electrical conductivity (EC) were measured with pH meter (LI 120 Elico, India) and 

Conductivity meter (CM-180 Elico, India), respectively, in soil water suspension (1:2 

ratio). Organic carbon (OC) was estimated by Walkley and Black (1934) method through 

oxidizing it using potassium dichromate in acidic medium and titrating the residual 

dichromate against ferrous ammonium sulphate (FAS), available nitrogen (N) was 

estimated by oxidative hydrolysis of liberated ammonia using KMnO4, absorbing it on 

boric acid and titrating against standard acid (Subbiah and Asija 1956). Available P was 

extracted with 1.5% Dickman and Bray’s reagent and determined by colorimetry (Bray and 

Kurtz 1945). The available potassium was extracted with 1N ammonium acetate and 

estimated by flame photometry (Hanway and Heidel 1952).  Available zinc (Zn), copper 

(Cu), manganese (Mn), and iron (Fe) were extracted using DTPA (diethylene triamine 

penta acetic acid) extractant with soil: reagent ratio of 1:2 (Lindsay and Norvell 1978) and 

quantified using atomic absorption spectrophotometer (AAS) (nova 400P, Analytik Jena, 

Germany). 
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3.2.4: AM fungal root colonization 

Fifty root pieces (secondary and tertiary roots) approximately one-centimeter long were 

cleared in 10% KOH at 90 °C for 90 minutes, acidified in 5 N HCl, and stained with 0.05% 

Trypan blue overnight (Phillips and Hayman 1970). Stained roots were then mounted on 

glass slides in polyvinyl alcohol Lacto-glycerol (PVLG) and examined using a bright-field 

Olympus BX41 research microscope.  A root segment was considered mycorrhizal if it 

showed the presence of hyphae/hyphal coils, arbuscules/arbusculate coils, and/or vesicles. 

The intensity of total colonization (TC), root length containing hyphae (HC %), arbuscules 

(AC %), and vesicles (VC %) were quantified using the Magnified intersections method 

(McGonigle et al. 1990). Percent AM root colonization was estimated using the following 

formula: 

Percent colonization =
Number of root segments colonized

Total number of root segments observed
 × 100 

3.2.5: Isolation and identification of AM fungal spores 

Spores from rhizosphere samples (n=3) and trap cultures were isolated using the wet 

sieving and decanting method (Gerdemann and Nicolson 1963), where 100 g of soil 

sample was suspended in 1 L of tap water in a beaker. The mixture was stirred for 10-15 

seconds and kept undisturbed for approximately 30 seconds, to settle the heavier particles. 

The soil water mixture was decanted through the stacked sieves with the coarse sieve on 

top and a fine sieve at the bottom. The range of sieves used was 60 µ, 100 µ, 150 µ, and 

240 µ.  The suspension from each sieve was collected separately in the beaker. It was then 

filtered separately through Whatman No. 1 filter paper using a funnel. The filter papers 

were then placed in the Petri plate, and the spores were isolated under the 

stereomicroscope. Intact, non-parasitized healthy spores were quantified using the 

modified method of Gaur and Adholeya (1994). The spores were then mounted on glass 

slides in PVLG and examined under a bright-field Olympus BX41 research microscope 

(40x, 100x, and 400x). Spore morphology, wall characteristics, dimensions, and other 

relevant data were observed for the identification of the AM spores. The spore characters 

were compared with the descriptions given by Rodrigues and Muthukumar (2009), 

Blaszkowski (2012), and the International Collection of Vesicular Arbuscular Mycorrhizal 

Fungi (invam.wvu.edu). Names and epithets of AM fungal species were followed 
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according to the recommendation of Schüßler and Walker (2010) and Redecker et al. 

(2013). 

3.2.6: Data analysis 

Relative abundance (RA) was evaluated using the formula: RA = (Number of spores of a 

species or genus / Total number of spores in all soil samples) x 100, while isolation 

frequency (IF) was derived by using the formula: IF = (Number of soil samples possessing 

spores of a particular species / Total number of soil samples analyzed) x 100. 

Following formulae were used to calculate the Shannon-Wiener diversity index (H) 

(Shannon and Weaver 1948) and Simpson`s diversity index (D) (Simpson 1949): 

H = - Σ (pi ln pi) 

D = 1-[Σn(n-1)/N(N-1)] 

(Where pi is the proportion of individual species that contributes to the total number of 

individuals, n is the number of individuals of a given species and N is the total number of 

individuals in a community). 

Species evenness was estimated as (Σ (H) = H’/H’ max) where, H’max = lnS, S = total 

number of species in the community (richness). Jaccard’s similarity index (JI) was 

calculated pair-wise between mangrove plant species based on the presence or absence of 

each AM fungal species (Jaccard 1912).  

JI (%) =  (c ÷ a + b + c) × 100, where ‘c’ stands for the number of species occurring in 

both hosts, ‘a’ is the number of species unique to the first host and ‘b’ is the number of 

species unique to the second host. 

All data were statistically analyzed using SPSS v 22 software. To compare the soil 

parameters between true- and associate- mangroves, a paired sample t-test was performed. 

Pearson’s correlation coefficient was calculated to evaluate the relationships between root 

colonization and spore density, isolation frequency, and relative abundance, and spore 

density and species richness. To understand the distribution of AM fungal species among 

true- and associate-mangrove plants, cluster analysis (Bray-Curtis similarity) was 

performed using PRIMER v 6.0. 
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To study the relationship between the relative abundance (RA) of AM genus and soil 

parameters at two different sites during three different seasons, Canonical correspondence 

analysis (CCA) was performed using Multivariate Statistical Package (MVSP) v 3.1. 

3.3: RESULTS AND DISCUSSION 

1) Diversity of AM fungi in mangroves of Chorao Island and Pichavaram mangrove 

forest: 

3.3.1: Physico-chemical properties of mangrove soils 

Chorao Island: Results of texture analysis showed that the soil from true mangrove areas 

is clayey silt, while associate mangrove areas have a nearly equal proportion of sand, silt, 

and clay (Fig. 3.3). In mangrove forests, sedimentation of clay particles takes place as 

these forests are enclosed and protected environments with low-energy waters (Hossain 

and Nuruddin 2016). Analyses of chemical properties of the estuarine soils at Chorao 

revealed acidic nature. All nutrients showed low availability, with P being the least 

available nutrient. This low nutrient availability, along with increased salinity, appears to 

be responsible for causing stress, thereby affecting plant growth, especially in the true 

mangroves. Except for the OC and K, all the other soil parameters varied significantly 

between true- and associate- mangroves (Table 3.1). The results of the t-test are presented 

in Table 3.2. The p values indicate the significant differences (p<0.05) between the soil 

parameters in two types of mangroves. The parameters, such as EC, OC, N, Cu, and Fe 

showed significant differences between true- and associate- mangroves. The negative t-

values indicate that the mean values of pH and P are higher in associate mangrove plants. 
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Fig 3.3: Ternary diagram of sand-silt-clay percentages of Chorao Island. 

Table 3.1: Chemical properties of Chorao mangrove soils.  

Parameters True mangrove soil Mangrove associate soil 

pH 5.87 ± 0.59 5.65 ± 0.57 

EC (dS/m) 8.95 ± 0.99 3.9 ± 0.10 

OC (%) 2.81 ± 0.35 1.07 ± 0.13 

N (g/kg) 0.073 ± 0.01 0.067 ± 0.01 

P (g/kg) 0.007 ± 0.004 0.051 ± 0.03 

K (g/kg) 0.231 ± 0.03 0.263 ± 0.04 

Zn (ppm) 2.011 ± 0.40 1.834 ± 0.37 

Cu (ppm) 0.50 ± 0.13 0.297 ± 0.07 

Fe (ppm) 343.1 ± 3.43 266.9 ± 2.67 

Mn (ppm) 2.28 ± 0.76 2.24 ± 0.75 

Note: All values are mean of three readings; ± = Standard error; EC= 

Electrical conductivity; OC= Organic carbon. 

 



Chapter 3: Objective 1 

36 
 

Table 3.2: Paired sample t-test to compare soil parameters between true- and 

associate-mangrove plants. 

Pairs of variables t df P (2-tailed) 

Pair 1 pH1 – pH2 -.653 2 0.581 

Pair 2 EC1- EC2 5.435 2 0.032 

Pair 3 OC1- OC2 5.125 2 0.036 

Pair 4 N1- N2 20.000 2 0.002 

Pair 5 P1- P2 -1.070 2 0.397 

Pair 6 K1- K2 0.000 2 1.000 

Pair 7 Zn1- Zn2 2.147 2 0.165 

Pair 8 Cu1- Cu2 6.289 2 0.024 

Pair 9 Fe1- Fe2 6.803 2 0.021 

Pair 10 Mn1- Mn2 2.308 2 0.147 

Note: 1 stand for True mangrove; 2 stands for associate mangrove. 

Pichavaram forest: Soil chemical properties are presented in Table 3.3. Soils of the 

Pichavaram forest are neutral to slightly alkaline (6.9 – 7.6). Electrical conductivity (EC) 

ranged from 4.47 – 5.0 dS/m. The site was low in available nutrients, especially P.  The 

flow of water causes the leaching of soil nutrients (Gandaseca et al. 2016), and up to 95% 

of the available P is removed in a short time making P the most thoroughly leached 

element (Oelkers and Jones 2008). A variety of biotic and abiotic factors viz., inundation, 

soil type, soil microbes, plant species, litter production, and decomposition control the 

availability of nutrients in the mangrove ecosystem (Reef et al. 2010). The Pichavaram 

mangrove ecosystem consists of small Islands that experience micro and diurnal tides 

(Selvam et al. 2003).  The frequency and period of tidal inundation are determined by 

topographic factors such as elevation, which subsequently affects the salinity and soil 

nutrient availability resulting in complex patterns of nutrient demand and supply (Reef et 
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al. 2010).  Furthermore, increased soil salinity decreases the availability of major nutrients 

such as N, P, and K due to their precipitation and variation in nutrient metabolism (Evelin 

et al. 2011). AM fungal structures may bind or eliminate NaCl, thereby conferring salt 

tolerance to the plants (Kaldorf et al. 1999). 

Table 3.3: Chemical properties of Pichavaram mangrove soils. 

Soil Parameters PE PRF KRF 

pH 7.6 ± 0.84 7.0 ± 0.78 6.9 ± 0.77 

EC (dS/m) 4.47 ± 0.56 4.76 ± 0.60 5.0 ± 0.63 

N (g/kg) 0.035 ± 0.005 0.037 ± 0.006 0.032 ± 0.005 

P (g/kg) 0.019 ± 0.004 0.019 ± 0.005 0.021 ± 0.007 

K (g/kg) 0.095 ± 0.02 0.147 ± 0.04 0.138 ± 0.03 

Fe (ppm) 15.63 ± 1.74 15.52 ± 1.72 14.55 ± 1.62 

Mn (ppm) 7.94 ± 0.10 7.31 ± 0.91 6.12 ± 0.76 

Zn (ppm) 0.85 ± 0.12 0.96 ± 0.14 0.48 ± 0.07 

Cu (ppm) 1.77 ± 0.30 1.97 ± 0.33 2.63 ± 0.43 

Note: PE= Pichavaram extension; PRF= Pichavaram Reserve Forest; KRF= Killai Reserve 

Forest.  

3.3.2: AM fungal colonization, spore density, and species diversity 

Chorao Island: AM fungal colonization was observed in the roots of all the mangrove 

plant species examined (Plate 3.8, 3.9). Roots of different plant species exhibited 

arbuscular and/or vesicular colonization. Maximum root colonization was recorded in 

Thespesia populnea (97.5%), an associate mangrove species, while the least root 

colonization was recorded in Avicennia marina (20%). Hyphal colonization (aseptate 

hyphae or mycelia are formed by AM fungi and can be differentiated from endophytic 

hyphae, which are septate) was dominant in T. populnea. During the study, vesicles were 

recorded in all the plant species analyzed, whereas arbuscules were rarely encountered in 

true mangroves (Table 3.4). 
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In this study, associate mangrove plants exhibited higher AM colonization than true 

mangroves. (Wang et al. 2014), reported similar observations in semi-mangrove 

communities in China. Gupta et al. (2002) reported the absence of AM colonization in 

three associate mangrove species viz., A. ilicifolius, A. aureum, and D. heterophylla while 

considerably high colonization in these plant species were recorded in the present study. 

Earlier studies have demonstrated that the intensity of colonization is higher in drier areas 

(Wang et al. 2010a). Therefore, in our study, increased colonization rates in associate 

mangrove plants could be due to their distribution in the landward areas of mangrove 

habitat. 

Roots of associate mangrove plant species had a high percentage of TC, HC, and VC and 

recorded arbuscules in more plant species compared to true mangroves. Hence, their 

scantiness in true mangroves could be due to their sensitivity towards inundated and saline 

environments (Wang et al. 2010b). Zhao (1999) suggested that factors such as host species, 

phenology, mycorrhizal dependency, dormancy, and changes in soil conditions contribute 

to the variation in AM fungal colonization and spore density. However, Derris species 

showed the least AM species richness, as observed in an earlier study by D’Souza and 

Rodrigues (2013a).  Sridhar et al. (2011) however, recorded high species richness in the 

same plant species and suggested that AM species richness is dependent on the host plant.  

Also, incompatibility between AM fungal species and the host plant (host preference), and 

environmental conditions (environmental preference) may result in lesser species richness 

(He et al. 2002; Jansa et al. 2002; Trejo et al. 2013). 
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Table 3.4: Percent root colonization in true and associate mangrove species of Chorao Island. 

Plant species Family TC (%) HC (%) AC (%) VC (%) 

True mangroves      

Aegiceras corniculatum (L.) Blanco Myrsinaceae 70.28 ± 9.23bc 68.09 ± 6.40c nd 61.21 ± 6.80bc 

Avicennia officinalis L. Acanthaceae 41.00 ± 1.00efg 34.77 ± 0.35fg nd 23.15 ± 1.39ef 

Avicennia marina (Forssk.) Vierh. Acanthaceae 20.00 ± 2.89h 13.25 ± 4.42j nd 6.08 ± 1.01h 

Bruguiera cylindrica (L.) Blume  Rhizophoraceae 30.99 ± 7.47fgh 21.59 ± 4.31i nd 11.45 ± 2.29gh 

Ceriops tagal (Perr.) C.B. Rob. Rhizophoraceae 58.20 ± 7.66cde 57.12 ± 5.25d 35.42 ± 5.06b 51.66 ± 6.31d 

Excoecaria agallocha L. Euphorbiaceae 74.00 ± 1.00bc 59.16 ± 7.95d 41.9 ± 4.66b 47.50 ± 8.00d 

Kandelia candel (L.) Druce Rhizophoraceae 35.16 ± 7.43fgh 29.84 ± 3.73gh nd 22.40 ± 5.6ef 

Rhizophora apiculata Blume Rhizophoraceae 49.08 ± 0.92defg 33.85 ± 4.23fg nd 9.23 ± 1.84gh 

Rhizophora mucronata Lam. Rhizophoraceae 42.93 ± 11.09efg 37.46 ± 5.35ef nd 12.27 ± 1.75gh 

Sonneratia alba Sm. Lythraceae 31.04 ± 7.77gh 24.08 ± 3.01hi nd 16.36 ± 2.73fg 

Sonneratia caseolaris (L.) Engl.  Lythraceae 50.34 ± 6.42def 43.57 ± 3.00e nd 26.57 ± 1.50e 

Mangrove associates      

Acanthus ilicifolius L. Acanthaceae 69.21 ± 0.79bc 63.81 ± 3.80cd 38.69 ± 4.30b 54.76 ± 7.48cd 

Acrostichum aureum L. Pteridaceae 44.34 ± 5.66efg 40.13 ± 5.73ef 18.65 ± 3.10c 29.54 ± 3.28e 

Clerodendrum inerme (L.) Gaertn. Lamiaceae 75.00 ± 10.41bc 69.03 ± 7.67bc 36.92 ± 4.62b 64.36 ± 7.15b 

Derris heterophylla (Willd.) K. Heyne Fabaceae 85.00± 4.08ab 75.38 ± 0.50b nd 48.82 ± 5.05d 

Pongamia pinnata (L.) Pierre Leguminosae 64.10 ± 5.90cd 63.93 ± 7.10cd nd 48.91 ± 5.43d 

Thespesia populnea (L.) Sol. ex Corrêa Malvaceae 97.50 ± 2.04a 89.42 ± 6.84a 58.78 ± 6.53a 78.59 ± 4.99a 

Note: All values are mean of three readings; ± = Standard error; Values in the same column not sharing the same letters are significantly 

different (P ≤ 0.05); nd = not detected; TC, HC, AC, VC = Root length containing total colonization, hyphae, arbuscules, and vesicles 

respectively. 

http://www.theplantlist.org/tpl1.1/record/kew-18454
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The maximum spore density was recorded in Ceriops tagal (138 spores/100g of soil) and the 

minimum in Acrostichum aureum (20 spores/100g of soil). Kandelia candel recorded the 

highest AM fungal species richness with 13 spore morphotypes. A total of 31 AM fungal 

species belonging to 9 genera were recorded. Acaulospora (13 spp.) was the dominant genus 

followed by Glomus (6), Gigaspora (4), Rhizophagus, and Funneliformis (2 spp. each), 

Claroideoglomus, Sclerocystis, Entrophospora, and Scutellospora (1 sp. each) with the 

species number given in parenthesis.   Acaulospora dilatata was the dominant species found 

occurring in 13 plant species (Table 3.5). The study revealed the dominance of Acaulospora 

dilatata. Similar observations have been recorded earlier by D’Souza and Rodrigues 

(2013a), who reported the dominance of genus Acaulospora in acidic mangrove soils of 

Goa. Giovannetti et al. (2010) observed that genus Acaulospora is predominant in low pH 

soils (< 6.0).  It has been reported that species of Glomus are found commonly in neutral to 

slightly alkaline soils (Kumar and Ghose, 2008), while species of Gigaspora and 

Scutellospora are dominant in sandy soils (Lee and Koske 1994). 

The low AM fungal spore density was recorded in rhizosphere soils of both true and 

associate mangroves. This conforms with an earlier study by Kumar and Ghose (2008).  

Salinity and tidal currents may be responsible for low spore density in the mangrove 

environment (Wang et al. 2014). Balachandran and Mishra (2012) however, reported high 

spore density and root colonization in heavy metal polluted mangroves sites. 

The isolation of 31 AM species from 17 mangrove species indicated that the site is diverse 

in AM species (Plate 3.10 to 3.14). High environmental heterogeneity in mangrove habitats 

may assist in higher AM diversity (Fabian et al. 2018).  Flooding has been identified as the 

cause of heterogeneity and dynamics of these ecosystems (Simões et al. 2013) that might 

affect the distribution of AM fungi.  
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Table 3.5: Spore density (SD) and diversity of AM fungi at Chorao Island. 

Plant species *Spore density AM fungal species 

True mangroves   

Aegiceras corniculatum 105 ± 2.50b AcDi, AcLa, AcRe, AcMy, GiGi 

Avicennia officinalis 34 ± 9.61efghi AcGi, AcDel, ClEt, FuGe, FuMo, RhIn 

Avicennia marina 39 ± 3.00efgh AcDi, FuGe, RhFa, RhIn 

Bruguiera cylindrica 30 ± 7.51fghi AcDi, AcUn, AcLa, FuGe, RhFa, RhFn, ScRu 

Ceriops tagal 138 ± 10.84a AcDi, AcFo, AcMe, AcUn, FuGe, FuMo, GlFl, RhFa, RhIn, ScRu 

Excoecaria agallocha 57 ± 10.90c AcDi, AcSc, AcUn, AcBi, FuGe, FuMo, GiAl, RhFa, RhIn 

Kandelia candel 24 ± 3.38hi AcDi, AcSc, AcUn, AcDe1, AcDe2, FuGe, FuMo, GlMa, GlFl, ScSi, RhFa, Scutellospora sp. 

(unidentified), Entrophosphora sp. (unidentified). 

Rhizophora apiculata 36 ± 11.24efgh AcDi, AcSc, AcNi, FuGe, GiAl, RhFa, RhIn 

Rhizophora mucronata 96 ± 10.14b FuGe, GlRa, RhFa, RhIn, ScRu 

Sonneratia alba 58 ± 9.5defg AcDi, AcSc, AcUn, FuGe, GlTo, RhFa 

Sonneratia caseolaris 94 ± 10.00de AcDi, AcSc, AcRe, FuGe, RhFa, Scutellospora sp. (unidentified). 

Mangrove associates   

Acanthus ilicifolius 26 ± 3.46ghi AcDi, AcFo, AcSc, AcLa, AcNi, FuGe, GlMa, RhFa, RhIn, ScRu, Entrophospora sp. (unidentified). 

Acrostichum aureum 20.00 ± 8.00i AcDi, AcSc, AcBi, AcDe2, AcRe, FuGe, GlMu, 

Clerodendrum inerme 129 ± 5.51a AcDi, AcFo, AcLa, GlMa, RhFa 

Derris heterophylla 59.50 ± 2.50cd AcUn, AcNi, RhFa 

Pongamia pinnata 37.50 ± 7.50efgh AcFo, AcSc, AcUn, AcSp, GiMa, GiDe 

Thespesia populnea 47.67 ± 1.67def AcDi, AcDe2, AcRe, AcSp, FuGe, GlMu, RhFa 

Note: * Spores/100g of soil. All values are mean of three readings; ± = Standard error; Values in the same column not sharing the same letters are significantly different (P ≤ 

0.05). AM species: AcDi = Acaulospora dilatata, AcFo = A. foveata, AcMe = A. mellea, AcSc = A. scrobiculata, AcUn = A. undulata,AcDe1 = A. denticulata, AcLa = A. 

laevis, AcBi = A. bireticulata, AcDe2 = A. delicata, AcNi = A. nicolsonii, AcRe = A. rehmii, AcMy = A. myriocarpa, AcSp = A. spinosa, ClEt = Claroideoglomus 

etunicatum, FuGe = Funneliformis geosporum, FuMo = F. mosseae, GlMa = Glomus macrocarpum, GlTo = G. tortuosum,  GlFl = G. flavisporum, GlMu = G. multicaule, 

GlRa = G. radiatum, GiMa = Gigaspora margarita, GiGi = Gi. gigantea, GiDe = Gi. decipiens, GiAl = Gi. albida, RhFa = Rhizophagus fasciculatus, RhIn = R. intraradices, 

ScRu = Sclerocystis rubiformis, ScSi = S. sinuosa 
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Pichavaram mangrove forest: AM fungal colonization was observed in roots of all the 

mangrove plant species sampled. Maximum root colonization was recorded in Salicornia 

brachiata (93.54%) at KRF and least in Avicennia marina (22.08%) at PRF. 

Maximum spore density was recorded in Ceriops decandra (270/100 g of soil) at PE and 

minimum in Rhizophora mucronata (8 spores/100 g of soil) at PRF (Table 3.6).  Parameters 

such as inoculum density, root structure, genetic compatibility between host and AM fungi, 

edaphic factors, and soil microbes affect AM colonization rates and spore density (Zangaro 

et al. 2013; Sivakumar 2013).  Likewise, the AM fungal community structure is affected by 

the tide level (Wang et al. 2011). This could be one of the reasons for maximum and 

minimum spore density in C. decandra and R. mucronata, respectively. Since the inundation 

level of the former plant is lower than the latter (Batool et al. 2014) at the study site. 

Inhibition of AM colonization seldom take place due to increased P level occurs in the 

wetland ecosystem (Kelly et al. 2004). However, higher rates of AM colonization in the 

present study could be attributed to low levels of P at the site. The study revealed variation 

in root colonization and spore density. According to Hildebrandt et al. (2001), the intensity 

of AM colonization is not the same during the plant life cycle, and hyphae bundled with 

spore strings could be patchily distributed in the soil, which may lead to more spore counts 

in a single soil sample.  

Since all the mangrove plants examined in the present study from Pichavaram were 

mycorrhizal, this study contradicts the study of Mohankumar and Mahadevan (1986) who 

reported no AM association in Pichavaram mangroves, while Lingan et al. (1999) reported 

AM colonization in eight mangrove plants from the same site. It is interesting to observe that 

halophytes belonging to the family Chenopodiaceae are non- or poorly- mycorrhizal 

(Juniper and Abott 1993; Aliasgharzadeh et al. 2001; Wilde et al. 2009).  However, the 

present study reveals clear evidence that species of Chenopodiaceae (now Amaranthaceae) 

family viz., Salicornia, Anthrocnemum, and Suaeda showed a high degree of AM 

colonization among all the other mangrove plants which are in accordance with Hildebrandt 

et al. (2001) and Yinan et al. (2017). 
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Table 3.6: Percent root colonization (RC), spore density (SD) in Pichavaram mangroves. 

Note: * indicates spores/100g of soil; Data are means of three replicates; ± standard error; Values in each column followed by different letters are 

significantly different at p < 0.05; nd= not detected. 
 

Plant species 

 PE PRF KRF 

 
Percent 

Colonization 

*Spore 

density 

Percent 

Colonization 

*Spore 

density 

Percent 

Colonization 

*Spore 

density 

True mangroves        

Aegiceras corniculatum (L.) Blanco  Myrsinaceae 65.9 ± 0.8abc 79.0 ± 2.5cd nd nd nd nd 

Avicennia marina (Forssk.) Vierh.  Acanthaceae 27.6 ± 1.0f 89.0 ± 7.0c 22.1 ± 5.4f 64.0 ± 4.5e 40.2 ± 4.2c 87.0 ± 7.5c 

Avicennia officinalis L.  Acanthaceae 76.5 ± 1.5a 92.0 ± 4.5c 51.0 ± 1.0cd 124.0 ± 9.0a nd nd 

Brugueira cylindrica (L.) Blume  Rhizophoraceae 54.4 ± 0.58bcde 30.0 ± 8.0f 63.8 ± 8.8bc 105.0 ± 1.0bc nd nd 

Ceriops decandra (Griff.) W.Theob. Rhizophoraceae 72.5 ± 7.5ab 270.0 ± 1.0a 27.5 ± 2.5f 90.0 ± 3.5cd nd nd 

Excoecaria agallocha L. Euphorbiaceae 77.0 ± 13.0a 60.0 ± 2.0e 22.7 ± 0.8f 79.0 ± 5.0de 90.0 ± 3.3a 96.0 ± 5.0c 

Lumnitzera racemosa Willd. Combretaceae 70.2 ±11.9ab 142.0 ± 8.0b 65.0 ± 3.0b 114.0 ± 1.5ab nd nd 

Rhizophora apiculata Blume Rhizophoraceae 37.5 ± 2.5ef 17.0 ± 0.5f 45.0 ± 5.0de 104.0 ± 4.5bc nd nd 

Rhizophora mucronata Lam. Rhizophoraceae nd nd 32.7 ± 0.7ef 8.0 ± 1.0f nd nd 

Associate mangroves& salt marshes        

Arthrocnemum indicum (Willd.) Moq. Amaranthaceae nd nd nd nd 65.4 ± 3.9b 38.0 ± 5.5e 

Clerodendrum inerme (L.) Gaertn. Lamiaceae nd nd nd nd 88.5 ± 3.9a 127.0 ±6.0b 

Salicornia brachiata Miq. Amaranthaceae nd nd nd nd 93.5 ± 0.2a 30.0 ± 3.5e 

Ipomoea pes-caprae (L.) R. Br. Convolvulaceae nd nd nd nd 55.0 ± 7.5b 102.0 ± 6.5c 

Calamus sp. Aracaceae nd nd 88.5 ± 3.9a 71.0 ± 11.5e nd nd 

Salvadora persica L. Salvadoraceae 42.3 ± 3.9def 77.0 ± 6.5cd nd nd nd nd 

Sesuvium portulacastrum (L.) L. Aizoaceae 50.0 ± 3.9cde 22.0 ± 0.5f nd nd nd nd 

Suaeda monoica Forssk. ex J.F.Gmel. Amaranthaceae nd nd nd nd 88.5 ± 3.9a 67.0 ± 5.5d 

Suaeda maritima (L.) Dumort. Amaranthaceae 58.0 ± 3.5bcd 71.0 ± 3.5de nd nd 89.0 ± 2.7a 161.0 ±8.0a 

http://www.theplantlist.org/tpl1.1/record/kew-18454
http://www.theplantlist.org/tpl1.1/record/kew-2653800
http://www.theplantlist.org/tpl1.1/record/tro-8500011
https://www.google.co.in/search?hl=en-IN&q=Convolvulaceae&stick=H4sIAAAAAAAAAONgVuLQz9U3SC9JMwAAZAbQaQwAAAA&sa=X&ved=2ahUKEwjewarIlpzeAhWKWX0KHQ3GCP4QmxMoATAXegQICRA2
http://www.theplantlist.org/tpl1.1/record/kew-2484020
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A total of 21 AM fungal species belonging to seven genera were recovered. Of these, 8 

species belonged to the genus Acaulospora, one to Entrophospora, two to Funneliformis, 

three to Gigaspora, two to Glomus, three to Rhizophagus, and two to Sclerocystis. 

Rhizophagus fasciculatus was found to be dominant at PE and PRF, whereas Funneliformis 

geosporum was dominant at KRF (Table 3.7). 

Species belonging to Acaulosporaceae and Glomeraceae are capable of adapting to extreme 

environmental conditions and a wide range of soil pH resulting in their predominance in 

varied habitats (Öpik et al. 2013). Moreover, these species form different types of 

propagules (hyphae, vesicles, and spores) to establish root colonization, while 

Gigasporaceae species are propagated by spores (Hart and Reader 2002). 
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Table 3.7: Diversity of AM fungal species in mangroves of Pichavaram forest. 

Species PE PRF KRF 

True mangroves    

Aegiceras corniculatum AcPo, AcUn, FuGe, RhFa, RhIr nd nd 

Avicennia marina RhFa, RhIr Entrophospora sp., RhFa AcUn, FuGe, RhFa 

Avicennia officinalis AcDi, AcUn, Entrophospora sp., RhFa, RhIr AcDi, AcNi, Entrophospora sp., R RhFa, 

RhIr 

nd 

Brugueira cylindrica AcDi, Entrophospora sp., FuGe, RhFa, RhIr AcDi, AcNi, Entrophospora sp., GlMi, 

RhFa, RhIr 

nd 

Ceriops decandra Entrophospora sp., FuGe, RhFa, RhIr RhFa, RhIr nd 

Excoecaria agallocha Entrophospora sp., GiAl, RhFa, RhIr AcFo, AcUn, Entrophospora sp., FuGe, 

RhFa 

AcDi, AcUn, FuGe, GiAl 

Lumnitzera racemosa Entrophospora sp., RhFa AcDi, Entrophospora sp., FuGe, RhFa, RhIr nd 

Rhizophora apiculata AcDi, AcRe, AcSc, AcUn, Entrophospora sp., 

FuGe, RhFa 

Entrophospora sp RhFa, RhIr nd 

Rhizophora mucronata nd Entrophospora sp., RhIr nd 

 

 

 

 

 

 

 



Chapter 3: Objective 1 

46 
 

 

Mangrove associates and salt 

marshes 

   

Arthrocnemum indicum nd 

 

nd AcUn, FuGe, GiAl, RhFa 

Clerodendrum inerme nd nd AcDi, AcUn, FuGe, GiDe, GiMa, 

RhIn, ScPa, ScRu 

Salicornia brachiata nd nd AcDi, FuGe, GlAg 

Ipomoea pes-caprae nd nd AcDi, AcUn, FuGe 

Calamus sp. nd AcDi, AcUn, FuGe nd 

Salvadora persica AcUn, FuGe nd nd 

Sesuvium portulacastrum Entrophospora sp., FuGe, RhFa nd nd 

Suaeda monoica nd nd AcUn, FuGe, ScRu 

Suaeda maritima AcPo, AcSp, Entrophospora sp., 

FuGe, RhFa 

nd AcDi, AcUn, FuGe, FuMo, RhFa 

Note: nd= not detected; AM species: AcDi = Acaulospora dilatata, AcFo = A. 46enticu, AcNi = A. nicolsonii, AcPo = A. polonica, AcRe = A. 

rehmii, AcSc = A. scrobiculata, AcSp = A. spinosa, AcUn = A. undulata, Entrophospora = Unidentified, FuGe = Funneliformis geosporum, 

FuMo = F. mosseae, GiAl = Gigaspora albida, GiDe = G. decipiens, GiMa = G. margarita, GlAg = Glomus aggregatum, GlMi = G. 

microcarpum, RhFa = Rhizophagus fasciculatus, RhIn = R. intraradices, RhIr = R. irregulare, ScPa = Sclerocystis pachycaulis, ScRu = S. 

rubiformis. 
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3.3.3: AM fungal distribution and diversity indices 

Chorao Island: Shannon-Wiener diversity (H’) and Simpson`s dominance index (D) was 

highest in K. candel and lowest in D. heterophylla (Fig. 3.4). Species evenness was 

highest in A. marina and was least in C. tagal and E. agallocha. Maximum species 

richness was recorded in K. candel (Fig. 3.5). 

 

Fig. 3.4: Shannon and Simpson`s diversity indices of AM fungi at Chorao Island. 

 

Fig. 3.5: Species evenness and species richness of AM fungi at Chorao Island. 

Acaulospora dilatata recorded the highest relative abundance (RA) while the least was 

recorded for C. etunicatum, G. tortuosum, G. radiatum, Gi. margarita and S. sinuosa. 

Maximum isolation frequency (IF) was observed for A. dilatata and minimum for A. 



Chapter 3: Objective 1 

48 
 

mellea, A. myriocarpa, C. etunicatum, G. tortuosum, G. radiatum, Gi. margarita, Gi. 

gigantea, Gi. decipiens and S. sinuosa (Table 3.8). 

The genus Gigaspora recorded low relative abundance compared to other AM genera. 

Species belonging to Gigasporaceae predominates in sandy soils, especially dunes (Day 

et al. 1987; Lee and Koske 1994). The soil at Chorao Island is less sandy, which could 

have resulted in a lower abundance of the species of genus Gigaspora. 

Table 3.8: Relative abundance (RA) and isolation frequency (IF) of AM fungal 

species at Chorao Island. 

AM species RA (%) IF (%) 

Acaulospora dilatata Morton 30.69 82.35 

Acaulospora bireticulata Trappe & Janos 4.66 23.53 

Acaulospora mellea Spain & Schenck 0.10 5.88 

Acaulospora scrobiculata Trappe 4.28 47.06 

Acaulospora undulata Sieverd. 4.56 41.18 

Acaulospora denticulata Sieverd. & Toro 0.24 11.76 

Acaulospora laevis Gerd. & Trappe 2.24 23.53 

Acaulospora bireticulata Rothwell & Trappe 0.28 11.76 

Acaulospora delicata Walker, Pfeiff. &Bloss 1.00 17.65 

Acaulospora nicolsonii Walker, Reed & Sanders 3.94 17.65 

Acaulospora rehmii Sieverd. & Toro 1.35 23.53 

Acaulospora myriocarpa Spain, Sieverd. & Schenck 5.87 5.88 

Acaulospora spinosa Walker & Trappe 0.07 11.76 

Claroideoglomus etunicatum (Becker & Gerd.) Walker & 

Schüßler 

0.03 5.88 

Entrophospora sp. (unidentified) 0.41 11.76 

Funneliformis geosporum (Nicolson & Gerd.) Walker & 

Schüßler 

12.88 76.47 

Funneliformis mosseae (Nicolson & Gerd.) Walker & 

Schüßler 

1.42 23.53 

Glomus macrocarpum Tul. & Tul. 0.72 17.65 

Glomus tortuosum Schenck & Sm. 0.03 5.88 

Glomus flavisporum (Lange & Lund) Trappe & Gerd. 0.07 11.76 
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Glomus multicaule Gerd. & Bakshi 0.03 11.76 

Glomus radiatum (Thaxt.) Trappe & Gerd. 0.10 5.88 

Gigaspora margarita Becker & Hall 0.03 5.88 

Gigaspora gigantea (Nicolson & Gerd.) Gerd. & Trappe 0.03 5.88 

Gigaspora decipiens Hall & Abbott 0.21 5.88 

Gigaspora albida Schenck & Sm. 0.07 11.76 

Rhizophagus fasciculatus (Thaxt.) Gerd. & Trappe 0.17 76.47 

Rhizophagus intraradices (Schenck & Sm.) Walker & 

Schüßler 

19.92 47.06 

Sclerocystis rubiformis Gerd. & Trappe 4.14 23.53 

Sclerocystis sinuosa Gerd. &Bakshi 0.31 5.88 

Scutellospora sp. (unidentified) 0.14 11.76 

Species richness showed non-significant (P>0.05) correlation with Simpson’s dominance 

index (r=0.376) and with species evenness (r= 0.061) and a significant correlation with 

Shannon’s diversity index (r=0.744, P<0.001). However, species evenness showed a 

significant correlation with Shannon diversity (r=0.683, P<0.01) and Simpson’s 

dominance index (r=0.747, P<0.01). A significant correlation was observed between 

Shannon and Simpson’s diversity indices (r=0.816, P<0.01). 

A significant correlation existed between RA and IF (r= 0.899, P<0.001). In contrast, no 

correlation (P>0.05) was observed between spore density and root colonization (r=0.277). 

Similarly, spore density and species richness had a negative correlation (r=-0.193) that was 

not significant (P>0.05). 

The AM fungal species similarity index was highest for A. officinalis and A. marina 

(66.67%), and Aegiceras corniculatum showed less similarity with most of the plant 

species (Fig 3.6). Moreover, in the present study, a high AM species similarity (up to 

66.67%) indicated broad dispersal of AM species.  Similar observations were recorded in 

an earlier study in Nethravathi mangroves where the AM species similarity ranged from 

12.1% to 55% (Sridhar et al. 2011). Movement of AM fungal species from adjoining 

terrestrial habitats to intertidal zones of mangrove ecosystem (Wang et al. 2014) could be 

the cause of similarity in genus and species composition in true mangroves that inhabit 

intertidal zone areas and associate mangrove plants from the landward periphery of 

mangrove habitat. 
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Fig. 3.6: Jaccard’s similarity index (%) of AM fungi among the mangrove plant 

species at Chorao Island. 

     

Plant species: Aegiceras corniculatum (AC), Avicennia officinalis (AO), Avicennia marina (AM), 

Bruguiera cylindrica (BC), Ceriops tagal (CT), Excoecaria agallocha (EA), Kandelia candel 

(KC), Rhizophora mucronata (RM), Rhizophora apiculata (RA), Sonneratia alba (SA), Sonneratia 

caseolaris (SC), Acanthus ilicifolius (AI), Acrostichum aureum (AA), Clerodendrum inerme (CI), 

Derris heterophylla (DH), Pongamia pinnata (PP) and Thespesia populnea (TP). 

Pichavaram mangrove forest:  

Highest Relative abundance (RA) and isolation frequency (IF) of AM species were 

recorded in R. fasciculatus at PE and PRF and F. geosporum at KRF, respectively (Fig. 

3.7, 3.8). A significant positive correlation was found between RA and IF at all the three 

sites (r = 0.939, p < 0.01 at PE; r = 0.748, p< 0.05 at PRF and r = 0.829, p< 0.01 at KRF).  

The AM species viz., A. dilatata, A. undulata, Entrophospora sp., and R. irregulare 

showed low relative abundances but were widely distributed with high isolation 

frequencies. There was no significant correlation between spore density and root 

colonization at all three sites. Genera-wise, the highest RA was recorded in Rhizophagus at 

PRF, and the highest IF was recorded in Acaulospora and Funneliformis (Fig. 3.9). 
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Fig. 3.7: Relative abundance of AM fungal species at Pichavaram Forest. PE= 

Pichavaram extension; PRF= Pichavaram reserve forest; KRF= Killai reserve forest. 

 

Fig. 3.8: Isolation frequency of AM fungal species at Pichavaram Forest. PE= 

Pichavaram extension; PRF= Pichavaram reserve forest; KRF= Killai reserve forest. 



Chapter 3: Objective 1 

52 
 

 

Fig. 3.9: Genera-wise relative abundance and isolation frequency of AM fungi at 

Pichavaram Forest. PE= Pichavaram extension; PRF= Pichavaram reserve forest; KRF= Killai 

reserve forest; IF= isolation frequency; RA= relative abundance. 

Electrical conductivity was found to be comparatively high at KRF, which could be due to 

the influx of saltwater from the Bay of Bengal. It can be assumed that the dominance of F. 

geosporum at KRF indicates its tolerance to relatively higher salinity. This is following the 

study of Wilde et al. (2009). 

The AM fungal diversity was high at PE, whereas the distribution was more uniform at 

PRF (Fig. 3.10a, b, c). The variation in the sporulation ability of various AM fungal 

species results in the unevenness of spore distribution (Bever et al. 1996). When 

comparing the similarity of AM fungi and plant species investigated between the three 

sites, it was observed that Sørensen’s similarity coefficient of AM fungal community, as 

well as plant community, was higher between PE and PRF (0.73 and 0.70 respectively) 

(Fig. 3.10d). This indicates that the vegetation influences determining the AM community 

structure. This could be due to the dependency of AM fungal spore formation, distribution, 

and development on plant diversity in the natural ecosystem (Zhang et al. 2004). 

Moreover, several factors such as climatic factors, spatial and temporal variation, 

vegetation, nutrient availability, host-preference, and differential sporulation ability of AM 

species can influence the distribution and community structure of AM fungi (Husband et 
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al. 2002; Muthukumar and Udaiyan 2002; Renker et al. 2005).  The occurrence of 

recovered AM species from the saline rhizosphere of Pichavaram confirms their tolerance 

to high salinity levels. 

   

   

Fig. 3.10: Diversity measurements of AM fungal communities at Pichavaram Forest. 

3.3.4: Cluster analysis 

Cluster analysis was performed based on the RA of AM fungal species in true- and 

associate-mangrove plants. All the plants were grouped into four clusters viz., Cluster I, 

Cluster II, Cluster III, and Cluster IV at a similarity level of 26%.  Aegiceras corniculatum 

was not a part of any of the clusters.  Cluster III was subdivided into two sub-clusters at 

53% similarity. Cluster I showed A. undulata as a representative species with a similarity 

of 28.10%. In Cluster II, IIIb, and IV, A. dilatata showed the maximum similarity 

(20.33%, 21.41%, and 23.26%, respectively). Whereas, R. fasciculatus showed the highest 

similarity level of 32.69% in Cluster IIIa (Fig. 3.11). 
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Fig. 3.11: Cluster analysis showing the similarity in the abundance of AM fungal 

species among true- and associate-mangrove plants at Chorao Island. 

2) Seasonal variations in AM fungal communities in three mangrove plant species of 

East and West coast of India: 

3.3.5: Chemical properties of soils 

The chemical properties of soils from study sites are depicted in Table 3.9. The study 

revealed that soils of Chorao Island are acidic, whereas Pichavaram soils are almost 

neutral. Both the sites exhibited high levels of EC during the pre-monsoon season and 

were least during monsoon. Higher EC values during the pre-monsoon also could be 

attributed to higher rates of evaporation while during the monsoon season, the rainfall and 

influx of freshwater from the land are known to causes a decrease in salinity (Prabu et al. 

2008).  At Pichavaram, freshwater inflow from Vellar and Coleroon rivers reduces salinity 

in the monsoon (Kathiresan 2000).  Phosphorus levels were low at both sites. A 

concentration of P reduces with increased salinity (Prasad et al. 2006). Iron content in 

Chorao soils is higher than that in Pichavaram soils. A higher concentration of Fe at 

Chorao could be due to the incidence of mining activities in the Mandovi basin (Nayak 

1998).  
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Table 3.9: Soil chemical properties at the two sites during different seasons. 

Parameters 
Pre-monsoon Monsoon Post-monsoon 

Chorao Pichavaram Chorao Pichavaram Chorao Pichavaram 

pH 5.3 ± 0.53bc 6.8 ± 0.68a 4.9 ± 0.49d 6.9 ± 0.69a 5.1 ± 0.51bc 6.2 ± 0.62ab 

EC (mS/cm) 15.6 ± 1.74a 16.0 ± 1.78a 1.9 ± 0.21d 8.7 ± 0.96c 14.1 ± 1.57ab 9.6 ± 1.06c 

OC (%) 1.3 ± 0.16ab 0.2 ± 0.03c 2.4 ± 0.30a 1.0 ± 0.13ab 2.0 ± 0.24a 1.0 ± 0.12ab 

N (g/kg) 0.1± 0.03a 0.03 ± 0.01ab 0.1 ± 0.04a 0.05 ± 0.02ab 0.1 ± 0.03a 0.07 ± 0.03a 

P (g/kg) 0.05 ± 0.02a 0.04 ± 0.01a 0.05 ± 0.01a 0.07 ± 0.03a 0.05 ± 0.00a 0.04 ± 0.02a 

K (g/kg) 1.4 ± 0.35a 0.8 ± 0.30ab 1.2 ± 0.37a 0.9 ± 0.20ab 1.5 ± 0.23a 0.7 ± 0.16ab 

Fe (ppm) 112.5 ± 4.50c 15.9 ± 8.72f 218.1 ± 9.45ab 63.5 ± 0.63d 236.3 ± 2.54a 41.1 ± 1.64de 

Mn (ppm) 43.6 ± 4.36a 19.3 ± 3.96d 39.6 ± 4.20ab 24.5 ± 1.93c 42.0 ± 2.45a 25.3 ± 2.53c 

Zn (ppm) 22.1 ± 2.45a 3.4 ± 0.24bc 2.2 ± 0.65cd 3.4 ± 0.38bc 5.9 ± 0.38b 4.5 ± 0.49bc 

Cu (ppm) 0.7 ± 0.23a 0.3 ± 0.12a 0.4 ± 0.23a 0.3 ± 0.09a 0.7 ± 0.11a 0.3 ± 0.10a 

Note: All values are mean of three readings; ± = Standard error; EC= Electrical conductivity; OC= Organic carbon. Values in the same row not sharing 

the same letters are significantly different (P ≤ 0.05). 
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3.3.6: AM fungal root colonization and spore density 

The roots of all the plant species showed AM fungal colonization during all the 

seasons. This suggests the dependency of the mangrove plant species on AM fungi 

throughout the year. At Chorao, root colonization rates were generally high during 

pre- and post-monsoon seasons. Whereas, at Pichavaram, all the plant species studied 

showed differential patterns of colonization rates in different seasons. The highest 

percentage of root colonization was recorded in E. agallocha at Chorao Island, while 

the lowest was recorded in A. marina at Pichavaram in the post-monsoon season (Fig. 

3.12). 

Spore density during pre-monsoon ranged from 22-83 spores, 53-124 spores in 

monsoon, and 39-162 spores/100g of soil in the post-monsoon season (Fig. 3.13). The 

spore population was high during post-monsoon and was least during pre-monsoon 

season. At Chorao, Acaulospora was dominant whereas, at Pichavaram, Rhizophagus 

was the dominant genus.  

 

Fig. 3.12: Seasonal variations in AM root colonization. 
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Fig. 3.13: Seasonal variations in AM spore density. 

In the present study, variation in root colonization and spore density was observed both in 

species and seasons. The study also revealed low AM root colonization levels in monsoon, 

whereas earlier studies have shown humidity favouring AM spore germination, thereby 

resulting in increased root colonization during the rainy season (Mirdhe and Laxshman 

2011; Nandi et al. 2014).  However, it has been well demonstrated that seasonality, host 

plant, as well as soil factors, influence AM colonization and sporulation (D’Souza and 

Rodrigues 2013; Sigüenza et al. 1996). Moreover, a fungus can colonize at different levels 

when associated with different plant species (Smith and Read 2008). 

Variation in AM colonization at the two sites could be attributed to different phenological 

patterns of the plant species studied. Enhanced plant growth during vegetative and at the 

fruiting stage leads to high metabolic activity and, in turn, to greater nutrient demand.  The 

AM structures like hyphae, arbuscules, and vesicles are the storage and nutrient uptake 

sites (Su et al. 2011), thereby controlling the colonization rates in their host plants during 

different growing seasons. The other factors, such as soil microbes (Dauber et al. 2008), 

host species (Klironomos 2003), and host preference (Lugo et al. 2003), also may affect 

colonization. Similar seasonal patterns in root colonization and spore numbers were 

observed in an earlier study by Oliveira and Oliveira (2005). They suggested that the water 
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content affects sporulation in AM fungi. Lower spore density in the present study during 

pre-monsoon could be due to less water content during this season. 

3.3.7: AM species diversity and RA 

A total of 19 AM species belonging to four families and seven genera were identified 

throughout the study in different sites, seasons, and host plants. At both sites, Glomeraceae 

accounted for the highest number of species, followed by Acaulosporaceae. Only one 

species belonging to Entrophosporaceae was recovered from both sites. Out of 19 AM 

species, four species viz., A. undulata, Entrophospora sp., F. geosporum and R. 

fasciculatus were recorded in almost all the seasons at both sites. High AM diversity was 

observed during pre-monsoon at both the sites, which also presented the highest value of 

evenness at Chorao as well as in Pichavaram. Species of Acaulosporaceae were most 

abundant at Chorao, whereas at Pichavaram, Glomeraceae presented higher abundance. 

Season-wise results of RA at the different study sites are represented in Fig. 3.14. The soil 

pH could be the cause for the prevalence of Acaulosporaceae at Chorao and Glomeraceae 

at Pichavaram, with the soils being acidic and neutral, respectively. Acaulosporaceae 

species are often abundant in acidic soils, whereas those of Glomeraceae are known to be 

present in neutral soils (Abbott and Robson 1991).  

 

Fig. 3.14: Seasonal variation in relative abundance (%). 
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To know the probable correlation between AM fungal abundance and soil parameters in 

different seasons, Canonical correspondence analysis (CCA) was performed. The arrows 

in the CCA plot indicate relative significance affecting the community, whereas the angle 

between variables indicates a degree of correlation (Fig. 3.15). The CCA variable scores 

and biplot scores for soil variables are presented in Table 3.10 and Table 3.11, 

respectively. The Eigenvalues of the first and second axes were 0.496 and 0.054, 

respectively. The cumulative percentage of the variance of genera was 82.98% and 8.98% 

on the first and second axes, respectively. The variables of soil parameters such as OC, N, 

Mn, Zn, Cu, and Fe had a significant impact on the abundance of Acaulospora, 

Funneliformis, Gigaspora, and Sclerocystis. Whereas, Rhizophagus, Glomus, and 

Entrophospora were largely governed by EC with lesser effects of pH. 

Table 3.10: Canonical correspondence analysis variable scores. 

Biological 

variables 
Axis 1 Axis 2 

Ac 0.640 0.120 

En -0.587 -0.098 

Fn 0.708 -0.283 

Gi 0.747 -0.011 

Gl -0.633 0.921 

Rh -0.794 -0.076 

Sc 0.951 -0.435 

Eigenvalue 0.496 0.054 

Variation % 82.980 8.984 

Cumulative % 82.980 91.964 

Note: Ac = Acaulospora, En = Entrophospora, Fn = Funneiformis,  

Gi = Gigaspora, Gl = Glomus, Rh = Rhizophagus, Sc = Sclerocystis. 

Table 3.11: Biplot scores for soil variables. 

Soil variables Axis 1 Axis 2 

pH -0.948 -0.193 

EC -0.218 0.175 

OC 0.835 0.230 

N 0.819 0.465 

P -0.111 -0.164 

K 0.860 -0.046 

Mn 0.238 -0.172 

Fe 0.664 0.157 

Zn 0.925 0.194 

Cu 0.892 0.108 
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Fig. 3.15: Canonical correspondence analysis (CCA) of the relationship between AMF genera 

and soil variables during three seasons (Pre-M – Pre-monsoon, M – Monsoon, Post-M – Post-

monsoon) in two mangrove sites (CI – Chorao Island, PF – Pichavaram forest). 

3.4: CONCLUSION 

The present study revealed non-uniform distribution and community structure of AM fungi 

were associated with different true and associate mangrove plants that varied significantly.  

Also, appreciable diverse forms of AM species in the study area support the conclusion 

that these species can tolerate high salinity. The identification of abundant and recurrent 

AM species among the mangrove plants, ascertain the fact that these species could be used 

efficiently in the re-establishment of mangrove habitats. This is the first study to explore 

AM symbiosis in 18 mangroves (true- and associate- mangrove) plants of Pichavaram 

forest, Tamil Nadu.  

The seasonal study showed variation in AM fungal symbiosis among the East and West 

coast of India. The colonization rates were much lower at Pichavaram in the pre-monsoon 

season compared to Chorao. Our study also indicates the occurrence of seasonal patterns, 

though one is inversely expressed with a greater number of spores in monsoon season and 

greater root colonization in the dry seasons. The predominance of Acaulospora at Chorao 

and Rhizophagus at Pichavaram indicates their adaptation towards two different ecological 

conditions of the mangrove forest.  

Such AM fungal diversity studies could be suitable for the assessment of AM fungal role 

in maintaining plant diversity during the conservation and restoration of various natural 

ecosystems. 
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Chapter 4: Preparation of Trap and Pure cultures 

4.1 INTRODUCTION 

AM fungi are known to influence the composition and productivity of the plant 

communities (Klironomos 2000). The distinctive role of these fungi has been demonstrated 

in agricultural plants and the plants growing in the various natural ecosystems (Piotrowski 

et al. 2004). AM fungi need to be cultured using a host plant to produce inocula containing 

hyphal fragments, colonized root, and/or healthy spores (Shah 2014). The spores isolated 

from the field soil could sometimes be dead or non-viable. The morphological characters 

of such spores change due to the root pigments, temperature, soil moisture, and other 

microbial activities within the rhizosphere (https://invam.wvu.edu/methods/culture-

methods/trap-culture). Thus, soil samples collected from the field can be used to prepare 

‘trap cultures.  Employing a suitable host plant would increase the spore production, which 

in turn is used for the preparation of pure or monospecific cultures (Rodrigues and 

Rodrigues 2014).  Monospecific culture consists of a single species that is raised by 

isolating the desired spores of an AM fungal species from the trap culture (Shah 2014).  

4.2 MATERIALS AND METHODS 

4.2.1 Preparation of trap cultures 

Multiplication of AM fungal spores was accomplished by following the modified trap 

culture method of Morton et al. (1993) (Plate 4.1). Rhizosphere sample, along with the 

roots, was mixed with autoclaved sand in a 1:1 ratio. This mixture was added to 15 cm 

plastic pots which, were already wiped with 95% alcohol. Plectranthus scutellarioides 

(Coleus) was used as the catch plant. The Coleus cuttings were first washed with tap water 

and then with detergent water. The cuttings were then rinsed in sterile water. Three to four 

cuttings were planted per pot and, the pots were kept in the polyhouse for the 

establishment of colonization and subsequent sporulation. The plants were regularly 

watered when required. Hoagland’s solution (minus P) was added at an interval of 15 days.  

Watering was stopped after 90 days, allowing the plants to dry, after which the shoot 

portion was cut off at the soil surface. The root segments of the Coleus plants were 

checked for colonization using the Trypan blue method (Phillips and Hayman 1970). On 

ensuring that the roots were colonized, the soil from each pot was separately placed in zip-

lock polythene bags, labeled, and stored in the refrigerator at 4˚C. 

https://invam.wvu.edu/methods/culture-methods/trap-culture
https://invam.wvu.edu/methods/culture-methods/trap-culture
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4.2.2 Preparation of monospecific cultures 

The AM fungal spores from trap cultures were extracted by wet sieving and decanting 

method (Gerdemann and Nicolson 1963). The extracted spores were identified, washed 

with autoclaved distilled water, and used to set up monospecific cultures. The substrate 

was prepared by mixing autoclaved sand: soil in the ratio of 1:1. This mixture was then 

transferred to plastic pots (15 cm). The extracted spores of single AM fungal species along 

with the filter paper were placed 2-3 cm deep in the pots. Three to four cuttings of 

Plectranthus scutellarioides were planted per pot. The pots were maintained for 90 days in 

the polyhouse and watered twice a week. After every 15 days, Hoagland solution 

(Hoagland and Arnon 1950) without P was added to the pots. The plants were allowed to 

dry after 90 days, and later the soil was analyzed for the spores.  

4.3 RESULTS AND DISCUSSION 

Monospecific cultures of 17 out of 35 AM fungal species recovered from the two sites 

were propagated in pot cultures. These included Acaulospora dilatata, A. foveata, A. 

scrobiculata, A. undulata, A. delicata, A. rehmii, A. myriocarpa, A. spinosa, 

Entrophospora sp., Funneliformis geosporum, F. mosseae, Gigaspora decipiens, Gi. 

albida, Rhizophagus fasciculatus, R. intraradices, R. irregulare, and Sclerocytis 

rubiformis. All the cultured AM fungal species recorded root colonization and produced an 

adequate number of spores to be used as inoculum. All these live cultures are maintained 

in the polyhouse of the Goa University Arbuscular Mycorrhizal Culture Collection 

(GUAMCC). The same cultures were used as inoculum to carry out further studies. 

Trap cultures are usually prepared for trapping as many indigenous AM fungal species as 

possible. Also, some of the species can be trapped from the live colonized roots of the field 

plants (Shah 2014).  A variety of substrates can be used either in pure or mixed form for 

the mass multiplication of AM fungi. However, sandy soil is commonly used for soil-

based cultures (Douds and Schenck 1990) as the size of the substrate particles plays an 

important role in drainage and aeration and hence influencing sporulation (Gaur and 

Adholeya 2000). Although soil-based cultivation of AM fungal species is the cheap and 

most widely adopted system, it does not assure the absence of redundant contaminants 

even after a strict sanitization process is applied (Ijdo et al. 2011). 
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Chapter 5: Preparation of monoxenic cultures of dominant AM 

species 

5.1 INTRODUCTION 

Cultivation of AM fungi in monoxenic conditions started way back in the 1950s (Mosse 

1959). The conventional method for the production of AM fungi is root organ culture (St 

Arnaud et al. 1996), which utilizes gelling agents like Phytagel, Gelgro, or agar (Gadkar et 

al. 2006). Such dual cultures have also been prepared using liquid media as a substitution 

of solid media (Joner et al. 2000). However, the liquid cultures are unreliable as they are 

challenging to maintain, and hence they have not been widely used (Gadkar et al. 2006). 

White (1943), Butcher and Street (1964), and Butcher (1980) developed the ROC 

technique by using synthetic media supplemented with vitamins and carbohydrate sources. 

Mosse and Hepper (1975) performed pioneering work and established monoxenic culture 

of AM fungi (F. mosseae) using transformed roots of Lycopersicum esculentum and 

Trifolium pretense. Agrobacterium rhizogenes causes the natural genetic transformation of 

plants producing hairy roots (Mathur and Vyas 2007). This produces Ri T-DNA 

transformation of the plant tissues resulting in profuse growth of roots on artificial media 

(Tepfer 1989). The first successful culture of AM fungus using hairy roots was 

accomplished by Mugnier and Mosse (1987). The better growth potential of transformed 

roots makes them adapt to diverse experimental conditions (Tepfer 1989). In several cases, 

fungal inoculums like spores or intra-radical propagules (colonized root fragments or 

vesicles) for the preparation of monoxenic culture have been used. However, AM fungal 

species (Gigasporaceaae and Scutellosporaceae) that do not produce vesicles are cultured 

using spores (Budi et al. 1999). For every AM fungal propagules, the right selection and 

sterilization procedure are the key steps for the establishment of monoxenic culture (Diop 

2003). 

5.2 MATERIALS AND METHODS 

5.2.1 Extraction of AM fungi 

AM fungal propagules viz., spores, and colonized root fragments were extracted from 

monospecific cultures using the wet sieving and decanting method (Gerdemann and 

Nicolson 1963).  
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In vitro culture of AM fungi on Ri T-DNA transformed roots 

5.2.2 Disinfection of AM fungal propagules 

Firstly, extracted propagules (Plate 5.1) were rinsed with autoclaved distilled water. These 

propagules were surface-sterilized according to procedure modified from (Bécard and 

Fortin 1988). The concentration of the sterilizing agent and sterilization period varied 

based on the type of propagules and size of the spore. Isolated propagules were first 

disinfected in Sodium hypochlorite, followed by rinsing with sterile distilled water. The 

spores were then sterilized in an antibiotic solution, streptomycin sulfate. 

5.2.3 Germination of disinfected AM fungal propagules 

Surface sterilized propagules were transferred to Petri plates containing solid MSR 

(Modified Strullu and Romand) medium modified by Declerck et al. (1998) solidified with 

gellan gum clarigel (medium without sucrose). Petri plates were incubated in an inverted 

position in the dark at 27 °C. The pH and sucrose content were manipulated to attain 

maximum germination. 

5.2.4 Establishment of dual culture 

Germinated spores along with the media plug were picked up and placed in the vicinity of 

actively growing Ri T-DNA transformed roots of either Chicory (Cichorium intybus) or 

Linum (Linum usitatissimum) (Plate 5.2) to establish a dual culture. The Petri plates were 

incubated in an inverted position in the dark at 27 °C.  

5.2.5 Estimation of AM fungal colonization in transformed roots 

Estimation of AM fungal colonization in transformed roots was performed by following 

the trypan blue staining method of Phillips and Hayman (1970). The root bits were 

examined under a bright-field Olympus BX41 research microscope (40x, 100x, and 400x). 

Micrographs were imaged by using Nikon Digital Sight DS-U3 digital camera. 

5.3 RESULTS AND DISCUSSION 

5.3.1 In vitro germination of spores 

In this study, AM fungal propagules such as extracted spores and colonized root segments 

were used to initiate Monoxenic cultures. Previous studies report that the species 

belonging to Gigasporaceae possess spores as the most effective propagules while that in 
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Acaulosporaceae and Glomeraceae can induce germination through spores as well as 

colonized root segments (Brundrett et al. 1999; Klironomos and Hart 2002). 

Germination on MSR medium (minus sucrose) was achieved for nine AM fungal species 

viz., Rhizophagus intraradices, Rhizophagus clarus, Rhizophagus fasciculatus, 

Funneliformis mosseae, Acaulospora spinosa, Gigaspora albida, Gigaspora decipiens, 

Dentiscutata scutata, and Racocetra gregaria (Plate 5.3, 5.4). In the present study, we 

report for the first time germination of A. spinosa and D. scutata under Monoxenic 

conditions. The germination time varied from species to species. Also, the sterilization 

time differed from species to species depending upon the size of the spores (Table 5.1). 

During the pre-symbiotic phase, spores of AM fungi can germinate and develop germ 

tubes by using the stored materials (D'Souza et al. 2013). Several factors viz., pH, 

temperature, light, nutrients, moisture, and substrate affect germination and germ tube 

growth under monoxenic conditions (Clark 1997; Maia and Yano-Melo 2001). Spores are 

among the propagules of AM fungi that germinate under suitable conditions developing an 

extra-radical mycelium. However, this mycelium ceases growth within 20 days after 

germination in the absence of host root (Giovannetti 2000). 

In Gi. albida and Gi. decipiens, the multiple germ tubes were formed from the wall of a 

single spore. The development of multiple germ tubes in Gigaspora species could be due 

to their response towards the stimulatory substances within the growing environment, 

numerous nuclei near the wall, and genetic makeup of the spore (De Souza et al. 2005). 
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Table 5.1: Sterilization and in vitro germination of AM fungal spores. 

AM species 

Sodium 

hypochlorite 

(NaClO)(µl) + Time 

(min) 

Streptomycin 

sulfate (%) +  

(2 min) 

Germination 

time (days) 

Rhizophagus intraradices 150 + 5 0.02% 1-3 

Rhizophagus clarus 150 + 5 0.02% 6 

Rhizophagus fasciculatus 70 + 3 0.02% 2 

Funneliformis mosseae 250 + 5 0.05% 26 

Acaulospora spinosa 100 + 4 0.02% 45 

Gigaspora albida 350 + 5 0.05% 5-10 

Gigaspora decipiens 350 + 5 0.05% 4 

Dentiscutata scutata 250 + 5 0.05% 6 

Racocetra gregaria 250 + 5 0.05% 4 

 

5.3.2 Formation of primary structures in Gigasporaceae species 

Following the establishment of dual culture, hyphae extended throughout the Petri plate, 

developing dichotomously branched ramifications known as branched absorbing structures 

(BAS) or arbuscule-like structures (ALS) (Plate 5.5). BAS were hyaline, thin-walled 

hyphal networks that became septate at maturity. The auxiliary cells began to form within 

10 days after spore germination, which occurred concurrently on one or both sides of 

runner hyphae. Their colour ranged from pale yellow to dark brown in Gigaspora species 

and had a spherical shape with an ornamented surface, while those in Scutellospora were 

hyaline and knobby.  

It has been indicated in earlier studies that BAS assists in the mineral nutrition of the host 

by taking up P, N, and few other nutrients actively (Bago et al. 1998) and transferring them 

to the host plant. It is well-known that Gigasporaceae species do not produce vesicles, but 

they form auxiliary cells on extra-radical hyphae (Dodd et al. 2000). In the present study, 

the total number of auxiliary cells ranged from 5 to 10 per plate, which was not enough to 

initiate spore production. In an experiment conducted by De Souza and Declerck (2003), it 

was observed that the formation of over 600 to 700 auxiliary cells resulted in average 

production of 56 spores per plate. Furthermore, they implied that the production of these 
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structures in large numbers perhaps helps in C storage, which can be used as energy 

sources for spore germination and mycelia development. This explanation was supported 

by the observations of Jabaji-Hare (1988), which detected high lipid content in auxiliary 

cells indicating its storage function.  

In the present study, sporulation in Gigasporaceae species was not established even after 

the manipulation of culture media. Declerck et al. (2004) suggested that the formation of a 

single spore needs a C source from at least 19 auxiliary cells. Also, these species have a 

long vegetative phase and extended process of spore development (Kandula et al. 2006). 

5.3.3 In vitro colonization in Gigaspora decipiens 

In the case of G. decipiens, the germinated spore initiated contact with transformed Linum 

roots and established colonization in vitro within 12 days. The formation of BAS on 

medium indicates the better absorption of nutrients from the culture medium as these 

structures enhance the contact between the substrate and the fungus (Bago et al. 1998). 

Moreover, the formation of BAS in the soil increases the acquisition of nutrients and water 

by stabilizing the soil structure by improving the porosity of the soil Costa et al. 2013). 

BAS has a similar life span as arbuscules. The apoptotic process in these structures could 

be the reason for their rapid degradation (Mathur and Vyas 2007). 

A variety of carbohydrates present in the medium may obstruct recognition sites on hyphae 

and cell walls of the host. This could prevent germ tubes from locating host roots (Allen 

1992). Successful establishment of AM fungal culture in monoxenic conditions also 

depends on the physiological framework of the host root as roots even from the same breed 

respond differently when grown under the same conditions. Therefore, culture parameters 

such as explant selection, the orientation of the Petri plate during incubation (horizontal, 

inverted, or vertical), and the regularity of subculture must be optimized for each breed 

(Mathur and Vyas 2007). 

5.3.4 In vitro sporulation in Rhizophagus intraradices 

In R. intraradices, a germ tube emerged through the colonized root segments on MSR 

medium (without sucrose). The germination was initiated within three days after 

inoculation developing multiple germ tubes from the cut ends of root segments. Multiple 

entry points were seen following the colonization in the transformed roots of Chicory. 

After 2-3 weeks of the co-culture, a mycelial network developed that composed of runner 

hyphae with BAS/ALS. BAS were thin-walled, dichotomously branched, hyaline hyphal 
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networks close to the root zone.  Sporulation was observed within 30 days of dual culture 

preparation. The bulging of spores was observed, which were then expanded beyond the 

juvenile stage. The progressive development of the spores led to a change in colour from 

hyaline to reddish-brown. The spores were filled with several lipid droplets. The formation 

of both intercalary and terminal spores was observed. Typically, spores formed were in 

clusters, while some of them were found singly around root segments. The average size of 

the spores was 40 µm. The total number of spores produced varied from 40 to 50 per plate 

(Plate 5.6). 

The emergence of multiple germ tubes serves as a supplementary survival strategy of AM 

fungal spores to increase the possibility of symbiosis (Costa et al. 2013). Monoxenically 

produced spores of R. intraradices were viable, which was confirmed by sub-culturing 

them on fresh MSR medium in the vicinity of transformed Chicory roots after 16 weeks of 

initial sporulation. The sub-cultured spores colonized the roots and formed intercalary and 

terminal spores. Sporulation was observed within one month upon culturing. 

An earlier study by Mosse (1988) indicates that the acidic pH of the medium inhibited the 

development of R. intraradices and its hyphae grew only after increasing the pH. 

However, in the present study, the acidic pH of the MSR medium (5.5) did not affect the 

germination and formation of colonization units in R. intraradices. This implies that early 

events in the developmental stages of AM fungi viz., spore germination, germ tube growth, 

recognition, and contact with host determine the prospects of symbiosis. Moreover, these 

stages rely on environmental conditions. 

In the present study, it was noted that the sporulation did not follow a typical three-phase 

pattern (lag, exponential, and plateau) generally observed in most biological species 

including AM fungi (Bago et al. 1998) while the spores were produced within several 

days. This could be a natural characteristic of the fungal species or due to an influence of 

various culture conditions on the fungus (Karandashov et al. 2000). 

Trypan blue staining of excised transformed roots indicated 83% of colonization with 

intra-radical hyphae extending through the intercellular spaces. Vesicles were produced 

densely in several root fragments (Plate 5.7) however, arbuscules were not observed. In 

the study conducted by Mosse and Hepper (1975), it was revealed that arbuscules formed 

by F. mosseae and Gi. margarita in the older roots under monoxenic conditions appeared 

stumpy and remained vestigial having few fine branches. They suggested that in such 
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symbiosis, the key feature is swollen intercellular hyphae. In the present study, most of the 

intra-radical hyphal extensions were intracellular. Bi-directional protoplasmic flow and 

hyphae connecting colonizing units to the primary hyphae were observed. This indicates 

that the colonizing units are essential for the exchange of nutrients, even in the lack of 

arbuscules (Karandashov et al. 2000). 

5.4 CONCLUSION 

Monoxenic culture technology is a potent tool for the establishment of AM fungal 

associations experimentally. Although it is an artificial technology, it offers an 

experimental approach for understanding the biology and behaviour of AM fungi to a 

greater extent. Besides, this system could be used to increase the sporulation efficiency and 

for the mass production of inocula aseptically. Petri dish culture is a simple and efficient 

method of mass spore production as compared to various other techniques. The fungal 

propagules are contaminant-free and are easy to harvest. Factors influencing optimal 

production can be easily identified and modulated in monoxenic cultures.  

Even after successive sub-culturing of R. intraradices using colonized transformed roots, 

the spore production remained constant, thus indicating the high potential of intra-radical 

structures to sustain species over more extended periods. 
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Chapter 6: Isolation, identification, and activity of phosphate 

solubilizing bacteria (PSB) 

6.1: INTRODUCTION  

Phosphorus (P) is a vital element for plant growth and development making about 0.2% of 

plant dry weight (Azziz et al. 2012). In soil, a very low concentration of P is present in 

available form. Elements like Fe, Al, and Ca immobilize available inorganic P by forming 

insoluble metal phosphates (Sharma and Baishya 2017). Various microbes especially 

bacteria are capable of solubilizing P and are used as biofertilizers in agriculture 

(Shrivastava and Kumar 2015) (Fig. 6.1). For plants to overcome P deficiency, PSB can 

play a vital role in supplying P to plants in a sustainable and eco-friendly manner (Khan et 

al. 2007). Apart from phosphate solubilization, PSB can sequester Fe by producing 

siderophores, produce plant hormones viz., auxins, cytokinins, and gibberellins 

(Adesemoye and Kloepper 2009). Moreover, these bacteria can increase the rate of seed 

germination, photosynthetic rate, leaf area, root growth, yield, biomass, tolerance to abiotic 

stress, and delayed senescence (Adesemoye and Kloepper 2009). Phosphate solubilizing 

bacteria can help the plant to tolerate the inhibiting effects of environmental stresses such 

as drought, flooding, heavy metals, and salinity by the production of organic acids. These 

organic acids can solubilize inorganic P, cell wall degrading enzymes like chitinase, 

hydrogen cyanide, antibiotics, and siderophores. These factors lead to better seed 

germination and vigour of the plants (Patel et al. 2011). The release of H+ to the outer 

surfaces as a substitute for cation or ATPase is also an alternative possibility for the 

solubilization of mineral phosphate other than the release of organic acids (Rodríguez and 

Fraga 1999). Moreover, organic acids form cation complexes on the mineral surface of soil 

thus obstructing the P absorption on it (Bianco and Defez 2010). 

Besides PSB, the symbiotic relationship of the plant with AM fungi can assist in the 

availability of P. Arbuscular mycorrhizal association to enhance the uptake of water and 

nutrients (P, N, and some micronutrients (Smith and Read 2008). Furthermore, AM fungi 

can influence the diversity of the bacterial population in the rhizosphere (Toljander et al. 

2005). AM fungi can absorb P available in the soil but are unable to extract P from 

insoluble phosphates (Antunes et al. 2007). However, they can efficiently translocate the P 

solubilized by PSB to their host plant (Villegas and Fortin 2002).  
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Fig. 6.1: Schematic diagram of soil phosphorus mineralization and solubilization by 

phosphate solubilizing bacteria. 

Phosphate solubilizing microorganisms are the sole source of phosphate solubilization in 

saline soils of wetland ecosystems (Teymouri et al. 2016). Therefore, it is a fundamental 

approach to isolate and analyze their activity that would consequently contribute to 

accomplishing P demands and the growth of mangrove plants. 

6.2: MATERIALS AND METHODS 

6.2.1: Collection of rhizosphere and root samples 

Rhizosphere and root samples from true- and associate- mangrove species viz., Excoecaria 

agallocha, and Clerodendrum inerme respectively were collected. For each plant species, 

three subsamples were collected in sealed bags. The roots were separated from the 

rhizosphere sample for the estimation of AM root colonization. Further, these samples 

were air-dried and used for isolation of PSB and AM spores. 

6.2.2: Soil analyses 

The rhizosphere samples of E. agallocha and C. inerme were analyzed for various 

chemical properties such as pH, electrical conductivity (EC), organic carbon (OC), N, P, 

and K. The procedures used for the analyses are the same as described in chapter 3. 
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6.2.3: Assessment of AM root colonization 

AM fungal root colonization was assessed in the root segments of the above plants by 

using the Trypan blue staining technique (Phillips and Hayman 1970) as described in 

chapter 3. 

6.2.4: Isolation and identification of AM fungi 

AM fungal spores were isolated from the soil using the wet sieving and decanting method 

(Gerdemann and Nicolson 1963) and identified as described in chapter 3. 

6.2.5: Isolation and purification of PSB 

PSB was isolated using the serial dilution plate method on Pikovskaya (PKV) agar 

(Roychowdhury et al. 2015). Three dilutions (10-1, 10-2, and 10-3) were selected for 

inoculation. 0.1 mL of culture was spread plated on Pikovskaya agar plate from selected 

dilutions separately. Plates were incubated at 30 oC for 48 hours. Distinct bacterial 

colonies based on morphological appearance and halo zone formation were selected and 

streaked on fresh PKV agar plates. Selected colonies were purified with repeated streaking 

and maintained on Nutrient agar slants at 4 oC for further analysis. 

6.2.6: Gram staining 

Gram staining of the PSB pure cultures was performed using Himedia K001-1KT gram 

stains-kit following the procedure given by the manufacturer.  

6.2.7: Biochemical characterization of PSB 

Preliminary morphological and biochemical characterization of purified isolates of PSB 

was performed by standard methodologies as described in ‘Bergey’s Manual of Systematic 

Bacteriology (Krieg and Holt 1994). Tests such as Gram staining, IMViC, catalase, nitrate 

reduction, and sugar utilization test (glucose, cellobiose, mannitol, sucrose, arabinose, 

lactose, xylose, maltose) were carried out.  

6.2.8: Molecular characterization of bacterial isolate 

Molecular characterization of PSB isolates was done by sequencing of 16s rRNA. 

Genomic DNA was extracted using NucleoSpin® Tissue Kit (Macherey-Nagel) by 

following the instructions given by the manufacturer. The quality of extracted DNA was 

checked by running 5 µL of DNA on agarose gel electrophoresis set at 75V until the 
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migration of bromophenol dye front to the bottom of the gel. The resultant DNA bands 

were visualized in a UV transilluminator (GeNei).  

6.2.9: Amplification of 16S rRNA gene  

The 16S rRNA gene of PSB isolates was amplified in a PCR thermal cycler (GeneAmp 

PCR System 9700, Applied Biosystems) using primers 16S-RS-F 

(CAGGCCTAACACATGCAAGTC) and 16S-RS-R (GGGCGGWGTGTACAAGGC).  

The PCR amplification was carried out with the following components: 

Reaction mixture Quantity (µL) 

2X Phire Master Mix 5.0 

D/W 4.0 

Forward Primer 0.25 

Reverse Primer 0.25 

DNA 1.0 

Following temperature transitions were used: 

 

The thermal cycler was programmed for 35 cycles with one cycle for the first step of 

denaturation and 35 cycles for steps 2-4.  

6.2.10: Agarose gel electrophoresis of PCR product 

The PCR products were resolved by electrophoresis using 1.2% agarose gels in 0.5X TBE 

buffer stained with 0.5 µg/mL ethidium bromide. 1 µL of 6X loading dye was mixed with 

4 µL of PCR products and was loaded. A 2-log DNA ladder (NEB) was used as a marker. 

The gel was run 75V for 1-2 h. The gels were viewed under UV transilluminator (Genei) 

and the image was captured using the Gel documentation system (Bio-Rad).  

Temperature (˚C) Time 

95 5 min 

95 30 sec 

60 40 sec 

72 60 sec 

72 7 min 

4 ∞ 
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6.2.11: ExoSAP-IT Treatment 

ExoSAP-IT consisting of two hydrolytic enzymes, Exonuclease I and Shrimp Alkaline 

Phosphatase (SAP) were used to remove unwanted primers and dNTPs from a PCR 

product. A 5 µL of PCR product was mixed with 0.5 µL of ExoSAP-IT and incubated at 

37 ˚C for 15 min followed by enzyme inactivation at 85 ˚C for 5 min. 

6.2.12: Sequencing of 16s rRNA gene 

Sequencing of ExoSAP treated PCR product was done in a PCR thermal cycler (GeneAmp 

PCR System 9700, Applied Biosystems) using the BigDye Terminator v3.1 Cycle 

Sequencing Kit (Applied Biosystems, USA) by following manufacturer’s instructions. 

The Sequencing PCR mix consisted of the following components: 

Reaction mixture Quantity (μL) 

D/W 6.6 

5X Sequencing Buffer 1.9 

Forward Primer 0.3 

Reverse Primer 0.3 

Sequencing Mix 0.2 

ExoSAP treated PCR 

product 
1.0 

Sequencing PCR amplification profile 

 

 

6.2.13: Sequence analysis 

The sequence quality was checked using Sequence Scanner Software v1 (Applied 

Biosystems). Sequence alignment and editing of the sequences were performed using 

Geneious Pro v 5.5 (Drummond et al. 2010). The homology to the closest bacterial species 

having maximum similarity (98-100%) was obtained in the National Center for 

Biotechnology Information (NCBI). The forward and reverse sequences were aligned and 

Temperature (˚C) Time 

96 2 min 

96 30 sec 

50 40 sec 

60 4 min 

40 ∞ 
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edited using BioEdit v. 7.2.5 sequence alignment editor. The sequences were deposited in 

the NCBI gene bank. The 16S RNA sequences were used to build a phylogenetic tree 

using Molecular Evolutionary genetics analysis software (MEGA-X) (Tamura et al. 2004). 

Bootstrap test with 1000 replicates was performed using the Neighbor-joining method to 

find out the relationship with the closest species. 

6.2.14: Qualitative estimation of phosphate solubilization 

The bacterial cultures having 108 CFU/mL were spotted on Pikovskaya’s-Bromophenol 

blue (PKV-BPB) agar medium (0.5% Calcium phosphate) using an inoculation loop. The 

plates were maintained at 30 ± 20C. The colony diameter and halo zone around it was 

measured at the end of 2, 5, and 7 days after inoculation (DAI). Phosphate solubilizing 

efficiency was measured using the following formula (Kundu et al. 2009). 

Solubilization efficiency =
Diameter of solubilization zone – colony diameter

Colony diameter
 × 100 

6.2.15: Quantitative estimation of phosphate solubilization 

Phosphate solubilization was estimated quantitatively using the Vanadomolybdate 

phosphoric yellow colour method (Jackson 1973). Twenty-four hours old bacterial culture 

CFU/mL (500 µl) was inoculated in 100 mL of PKV broth (0.5% tricalcium phosphate) in 

250 mL of Erlenmeyer flask. The flasks were maintained at 30 ± 20 C for 15 days shaking 

at 100 rpm. Uninoculated medium served as control. On the 5th, 10th, and 15th day, 10 mL 

culture suspension from each flask was centrifuged at 10,000 rpm for 10 min. From this, 5 

mL of clear culture suspension was made up to 50 mL with sterile distilled water. One mL 

of the above filtrate was pipetted into a 50 mL volumetric flask and 2.5 mL of Barton’s 

reagent was added, finally making up the volume with distilled water. The resultant yellow 

colour developed was measured in UV-visible spectrophotometer (Shimadzu model UV-

2450) at 430 nm after 10 min. 2.5 mL Barton’s reagent made up to 50 mL with distilled 

water served as the reagent blank. A standard curve was prepared by using potassium 

dihydrogen phosphate (KH2PO4) and the amount of solubilized P was calculated using a 

standard graph. The pH of the medium was recorded at the end of the experiment using a 

pH meter (LI 120 Elico, India). 

6.2.16: Determination P solubilization under salt stress 

The determination of P solubilization by PSB2 under salt stress was examined in 

Pikovskaya’s agar medium amended with 0, 0.1, 1, 3, and 5% (w/v) NaCl.  
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6.3: RESULTS AND DISCUSSION 

6.3.1: Soil properties 

Chemical properties of rhizosphere samples of E. agallocha and C. inerme are presented in 

Table 6.1. Rhizosphere pH was acidic for both plant species. However, EC was notably 

high in the rhizosphere of E. agallocha. Low EC in C. inerme could be due to its 

occurrence in landward areas (Kathiresan and Bingham 2001). The phosphorus (P) level in 

C. inerme was lower than that of E. agallocha. This could be attributed to the fact that 

former plant species being associated mangrove is an inhabitant of landward zones of 

mangrove ecosystem (Wu et al. 2008). The concentration of labile P across a mangrove 

forest reduces with declined tidal height becoming limited towards the landward zones 

(Behera et al. 2014). 

Table 6.1: Chemical properties of mangrove plant rhizosphere. 

Soil properties E. agallocha C. inerme 

pH 4.9 ± 1.6 5.3 ± 0.7 

EC (dS/m) 14.1 ± 0.9 9.5 ± 1.1 

OC (%) 2.4 ± 0.8 1.3 ± 0.4 

N (g/kg) 0.02 ± 0.01 0.03 ± 0.01 

P (g/kg) 0.052 ± 0.02 0.005 ± 0.001 

K (g/kg) 0.27 ± 0.1 0.35 ± 0.08 

Note: All values are mean of three readings; ± = standard error; EC = electrical conductivity;  

OC = organic carbon 

6.3.2: AM fungal association 

The percent root colonization, spore density, and AM fungal diversity are presented in 

Table 6.2. Clerodendrum inerme showed the highest root colonization. Five AM fungal 

species were isolated from the rhizosphere of E. agallocha and C. inerme belonging to five 

different genera. 

Although it is well known that AM fungi help in the uptake of nutrients, their efficiency of 

nutrient mobilization decreases in the mangrove ecosystem due to flooded conditions 

(Hackney et al. 2000). However, if the P is made easily accessible for the exploring 

hyphae, they can assimilate and transfer it to the plants. The PSB can assist in the 
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solubilization of mineral phosphates thus making them available for uptake by AM fungi 

(Toro et al. 1998). Hence, the PSB acts as ‘mycorrhiza helper bacteria’ (Tarkka and Frey-

Klett, 2008). 

Table 6.2: Percent root colonization, spore density, and diversity of AM fungal 

species. 

Plant name Root 

colonization 

(%) 

Spore density 

(spores/100g of 

soil) 

AM fungal diversity 

Excoecaria agallocha 92.86 ± 7.15 58 ± 5.5 

A. dilatata, F. 

geosporum, 

Entrophospora sp., R. 

fasciculatus 

Clerodendrum inerme 100 ± 0.00 42 ± 4.0 

A. dilatata, F. 

geosporum, 

Entrophospora sp., R. 

fasciculatus, G. 

glomerulatum 

 

6.3.3: Isolation and identification 

Two phosphate solubilizing bacterial species were isolated from the two mangrove species 

(E. agallocha and C. inerme) of Chorao Island which formed a halo zone on Pikovskaya 

agar medium (Plate 6.1). The bacterial isolates were named PSB1 and PSB2. The results of 

morphological and biochemical tests are presented in Table 6.3 and Plate 6.2, 6.3. Based 

on morphological and biochemical analyses, the two PSB isolates were tentatively 

identified as Bacillus sp. Moreover, molecular analysis of 16S RNA of these isolates 

revealed the close similarity of PSB1 with B. subtilis and PSB2 with B. halotolerans and 

their gene bank accession number obtained was MW365313 and MW365314, respectively. 

The close relation of the two PSB isolates with other bacterial strains of the NCBI database 

is depicted in the phylogenetic tree (Fig. 6.2). The bacterial species B. subtilis has been 

already reported as efficient phosphate solubilizers (Audipudi et al. 2012; Maheswar and 

Sathiyavani 2012; Abhijith et al. 2017). There is only a single report indicating phosphate 

solubilization by B. halotolerans (Slama et al. 2019). However, this bacterial strain was 

isolated from the dunes of the Mediterranean Sea.  
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Table 6.3: Morphological and Biochemical characterization of PSB. 

Test PSB1 PSB2 

Cell shape rod rod 

Motility test motile motile 

Gram staining positive positive 

Catalase - ˗ 

IMViC test   

Indole production ˗ ˗ 

Methyl red ˗ + 

Voges–Proskauer ˗ ˗ 

Citrate utilization 

(Simmons) 

+ + 

Nitrate reduction + + 

Urease + ˗ 

Carbon source utilization   

Glucose ˗ + 

Cellobiose ˗ + 

Mannitol ˗ + 

Sucrose ˗ ˗ 

Arabinose ˗ + 

Lactose ˗ + 

Xylose ˗ + 

Maltose ˗ + 
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Fig. 6.2: Dendrogram showing the phylogenetic position of PSB1 and PSB2 with other 

bacterial strains. 

6.3.4: Qualitative estimation of P solubilization. 

Both the bacterial isolates showed the ability to solubilize P by the formation of a 

halo/clear zone around the colony (Plate 6.4). Bacterial isolates produced a yellow halo 

zone on blue PKV-BPB agar plates. The qualitative estimation of phosphate solubilization 

was calculated based on the size of the halo zone. PSB2 showed higher efficiency with a 

solubilization efficiency of 195.54% while PSB1 was less efficient with 92.36% after 7 

days of inoculation (Fig 6.3). 
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It is well known that the solubilization of mineral phosphates by PSB occurs due to the 

production of organic acids (Kim et al. 1997). The hydroxyl and carboxyl groups of these 

organic acids chelate the cations bound to phosphates thus converting it into available form 

(Sagoe et al. 1998). The formation of a yellow zone around the colonies depicts the drop in 

the pH of the medium as a result of organic acid production by the bacterial isolates 

(Tiwari et al. 2018). Bromophenol blue is a pH indicator that changes its colour as the pH 

of the medium decreases (Behera et al. 2017a). Therefore, it helps in the easy visual 

screening of phosphate solubilization (Mehta and Nautiyal 2001). However, the solid 

medium-based screening is not reliable as some of the earlier studies reported that the 

bacterial isolates which were unable to form halo zone on solid medium, could solubilize P 

in broth medium (Das 1963; (Louw and Webley 1959). Hence, the solubilization of 

phosphate by bacterial isolates was further assessed on PKV broth.  

 

Fig 6.3: Bacterial phosphate solubilization on PKV-BPB agar medium. 

6.3.5 Quantitative estimation of P solubilization. 

Solubilization of tricalcium phosphate (0.5%) was estimated using PKV broth every fifth 

day for 15 days (Plate 6.5). The standard graph for quantitative phosphate solubilization is 

presented in Fig. 6.4. The solubilization of tricalcium phosphate occurred due to the 

production of organic acids by the bacterial strains which was confirmed by a significant 

drop in the pH of the liquid medium from 7.0 to 2.9 (Fig. 6.5 a, b). The amount of P 
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solubilized in the medium ranged from 1.43 to 37.05 µg/mL. In PSB1, the pH of the 

medium remained constant after 10 days of incubation. The maximum phosphate 

solubilization was recorded by PSB2 which showed the highest concentration of soluble P 

(37.05 µg/mL) which is equivalent to 37.05 mg/L. The reverse relationship between pH 

and soluble P content specifies the acidification of the medium due to the organic acid 

secretion which enables phosphate solubilization (Behera et al. 2017a). Secretion of 

organic acids e.g. carboxylic acid leads to ionization of Ca3(PO4)2 (Mohammadi 2012).  

Comparable to the present study, Dastager and Damare (2013) isolated phosphate-

solubilizing actinobacteria from the sediments of Chorao Island. They reported phosphate 

solubilization in the range of 89.3 to 164.1 µg/mL. They further explained that a large 

amount of phosphates gets precipitated due to the abundance of cations in the pore waters 

of the mangrove ecosystem. Hence, PSB act as an important source to make available 

soluble P for the mangrove species. 

In the present study, both the bacterial isolates were found to be Bacillus species. 

However, the P solubilization kinetics differed between the two isolates. These results are 

following the findings of previous studies that reported variation in solubilized P content 

by Bacillus sp. recovered from lead-rich soil (Park et al. 2011) and alluvial soils of 

Gangetic plains (Tiwari et al. 2018). 

Similar to the present observations, several studies have reported P solubilization by 

bacterial isolates from other mangrove ecosystems. Five bacterial species belonging to 

genera Pseudomonas and Azotobacter and two B. subtilis strains were isolated from 

Chollangi mangrove forest on the east coast of India (Audipudi et al. 2012). These strains 

could solubilize 20 – 400 mg/L of mineral phosphate. Kathiresan and Selvam (2006) 

isolated 24 PSB isolates from the rhizosphere of R. mucronata in the Vellar estuary on the 

south-eastern coast of India. They reported solubilized P in the range of 0.012 – 0.141 

mg/L. Behera et al. (2016) reported soluble P content of 8.21 to 48.70 mg/L by PSB 

species belonging to genera Pseudomonas, Bacillus, Alcaligens, Klebsiella, Serratia, 

Azotobacter, and Micrococcus. These species were isolated from the mangroves of 

Mahanadi river delta, Odisha. In another study, Behera et al. (2017a) isolated Serratia sp. 

from Mahanadi river delta with a phosphate solubilizing efficiency of 44.84 mg/L. 

Teymouri et al. (2016) quantified phosphate solubilization potential of three PSB species 

(Bacillus, Pseudomonas, and Acinetobacter) isolated from the rhizosphere of A. marina 
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from Qeshm Island, Iran. These species could solubilize P in the range of 215 – 356 mg/L. 

A strain of Alcaligenes faecalis isolated from Mahanadi river delta solubilized 48 mg/L of 

phosphate at 144 hours of incubation (Behera et al. 2017b). The highest amount of 

phosphate solubilization by PSB isolated from the mangrove ecosystem was reported by 

Vazquez et al. (2000). They isolated six PSB species from the mangrove rhizosphere of 

Mexico and reported maximum solubilization of P (480 mg/L) by Vibrio proteolyticus.  

Pseudomonas and Bacillus are described as the most efficient phosphate solubilizers (Igual 

et al. 2001). 

The adaptation to the anaerobic conditions of the mangrove ecosystem is accomplished by 

the formation of aerial roots for the gas exchange (Colmer 2003). The movement of 

oxygen in the surrounding sediment causes oxidation of Fe2+ which is precipitated as Fe 

oxides (immobile) resulting in the generation of H+ ions and subsequently makes the root 

zone acidic (Begg et al. 1994). 

4Fe2+ + O2 + 10H2O → 4Fe(OH)3 + 8H+ 

This process leads to the trapping of P as FePO4 (Silva and Sampaio, 1998).  

Fe(OH)3 + (H2PO4)
-
 → FePO4 + OH

- + H2O 

Although phosphates occur as insoluble precipitates of Ca3(PO4)2, FePO4, or AlPO4 in soil, 

only Ca3(PO4)2 is used as P source in phosphate solubilization screening protocols since Fe 

and Al phosphates could not show solubilization activity on indicator plates (Liu et al. 

2015).  

 

Fig. 6.4: Standard graph for quantitative estimation of Phosphorus. 

y = 0.0009x + 0.0044

R² = 0.9887

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 10 20 30 40

A
b

so
rb

a
n

ce
 (

4
3
0
n

m
)

Concentration of P (µg/mL)



Chapter 6: Objective 4  

83 
 

  

 

 

Fig. 6.5: Tri-calcium phosphate solubilization and drop of pH in Pikovskaya broth,  

a) PSB1; b) PSB2. DAI=days after incubation. 

6.3.6: P solubilization under salt stress 

The bacterial isolate PSB2 was tested for its ability of P solubilization under the different 

concentrations of NaCl in Pikovskaya’s agar medium. The results of P solubilization 

efficiency are presented in Fig 6.6. The solubilization efficiency increased with an increase 

in the incubation period irrespective of NaCl concentration. The solubilization percentage 

was found to be maximum on 12 days after inoculation (DAI) at 0.1 and 1% NaCl (59.05 

and 60.44% respectively) concentration. The solubilization efficiency for all NaCl 

concentrations (except 1%) decreased after the 12 DAI. However, the solubilization 

efficiency of PSB2 was significantly high even in higher concentrations of NaCl as the 

bacterial strain was isolated from highly saline mangrove habitats. Similar results have 

been reported by several authors (Zhu et al. 2011; Srinivasan et al. 2012; Patil 2014). This 
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adaptation of bacterial isolate to hypersaline conditions could be due to the synthesis of 

suitable solutes or aggregation of K against NaCl to overcome salt stress. Therefore, these 

PSB isolates have the genetic capability to solubilize P even at high salinity (Srinivasan et 

al. 2012). 

 

Fig. 6.6: Tri-calcium phosphate solubilization under salt stress. 

6.4: CONCLUSION 

The present study demonstrates the occurrence of PSB and AM fungi in the rhizosphere of 

two mangrove plant species from Chorao Island. The interaction of PSB and AM fungi has 

great potential to boost P requirements in plants. Two species of PSB were isolated viz., B. 

subtilis and B. halotolerans and were screened for phosphate solubilization activity. The 

latter solubilized more P than the former. Hence, we infer that B. halotolerans can be used 

as a bio-inoculant to improve the growth of mangrove seedlings. This is the first study 

wherein B. halotolerans has been isolated from mangrove habitat and for phosphate 

solubilization activity. Further investigation on the salt tolerance of this bacterial strain 

would be of great importance. 

 

 

 



Chapter 7: Objective 5  

85 
 

Chapter 7: Mass multiplication and preparation of inocula. 

7.1 INTRODUCTION 

Microbial inoculants supplying N and P have a crucial role in accomplishing the nutrient 

needs of the crops and agroforestry in drylands (Rafi et al. 2019). These bioinoculants are 

useful in reducing fertilizer input. Bacterial inoculants containing PSB are known to 

improve plant growth when the inoculated bacteria are well established in the rhizosphere. 

The deficiency of P can be overcome by inoculating the target plants with PSB 

(Bakhshandeh et al. 2015). Apart from the nutrient status of soil, PSBs as bio-inoculants 

also play an important role in retaining the soil structure and unfold a new horizon for 

improved plant growth (Ingle and Padole 2017). 

Presently, AM fungal inocula are applied in horticulture and other field cultivation (Berruti 

et al. 2015). Most of the AM fungal inocula used in commercial cultivation are developed 

from transformed root cultures (Kokkoris and Hart 2019). AM fungi associated with plant 

roots in nature which fluctuate every day and seasonally (Lippu 1998). Whereas, in the 

case of transformed root culture, the flow of nutrients is continuous and constant (Fortin et 

al. 2002), thus supporting the unrestricted growth of AM fungi. In natural plants, most of 

the C is supplied to the shoot part hence allocating limited C to the root symbionts. While 

in the case of ROC, there are no C limitations. Such conditions promote better spore 

production (Rosikiewicz et al. 2017). It is well evident that symbiotic association between 

AM fungi and their host plants increases the bioavailability of key nutrients and restores 

soil fertility, diminishing the harmful impact of chemical fertilizers on the environment 

(Rashid et al. 2016). Despite the AM fungal enormous potential to enhance plant growth, 

the obligate biotrophic nature of these fungi has complicated the development of cost-

effective methods to produce superior quality AM fungal inocula (Ijdo et al. 2011). 

Inoculum production can be carried out in pots of various materials or sizes under 

controlled or semi-controlled conditions (Ijdo et al. 2011). A variety of substrates viz., peat 

(Ma et al. 2007), perlite, glass (Lee and George 2005), vermiculite, compost (Douds et al. 

2006), soilrite (Mallesha et al. 1992) and calcinated clay (Plenchette et al. 1982) have been 

used for the mass multiplication of AM fungi. Also, the use of several organic 

amendments viz., chitin, and humic substances (Gryndler et al. 2003 and 2005) are 

reported to influence AM fungal growth. Organic waste from animals and plants viz., 

charcoal, farmyard manure, composts, soybean meal, corncobs, wheat bran, and press mud 
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are also considered as excellent carrier materials (Herrmann and  Lesueur 2013; Wang et 

al. 2015; Araujo et al. 2020) for inoculum production. It can be possible to formulate 

carrier combinations using a mixture of soil, husk, compost, bark, and peat (Herridge et al. 

2008) as well. Besides, soilless techniques viz., aeroponic, hydroponic, and nutrient film 

technique (NFT) has experimented that are less bulky and not easily prone to 

contaminations (Malusá et al. 2012).  

This study intends to highlight the preparation of carrier formulation for effective 

inoculum production having an increased number of propagules. 

7.2 MATERIALS AND METHODS 

7.2.1 Extraction of monoxenically produced AM fungal propagules 

The monoxenically produced propagules of R. intraradices were extracted following the 

method of Cranenbrouck et al. (2005) under the laminar airflow. A media plug along with 

the spores and extra-radical hyphae was cut and placed in the empty sterile Petri plate. 

Already prepared 25 mL of 0.1 M citrate buffer was filtered using 0.22 µm syringe-driven 

Membrane Filter (Millex ®- GS) and poured in the Petri plate. To dissolve the clerigel in 

the media plug, the Petri plate was agitated gently. The separated AM fungal propagules 

were then rinsed with sterile distilled water.  

7.2.2 Extraction of carrier-based AM fungal propagules 

Propagules of A. dilatata were extracted by the wet sieving and decanting method (as 

described in Chapter 3).  

7.2.3 Preparation of carrier mixture 

The carrier mixture was prepared by using vermiculite: cow dung powder: wood powder: 

wood ash in the ratio of 20:8:2:1 as formulated by Rodrigues and Rodrigues (2017). The 

materials used for the carrier mixture were autoclaved at 121°C for 1 hour on two 

successive days. The chemical analyses of the carrier materials were done by the standard 

methods as described in Chapter 3. 

7.2.4 Preparation of AM fungal inocula in the carrier 

AM fungal inocula of R. intraradices and A. dilatata were prepared using pots. 15 cm deep 

plastic pots were filled with the carrier mixture. The extracted propagules of the species 

were placed 2-3 cm deep in the pots. Shoot cuttings (3 to 4) of the Coleus plant were 
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planted per pot. The pots were kept in the polyhouse for 90 days. Hoagland’s solution 

without P was added to the plants after every 15 days. After 90 days the culture along with 

the roots was air-dried and stored in plastic bags at room temperature for further use. 

7.2.5 Assessment of root colonization 

Assessment of AM fungal colonization in Coleus roots was performed by following the 

Trypan blue staining method of Phillips and Hayman (1970) after 90 days of growth as 

described in chapter 3. 

7.2.6 Preparation of PSB inoculum 

The bacterial isolate PSB2 was selected for subsequent screening studies as this isolate 

showed high P solubilization efficiency. The PSB2 starter was prepared by culturing the 

bacterial strain in Nutrient broth (NB) and incubating at 100 rpm at 30 °C. The cells were 

harvested at the end of five days by centrifugation of the culture at 8,000 rpm for 10 min. 

The cell pellet was resuspended in sterile distilled water making the final concentration to 

108 CFU/mL. 

7.3 RESULTS AND DISCUSSION 

7.3.1 Physico-chemical properties of carrier materials 

Physico-chemical characters of the carrier materials are depicted in Table 7.1. All the 

carrier materials showed variation in characteristics. The wood ash was alkaline which 

could be due to the presence of alkali and alkaline metal oxides (Demeyer et al. 2001). 

Organic C and N content were higher in cow dung powder. All the carrier materials 

showed lower levels of P. Vermiculite is an inert micaceous material that has been heated 

to 1000-1100 °C (Verdonck et al. 1980). This could be the reason that the vermiculite 

showed lesser amounts of nutrients analysed. The N content in wood ash is negligible 

which could be because the wood N gets converted to inorganic compounds of N viz., 

NH3, NOx, and N2 during the burning of wood (Misra et al. 1993). 
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Table 7.1: Chemical properties of carrier materials. 

Parameters Vermiculite Cow dung powder Wood powder Wood ash 

pH 6.08 ± 0.6 6.01 ± 0.7 5.42 ± 1.0 11.19 ± 1.1 

EC (mS) 0.17 ± 0.1 0.02 ± 0.01 0.93 ± 0.5 0.04 ± 0.02 

OC (%) 0.82 ± 0.4 4.52 ± 1.1 2.24 ± 0.7 2.21 ± 0.4 

N (g/kg) 0.3 ± 0.2 6.8 ± 0.8 1.3 ± 0.4 0.01 ± 1.2 

P (g/kg) 0.09 ± 0.04 0.12 ± 0.06 0.44 ± 0.1 0.22 ± 0.07 

K (g/kg) 0.07 ± 0.03 1.32 ± 0.3 0.08 ± 0.02 2.01 ± 0.4 

Note: All values are mean of three readings; ± = Standard error; EC= Electrical conductivity; OC= 

Organic carbon. 

7.3.2 Colonization potential of monoxenically produced spores in carrier materials 

Root colonization with AM fungal structures viz., hyphae, arbuscules, and vesicles were 

observed in the Trypan blue stained root bits of coleus plant by the monoxenically 

produced R. intraradices spores and pot culture-based A. dilatata spores. Plants inoculated 

with R. intraradices resulted in 89.28% root colonization, while it was 63.63% in A. 

dilatata inoculated plants. 

Rodrigues and Rodrigues (2017) in the carrier formulation experiment reported 100% 

colonization by monoxenically produced spores of R. intraradices and F. mosseae in 

Eluesine coracana using the carrier formulation of vermiculite, cow dung powder, wood 

powder, and wood ash (20:8:2:1). Several culture techniques viz., pot culture, hydroponic 

culture, aeroponic culture, and root organ culture have been applied for the production of 

AM fungal inoculum (Bhowmik et al. 2015). With the advancement in techniques, the 

preparation of AM fungal inocula should have a commercial application (Sharma et al. 

2017). Hence, the selection of suitable substrate for the mass multiplication of AM fungi 

holds an important challenge. One of the most efficient methods of propagating clean 

inocula in limited space is ROC (Stockinger et al. 2009). However, the use of waste 

substrates viz., rice straw, and chickpea husk along with conventional substrates (soil-sand 

mixture) is an economical and most preferred method for inoculum production of AM 

fungi (Kadian et al. 2018). Yet, the product is bulky for transportation and application in 

the field. Gradually, inert substrates viz., vermiculite, perlite, biochar, or a mixture of these 
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have replaced the conventional substrates (Khaliq et al. 2002). It is necessary to screen the 

inocula obtained in pots before application in the field so that it can be tested whether 

inocula can colonize the plant roots effectively, propagate in the substrate, and can 

enhance plant growth (Tanwar et al. 2013). 

7.3.3 AM fungal and PSB inocula 

The mass propagated AM fungal inoculum of A. dilatata produced 70 spores/100 g of soil 

while that of R. intraradices produced 92 spores/100 g of soil. The cell count of PSB2 

inoculated on the NA medium was 30 x 108 CFU/mL.  

The key feature of inoculants contributing to high-quality inocula is the increased viable 

cell count capable of enhanced activity of the selected microbe (Ben Rebah et al. 2002). 

Desirable characters for an inoculant strain entail its genetic stability, competence ability 

with indigenous microorganisms, ability to display its effect on the target plant, and to 

persist in hostile environmental conditions (Herrmann and Lesueur 2013). Douds et al. 

(2010) produced inoculum of several AM fungal species using vermiculite, perlite, or 

horticultural potting media as diluents of compost and obtained higher propagule numbers 

in vermiculite based media. They suggested that the plate-like structure of vermiculite 

facilitates its water holding capacity thereby providing a suitable environment for the 

growth and persistence of AM fungal hyphae. 

Bacterial inoculants are generally cultivated in liquid broth to produce higher population 

levels having media composition and culture conditions directly relating to the nature of 

the specific strain (Herrmann and Lesueur 2013). The carrier materials used in the present 

study are organic except for vermiculite. In addition to providing macro- and micro-

nutrients, these materials can increase substrate porosity and improve water retention 

ability (Rodrigues and Rodrigues 2017).     

7.4 Conclusion 

In the present study, an attempt was made to employ an economical and efficient substrate 

medium using the optimal concentration of carrier materials to achieve maximum spore 

production of the selected AM fungal and bacterial strains. Both the AM fungal species 

selected for the investigation could adequately colonize and sporulate in the carrier 

formulation used. However, the development of a rapid and highly efficient culture system 

remains a major challenge for commercialization. 
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Chapter 8: Screening of efficient AM species for selected 

mangrove plant species. 

8.1 INTRODUCTION 

Mangrove ecosystem is the climax construction of hydrohalophytes occupying estuarine 

intertidal zones of tropical and subtropical regions (Lugo and Snedaker 1974). They act as 

natural shelterbelts and maintain ecological balance by providing habitat and food sources 

for the biological species. This ecosystem is fragile and eco-sensitive as they connect 

upland terrestrial and estuarine ecosystems (Xie et al. 2014). Although the plants growing 

in such an ecosystem shows substantial tolerance to salinity, inundation, and nutrient 

limitations, they have degenerated severely all over the world primarily due to nutrient 

stress especially P deficiency (Xie et al. 2014). Studies show that there is a 35% of 

reduction in mangrove forests of the world in the previous 20 years of the 20th century 

(Valiela et al. 2001). This resulted in the global consensus of protection and revegetation 

of mangrove forests (Krauss et al. 2008).  

It is well known that several species of bacteria and fungi residing in the rhizosphere 

contain a functional relationship with plants exerting beneficial effects on plant biomass 

(Vessey 2003). AM fungi are a vital component of rhizosphere microbial communities 

which form a mutualistic symbiosis with terrestrial (Smith and Read 2008) and wetland 

plants (Tawaraya et al. 2003). They act as a living bridge between the soil and their host 

plant that absorb nutrients from the soil and transfer them to the plant. This symbiosis 

considerably promotes P uptake of plant and the improvement of P nutrition can boost 

other functions (Cozzolino et al. 2010). Indication of P solubilizing microorganisms 

(PSM) occurrence dates back to 1903 (Khan et al. 2007). Bacteria are considered more 

effective in P solubilization than fungi (Afzal and Bano 2008). P solubilization potential of 

PSB is 1 to 50%, whereas, in the case of P solubilizing fungi, it is only 0.1 to 0.5% (Chen 

et al. 2006).  

Inoculation of plants with bio-inoculants to enhance the growth of plants is centuries old 

(Bashan et al. 2014). Bio-inoculants consist of a consortium of different types of microbes, 

which are capable of converting nutritionally essential elements from unavailable to 

available form through natural processes (Vessey 2003).  

Based on the literature survey, no reports are indicating combined effects of AM fungi and 

P solubilizing bacteria on the growth, biomass, and nutrient uptake of mangrove plants. 
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Hence the present study was conducted to examine the influence of single and dual 

microbial inoculation on plant growth, biomass, and P nutrition of R. mucronata. 

8.2 MATERIALS AND METHODS  

8.2.1 Experimental design 

The experiment comprised of the following eight treatments: 

Treatment 1 (T1): Control (Uninoculated) 

Treatment 2 (T2): R. intraradices  

Treatment 3 (T3): A. dilatata  

Treatment 4 (T4): R. intraradices + A. dilatata 

Treatment 5 (T5): R. intraradices + PSB 2 

Treatment 6 (T6): A. dilatata + PSB 2 

Treatment 7 (T7): R. intraradices + A. dilatata + PSB 2 

Treatment 8 (T8): PSB2  

All the treatments with 3 replicates were arranged in randomized block design. 

Matured viviparous propagules of R. mucronata of similar size were collected from 

Chorao Island and brought to the laboratory. After surface sterilization in 0.01% mercuric 

chloride (HgCl2) solution for 15 min followed by rinsing in 4-5 times in sterile distilled 

water, the undamaged propagules of R. mucronata with intact Testa were selected for 

planting. These propagules were then placed in the plastic ‘plant grow bags’ (15 cm in 

diameter, 35 cm in depth). The bags were filled with 1.5 kg sterilized sand (pH 7.8, P 

content of 10.6 mg/kg). Bacterial culture was applied using a syringe filled with 10 mL of 

bacterial cell suspension (30 x 108 CFU/mL) and pouring it in the vicinity of the 

propagules. For the AM fungal treatments, 10 g of inoculum was added to the soil in the 

vicinity of the propagules. The bags were kept in the shade net of the Department of 

Botany, Goa University under natural conditions for ten months (Plate 8.1).  

8.2.2 Assessment of AM fungal colonization in roots 

To confirm AM colonization in the inoculated plants, root segments of R. mucronata were 

collected from three randomly selected pots of each treatment at 305 (DAI).  Trypan blue 

staining method (Phillips and Hayman, 1970) as described in chapter 3 was employed.    

8.2.3 Measurement of plant growth and biomass 

Various growth parameters viz., plant height, stem diameter, number of branches, number 

of leaves, leaf area, petiole length, internode length, and root length were recorded on the 

305th day after inoculation. Plant height (above ground) was measured using a measuring 
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tape before harvesting the plants. For the measurement of leaf area and petiole length, 3rd 

leaf from the top was selected. Leaf area was measured using a graph paper method. 

Fresh and dry weights of leaf, stem, and root were recorded separately. The roots and other 

plant parts were rinsed with water thoroughly to remove the debris. Fresh weights of 

leaves, stems, and roots were recorded. The total plant dry biomass and root to shoot ratio 

was determined after drying the samples at 90 °C to constant weight (96 h). 

8.2.4 Mycorrhizal dependency 

Mycorrhizal dependency was proposed by Gerdemann (1975) to determine the 

significance of the association between the host plant and fungus. It is defined as the extent 

to which a plant is dependent on the mycorrhizal association to achieve its maximum 

growth or yield at a given level of soil fertility. The mycorrhizal dependency of a given 

plant would also vary by the fungal partner and the environmental conditions (Estaún et al. 

2010).  

Mycorrhizal dependency (MD) was calculated based on the formula given by Plenchette et 

al. 1983). 

MD (%) =
dry weight of mycorrhizal plant − dry weight of non mycorrhizal plant

dry weight of mycorrhizal plant 
× 100 

8.2.5 Analysis of leaf pigments 

Both the chlorophyll pigments (Chl a and Chl b) absorb light in the blue and red spectral 

regions. The absorbance of photons at two different wavelengths of light i.e., at 663 nm 

and 645 nm is specific for Chl a and Chl b respectively. 

The third pair of leaves from the top was taken for the estimation of pigments. 0.1 g fresh 

leaf tissue was ground in a mortar using 10 mL of 80% acetone. The homogenate was 

filtered using a double layer of muslin cloth and the extract was collected in a centrifuge 

tube. The absorbance of the extract was read at 645, 663, and 470 nm. The quantitative 

estimation of chlorophyll a, chlorophyll b, total chlorophyll was done using Arnon’s 

equation (Arnon 1949). 

Chl a (mg g-1) = [(12.7 X A663) – (2.6 X A645)] X acetone (mL) / leaf tissue (mg) 

Chl b (mg g-1) = [(22.9 X A645) – (4.68 X A663)] X acetone (mL) / leaf tissue (mg) 

Total Chlorophyll = Chl a + Chl b 
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8.2.6 Estimation of plant P  

The dried samples of leaf, stem, and root were analyzed for P content. Samples were 

ground into a fine powder using mortar and pestle. One gram of powdered sample was 

weighed and added to a 250 mL conical flask to which 10 mL of conc. HNO3 was added. 

After mixing the contents, the funnel was placed on the flask and kept in a closed chamber 

overnight for pre-digestion. After pre-digestion, 10 mL of conc. HNO3 and 3 mL of HClO4 

was added and the flask was placed on a hot plate inside the fume hood chamber. The hot 

plate was heated at 100 °C and continued the digestion until contents became colourless 

and dense white fumes appeared (Plate 8.2). The contents were reduced to 2-3 mL before 

removing the flask from the hot plate. After cooling, about 30 mL of distilled water was 

added to the flask and the contents were filtered through Whatman filter paper into a 100 

mL volumetric flask. The final volume was made up to the mark using distilled water. 

The P content of digested plant sample was determined colorimetrically by the 

vanadomolybdo-phosphoric yellow colour method (Chapman and Pratt 1982). Hyphae 

contribution was calculated using the formula given by Kothari et al. (1991). 

Hyphae contribution (HC%) = [(P uptake of whole mycorrhizal plant ˗ P uptake of the 

whole nonmycorrhizal plant) ÷ P uptake of the whole mycorrhizal plant] × 100 

8.2.7 Statistical analysis 

The experiment was set down as a completely randomized block design with three 

replicated of each treatment. All the data sets were statistically analyzed using SPSS v16.0. 

One-way analysis of variance (ANOVA) followed by S-N-K test at p ≤ 0.05 was 

performed to find out differences between means. Correlation analysis of the parameters 

was carried out by Pearson’s correlation test at p ≤ 0.01 and p ≤ 0.02. 

8.3: RESULTS AND DISCUSSION 

8.3.1 Root colonization 

As depicted in Table 8.1, no AM colonization was observed in T1 (uninoculated) and T8 

(PSB inoculated). AM fungal structures were recorded in all the AM inoculated plants 

(Plate 8.3). The root colonization in the AM inoculated plants ranged from 43.75 to 

91.45%. Treatment 7 showed significantly higher root colonization than the other 

treatments (p <0.05). These results are following the previous studies which reported an 

increase in root colonization of Zea mays (Wu et al. 2004) and Helianthus tuberosus 
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(Nacoon et al. 2020) on dual inoculation with PSB Bacillus megaterium and two AM 

species viz., R. intraradices and Funneliformis mosseae and PSB Klebsiella variicola with 

two strains of AM fungi viz., Glomus multisubtensum and R. intraradices, respectively.  

Inoculation with PSB increased the colonization by both R. intraradices and A. dilatata. It 

is well known that rhizobacteria act as ‘mycorrhiza helper bacteria’ by improving AM 

colonization in plant roots (Fitter and Garbaye 1994). However, the mechanism involved 

in the stimulation of AM colonization by these bacteria is not well known. It has been 

assumed that the production of amino acids, vitamins, and hormones by bacteria may be 

responsible for this interaction (Barea et al. 1997).  

Table 8.1: Percentage root colonization of R. mucronata seedlings. 

Treatments RC (%) 

T1 0 ± 0f 

T2 60.3 ± 1.1d 

T3 43.8 ± 2.3e 

T4 68.2 ± 1.8bc 

T5 73.3 ± 0.7b 

T6 65.7 ± 2.7cd 

T7 85.7 ± 1.2a 

T8 0 ± 0f 

Note: Data are means of three replicates. ± standard error. Values in each column followed by 

different letters are significantly different at p < 0.05. 

8.3.2 Plant vegetative growth 

All the vegetative parameters of R. mucronata varied significantly in comparison to the 

control treatment (Fig. 8.1). Plant height was maximum in T7 (R. intraradices + A. dilatata 

+ PSB2) compared to other treatments. However, the root length was significantly higher 

(p < 0.05) in all the inoculated plants compared to control (Plate 8.4). Besides, AM fungal 

inoculum in combination with PSB2 showed a better impact on all the growth parameters 

of the inoculated plants. Similar results were recorded by Nacoon et al. (2020) who 

investigated the influence of co-inoculation on plant growth of H. tuberosus with AM 

fungi and PSB. 

Studies on the screening of AM fungal species on the growth and biomass of mangrove 

plants are very scarce. Wang et al. (2010) recorded the positive effect of AM species (F. 

geosporum, F. mosseae, R. intraradices, and Glomus aggregatum) on the growth and 
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nutrient uptake of Sonneratia apetala. Xie et al. (2014) reported that the inoculation of 

Kandelia obovata seedlings with the consortium of four AM fungi (F. geosporum, R. 

intraradices, Claroideoglomus claroideum, and C. etunicatum) increased the plant 

biomass and uptake of N and P. In comparison, D’Souza and Rodrigues (2016) inoculated 

propagules of Ceriops tagal with three AM fungal species viz., Rhizophagus clarus, R. 

intraradices, and Acaulospora laevis. They concluded that R. clarus exhibited a greater 

influence on the growth and biomass of the plants. The effectiveness of AM fungi to 

promote nutrient uptake and plant growth varies with different species and isolates 

(Bagyaraj 1992) in having different developmental mechanisms (Hart and Reader 2002), 

physiological modifications (George 2000). There is a single report on the use of B. 

halotolerans as a biofertilizer in coriander crops that reported increased growth (Jiménez-

Gómez et al. 2020).  

8.3.3 Plant biomass and mycorrhizal dependency 

The biomass of R. mucronata with dual treatment involving AM and PSB was 

significantly greater than the uninoculated plants (Table 8.2). The treatments with a 

consortium of R. intraradices, A. dilatata, and PSB2 (B. halotolerans) (T7) significantly 

enhanced the total biomass of R. mucronata (p < 0.05) (Fig. 8.2). The root to shoot ratio 

significantly increased under treatments 5 and 8 (p < 0.01).  Positive effects of co-

inoculation with AM fungi and PSB on root length have been reported earlier (Kavatagi 

and Lakshman 2014). They suggested that the enhanced root growth is due to the impact 

of inoculation with AM fungi and PSB on the modification of root morphology.  
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Fig. 8.1: Effect of inoculation on growth of R. mucronata seedlings. Values in each 

column presented with different lowercase or uppercase letters are significantly different at 

p<0.05.
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Table 8.2: Biomass of R. mucronata seedlings under bio-inoculant treatments. 

Treatments Stem Leaf Root Total plant  

dry biomass (g) 

Wet weight 

(g) 

Dry weight 

(g) 

Wet weight 

(g) 

Dry weight 

(g) 

Wet weight 

(g) 

Dry weight 

(g) 

T1 35.25 ± 0.3c 13.5 ± 1.4cd 5.65 ± 0.6c 1.25 ± 0.2d 3.65 ± 0.2d 1.5c± 0.3c 16.25 ± 1.3c 

T2 36.65 ± 4.6c 12.25 ± 1.3d 12.4 ± 3.1ab 3.05 ± 0.7bc 10.25 ± 1.6abc 3.53 ± 0.5b 18.83 ± 1.1bc 

T3 54.5 ± 7.2b 18.6 ± 0.5abc 16.35 ± 2.4a 3.0 ± 0.9bc 9.73 ± 2.0abc 2.53 ± 0.5bc 24.13 ± 1.9ab 

T4 59.75 ± 6.3ab 19.23 ± 1.9ab 12.5 ± 0.7ab 2.9 ± 0.1bc 7.0 ± 0.4bcd 2.25 ± 0.3bc 24.38 ± 1.7ab 

T5 50.05 ± 5.5bc 16.5 ± 1.7bcd 17.0 ± 2.1a 4.68 ± 0.3a 13.25 ± 0.1a 6.15 ± 0.1a 27.33 ± 1.9a 

T6 44.4 ± 5.2bc 14.7 ± 1.6bcd 9.45 ± 0.2bc 2.15 ± 0.0cd 5.85 ± 2.7cd 3.13 ± 0.9b 19.98 ± 2.5bc 

T7 71.58 ± 4.9a 22.6 ± 3.2a 15.85 ± 3.1ab 4.25 ± 0.3ab 8.25 ± 1.2bc 2.85 ± 0.1bc 29.70 ± 3.5a 

T8 48.7 ± 3.7bc 15.7 ± 1.0bcd 15.43 ± 2.0ab 3.33 ± 0.5abc 10.35 ± 0.0ab 5.4 ± 0.1a 24.43 ± 0.6ab 

Note: Data are means of three replicates. ± standard deviation Values in each column followed by different letters are significantly 

different at p < 0.05. 
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Fig. 8.2: Effect of inoculation on aboveground and belowground biomass and root to 

shoot ratio of R. mucronata. Values in each column presented with different lowercase or 

uppercase letters are significantly different at p < 0.05.  

The mycorrhizal dependency of R. mucronata varied significantly with different 

treatments (p < 0.05) (Fig. 8.3). The MD values remained as low as 13.78% in treatment 2 

and reached a maximum of 45.02% under treatment 7.  

 

Fig. 8.3: Mycorrhizal dependency (MD) in AM inoculated plants. Values in each 

column presented with different letters are significantly different at p < 0.05. 
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The low level of available P in the substrate soil could have increased the root biomass in 

treatments 5 and 8 as the combination of PSB and R. intraradices would have assisted for 

an efficient P solubilization and mobilization, respectively.  A previous study by Naidoo 

(2009) on Avicennia marina demonstrated that the seedlings invested more resources to 

increase root biomass in nutrient-deficient conditions. However, the present study showed 

plant biomass was significantly higher in inoculated plants than that of uninoculated or 

control plants. This confirms an enhanced uptake of nutrients by inoculated plants 

resulting in better plant growth (Kothari et al. 1990). 

The values of MD indicated dual inoculation of plants with AM and PSB could produce 

greater biomass of R. mucronata than AM fungi alone. The lower MD values of A. dilatata 

inoculated plants could be due to suppression of growth with consumption of 

carbohydrates by AM species (Xie et al. 2014).  

8.3.4 Chlorophyll content 

In plants, chlorophyll molecules absorb light energy which is used to carry out 

photosynthesis (Wu et al. 2018). In the present study, a significant difference was recorded 

in the concentration of chlorophyll a, chlorophyll b, and total chlorophyll amongst all the 

treatments (p < 0.05) (Fig. 8.4). Overall, T7 showed significantly higher contents of total 

chlorophyll (p < 0.05). These results are consistent with previous observations (Sheng et 

al. 2008; Wu et al. 2015; Gavito et al. 2019). Analysis of plant chlorophyll content is the 

key index for the assessment of photosynthesis (Zhu et al. 2012). 
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Fig. 8.4: Effect of inoculation on leaf pigments in R. mucronata. Values in each column 

presented with different letters are significantly different at p < 0.05. 

In the present study positive effects of AM fungi and PSB on the elevation of chlorophyll 

content and hence photosynthesis was observed. Wu et al. (2019) reported increased 

chlorophyll concentration and photosynthetic activity in Camellia oleifera plants 

inoculated with PSB. The rate of photosynthesis is commonly higher in mycorrhizal plants 

compared to nonmycorrhizal plants (Amaya-Carpio et al. 2009; Zhu et al. 2012) which is 

assumed to be due to enhanced plant nutrition, especially P (Augé et al. 2016). Besides, 

AM fungal metabolism greatly depends on C supply which is derived from host 

photosynthesis (Douds et al. 2000). 

8.3.5 P content of R. mucronata 

A significant difference in leaf, stem, and root P of R. mucronata was found among the 

various treatments (p < 0.05) (Fig. 8.5). The total content of P in T7 (14.7 µg/g) was 

significantly higher. Similar results were recorded in Zea mays inoculated with AM fungi 

and rhizobacteria (Wu et al. 2005).  
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Fig. 8.5: P content in inoculated R. mucronata plants. Values in each line followed by 

different uppercase and lowercase letters are significantly different at p < 0.05. 

Phosphorus is a vital nutrient being involved in various metabolic functions in plants and 

also it is a major component of crucial plant molecules (Bashan et al. 2013). Increased P 

content in T5 can be attributed to the increased root length, as P uptake is known to 

increase with root length (Jungk and Claassen 1989). Such morphological changes in root 

resulting in longer and branched root systems are efficacious in nutrient acquisition 

(D’Souza and Rodrigues 2017).  Besides, it is well evident that the P content of plants 

elevates when inoculated with PSB (Shrivastava et al. 2018) as these bacteria are capable 

of solubilizing insoluble P thereby resulting in improved P uptake and plant growth. The 

synergistic relationship between AM fungi and PSB enables AM fungi to translocate P that 

is solubilized by PSB to their host plant (Piccini and Azcon 1987). 

AM fungal hyphae contribution (HC) to the total plant acquisition was found to be 

maximum in treatment 5 and 7 while it was least in treatment 4 (Fig. 8.6). AM fungal HC 

is the transfer of P by AM fungi from outer compartments to their host plant (Kothari et al. 

1991). 



Chapter 8: Objective 6  

102 
 

 

Fig. 8.6.  Hyphae contribution (HC) in AM inoculated plants. (Values in each line 

followed by different lowercase letters are significantly different at p < 0.05). 

8.3.6 Correlation analysis 

The results of Pearson’s correlation analysis are presented in Table 8.3. Total biomass was 

positively correlated with MD values; root P was positively correlated with RC and total 

chlorophyll. Leaf P content was positively correlated with total chlorophyll content.   

Table 8.3: Pearson’s correlation coefficients between different parameters in bio-

inoculant treatments of R. mucronata. 

 Total biomass RC Leaf P Stem P Root P Total Chl 

Total biomass - 0.432 0.112 0.421 0.264 0.215 

MD 0.772* 0.806 0.196 0.309 0.517 0.215 

RC 0.432 - 0.513 0.409 0.765* 0.578 

Total Chl 0.215 0.578 0.802** 0.378 0.637* - 

Note: MD = mycorrhizal dependency, RC = root colonization, Total Chl = total chlorophyll. 

*   Correlation is significant at the 0.05 level  

** Correlation is significant at the 0.01 level  
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8.4 CONCLUSION 

Based on the synergistic relationship of mangroves with AM fungi and PSB, the screening 

experiment was conducted to study the impact of these bio-inoculants on the growth and 

nutrient enhancement in R. mucronata plants. The present study is the first to use B. 

halotolerans as a bioinoculant for the investigation of mangrove plant growth. Also, this is 

the first study to evaluate the co-inoculation effects of AM fungi and PSB on the growth, 

biomass, and nutrient uptake of mangrove plants. The study revealed positive effects of 

dual inoculation on the growth promotion of R. mucronata. The interaction between AM 

fungi and PSB assist in the biogeochemical cycling of immobile nutrients especially P. 

The use of such microbial consortium may be a promising strategy to increase the growth 

and biomass of plants in the environmental restoration program. The present study is a step 

in that direction. As mangroves act as coastal and estuarine bio shields against harsh 

conditions, further research needs to be carried out in the field to determine the microbial 

function in the reconstruction of the mangrove ecosystem. 
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Chapter 9: Summary 
Mangroves are a highly productive wetland ecosystem serving as a bio-shield of coastline. 

They are rich and diverse in living resources and hence increase the economic and 

ecological value of the ecosystem. Besides, the mangrove ecosystems have become a focus 

of conservation and environmental issues. However, they have been degraded drastically 

all over the world, mainly due to nutrient limitations (P deficiency) and human 

interference. Arbuscular mycorrhizal (AM) fungi are the ‘hidden heroes’ of nutrient-

deficient soil (especially P) which helps in increased uptake of nutrients and improves 

stress tolerance in exchange for carbon. 

To establish conservation strategies, it is important to explore the ecological framework of 

the habitat. The mangrove patch of about 178 ha at Chorao Island has been declared as 

Reserved Forest, while Pichavaram has the World’s second-largest mangrove forest. 

However, both these forests have not been well explored for the presence of AM fungal 

occurrence. Accordingly, an attempt was made to investigate the AM fungal diversity and 

to record the dominant AM fungal species associated with the mangrove plants of Chorao 

Island and Pichavaram Forest (which were earlier reported as non-mycorrhizal). Further, 

some of the AM species recovered from the mangrove ecosystem were monoxenically 

cultivated. Correspondingly, the screening studies were carried out to examine the effect of 

the AM bio-inoculant on the growth and nutrient uptake of R. mucronata.  

Physico-chemical analyses of Chorao soils revealed that the soil texture of true mangrove 

areas was clayey silt while that of associate mangrove areas have equivalent amounts of 

sand, silt, and clay. Chorao soils were acidic whereas the soils of Pichavaram forest were 

alkaline. Both the sites were low in available nutrients.  

AM fungal association in different plant species was exhibited by the presence of hyphal, 

arbuscular, and/or vesicular colonization. At Chorao Island, the highest AM root 

colonization was reported in Thespesia populnea. Overall, associate mangroves showed 

higher AM colonization than true mangroves. Spore density was maximum in the 

rhizosphere of a true mangrove Ceriops tagal and the highest AM species richness was 

recorded in Kandelia candel with 13 spore morphotypes.  

At Pichavaram forest, rhizosphere and root samples of mangrove plants were collected 

from three different sites viz., Pichavaram extension (PE), Pichavaram Reserved Forest 

(PRF), and Killai Reserved Forest (KRF). The highest AM root colonization was recorded 
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in Salicornia brachiata at KRF, while the AM spore density was maximum in Ceriops 

decandra at PE.  

A total of 31 AM species belonging to 9 genera with Acaulospora dilatata being the 

dominant species were recovered from Chorao Island. While 21 AM species belonging to 

seven genera were recovered from the Pichavaram forest. At PE, Rhizophagus fasciculatus 

was the dominant AM species whereas, Funneliformis geosporum was dominant at KRF. 

Diversity indices were highest in K. candel at Chorao Island while at Pichavaram, it was 

maximum at site PE. Jaccard index showed the greatest AM fungal similarity between 

Avicennia officinalis and A. marina from Chorao Island. Cluster analysis was performed 

based on AM fungal relative abundance (RA) in true- and associate-mangrove plants of 

Chorao Island. It indicated the four clusters of all the plants at a 26% similarity level.  

Comparative studies on seasonal variation in AM fungal diversity were carried out among 

the three common mangrove species viz., A. marina, Bruguiera cylindrica, and Excoecaria 

agallocha from Chorao Island and Pichavaram forest. Results of seasonal studies revealed 

the highest percent root colonization in E. agallocha at Chorao Island in the post-monsoon 

season. The spore density was high during post-monsoon at both sites. Nineteen AM 

species belonging to four families were recovered from both the sites, in different host 

plants during different seasons. Of the 19 AM species, four AM species viz., A. undulata, 

Entrophospora sp., F. geosporum, and R. fasciculatus were recorded in nearly all the 

seasons from both the sites. Canonical correspondence analysis (CCA) of AM fungal 

abundance and soil parameters indicated that a significant effect of organic carbon (OC), 

N, Mn, Zn, Cu, and Fe on the abundance of Acaulospora, Funneliformis, Gigaspora, and 

Sclerocystis. Whereas, Rhizophagus, Glomus, and Entrophospora experienced the greater 

effect of electrical conductivity (EC). 

The study represented the influence of several edaphic factors on variation in diversity, 

colonization, and spore density of mangrove plants from Chorao Island and Pichavaram 

forest. Monospecific cultures of 17 (out of 35) AM fungal species were successfully 

prepared using Plectranthus scutellarioides (L.) R. Br. as a catch plant. Following are the 

names of AM species: Acaulospora dilatata, A. foveata, A. scrobiculata, A. undulata, A. 

delicata, A. rehmii, A. myriocarpa, A. spinosa, Entrophospora sp., Funneliformis 

geosporum, F. mosseae, Gigaspora decipiens, Gi. albida, Rhizophagus fasciculatus, R. 

intraradices, R. irregulare, and Sclerocytis rubiformis. 
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Some of these AM species were further multiplied using modified methods of monoxenic 

technique. Nine AM species viz., Rhizophagus intraradices, Rhizophagus clarus, 

Rhizophagus fasciculatus, Funneliformis mosseae, Acaulospora spinosa, Gigaspora 

albida, Gigaspora decipiens, Dentiscutata scutata, and Racocetra gregaria could 

germinate on MSR (Modified Strullu and Romand) medium. Germination of A. spinosa 

and D. scutata was reported for the first time. A dual culture of Gi. decipiens with 

transformed Linum roots and R. intraradices with transformed roots of Chicory were 

established monoxenically. Germinated spores of Gi. decipiens colonized the transformed 

roots of Linum. However, no sporulation was observed. While in the case of R. 

intraradices, sporulation occurred within 30 days after the preparation of dual culture.  

Two PSB (PSB1 and PSB2) isolated from the two mangrove plants viz., E. agallocha and 

Clerodendrum inerme belonged to the genus Bacillus. Based on the biochemical and 

molecular analysis, PSB1 was identified as B. subtilis while PSB2 was identified as B. 

halotolerans. Qualitative and quantitative estimation of phosphate solubilization was tested 

which indicated B. haltolerans was more efficient in solubilizing the mineral phosphate.  

To prepare inocula for screening studies, two AM species viz., R. intraradices and A. 

dilatata were mass multiplied using a carrier formulation given by Rodrigues and 

Rodrigues (2017). The carrier materials used for mass production included vermiculite: 

cow dung powder: wood powder: wood ash in the ratio of 20:8:2:1. Also, the inoculum of 

PSB2 was prepared in Nutrient broth with the final concentration of bacterial inoculum 

having 108 CFU/mL. 

Studies were carried out to examine the effect of bio-inoculants on the growth and P 

uptake of Rhizophora mucronata seedlings. An experiment with 8 treatments of single and 

dual inoculation involving AM fungal species Rhizophagus intraradices, Acaulospora 

dilatata, and PSB Bacillus halotolerans inoculating the propagules of R. mucronata was 

set in the polyhouse. The study revealed positive effects of dual inoculation with AM fungi 

and PSB in the growth promotion of R. mucronata. Various parameters viz., AM fungal 

colonization, plant growth, biomass, leaf pigments, and P contents were analyzed. 

Maximum AM fungal root colonization was recorded in treatment 8 (R. intraradices + A. 

dilatata + PSB).  Treatment 7 (R. intraradices + A. dilatata) significantly promoted plant 

height. However, R. intraradices inoculum in combination with PSB recorded a better 

impact on all the growth parameters. Aboveground and belowground plant biomass was 

higher in treatment 7 and treatment 8, respectively. Chlorophyll and carotenoids content 
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was significantly higher in treatment 8. A dual inoculation of R. intraradices and B. 

halotolerans (treatment 5) and combined inoculation of all the three bio-inoculants 

(treatment 8) resulted in increased uptake of P. The total P content in treatment 5 and 

treatment 8 reached a maximum of 14.6 and 14.7 µg/g, respectively. The use of such a 

microbial consortium may be a promising strategy to increase plant growth and biomass in 

environmental restoration programs. 
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Plate 3.1: Mangrove habitat at Chorao Island



Plate 3.2: Mangrove habitat at Pichavaram Forest
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e) f)

Plate 3.3: Mangrove species: a. Aegiceras corniculatum (L.) Blanco.; b.

Avicennia officinalis L.; c. Avicennia marina (Forssk.) Vierh.; d. Bruguiera

cylindrica (L.) Blume; e. Ceriops decandra (Griff.) W. Theob.; f. Ceriops

tagal (Perr.) C.B. Rob.



Plate 3.4: Mangrove species: a. Excoecaria agallocha L.; b. Kandelia

candel (L.) Druce; c. Lumnitzera racemosa Willd.; d. Rhizophora apiculata

Blume.; e. R. mucronata Lam.; f. Sonneratia alba Sm.

a) b)

c) d)

e) f)
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e) f)

Plate 3.5: Mangrove species: a. Sonneratia caseolaris (L.) Engl.; b.

Acrostichum aureum L.; c. Acanthus ilicifolius L.; d. Arthrocnemum

indicum (Willd.) Moq.; e. Clerodendrum inerme (L.) Gaertn.; f.

Derris heterophylla (Willd.) K. Heyne



a) b)

c) d)

Plate 3.6: Mangrove species: a. Ipomoea pes-caprae (L.) R. Br.; b.

Pongamia pinnata (L.) Pierre; c. Salicornia brachiata (Willd.) Paul

G.Wilson.; d. Salvadora persica L.



a) b)

c)

Plate 3.7: Mangrove species: a. Sesuvium portulacastrum (L.) L.; b.

Suaeda maritima Forssk. ex J.F.Gmel.; c. Thespesia populnea (L.) Sol. ex

Corrêa.



Plate 3.8: Intra- and extra-radical structures of AM fungi in roots.

a. Hyphal coils in roots of Avicennia marina (Forssk.) Vierh.

b. Extra-radical hyphae in Ceriops tagal (Perr.) C.B. Rob.

c. Arum-type of arbuscular colonization in roots of E. agallocha L.

d. Paris-type of arbuscular colonization in roots of C. tagal (Perr.) C.B. Rob.

a)

Extra-radical 
hyphae

b)

A
c)

Intra-cellular 
hyphal coils

d)



Cluster of 
vesicles

Auxiliary cellsAuxiliary cells

Plate 3.9: Intra- and extra-radical structures of AM fungi in roots.

a. Vesicular colonization in roots of Clerodendrum inerme (L.) Gaertn.

b. Cluster of globose vesicles in roots of Avicennia officinalis L.

c. Spiny/papillate auxiliary cells in roots of Salicornia brachiata (Willd.)

Paul G.Wilson.

d. Knobby auxiliary cells in roots of S. caseolaris (L.) Engl.

a) b)

c) d)
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e) f)

Plate 3.10: AM fungal species: a. Acaulospora bireticulata Rothwell &

Trappe.; b. A. dilatata Morton.; c. A. foveata Trappe & Janos.; d. A.

laevis Gerd. & Trappe.; e. A. mellea Spain & Schenck; f. A. polonica

Błaszk.
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Plate 3.11: AM fungal species: a. Acaulospora rehmii Sieverd. & Toro.;

b. A. scrobiculata Trappe.; c. A. spinosa Walker & Trappe.; d. A. undulata

Sieverd.; e. Entrosphospora sp.; f. Funneliformis geosporum (Nicolson &

Gerd.) Walker & Schüßler.
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Plate 3.12: AM fungal species: a. Funneliformis mosseae (Nicolson &

Gerd.) Walker & Schüßler.; b. Glomus macrocarpum Tul. & Tul.; c. G.

flavisporum (Lange & Lund) Trappe & Gerd.; d. G. microcarpum Tul.

& Tul.; e. G. multicaule Gerd. & Bakshi.; f. G. tortuosum Schenck &

Sm.



a) b)

c) d)

Plate 3.13: AM fungal species: a. Gigaspora albida Schenck & Sm.; b.

Broken spore of Gi. decipiens Hall & Abbott.; c. Spore of Rhizophagus

fasciculatus (Thaxt.) Walker & A. Schüßler.; d. Spore cluster of R.

intraradices (Schenck & Sm.) Walker & Schüßler.



b)

c) d)

a)

Plate 3.14: AM fungal species: a. Rhizophagus irregulare (Błaszk., Wubet,

Renker & Buscot) C. Walker & A. Schüßler.; b. Sclerocystis pachycaulis

Wu & Chen.; c. S. rubiformis Gerd. & Trappe.; d. Spores in spore

syndrome.



Plate 4.1: Trap and monospecific cultures: a. Rhizosphere sample; b.

Trap cultures; c. Spores from trap cultures; d. Monospecific cultures; e.

Spores from monospecific cultures.

a)

b)

c)

d)

e)
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Plate 5.1: Propagules used for monoxenic cultures: a. Colonized root

fragments; b. spore isolated from monospecific cultures.
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Plate 5.2: Ri T-DNA transformed roots growing on MSR

medium.: a. Linum (Linum usitatissimum L.); b. Chicory

(Cichorium intybus L.).



Plate 5.3: AM fungal propagule (colonized roots and spores)

germination on MSR (-sucrose) medium: a. Rhizophagus intraradices; b.

Rhizophagus clarus; c. Rhizophagus fasciculatus; d. Funneliformis mosseae;

e. Acaulospora spinosa; e. Gigaspora albida
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Plate 5.4: AM fungal propagule (colonized roots and spores)

germination on MSR (-sucrose) medium: a. Gigaspora decipiens; b.

Scutellospora scutata; c. Racocetra gregaria
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Plate 5.5: Monoxenic culture of AM species with transformed roots: a.

Branched absorbing structures (BAS) in Gigaspora albida; b. Auxiliary cells

in Gigaspora albida; c. Auxiliary cells in Scutellospora scutata; d. BAS in

Gigaspora decipiens; e. Auxiliary cells in Gigaspora decipiens; f.

Colonization of transformed Linum roots by Gigaspora decipiens.
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Plate 5.6: Monoxenic culture of Rhizophagus intraradices with

transformed Chicory roots: a. Contact with roots; b. Branched absorbing

structures; c. Intercalary spores; d. Juvenile spores; e. Terminal spores; f.

Intra-radical vesicles in roots.
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Plate 5.7: Monoxenic culture of Rhizophagus intraradices with

transformed Chicory roots: a. Intra-radical sporulation ; b. Extra-radical

sporulation; c. Vesicular colonization in stained roots; d. Intra-radical

sporulation in stained roots; e. Extra-radical sporulation in stained roots.
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c) d)

e) f)

b)

Plate 6.1: Isolation and gram staining of phosphate solubilizing

bacteria (PSB): a. Bacterial colonies from Excoecaria agallocha; b.

Bacterial colonies from Clerodendrum inerme; c. Pure culture of PSB1; d.

Pure culture of PSB2; e. Gram staining of PSB1; f. Gram staining of PSB2.



Plate 6.2: Biochemical tests of PSB: a. Catalase test; b. Citrate utilization

test ((PSB1); c. Citrate utilization test of (PSB2); d. Glucose test; e.

Cellobiose test;

PSB 2PSB 1

a) b)

c)

C 1 2

d)

C 1 2

e)



C 1 2

a)

C 1 2

b)

21C

c)

C 1 2

d)

C 1 2

e)

C 1 2

f)

Plate 6.3: Biochemical tests of PSB: a. Mannitol test; b. Arabinose test;

c. Indole test; d. Methyl red test; e. Voges test; f. Nitrate reduction test.



Halo or solubilization zone
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c) d)

Plate 6.4: Qualitative analysis of phosphate solubilization: a. PSB1 on

Pikovskaya’s-Bromo phenol blue (PKV-BPB) agar medium; b. PSB1 on

(PKV-BPB) medium; c. PSB1 on Pikovskaya (PKV) medium; d. PSB2 on

PKV medium.



Plate 6.5: Quantitative analysis of phosphate solubilization: a.

Inoculated bacterial cultures on rotary shaker; b. Standard solutions; c.

Development of yellow colour in bacterial isolates.
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PSB1 PSB2Control
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Plate 8.1: Screening experiment in Rhizophora mucronata Lam.



a)
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Plate 8.2: Sample digestion of Rhizophora mucronata plants: a.

Reduction of acid content at high temperature; b. Appearance of white

fumes after complete digestion of the sample.
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c) d)

f)e)

Plate 8.3: Root colonization in AM inoculated Rhizophora mucronata

plants: a. Arbuscular colonization by A. dilatata; b. Hyphal coil; c.

Vesicular colonization by Rhizophagus intraradices; d. Enlarged view of a

vesicle; e. Vesicular colonization by Acaulospora dilatata; f. Extra-radical

spores of Rhizophagus intraradices



T1 T2 T3 T4 T5 T6 T7 T8

T1 T2 T3 T4 T5 T6 T7 T8

Plate 8.4: Effect of inoculation (AM fungi and PSB) on the growth of

Rhizophora mucronata: T1: Control (Uninoculated); T2: R. intraradices;

T3: A. dilatata; T4: R. intraradices + A. dilatata; T5: R. intraradices +

PSB2; T6: A. dilatata + PSB2; T7: R. intraradices + A. dilatata + PSB2; T8:

PSB2 (B. halotolerans)
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Scope and Limitations of AMF Biofertilizer Production
Sonlcrita S Gaonkar and B F Rodrigtes*

lntroduction
Arbuscular mycorrhizal (AM) fungi are soil-borne
microbes belonging to phylum Glomeromycota that
form a symbiotic association with roots of higher
plants. Hlphae colonize their host roots and form
a mycelial network in the rhizosphere to facilitate
nutrient uptaker especially P (Rodrigues and
Rodrigpes 2014), and in turn acquire photosynthates
from the host plant. Around 90o% of vascular plants
formAM association (Smith and Read 2008). Plant
genes and signal molecules enable hlphal entry and
development of the fungus in the plant (Parniske

2008). The extra-radical mycelium extends several

centimetres beyond the depletion zone absorbing
nutrients that are transported to host roots (Khan
et al.2000).These fungi play an important role in
agriculture, forestry, and horticulture by increasing
crop yield, health, and resistance to stress by reducing
the cost of agrochemicals (ohanssorr et al. 2004).
Occurrence ofAM symbiosis is dated back to >460
million years ago (Read er al.2000). Based on the
spore morphology, approximately 240 AM fungal taxa
belonging to order Glomales have been described
(Schubler andWalker 2010; Kruget et al.2012)'
although molecular analysis data shows that the
actual number ofAM fungal taxa can be much higher
(Vandenkoornhuyse et al. 2002).

Culture Techniques for AM Fungol
lnoculum
Various cultivation techniques ofAM fungal inoculum
production have been attempted in the last few
decades. Sand/soil- and substrate-based production
techniques, substrate-free culture techniques
(hydroponics and aeroponics), and in oitro cultivation
methods have been attempted in the large-scale
production of AM fungi. Several parameters must be
taken into consideration for the culture ofAM fungi,
such as controlled or semi-controlled conditions
in greenhouses, AM fungal species, the host plant,
substrate, and amendments.

Substrote-Bosed Production System
Conventional production of AM fungi is commonly
achieved by the cultivation of host plants and
their slnnbionts in a soil- or sand-based substrate
(substrate-based production system). The inoculum

to initiate production consists of dried root fragments
or colonized root fragments, AM spores, sporocarps,
and fragments of hyphae.\7hen spores are extracted
from the soil and used as inoculum directly they tend
to have very low viability or may even be dead or
parasitized. To overcome this, initially, the rhizosphere
soil is used to prepare a 'trap culture'using a suitable
host plant. This increases the number of viable spore
propagules for further isolation, multiplication, and
production of monospecific cultures.The pure culture
inoculum thus produced consists of spores, colonized
root fragments, and AM hyphae of a single species.

Selection of host plant is based on numerous
criteria, such as plants exhibiting a short life cycle,
rapid growth, adaptation to the prevailing growing
conditions, and ready colonization by a range of AM
fungal species. A large quantity of roots should also be
produced in a relatively short period, and resistance to
pest and diseases common to the inocula production
environmeht.

A range of plant species, such as Zea mays (corn),
Allium cepa (onion), Arachis hypogaea (reanut),
Paspalwn notdtum (bahia grass), Pueraria phaseolo'ides

(kudzu), coleus (Plectranthus scutellarioides), ragi
(Eleusine coracana), etc., have been used as hosts with
encouraging results.

Various substrates, such as soil, sand, peat,

vermiculite, perlite, calcinated clay, and compost
have been used to propagate AM fungi (lido et al.

20Ll).Addition of different organic amendments also

influences AM fungal colonization. Chitin and humic
substances increase colonization levels (Gryndler et al.

2003; Gryndler et a\.2005). Manipulation of nutrient
content has a further impact on AM fungal propagule
production (Douds and Schenck 1990).The
substrate-based culture technique is the most widely
used method for AM fungal production as it requires
a relatively litde less technical support, is cheap, is the
least artificial, and a large set of AM fungal species

can be cultured (Ijdo et al.20ll). Conversely, the
sand/soil-based systems have certain disadvantages
such as the presence of unwanted contaminants, even

with good phytosanitary care, fewer viable spores than
in vitro system, and parasitized spores.

Substrote-Free Production System
Substrate-free cultivation systems, such as

hydroponic and aeroponic have also been used for the
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multiplication ofAM fungi wherein a continuous flow
or mist of nutrient solution is provided for the plant
and the symbionts. Although this system offers *re
advantage of providing inoculum which is free from
attached substrate particles, a disadvantage
has been that the nutrient solution is prone to
microbial contamination and algal growth
(Elmes and Mosse 1984).

Monoxenic Culture System
The first attempt to culture AM fungi monoxenically
dates back to the late I 950s (Mosse I 959). Thereafter,
tremendous progress has been made for the mass

production of AM fungi using RiT:DNA transformed
roots (Mugnier and Mosse 1987). Different in oitro
culture techniques have been derived such as the
bicompartment system whereinAM fungal mycelia
and spore are produced free from roots (St-Arnaud
et al. 1996), and manipulation of culture medium to
induce sporulation (Becard and Piche 1992).These
developments have enabled studies in spore ontogeny
(Pawlowska et al. 1999), sporulation dynamics
(Declerck et aI.2007)' response of AM fungi to cell
wall-associated phenolics (Douds et al. 1996) and
flavonoids (Morandi et al. 799 2), lipid metabolism
(Bago et al. 2002), transport of mineral nutrients to
roots (Dupre de Boulois et a|.2005) and isolation
of contaminant-free spores for molecular analysis
(Pawlowska andtylor 2OO4).A wide number of AM
fungal species belonging to Glomeraceae and a few
Gigasporaceae have been successfully cultured in the
root organ culture (ROC) system.

Species, such as Acaulospora rehmii (Dalpe and
Declerck 2002), Gigaspora rosea (Bago et al.l998c)'
Gi. margarita (Miller-Wideman and rWatrud 1 984;
Diop et al. 1992; Gadkar and Adholeya 2000), Gi.
gigantea (Gadkar et al. 1997), Gi. dncipiens (Fernandez
Bidondo et al.2012), Glomus etunicatum (Schreiner
and Koide 1993), G. oersiforme (Diop er al.1994;
Declerck et al. 1996), G. deserticola (Mathur andVyas
199 5), G. fistulosum (Nuutila et al. 199 5; Grlmdler er

al. 1998), G. clarum (De-Souza and Berbara 1999;

Rodrigues and Rodrigues 2012), Funnelifurmis
caledonius (Hepper 1981; Karandashov et aI.2000)'
E geosporus (Declerck et al. 1998), E mosseae (Douds
1997; Rodrigues and Rodrigues 2015)' Rhizophagus
irregularis (Chabot et al. 1992; St-Arnaud et al. 7996)'
R. fasciculatu.s (Declerck et al. 1998), R. prolifurus
(Declerck et aL.2000) and Sclerocysris sinuosa (Bi et

a1.2004) have been successfully cultured in oitro.
Culture media such as minimal (M) rnedium

(Becard and Fortin 1988) and modified Strullu
Romand (MSR) medium (Strullu and Romand 1986,

modified by Declerck et al. 1998) are often used
to culture AM fungi. The growth of germ tube is

inhibited by the presence of sucrose in MSR medium.
Healthy germination ofAM fungal spores in MSR
medium without sucrose was achieved by D'Souza er

al. (2013). During the pre-slnnbiotic phase, AM spore
use the reserve materials from propagules for the
germination and growth of germ tubes (Clark 1997).
Root Organ Culture (ROC) was first developed by
\(rhite (1943), followed by development of further
Rif:DNA transformed roots of different plant
species, oiz-, clover (Tiifolium) (Mosse and Hepper
1975), bindweed (Conaolztulus seph,trt) (Tepfer and
Tempe 1981), ollton (Allium cepa), tomato (Solanum

lycopersicum) (Srullu and Romand 1986, 1987),
carrot (Daucus carota) (Mugnier and Mosse 1987),
strawberry (Fragaria x ananassa), chicory (Cichorium
intybus) (Boisson-Detnier et al.200l), barrel medic
(Medicago truncatula) (Fontaine et aI.2004) arrd
limxn (Linum usitatissimzz) (Rodrigues and
Rodrigues 2015).

Fungal inocula such as isolated spores or
propagules from intra-radical phase (colonized root
fragments and isolated vesicles) of AM fungi can be
used to initiate monoxenic cultures (Rodrigues and
Rodrigues 2015).The culture established needs to be
maintained by continuous sub-culturing, transferring
the mycorrhizal roots onto fresh medium (St-
Arnaud et al. 1996).IJnder aseptic conditions, AM
symbiosis with the transformed roots takes place by
development of extra-radical mycelium which is often
accompanied by formation of arbuscule-like structures
(ALS) (Bago et al.1998a) or branched absorbing
structures (BAS) (Bago et a/. 1998b).These structures
are probably nuffient-exchange sites between the
fungus and its host (Diop 2OO3). Sporulation in
AM fungi differs between species as well as between
isolates of the single species and is related to spore size
(Declerck et al.200l).

The most important advantage offered by in
ztito cwltivation system is the absence of undesirable
organisms. Contamination by other undesirable
microorganisms can occuri however, during the
establishment of culture process or during the later
stages of culture maintenance. This type of system can

be used for the large-scale production of AM fungi
consisting of high-quality inoculum with minimum
space. Also, the factors influencing optimum
production can be easily detected and controlled, and

harvesting time can be determined. The maintenance
of a successfully established culture is easily achieved

by sub-culture and maintaining the plates in dark
condition. As a disadvantage, the in oitro-grown
AM fungal diversity is lower than that under-pot
culture system (Rodrigues and Rodrigues 2013).
Furthermore,the in zlito production is expensive,
requiring skilled technicians and sophisticated
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laboratory equipment to caily out the whole process

in sterile and controlled conditions (Ijdo et al. 2011).
Further studies are in progress to identify and
eliminate contaminants in established cultures.

AM Fungi os Biofertilizers
It has been observed that AM fungal inoculation
provides beneficial results in plant growth both in
controlled and open-field conditions. AM fungi have

been confumed to show better performance in terms
of plant growth and yield characteristics.This would
make the AM fungal technology more suitable to
sustainable cropping systems (Berruti et al. 2016).
Khan er al. (2008) reported that the inoculation of
a single or dual AM fungi increased the growth and
nutrient uptake of Medicago satfuawhich resulted
in the increased dry weight of shoot and root. Bhat
et al. (2010) studied the effect ofAM fungi and
Rhizobium on green grarn (Vigna radiata) and reported
a significant effect on nodulation, yield crude protein
content, and NPK content in grain.Various further
studies have proved thatAM fungi are an effective
resource when used as biofertilizers with no adverse
environmental effect.

References
Bago B, Azcon-Aguilar C, and Pich6Y. 1998a. Architecture
and developmental dynamics of the external mycelium of
tlre arbuscular mycorrhizal fungus Glomus intrarad'ices grown
under monoxenic culture conditions. Mycolology 9O; 52-62.

Bago B, Azcon-Aguilar C, Goulet A, and Pich6Y. 1998b.

Branched absorbing structures (BAS): A feature of the
extraradical mycelium of sy,rnbiotic arbuscular mycorrhizal
fungi. -AIazu Phgtologist 139: 375-88.

Bago B, Chamberland H, Lafontaine JG, PicheY,Web
WW,\U7illiams RN[, and Zipfel!7. L998c. In zzzo studies on
the nuclear behavior of the arbuscular mycorrhizal fungus
Gigaspora rosea growfi under axenic conditions. Protoplasma

203: l-15.

Bago B, Arreloa & Jun J, Lammers PJ, Pfeffer PE, Shachar-
Hill Y, !7i11iams RC, and Zipfel'Vl. 2 0 02. Translocation
and utilization of fungal storage lipid in tlle arbuscular
mycorrhizal s)rynbiosis. Plant Ph3tsiology 128: 108-24.

Becard G and Fortin JA. 1988. Early events of vesicular-
arbuscular mycorrhiza formation on Ri TDNA transformed
roots. .Atrezu Phytologist 108: 2l 1-18.

Becard G and PicheY. 1992. Status of nuclear division in
arbuscular mycorrhizal fungi during in aito development.
Protoplasma 174: 62 68.

Berruti A, Balestrini \ BianciottoV and LuminiE.2016.
Arbuscular mycorrhizal fungi as natural biofertilizers: Let's
benefit from past successes. Frontiers in Microbiology 6:1559.

Bhat MI, Bangroo SA, Thhir A, andYadav SR. 201 0.

Combined effects of Rhzzobium arrdYesicular arbuscular
fungi on green Gram (Vigna radiate (L.) \tr7ilczek)

under temperate conditions. Indian Journal of Ecologt 37 (2):

t57-6r.

BiY, Christie R Li X, and\tr7ang H- 2004. Establishment
of monoxenic culture between the arbuscular mycorrhizal
fungus Glomus sinuosum and RiTDNA-transformed carrot
roots. Plant Soil 261: 239-44.

Boisson-Dernier A, Barker DG Becard G Chabaud M,
Garcia F, and Rosenberg C. 2001. Agrobacurium rhizogenes-

transformed roots of Medicago tuncatula for studying
nitrogen-fixing and endomycorrhizal symbiotic associations.

Molecular Plant-Miuobe Interactions 14: 693-7 00.

Chabot S, Becard G, and PicheY. l992.L1fe cycle of Glomus

intraradix in root organ culture . Mgcohgia 84: 315-21 .

Clark RB. 1997. Arbuscular mycorrhizal adaptation, spore
germination, root colonization, host plant gro'*th and
mineral acquisition at low pH. Plnnt Soil 192:. 15-22.

DalpeY and Declerck S. 2002. Development of Acaulospora

rehmii spore and hyphal swellings under root-organ culture.
Mycologia 94:850 55.

Declerck S, Plenchette C, and Strullu DG. 1996. In oitro
mass-production of the arbuscular mycorrhizal fungus
Glomus ztersiforme, associated with RiTDNA transformed
carrot roots. Mycological Research IOO:. L237-42.

Declerck S, Plenchette C, and Strullu DG. 1998.

Monoxenic culture of the intraradical forms of Glnmus sp.

isolated from a tropical ecosystem: A proposed methodology
for germplasm collection. Mycologia 9O: 579-85.

Declerck S, Cranenbrouck S, DalpeY, Fontaine J,
Granmougin- FerjaniA, and Sancholle M. 2000. Glomus
prol'iferum sp. nov.: A description based on morphological,
biochemical, molecular and monoxenic cultivation data.

Mycologia 92: ll78-87 .

Declerck S, Cranenbrouck S, D'Or D, and Leboulenge E.
2001. Modelling the sporulation dynamics of arbuscular
mycorrhizal fungi in monoxenic culture. Mgcorrhiza ll;
225-30.

De-Souza FA and Berbara RLL. 1999. Ontogeny of Glomus

clarum irt Ri T:DNA transformed roots. Mycologia 9l:
343-50.

Diop TA, Becard G, and PicheY. 1992. Long-term in z;irro

culture of an endomycorrhizal fungus, Gigaspora margarita,
on Ri T:DNA transformed root of carrot . Symbiosis 12:

249 59.

DiopTA, Plenchette C, and Strullu DG. 1994. Dual axenic

culture of sheared-root inocula of vesicular-arbuscular
mycorrhizal fungi associated with tomato roots. Mgcorrhiza
5: 17-22.

Mycorrhiza News 29(2) . JluJy 2017



I

Diop TA. 2003. In oito cul:rlre of arbuscular mycorrhizal
fungi: Advances and future prospects. African Journal of
Biotechnology 2(12): 692 97 .

Douds DD Jr and Schenck NC. 1990. Increased sporulation
of vesicular-arbuscular mycorrhizal fungi by manipulation
of nutrient regimens. Applied Enoironmental Miuobiology 56:
4l 3-l 8.

Douds DD Jr, Abney GD, and Nagahashi G. 1996. The
differential effects of cell wall-associated phenolics, cell walls
and cytosolic phenolics of host and non-host roots on the
growth of two species of AM fungi. New Phytologist 133:
289-94.

Douds DD Jr. 1997. A procedure for the establishment of
Glomus mosseae in dual culture with RiT:DNA transformed
carrot roots. Mycorrhiza 7: 57 -61 .

D'Souza J, Rodrigues BF, and Rodrigues KM. 2013.
Modified Strullu and Romand (MSR) medium devoid of
sucrose promotes 7'igher in vito germination in Rhizophagus
irregularis.The Journal of Mgcology Plant Pathology 43(2):
24042.

Dupre de Boulois H, Declerck S, and Delvaux B. 2005.
Effects of arbuscular mycorrhizal fungi on the root uptake
and translocation of radiocaesitm. Eru.tironmental Polluion
134:515-24.

Elmes RP and Mosse B. l984.Vesicular-arbuscular
endomycorrhizal inoculum production II Experiments with
maize (Zea mays) and other hosts in nutrient flow culture.
Canadian Journal of Botany 62: l53L-36.

Fernandez Bidondo L, Bompadre J, Colombo & Godeas A,
Pergola i\zl, and SilvaniV 2012. Continuous and long-term
monoxenic culture of the arbuscular mycorrhizal fungus
Gigaspora decipiens in root organ culture. Fungal Biology 116:.

729 35.

Fontaine J, Durand R, Glorian[ and Grandmougin-
Ferjani A. 2004.24-Methyl: Methylene sterols increase
in monoxenic roots after colonization by arbuscular
mycorrhizal fu ngi. Nezu Phgtologist 163: 1 59 -67 .

GadkarV and Adholeya A. 2000. Intraradical sporulation of
AM Gigaspora margarita in long term axenic cultivation in
Ri-T:DNA carrot root. Mycological Research lO4:716-21.

GadkarV Adholeya A, and SatyanarayanaT. L997.
Randomly amplified poll,rnorphic DNA using the Ml3
core sequence of the vesicular-arbuscular mycorrhizal
fingi Gigaspora margarita ar:d Gigaspora gigantea. Canadian

Journal of Microbiology 43:795 98.

Grymdler M, Chvatalova I, Hrselova H, andVosatka M.
1998. In oito proliferation ofintraradical hyphae from
mycorrhizal root segments in maize. Mycological Research

102:1067-73.

Gryndler M, Gryndlerov6 H, Hr5elov6 H, Merhautov6
V, Rezddov6V, and Sudov6 R. 2005. Hyphal growth and

mycorrhiza formation by the arbuscular mycorrhizal
fungus Glomus claroideum BEG 23 is stimulated by humic
substances. Mltcorrhiza 15: 4E3 88.

Gryndler M, Chvhtalov6 I, Hrielovd H, Jansa J, andVos6tka
M. 2003. Chitin stimulates development and sporulation
of arbuscular mycorrhizal fingi. Applied Soil Ecologl 22:

283-87.

Hepper C. 198l.Techniques for studf ing the infection
of plants by vesicular-arbuscular mvcorrhizal fungi under
axenic conditions. A'ez' Phyrologisr 88: 64 I 47.

Iido M, Cranenbrouck S, and Declerck S. 20I l. Methods
for large-scale production of A*M fungi: Past, present, and
future. Mycorrhiza 21: 1 16.

Johansson JF, Finlay RD, and Paul LR 2004. Microbial
interactions in the mycorrhizosphere and their significance
for sustainable agriculture. FElls .\Ticrobiology Ecologj 48:
I 13.

KarandashovVE, George E, Hau'kins HJ, and I(uzourina
IN. 2000. Growth and sporulation of the arbuscular
mycorrhizal fungus Glomus caledonium in dual culture with
transformed carrot roots. Mltcorrhiza l0 23-28.

Khan AG, ChaudhryTM, Ha-ves\&1, Khoo CS, and Kuek
C. 2000. Role of plants, mycorrhizae and phvtochelators in
hearry metal contaminated land remediauon. Chemosphere

4l: 197-207.

I(han IA, Ayub N, Azam M, Mirza SN, and Nizami SM.
2008. Synergistic effect ofdual inoculatron (y'esicular-
arbuscular mycorrhizae) on the gro$'rh and nutrients uptake
of Medicago saiaa.Tlte Pahisran Jourttal of Botanj 4O(2):
939-45.

Kruger M, Kruger C, Schubler A, Stockinger H, and
$Talker C.2012. Phylogenetic reference data for systematics
and phylotaxonomy of arbuscular mycorrhizal fungi from
phylum to species level. A'ezc Ph1'tologist 193:970-84.

Mathur N andVyas A. 1995. Irt tito production of Glomus

deserticola in association with Ziziphus nummularia. Plant Cell
Reports 14:735-37 .

Miller-$Tideman MA and\Watrud L. 1984. Sporulation of
Gigaspora margarita in root culture of tomato. Canadian

Journal of Microbiologl,t 3O: 642 46.

Morandi D, Branzanti B, and Gianinazzi-PearsonV.
1992. Effect of some plant flavonoids on behaviour of an

arbuscular mycorrhizal fungus. Agronomie 12: 81 1-16.

Mosse B. 1959. The regular germination of resting spores

and some observations on the growtl requirements of
an Endogone sp. causing vesicular-arbuscular mycorrhiza.
Transacions of the British Mycological Society 42: 27 3-86.

Mosse B and Hepper CM. 1975.Vesicular-arbuscular
infections in root-organs cultures. Physiological Plant
Pathology 5:215 23.

10 Mgcorrhiza News 29(2) . luly 2077



MugnierJ and Mosse B. l98T.Vesicular-arbuscular Schreiner RP and Koide RT. 1993. Stimulation of
infections in RiT:DNA transformed roots grown axenically. vesicular-arbuscular fungi by mycotrophic and
Phytopathology 77: 1045-50. nonmycotrophic plant root systems. Applied

Enaironmental Miuobiology 59 : 27 5 0-5 2.
Nuutila AM, KauppinenV, andV stberg M. 1995. Infection
of hairy roots of strawb erry (Fragaria x Ananassa Duch.) Schubler A and lTalker C. 201 0. The Glomeromjcota:
with arbuscular mycorrhizal fungus. Plant Cell Reports l4i A Species List with New Famihes and New Genera.
505 09. Edinburgh and Kew: The Royal Botanic Garden Kew,

BotanischeStaatssammlung Munich, and Oregon State
Parniske M. 2008. Arbuscular mycorrhiza: the mother of University.
plant root endosymbioses. Nature Reviews Miuobiology 6:
763 75. Smith SE and Read DJ. 2008. Mycorrhizal S3rmbzoszs,Third

Edition. London: Academic Press.
Pawlowska TE and Taylor [V. 20( 4. Organization of genetic
variation in individuals of arbuscular mycorrhizal fungi. St-Arnaud M, Caron M, Fortin JAu Hamel C, andVimard

B. 1996. Enhanced hyphal gro'*th and spore production
of the arbuscular mycorrhizal fungus Glomus intaradices irr

uds DD' 1999' In aiffo an in oitro system in the absence of host roots. Mycological*:;'l::"::r":#f!^n- Researchtoo:328-32

56. Strullu DG and Romand C. 1986. M6thoded'obtentiond'
endomycorhizes d v6sicules et arbusculesen conditions

Read DJ, Duckett JG, Francis \ Ligrone R, and Russell A. ax6niques. Compus Ren&n De I'Academie Des Sciences. Serie
2000. S5,rnbiotic fungal associations in lower land plants. III, Sciences De LaVie 3O3: 245 50.
PhilosophicalTiansacrions Royal Society of London Series B
355:815-30. Strullu DG and Romand C. 1987. Culture ax6nique de

Rodrigues Krvr. and Rodrigues BF.2ot2.Monoxenic culture ff*:'"*]"1$'J1'"-T::;:;;::;:;;;:1:";;':;:;;::
of AM fungus Glomus clarumtning RiTDNA transformed des Sciences 56r III:305: 15-19.
roots. In: Recent Innoz;atiaeTiends in Plant Sciences,pp.
165-7 0. Maharashtra: Mahatma Phule Arts, Science and Tepfer DA and Tempe J. I 98 I . Production d'agropine par
Commerce College. des raciness form6es sous l'actiond' Agrobacurium rhizogenes,

souche A4. Compus Rendus de l'Acad,1mie des Sciences 292:
Rodrigues KN[ and Rodrigues BF. 2013. In oitro Cultivation $3_56.
of Arbuscular Mycorrhizal (AM) I rngi. Journal of Mycology
and Plant Pathology 43(2): 155-68. Vandenkoornhuyse I Daniell TJ, Duck JM, Fitter AlI,

Rodrigues KM and Rodrigues BF.2orL.Arbuscurar 
Husband R'watson IJ' andYoung IPw' 2002' Arbuscular
mycorrhizal community composition associated with trro

mycorrhizal (am) fungi and plant health. In: ed. M. Gosavi plant species in a grassland ecosystem. Molecular Ecology ll:
Fungi in Biotechnologjt,pp. S-24..4 umbai: SIES College, l5 55-64.
Sion.

$fhite PR. 1943. A Handbook of PlantTissue Culture.
Rodrigues K-lv[ and Rodrigues BF 2015. Endomycorrhizal Lancaster: T1e J Cattell press.
association of Funnelifurmis mosseae with transformed roots
of Linum usimtissimum: germination, colonization, and
sporulation studies. Mycology : An International Journal on

. Fungal Biology 6(l):4249.
I
i
I
I

Mycorrhiza News 29(2) . lluJy 2017 11



ORIGINAL PAPER

Diversity of arbuscular mycorrhizal (AM) fungi
in mangroves of Chorao Island, Goa, India

Sankrita Gaonkar . B. F. Rodrigues

Received: 11 January 2019 / Accepted: 20 August 2020 / Published online: 3 September 2020

� Springer Nature B.V. 2020

Abstract For a desirable understanding of diversity

and species composition of arbuscular mycorrhizal

(AM) fungi, in true and associate mangrove plants, 17

true mangrove and their associate species belonging to

ten families were assessed from Chorao Island, Goa,

India. Maximum AM root colonization was recorded

in Thespesia populnea and minimum in Avicennia

marina. Rhizosphere soils of Ceriops tagal showed

highest and that of Acrostichum aureum showed the

least spore density. The results showed that the

associate mangrove species were highly mycorrhizal

compared to true mangrove plants. Our study recorded

greater diversity involving thirty-two AM fungal

species belonging to nine genera viz., Acaulospora,

Claroideoglomus, Entrophospora, Funneliformis, Gi-

gaspora, Glomus, Rhizophagus, Sclerocystis, and

Scutellospora. Acaulospora was the dominant genus

and A. dilatata was the dominant AM fungal species.

Acaulospora dilatata was the most common AM

species in both true and associate mangrove plants,

revealing its wider adaptability.

Keywords Phosphorus � Colonization � Spore

density � Diversity � Salinity � Jaccard’s similarity

index

Introduction

Mangroves are woody shrubs or trees forming inter-

tidal forests in tropical or sub-tropical regions. They

are adapted to a hostile environment tolerating

extreme tides, fluctuating salinity, high temperatures,

and low oxygen (Hogarth 2015). These forests are

among the World’s most diverse and productive

tropical ecosystems (Kathiresan 2000). Mangrove

plants are classified into two subgroups: true- and

associate- mangrove plants. True mangroves are

restricted to the intertidal zones, while associate

mangroves grow on the landward fringes of mangrove

habitats or terrestrial marginal zones (Wu et al. 2008).

Based on salt tolerance, true mangroves are considered

as halophytes while their associates are glycophytes

(Wang et al. 2010b).

The mangrove areas of India account for about 3%

of the World’s total mangrove vegetation, 4639 km2

that are comprised of three distinct zones, East coast

habitats, West coast habitats, and Island territories.

Sundarbans, the World’s largest mangrove forest

(2136 km2) is in West Bengal on the east coast of

India. About 60% of the mangroves of India occur on

the east coast, 27% on the west coast, and 13% on

Andaman and Nicobar Islands (Singh et al. 2012). Of

Goa’s total land area of 370,200 ha, the mangrove

covers approximately 2539 ha. A total of 178 ha of

prime mangrove area at Chorao, Goa has been

declared a Reserved Forest under the Indian Forest
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Act, 1927 to protect and conserve the system. In 1988

the area was further declared a Bird Sanctuary (Nagi

et al. 2014).

Various biotic and abiotic factors such as tidal

inundation, soil type, microbe activity in the soil, plant

species, litter production, and decomposition control

the availability of nutrients to mangrove plants.

Nitrogen (N) and phosphorus (P) are the nutrients

that limit growth in mangroves (Reef et al. 2010).

Firstly, being highly immobile, P is adsorbed by

carbonate compounds thus making it unavailable for

plant use (Kothamasi et al. 2006). Secondly, the

available P is used by the growing plants forming a

phosphate-free zone around the plant roots (Smith and

Read 2008). Therefore, organisms that mobilize P play

an important role in plant growth. Arbuscular mycor-

rhizal (AM) fungi are obligate symbionts belonging to

phylum Glomeromycota having a ubiquitous world-

wide distribution in various ecosystems (Redecker

et al. 2000). They help in plant nutrition especially P

(Aggarwal et al. 2012; Willis et al. 2013). Extraradical

hyphae of AM fungi can extend beyond the P

depletion zone thereby enlarging the absorption area

of the host roots for the uptake of P (Xie et al. 2014).

It has been suggested AM fungi play a marginal role

in wetland ecosystems due to the anaerobic conditions

that decrease fungal activity (Krazic-Sraj et al. 2006).

However, recent studies have shown that AM fungi

can colonize the roots of wetland plants (Radhika and

Rodrigues 2007), increasing nutrient uptake and

photosynthetic activity, and therefore the diversity

and productivity of mangrove ecosystems (Wang et al.

2010a). According to Wang et al. (2011), AM fungi

obtain oxygen from the root aerenchyma of mangrove

plants during flooded conditions. Soil salinity also

affects AM fungal spore germination, root coloniza-

tion, and hyphal growth. However, some of the AM

fungal species are salinity tolerant (Aggarwal et al.

2012).

Most of the studies on AM fungal association in the

estuarine ecosystem emphasize on the plants from

intertidal zones (Sengupta and Chaudhuri 2002; Wang

et al. 2010a; Kumar and Ghose 2008; Sridhar et al.

2011). A literature survey indicates that no studies are

comparing the AM fungal distribution in true- and

associate-mangroves. The only study on the occur-

rence and diversity of AM fungi in mangroves of Goa

(India) was reported by D’souza and Rodrigues

(2013a, b). However, the location investigated in the

present study has never been subjected to similar

investigations previously. The vital role of AM fungi

in modulating the primary and secondary succession

of plants, especially in low nutrient ecosystems such as

coastal regions is well known (Karthikeyan and

Selvaraj 2009). To understand the ecology of the

habitat, and to develop conservation strategies, it is

necessary to measure the biodiversity associated with

the habitat. Therefore, the present study was initiated

to quantify the AM fungal diversity and to identify

dominant AM fungal species in true- and associate-

mangroves of Chorao Island.

Materials and methods

Study site and sample collection

Chorao Island (15� 32050.700 N, 73� 52045.800 E) is

located on the West Coast of India in the Mandovi

River at the elevation of 8 m AMSL (Fig. 1). The total

area of the Chorao Island is 423.75 ha which has a

mangrove cover of about 250 ha. and has an average

annual rainfall of approximately 2500 mm (https://

www.spectrumtour.com/south-india-tourism/chorao-

island-goa.htm). The Island is divided by creeks and

backwaters with continuous tidal variations and is

formed from a confluence of Mandovi River and its

tributary the Mapusa river (Sappal et al. 2014). The

mangrove flora of the Island is represented by 17 plant

species belonging to 10 families with Rhizophora

mucronata, Avicennia marina, Sonneratia alba, and

Excoecaria agallocha being dominant. In the present

study, all the 17 mangrove species were investigated.

Of these, 11 were true mangroves while six were

mangrove associates. Soil and root samples were

collected during the period from March to May 2015

and 2016. During the collection, roots of the trees were

traced by digging and removed to ensure that the

collected roots belong to the same plant species. The

roots were separated from adhering soil, washed

gently under tap water, and used for estimation of AM

colonization.

Soil samples were collected from the depth of

0–30 cm using soil corer (5 cm diameter) of 1 m

length. Three rhizosphere soil samples were collected

from each plant species, placed in separate Ziploc

bags, labeled and brought to the laboratory. These

three samples of each plant species were then
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thoroughly mixed to form a composite sample. The

rhizosphere soil was divided into two parts, one part

for AM spore isolation, enumeration, and identifica-

tion, the other as inoculum to prepare trap cultures.

Soil analyses

The soils from true- and associate- mangrove areas

were separately analyzed for their physical and

chemical properties. Soil pH and electrical conduc-

tivity (EC) was measured in soil water suspension

(40% w/v) using pH meter (LI 120 Elico, India) and

conductivity meter (CM-180 Elico, India) respec-

tively. Soil organic carbon (OC) was detected by

Walkley and Black (1934) rapid titration method.

Available soil N was estimated using the method

proposed by Subbiah and Asija (1956). The Bray and

Kurtz method (1945) was used to determine available

P. Available potassium (K) was estimated by

ammonium acetate method (Hanway and Heidel

1952) using Atomic absorption spectrophotometer

(AAS) (nova 400P, Analytik Jena, Germany). Avail-

able Zinc (Zn), Copper (Cu), Manganese (Mn), and

Iron (Fe) were determined by DTPA-CaCl2-TEA

Fig. 1 Map showing study area
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(diethylenetriaminepentaacetic acid-Calcium Chlo-

ride-triethylamine) method of Lindsay and Norvell

(1978) using AAS. Soil texture was analyzed by the

pipette method (Folk 1968). For this analysis, soil

samples were randomly collected from true- and

associate- mangrove areas within the study site and

were analyzed separately.

AM fungal root colonization

Fifty root pieces (secondary and tertiary roots)

approximately 1 cm long were cleared in 10% KOH

at 90 �C for 90 min, acidified in 5 N HCl and stained

with 0.05% Trypan blue overnight (Phillips and

Hayman 1970). Stained roots were then mounted on

glass slides in polyvinyl alcohol lacto-glycerol

(PVLG) and examined using a bright-field Olympus

BX41 research microscope. A root segment was

considered mycorrhizal if it showed the presence of

hyphae/hyphal coils, arbuscules/arbusculate coils,

and/or vesicles. The intensity of total colonization

(TC), root length containing hyphae (HC%), arbus-

cules (AC%), and vesicles (VC%) was quantified

using the magnified intersection method (McGonigle

et al. 1990).

Isolation and identification of AM fungal spores

and preparation of trap cultures

Spores from composite soil samples (n = 3) and trap

cultures were isolated using wet sieving and decanting

method (Gerdemann and Nicolson 1963). Intact, non-

parasitized healthy spores were estimated using the

modified method of Gaur and Adholeya (1994). The

spores were then mounted on glass slides in PVLG and

examined under a bright-field Olympus BX41

research microscope (409, 1009, and 4009). Spore

morphology, wall characteristics, dimensions, and

other relevant data were observed for the identification

of the AM spores. The spore characters were com-

pared with the descriptions given by Rodrigues and

Muthukumar (2009), Blaszkowski (2012), and Inter-

national Collection of Vesicular Arbuscular Mycor-

rhizal Fungi (invam.wvu.edu). Names and epithets of

AM fungal species were followed according to the

recommendation of Schüßler and Walker (2010) and

Redecker et al. (2013).

To propagate and recover AM spores that were not

encountered in field soils, trap cultures were prepared

mixing rhizosphere soil and sterile sand (1:1) in the

pots and maintained for 6 months. Coleus (Plectran-

thus scutellarioides) was used as the catch plant. The

culture was harvested at the end of the sixth month.

Data analysis

Spore density is the number of spores per 100 g of soil.

Relative abundance (RA) was evaluated using the

formula: RA = (Number of spores of a species or

genus/Total number of spores in all soil sam-

ples) 9 100, while isolation frequency (IF) was

derived by using the formula: IF = (Number of soil

samples possessing spores of a particular species/Total

number of soil samples analyzed) 9 100.

Following formulae were used to calculate Shan-

non–Wiener diversity index (H) and Simpson’s

diversity index (D):

(1) H ¼ �
X

ðpi ln piÞ

(2) D ¼ 1 �
X

nðn � 1Þ=NðN � 1Þ
h i

where pi is the proportion of individual species that

contributes to the total number of individuals, n is the

number of individuals of a given species and N is the

total number of individuals in a community.

Species evenness was estimated as (R (H) = H0/H0

max) where, H0max = lnS, S = total number of

species in the community (richness). Jaccard’s simi-

larity index was calculated using the formula: JI

(%) = (c 7 a ? b ? c) 100, where ‘c’ stands for the

number of species occurring in both hosts, ‘a’ is the

number of species unique to the first host and ‘b’ is the

number of species unique to the second host.

All data were statistically analyzed using SPSS

(Version 22) software. To compare the soil parameters

between true- and associate- mangroves, a paired

sample t-test was performed.

Pearson’s correlation coefficient was calculated to

evaluate the relationships between root colonization

and spore density, isolation frequency, and relative

abundance and spore density and species richness.

Jaccard’s similarity index (JI) was calculated pair-

wise between mangrove plant species based on the

presence or absence of each AM fungal species
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(Jaccard 1912). To understand the distribution of AM

fungal species among true- and associate-mangrove

plants, cluster analysis (Bray–Curtis similarity) was

performed using PRIMER v. 6.0.

Results

Physico-chemical properties of soils

Results of texture analysis showed that the soil from

true mangrove areas is clayey silt, while associate

mangrove areas have a nearly equal proportion of

sand, silt, and clay (Fig. 2). Physico-chemical prop-

erties of the estuarine soils at Chorao revealed acidic

nature. All nutrients showed low availability, with P

being the least available nutrient (Table 1). This low

nutrient availability along with increased salinity

appears to be responsible for causing stress thereby

affecting plant growth especially in the true man-

groves. The results of the t-test are presented in

Table 2. The p values indicate the significant differ-

ences (p\ 0.05) between the soil parameters in two

types of mangroves. The parameters such as EC, OC,

N, Cu, and Fe showed significant differences between

true- and associate-mangroves. The negative t-values

indicate that the mean values of pH and P are higher in

associate mangrove plants.

Fig. 2 Ternary diagram of sand–silt–clay percentages

Table 1 Physico-chemical analyses of mangrove soils

True mangrove soil Mangrove associate soil

pH 5.87 ± 0.59 5.65 ± 0.57

EC (ds/m) 8.95 ± 0.99 0.90 ± 0.10

OC (%) 2.81 ± 0.35 1.07 ± 0.13

N (g/kg) 0.073 ± 0.01 0.067 ± 0.01

P (g/kg) 0.007 ± 0.004 0.051 ± 0.03

K (g/kg) 0.231 ± 0.03 0.263 ± 0.04

Zn (ppm) 2.011 ± 0.40 1.834 ± 0.37

Cu (ppm) 0.50 ± 0.13 0.297 ± 0.07

Fe (ppm) 343.1 ± 3.43 266.9 ± 2.67

Mn (ppm) 2.28 ± 0.76 2.24 ± 0.75

All values are mean of three readings

± = standard error; EC = electrical conductivity; OC =

organic carbon
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AM fungal colonization, spore density, and species

diversity

AM fungal colonization was observed in the roots of

all the mangrove plant species examined. Roots of

different plant species exhibited the presence of

arbuscules and/or vesicles. Maximum root coloniza-

tion was recorded in Thespesia populnea (97.5%), an

associate mangrove species, while the least root

colonization was recorded in Avicennia marina

(20%). Hyphal colonization (aseptate hyphae or

mycelia are formed by AM fungi and can be differ-

entiated from endophytic hyphae which are septate)

was dominant in T. populnea. During our study,

vesicles were recorded in all the plant species analyzed

whereas arbuscules were rarely encountered in true

mangroves (Table 3).

The maximum spore density was recorded in

Ceriops tagal (138 spores/100 g of soil) and the

minimum in Acrostichum aureum (20 spores/100 g of

soil). Kandelia candel supported the greatest AM

fungal species richness with 13 spore morphotypes. A

total of 31 AM fungal species belonging to 9 genera

were recorded (Fig. 3). Acaulospora (13 spp.) was the

dominant genus followed by Glomus (6), Gigaspora

(4), Rhizophagus and Funneliformis (2 spp. each),

Claroideoglomus, Sclerocystis, Entrophospora and

Scutellospora (1 sp. each). Acaulospora dilatata

(818 spores of total 2568 spores of all the AM species)

was the dominant species found occurring in 13 plant

species (Table 4).

AM fungal distribution and diversity indices

Shannon–Wiener diversity (H0) and Simpson’s dom-

inance index (D) was highest in K. candel and lowest

in D. heterophylla (Fig. 4). Species evenness was

highest in A. marina and was least in C. tagal and E.

Agallocha. Maximum species richness was recorded

in K. candel (Fig. 5).

Acaulospora dilatata recorded the highest relative

abundance (RA) while the least was recorded for C.

etunicatum, G. tortuosum, G. radiatum, Gi. margarita

and S. sinuosa. Maximum isolation frequency (IF) was

observed for A. dilatata and minimum forA. mellea, A.

myriocarpa, C. etunicatum, G. tortuosum, G. radia-

tum, Gi. margarita, Gi. gigantea, Gi. decipiens and S.

sinuosa (Table 5).

Species richness showed non-significant (P[ 0.05)

correlation with Simpson’s dominance index

(r = 0.376) and with species evenness (r = 0.061)

and a significant correlation with Shannon’s diversity

index (r = 0.744, P\ 0.001). However, species even-

ness showed a significant correlation with Shannon

diversity (r = 0.683, P\ 0.01) and Simpson’s domi-

nance index (r = 0.747, P\ 0.01). A significant

correlation was observed between Shannon and

Simpson’s diversity indices (r = 0.816, P\ 0.01).

A significant correlation existed between RA and IF

(r = 0.899, P\ 0.001). In contrast, no correlation

(P[ 0.05) was observed between spore density and

root colonization (r = 0.277). Similarly, spore density

and species richness had a negative correlation

(r = - 0.193) that was not significant (P[ 0.05).

The AM fungal species similarity index was highest

for A. officinalis and A. marina (66.67%) and

Aegiceras corniculatum showed less similarity with

most of the plant species (Table 6).

Cluster analysis

Cluster analysis was performed based on the RA of

AM fungal species in true- and associate-mangrove

plants. All the plants were grouped into four clusters

viz., Cluster I, Cluster II, Cluster III, and Cluster IV at

a similarity level of 26%. Aegiceras corniculatum was

not a part of any of the clusters. Cluster III was

subdivided into two sub-clusters at 53% similarity.

Cluster I showed A. undulata as a representative

species with a similarity of 28.10%. In Cluster II, IIIb,

and IV, A. dilatata showed the maximum similarity

Table 2 Paired sample t-test to compare soil parameters

between true- and associate-mangrove plants

Pairs of variables t df P (2-tailed)

Pair 1 pH1–pH2 - 0.653 2 0.581

Pair 2 EC1–EC2 5.435 2 0.032

Pair 3 OC1–OC2 5.125 2 0.036

Pair 4 N1–N2 20.000 2 0.002

Pair 5 P1–P2 - 1.070 2 0.397

Pair 6 K1–K2 0.000 2 1.000

Pair 7 Zn1–Zn2 2.147 2 0.165

Pair 8 Cu1–Cu2 6.289 2 0.024

Pair 9 Fe1–Fe2 6.803 2 0.021

Pair 10 Mn1–Mn2 2.308 2 0.147

1 stand for true mangrove; 2 stands for associate mangrove
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(20.33%, 21.41%, and 23.26% respectively).

Whereas, R. fasciculatus showed the highest similarity

level of 32.69% in Cluster IIIa (Fig. 6).

Discussion

As AM fungi are ubiquitous and ecologically signif-

icant symbionts of plants, they are affected by various

biotic and abiotic factors (Liu et al. 2012). Mangrove

soils of Chorao Island are acidic and silty clay. In

mangrove forests, sedimentation of clay particles

takes place as these forests are enclosed and protected

environments with low-energy waters (Hossain and

Nuruddin 2016). The study revealed the dominance of

Acaulospora dilatata. Similar observations have been

recorded earlier by D’souza and Rodrigues (2013a)

who reported the dominance of genus Acaulospora in

acidic mangrove soils of Goa. Giovannetti et al. (2010)

observed that genus Acaulospora is predominant in

low pH soils (\ 6.0). Species of Glomus are more

common in neutral to slightly alkaline soils (Kumar

and Ghose 2008), while species of Gigaspora and

Scutellospora are dominant in sandy soils (Lee and

Koske 1994).

In the present study, most of the soil nutrient levels

(including available P) in both true and associate

mangroves were low. It is commonly reported that AM

colonization and soil P are negatively correlated

(Wang et al. 2010a). Hence, AM fungi are known to

thrive better in nutrient deficient soil especially P

(Hindumathi and Reddy 2011; Sridhar et al. 2011).

Besides they play an important role in plant commu-

nity development and enhancing plant nutrient acqui-

sition in nutrient deficient soils of mangroves (Sridhar

et al. 2011). In mangrove plants, root hairs are absent

or poorly developed which limits the absorption of

nutrients (Tomlinson 1986) and this feature would

make plants possibly mycotrophic for nutrient uptake

(Baylis 1975).

Table 3 Arbuscular mycorrhizal colonization in true and associate mangrove species

Family TC (%) HC (%) AC (%) VC (%)

True mangroves

Aegiceras corniculatum (L.) Blanco Myrsinaceae 70.28 ± 9.23bc 68.09 ± 6.40c nd 61.21 ± 6.80bc

Avicennia officinalis L. Acanthaceae 41.00 ± 1.00efg 34.77 ± 0.35fg nd 23.15 ± 1.39ef

Avicennia marina (Forssk.) Vierh. Acanthaceae 20.00 ± 2.89h 13.25 ± 4.42j nd 6.08 ± 1.01h

Bruguiera cylindrica (L.) Blume Rhizophoraceae 30.99 ± 7.47fgh 21.59 ± 4.31i nd 11.45 ± 2.29gh

Ceriops tagal (Perr.) C.B. Rob. Rhizophoraceae 58.20 ± 7.66cde 57.12 ± 5.25d 35.42 ± 5.06b 51.66 ± 6.31d

Excoecaria agallocha L. Euphorbiaceae 74.00 ± 1.00bc 59.16 ± 7.95d 41.9 ± 4.66b 47.50 ± 8.00d

Kandelia candel (L.) Druce Rhizophoraceae 35.16 ± 7.43fgh 29.84 ± 3.73gh nd 22.40 ± 5.6ef

Rhizophora apiculata Blume Rhizophoraceae 49.08 ± 0.92defg 33.85 ± 4.23fg nd 9.23 ± 1.84gh

Rhizophora mucronata Lam. Rhizophoraceae 42.93 ± 11.09efg 37.46 ± 5.35ef nd 12.27 ± 1.75gh

Sonneratia alba Sm. Lythraceae 31.04 ± 7.77gh 24.08 ± 3.01hi nd 16.36 ± 2.73fg

Sonneratia caseolaris (L.) v Lythraceae 50.34 ± 6.42def 43.57 ± 3.00e nd 26.57 ± 1.50e

Mangrove associates

Acanthus ilicifolius L. Acanthaceae 69.21 ± 0.79bc 63.81 ± 3.80 cd 38.69 ± 4.30b 54.76 ± 7.48 cd

Acrostichum aureum L. Pteridaceae 44.34 ± 5.66efg 40.13 ± 5.73ef 18.65 ± 3.10c 29.54 ± 3.28e

Clerodendrum inerme (L.) Gaertn. Lamiaceae 75.00 ± 10.41bc 69.03 ± 7.67bc 36.92 ± 4.62b 64.36 ± 7.15b

Derris heterophylla (Willd.) K. Heyne Fabaceae 85.00 ± 4.08ab 75.38 ± 0.50b nd 48.82 ± 5.05d

Pongamia pinnata (L.) Pierre Leguminosae 64.10 ± 5.90 cd 63.93 ± 7.10 cd nd 48.91 ± 5.43d

Thespesia populnea (L.) Sol. ex

Corrêa

Malvaceae 97.50 ± 2.04a 89.42 ± 6.84a 58.78 ± 6.53a 78.59 ± 4.99a

All values are mean of three readings; ± = standard error; Values in the same column not sharing the same letters are significantly

different (P B 0.05)

nd = not detected; TC, HC, AC, VC = root length containing total colonization, hyphae, arbuscules, and vesicles respectively
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In this study, associate mangrove plants exhibited

higher AM colonization than true mangroves. Wang

et al. (2014), reported similar observations in semi-

mangrove communities in China. Gupta et al. (2002)

reported the absence of AM colonization in three

associate mangrove species viz., A. ilicifolius, A.

aureum, and D. heterophylla while considerably high

colonization in these plant species was recorded in the

present study. Earlier studies have demonstrated that

the intensity of colonization is higher in drier areas

(Wang et al. 2010a, b). Therefore, in our study

increased colonization rates in associate mangrove

plants could be due to their distribution in the

landward area of mangrove habitat.

a b c d

gf h
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m

l

n o p

e

Fig. 3 Arbuscular mycorrhizal fungal species. a Acaulospora
dilatata; b Acaulospora foveata; c Acaulospora polonica;

d Acaulospora rehmii; e Acaulospora scrobiculata;

f Acaulospora undulata; g Entrophospora sp.; h Funneliformis

geosporum; i Funneliformis mosseae; j Gigaspora albida;

k Glomus flavisporum; l Glomus macrocarpum; m Glomus
microcarpum; n Rhizophagus fasciculatus; o Rhizophagus
intraradices; p Sclerocystis rubiformis
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Roots of associate mangroves plant species had a

high percentage of TC, HC, and VC and recorded

arbuscules in more plant species compared to true

mangroves. Hence, their scantiness in true mangroves

could be due to their sensitivity towards inundated and

saline environments (Wang et al. 2014). Zhao (1999)

suggested that factors such as host species, phenology,

mycorrhizal dependency, dormancy, and changes in

Table 4 Spore density (SD) and diversity of arbuscular mycorrhizal fungi

SD (spores/100 g

of soil)

AM fungal species

True mangroves

Aegiceras
corniculatum

105 ± 2.50b AcDi, AcLa, AcRe, AcMy, GiGi

Avicennia
officinalis

34 ± 9.61efghi AcGi, AcDel, ClEt, FuGe, FuMo, RhIn

Avicennia
marina

39 ± 3.00efgh AcDi, FuGe, RhFa, RhIn

Bruguiera
cylindrica

30 ± 7.51fghi AcDi, AcUn, AcLa, FuGe, RhFa, RhFn, ScRu

Ceriops tagal 138 ± 10.84a AcDi, AcFo, AcMe, AcUn, FuGe, FuMo, GlFl, RhFa, RhIn, ScRu

Excoecaria
agallocha

57 ± 10.90c AcDi, AcSc, AcUn, AcBi, FuGe, FuMo, GiAl, RhFa, RhIn

Kandelia
candel

24 ± 3.38hi AcDi, AcSc, AcUn, AcDe1, AcDe2, FuGe, FuMo, GlMa, GlFl, ScSi, RhFa, Scutellospora
sp. (unidentified), Entrophosphora sp. (unidentified)

Rhizophora
apiculata

36 ± 11.24efgh AcDi, AcSc, AcNi, FuGe, GiAl, RhFa, RhIn

Rhizophora
mucronata

96 ± 10.14b FuGe, GlRa, RhFa, RhIn, ScRu

Sonneratia alba 58 ± 9.5defg AcDi, AcSc, AcUn, FuGe, GlTo, RhFa

Sonneratia
caseolaris

94 ± 10.00de AcDi, AcSc, AcRe, FuGe, RhFa, Scutellospora sp. (unidentified)

Mangrove associates

Acanthus
ilicifolius

26 ± 3.46ghi AcDi, AcFo, AcSc, AcLa, AcNi, FuGe, GlMa, RhFa, RhIn, ScRu, Entrophospora sp.

(unidentified)

Acrostichum
aureum

20.00 ± 8.00i AcDi, AcSc, AcBi, AcDe2, AcRe, FuGe, GlMu,

Clerodendrum
inerme

129 ± 5.51a AcDi, AcFo, AcLa, GlMa, RhFa

Derris
heterophylla

59.50 ± 2.50cd AcUn, AcNi, RhFa

Pongamia
pinnata

37.50 ± 7.50efgh AcFo, AcSc, AcUn, AcSp, GiMa, GiDe

Thespesia
populnea

47.67 ± 1.67def AcDi, AcDe2, AcRe, AcSp, FuGe, GlMu, RhFa

All values are mean of three readings; ± = standard error; Values in the same column not sharing the same letters are significantly

different (P B 0.05)

AM species: AcDi = Acaulospora dilatata, AcFo = A. foveata, AcMe = A. mellea, AcSc = A. scrobiculata, AcUn = A. undulata,

AcDe1 = A. denticulata, AcLa = A. laevis, AcBi = A. bireticulata, AcDe2 = A. delicata, AcNi = A. nicolsonii, AcRe = A. rehmii,
AcMy = A. myriocarpa, AcSp = A. spinosa, ClEt = Claroideoglomus etunicatum, FuGe = Funneliformis geosporum,

FuMo = F. mosseae, GlMa = Glomus macrocarpum, GlTo = G. tortuosum, GlFl = G. flavisporum, GlMu = G. multicaule,

GlRa = G. radiatum, GiMa = Gigaspora margarita, GiGi = Gi. gigantea, GiDe = Gi. decipiens, GiAl = Gi. albida,

RhFa = Rhizophagus fasciculatus, RhIn = R. intraradices, ScRu = Sclerocystis rubiformis, ScSi = S. sinuosa
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soil conditions contribute to the variation in AM

fungal colonization and spore density. However,

Derris species showed least AM species richness as

observed in an earlier study by D’souza and Rodrigues

(2013a). Sridhar et al. (2011) however recorded high

species richness in the same plant species and

suggested that AM species richness is dependent on

a host plant. Also, incompatibility between AM fungal

species and the host plant (host preference), and

environmental conditions (environmental preference)

may result in lesser species richness (He et al. 2002;

Jansa et al. 2002, 2014; Trejo et al. 2013).

In the present study, low AM fungal spore density

was recorded in rhizosphere soils of both true and

associate mangroves. This is in conformity with an

earlier study by Kumar and Ghose (2008). Salinity and

tidal currents could be responsible for low spore

density in the mangrove environment (Wang et al.

2014). Balachandran and Mishra (2012) however

reported high spore density and root colonization in

heavy metal polluted mangroves sites.
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Fig. 4 Shannon and Simpson’s diversity indices of arbuscular mycorrhizal fungi
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In the present study, a significant positive correla-

tion between RA and IF of AM species was observed

indicating that the species producing more spores have

a wide distribution, while those producing fewer

spores have small geographic ranges (Dandan and

Zhiwei 2007).

The genus Gigaspora recorded low relative abun-

dance compared to other AM genera. Species belong-

ing to Gigasporaceae predominates in sandy soils

especially sand dunes (Day et al. 1987; Lee and Koske

1994). The soil at Chorao Island is less sandy which

could have resulted in a lower abundance of the

species of genus Gigaspora.

In the present study, a total of 31 AM species were

recovered from 17 mangrove species indicating that

the site is diverse in AM species. High environmental

heterogeneity in mangrove habitats may assist in

higher AM diversity (Fabián et al. 2018). Flooding has

been identified as the cause of heterogeneity and

dynamics of these ecosystems (Simoes et al. 2013) that

might affect the distribution of AM fungi.

Moreover, in the present study, a high AM species

similarity (up to 66.67%) indicated broad dispersal of

AM species. Similar observations were recorded in an

earlier study in Nethravathi mangroves where the AM

species similarity ranged from 12.1 to 55% (Sridhar

Table 5 Relative

abundance (RA) and

isolation frequency (IF) of

arbuscular mycorrhizal

fungi

RA (%) IF (%)

Acaulospora dilatata Morton 30.69 82.35

Acaulospora foveata Trappe & Janos 4.66 23.53

Acaulospora mellea Spain & Schenck 0.10 5.88

Acaulospora scrobiculata Trappe 4.28 47.06

Acaulospora undulata Sieverd 4.56 41.18

Acaulospora denticulata Sieverd. & Toro 0.24 11.76

Acaulospora laevis Gerd. & Trappe 2.24 23.53

Acaulospora bireticulata Rothwell & Trappe 0.28 11.76

Acaulospora delicata Walker, Pfeiff. &Bloss 1.00 17.65

Acaulospora nicolsonii Walker, Reed & Sanders 3.94 17.65

Acaulospora rehmii Sieverd. & Toro 1.35 23.53

Acaulospora myriocarpa Spain, Sieverd. & Schenck 5.87 5.88

Acaulospora spinosa Walker & Trappe 0.07 11.76

Claroideoglomus etunicatum (Becker & Gerd.) Walker & Schüßler 0.03 5.88

Entrophospora sp. (unidentified) 0.41 11.76

Funneliformis geosporum (Nicolson & Gerd.) Walker & Schüßler 12.88 76.47

Funneliformis mosseae (Nicolson & Gerd.) Walker & Schüßler 1.42 23.53

Glomus macrocarpum Tul. & Tul. 0.72 17.65

Glomus tortuosum Schenck & Sm. 0.03 5.88

Glomus flavisporum (Lange & Lund) Trappe & Gerd. 0.07 11.76

Glomus multicaule Gerd. & Bakshi 0.03 11.76

Glomus radiatum (Thaxt.) Trappe & Gerd. 0.10 5.88

Gigaspora margarita Becker & Hall 0.03 5.88

Gigaspora gigantea (Nicolson & Gerd.) Gerd. & Trappe 0.03 5.88

Gigaspora decipiens Hall & Abbott 0.21 5.88

Gigaspora albida Schenck & Sm. 0.07 11.76

Rhizophagus fasciculatus (Thaxt.) Gerd. & Trappe 0.17 76.47

Rhizophagus intraradices (Schenck & Sm.) Walker & Schüßler 19.92 47.06

Sclerocystis rubiformis Gerd. & Trappe 4.14 23.53

Sclerocystis sinuosa Gerd. & Bakshi 0.31 5.88

Scutellospora sp. (unidentified) 0.14 11.76
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Table 6 Jaccard’s similarity index (%) of arbuscular mycorrhizal fungi among the mangrove plant species

AO AM BC CT EA KC RA RM SA SC AI AA CI DH PP TP

AC 10.00 12.50 20.00 7.14 7.69 5.88 9.09 0.00 10.00 22.22 14.29 20.00 25.00 0.00 0.00 20.00

AO 66.67 44.44 33.33 36.36 26.67 30.00 22.22 20.00 20.00 21.43 18.18 10.00 0.00 0.00 18.18

AM 57.14 40.00 44.44 21.43 57.14 50.00 42.86 42.86 36.36 22.22 28.57 16.67 0.00 37.50

BC 54.55 45.45 25.00 40.00 50.00 44.44 30.00 50.00 16.67 33.33 25.00 8.33 27.27

CT 46.15 35.29 30.77 36.36 33.33 23.08 40.00 13.33 25.00 18.18 14.29 21.43

EA 37.50 60.00 27.27 50.00 36.36 33.33 33.33 7.69 20.00 15.38 23.08

KC 25.00 12.50 35.71 35.71 26.32 25.00 20.00 14.29 11.76 25.00

RA 33.33 44.44 44.44 50.00 27.27 20.00 25.00 8.33 27.27

RM 22.22 22.22 33.33 9.09 11.11 14.29 0.00 20.00

SA 50.00 30.77 30.00 22.22 28.57 20.00 30.00

SC 30.77 44.44 22.22 12.50 9.09 44.44

AI 20.00 45.45 16.67 13.33 20.00

AA 9.09 0.00 8.33 40.00

CI 14.29 10.00 20.00

DH 12.50 11.11

PP 8.33

AC = Aegiceras corniculatum, AO = Avicennia officinalis, AM = Avicennia marina, BC = Bruguiera cylindrica, CT = Ceriops
tagal, EA = Excoecaria agallocha, KC = Kandelia candel, RM = Rhizophora mucronata, RA = Rhizophora apiculata,

SA = Sonneratia alba, SC = Sonneratia caseolaris, AI = Acanthus ilicifolius, AA = Acrostichum aureum, CI = Clerodendrum
inerme, DH = Derris heterophylla, PP = Pongamia pinnata, TP = Thespesia populnea

Fig. 6 Cluster analysis showing similarity in the abundance of AM fungal species among true- and associate-mangrove plants
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et al. 2011). Movement of AM fungal species from

adjoining terrestrial habitats to intertidal zones of

mangrove ecosystem (Wang et al. 2014) could be the

cause of similarity in genus and species composition in

true mangroves that inhabit intertidal zone areas and

associate mangrove plants from the landward periph-

ery of mangrove habitat.

Our study revealed non-uniform distribution and

community structure of AM fungi associated with

different true and associate mangrove plants that

varied significantly. Also, appreciable diverse forms

of AM species in the study area support to conclude

that these species can tolerate high salinity. The

identification of abundant and recurrent AM species

among the mangrove plants, ascertain the fact that

these species could be used efficiently in re-establish-

ment of mangrove habitats. Further research requires a

meticulous study of seasonal effects as well as soil

parameters on AM fungal growth in the mangrove

environment.
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Abstract
The diversity and species distribution of arbuscular mycorrhizal (AM) fungi were analyzed in mangrove patches of the 
Pichavaram Forest. The AM fungal colonization, spore density, and diversity indices in 18 species of true- and associate-
mangrove were investigated. Soil analysis results indicated low levels of available nutrients, especially phosphorus (P), with 
soil being neutral to slightly alkaline, having high electrical conductivity. Some of the earlier reported non-mycorrhizal plant 
families also showed AM symbiosis with a high degree of root colonization. All the species at the three sites explored showed 
significant variation in AM fungal root colonization and spore density. The salt marsh species Salicornia brachiata showed 
the highest degree of root colonization. Overall 21 AM species belonging to seven genera were recovered from the mangroves 
of Pichavaram Forest. Statistical analysis showed that relative abundance and isolation frequency of AM fungal species were 
positively correlated. Among AM fungi, species belonging to the family Glomeraceae were dominant. Our results indicated 
that AM fungal communities differ with the change in soil conditions within the short distances among the habitats.

Keywords AM fungal diversity indices · Isolation frequency · Phosphorus · Relative abundance · Soil electrical 
conductivity · Sørensen’s coefficient · Spore density

Introduction

Mangrove is a highly productive wetland ecosystem occu-
pying the marine intertidal zone in tropical and sub-tropical 
regions. Mangroves are rich and diverse in living resources 
and hence increase the economic and ecological value of the 
ecosystem (Kathiresan 2000). However, there are several 
causes of mangrove destruction, hypersalinity being one of 
the causes at Pichavaram (Bhatt and Kathiresan 2011) and 
Sundarbans (Selvam et al. 2002). Besides, the mangrove 
ecosystems have become a focus of conservation and envi-
ronmental issues (Gopinathan et al. 2017).

Mangroves show substantial tolerance to salinity, inunda-
tion, and nutrient stress. However, they have been degraded 
drastically all over the world, mainly due to nutrient limi-
tations (P deficiency) and human interference (Xie et al. 
2014). Studies have shown that the P availability is low in 
mangrove ecosystems as it is absorbed and co-precipitated 

within carbonate-dominated environments, thus limiting the 
growth of mangrove plants (Lovelock et al. 2004). Hence, 
the protection and restoration of mangrove ecosystems have 
become a global concern (Krauss et al. 2008).

Pichavaram Forest is known to be the world’s second-
largest mangrove forest (Mariappan et al. 2016) after Sunda-
rbans with Avicennia marina and Rhizophora species being 
predominant (Kathiresan 2000). It is situated between Vel-
lar estuary (North) and Coleroon estuary (South) (Srivas-
tava et al. 2012) on the Coromandal coast (Bay of Bengal 
Sea Board) (Lingan et al. 1999). It receives three types of 
waters viz., neritic, brackish, and freshwater from the Bay of 
Bengal, Vellar-Coleroon estuaries, and irrigation and main 
channel of Coleroon river, respectively (Kathiresan 2000).

Arbuscular Mycorrhizal (AM) fungi are the ‘hidden 
heroes’ of nutrient-deficient soil, especially P (Hindumathi 
and Reddy 2011), which helps in increased uptake of min-
eral nutrients and improve stress tolerance in exchange for 
carbon (Smith and Read 2008). The saline and anaerobic 
conditions of the mangrove rhizosphere limit the occurrence 
of AM fungi in these environments (Wang et al. 2010). Vari-
ous AM fungal species colonizing the roots of different plant 
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species play a crucial role in the regeneration, diversity, and 
distribution of plant communities (Nandi et al. 2014).

To establish conservation strategies, it is important to 
explore the ecological framework of the habitat. Accord-
ingly, the objective of this investigation was to study the 
AM fungal diversity and to record the dominant AM fungal 
species associated with the mangrove plants of Pichavaram 
Forest. The present study also investigates the effect of vari-
ous soil parameters on the distribution of AM fungi.

Materials and methods

Study site and sample collection

Pichavaram Forest (11°20’–11°30’ N; 79°45’–79°55’ E) is 
situated on the southeast coast of India. It is a mangrove 
swamp located in the Vellar-Coleroon estuarine complex. 
The total area of the Pichavaram Forest is 1100 ha, traversed 
by 51 islets (Kathiresan 2000). About 241 ha of the entire 
forest is occupied by dense mangrove cover (Srivastava et al. 
2012; Arunprasath and Gomathinayagam 2014). The aver-
age annual rainfall is 1310 mm (Selvam et al. 2003).

In the present study, 18 plant species with each of nine 
true- and associate-mangroves belonging to 12 families were 
investigated. The 18 plants were randomly selected based on 
the ease of soil collection. The rhizosphere samples were 
collected from three mangrove sites of Pichavaram Forest 
viz., Pichavaram extension (PE), Pichavaram Reserved For-
est (PRF), and Killai Reserved Forest (KRF) (Fig. 1).

The collection of soil and root samples was carried out 
from November 2015 to October 2016. The root system of 

each plant was dug up to trace and collect the roots belong-
ing to that plant.

Three rhizosphere soil samples were collected from 
each plant species, placed in separate sealed bags, labeled, 
and brought to the laboratory. These three samples of each 
plant species were then separately mixed to form a compos-
ite sample. The roots were separated from adhering soil, 
washed gently under tap water, and used for assessment of 
AM colonization.

Each composite soil sample was divided into two parts, 
one for AM spore isolation, enumeration, and identification, 
and the other as inocula to prepare trap cultures.

Soil analyses

To carry out the soil analyses triplicates of rhizosphere sam-
ples (0–15 cm) from three different estuarine regions of the 
study site were collected in separate sealed bags, brought to 
the laboratory, and were air-dried. To measure soil pH and 
electrical conductivity (EC), a soil–water suspension (40% 
w/v) was prepared. The pH was measured using a pH meter 
(LI 120 Elico, India), and the EC was measured using a con-
ductivity meter (CM-180 Elico, India). Available Nitrogen 
(N) and P were measured using the methods of Subbiah and 
Asija (1956) and Bray and Kurtz (1945), respectively. For 
the detection of soil available potassium (K), the ammonium 
acetate method (Hanway and Heidel 1952) was employed. 
The determination of available Zinc (Zn), Copper (Cu), 
Manganese (Mn), and Iron (Fe) was done by the DTPA-
CaCl2-TEA method of Lindsay and Norvell (1978) using an 
atomic absorption spectrophotometer (Nova 400P, Analytik 
Jena, Germany).

Assessment of root colonization

Approximately one-centimeter-long root segments were 
hydrolyzed in 10% KOH at 90 °C for 90 min, followed by 
acidification in 2 N HCl for 5 min. Root segments were then 
stained overnight with 0.05% Trypan blue (Phillips and Hay-
man 1970). After staining, root segments were mounted on 
glass slides using polyvinyl alcohol Lacto-glycerol (PVLG) 
as a mountant and examined under a Brightfield Olympus 
BX41 research microscope (40 × , 100 × and 400 ×). A root 
segment was considered mycorrhizal if it showed the pres-
ence of hyphae, arbuscules, and/or vesicles.

Percent AM root colonization was estimated using the 
following formula:

Isolation, identification, and spore density of AM 
fungi

For the identification of AM fungal species, spores from 
rhizosphere samples (n = 3) and trap cultures were isolated 
using a wet sieving and decanting method (Gerdemann and 
Nicolson 1963). Spore morphology, wall characteristics, 
dimensions, and other relevant data were observed for the 
identification of the AM spores. The spore characters were 
compared with the descriptions given by Schenck and Perez 
(1990), Rodrigues and Muthukumar (2009), and the Interna-
tional Collection of Vesicular Arbuscular Mycorrhizal Fungi 
(INVAM). Revised binomials and epithets of AM fungal 
species were followed according to the reference of Schüßler 
and Walker (2010) and Redecker et al. (2013). Intact, healthy 

% colonization = (Number of root segments colonized ÷ Total number of root segments observed) × 100
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spores from rhizosphere samples were selected for the esti-
mation of spore density by the modified method of Gaur and 
Adholeya (1994).

Preparation of trap cultures

Trap cultures were prepared by following the modified trap 
culture method of Morton et al. (1993) to multiply AM fun-
gal spores using the substrate mixture of rhizosphere and 
sterile sand (1:1) in the pots. Coleus (Plectranthus scutel-
larioides) was used as the catch plant. Coleus cuttings were 
first washed with tap water and then with detergent water. 
The cuttings were then rinsed in sterile water. Three to four 

cuttings were planted per pot and, the pots were maintained 
for six months in the polyhouse (27 ˚C, 63% relative humid-
ity) for the establishment of colonization and subsequent 
sporulation. The plants were watered twice a week, and 
Hoagland’s solution (Hoagland and Arnon, 1950) without 
P was added every 20 days. The cultures were harvested 
at the end of the 6th month and the spores were used for 
identification.

Data analysis

To quantify diversity, Simpson’s diversity index, Shan-
non diversity index, species evenness, isolation frequency, 

Fig. 1  Map of Pichavaram For-
est showing study areas
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relative abundance, and species richness were calculated in 
PRIMER v. 6.0 using the following formulae:

The diversity of AM fungi in plant species was assessed 
based on the Shannon- Wiener index of diversity (H) (Shan-
non and Weaver 1949) and Simpson`s index of dominance 
(D) (Simpson 1949),

(where pi is the proportions of individual that species i con-
tributes to the total number of individuals)

(where n is the number of individuals of a given species, 
and N is the total number of individuals in a community).

The evenness (E) indicates the distribution of individuals 
within species of AM fungi in plant species.

(where H´max = lnS, S = total number of species in the 
community).

Relative abundance (%)

= (No. of spores of a species per genus

÷Total no. of spores in all soil samples) × 100

AMF species richness (SR)

= Number of AM species per soil sample.

Shannon index (H)= −
∑

(pi ln pi)

Simpson
�

s index (D) = 1 −
(

∑

n(n − 1)∕N(N − 1)
)

Species evenness
[

∑

(H)
]

= H
�

∕H
�

max

All data were statistically analyzed using SPSS (Statisti-
cal Package for the Social Sciences) (Version 22) software. 
A one-way ANOVA was done to test the variation in spore 
density and root colonization among plant species. Pear-
son’s correlation coefficient was calculated to evaluate the 
relationships between root colonization and spore density 
and isolation frequency and relative abundance. The similar-
ity between the plant species was estimated by calculating 
Sørensen’s similarity coefficient based on the presence or 
absence of each AM fungal species (Dandan and Zhiwei 
2007).

Results and discussion

Soil properties

Soil physico-chemical properties are presented in Table 1. 
Soils of Pichavaram Forest are neutral to slightly alkaline 
(6.9–7.6). The alkaline pH at PE could be due to the inflow 
of a high amount of freshwater from the Coleroon River 
(Sahua and Kathiresan 2019). Soil electrical conductivity 
(EC) ranges were between 4.47 and 5.0 mS/cm. The higher 
EC value at KRF may be attributed to less influx of freshwa-
ter and vegetation cover. In contrast, lower soil EC is appar-
ent at other sites due to freshwater input from irrigation and 
Coleroon River and thick forest canopy, which decreases 
evapotranspiration (Ranjan et al. 2010).

All the sites were low in available nutrients, especially 
P. This may be explained by the flow of water causes the 
leaching of soil nutrients (Gandaseca et al. 2016), and P is a 
highly leached element (Oelkers and Jones 2008).

Nutrients in mangrove ecosystems are controlled by a 
variety of biotic and abiotic factors viz., inundation, soil 
type, soil microbes, plant species, litter production, and 
decomposition (Reef et al. 2010). The Pichavaram mangrove 
ecosystem consists of small Islands that experience micro-
and diurnal-tides (Selvam et al. 2003). The frequency and 
period of tidal inundation are determined by topographic 
factors such as elevation, which subsequently affects the 
salinity and soil nutrient availability, resulting in complex 
patterns of nutrient demand and supply (Reef et al. 2010). 
Furthermore, increased soil salinity decreases the avail-
ability of major nutrients such as N, P, K due to their pre-
cipitation and variation in nutrient metabolism (Evelin et al. 
2009). Salinity affects N metabolism by interfering in uptake 
and reduction of  NO3

− and correspondingly in protein syn-
thesis (Frechill et al. 2001). In saline soils, P becomes una-
vailable to the plants due to the precipitation of phosphate 
ions with  Ca2+,  Mg2+, and  Zn2+ (Azcόn-Aguilar et al. 1979). 

Table 1  Soil physico-chemical properties of the study sites

Data are means of three replicates; ± standard error
PE Pichavaram extension, PRF Pichavaram reserve forest, KRF Killai 
reserve forest
Values in the same row not sharing the same letters are significantly 
different (P ≤ 0.05)

Soil Parameters PE PRF KRF

pH 7.6 ± 0.8a 7.0 ± 0.8ab 6.9 ± 0.8b

EC (mS/cm) 5.1 ± 0.6ab 4.3 ± 0.6b 6.7 ± 0.6a

N (g/kg) 0.04 ± 0.005a 0.04 ± 0.01a 0.03 ± 0.01a

P (g/kg) 0.02 ± 0.004a 0.02 ± 0.01a 0.02 ± 0.01a

K (g/kg) 0.1 ± 0.02a 0.2 ± 0.04 a 0.1 ± 0.03a

Fe (ppm) 15.6 ± 1.7a 15.5 ± 1.7a 14.6 ± 1.6b

Mn (ppm) 7.9 ± 0.1a 7.3 ± 0.1b 6.12 ± 0.1c

Zn (ppm) 0.9 ± 0.1a 1.0 ± 0.1a 0.5 ± 0.1b

Cu (ppm) 1.8 ± 0.3b 2.0 ± 0.3ab 2.6 ± 0.4a
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When salt concentration in the soil increases, plants absorb 
more  Na+ which results in a reduction of  K+ uptake. This 
facilitates the competition between  Na+ and  K+ ions for the 
binding sites of cellular functions (Blaha et al. 2000).

The AM fungal structures may bind or eliminate NaCl, 
thereby conferring salt tolerance on the plants (Kaldorf et al. 
1999).

Colonization and spore density

AM fungal colonization was observed in the roots of all the 
mangrove plant species sampled. Maximum root coloniza-
tion was recorded in Salicornia brachiata (93.54%) at KRF 
and least in Avicennia marina (22.08%) at PRF. The low col-
onization in A. marina could be attributed to its occurrence 
in inundated areas. According to the earlier studies, AM 
fungi exhibit low tolerance to hypoxic conditions as they are 
aerobic microbes (Allaway et al. 2001; Wang et al. 2011). 
Previous publications have suggested that hyphal networks 
are initiators of colonization (Smith and Read 1997). High 
levels of soil salinity in salt marshes have been observed 
to reduce the extra-radical mycelia growth (Carvalho et al. 
2003). However, in the present study, S. brachiata showed a 
high degree of colonization despite a stressful environment.

Maximum spore density was recorded in Ceriops decan-
dra (270/100 g of soil) at PE and minimum in Rhizophora 
mucronata (8 spores/100 g of soil) at PRF (Table 2). Param-
eters such as inoculum density, root structure, genetic com-
patibility between host and AM fungi, edaphic factors, and 
soil microbes affect AM colonization rates and spore density 
(Zangaro et al. 2013; Sivakumar 2013). Likewise, AM fun-
gal community structure is affected by the tide level (Wang 
et al. 2011). This could be one of the reasons for maximum 
and minimum spore density in C. decandra and R. mucro-
nata, respectively, since the inundation level of the former 
plant is lower than the latter (Batool et al. 2014) at the study 
site. Inhibition of AM colonization seldom take place due 
to increased P level occurs in the wetland ecosystem (Kelly 
et al. 2004). However, higher rates of AM colonization in 
the present study may be attributed to low levels of P at all 
the sites investigated. The study revealed variation in root 
colonization and spore density. According to Hildebrandt 
et al. (2001), the intensity of AM colonization is not the 
same during the plant life cycle, and hyphae bundled with 
spore strings could be patchily distributed in the soil, which 
might lead to more spore counts in a single soil sample.

All the mangrove plants examined in the present study 
from Pichavaram were mycorrhizal. This contradicts the 
study of Mohankumar and Mahadevan (1986) who reported 
no AM association in Pichavaram mangroves, while Lingan 
et al. (1999) reported AM colonization in eight mangrove 

plants from the same site. It is interesting to observe that hal-
ophytes belonging to the family Chenopodiaceae are consid-
ered non- or poorly mycorrhizal (Juniper and Abbott 1993; 
Aliasgharzadeh et al. 2001; Wilde et al. 2009). However, 
the present study reveals clear evidence that species of Che-
nopodiaceae (now Amaranthaceae) family viz., Salicornia 
brachiata, Arthrocnemum indicum, Suaeda maritima, and 
S. monoica showed a high degree of AM colonization com-
pared to all the other mangrove plants which is in accord-
ance with Hildebrandt et al. (2001) and Yinan et al. (2017).

Diversity and distribution

A total of 21 AM fungal species belonging to seven genera 
were recovered. Among them, eight species belonged to the 
genus Acaulospora, one to Entrophospora, two to Funneli-
formis, three to Gigaspora, two to Glomus, three to Rhizo-
phagus, and two to Sclerocystis. Rhizophagus fasciculatus 
was found to be dominant at PE and PRF, whereas Fun-
neliformis geosporum was dominant at KRF (Table 3). The 
predominance of F. geosporum at KRF could be due to the 
dominance of salt marshes at the site, as F. geosporum is 
often dominant in salt marshes (Carvalho et al. 2004). Simi-
lar observations were reported by d’Entremont et al. (2018) 
in salt marshes of Minas Basin, Nova Scotia. They have also 
suggested that F. geosporum has been found globally and is 
one of the most halotolerant AM fungal species.

AM fungal species richness differed significantly. 
Goomaral et al. (2013) suggested that the AM fungal diver-
sity and community composition are affected by the host 
plant. This could be because the structure and functioning 
of different host plants vary (Chen et al. 2012). High envi-
ronmental heterogeneity could be another reason behind 
the high AM fungal richness observed in the present study. 
Flooding has been verified as the chief source for heteroge-
neity in wetlands (Simões et al. 2013).

The highest relative abundance (RA) and isolation fre-
quency (IF) of AM species were recorded in R. fascicula-
tus at PE and PRF and F. geosporum at KRF, respectively 
(Figs. 2, 3). A significant positive correlation was found 
between RA and IF at all the three sites (r = 0.94, P < 0.01 at 
PE; r = 0.75, P < 0.05 at PRF and r = 0.83, P < 0.01 at KRF). 
Some of the AM species, such as A. dilatata, A. undulata, 
Entrophospora sp, and R. irregulare showed low relative 
abundances but were widely distributed with high isolation 
frequencies. There was no significant correlation between 
spore density and root colonization at all three sites. In terms 
of genera, the highest RA was recorded in Rhizophagus at 
PRF, and the highest IF was recorded in Acaulospora and 
Funneliformis (Fig. 4).  
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Table 2  Percent root colonization (RC), spore density (SD) in Pichavaram mangroves

Data are means of three replicates; ± standard error
PE Pichavaram extension, PRF Pichavaram reserve forest, KRF Killai reserve forest, nd plant not detected at the site
a Indicates spores/100 g of soil
Values in each column followed by different letters are significantly different at P < 0.05

Plant Name PE PRF KRF

Percent Colonization *Spore density Percent Colonization *Spore density Percent Colonization *Spore density

True mangroves
 Aegiceras corniculatum 

(L.) Blanco (Myrsi-
naceae)

65.9 ± 0.8abc 79.0 ± 2.5 cd nd nd nd nd

 Avicennia marina (For-
ssk.) Vierh. (Acan-
thaceae)

27.6 ± 1.0f 89.0 ± 7.0c 22.1 ± 5.4f 64.0 ± 4.5e 40.2 ± 4.2c 87.0 ± 7.5c

 Avicennia officinalis L 
(Acanthaceae)

76.5 ± 1.5a 92.0 ± 4.5c 51.0 ± 1.0 cd 124.0 ± 9.0a nd nd

 Brugueira cylindrica 
(L.) Blume (Rhiz-
ophoraceae)

54.4 ± 0.58bcde 30.0 ± 8.0f 63.8 ± 8.8bc 105.0 ± 1.0bc nd nd

 Ceriops 
decandra(Griff.) 
W.Theob (Rhiz-
ophoraceae)

72.5 ± 7.5ab 270.0 ± 1.0a 27.5 ± 2.5f 90.0 ± 3.5 cd nd nd

 Excoecaria agallocha L 
(Euphorbiaceae)

77.0 ± 13.0a 60.0 ± 2.0e 22.7 ± 0.8f 79.0 ± 5.0de 90.0 ± 3.3a 96.0 ± 5.0c

 Lumnitzeraracemosa 
Willd (Combretaceae)

70.2 ± 11.9ab 142.0 ± 8.0b 65.0 ± 3.0b 114.0 ± 1.5ab nd nd

 Rhizophora apicu-
lata Blume (Rhiz-
ophoraceae)

37.5 ± 2.5ef 17.0 ± 0.5f 45.0 ± 5.0de 104.0 ± 4.5bc nd nd

 Rhizophora mucronata 
Lam (Rhizophoraceae)

nd nd 32.7 ± 0.7ef 8.0 ± 1.0f nd nd

Associate mangroves & 
salt marshes

 Arthrocnemum indicum 
(Willd.) Moq (Ama-
ranthaceae)

nd nd nd nd 65.4 ± 3.9b 38.0 ± 5.5e

 Clerodendrum inerme 
(L.) Gaertn (Lami-
aceae)

nd nd nd nd 88.5 ± 3.9a 127.0 ± 6.0b

 Salicornia brachiata 
Miq (Amaranthaceae)

nd nd nd nd 93.5 ± 0.2a 30.0 ± 3.5e

 Ipomoea pes-
caprae (L.) R. Br 
(Convolvulaceae)

nd nd nd nd 55.0 ± 7.5b 102.0 ± 6.5c

Phoenix paludosa Roxb. 
(Aracaceae)

nd nd 88.5 ± 3.9a 71.0 ± 11.5e nd nd

 Salvadora persica L 
(Salvadoraceae)

42.3 ± 3.9def 77.0 ± 6.5 cd nd nd nd nd

 Sesuvium portu-
lacastrum (L.) L 
(Aizoaceae)

50.0 ± 3.9cde 22.0 ± 0.5f nd nd nd nd

 Suaeda monoica Forssk. 
ex J.F.Gmel. (Amaran-
thaceae)

nd nd nd nd 88.5 ± 3.9a 67.0 ± 5.5d

 Suaeda maritima (L.) 
Dumort (Amaran-
thaceae)

58.0 ± 3.5bcd 71.0 ± 3.5de nd nd 89.0 ± 2.7a 161.0 ± 8.0a
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Table 3  Occurrence of AM species in Pichavaram mangroves

nd not detected, AM species: A. di Acaulospora dilatata, A. fo A. foveata, A. ni A. nicolsonii, A. po A. polonica, A. re A. rehmii, A. sc A. scrobic-
ulata, A. sp A. spinosa, A. un A. undulata, Entrophospora sp. Unidentified, F. geo Funneliformis geosporum, F. mos F. mosseae, G. alb Gigas-
pora albida, G. dec G. decipiens, G. mar G. margarita, G. agg Glomus aggregatum, G. mic G. microcarpum, R. fas Rhizophagus fasciculatus, R. 
int R. intraradices, R. irr R. irregulare, S. pac Sclerocystis pachycaulis, S. rub S. rubiformis, PE Pichavaram extension, PRF Pichavaram reserve 
forest, KRF Killai reserve forest

Plant Name PE PRF KRF

True mangroves
 Aegiceras corniculatum A. po, A. un, F. geo, R. fas, R. irr nd nd
 Avicennia marina R. fas, R. irr Entrophospora sp., R. fas A. un, F. geo, R. fas
 Avicennia officinalis A. di, A. un, Entrophospora sp., R. 

fas, R. irr
A. di, A. ni, Entrophospora sp., R. 

fas, R. irr
nd

 Brugueira cylindrica A. di, Entrophospora sp., F. geo, R. 
fas, R. irr

A. di, A. ni, Entrophospora sp., G. 
mic, R. fas, R. irr

nd

 Ceriops decandra Entrophospora sp., F. geo, R. fas, 
R. irr

R. fas, R. irr

 Excoecaria agallocha Entrophospora sp., G. alb, G. mic, 
R. fas, R. irr

A. fo, A. un, Entrophospora sp., F. 
geo, R. fas

A. di, A. un, F. geo, G. alb

 Lumnitzera racemosa Entrophospora sp., R. fas A. di, Entrophospora sp., F. geo, R. 
fas, R. irr

nd

 Rhizophora apiculata A. di, A. re, A. sc, A. un, 
Entrophospora sp., F. geo, R. fas

Entrophospora sp., R. fas, R. irr nd

 Rhizophora mucronata nd Entrophospora sp., R. irr nd
Mangrove associates and salt 

marshes
 Arthrocnemum indicum nd nd A. un, F. geo, G. alb, R. fas
 Clerodendrum inerme nd nd A. di, A. un, F. geo, G. dec, G. 

mar, R. int, S. pac, S. rub
 Salicornia brachiata nd nd A. di, F. geo, G. agg
 Ipomoea pes-caprae nd nd A. di, A. un, F. geo
 Phoenix paludosa nd A. di, A. un, F. geo nd
 Salvadora persica A. un, F. geo nd nd
 Sesuvium portulacastrum Entrophospora sp., F. geo, R. fas nd nd
 Suaeda monoica nd nd A. un, F. geo, S. rub
 Suaeda maritima A. po, A. sp, Entrophospora sp., F. 

geo, R. fas
nd A. di, A. un, F. geo, F. mos, R. fas

Fig. 2  Relative abundance 
of AM fungal species. PE 
Pichavaram extension, PRF 
Pichavaram reserve forest, KRF 
Killai reserve forest
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The AM fungal diversity and distribution were high at PE 
and PRF, (Fig. 5a–c). The dissimilarity in the sporulation 
ability of various AM fungal species results in the uneven-
ness of spore distribution (Bever et al. 1996). When compar-
ing the similarity of AM fungi and plant species investigated 
between the three sites, it was observed that Sørensen’s simi-
larity coefficient of AM fungal community, as well as plant 
community, was higher between PE and PRF (0.73 and 0.70 
respectively) (Fig. 5d). This indicates that the vegetation 
influences in determining the AM community structure, 

which may be due to the dependency of AM fungal spore 
formation, distribution, and development on plant diversity 
in the natural ecosystem (Zhang et al. 2004).

Moreover, several factors such as climatic factors, spa-
tial and temporal variation, vegetation, nutrient availability, 
host-preference, and differential sporulation ability of AM 
species can influence the distribution and community struc-
ture of AM fungi (Husband et al. 2002; Muthukumar and 
Udaiyan 2002; Renker et al. 2005). The occurrence of recov-
ered AM species from the saline rhizosphere of Pichavaram 
verifies their tolerance to high salinity levels.

Conclusion

The AM fungal diversity studies appear to be suitable for 
understanding the relationship between AM fungi and plant 
species, within the context of the restoration of various 
natural ecosystems. This is the first study to explore AM 
symbiosis in 18 mangroves (true- and associate- mangrove) 
plant species of Pichavaram Forest. The results of this study 
also indicate that the recovered AM fungal species from 
mangroves have the greater potential to assist plants in salt 
tolerance and hence may have a strong influence on the dis-
tribution of plants in saline soils. An important finding in our 
study is the presence of AM colonization in roots of plants 
belonging to the family Chenopodiaceae, which was oth-
erwise considered to be a non-mycorrhizal family. Further 
investigation is needed to check the AM fungal behaviour 
for different seasons and different phenological stages of the 
host plant along with tidal effects.

Fig. 3  Isolation frequency 
of AM fungal species. PE 
Pichavaram extension, PRF 
Pichavaram reserve forest, KRF 
Killai reserve forest
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