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ABSTRACT 

Health and safety are indispensable. Risk assessment is a principal management tool in 

ensuring not only the health and safety of people around but also identifying and eliminating 

hazards that may create harm to the environment. Decision making in risk assessment is 

mostly based on ambiguous data. The problem of risk assessment and decision making in 

static and dynamic conditions in maritime transportation is attempted here. The problem is 

dealt with using fuzzy, neutrosophic and plithogenic set theories. 

After the initial introduction and literature survey, the risk assessment problem related to 

maritime transportation is stated. The research problem is threefold: (i) checking the 

effectiveness of the tools like Bayesian belief network, evidential reasoning and fuzzy multi 

criteria decision making methods suitable for efficient reasoning under uncertainty (ii) 

creating a framework for estimating the risk in maritime transportation and (iii) introducing a 

framework for dynamic decision making in integrated approach/method 

Major solution methodologies used in this thesis are Interpretive structural modeling, fuzzy 

analytical network process, D-S theory of evidence, DSmT theory of evidence, fuzzy set 

theory, neutrosophic set theory, plithogenic set theory, methods for combining experts’ 

judgement and distance measures. 

In the first part, a new hybrid risk assessment method is devised suitable for applications in 

complex systems with many interconnected factors. The data are incomplete and fuzzy. 

Interpretive Structural Modelling is used to get the interrelations between factors. A fuzzy 

analytical network process is used to get the weight of the factors. The evidential reasoning 

approach is used to get the risk level of the system. A new alternative is added in the D-S 

theory of evidence to overcome its limitations when the series of evidence to be combined are 

in a high degree of conflict. The proposed alternative incorporated the possibility of error 

from experts while making judgements. 

In the second part, risk assessment and safety analysis of the marine systems is carried out. 

Three cases are formulated using the concept of neutrosophic logic IF-THEN rules, 

neutrosophic set theory and plithogenic set theory, respectively.   

In the real world, decisions are required to be taken in dynamic conditions. Here, factors 

influencing the decisions change periodically. Decision making in dynamic conditions 

requires the fusion of data gathered at different periods and different operating conditions. 

Such problem of decision making in dynamic conditions is dealt with in the last part of the 

thesis. This includes creating three operators: basic belief assignment operator, dynamic basic 

belief operator and dynamic weight vector operator. 



 
 

Keywords: Risk Assessment, Interpretive Structural Modelling, Fuzzy Analytical Network 

Process, D-S Theory of Evidence, DSmT Theory of Evidence, Fuzzy Set Theory, 

Neutrosophic Set Theory, Plithogenic Set Theory, Basic Belief Assignment Operator, 

Dynamic Basic Belief Assignment Operator, Dynamic Weight Vector Operator 
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Chapter 1 

Introduction 

1.1 General 

Nowadays, in industries, there is a growing awareness of safety. Safeguarding their 

employees, assets and protecting the environment is the top priority of every organisation. 

The regulatory bodies formulate and enforce laws in industries for safe operations to lower 

the chances of accidents. By properly managing and adhering to safe working practices, the 

occurrence of accidents can be reduced and safety at work can be improved. But accidents are 

unplanned and unexpected events. Therefore, there is a pressing need for proper risk 

assessment. Accidents are not caused by only one factor but these are events influenced by 

complex causation between varieties of factors. Hence identifying hazards and associated 

risks are fundamental and form the basis of such approaches. 

The problems of risk assessment and decision making in static, as well as in dynamic 

conditions in maritime transportation, are addressed in this research work. Fuzzy, 

neutrosophic and plithogenic set-based methods and models are proposed for decision 

making. A new alternative is proposed to Dempster-Shafer’s theory of evidential reasoning to 

overcome its limitations of giving illogical and counterintuitive results especially when the 

series of evidence provided by various experts are in a high degree of conflict. 

 

1.2 Risk Assessment 

Risk assessment involves the process of identifying hazards and potential causes that tend to 

cause harm or damage to personnel, machinery, and the environment. It helps to determine 

appropriate ways to remove the hazards or reduce the risk level if hazards cannot be 

eliminated. Hazards identification requires imagining and visualising the worst case scenarios. 

While risk assessment is the overall process, risk analysis is an analytical process and one of 

the steps in risk assessment that estimates the probabilities and expected consequences for the 

determined risks. It helps to prioritise and define high risks. Risk evaluation helps in 

understanding the significance of risks in relation to other risks by comparing against given 

risk criteria. It involves decision making about its consequences and how to manage the risks. 

The objectives of risk assessment can be summarised as: 

1. Identifying hazards (potential causes, near misses, and untoward incidents) 
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2. Evaluating and arriving at the risk level (risk assessment) 

3. Eliminating hazards 

4. Taking proper Risk Control Options (RCO) 

5. Reducing the risk level to As Low As Reasonably Practicable (ALARP) 

These objectives are to be achieved at a minimum cost. 

 

1.2.1 Historical Overview 

The history of risk analysis dates back to 3200 B.C. In the Tigris-Euphrates valley, where a 

group called the Asipu was practicing consultancy for risky, uncertain or difficult decisions. 

The Asipu would identify important dimensions of the problem, and assign a plus sign if the 

alternative is favourable for maximising benefit or minimising cost. Finally, after summing up 

would recommend the best alternative [1]. The similarity between the present and Babylonian 

predecessors indicates that risk analysis was in practice for a long in a sophisticated and 

quantitative way. More than 2400 years back, Athenians also intended their interest to assess 

risk before making decisions [2]. However, the growth of risk analysis as a scientific field is 

very young and only 30-40 years old [3, 4]. 

 

1.2.2 Risk Assessment Approaches 

There are two types of approaches in risk assessment. 

1. Reactive approach 

It is a reaction based approach to risk. It means actions are taken only after the occurrence of 

events. Improper safety culture, inaccurate risk assessment, and poor decision-making 

capabilities result in such type of response. 

2. Proactive approach 

It focuses on anticipating, and eliminating the events and problems before they lead to 

catastrophic accidents. The proactive approach involves strict compliance with rules and 

regulations, clearly identifying potential hazards, analysing them well in advance and 

practicing proper safety culture. Though accidents are unpredictable, their frequency can be 

reduced by the proactive approach by analysing the past reports on accidents. 

State of the art approach in ensuring safety should be [5]; 

a. Proactive – anticipating dangers in advance 

b. Systematic – devising a formal, well-structured and organised process for formulating 

new rules 
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c. Transparent – understandable about the level of safety and reliability each rule 

contributes to it. 

d. Cost-effective – giving a trade-off between the safety and cost incurred to achieve it. 

 

1.3 Maritime Industry 

Maritime transport is one of the oldest modes of transport in the world to carry passengers, 

cargo, oil and goods across the globe. As per the International Chamber of Shipping, around 

11 billion tons of goods are transported globally each year by sea route. The maritime 

industry has excellent supply chains for delivering goods from producers to consumers just in 

time. It is economical and has a major contribution to the world economy. It provides billions 

of dollars per annum and helps in employing lakhs of people globally. With technological 

change, the shipping industry is becoming highly efficient, economical and known for its 

swift mode of transport. Compared to earlier days, with the advancements of technology, and 

automation mechanisms installed in ships, the frequency of accidents is greatly reduced. 

Marine transport has become safer. But the possibility of any untoward incident on board the 

ship cannot be ruled out. In contrast to road, rail or aircraft accidents, marine accidents can 

cause damage to human beings, marine creatures, the environment and the ecosystem. It is a 

strenuous exercise to assess the risk when the system under consideration is complex with a 

low probability of accidents but having very high prospective impacts such as in the case of 

maritime transportation.  

 

1.3.1 Types of Maritime accidents 

The maritime domain faces several types of accidents. These accidents are not the result of 

one instantaneous cause, but the result of a series of factors networked and intermingled 

through complex relations. Some of the categories of accidents are given below: 

1. Collision 

The ship may collide with the other ship on the course or anchored one. Collision may be 

with an iceberg, port or even with an offshore drilling platform. It may cause an oil spill, 

damage to ship structure, human losses, negative impact on the marine environment, 

permanent damage to the ship and may even block the ship’s traffic. In case of collision, 

chances of loss of life are high. When a ship in a collision carries harmful products like oil, 

chemicals or any other harmful material, the impact may endanger human life, marine life 

and affect the environment. 
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2. Capsizing 

Large sailing ships may capsize even if it heels a small angle and not able to right 

themselves to regain their proper position. A ship may turn on its side or even become 

upside down in the water. The hitting of large waves on the side can heel the ship leading 

to capsizing. Ships are designed to withstand the battering of the toughest sea swells. If the 

ship does not have sufficient buoyancy, it may eventually sink on capsizing. 

3. Foundering 

It is the sinking of the ship. Ship sinks due to leaking of water on board ship, heavy 

weather or breaking of a ship into two. Sinking of a ship due to collision is not categorised 

into foundering. Ship instability due to shifting of mass above the metacentre can result in 

tipping of ship and subsequently foundering. A ship can still founder despite building them 

by adhering to stringent rules and regulations from classification societies. The ship also 

founders when major mishaps occur on the ship.   

4. Fire/Explosion 

The ship may carry inflammable compounds like oil, chemical, cargo etc. The chemicals or 

other material on board the ship may ignite and eventually lead to an explosion. Fire may 

also originate from the engine room and spread to other areas. Other dangerous fires on a 

ship may be because of crankcase explosion, over-speeding of generators, boiler explosion, 

compressor airline explosion, high-pressure fuel line bursting, turbocharger explosion etc. 

5. Grounding 

In this, the ship may hit the seabed leading to the damage of the hull’s submerged part and 

ingress of water resulting in destabilising the ship’s structural integrity and stability. Most 

of the oil spill occurs after grounding. Ship grounding generates a tremendous load on ship 

structures damaging the hull and leading to hull breach, total ship loss and human 

casualties. The cargo may leak into the sea causing marine pollution if grounding develops 

a crack in the cargo hold of the ship (e.g. tanker). 

 

1.3.2 Causes of Maritime Accidents 

The causes of accidents may be direct or indirect. Direct causes have a straight influence on 

accidents. Indirect causes may lead to direct causes or create situations leading to direct 

causes. It is crucial to track the root cause and its relation with other factors to realise and 

avoid accidents [6]. Identifying causal factors for the root cause can help to prevent the 

triggering of events. This highlights the importance of ascertaining root causes and causal 

factors to prevent accidents. Damages are also caused to ships by natural hazards such as 
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tsunami-genic earthquakes, super cyclones, hurricanes, and coastal floods which are 

considered non-traditional risks [7]. Failure of any critical system on a ship may also lead to 

an accident. The performance of a system on a ship greatly depends on the ship’s age, 

equipment design and stability of the ship. Each of the factors requires broad, in-depth and 

substantial analysis to ascertain their contribution towards an accident. Some of the factors 

directly or indirectly posing risks are given below. 

1. Human errors 

About 80 % of marine accidents are attributed to human errors [8, 9]. Human errors point 

to those actions or decisions initiated by humans affecting the entire system. Human errors 

are primarily due to the crew’s negligence towards responsibility [10]. Human factors 

responsible for accidents can be many such as overconfidence, lack of training, failure to 

comply with rules and regulations, fatigue, no proper coordination and cooperation among 

team members, communication gap and negligence towards safety rules [11]. There is a 

pressing demand for proper training and awareness to follow the international conventions, 

anticipate dangers, take prompt actions and measures to mitigate the risks. Some of the 

above key factors can reduce human errors. 

2. Equipment failure 

Equipment on a ship are very well designed and built to withstand the load and stresses 

that all marine vessels face while transporting through the oceans. But the systems are 

complex and contain numerous components. Equipment failure generally occurs because 

of corrosion of material, use of damaged seals or filter, wear of cylinder liner, fatigue 

failure of components etc. Improper operation of equipment by untrained operators, failure 

to schedule and perform preventive maintenance, failure in condition monitoring of the 

equipment, failure to follow standard operating procedures and overloading the equipment 

are some of the likely causes for equipment failure. 

3. Bad weather 

Bad weather can cause serious damage to ships and ships may even sink. Bad weather 

scenarios such as hurricanes, tornados and tropical storms can occur in any part of the 

world. They all result in a strong wind, heavy rainfall and swelling waves. Hurricanes can 

produce winds with a speed as high as 150 kilometres per hour. Though modern ships are 

designed to withstand such scenarios, they are still vulnerable to storms. 

4. Improper design 

Broad knowledge and understanding of the working culture onboard are necessary to 

design equipment that meets the requirement of seafarers. From the point of efficiency and 
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safety, equipment design plays a major role. It should meet the required standards and have 

easy access for operation/maintenance. Once the accident happens, it is often claimed to be 

a human error but sometimes bad equipment design is the hidden cause. 

 

1.3.3 Regulatory Bodies 

United Nations (UN) specialised agency, the International Maritime Organisation (IMO) was 

established in 1948, with the focus on safety, the security of the maritime industry and to 

hamper the chances of marine and atmospheric pollutions by ships by promoting international 

regulations. IMO has responsibility for developing and establishing a broad regulatory 

framework for the shipping industry for safe and secure maritime transport. Three important 

IMO treaties are, 

1. The International Convention for the Safety of Life at Sea (SOLAS) 

It first came into existence as an immediate reaction to an infamous accident of the sinking of 

TITANIC posing a question mark on the safety regulations. The subsequent upgraded 

versions of SOLAS came in 1929, 1948, 1960 and 1974 with new requirements. SOLAS 

convention provides the minimum standards towards architecture, construction and operation 

of ships well suited with their safety. The compliance with these regulations is validated 

through the certificates issued by respective flagships. SOLAS convention has documented 

various regulations among 14 chapters. 

2. The International Convention on Standards of Training, Certification, and 

Watchkeeping for Seafarers (STCW) 

This convention came into force in 1984 and intends to prescribe minimum standards about 

training, certification and watchkeeping for seafarers on an international level. STCW 

conventions are summarised in eight different chapters. The basic requirements are given in 

STCW conventions which are further enlarged and explained in the STCW code. The STCW 

code is divided into two parts. Part A is mandatory and gives minimum standards of 

competence necessary for seagoing personnel, while part B contains recommended guidance 

to help interested parties to implement the STCW convention. 

3. The International Convention for the Prevention of Pollution from Ships (MARPOL)  

The primary aim of this convention is to prevent and reduce pollution from ships. The Terry 

Caryon oil spill off the French and Cornish coast in 1967 prompted the creation of this 

convention with the significant development and updates in MARPOL. The present 

convention includes six technical Annexures devoted to regulations for the prevention of 
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pollution by oil, noxious liquid substances in bulk, harmful substances carried in packaged 

form, sewage from ships, garbage from ships and air pollution from ships respectively. 

For safe maritime operations, IMO time and again upgrades the international conventions like 

SOLAS and International Management Code for the safe operations of ships and pollution 

prevention (ISM code). These regulations helped to gradually improve the safety of maritime 

operations [12]. However, the proactive approach for the marine industry towards safety is 

still in doubt [13]. 

 

1.4 Modelling Theories/Approaches 

The maritime industry falls into the most dangerous and complex industry globally [14]. We 

find an enormous number of accidents in maritime transportation despite the best efforts to 

reduce it. But compared to the density of traffic in the sea, the percentage of such accidents is 

negligible. Among the many models proposed, there is no single model that can be 

satisfactorily applied to all the problems, systems and conditions in the marine industry. This 

makes risk modelling of great significance for researchers. In the last few decades, various 

methods (qualitative and quantitative) have been developed and used for risk assessment, such 

as the analytical hierarchy process (AHP) method [15-17], TOPSIS method [18], Failure 

Mode and Effects Analysis (FMEA) [19] and comprehensive evaluation method [20]. These 

traditional methods for decision making have shown popularity because of their simplicity 

and easiness in conducting the quantitative risk analysis. However, their inability to 

accurately assessing the real time practical problems is a major drawback. Their applications 

in precise evaluation of the risky situations are further constrained by the uncertainty in the 

risk data [21]. Many models aspire to find the relations between marine accident risk and 

associated safety factors like human error, external factors like weather conditions and the 

size of the vessel [22-25]. Researchers develop the risk models with a focus on risk figures 

neglecting the background knowledge [26]. The models developed with no firm evidence and 

solely based on one’s intuition do not provide the real picture and are unsuitable for risk 

management purposes [27]. Risk models carry uncertainty due to insufficient knowledge 

about the primary causes. These uncertainties are classified into two types.  

1. Aleatory uncertainty: It is related to natural and physical phenomenon. The variability 

in this type of uncertainty is random. It is inbuilt (intrinsic). Such type of uncertainty is 

irreducible and cannot be parted with. It is embedded within the model. Addressing 

aleatory uncertainty is desirable for probabilistic risk analysis. 
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2. Epistemic uncertainty: It is related to knowledge and information about the subject. 

However, such type of uncertainty can be reduced to negligible quantity by improving 

the reliability of information collecting measures. Epistemic uncertainty is required to 

draw meaningful decision making. It is further differentiated into data uncertainty, 

statistical uncertainty and model uncertainty [28, 29]. 

a. Data uncertainty may be related to faulty instruments. 

b. Statistical uncertainty may be due to less number of observations or improper 

techniques used for parameter estimation of distribution. Simulation or maximum 

likelihood can be used to reduce this type of uncertainty. 

c. Model uncertainty may be the result of assumptions and imperfections made in the 

physical model while formulating. 

The uncertainty is dealt with by probability theory and possibility theory. Probability theory is 

applicable when uncertainty arises because of randomness [30]. Probabilities are obtained 

either by noting down the frequency of occurrence of an event or by assigning directly 

probabilities to various events by the experience of experts. These are categorised as 

subjective probabilities. Flage et al. [31] provided a standpoint on worries, threats and 

directions about how to represent and express uncertainty in risk assessments. The 

understanding and description of risk from researchers’ perspectives have a great influence on 

the way risk is analysed and may create serious implications for risk management [3]. 

Possibility theory is applicable when uncertainty in the data arises because of vagueness in the 

semantic expressions assigned to describe the attributes of a feature. While probabilities 

should sum to one, possibilities can sum to any positive value. The emergence of new models 

based on fuzzy logic, Dempster-Shafer theory (DST) and Monte Carlo Simulation somehow 

managed to overcome the limitations of these traditional methods. 

 

1.4.1 Probabilistic Approach 

Probability theory is the study of uncertain outcomes where the probability distribution of 

every outcome is defined beforehand. The probability of occurrence of any event is the 

summation of the probabilities of all the outcomes in that event. The probabilities associated 

with the events characterise the uncertainties. It is the most frequent and common method 

used to handle uncertainty.  

Monte Carlo Simulation is the most widely used probabilistic simulation technique. It 

generates random variables that are modelled with different probability distributions like 

normal and lognormal. It is one of the statistical techniques suitable to solve problems by 
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estimating uncertainty in a process and where other analytical techniques are not suitable. 

Monte Carlo simulation is best suited to model uncertainty in a complex environment because 

of its flexibility towards realistic performance [32]. Its main drawback is the time of 

computation and the reliability of the result. 

The Bayesian approach is a statistical process used to upgrade the probability of the 

hypothesis with the accumulation of new evidence. It can handle the two types of 

uncertainties inherently. Such approaches are appropriate for analysing data and experts’ 

judgements [33].  

Event Tree Analysis [ETA] and Fault Tree Analysis [FTA] are familiar techniques for 

probabilistic risk analysis [34]. Both these techniques represent the problem in the form of 

trees and suitable for quantitative as well as qualitative analysis. Qualitative FTA is about 

identifying individual scenarios leading to the top event. On the other hand, quantitative FTA 

is about estimating the frequency of the top event. FTA consists of the top event, intermediary 

factors, basic factors and logic gates [35]. FTA technique is constructed to ascertain the 

feasible combinations of factors that may lead to the occurrence of top events. A network of 

fault tree consists of factors which are the direct results of the factors occupied at the level just 

below through logical gates. Factors may be failure modes, human factors, design faults or 

equipment failure. 

 

1.4.2 Possibilistic Approach 

Possibility evaluates the degree by which the furnished evidence of the occurrence of the event 

matches with the fact or hypothesis that the event happens. This approach ideally represents 

the fuzziness by assigning possibility value rather than probability value to it thereby 

assigning a belief. The degree of belief towards the occurrence of an event is assigned a value 

from the interval [0, 1]. It is easy to generate possibility distributions for the data which is 

fuzzy and subjective. The possibility theory is considered to be more accurate for handling 

imprecise data without any randomness. 

 

1.4.3 Evidence Theory 

The evidence theory was introduced by Dempster [36] and then Shafer [37] developed it 

further. This theory narrows down the hypothesis set with the gathering of more and more 

data. It necessitates that all the hypotheses are mutually exclusive and exhaustive called the 

frame of discernment. Basic Belief Assignment (BBA) is the measure in evidence theory. 

BBA is associated only with an event and not with any of its subsets. Evidence theory is 
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elaborated in section 3.6.3. 

 

1.5 Fuzzy Set Theory 

Fuzzy set theory (FST) was created [38, 39] to account for the information processing in the 

human mind which is subjective, and ambiguous. The main concept of FST was that of 

graded membership, allowing subsets to have partial membership.  Graded membership 

permits us to infinitely extend the concept of crisp set theory. The fuzzy concept can be 

explained with an example of the position of the valve that conducts fluid. The valve may be 

completely shut or fully open. It may also take infinite positions in between. The crisp set 

cannot be used to specify the in between positions of a valve. The theory of fuzzy sets helps a 

smooth transition from the domain of precise, quantitative and accurate circumstances to 

imprecise, qualitative and vague creations. 

 

1.5.1 Constructing Fuzzy Sets 

In fuzzy sets, each element is mapped to [0, 1] by membership function 𝜇𝐴: 𝑋 → [0, 1] where 

[0, 1] represents any real number between 0 and 1 (both inclusive) [38, 39]. 

Case (i):  

When 𝑈 is the finite universe of discourse, the fuzzy set 𝐴 defined on 𝑈 is a mapping from 𝑈 

to the interval [0, 1] and denoted by, 

𝐴 = {
𝜇𝐴(𝑥1)

𝑥1
+

𝜇𝐴(𝑥2)

𝑥2
+

𝜇𝐴(𝑥3)

𝑥3
+⋯} 

= {∑
𝜇𝐴(𝑥𝑖)

𝑥𝑖

𝑛
𝑖=1 }                    (1.1) 

  

      

 

Case (ii): 

When 𝑈 is the continuous universe of discourse and infinite, 

𝐴 = {∫
𝜇𝐴(𝑥)

𝑥
}                     (1.2) 

The summation symbol represents the collection of each element. 

 

1.5.2 Fuzzy Set Operations 

For two fuzzy sets 𝐴 and 𝐵 of the universe of discourse 𝑈 and an element 𝑥 of the discourse, 

the following association conveys the union, intersection and complement operations of fuzzy 

sets [38, 39]. 

• Union (Fuzzy OR) 



11 
 

The union of the above two fuzzy sets is a fuzzy set 𝐶 such that, 

𝜇𝐶(𝑥) = 𝜇𝐴∪𝐵(𝑥) = 𝜇𝐴(𝑥)˅𝜇𝐵(𝑥) ∀𝑥 ∈ 𝑈                (1.3) 

    

• Intersection (Fuzzy AND) 

The intersection of the above two fuzzy sets is a fuzzy set 𝐶 such that, 

𝜇𝐶(𝑥) = 𝜇𝐴∩𝐵(𝑥) = 𝜇𝐴(𝑥)˄𝜇𝐵(𝑥) ∀𝑥 ∈ 𝑈                (1.4) 

     

• Complement (Fuzzy NOT) 

𝜇𝐴̅(𝑥) = 1 − 𝜇𝐴(𝑥) ∀𝑥 ∈ 𝑈                  (1.5) 

 

1.6 Neutrosophic Set Theory (NST) 

For a given universe of discourse 𝑈, Atanassov [40] proposed the Intuitionistic Fuzzy Set 

(IFS) with the addition of a degree of non-membership 𝑣𝐴(𝑥) ∈ [0, 1]  besides the 

membership degree 𝜇𝐴(𝑥) ∈ [0, 1] for each element 𝑥 ∈ 𝑈 of a set 𝐴 such that, 

 

𝜇𝐴(𝑥) + 𝑣𝐴(𝑥) ≤ 1 ∀𝑥 ∈ 𝑈                  (1.6) 

     

IFS cannot handle the possibility of the statement being true is 0.7, the statement being false 

is 0.5 and the statement not being sure is 0.2. To overcome this limitation, Smarandache [41] 

proposed the concept of a neutrosophic set.  A neutrosophic set 𝐴  is defined by a truth 

membership function 𝑇𝐴(𝑥) , an indeterminacy membership function 𝐼𝐴(𝑥) , and a falsity 

membership function 𝐹𝐴(𝑥). 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 𝐹𝐴(𝑥) are real standard or non-standard subsets 

of  ]−0, 1+[ . That is 𝑇𝐴(𝑥): 𝑥 →  ]−0, 1+[ , 𝐼𝐴(𝑥): 𝑥 →  ]−0, 1+[  and 𝐹𝐴(𝑥): 𝑥 →  ]−0, 1+[ . 

The unitary standard interval [0, 1] used in IFS has been extended to the unitary non-standard 

interval of  ]−0, 1+[ . There is no restriction on the sum of 𝑇𝐴(𝑥),  𝐼𝐴(𝑥), and 𝐹𝐴(𝑥) so 0− ≤

𝑠𝑢𝑝𝑇𝐴(𝑥) + 𝑠𝑢𝑝𝐼𝐴(𝑥) + 𝑠𝑢𝑝𝐹𝐴(𝑥) ≤ 3+ . In the neutrosophic notation, the above example 

can be characterised as 𝐴 = {〈0.7, 0.2 0.5〉}.  

To facilitate the use of neutrosophic sets in real scientific and engineering applications, Wang 

et al. [42] proposed the concept of Single Valued Neutrosophic Set (SVNS) and specified the 

set theoretic operators to solve the practical and real life problems. SVNS has the form, 

 

𝐴 = {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉; 𝑥 ∈ 𝑈}                  (1.7) 
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where 𝑇𝐴(𝑥): 𝑥 → [0, 1], 𝐼𝐴(𝑥): 𝑥 → [0, 1] and 𝐹𝐴(𝑥): 𝑥 → [0, 1] 

with 0 ≤ 𝑠𝑢𝑝𝑇𝐴(𝑥) + 𝑠𝑢𝑝𝐼𝐴(𝑥) + 𝑠𝑢𝑝𝐹𝐴(𝑥) ≤ 3  ∀𝑥 ∈ 𝑈 

 

1.6.1 Constructing Neutrosophic Sets 

Consider the universe of discourse 𝑈 and an element 𝑥 of the discourse [42].  

When 𝑈 is continuous, SVNS 𝐴 is written as, 

𝐴 = ∫ 〈𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) 〉𝑈
  ∀𝑥 ∈ 𝑈                (1.8) 

When 𝑈 is discrete, SVNS 𝐴 is written as, 

𝐴 = ∑ 〈𝑇𝐴(𝑥𝑖), 𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖) 〉
𝑛
𝑖=1  ∀𝑥𝑖 ∈ 𝑈               (1.9) 

 

1.6.2 Neutrosophic Set Operations 

For two SVNS 𝐴 and 𝐵 of the universe of discourse 𝑈 and an element 𝑥 of the discourse, the 

following association conveys the union, intersection and complement operation of SVNS 

[42]. 

• UNION (neutrosophic OR) 

The union of above two SVNS, is a SVNS 𝐶 such that, 

𝐶 = 𝐴 ∪ 𝐵 = {〈𝑥, 𝑇𝐶(𝑥), 𝐼𝐶(𝑥), 𝐹𝐶(𝑥)〉; 𝑥 ∈ 𝑈} 

where, 

𝑇𝐶(𝑥) = 𝑚𝑎𝑥(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)) 

 

𝐼𝐶(𝑥) = 𝑚𝑎𝑥(𝐼𝐴(𝑥), 𝐼𝐵(𝑥)) 

 

𝐹𝐶(𝑥) = 𝑚𝑎𝑥(𝐹𝐴(𝑥), 𝐹𝐵(𝑥)) ∀𝑥 ∈ 𝑈               (1.10) 

    

• INTERSECTION (neutrosophic AND) 

The intersection of above two SVNS, is a SVNS 𝐶 such that, 

𝐶 = 𝐴 ∩ 𝐵 = {〈𝑥, 𝑇𝐶(𝑥), 𝐼𝐶(𝑥), 𝐹𝐶(𝑥)〉; 𝑥 ∈ 𝑈} 

where, 

𝑇𝐶(𝑥) = 𝑚𝑖𝑛(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)) 

 

𝐼𝐶(𝑥) = 𝑚𝑖𝑛(𝐼𝐴(𝑥), 𝐼𝐵(𝑥)) 
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𝐹𝐶(𝑥) = 𝑚𝑖𝑛(𝐹𝐴(𝑥), 𝐹𝐵(𝑥))  ∀𝑥 ∈ 𝑈              (1.11)
 

 

• COMPLEMENT (neutrosophic NOT) 

The complement of above SVNS, is a SVNS 𝑐(𝐴) such that, 

𝑐(𝐴) = {〈𝑥, 𝑇𝐶(𝐴)(𝑥), 𝐼𝐶(𝐴)(𝑥), 𝐹𝐶(𝐴)(𝑥)〉; 𝑥 ∈ 𝑈 } 

where, 

𝑇𝐶(𝐴)(𝑥) = 𝐹𝐴(𝑥) 

𝐼𝐶(𝐴)(𝑥) = 1 − 𝐼𝐴(𝑥) 

𝐹𝐶(𝐴)(𝑥) = 𝑇𝐴(𝑥) ∀𝑥 ∈ 𝑈                (1.12) 

 

1.7 Plithogenic Set Theory (PST)  

Plithogenic set [43, 44] consists of elements that are distinguished by more than one attribute 

which in turn can have any number of values. Plithogenic set is a generalisation of the crisp 

set, fuzzy set, Intuitionistic fuzzy set and neutrosophic set. All the above four types of sets are 

characterised by a single attribute value. Crisp and fuzzy sets are specified by only one 

membership value, Intuitionistic fuzzy set is specified by two values namely membership and 

non-membership while in a neutrosophic set there are three values i.e. membership, non-

membership and indeterminacy. The salient feature of the plithogenic set is the contradiction 

degrees defined between each attribute value and the dominant attribute value. The 

contradiction degree compares between the dominant attribute value and any given attribute 

value. This smoothens out any discrepancy and provides a better result. Sometimes, the 

dominant value may not exist and is taken as zero while in the case of multiple dominant 

values, either contradiction degree function is suppressed or alternative relation is designed 

between attributes values. 

 

1.7.1 Constructing Plithogenic Sets 

Consider a universe of discourse 𝑈 . Let 𝐴  be a set of uni-dimensional attributes, 𝐴 =

{𝑎1, 𝑎2, … , 𝑎𝑚},𝑚 ≥ 1  and 𝑎 ∈ 𝐴 has a spectrum of values given by set 𝑆 where 𝑆 can be a 

finite discrete set, 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑙}, 1 ≤ 𝑙 < ∞, infinitely countable, 𝑆 = {𝑆1, 𝑆2, … , 𝑆∞} or 

infinitely uncountable, 𝑆 = ]𝑎, 𝑏[, 𝑎 < 𝑏 where ]… [ is any open, semi-open or closed interval 

from the set of real numbers or other general sets. If 𝑉 is the non-empty subset of 𝑆 consisting 

of all possible values of attributes, 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}, 𝑛 ≥ 1 . Amongst all the attribute 
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values, experts choose the most important attribute value to be the dominant value for the 

given application. 

 

1.7.2 Plithogenic Set Operations 

Consider two plithogenic sets 𝐴 and 𝐵 of the universe of discourse 𝑈 and an element 𝑥 of the 

discourse, the following association conveys the union, intersection and complement 

operation of plithogenic sets [43, 44]. 

• UNION (Plithogenic OR) 

The union of the above two plithogenic sets is a plithogenic set 𝐶 such that, 

𝐶 = 𝐴 ∪ 𝐵 = {〈𝑥, 𝑇𝐶(𝑥), 𝐼𝐶(𝑥), 𝐹𝐶(𝑥)〉; 𝑥 ∈ 𝑈} 

where, 

𝑇𝐶(𝑥) = 𝑇𝐴(𝑥) ˅ 𝑇𝐵(𝑥) 

𝐼𝐶(𝑥) =
1

2
[(𝐼𝐴(𝑥) ˄ 𝐼𝐵(𝑥)) + (𝐼𝐴(𝑥) ˅ 𝐼𝐵(𝑥))] 

𝐹𝐶(𝑥) = 𝐹𝐴(𝑥) ˄ 𝐹𝐵(𝑥) ∀𝑥 ∈ 𝑈               (1.13) 

 

• INTERSECTION (Plithogenic AND) 

The intersection of the above two plithogenic sets is a plithogenic set 𝐶 such that, 

𝐶 = 𝐴 ∩ 𝐵 = {〈𝑥, 𝑇𝐶(𝑥), 𝐼𝐶(𝑥), 𝐹𝐶(𝑥)〉; 𝑥 ∈ 𝑈} 

where, 

𝑇𝐶(𝑥) = 𝑇𝐴(𝑥) ˄ 𝑇𝐵(𝑥) 

𝐼𝐶(𝑥) =
1

2
[(𝐼𝐴(𝑥) ˄ 𝐼𝐵(𝑥)) + (𝐼𝐴(𝑥) ˅ 𝐼𝐵(𝑥))] 

𝐹𝐶(𝑥) = 𝐹𝐴(𝑥) ˅ 𝐹𝐵(𝑥) ∀𝑥 ∈ 𝑈               (1.14) 

 

1.8 Aims and Objectives   

The aim is to propose models to carry out a risk assessment and decision making in maritime 

transportation in dynamic conditions. The maritime industry is considered to be one of the 

dangerous industries wherein the safety of the ship, crew and goods is of prime importance. 

Getting immediate and prompt help in ships in case of emergency is very difficult due to their 

remote positioning. Under such circumstances, a proactive approach towards safety and risk is 

very important. Since historical data are scarce, vague and qualitative, they are bound to 

contain uncertainty and imprecision. Models applying the concept of fuzzy, neutrosophy and 

plithogeny are proposed to demonstrate how such approaches can be satisfactorily used for 



15 
 

the analysis of such ambiguous data. The new alternative in D-S theory is also proposed to 

overcome its limitations in giving illogical results when series of evidence conflicts. This 

alternative considers  the possibility of any error crippling while making judgements. 

 

1.9 Organisation of Report 

This thesis has seven chapters. The first chapter presents some basics of risk assessment, the 

maritime industry, FST, NST, PST and some related terms and definitions. The second 

chapter gives a review of the literature survey. An extensive survey has been conducted to 

know how the risk assessment is carried out over the years in the maritime industry, the 

difficulties faced by researchers and the current trends/directions used to overcome the 

difficulties. Survey also covers Bayesian Belief Network (BBN), FST, ETA /FTA and other 

probabilistic and possibilistic applications in risk assessment. A summary of the literature 

survey is presented at the end of the chapter. The third chapter describes the thesis problem 

identified based on the critical review of the literature. The formulation of the problem and 

solution methodologies are proposed in this chapter. In the fourth chapter, an integrated 

method using Interpretive Structural Modelling (ISM), Fuzzy Analytical Network Process 

(FANP) and Evidential Reasoning (ER) is used to address the first part of the thesis problem. 

In this chapter, a new alternative approach to D-S theory is proposed to overcome its 

limitations of giving illogical results when series of evidence conflicts. The next chapter 

proposes new methods for risk assessment. Neutrosophic logic, neutrosophic sets and 

plithogenic sets are used to develop three different models. Chapter six deals with the safety 

assessment in dynamic conditions using neutrosophic sets. In this chapter, two methods are 

proposed, i) to rank the failure modes posing risk hazards and ii) the method to arrive at the 

safety level of the system. Chapter seven is the conclusion chapter that also highlights the 

limitations of this study and the future scope of research. 
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Chapter 2 

Literature Review 

2.1 General  

The safety of maritime transportation has been a topic for discussion since the past century. 

Maritime safety is achieved when any of the acts during transportation do not endanger 

human life, property, environment and any economic loss from departure to destination. This 

can be achieved by adhering to the predefined set of measures. A lot of research work towards 

risk assessment and safety analysis of systems onboard ship and maritime transportation is 

done to save personnel, machinery, and the environment [45-52]. Traditionally, the approach 

in the maritime industry towards risk aversion was mainly reactive which is passive and being 

criticised. This lead to a shift in the focus of research in risk assessment whose prime aim is to 

suggest proactive options. Human error is the primary cause of collision and grounding of 

ships. The unmanned merchant vessels in the sea will be a dream come true in near future 

mainly to reduce the potential human errors by reducing their numbers onboard ships [53]. 

Many authors contributed to the risk assessment by elaborating on different mathematical 

models and incorporating various approaches. This chapter presents a detailed review of the 

literature survey.  

  

2.2 Risk Assessment Models 

Over the last 50-60 years, researchers and shipping industries aim to achieve zero accidents in 

marine transport and to provide safety and reliability while increasing productivity. Marine 

transportation safety is a critical issue because of numerous factors. The ships have to 

navigate through severe operating conditions and unpredictable climate changes. There is also 

a high degree of uncertainty in the performance of various operating systems onboard the 

ship. Moreover, the ship is operating in a remote area and is deprived of any immediate help 

in case of emergencies. To improve the safety of maritime transportation and develop the 

shipping industry, researchers around the world focus on developing robust risk assessment 

models. This opened the way for engineers and researchers to explore flexible and exceptional 

risk models in the design and operation processes. 
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2.2.1 Bayesian Network Models  

Bayesian network (BN) models have been broadly used in maritime risk assessments. BN can 

help to present complex scenarios and deal with uncertain and unobserved variables that 

cannot be assessed directly. It can also permit different types of evidence in the model. A 

directed acyclic graph serves as the angle to analyse the strength of evidence. Nodes represent 

the random variables while the directed arcs show the influence of one variable on the other. 

BN has attracted the researcher’s attention mainly because of its capability in representing 

complex and uncertain relationships between variables. BN can deal with missing data, 

experts’ knowledge, provide causal relationships and graphically represent the network for 

easy reference.     

Lu et al. [54] tried the BN model to check the effectiveness of oil spill recovery in ice 

conditions. The required information to build the model is gathered from literature and expert 

interviews. Eight sub-models are used to build the BN model including the output sub-model-

Recovery Effectiveness. The rest seven sub-models influencing recovery effectiveness such as 

Oil spill Response, Forcing Representative Scenarios, Weathering and Transport, 

Atmospheric Environment, Sea Ice Environment and Recovery form the main body of the 

model. The model helped to estimate, generate, and understand the potential of mechanical 

means towards the recovery of oil. The model considered different test scenarios for 

comparison and provided insights on the impact due to different oil spill conditions such as 

oil types, spill sizes and spill locations. The model may be expanded further to consider 

different weather conditions, locations and even different types of oils.  

Yang et al. [55] presented a model integrating evidential reasoning with BNs to overcome the 

limitation of BNs in handling incomplete data emerging from subjective judgements from a 

group of experts. The generated method using the BN inference, Fuzzy Rule Base (FRB) and 

ER helped to identify in advance the Human Error Probability (HEP) of dangerous situations 

to prevent maritime accidents. Evidential reasoning is used to synthesise the experts’ 

judgement to build the BN. The use of a degree of belief concept helped to model the BN 

network with incomplete knowledge and ignorance. The demonstration of the proposed model 

is done by using the Cognitive Reliability Error Analysis Method (CREAM) to estimate HEP 

in maritime area. The proposed ER-BN model seems to be effective in facilitating the HEP 

analysis in decision making. 

Goerlandt et al. [56] presented the model to quantify risk using BN and applied to oil spillage 

case from tanker collisions.  Here, the two-stage model is proposed wherein the first stage 

uses expert-review for evidence to construct BN. Decision-makers give judgements using 
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subjective probabilities from the first stage analysis and form the basis for the second stage. 

The author highlighted that the model can be applied for risk only as decision support and not 

to make any recommendations about any actions to be taken. The model could explicitly 

represent the uncertainty and has a slight improvement in previous other risk analysis models 

which highlighted the inability of treating uncertainty in need of proper tools.   

Khan et al. [57] presented an Object Oriented Bayesian Network (OOBN) to dynamically 

assess the probabilistic risk of ship-ice collision in Arctic waters. Visual representation of BN 

becomes tedious when it contains many nodes with similar fragments. This difficulty is 

overcome in this model by decomposing the network into smaller component models. OOBN 

can simplify the complicated model of marine accidents by hierarchical component-wise 

analysis and help to identify root causes for analysis. OOBN can effectively represent the 

evolving complexity of the model. The proposed model is applied to predict tanker collision 

with sea ice considering a case study of oil tanker navigation on the Northern Sea Route. It is 

seen that the model is suitable to select the navigational route and vessel operating decisions.  

Norrington et al. [58] presented a BN model with all the key features that put a hindrance on 

the success of search and rescue operations within UK coastguard coordination centres. In this 

study, the BBN is constructed by collecting the primary data through a structured elicitation 

process. The scale of probability is provided to convert experts’ subjective judgements into 

numerical assessments. 

Sotiralis et al. [59] combined the Event Tree notion with the BN approach and implemented 

the human factor into risk assessment. A model incorporated the performance of human 

factors in different operational conditions towards collision. The model identified the factors 

contributing to human performance and ship collision. BN is used to quantify the factors such 

as stress and fatigue which have an impact on human performance. It also focussed on 

mechanical failures which may also contribute equally to the collision. Here, the BN model is 

used efficiently for prior and posterior probabilities. For better modelling of working 

conditions on the bridge, a hierarchical task analysis for normal, abnormal and critical 

operating phases is carried out. 

Trucco et al. [60] developed a BBN for modelling Human and Organisation Factors (HOF) 

for risk analysis. In this model, they considered a complex socio-technical system and 

quantified the organisational structure to get a better estimate of the likelihood of occurrence 

of a hazard. The proposed approach used BBN to develop better risk models when it is 

required to take into consideration the HOF. This model can be used in risk analysis to further 

identify opportunities for reducing risk levels. Applicability of the model is presented with a 
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case study of high-speed craft (HSC). The case study exhibited that the BBN can be used to 

effectively model HOF to explore new opportunities to mitigate the risk at the organisational 

and regulatory level of the maritime transport system (MTS). The model is suitable to 

integrate HOF into risk analysis in other sectors as well.  

Hanninen [61] discussed how BN can contribute towards the prevention of maritime accidents 

and the challenges faced in its application to achieve maritime safety. In the paper, the author 

highlighted the suitability of BN in the modelling of complex systems by incorporating some 

of the epistemic uncertainties in the form of probabilities, combining experts’ knowledge to 

update the model parameters, decreasing the uncertainties, giving flexibility of utilising the 

same model in multiple ways, and describing uncertain dynamic systems. However, it also 

faced challenges while developing a model since the clarity on the reason for accidents could 

not be established as a rare occurrence and underreporting of accidents does not provide 

enough data. The credibility of data is also questioned leading to heavily rely on expert’s 

knowledge. With the increase in complexity of the system, generating the probability of 

parameters required becomes difficult.    

Montewka et al. [62] developed a model using BBN which is specially focussed on ship-ship 

collision. It is used to assess the risk in the maritime transportation system. A case study of 

the maritime traffic system in the Gulf of Finland (GOF) is considered in which in the open 

sea, RoPax is struck by another ship.  It analysed some of the selected accidental scenarios 

which lead to the loss of struck RoPax ship. It used a proactive approach to provide the 

expertise and awareness of the analysed system. The model though is applied only to some 

restricted boundary conditions, can be further modified to make it applicable in other varying 

conditions. 

Chen et al. [63] developed a hybrid model using BN and FTA to analyse the risk in maritime 

accidents. BN is used to build the consequences and FTA is used to calculate the probability 

of maritime accidents. Experts’ knowledge is used to collect data using a questionnaire. The 

probability of an accident at a particular level of consequence is calculated using BN. A total 

of ten variables influencing the accidents are identified. Three different parameters such as 

weather, technical failure and human errors are considered. FTA on three major categories i.e. 

collision, contact damage and grounding contributing more than 70% of the total number of 

accidents is performed by analysing all ten variables and three parameters. However, 

validation of the model is not done and since the data is obtained from experts, the possibility 

of uncertainty and biasedness still exists in the model. 
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2.2.2 Fault Tree Analysis Models  

These are logical models. FTA models are built on three assumptions (i) faults are considered 

to be binary events (ii) faults are statistically independent of each other and (iii) logic gates 

can be used to represent the relationships between faults [64]. The graphical representation is 

used to model risk analysis for both qualitative and quantitative data. An FTA is an analytical 

technique that is used to find an undesirable event from an undesirable state of the system. In 

FTA, all the states are depicted graphically with clear inter-relationships between them. Here, 

a graphical model is constructed using a combination of various faults in parallel and serial 

relations. ETA mostly uses events instead of faults in building logical models. Various 

models developed for risk analysis using FTA and ETA are discussed below. 

Aung et al. [65] presented a model using Fuzzy Fault Tree Analysis (FFTA) to find the 

reliability of the jacket cooling water system of a marine diesel engine. To overcome the 

problem of uncertain failure rates of basic events as it is difficult to get the exact values 

because of uncontrollable working conditions, the authors used FST to get the failure rate of 

the system. With logic gates as nodes, basic events are calculated and similarly by 

synthesizing the information upwards, the target event at the top is calculated. Two new fuzzy 

importance measures are also proposed in this paper using a fuzzy probability ranking method 

and Graded Mean Integration Representation (GMIR) distance method. 

Celik et al. [51] presented a model using FFTA. The model is used to combine the effects of 

organisational faults and the shipboard technical system failures. It is developed in six stages 

starting from the qualitative judgements of experts in the field. To show the application of the 

proposed model in Shipping Accident Investigation (SAI), an accident case study of 

machinery breakdown resulting in a fire on-board ship is taken. The sensitivity analysis is 

carried out to partially validate the model as there is a lack of quantitative data and also to 

reduce the concerns about the quality of experts’ judgements. The integration of FFTA and 

SAI is made to serve as a database for future reference to mitigate the accidents. 

John et al. [66] presented a model with FFTA to optimise the performance of effectiveness of 

the system by analysing the hazards during ship and port interface operations. The 

methodology is designed to incorporate diverse sets of data to analyse the system where exact 

sets of data are not available. The use of FST in the traditional model of FTA help to 

accommodate homogeneous as well as heterogeneous experts. The framework for safety 

analysis is given in nine steps. The model is illustrated with the test case of a ship’s accident 

that generally occurs at ship and port interface while the ship is maneuevering in West 

African port. The result indicated that the poor visibility at the port is the prime reason for 



21 
 

accidents. The model is suitable for flexible responses to the operational uncertainties in the 

seaport systems. The proposed method can serve as a handy tool for safety specialists for 

evaluating maritime hazards in seaport operations. 

Toz et al. [67] carried out a root cause analysis of the grounding of ships in the Bay of Izmir 

using the FTA technique. A total of 24 grounding accidents between 2001 and 2016 are 

analysed. The results showed that the grounding accidents in the Bay of Izmir are mainly 

attributed to equipment failure and geographical factors. Among equipment, rudder failure is 

the most important contributor to accidents. Rudder failure may be attributed to inappropriate 

maintenance. Grounding avoidance maneouevering is not possible even in an emergency due 

to a limited maneouevering area. However, the accident data taken are incomplete and not 

sufficient for full proof analysis. The model can be used to carry out an extensive study with 

more detailed information. 

Antao and Soares [35] presented a model to identify hazards associated with casualties of 

RoPax vessels. RoPax vessels are chosen for the study because accidents in such types of 

vessels have considerable consequences on economic and human life. FTA is used to model 

the relations between relevant events. The conclusions of the modelling are not used directly 

for decision making but used for later stages of formal safety assessment (FSA). Since reliable 

data for basic events are not available, the constant failure rate for human and mechanical 

elements is used. Moreover, the unavailability of data hampered the degree of uncertainty in 

the model. The safety performance of the RoPax vessel is performed with different 

emergency scenarios and associated minimum cut sets (MCS). The sensitive analysis is 

performed to assess the role of human factors and the sensitivity of FTA to the probabilities of 

basic events. 

Raiyan et al. [68] used ETA for quantitative study in the probabilistic analysis of maritime 

accidents in Bangladesh. Here, the most probable factors for accidents are identified and 

verified with the factors of previous accidents. The model, when applied to marine accidents 

in Bangladesh, concluded that the number of accidents can still be reduced drastically if the 

visibility during the voyage is increased (irrespective of weather conditions). ETA gives better 

results with a bigger volume of data sampling. But in this study because of limited available 

data, the probabilistic analysis did not involve the realistic number of incidents and hence the 

authors claimed that the results obtained may not represent the realistic results. 

Arslan et al. [69] presented a hybrid model using FTA and Monte Carlo Simulation (MCS) 

focussing specifically on human factors that lead to accidents during loading and unloading 

operations at tanker terminals between 2000 and 2014. FTA is used to create causes of 
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accidents while MCS is used to test the results. Initially, nineteen accident reports were 

considered for the study. After examining the reports based on the results, location, 

occurrence of accidents and the required data during loading and unloading periods, only ten 

vessels are taken for the final analysis. The other nine reports are excluded due to insufficient 

and incomplete data. The study identified that the failure to comply with rules, 

incomprehension, lack of proper training and tiredness to be the main causes of human error. 

 

2.2.3 Fuzzy Set Models  

Conventional tools like Probability Risk Assessment (PRA) are well suited in scenarios when 

there is negligible or no uncertainty of any kind. But as the complexity of the system 

increases, the uncertainty associated with it also increases. In such circumstances, FST 

provides a tool to model reality better than the traditional methods. It provides a mathematical 

framework to study vague phenomena. FST can be effectively used to deal with the epistemic 

type of uncertainty inherent in human knowledge. Fuzzy logic employing IF-THEN rules 

does not require precise quantitative analysis and can be used to model such types of 

uncertainties.   

Akyuz [48] presented a Fuzzy based Success Likelihood Index Method (FSLIM) to assess 

human error while abandoning the ship.  The author proposed a model wherein SLIM is used 

to calculate the HEP while the fuzzy set is used to capture the subjectivity in the experts’ 

judgements and to interpret the expressions in decision making. A seven-step procedure is 

described starting from analysing various tasks to be completed by the ship’s crew to arriving 

at the HEP for each task. The model is illustrated by taking an example of the procedure to 

abandon the ship in maritime transportation as the evacuation of the ship is critical to 

safeguard human life during an emergency. The findings of the study show that the highest 

HEP is at the preparatory stage especially in two sub-tasks namely, sending distress messages 

and reporting the situation. The model is suitable to reduce the likelihood of human error for a 

given task and improve the overall safety level onboard a ship.    

Xue et al. [70] presented a fuzzy approach to model ship maneuvering in autonomous ships 

the way it is maneuvered by a human. Ship safety is often decided by how accurately the 

maneuvering decisions are taken. Autonomous ships also face scenarios of bad weather, other 

ships in waterways and require human-like decision making. Here, fuzzy number functions 

are designed to capture experts’ knowledge. It evaluated the factors which influence maritime 

traffic safety in autonomous ships. The algorithm used can compute the numerical data in 

complex fuzzy systems using computer programming. Various actual navigational scenarios 
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are simulated using a simulator to make them real-world scenarios. The model can be used to 

prioritise the influencing factors to make the autonomous ship a reality. 

Akyildiz and Mentes [71] designed a risk assessment model integrating FST, Fuzzy 

Analytical Hierarchy Process (FAHP) and Fuzzy Technique for Order Preference by 

Similarity to an Ideal Solution (FTOPSIS). Cargo ship accidents are analysed using the four 

influential aspects of uncertainty ie. level of understanding, quality of knowledge, the 

uncertainty of cargo ship accidents and sensitivity level of model parameters. The effects of 

uncertainty parameters on model parameters in cargo ship accidents are analysed. The 

qualitative uncertainty assessment of cargo ship collision is carried out to illustrate the 

proposed model. Out of the ten model parameters, collision speed is the most important 

parameter. Also, the key is the knowledge and understanding of the system. The outcome also 

suggested improvement in human reliability. 

Sii et al. [72] presented a fuzzy logic model for qualitative risk analysis in marine systems. 

The model developed and represented linguistic variables to model risk levels. The fuzzy sets 

are used to quantify these variables. The risk levels, fuzzy rule basis and risk expressions are 

derived using fuzzy membership functions. Risk level (RL) is assessed using two attributes of 

hazard namely, Failure Likelihood (FL) and Consequence Severity (CS) of a hazard. 

Triangular and Trapezoidal membership functions are used to represent RL, FL and CS sets 

definition. Risk factors are compared pairwise using AHP to determine the relative 

importance of risk factors. Various knowledge acquisition methods are used to formulate the 

fuzzy rules and membership functions. The suitability of the model is illustrated by an 

example onboard a ship. An example of fire on account of the failure of the fuel oil system in 

the engine room of a vessel is taken to illustrate the model. 

Mentes et al. [73] presented a model with FST in combination with an ordered weighted 

geometric averaging operator (OWGA) and decision making trial and evaluation laboratory 

technique (DEMATEL). The model is proposed specifically to develop a risk method for 

cleaner and safer maritime transportation, identify and evaluate driving factors causing 

fatality for cargo ships, use ambiguous information and rank the failure modes. The model 

could handle efficiently qualitative and quantitative data in addition to ambiguous 

information. The proposed method helps to evaluate failure modes critically for risk. The 

model is illustrated by taking an example of a cargo vessel accident on the coasts and the open 

seas of Turkey. Entering and leaving ports are also examined. According to DEMATEL, 

entering a port is the more critical of the two. 
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2.2.4 Evidential Reasoning Models  

The evidential reasoning approach is based on an algorithm developed in the 1990s to solve 

multi-criteria problems with uncertainties. The introduction of utility functions, unassigned 

belief degrees and weights in belief distribution, improved and developed the approach further 

to make it more realistic and rational. ER approach is more useful to solve Multi-Criteria 

Decision Making (MCDM) problems having subjective judgements, uncertainties related to 

data, incomplete information, quantitative and qualitative data. Because of its advantage of 

handling both complete and incomplete information, researchers have used the ER approach 

often for aggregation of risk in risk assessment models. 

Wang et al. [74] presented a safety analysis model using FST and ER approach for describing 

each failure event and synthesizing the information respectively. Failure event is analysed 

using the three basic parameters the likelihood of occurrence of a failure, consequence 

severity associated with such a failure and the probability of failure consequences. With the 

hierarchy of subsystems in a complex system, the proposed model is useful in evaluating the 

information available at the lowest level and arriving at the safety level of the whole system. 

The model is illustrated by taking an example of the hydraulic hoisting transmission system of 

a marine crane. The model is best suited in circumstances where it is difficult to obtain the 

distribution of variables required for risk analysis.   

Yang et al. [55] presented a hybrid model to perform Human Reliability Analysis (HRA) 

using ER and BNs. ER algorithm in the model helps to synthesize experts’ judgement for 

Bayesian subjective probabilities to improve Cognitive Reliability Error Analysis Method 

(CREAM) for HRA. The model with the concept of degree of belief is flexible and has the 

potential to handle incompleteness in data for decision making. When degrees of ignorance 

with best and worst evaluation degrees are combined, the two BNs generated can describe the 

best and worst scenarios of COntextual COntrol Model Controlling Modes (COCOM-CM) 

probabilities. 

Zhang et al. [75] presented a Fuzzy Rule Based Evidential Reasoning (FRBER) model. To 

facilitate the use of the ER approach, the quantitative data is suitably converted to a 

qualitative one using the FRB technique. The model is designed to conduct the navigational 

risk assessment of the Inland Waterway Transportation System (IWTS). Here qualitative and 

quantitative criteria are considered while constructing a hierarchical structure for modelling 

IWTS hazards. The proposed method is used to compare the navigational safety levels of 

three different regions in the Yangtze river. The model provides insights to improve the safety 

of the shipping industry and can be expanded further to assess risks in other scenarios.  
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Nguyen [76] presented an ER based model to capture Container Shipping Operational Risk 

(CSOR) with aleatory and epistemic uncertainties. A hybrid model of FMEA, ER and fuzzy 

rules Bayesian network (FRBN) is used for risk mapping. The risk level assessment is 

expressed in terms of Degree of Belief (DoB) and knowledge base evaluation is expressed in 

terms of the  Undefined Degree of Belief (UDoB). Further, a combination of DoB and UDoB 

is achieved by FRBN. The model represented CSORs with a comparatively higher risk level 

and highlighted in the risk map showing the significance of epistemic uncertainty.   

Wu et al. [52] produced a model using ER in combination with TOPSIS for decision making 

in emergencies. The model is designed specifically keeping in mind the safe handling of ships 

without command. The method proposes to use crisp values for selecting the best alternative 

as opposed to previous models which rely on an average of the maximum and minimum 

utility values. This solves the problem of choosing the best alternative even if the alternatives 

have overlapping interval numbers. The method can be applied directly to multiple attribute 

group decision making or after modification by decision-makers as per the existing situation. 

 

2.2.5 Formal Safety Assessment Models  

IMO proposed a scientific approach, a formal safety assessment (FSA) for consideration of 

safety regulations. Here, the risk is considered as an indicator of safety. It involves finding all 

the hazards, assessing the risk associated with hazards and taking steps to reduce the risk to an 

acceptable level. It is aimed at enhancing maritime safety and evaluating cost benefit trade-

offs for reducing these risks. FSA is used to keep a check on risks. It is a tool to make 

transparent decisions after understanding and comparing all the available options and suggest 

suitable measures to reduce risks. 

Sebe et al. [77] used FSA to assess and suggest actions to mitigate the risk of ship collisions 

with whales. The paper identified major collision hazards classified into two broad categories 

of detection failure and avoidance failure. Rather than quantifying the risk, the focus is to 

obtain the level of risk that is acceptable to the regulations. The approach used the notion of 

Limit Reference Points (LRP) i.e. risk acceptance at the population level and not at the 

individual level. FSA recommends suggesting Risk Control Options (RCOs) that are cost-

effective, but since biodiversity like protecting whales cannot be quantified in exact monetary 

value, it still requires further research. 

Kaneko [47] examined the scientific method of FSA to develop a holistic methodology for 

risk evaluation to estimate the chances of ship collision, to develop a method to reduce the 

scenarios that may escalate fires in the ship and a mock trial of fire risk in the ship cabin. 
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Computer simulations are used to verify the effectiveness of the method and the results 

obtained are similar to those obtained by analytical methods. However, experiments and also 

an examination of actual instances for validation of simulation are inconclusive.  

Lois et al. [78] used the FSA framework for cruise passenger vessels and conducted a case 

study for demonstrating its feasibility. Statistics from the cruise ship industry are taken for 

study. The case study showed that there is plenty of room for improving safety in cruise ships 

in areas such as human reliability, fire fighting and communications within the people. There 

is a need for a clear understanding of actions to be taken in case of emergencies and dealing 

with the crowd. The adoption of FSA in cruise ships can bring down the risk level to 

minimum levels.   

Kontovas and Psaraftis [79] have done a critical review of FSA. The paper highlighted some 

of the drawbacks of the scientific method. The paper criticised the usage of historical data for 

hazard identification which is not a proactive approach and RCOs suggested may not apply to 

new designs. Using the incomplete and wrong cause information databases of casualty may 

lead to skewed conclusions and not appropriate to reduce risks. The paper also criticised the 

formulation of a risk matrix that does not give equal justice to various parameters such as 

probability and severity. The findings of the study suggested modifying the methodology of 

FSA to suit all the types of ships and subjects.  

Hu et al. [46] discussed quantitative risk assessment and the accuracy of the generic model of 

FSA. In certain cases when the probability is very low or unstable, it is difficult to identify the 

risk distribution. To make the model more predictable, it is suggested to incorporate more 

factors such as obligated severity. Obligated severity represents the proportion of each case on 

the responsibility of faults in an accident. The Model is built on Relative Risk Assessment 

(MRRA) using fuzzy functions incorporating such obligated severity. 

Gasparotti and Rusu [80] presented the steps of FSA methodology. The authors have given 

the sources and causes of the Black Sea pollution. They have also highlighted the main 

accidents responsible for massive oil spills and the consequences of it such as loss of lives, 

serious injuries, loss of property and damage to the environment. The paper suggested the 

measures to be adopted to control, prevent and reduce the risks in operating ships. The paper 

mentioned that the best options to reduce the risks are established taking the cost-benefit 

trade-off of each option and recommended for decision making. 
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2.2.6 Analytical Hierarchy Process Models  

Saaty [81] introduced Analytical Hierarchy Process (AHP) to help in evaluating decision 

making problems involving multiple criteria. In AHP, elements at each level are treated as 

independent and the problem under consideration is broken down into a linear hierarchy from 

top to bottom. AHP helps decision makers to make the best decisions by pairwise 

comparisons when dealing with complex decision making. According to the decision makers’ 

comparisons, AHP generates a weight for each evaluation criteria. AHP being a flexible and 

simple yet powerful tool, researchers have used it in risk assessment models. 

Nguyen [82] used the AHP to estimate the risk associated with the failure of the propulsion 

system of a ship. The required data are collected from a group of forty seven engineers. The 

experts provided their preferences about particular subsystems’ contributions towards the 

probable causes of propulsion system failures. These data are then compared using five point 

scale. The AHP method is used for pairwise comparisons between the various sub-systems 

that contribute towards the failure of the propulsion system. In this paper, the logarithmic 

least square method is used for approximating the estimation matrices thereby creating a 

proper correlation between different experts’ judgements. 

Arslan [83] used AHP to identify and prioritise the precautions to be taken while assessing the 

risk of cargo operations on chemical tankers. In this paper, using the AHP, various priorities 

of precautions are sorted out that are taken before, during and after the cargo operations. The 

AHP is used only to obtain the ranking order of precautions as per importance and criticality 

comparing the identified precautions. To use the model, thorough initial work is required in 

identifying the potential risks with the frequency and consequences for properly monitoring 

the risk.     

Mabrouki [17] assessed the major risks in Ro-Ro using the AHP. The structure of the model 

is designed at three levels. At the top level, the type of major risks is considered. The second 

level represents the pertinent criteria to achieve the goal while the lower level listed all the 

risk factors. A brainstorming session is used in the study to identify risk factors. Risk is 

determined quantitatively using risk analysis while the AHP method is used to select the most 

probable risks. 

Incident and accident reports are not sufficient to arrive at the actual navigational risks 

because of incomplete data and we have to rely on experts’ judgements. Sahin and Kum [84] 

used an Improved Fuzzy Analytical Hierarchy Process (IF-AHP) to obtain the numeric values 

of the risk level. They used MATLAB software to run the algorithm. Their results indicate 

that the factors outside the vessel such as environmental conditions, colliding with floating 
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obstacles, and drift of pack ice are posing higher risks. Also, structural design and 

arrangement of equipment locations such as corrosion, risk of stability, and unusable design 

for maintenance equally pose a higher risk level. 

 

2.2.7 Neutrosophic Set Models  

Neutrosophic sets because of the incorporation of the hesitancy component handles the 

hesitancy part of experts’ judgement in a better manner compared to fuzzy sets. The use of 

neutrosophic sets in the risk assessment of the marine industry is in its infant stage but these 

sets are generously used by researchers in solving MCDM problems related to risk assessment 

and safety analysis in other engineering applications. 

Semantic models are convenient for risk analysis instead of quantitative models. Gou and 

Wang [85] demonstrated the suitability of neutrosophic sets in semantic risk analysis. The 

model used generalised fuzzy numbers to express linguistic terms. These terms are 

transformed into single valued neutrosophic sets. TOPSIS approach is then used to rank the 

future risks. Results of an illustrative example showed the effectiveness of the proposed 

neutrosophic approach compared to other existing methods in risk analysis.  

Bashan et al. [86] integrated the single valued neutrosophic sets with FMEA and under the 

TOPSIS approach for evaluation of maritime risks. The model considered the twenty three 

most frequently occurring and interrelated failure modes for evaluation. It used the judgement 

of five experts in neutrosophic linguistic terms. The study pointed out that the human factor is 

one of the main contributing factors towards maritime accidents. 

Most of the electronic equipment require a power supply product. The operation of these 

equipment depends on the reliability of the power supply products. Liou et al. [87] proposed a 

hybrid FMEA model using a neutrosophic set. The model could explore the uncertainty of 

failure mode evaluation and the hesitancy of experts’ judgement. The team of experts 

identified all the failure modes and their risk values. The risk priority number is calculated 

using the neutrosophic weight aggregated sum product assessment method. The results of the 

case study suggested the importance of product development and the manufacturing stage in 

improving the reliability of the component. 

Risk is inherent in all fields. Junaid et al. [88] assessed the supply chain risk in the automotive 

industry in Pakistan. The proposed model is based on AHP and TOPSIS using the 

neutrosophic set. The seventeen risks associated with the supply chain are identified. The 

results showed that supply chain agility is the best while supply chain robustness is the worst. 

The model illustrated the usefulness of neutrosophic sets in mitigating the supply chain risks. 
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Fine-Kinney based approach is used hugely in risk assessment problems in the industry. Gul 

et al. [89] discussed the use of single valued neutrosophic sets with TOPSIS to improve the 

Fine-Kinney approach for risk assessment. The proposed approach is illustrated with the case 

study of a wind turbine. The model is validated by carrying out a sensitivity analysis wherein 

the risk parameters are varied to see how it affects the ranking of hazards. 

Luo et al. [90] addressed the risk assessment and mine safety evaluation problem using 

linguistic numbers. The decision making methodology focussed on integrating power average 

operator and Muirhead mean operators with linguistic neutrosophic numbers. The proposed 

model is applied to assess the safety and rank the gold mines as per decreasing order of safety. 

The sensitivity analysis is carried out further to show the flexibility and robustness of the 

method in solving complex decision making problems.  

Abdul_Basset et al. [91] proposed a framework for risk assessment using neutrosophic sets. 

The model is specifically aimed at analysing the risk and suggesting options to mitigate the 

risk of the supply chain. The proposed neutrosophic AHP-TOPSIS approach is applied in an 

enterprise engaged in selling non-perishable goods. Total nine risks are identified and ranked 

in order with the most critical being on top. 

 

2.3 Summary of Literature Survey 

From the literature survey addressed in this chapter and from papers by various authors from 

distinguished journals, the focus of risk assessment models is identified under various heads. 

The previous models on risk assessment mostly used either crisp or fuzzy data. Because of the 

lack of historical records, experts’ judgements are used by most of the researchers while 

designing a model. It is seen that there is no such model that can be applied under all the 

given conditions.  Also, the qualitative data collected from experts using even the highest 

order fuzzy sets fail to represent the hesitancy associated with experts’ judgements. The 

previous models also did not consider the fact that the experts are bound to make errors while 

making judgements except for carrying out the sensitivity analysis to reduce the concerns 

about the quality of experts’ judegements. Moreover, in the real world, decisions are required 

to be made in dynamic conditions where the factors influencing the risk change dynamically. 

A summary of risk assessment models is presented in Table 2.1. 
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Table 2.1: Classification of Risk Assessment Models Based on Literature Survey 

Regulatory framework Risk policies Risk focus 
 

IMO 

SOLAS 

STCW 

MARPOL 

Identify hazards 

Reduce risk level 

Minimise damage 

Maximise safety 

Collision 

Capsizing 

Foundering 

Fire/Explosion 

Grounding 
 

Scope of risk Modelling tools Important attributes 
 

High speed craft 

RoPax 

Container ship 

Cruise passenger vessels 

Chemical tankers 

Ro Ro 

Bayesian belief network 

Fault/Event tree analysis 

Fuzzy set theory 

Evidential reasoning 

Formal safety analysis 

Analytical hierarchy process 

Neutrosophic set theory 

Human error 

Design failure 

Visibility 

Bad weather 

Natural calamity 

 

Dependence System information 
 

Organisational 

Environmental 

Personnel 

Incomplete 

Imprecise 

Vague 

Linguistic 
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Chapter 3  

Problem Description and Solution 

Methodologies 

3.1 Introduction 

Risk assessment in an industry aims to achieve a high level of safety for workers, machinery 

and the environment at minimum cost. Untoward incidents, near misses and accidents, are 

documented and stored as records to comply with statutory requirements and for future 

references. Use of this past data or use of experts’ knowledge in the absence of such records 

can reveal the root causes or probable causes of triggering a sequence of events leading to 

accidents staking the life of personnel or machinery at risk. If properly recorded, the past data 

can be an excellent source to know the frequency of accidents. Risk assessment is a vast area 

of safety engineering/operations research and the on-going research in risk assessment is 

stupendous. The proactive approach to eliminate the hazards in advance can bring down the 

likely damage due to accidents. The problem of risk assessment chosen for the research and 

study is as follows. 

1. The maritime transportation system is selected for the study. 

2. The fuzzy/neutrosophic/plithogenic available information or information obtained from 

experts about various parameters/variables is incorporated. 

3. The neutrosophic/plithogenic risk assessment models using evidential reasoning are 

carried out. 

4. The accident reports are scarce, incomplete and imprecise. To identify probable causes 

and their interrelationships, a group of experts from the field is invited to provide their 

expertise and created a hybrid model for risk assessment using Interpretive Structural 

Modelling (ISM)/Fuzzy Analytical Network Process (FANP)/Evidential Reasoning (ER) 

approach.    

5. The effectiveness of ER approach in solving multicriteria decision making problems is 

checked. A new alternative is introduced to the D-S theory of evidential reasoning to 

overcome its limitations of giving illogical results in the conflicting environment. 

6. Most risk scenarios in the industry vary periodically with changes in the type of hazards 

and severity. Risk assessment in such cases is challenging and requires decision making 
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dynamically. A dynamic decision-making model for risk assessment is proposed in the 

neutrosophic environment. 

 

3.2 Motivation for Research Work 

The vital problem faced by researchers in risk assessment is regarding the data. A sizeable 

amount of data are required to carry out the risk assessment, analyse the system and make 

decisions dynamically to assure the system’s safety. Moreover, it is extremely difficult to get 

the required reliable and valid data from records. The experts from the field play a crucial role 

under such circumstances. Experts’ assessments of the situation and system based on their 

expertise and knowledge help to analyse the safety through the judgements which are 

subjective and hence qualitative.  

The qualitative data contain uncertainty. The conventional methods based on probability 

theory cannot give satisfactory results because of their inability in handling such type of 

uncertainty. The epistemic uncertainty, related to knowledge and information about the 

subject mainly due to imprecise data are bound to be present in all the forms of problems. 

Newer approaches like fuzzy set theory, neutrosophic set theory and more recently proposed 

plithogenic set theory with contradiction degrees are being looked upon as alternatives to the 

probabilistic approaches. All these approaches are adopted in this study in different scenarios 

to handle the problems. 

For safe maritime transportation, risks posed due to unpredictable systems performance 

onboard a ship and threats due to unsafe navigation should be addressed. Very little work is 

done in risk assessment of the marine field with incomplete and imprecise data using experts’ 

judgement in subjective form. An attempt is made to solve some of these problems using a 

fuzzy/neutrosophic/plithogenic set theory. Evidence combination theories such as evidential 

reasoning based on DST and DSmT have been incorporated in the models proposed in this 

research work. 

 

3.3 Problem Statement 

The problem area of the present research work is presented in Figure 3.1. The problem is 

stated below. 

1. Checking the effectiveness of tools like Bayesian Belief Network, Evidential reasoning and 

Fuzzy multi-criteria methods suitable for efficient reasoning under uncertainty. 

2. Creating a framework for estimating the risk in maritime transportation. 
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3. Introducing a framework for dynamic decision making in integrated approach/method. 

 

3.4 General Assumptions 

The general assumptions applicable to almost all the models developed in this thesis are stated 

here. 

1. Data regarding modelling parameters of risk assessment are either not available or 

incomplete or scarce and it is not possible to use probability or Bayesian approach. 

2. Fuzzy, neutrosophic and plithogenic sets have been assumed for collecting data from 

experts in linguistic variables. This assumption is considered for parameters like failure 

likelihood and consequence severity.   

3. Linguistic scales (ratings and weights) in the form of neutrosophic/plithogenic sets are 

predefined by the knowledge engineer elicited from the domain experts (operation and 

maintenance engineers) and the methods best known to him/her. Further, opinions 

expressed in terms of semantic terms are converted into fuzzy/neutrosophic/plithogenic 

sets based on these pre-defined scales. 

4. It is assumed that the chosen experts are authentic, knowledgeable, conversant and 

experienced in their discipline and their judgements/beliefs expressed in the form of fuzzy, 

triangular/trapezoidal neutrosophic and plithogenic numbers are perfect.  

5. No expert will deliberately give incorrect judgement. 

6. Experts have some idea of fuzzy/neutrosophic/plithogenic set theory and the consequences 

of their incorrect belief. 

All the critical risk assessment decision criteria which have a considerable impact on the risk 

assessment and decision making have been considered and unnecessary criteria are neglected. 

 

3.5 Scope of the Problem 

As risk assessment is a vast area, understanding the scope and span of the problem is very 

crucial. The scope is also highlighted in Figure 3.1. The scope of the research problem tackled 

in the report is described in the section.  

1. The fuzzy/neutrosophic/plithogenic risk assessment model development is restricted to 

maritime transportation which is described in chapter 1. 

2. As mentioned earlier fuzzy/neutrosophic/plithogenic sets approach suits better for handling 

the uncertainty. Neutrosophic/plithogenic set theory has been used for dynamic risk 

assessment. 
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3. Fuzzy/neutrosophic/plithogenic set theories are used since most of the time data are 

partially available or are vague. The knowledge of the experts i.e. their opinions have been 

incorporated in the development of the models. 

 

 

Figure 3.1: Problem Area Identification Diagram 

 

3.6 Solution Methodologies 

The appropriate methods are used to solve the problem presented in section 3.5. Some of the 

selected methods/approaches are presented in the following sections. 

 

Hazards Identification 

Maritime Transportation 

Risk Control Options 

Decision Making 

Risk Assessment 

Hazards Identification Methods 
- Checklist or worksheet 

- Preliminary Hazard Analysis (PHA) 

- What IF Analysis 

- Hazard and Operability Analysis (HAZOP) 

- Event Tress (ET) 

- Fault Trees (FT) 

Reactive Reports 
- Hazards 

- Incidents 

- Accidents database 

- Risk Analysis 

Proactive Safety Assessment 
- Audits 

- Policy and procedures 

assessment 

- Piracy 

- Hijacking 

- Financial Risk 

Analysis of Hazards 

Risk Analysis Risk Evaluation 

Qualitative Methods 
- Expert Elicitation 

- Delphi Method 

Quantitative Methods 
- Bayesian techniques 

- Fault tree 

- Event tree 

- Stochastic methods 

- Ship Design 

- Naval Architecture 

- Structural Stability 

- Regulatory 

- Economic 

- Environmental 

Decision Making Methods 
- Fuzzy set based methods 

- MADM 

- Bayesian Network 

- Evidential Reasoning 

- Cost per RCO 

- Economic benefit per RCO 

Types of Risks 
- Unacceptable 

- Tolerable 

- Broadly acceptable 

- Merchant ships 

- Cruise vessels 

- Passenger ships 

- Submarines 

- War ships 

International Maritime Organisation 
- Classification Societies (DNV, ABS) 

- COLREGs 

- STCW 

- MARPOL 

Cost Benefit Analysis 
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3.6.1 Interpretive Structural Modelling   

Interpretive Structural Modelling (ISM) [92, 93] is a handy tool to understand complex 

scenarios. ISM is an interactive learning process. In this, the group’s judgement is used to 

conclude how factors are related to each other by developing a Structural Self Interaction 

Matrix (SSIM) of factors by representing the pairwise relationship between various factors of 

the system as given by experts. Initial Reachability Matrix (IRM) is obtained from SSIM by 

using one’s and zero’s which is further converted into Final Reachability Matrix (FRM) after 

checking transitivity and changing the matrix if required. Reachability Matrix is partitioned 

into different levels using the Reachability set, Antecedent set and intersection set. 

Transitivity assumption: If factor P is related to factor Q and factor Q is related to factor R, 

then factor P has to be related to factor R. 

A directed graph is then drawn using the relationships from the reachability matrix after 

removing transitive links. It is modified into the ISM diagram where factor nodes are replaced 

with linguistic statements.  

 

3.6.2 Fuzzy Analytical Network Process 

Analytical Network Process (ANP) [94-96] is developed to evaluate decision-making 

problems containing factors that are interdependent and networked together [97–100]. It does 

not make any assumptions about the independence between factors at different levels and also 

within the factors at a particular level. ANP is popular to get the weight vectors when the 

factors are not in a hierarchy but a network. After evaluating the importance of all the factors 

by pairwise comparison, a supermatrix is created wherein each of the local priority vectors 

forms the column of a matrix. A weighted supermatrix is created next to maintain the column 

stochastic property. This weighted supermatrix is raised to large powers until it converges to 

get a limit supermatrix. This is done to produce the cumulative influence of each factor on 

every other factor. Priority weights of the factors are obtained from this limit supermatrix.  

Limit supermatrix: A matrix having the same values across all columns. 

In our study, FANP is used to get the priority weights of the factors. The process used is 

described in section 4.3. 

 

3.6.3 Evidential Reasoning Approach 

In MCDM, decision knowledge is often in qualitative and/or quantitative form with 

uncertainty. Such MCDM problems are solved using the ER approach. When the data 
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available for decision making is uncertain, it cannot be assessed accurately using a crisp 

number and one has to use the fuzzy concept. 

ER approach provides a strong alternative to aggregate conflicting information and provides a 

rigorous reasoning process [101, 102]. ER approach uses belief structure to represent the 

outcome as a distributed assessment and not as a single number. For example, the distributed 

assessment for the safety of the system could be {(Excellent, 28%), (Good, 35%), (Average, 

18%), (Poor, 12%), (Worst, 7%)} which means the safety of the system is assessed to be 

Excellent with 28% of belief degree, Good with 35% of belief degree, Average with 18% of 

belief degree, Poor with 12% of belief degree and Worst with 7% of belief degree. Using such 

belief structures, the ER approach deals with MCDM problems with uncertainties. ER 

approach is enhanced based on the DST. 

 

3.6.3.1 Dempster-Shafer Theory of Evidence (DST) 

Dempster [36] and Shafer [37] established DST. It differs from probability theory in that, it 

allows beliefs not only to particular elements but also to sets of elements. Its base is the frame 

of discernment (Ω) – an exhaustive set of mutually exclusive hypotheses. A mass function 

𝑚(𝐴) represents one’s belief on subsets of Ω subject to, 

𝑚(∅) = 0                     (3.1) 

and 

∑ 𝑚(𝐴)𝐴⊆Ω = 1                    (3.2) 

Where 𝑚(𝐴) is the belief assigned to the subset 𝐴. If 𝑚(𝐴) > 0, the element is called the 

focal element. If a mass is assigned to a whole set Ω, it implies that the piece of evidence has 

an uncertainty for a particular hypothesis in Ω is true.  

If 𝑚1(𝐵)  and 𝑚2(𝐶)  represent two mass functions, they can be combined using D-S 

orthogonal sum rule of combination, denoted by, 

𝑚(𝐴) = 𝑚1(𝐵)⊕𝑚2(𝐶)                   (3.3) 

The rule is defined as, 

𝑚(𝐴) = ∑
𝑚1(𝐵) ⋅ 𝑚2(𝐶)

1 − 𝐾
𝐵∩𝐶

 

Where 

𝐾 = ∑ 𝑚1(𝐵) ⋅ 𝑚2(𝐶)𝐵∩𝐶=∅                    (3.4) 
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K is a normalisation constant (conflict) and measures the degree of conflict between 𝑚1(𝐵) 

and 𝑚2(𝐶). If there is no conflict between 𝑚1(𝐵) and 𝑚2(𝐶), 𝐾 = 0. On the other hand, if 

𝑚1(𝐵)  and 𝑚2(𝐶)  are totally conflicting then 𝐾 = 1 . D-S theory is commutative and 

associative. 

 

3.6.3.2 Dezert-Smarandache Theory of Evidence (DSmT) 

Dezert-Smarandache in their paper [103] proposed a new theory of information which 

overcomes the major limitations of D-S theory such as, all hypothesis should be mutually 

exclusive and exhaustive, the third middle excluded principle and accepting Dempster’s 

combination rule as the framework for combining independent sources of information. The 

free DSm model (𝑀𝑓(𝛩))  proposed by Dezert-Smarandache considers 𝛩  as a frame of 

exhaustive elements, 𝜃𝑖 , 𝑖 = 1,… , 𝑛  which may overlap. This model is commutative and 

associative. 

Let 𝛩 = {𝜃1, … , 𝜃𝑛} be a finite set of 𝑛 exhaustive elements. Hyper power set, 𝐷𝛩consists of 

all composite subsets built from elements of 𝛩 with ∪ and ∩ operators such that, 

 

a. ∅, 𝜃1, 𝜃2, … , 𝜃𝑛 ∈ 𝐷𝛩 

b. If 𝐴, 𝐵 ∈ 𝐷𝛩, then 𝐴 ∩ 𝐵 ∈  𝐷𝛩 and 𝐴 ∪ 𝐵 ∈ 𝐷𝛩 

c. No elements belong to 𝐷𝛩, except those mentioned in above two rules. 

The free DSm model (𝑀𝑓(𝛩))  with no constraints on elements of the frame of two 

independent sources of evidence is given by [103], 

∀𝐶 ≠ ∅ ∈ 𝐷𝛩, 𝑚𝑀𝑓(𝜃)(𝐶) ≡ 𝑚(𝐶) = 𝑚1(𝐴)⊕𝑚2(𝐵) = ∑ 𝑚1(𝐴)𝑚2(𝐵)𝐴,𝐵∈𝐷𝛩

(𝐴∩𝐵)=𝐶

          (3.5) 

 

The rule is extended if 𝑘 ≥ 2,  

∀𝐶 ≠ ∅ ∈ 𝐷𝛩, 𝑚𝑀𝑓(𝜃)(𝐶) ≡ 𝑚(𝐶) = [𝑚1 ⊕𝑚2 ⊕…⊕𝑚𝑘](𝐶) =

∑ ∏ 𝑚𝑖(𝑋𝑖)
𝑘
𝑖=1𝑥1,𝑥2,…,𝑥𝑘∈𝐷

𝛩

(𝑥1∩𝑥2∩…∩𝑥𝑘)=𝐴

                   (3.6) 

and   

𝑚𝑀𝑓(𝜃)(∅) = 0                    (3.7) 

      

The free classical model of DSm theory is used in our study of dynamic decision making in 

chapter six. 
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3.6.4 Neutrosophic Number 

Single Valued Neutrosophic Number (SVNN) (𝑆̃)  is defined as 𝑆̃ =

〈[(𝑝1, 𝑞1, 𝑟1, 𝑠1);  𝛼], [(𝑝2, 𝑞2, 𝑟2, 𝑠2);  𝛽],   [(𝑝3, 𝑞3, 𝑟3, 𝑠3);  𝛾]〉 where 𝛼, 𝛽, 𝛾 ∈ [0, 1], the truth 

membership function, (𝑇𝑆̃): 𝑅 → [0, 𝛼], the indeterminacy function, (𝐼𝑆̃): 𝑅 → [𝛽, 1] and the 

falsity membership function, (𝐹𝑆̃): 𝑅 → [𝛾, 1] is given as [104], 

 

𝑇𝑆̃(𝑥) = {

𝑇𝑆̃𝑙
(𝑥) 𝑝1 ≤ 𝑥 ≤ 𝑞1
𝛼

𝑇𝑆̃𝑢
(𝑥)

𝑞1 ≤ 𝑥 ≤ 𝑟1
𝑟1 ≤ 𝑥 ≤ 𝑠1

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                  (3.8) 

 

𝐼𝑆̃(𝑥) =

{
 

 
𝐼𝑆̃𝑙(𝑥) 𝑝2 ≤ 𝑥 ≤ 𝑞2

𝛽

𝐼𝑆̃𝑢(𝑥)
𝑞2 ≤ 𝑥 ≤ 𝑟2
𝑟2 ≤ 𝑥 ≤ 𝑠2

1    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                  (3.9) 

 

𝐹𝑆̃(𝑥) = {

𝐹𝑆̃𝑙
(𝑥) 𝑝3 ≤ 𝑥 ≤ 𝑞3
𝛾

𝐹𝑆̃𝑢
(𝑥)

𝑞3 ≤ 𝑥 ≤ 𝑟3
𝑟3 ≤ 𝑥 ≤ 𝑠3

1    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                (3.10) 

 

3.6.4.1 Triangular Single Valued Neutrosophic Number 

Triangular neutrosophic number (𝐴̃) is defined as, 𝐴̃𝑇𝑁 = (𝑎, 𝑏, 𝑐; 𝑑, 𝑒, 𝑓; 𝑔, ℎ, 𝑖) whose truth, 

indeterminacy and falsity membership functions are defined as follows [104]. 

 

𝑇𝐴̃𝑇𝑁
=

{
 
 

 
 
𝑥−𝑎

𝑏−𝑎
𝑎 ≤ 𝑥 < 𝑏

1
𝑏−𝑥

𝑐−𝑏

𝑥 = 𝑏
𝑏 < 𝑥 ≤ 𝑐

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                 (3.11) 

 

𝐼𝐴̃𝑇𝑁
=

{
 
 

 
 

𝑥−𝑑

𝑒−𝑑
𝑑 ≤ 𝑥 < 𝑒

0
𝑓−𝑥

𝑓−𝑒

𝑥 = 𝑒
𝑒 < 𝑥 ≤ 𝑓

1    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                 (3.12) 
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𝐹𝐴̃𝑇𝑁
=

{
 
 

 
 

𝑥−𝑔

ℎ−𝑔
𝑔 ≤ 𝑥 < ℎ

0
𝑖−𝑥

𝑖−ℎ

𝑥 = ℎ
ℎ < 𝑥 ≤ 𝑖

1    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                 (3.13) 

 

where 0 ≤ 𝑇𝐴̃𝑇𝑁
(𝑥) + 𝐼𝐴̃𝑇𝑁

(𝑥) + 𝐹𝐴̃𝑇𝑁
(𝑥) ≤ 3, 𝑥 ∈ 𝐴̃  

    

3.6.4.2 Trapezoidal Single Valued Neutrosophic Number 

Trapezoidal neutrosophic number (𝐵̃)  is defined as, 𝐵̃𝑇𝑍 = (𝑎, 𝑏, 𝑐, 𝑑; 𝑒, 𝑓, 𝑔, ℎ; 𝑖, 𝑗, 𝑘, 𝑙) 

whose truth, indeterminacy and falsity membership functions are defined as follows [105]. 

𝑇𝐵̃𝑇𝑍
(𝑥) =

{
 
 

 
 
0            𝑥 < 𝑎
𝑥−𝑎

𝑏−𝑎
 𝑎 ≤ 𝑥 ≤ 𝑏

1     𝑏 ≤ 𝑥 ≤ 𝑐
𝑑−𝑥

𝑑−𝑐
 𝑐 ≤ 𝑥 ≤ 𝑑

0            𝑥 > 𝑑

                (3.14) 

 

𝐼𝐵̃𝑇𝑍
(𝑥) =

{
 
 

 
 

1              𝑥 < 𝑒
𝑓−𝑥

𝑓−𝑒
    𝑒 ≤ 𝑥 ≤ 𝑓

0          𝑓 ≤ 𝑥 ≤ 𝑔
𝑥−𝑔

ℎ−𝑔
  𝑔 ≤ 𝑥 ≤ ℎ

1             𝑥 > ℎ

                (3.15) 

and 

𝐹𝐵̃𝑇𝑍
(𝑥) =

{
 
 

 
 

1              𝑥 < 𝑖
𝑗−𝑥

𝑗−𝑖
    𝑖 ≤ 𝑥 ≤ 𝑗

0          𝑗 ≤ 𝑥 ≤ 𝑘
𝑥−𝑘

𝑙−𝑘
  𝑘 ≤ 𝑥 ≤ 𝑙

1             𝑥 > 𝑙

                (3.16) 

  

    

 

where 0 ≤ 𝑇𝐵̃𝑇𝑍
(𝑥) + 𝐼𝐵̃𝑇𝑍

(𝑥) + 𝐹𝐵̃𝑇𝑍
(𝑥) ≤ 3, 𝑥 ∈ 𝐵̃ 

 

3.6.5 Multi-Criteria Decision Making (MCDM) 

Decision making involves selecting the best alternative subject to laid down criteria. This is 

difficult especially when the criteria are expressed in qualitative form. Under such a scenario, 

MCDM is one of the statistical methods that is recognised as an efficient tool to compare, 

rank and order various alternatives. MCDM has grown quickly and has been a focus of 

research for solving complex decision problems [106-110]. The majority of the time, the 
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decision making in the complex environment involves data and criteria output which are not 

known precisely and contain uncertainty mainly because of their fuzziness. As mentioned in 

the literature review, many techniques and methods are devised in the past decades to deal 

with such problems [111–113]. A typical MCDM problem framework consists of evaluating 

alternatives subject to the number of criteria having values for each alternative. Let 𝐴 =

{𝐴1, 𝐴2, … , 𝐴𝑛} and 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑚} be the sets of 𝑛 alternatives to be evaluated w.r.t. to 

𝑚 criteria and obtain an optimum solution by maximising the benefit criteria and minimising 

the cost criteria. 

 

3.6.6 Ranking Method 

ER approach is used for aggregating the belief degrees. Qualitative attribute alternatives are 

assessed using grades. An example of grades is {Excellent, Average, Good, Poor, Worst}. ER 

approach does not restrict the number of grades for each attribute and this number may vary 

for every attribute. Also, every attribute may have a different number of grades. The result of 

an ER approach is a distributed assessment. For example, system safety can be {(Excellent, 

28%), (Good, 35%), (Average, 18%), (Poor, 12%), (Worst, 7%)}. Utility function like 

similarity measures is also used to map all the distributed assessments to their ideal grades. 

The utility is a scale of priority of the decision making and usually is in the range of [0, 1], [0, 

10] or [0, 100]. The highest number is allotted for the most favoured grade while the lowest 

number is for the least favoured grade. 

 

 3.6.7 Distance Measures for Evidence 

A distance (dissimilarity) of evidence indicates the measure of dissimilarity between bodies of 

evidence. It is used to indicate if a given body of evidence is near or far from another body of 

evidence. Once the distance between bodies of evidence is quantified, one can check the 

similarity between bodies of evidence. Various types of distance or dissimilarity measures are 

developed in evidence theory. Some of the distance measures are discussed in the next 

paragraphs.  

Consider 𝑚𝑖  and 𝑚𝑗  be two BBA’s on the same frame of discernment Ω , containing N 

mutually exclusive and exhaustive hypotheses. 

 

3.6.7.1 Jousselme Distance 

Jousselme et al. [114] proposed a distance between 𝑚𝑖 and 𝑚𝑗 represented by, 
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𝑑𝑖𝑗 = √
1

2
(𝑚⃗⃗ 𝑖 − 𝑚⃗⃗ 𝑗)

𝑇
⋅ 𝐷 ⋅ (𝑚⃗⃗ 𝑖 − 𝑚⃗⃗ 𝑗)               (3.17) 

where 𝐷 is a 2𝑁 × 2𝑁 matrix. The element of 𝐷 is defined as, 𝐷(𝐴, 𝐵) =
|𝐴∩𝐵|

|𝐴∪𝐵|
, 𝐴, 𝐵 ∈ 2Ω, |⋅| 

represents cardinality. 

 

3.6.7.2 Song’s Correlation Coefficient 

Song et al. [115] proposed a correlation coefficient between two bodies of evidence as, 

𝑐𝑜𝑟(𝑚𝑖, 𝑚𝑗) =
〈𝑚′

𝑖,𝑚
′
𝑗  〉

‖𝑚′
𝑖‖⋅‖𝑚

′
𝑗‖

                 (3.18) 

where 𝑚′
𝑖 = 𝑚𝑖 ⋅ 𝐷, 𝑚′

𝑗 = 𝑚𝑗 ⋅ 𝐷, 〈𝑚′
𝑖, 𝑚

′
𝑗〉 is the inner product of vectors and 𝑚′

𝑖  is the 

norm of a vector. Song et al.’s correlation coefficient estimates the degree of relevance 

between two bodies of evidence i.e. lower the value of 𝑐𝑜𝑟(𝑚𝑖, 𝑚𝑗), the higher is the conflict. 

In this, Song et al. have used the Jaccard matrix 𝐷 to modify BBA. But the limitation of this 

method is, the modified BBA does not satisfy the condition ∑ 𝑚(𝐴) = 1𝐴𝜖2𝛩 . Thus the 

correlation coefficient does not satisfy the property 𝑐𝑜𝑟(𝑚𝑖, 𝑚𝑗) = 1 ↔ 𝑚𝑖 = 𝑚𝑗 and gives 

incorrect results. 

 

3.6.7.3 Jiang’s Correlation Coefficient 

Jiang [116] proposed a new correlation coefficient between two bodies of evidence to 

quantify the conflict by the relevance between two bodies of evidence. If the value of 

relevance is higher, the degree of similarity is higher and the degree of conflict is lower and 

vice versa. Jiang’s correlation coefficient is given by, 

𝑟𝐵𝐵𝐴(𝑚𝑖, 𝑚𝑗) =
𝑐(𝑚𝑖, 𝑚𝑗)

√𝑐(𝑚𝑖, 𝑚𝑗), 𝑐(𝑚𝑗 , 𝑚𝑗)

 

Where 𝑐(𝑚𝑖, 𝑚𝑗) is the degree of correlation defined as, 

𝑐(𝑚𝑖, 𝑚𝑗) = ∑ ∑ 𝑚𝑖(𝐴𝑥) ⋅ 𝑚𝑗(𝐴𝑦) ⋅
𝐴𝑥∩𝐴𝑦

𝐴𝑥∪𝐴𝑦

2𝑁
𝑦=1

2𝑁
𝑥=1               (3.19) 

where 𝑥, 𝑦 = 1, 2, … , 2𝑁 ; 𝐴𝑥 , 𝐴𝑦  are the focal elements of mass respectively and |⋅| is the 

cardinality of a subset. 𝑟𝐵𝐵𝐴 = 0 implies no relevance between 𝑚𝑖  and 𝑚𝑗  while 𝑟𝐵𝐵𝐴 = 1  

implies 𝑚𝑖 and 𝑚𝑗 are identical.  

Jiang has tried to measure the similarity between the bodies of evidence considering the 

relevance of the evidence. He has considered simultaneously the non-intersection and the 
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difference among the focal elements. Jiang’s correlation coefficient is used in our study to get 

the measure of similarity between bodies of evidence. 

 

3.6.8 Methods for Combining Experts’ Judgements 

The experts express their opinions about the value of variables/parameters that may be used as 

inputs in decision making models. A peculiar characteristic is that each expert provides a 

subjective judgement about the variables. The purpose of combining experts’ judgements is to 

get a single resultant number when opinions of different experts are obtained in 

fuzzy/neutrosophic/plithogenic numbers. The study used three different methods for 

combining experts’ judgements. These are geometric average, evidential reasoning and 

averaged aggregation approach. These are explained later in section 4.3.2, section 5.5.5 and 

section 6.2.2. 

 

3.7 Summary 

In this chapter, the research problem is formulated. The motivation for the research problem 

and the general assumptions applicable to almost all the models are summarised. The solution 

methodologies used in the research work are given in detail along with the distance measures 

and methods for combining experts’ judgements used. The scope of the problem is broadly 

described in a detailed problem area identification diagram. The identified research problem is 

analysed in three parts. Analysis of these parts is given in chapter 4, chapter 5 and chapter 6 

respectively. 
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Chapter 4 

Risk Assessment Model for Efficient 

Reasoning under Uncertainty 

4.1 Effectiveness of Bayesian Belief Network  

Bayesian networks as a normative theory for reasoning have been quite successful in recent 

years. Bayesian conditioning requires that the relevant knowledge is available beforehand 

before fixing the probability distribution [117]. However, in real life, it is hard to believe that 

the initial knowledge is invariable. The recently gained knowledge may dominate the earlier 

knowledge. In such scenarios, the best option is to redefine the earlier probability distribution 

with the latest available information. The advantages of BNs are, they can represent the causal 

relationships, can include a variety of input data and make a provision to handle missing data 

along with the new evidence collected even after the network is built. Some of the advantages 

of using BN are it can easily translate human knowledge into probabilistic form and provides 

users more insights with causal representations making it easy for people with different 

background knowledge to understand the network. Thus, allowing users to make better 

predictions [118]. BN can furnish the latent variables of complex problems with graphical 

dimensions [54]. This makes it an appropriate tool for modeling complex scenarios. 

Additionally, BNs can incorporate different types of evidence in model building. The 

graphical network of BNs provides a good view to perceive and evaluate data and analyse the 

strength of evidence [54]. The BN network represents the background knowledge in graphical 

form. It allows combining types of evidence through probabilities and sets a base for carrying 

out sensitivity analysis. It permits to incorporate alternative hypotheses in the model [56]. It 

provides a method to convey the relationships between variables even in the condition when 

one is uncertain about their precise relationships. It can incorporate data from different 

sources and thus overcome the limitation of data scarcity. The challenges in constructing BN 

lie in efficiently handling incomplete data and the creation of simple and properly fitting 

probability distributions [118]. The BN also suffers from certain limitations regarding acyclic 

nature depriving of the feedback effects. Another limitation of Bayesian theory lies in that it 

cannot represent and process the uncertainty associated with an implicit knowledge and the 

prior probability distribution. This resulted in the emergence of many alternative approaches 
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and extensions to Bayesian theory such as the D-S theory of evidential reasoning [117]. The 

ER approach can efficiently handle any kind of data such as incomplete, complete, imprecise, 

precise or even fuzzy. This makes ER approach a handy tool for combining the information 

and pieces of evidence for decision making while solving multicriteria problems. 

 

4.2 Building an ISM Model 

The typical engineering system consists of a complex network of many subsystems (factors) 

as shown in Figure 4.1. Risk assessment of such a system is difficult because of the 

interconnectivity and interrelationship between these factors. To overcome such a difficulty, a 

new hybrid risk assessment model has been proposed in this chapter. This chapter deals with 

the first part of the problem statement. Initially, ISM is used to find the interrelationship 

between various factors and ascertain the causable association between these factors. Weights 

of the factors using FANP are identified next. Fuzzy logic is used to deal with uncertainty in 

experts’ opinions to get likelihood and consequence severity. The information obtained is 

synthesised using the ER approach to arrive at the risk level of the system. The proposed 

approach is illustrated with an example to assess the risk associated with fire on board the 

ship. 

ISM is used to understand complex scenarios and establish the relationship between various 

factors using a binary matrix. This technique is chosen in our study as historical data are 

scarce, missing and also incomplete. Experts’ judgements are used to identify the causable 

factors and their interrelationships. 

 

4.2.1 Identifying the Risk and Associated Factors 

The risk to be assessed is described by the committee of experts. The factors which are 

appropriate and associated with the given problem are identified. These factors directly or 

indirectly influence the risk. Identical factors are clubbed together in factor groups. 

 

4.2.2 Determining Interdependence between Factors 

SSIM is constructed using the contextual relationship among factors. Four characters V, A, X 

and O indicate the direction of relationships among the factors a and b (a < b). 

V: factor a leads to factor b 

A: factor b leads to factor a 

X: factor a and b lead to each other 



45 
 

O: factor a and b are unrelated 

IRM is constructed by replacing the characters by 0 and 1 as per the following rules. 

1: If the cell (a, b) has entry V, fill cell (a, b) with 1 and cell (b, a) with 0. 

2: If the cell (a, b) has entry A, fill cell (a, b) with 0 and cell (b, a) with 1. 

3: If the cell (a, b) has entry X, fill cell (a, b) and (b, a) with 1. 

4: If the cell (a, b) has entry O, fill cell (a, b) and (b, a) with 0. 

FRM is constructed after ensuring transitivity and changing the matrix if required. 

 

Figure 4.1: Typical Engineering System 

 

4.2.3 Drawing an ISM Diagram 

The Reachability matrix is partitioned into different levels using reachability set, antecedent 

set and intersection set. A directed graph (digraph) is drawn using the relationships from the 

Goal : Risk

Factor 1

Factor 2

Factor z 

Criteria 1 Criteria 2 Criteria m

Factor 1

Factor 2

Factor x 

Factor 1

Factor 2

Factor y 
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reachability matrix after removing transitive links. Finally, an ISM diagram is drawn from the 

resulting digraph. 

 

4.3 Obtaining Priority Weights of Factors 

Factors and factor groups are compared pairwise using FANP to get the priority weights of 

factors. The global weights of all the factors are obtained by constructing the limit 

supermatrix. The procedure is explained in subsection 4.3.1 to subsection 4.3.4. 

 

4.3.1 Collecting Experts’ Judgements on Factors 

All the factors and factor groups are compared pairwise by experts in linguistic terms. 

Triangular/Trapezoidal fuzzy numbers with membership functions as shown in Figure 4.2 

convert the information in linguistic terms into trapezoidal fuzzy numbers. 

 

Figure 4.2: Membership Function of Fuzzy Numbers for Relative Importance/Performance 

 

4.3.2 Aggregating Experts’ Responses 

Experts’ responses are aggregated and trapezoid fuzzy numbers are resolved using the 

geometric average approach, 

𝑟̃𝑖𝑗 = (𝑎̃𝑖𝑗1 ⊗ 𝑎̃𝑖𝑗2 ⊗…⊗ 𝑎̃𝑖𝑗𝑘)
1/𝑘

                  (4.1) 

   

where 𝑎̃𝑖𝑗𝑘 represents pairwise comparison value between factor 𝑖 and 𝑗 given by 𝑘𝑡ℎ expert. 

Next, the Yager ranking method [119] is used to defuzzify each fuzzy number into a crisp 

number. 

 

Equal

0

1 2 3 4 5 6 7 8 9

Little High Moderately High Medium High High Very High Extremely High
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𝑟𝑖𝑗 = ∫
1

2
((𝑟̃𝑖𝑗)𝛼

𝑙
+ (𝑟̃𝑖𝑗)𝛼

𝑢
)

1

0
𝑑𝛼                  (4.2) 

 

Where (𝑟̃𝑖𝑗)𝛼
𝑙

  and (𝑟̃𝑖𝑗)𝛼
𝑢

 are the  𝛼-cuts of fuzzy numbers. 𝛼-cuts of fuzzy numbers are given 

in Table 4.1. 

 

Table 4.1: 𝛼-cuts of Fuzzy Numbers 

𝑎̃ (𝑎̃)𝛼
𝐿  (𝑎̃)𝛼

𝑈 

𝑎̃𝑉𝐻 = (7.5, 8.5, 9, 9)𝐿−𝑅 (𝑎̃𝑉𝐻)𝛼
𝐿 = 7.5 +  𝛼 (𝑎̃𝑉𝐻)𝛼

𝑈 = 9 

𝑎̃𝐻 = (6.5, 7.5, 7.5, 8.5)𝐿−𝑅 (𝑎̃𝐻)𝛼
𝐿 = 6.5 +  𝛼 (𝑎̃𝐻)𝛼

𝑈 = 8.5 −  𝛼 

𝑎̃𝑀𝐻 = (5, 5.75, 6.75, 7.5)𝐿−𝑅 (𝑎̃𝑀𝐻)𝛼
𝐿 = 5 +  0.75𝛼 (𝑎̃𝑀𝐻)𝛼

𝑈 = 7.5 −  0.75𝛼 

𝑎̃𝑀 = (4, 5, 5, 6)𝐿−𝑅 (𝑎̃𝑀)𝛼
𝐿 = 4 +  𝛼 (𝑎̃𝑀)𝛼

𝑈 = 6 −  𝛼 

𝑎̃𝑀𝐿 = (2.5, 3.25, 4.25, 5)𝐿−𝑅 (𝑎̃𝑀𝐿)𝛼
𝐿 = 2.5 +  0.75𝛼 (𝑎̃𝑀𝐿)𝛼

𝑈 = 5 −  0.75𝛼 

𝑎̃𝐿 = (1.5, 2.5, 2.5, 3.5)𝐿−𝑅 (𝑎̃𝐿)𝛼
𝐿 = 1.5 +  𝛼 (𝑎̃𝐿)𝛼

𝑈 = 3.5 −  𝛼 

𝑎̃𝑉𝐿 = (1, 1, 1.5, 2.5)𝐿−𝑅 (𝑎̃𝑉𝐿)𝛼
𝐿 = 1 (𝑎̃𝑉𝐿)𝛼

𝑈 = 2.5 −  𝛼 

 

An aggregated comparison matrix of crisp numbers is then developed. 

𝑊𝑠 =

[
 
 
 
 
 
 
 

1 𝑟12 ⋯ ⋯ ⋯ ⋯ 𝑟1𝑗
1
𝑟12⁄ 1 ⋯ ⋯ ⋯ ⋯ 𝑟2𝑗

⋮
⋮
⋮
⋯

1
𝑟1𝑗⁄

⋮
⋮
⋮
⋯

1
𝑟2𝑗⁄

1
⋮
⋮
⋯
⋯

⋯
1

1
𝑟𝑖𝑗⁄
⋯
⋯

⋯
𝑟𝑖𝑗
1
⋯
⋯

⋯
⋯
⋯
1
⋯

⋯
⋯
⋯
⋯
1]
 
 
 
 
 
 
 

                (4.3) 

 

Priority vector, 𝑊𝑠 for the aggregated comparison matrix is obtained, 

𝑊𝑠 ×𝑤𝑠 = 𝜆𝑚𝑎𝑥 × 𝑤𝑠                   (4.4) 

Where 𝑤𝑠 is the eigen vector and 𝜆𝑚𝑎𝑥 is the principal eigen value of 𝑊𝑠. 

 

4.3.3 Examining the Consistency of Aggregated Comparison Matrix 

Some inconsistencies may arise when experts carry out many pairwise comparisons. For 

example, when three factors are compared, experts may consider that the first factor is slightly 

more important than the second factor and the second factor is slightly more important than 

the third one. But by mistake expert may also consider that the third factor is slightly more 

important than the first one giving rise to an inconsistency. To check such inconsistencies, 

Saaty [81] proposed the Consistency Ratio (𝐶. 𝑅. ) given by, 
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𝐶. 𝑅.=
𝐶.𝐼.

𝑅.𝐼.
                     (4.5) 

where 𝐶. 𝐼.  is the Consistency Index, 𝐶. 𝐼. =
𝜆𝑚𝑎𝑥−𝑛

𝑛−1
 and  𝑛  is the number of factors being 

compared. For small problems (𝑛 ≤ 10), 𝑅. 𝐼. is given as,  

 

For a perfect and consistent decision, 𝐶. 𝐼. = 0  i.e. 𝑅. 𝐼. = 0  and a small inconsistency is 

accepted upto 𝐶. 𝑅. ≤ 10%. If 𝐶. 𝑅. > 10% the subjective judgements are revised again.  

An aggregated comparison matrix of crisp numbers is then checked for consistency. 

 

4.3.4 Constructing the Limit Supermatrix 

An unweighted supermatrix is constructed using priority vectors ensuring that it is column 

stochastic. This matrix is raised to large power to obtain a limit supermatrix. This is done to 

produce the cumulative influence of each factor on every other factor. The global weights of 

all the factors are obtained from the limit supermatrix. 

 

4.4 Synthesising the Information 

The data on risk parameters of factors are collected from experts’ judgements. These data are 

synthesised using the global weights as described in the following sections. 

 

4.4.1 Collecting the data on Risk Parameters 

Traditionally, the risk is considered to be a function of two parameters, 𝐹𝐿 and 𝐶𝑆 associated 

with the failure. 

𝑅𝑖𝑠𝑘 = 𝑓(𝐹𝐿, 𝐶𝑆) 

𝑅 = 𝐹𝐿 × 𝐶𝑆                     (4.6) 

Most of the accidents in engineering are not reported due to a lot of stringent regulations and 

hence the data obtained from records are incomplete and imprecise. Less knowledge of 

information about any accident results in higher uncertainty and does not provide a correct 

picture of the risk involved. The effect of this is felt in the measures taken to reduce the risk 

level. To overcome this, the 𝐹𝐿 and 𝐶𝑆 of risk are identified by a group of experts from the 

straight line membership functions (triangular and trapezoidal). The likelihood is a fuzzy 

range of the frequency of occurrence of a particular incident and consequence is a fuzzy range 

of the outcome of that incident. Seven and four overlapping triangular and trapezoidal curves 

n 1 2 3 4 5 6 7 8 9 10

R.I. 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49
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for likelihood and severity are constructed respectively. The fuzzy membership functions of 

the above curves are shown in Figure 4.3 and Figure 4.4. 

Experts’ responses are aggregated using the geometric average approach. Next, the fuzzy 

number is defuzzified to get a crisp number. 

 

Figure 4.3: Fuzzy Likelihood Sets Definition 

 

Figure 4.4: Fuzzy Severity Sets Definition 

 

4.4.2 Obtaining the Fuzzy Combine 

Crisp to fuzzy combine is used to get the degree of truth. In the maximiser method, when the 

crisp value corresponds to two neighbouring fuzzy ranges in fuzzy sets, it takes the one 

having higher membership degrees since it dominates the fuzzy range with lower membership 

degrees. The average of the two is taken if two actions are having the same degree of 

membership which is also the maximum. In the case of the Weighted Average Method 

(WAM), the various actions are averaged out depending on their degree of membership. The 

centroid method gives the output actions in connection with the centre of mass of the outputs. 

In this study, all the ranges which represent the crisp values are retained with their 

corresponding membership degrees. These values are used in the fuzzy inference system. The 

matrix of fuzzy rules between likelihood and severity for risk estimation is given in Table 4.2. 

 

 

 

1 VL L RL RF F HF VL - Very Low

L - Low

RL - Reasonably Low

0.5 A - Average

RF - Reasonably Frequent

F - Frequent

HF - Highly Frequent

0 1 2 3 4 5 6 7 8 9 10

A

1 N C

N - Negligible

M - Marginal / Moderate

0.5 Cr - Critical

C - Catastrophic

0 1 2 3 4 5 6 7 8 9 10

M Cr
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Table 4.2: Risk Estimation – Fuzzy Rule Matrix 

 

 

4.4.3 Estimating the Risk of the System 

The risk associated with all the factors obtained by the fuzzy inference rule is synthesised 

using DST of evidential reasoning. The result of the ER approach is distributed assessment 

such as, 

𝑅𝑖𝑠𝑘 𝐿𝑒𝑣𝑒𝑙 = {𝐿𝑜𝑤,𝑀𝑒𝑑𝑖𝑢𝑚,𝐻𝑖𝑔ℎ, 𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ}. 

The flow diagram of the model is given in Figure 4.5. 

 

Figure 4.5: The Flow Diagram of the Model 

Severity  ->

Likelihood   ↓

Very Low VL VL L M

Low VL VL L M

Reasonably Low VL L M H

Average L L M H

Reasonably Frequent L M H VH

Frequent L M H VH

Highly Frequent L H VH VH

Negligible Marginal Critical Catastrophic

VL - Very Low

L - Low

M - Medium

H - High

VH - Very High
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Step 5
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Step 9

Step 10  Estimating  risk of the system

Interpretive Structural Modelling

Fuzzy Analytical Network Process

Evidential Reasoning Approach

 Identifying risk and associated factors

 Determining interdependence between factors

 Drawing an ISM diagram 

 Collecting experts' judgements on factors

 Aggregating experts responses

 Examining consistency of aggregated comparison matrix 

 Constructing limit  supermatrix 

 Collecting data on risk parameters

Obtaining fuzzy combine from crisp to get degree of truth 
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4.5 Fire Risk onboard the Ship 

The risk assessment of fire on board the ship in the machinery space of maritime 

transportation is presented in this section. The data showed that the Oil/Fuel leakages in 

machinery involved in almost 48% of the accidents, Electrical failures amount to 18%, 

Explosion/Overheating amount to 14% and the other causes for fires were not known clearly 

and amounts to the remaining. The areas and systems which are prone to such three critical 

incidents are identified. The three incidents are identified as three-factor groups/clusters and 

all the probable causes responsible for the faults to occur are labelled as factors. Three-factor 

groups/clusters and respective factors identified for fire are given below in Table 4.3. 

 

Table 4.3: Factors for Fire Risk 
Sr 

No 
Criteria Factors 

   

1 

Oil / Fuel Leakage ( C1 ) 

Damaged 'O' ring ( F1 ) 

2 Improper Maintenance ( F2 ) 

3 Hot Work Accidents ( F3 ) 

4 

Electrical Faults ( C2 ) 

Chafing ( F4 ) 

5 Short Circuit ( F5 ) 

6 Overloading of Switches ( F6 ) 

7 Static Electricity ( F7 ) 

8 

Overheating / Explosion (C3 ) 

Turbocharger Explosion ( F8 ) 

9 Boiler Explosion ( F9 ) 

10 Cargo Fire ( F10 ) 

11 Crankcase Explosion ( F11 ) 

 

SSIM, IRM, FRM and partitioned matrix of factors are given in Table 4.4, Table 4.5, Table 

4.6 and Table 4.7. 

Table 4.4: Structural Self Interaction Matrix 

Sr 

No 
Factors F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 

             

1 Damaged 'O' ring ( F1 ) X A V O O O O O O O O 

2 Improper Maintenance ( F2 )   X V V V V O O O O O 

3 Hot Work Accidents ( F3 )     X A A O O O O O O 

4 Chafing ( F4 )       X V V O O O O O 

5 Short Circuit ( F5 )         X A A O O O O 

6 Overloading of Switches ( F6 )           X O O O O O 

7 Static Electricity ( F7 )             X O O O O 

8 Turbocharger Explosion ( F8 )               X O O O 

9 Boiler Explosion ( F9 )                 X O O 

10 Cargo Fire ( F10 )                   X O 

11 Crankcase Explosion ( F11 )                     X 
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Table 4.5: Initial Reachability Matrix 

Sr 

No 
Factors F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 

             

1 Damaged 'O' ring ( F1 ) 1 0 1 0 0 0 0 0 0 0 0 

2 Improper Maintenance ( F2 ) 1 1 1 1 1 1 0 0 0 0 0 

3 Hot Work Accidents ( F3 ) 0 0 1 0 0 0 0 0 0 0 0 

4 Chafing ( F4 ) 0 0 1 1 1 1 0 0 0 0 0 

5 Short Circuit ( F5 ) 0 0 1 0 1 0 0 0 0 0 0 

6 Overloading of Switches ( F6 ) 0 0 0 0 1 1 0 0 0 0 0 

7 Static Electricity ( F7 ) 0 0 0 0 1 0 1 0 0 0 0 

8 Turbocharger Explosion ( F8 ) 0 0 0 0 0 0 0 1 0 0 0 

9 Boiler Explosion ( F9 ) 0 0 0 0 0 0 0 0 1 0 0 

10 Cargo Fire ( F10 ) 0 0 0 0 0 0 0 0 0 1 0 

11 Crankcase Explosion ( F11 ) 0 0 0 0 0 0 0 0 0 0 1 

 

Table 4.6: Final Reachability Matrix 

Sr 

No 
Factors F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 

             

1 Damaged 'O' ring ( F1 ) 1 0 1 0 0 0 0 0 0 0 0 

2 Improper Maintenance ( F2 ) 1 1 1 1 1 1 0 0 0 0 0 

3 Hot Work Accidents ( F3 ) 0 0 1 0 0 0 0 0 0 0 0 

4 Chafing ( F4 ) 0 0 1 1 1 1 0 0 0 0 0 

5 Short Circuit ( F5 ) 0 0 1 0 1 0 0 0 0 0 0 

6 Overloading of Switches ( F6 ) 0 0 1* 0 1 1 0 0 0 0 0 

7 Static Electricity ( F7 ) 0 0 1* 0 1 0 1 0 0 0 0 

8 Turbocharger Explosion ( F8 ) 0 0 0 0 0 0 0 1 0 0 0 

9 Boiler Explosion ( F9 ) 0 0 0 0 0 0 0 0 1 0 0 

10 Cargo Fire ( F10 ) 0 0 0 0 0 0 0 0 0 1 0 

11 Crankcase Explosion ( F11 ) 0 0 0 0 0 0 0 0 0 0 1 

 

 

Table 4.7: Partitioned Matrix of Factors 

Sr 

No Factors Reachability Set Antecedent Set Intersection Set Level 
      

1 F1 F1, F3 F1, F2 F1 II 

2 F2 F1, F2, F3, F4, F5, F6 F2 F2 V 

3 F3 F3 F1, F2, F3, F4, F5, F6, F7 F3 I 

4 F4 F3, F4, F5, F6 F2, F4 F4 IV 

5 F5 F3, F5 F2, F4, F5, F6, F7 F5 II 

6 F6 F3, F5, F6 F2, F4, F6 F6 III 

7 F7 F5, F7 F7 F7 III 

8 F8 F8 F8 F8 I 

9 F9 F9 F9 F9 I 

10 F10 F10 F10 F10 I 

11 F11 F11 F11 F11 I 
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The initial digraph and ISM model are shown in Figure 4.6 and Figure 4.7. 

 

Goal: Fire 
Risk 

F4 

F6 

F7 

F5 

F1 

F11 F10 F9 F8 F3 

F2 

 

Figure 4.6: Digraph 

 

Figure 4.7: ISM Model 

The General ANP model for weighting the factors is obtained from the above ISM model and 

shown in Figure 4.8. The model consists of three phases. Goal i.e. Fire Risk is at the first 

phase. Three-factor groups viz. Oil/Fuel leakage, Electrical faults and Overheating/Explosion 

represent the second phase while the third phase consists of all the qualitative factors (eleven 

in this case) identified within the factor groups. Within the model, there is interdependency 
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between all or some of the factor groups. The qualitative factors also have interdependency 

within themselves. Arrows are used to indicate such interdependencies between factors. The 

Overheating/Explosion factor group has no inter-dependency on the other two factor groups. 

Likewise, factors of the Overheating/Explosion factor group also do not have any inter-

dependency between them. 

 

Figure 4.8: The General ANP Model 

Unweighted, Weighted and Limit super matrices giving priority weights of factors 1 to 7, 

priority weights of factors 8 to 11 and that of factor groups are shown in Appendix – I. Global 

weights so obtained are given in Table 4.8. 

Table 4.8: Global Weights of Factors 

Factor Groups Weights Factors Weights 
Global 

Weights 
     

Oil / Fuel 

Leakage and 

electrical 

Failures 

0.762 

Damaged 'O' ring (F1) 0.2151 0.164 

Improper Maintenance (F2) 0.3078 0.235 

Hot Work accidents (F3) 0.08465 0.064 

Chafing (F4) 0.132 0.1 

Short Circuit (F5) 0.1861 0.142 

Overloading of Switches (F6) 0.0644 0.049 

Static Electricity (F7) 0.01 0.008 

Explosion 0.238 

Turbocharger Explosion (F8) 0.055 0.013 

Boiler Explosion (F9) 0.23 0.055 

Cargo Fire (F10) 0.421 0.1 

Crankcase Explosion (F11) 0.295 0.07 

 

The experts’ judgements on likelihood and severity for all the factors and their aggregated 

membership values are presented in Appendix–I. Applying the rule matrix on aggregated 
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membership values provides the corresponding BBA’s of risk. These BBA’s are given in 

Table 4.9. 

Table 4.9: Basic Belief Assignments of Risk Factors 

 

Very 

Low 
Low Medium High 

Very 

High 
      

F1 0 0.148 0.852 0 0 

F2 0 0.056 0.944 0 0 

F3 0 0.5 0 0 0 

F4 0.491 0 0 0 0 

F5 0 0 0.225 0.313 0.456 

F6 0 0.5 0 0 0 

F7 0.511 0.452 0 0 0 

F8 0.511 0.489 0 0 0 

F9 0.60375 0 0 0 0 

F10 0 0 0.5 0 0 

F11 0 0.60325 0 0 0 

 

Using the ER algorithm and the global weights calculated by FANP, BBA’s of all the factors 

are synthesised to arrive at the fire risk onboard the ship. The final values of levels of risks are 

Very Low (0.0958), Low (0.1626), Medium (0.6193), High (0.0498), Very High (0.0725). 

The distributed assessment of the fire risk on board ship is estimated to be medium with 

61.93%, Low with 16.26 %, Very Low with 9.58%, Very High with 7.25 % and High with 

4.98%. The main reason for accidents onboard the ship including the fire is attributed to 

negligence from the human being, improper maintenance and creating an unsafe situation 

which may lead to accidents. The global weights calculated from FANP also assign maximum 

weightage to improper maintenance amounting to 0.235 among all the eleven factors. This 

strengthens the belief that human error is one of the prime factors towards the initiation of 

accidents. 

The distributed assessment of fire risk obtained is 

{(𝑉𝑒𝑟𝑦 𝐿𝑜𝑤, 9.58%), (𝐿𝑜𝑤, 16.26%), (𝑀𝑒𝑑𝑖𝑢𝑚, 61.93%), (𝐻𝑖𝑔ℎ, 4.98%), (𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ, 7.25%)} 

 

4.6 An Alternative Approach to D-S Theory 

DST is often criticised [120] for giving illogical results when sources of evidence have a high 

degree of conflict. Suppose a patient is seen by two physicians regarding the patient’s 

neurological symptoms. The two physicians’ diagnoses about the patient’s symptoms are 

given below. 

𝑚1(𝑀) = 0.99 𝑚1(𝑇) = 0.01 
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𝑚2(𝐶) = 0.99  𝑚2(𝑇) = 0.01 

where 𝑀, 𝐶 and 𝑇 stand for Meningitis, Brain Tumor and Concussion. Combining the above 

pieces of evidence by D-S theory gives, 

𝑚12(𝑀) = 𝑚12(𝐶) = 0 𝑚12(𝑇) = 1.0 

This result shows that the D-S rule for combination supports the diagnosis which physicians 

have given the least probability to occur. This is illogical. To overcome this limitation, many 

alternative rules are proposed [121-124].  

Consider multiple sources of evidence are taken to evaluate the hypotheses. If even one such 

source of evidence assigns zero belief mass to a particular hypothesis, then despite the higher 

share of weights assigned by other remaining pieces of evidence to the same hypothesis, the 

DST on the combination of evidence gives zero probability of that hypothesis being true. This 

is also highly illogical. In this scenario, there is room to believe that while collecting the 

evidence, some errors might have crept in. Such error has to be accommodated in the 

evidence before applying the DST. A new alternative rule is proposed in this study in which 

possible error while judging the hypothesis is considered. 

Consider, ′𝑘′ sources of evidence on the frame 𝛩. The proposed steps to consider Error in 

Judgement (EIJ) are given below. 

Step 1: The total focal elements (𝛽) from all the sets of 𝑘 sources of evidence are identified.  

Step 2: The mean (𝜓) of the masses of the elements is calculated for individual sources of 

evidence. 

𝜓𝑖 =
∑𝑚𝑖(𝑋)

𝛽
, 𝑖 = 1, 2, … , 𝑘                  (4.7) 

where 𝑋 is the focal element 

Step 3: The standard deviation 𝜎 of the masses is calculated based on the assumption that the 

standard deviation of a probability is the same as the standard deviation of a random variable. 

𝜎𝑖 = √∑(𝜓𝑖−𝑚𝑖(𝑋))
2

𝛽−1
, 𝑖 = 1, 2, … , 𝑘                  (4.8) 

Step 4: The EIJ (𝛿) is calculated for each source of evidence, 

𝛿𝑖 =
𝜎𝑖

√𝛽
, 𝑖 = 1, 2, … , 𝑘                  (4.9) 

Step 5: The revised masses (𝑚′) for all the sources of evidence are obtained considering the 

error and normalising. 

𝑚′𝑖 =
(𝑚𝑖(𝑋)+𝛿𝑖)

(1+𝛽×𝛿𝑖)
, 𝑖 = 1, 2, … , 𝑘                (4.10) 

Comparative results for physicians’ diagnoses about patient’s neurological symptoms using   

Dempster rule, Yager’s combination rule of evidence [121], Murphy’s average combination 
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rule [122], Deqiang’s evidence combination approach [123], Ali’s rule of a combination of 

evidence [124] and our EIJ rule is given in Table 4.10. 

Table 4.10: Results of Different Combination Rules (patient’s symptoms example) 

Combination Rules m(M) m(C) m( T) m ( Θ) 
     

Dempster Rule 0 0 1 0 

Yager Rule 0 0 0.0001 0.9999 

Murphy's Average combination Rule 0.4999 0.4999 0.0002 0 

Deqiang Rule 0.495 0.495 0.01 0 

Tazid Ali Rule 0.4975 0.4975 0.0051 0 

Proposed EIJ Rule 0.4416 0.4416 0.1168 0 

 

The proposed EIJ method is validated by taking two examples from [124]. Example 1 and its 

results are given in Table 4.11 and Table 4.12. Example 2 and its results are given in Table 

4.13 and Table 4.14. 

 

Table 4.11: Example-1(BBAs obtained from four different bodies of evidence) 
Evidence A B C     

m1 0.98 0.01 0.01 

m2 0 0.01 0.99 

m3 0.9 0.01 0.09 

m4 0.9 0.01 0.09 

 

Table 4.12: Results of Different Combination Rules (Example-1) 
Combination 

Rules 
m12 m123 m1234 

 

Dempster Rule 
m(A) =0, m(B)=0.01,                   

m(C )=0.99, m(Θ)=0 

m(A) =0, m(B)=0.0011,         

m(C )=0.9989, m(Θ)=0 

m(A) =0, m(B)=0.0001247, 

m(C )=0.9998753, m(Θ)=0 

Yager Rule 

m(A) =0, 

m(B)=0.0001,              

m(C )=0.0099, 

m(Θ)=0.99 

m(A) =0, m(B)=0.000001, 

m(C )=0.000891, 

m(Θ)=0.999108 

m(A) =0, m(B)=0.00000001, 

m(C )=0.00008019, 

m(Θ)=0.9999198 

Murphy's Average 

Combination Rule 

m(A) =0.4898, 

m(B)=0.0002,                

m(C )=0.51 

m(A) =0.8369, 

m(B)=0.0000034,                

m(C )=0.1631 

m(A) =0.96856, 

m(B)=0.0000000415,          

m(C )=0.03144 

Deqiang Rule 

m(A) =0.4703, 

m(B)=0.01,               

m(C )=0.5197, m(Θ)=0 

m(A) =0.7431, m(B)=0.01, 

m(C )=0.2469, m(Θ)=0 

m(A) =0.8358, m(B)=0.01, 

m(C )=0.1542, m(Θ)=0 

Tazid Ali Rule 

m(A) =0.4924, 

m(B)=0.005151,          

m(C )=0.50245, 

m(Θ)=0 

m(A) =0.701565, 

m(B)=0.005908,                 

m(C )=0.292528, m(Θ)=0 

m(A) =0.807426, 

m(B)=0.006846,                

m(C )=0.185728, m(Θ)=0 

Our EIJ Rule 

m(A) =0.4366, 

m(B)=0.1151,          

m(C )=0.4483, m(Θ)=0 

m(A) =0.7194, m(B)=0.0471, 

m(C )=0.2335, m(Θ)=0 

m(A) =0.8938, m(B)=0.0145, 

m(C )=0.0917, m(Θ)=0 
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Table 4.13: Example-2 (BBAs obtained from five different sources of evidence) 
Evidence A B C     

m1 0.5 0.2 0.3 

m2 0 0.9 0.1 

m3 0.55 0.1 0.35 

m4 0.55 0.1 0.35 

m5 0.55 0.1 0.35 

 

 

Table 4.14: Results of Different Combination Rules (Example-2) 
Combination Rules m12 m123 m1234 m12345 

 

Dempster Rule 

m(A) =0, 

m(B)=0.8571,                   

m(C )=0.1429 

m(A) =0, 

m(B)=0.6316,         

m(C )=0.3684 

m(A) =0, 

m(B)=0.3288,        

m(C )=0.6712 

m(A) =0, m(B)=0.1228, 

m(C )=0.8772 

Yager Rule 

m(A) =0, 

m(B)=0.1800,              

m(C )=0.03, 

m(Θ)=0.7900 

m(A) =0, 

m(B)=0.0018, 

m(C )=0.0105, 

m(Θ)=0.9715 

m(A) =0, 

m(B)=0.0018,            

m(C )=0.0037, 

m(Θ)=0.9945 

m(A) =0, m(B)=0.0002, 

m(C )=0.0013, 

m(Θ)=0.9985 

Murphy's Average 

Combination Rule 

m(A) =0.1543, 

m(B)=0.7469,                

m(C )=0.0988 

m(A) =0.3500, 

m(B)=0.5224,                

m(C )=0.1276 

m(A) =0.6027, 

m(B)=0.2627,          

m(C )=0.1346 

m(A) =0.7958, 

m(B)=0.0932,                     

m(C )=0.1110 

Deqiang Rule 

m(A) =0.132857, 

m(B)=0.7140,               

m(C )=0.153143 

m(A) =0.321859, 

m(B)=0.435805,            

m(C )=0.242336 

m(A) =0.447721, 

m(B)=0.250546,                     

m(C )=0.301733 

m(A) =0.504066, 

m(B)=0.167611,                     

m(C )=0.328323 

Tazid Ali Rule 

m(A) =0.236042, 

m(B)=0.603218,          

m(C )=0.16074 

m(A) =0.388764, 

m(B)=0.377132,                 

m(C )=0.234103 

m(A) =0.479636, 

m(B)=0.237536,                

m(C )=0.282828 

m(A) =0.530041, 

m(B)=0.15895,                

m(C )=0.311009 

Our EIJ Rule 

m(A) =0.2545, 

m(B)=0.5187,            

m(C )=0.2269 

m(A) =0.4312, 

m(B)=0.2974,               

m(C )=0.2714 

m(A) =0.5960, 

m(B)=0.1391, 

m(C )=0.2649 

m(A) =0.7180, 

m(B)=0.0567,                  

m(C )=0.2253 

 

From the above examples, it is seen that the Dempster rule gives illogical results when bodies 

of evidence with a high degree of conflict are combined. Yager’s rule assigns conflict mass to 

an unknown base set and it increases with an increase in bodies of evidence. This is not the 

idea of combining bodies of evidence. Deqiang’s rule uses ambiguity measure to reduce the 

effect of conflict and the method is slightly complicated as compared to the proposed EIJ 

approach. Murphy’s average combination rule and Ali’s rule give reasonable results. The 

limitation of Murphy’s rule is that the series of evidence to be combined should be available 

at the start while Ali’s rule did not give any proper justification for the formula.  

Table 4.15 shows comparative results when Dempster’s rule, Yager’s combination rule of 

evidence, Murphy’s average combination rule, Deqiang’s evidence combination approach, 

Ali’s rule of a combination of evidence and our EIJ rule are used for example in section 4.5. 

The assessment of fire risk on board ship with the new alternative approach is estimated to be 

Medium with 40.81 %, Low with 18.55 %, Very Low with 14.92 %, Very High with 13.66 % 

and High with 12.06 %. 
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Table 4.15: Comparative Results for Example in Section 4.5 

 

 

4.7 Summary 

In this chapter, the effectiveness of the tools such as BBN, ER approach, ISM and FANP are 

discussed. The new model using ISM, FANP and ER is proposed and implemented for risk 

assessment and efficient reasoning under uncertainty. This model is suited for complex 

engineering systems with interconnected factors and when ascertaining causal relationships 

between them is difficult. Since most of the factor and factor groups are interdependent, 

FANP is used to obtain the global weights of factors. Fuzzy inference rules are used to 

estimate the risks of factors due to the structural complexity and the presence of uncertainty in 

the data. The model assessed the system risk using the D-S evidential reasoning approach. A 

suitable alternative is also proposed to overcome the criticism for giving illogical results when 

there exists a high degree of conflict in various sources of evidence. The model is tested with 

well developed previous methods and our proposed EIJ approach and comparative results are 

given in Table 4.15. 

  

 

 

 

 

 

 

 

Combination Rules Very Low Low Medium High Very High

Dempster Rule 0.0958 0.16 0.6193 0.05 0.0725

Yager Rule 0 0 0 0 0

Murphy's Average 

Combination Rule
0.1058 0.17 0.6015 0.05 0.0726

Deqiang Rule 0.1389 0.61 0.2459 0 0.0016

Tazid Ali Rule 0.0057 0.02 0.9697 0 0.0008

Our EIJ Rule 0.1492 0.19 0.4081 0.12 0.1366
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Chapter 5 

Framework For Risk Assessment 

Risk assessment in maritime transportation is carried out here by analysing the safety of the 

systems. Initial risk parameters are obtained by experts’ judgements and uncertainty due to 

qualitative/subjective human knowledge is dealt with by neutrosophic/plithogenic set theories. 

The safety of systems in the marine industry is analysed with appropriate illustrations. The 

validity and sensitivity analysis of the models is carried out wherever applicable.  

This chapter forms the second part of the problem statement. Three cases have been 

formulated for the present study using neutrosophic logic, neutrosophic set theory and 

plithogenic set theory. 

 

5.1 Decision Making in an Uncertain Environment 

Smarandache [41] proposed and developed the concept of neutrosophic sets derived from a 

new branch of philosophy, neutrosophy. It has the potential to deal with uncertainty, 

indeterminacy (hesitancy) and inconsistency in the information sought from the human 

valuation. Wang et al. [42] created SVNS to solve practical, scientific and engineering-related 

problems. Because of its superiority in handling uncertainty and indeterminacy, an attempt is 

made to apply neutrosophic/plithogenic set theory in this study. 

 

5.2 Risk Assessment Framework 

In this section, detailed procedures for analysing the safety of systems and assessing risk in 

maritime transportation are explained considering three different models based on various 

approaches to deal with uncertainty. 

1. Model I: Using neutrosophic logic 

2. Model II: Using neutrosophic set theory 

3. Model III: Using plithogenic set theory 

 

5.3 Model I: Using Neutrosophic Logic 

The risk assessment method should be robust enough to process any kind of information be it 

qualitative, quantitative, subjective or objective in a very transparent and easy way. In this 
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chapter, an efficient and powerful neutrosophic IF-THEN rules method with a comprehensive 

assessment of identified risk factors under an uncertain environment is proposed to elicit the 

experts’ judgements. The proposed method consists of two parts. Initially, risk parameters are 

collected from experts in linguistic terms and expressed quantitatively using membership 

functions of neutrosophic numbers. Then, neutrosophic IF-THEN rules are constructed 

consisting of two parts –namely Antecedent and Consequent. All the fired rules are 

aggregated and combined for estimating and systematising the risk factors. An example to 

illustrate the application of a proposed model is given in subsection 5.3.7.  

Neutrosophic set given by Smarandache [41] with the inclusion of the indeterminacy 

component is an extension of a fuzzy set and represents the real world (full of uncertainty) 

better than the highest version of fuzzy set i.e. Interval Valued Intuitionistic Fuzzy Set 

(IVIFS). Neutrosophic logic employing IF-THEN rules is proposed using linear single valued 

trapezoidal neutrosophic numbers. Neutrosophic AND and OR are used for implication from 

antecedent to consequent and aggregating consequent across all the firing rules. The novelty 

of the study is threefold. First, the study presents the risk parameters in neutrosophic numbers 

with linear membership functions which are easy to understand and model risks in a better 

way. Second, it proposes a new method for neutrosophication of a crisp input value. AND 

operator is applied to get a single antecedent value for a given rule. Third, it recognises and 

analyses the risk of the system from diversified dimensions of personnel, organisational and 

environmental perspectives. 

 

5.3.1 Deneutrosophication of Single Valued Trapezoidal Number 

Consider 𝐴̃𝑁𝑒𝑢(𝑎, 𝑏, 𝑐, 𝑑; 𝑒, 𝑓, 𝑔, ℎ; 𝑖, 𝑗, 𝑘, 𝑙)  be the linear trapezoidal neutrosophic number. 

The pictorial view is shown in Figure 5.1. Consider a real number 𝜀 ∈ 𝑅 and fuzzy numbers 

𝐴̃, 𝐵̃ and 𝐶̃ in the lower trapezium (a, b, c, d), in the left-most upper trapezium (e, f, g, h) and 

in the right most upper trapezium (i, j, k, l) respectively. A linear trapezoidal single valued 

neutrosophic number is explained in section 3.6.4.2 and presented in Figure 5.1. Chakraborty 

et al. [104, 105] used area removal method for deneutrosophication of single valued 

triangular/trapezoidal neutrosophic number and is given by, 
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Figure 5.1: Linear Trapezoidal Neutrosophic Number 

𝑅(𝐷̃, 𝜀) =
𝑅(𝐴̃,𝜀)+𝑅(𝐵̃,𝜀)+𝑅(𝐶̃,𝜀)

3
                   (5.1) 

 

For 𝛼 = 0,  

 

𝑅(𝐷̃, 0) =
𝑎+𝑏+𝑐+𝑑+𝑒+𝑓+𝑔+ℎ+𝑖+𝑗+𝑘+𝑙

12
                  (5.2) 

 

𝑅(𝐴̃, 𝜀), 𝑅(𝐵̃, 𝜀) and 𝑅(𝐶̃, 𝜀) are mean areas of the three trapeziums (truth, indeterminacy and 

falsity) in Single Valued Trapezoidal Neutrosophic Number (SVTNN). 𝑅(𝐷̃, 𝜀)  is the 

deneutrosophic value of the SVTNN. Illustration of deneutrosophication is shown in Table 

5.1 for selected SVTNN. 

 

Table 5.1: Deneutrosophic Values of Trapezoidal Neutrosophic Number 

Sr. 

No. Neutrosophic number 

Deneutrosophic 

value 
   

1 (0.5, 2, 3, 4.5; 1.25, 2, 2.75, 3.75; 1.75, 2.5, 3.25, 4.25) 2.625 

2 (4.5, 6, 7, 8.5; 5.25, 6, 6.75, 7.75; 5.75, 6.5, 7.25, 8.25) 6.625 

3 (6.5, 8, 9, 9.5; 7.25, 8, 8.75, 9.25; 7.75, 8.5, 9.25, 9.75) 8.4583 

 

5.3.2 Identifying Risk Parameters 

As seen in chapter 4, it is difficult to get accurate past data on risk parameters (FL and CS). 

Moreover, experts’ opinions are unclear when expressed in natural languages. Linguistic 

variables in neutrosophic sets provide experts to opine with ease.  Trapezoidal neutrosophic 

numbers having linear membership functions for FL and CS (personnel, environmental and 

organisational related) are given in Appendix II and shown in Figure 5.2 and Figure 5.3. 
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Figure 5.2: Neutrosophic FL Sets Definition 

 

Figure 5.3: Neutrosophic CS Sets Definition 

 

5.3.3 Neutrosophication of Input Parameters 

Membership degree (𝛾𝑛)  of crisp input from experts is determined using membership 

functions within the universe of discourse containing 𝑁 linguistic variables. Consider ℎ𝑛 be 

the crisp deneutrosophic value of the 𝑛𝑡ℎ linguistic variable (n=1, 2,…, N). The membership 

degree (𝛾𝑛) of the crisp input value ℎ, is given by,  

𝛾𝑛 =
ℎ𝑛+1−ℎ

ℎ𝑛+1−ℎ𝑛
,   𝛾𝑛+1 = 1 − 𝛾𝑛  if ℎ𝑛 ≤ ℎ ≤ ℎ𝑛+1              (5.3) 

 

𝛾1 = 1 if ℎ < ℎ1                   (5.4) 

 

and 

𝛾𝑛 = 1 if ℎ ≥ ℎ𝑛                    (5.5) 

 

5.3.4 Neutrosophic Logic based IF-THEN Model 

The experience and knowledge of experts are used to formulate the neutrosophic logic based 

IF–THEN rules. These neutrosophic rules are derived from experts’ judgements and domain 

knowledge. The belief rule expressions in the neutrosophic rule based system can represent 

0 1 2 3 4 5 6 7 8 9 10

HIGHLY FREQUENTVERY LOW LOW REASONABLY LOW AVERAGE FREQUENT

0 1 2 3 4 5 6 7 8 9 10

NEGLIGIBLE MINOR MODERATE SEVERE CATASTROPHIC
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expert knowledge in compact form when enough evidence is not available and experts are not 

100 % sure of their opinions but provide partial trustworthiness towards judgements. The Risk 

Level (RL) is a trapezoidal neutrosophic number with a linear membership degree (given in 

Appendix II) and shown in Figure 5.4. The neutrosophic IF-THEN rules are given in 

Appendix II. Min (AND operator) is used to give the output single truth value. The 

neutrosophic logic diagram is shown in Figure 5.5. 

𝜇𝑟 = 𝑚𝑖𝑛(𝜇𝐹𝐿,𝑟 , 𝜇𝐶𝑆,𝑟)                   (5.6) 

𝜇𝑟 → single truth value for the 𝑟𝑡ℎ rule 

𝜇𝐹𝐿,𝑟 , 𝜇𝐶𝑆,𝑟 → membership values for 𝐹𝐿 and 𝐶𝑆 for 𝑟𝑡ℎ rule respectively. 

 

Figure 5.4: Neutrosophic RL Sets Definition 

 

Figure 5.5: Neutrosophic Logic Diagram 

 

5.3.5 Aggregation of Consequents Across the Rules 

The outputs obtained from all the fired rules are aggregated to get the single neutrosophic risk 

level. Max (OR operator) aggregates all the values. 

𝑅𝐿 = {𝑚𝑎𝑥(𝜇1,𝑟, 𝐿𝑜𝑤),𝑚𝑎𝑥(𝜇2,𝑟 , 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒),𝑚𝑎𝑥(𝜇3,𝑟 , 𝑆𝑢𝑏𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑙),𝑚𝑎𝑥(𝜇4,𝑟, 𝐻𝑖𝑔ℎ) }

                      (5.7) 
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𝜇  1  

𝜇  2  
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5.3.6 Deneutrosophication 

System failure may impact multiple categories (say 𝑚) and 𝐶𝑆 is expressed for all these 𝑚 

categories. In such cases, the deneutrosophication process is applied after the aggregation 

process. To assign output values proportionately to adjacent 𝑅𝐿 sets, these are normalised 

before deneutrosophication. The overall risk considering all these categories is given by, 

𝑅𝐿 = ∑𝑅𝑖𝑤𝑖

𝑚

𝑖=1

 

and  

  

∑ 𝑤𝑖
𝑚
𝑖=1 = 1                     (5.8) 

 

𝑅𝑖 → 𝑅𝐿 of the 𝑖𝑡ℎ category and 𝑤𝑖 → weighting factor of the 𝑖𝑡ℎ  category, obtained by any 

of the weighing techniques such as AHP. The region of the overall risk is identified by 

mapping it with 𝑅𝐿 expressions. The flowchart of the model is given in Figure 5.6. 

 

 

 

Figure 5.6: The Flowchart for Neutrosophic Logic Model 

 

5.3.7 Safety Modelling of Marine Systems 

A numerical example from [72] is revisited to validate the proposed model. Safety modelling 

of the fuel oil system, one of the critical systems onboard vessels is chosen. Three categories 

namely personnel related risks, environmental related risks and organisational related risks are 

considered. The input values for 𝐹𝐿, 𝐶𝑆 for three categories with their priority weights, are 

given in Table 5.2. 

Step 1

Step 2

Step 3

Step 4

Neutrosophication of input variables 

Application of neutrosophic operator (AND) for 

implication from antecedent to consequent                      

Aggregation of consequent across the rules

Deneutrosophication                                            
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Table 5.2: Input Values for FL and CS 

Parameters Crisp Input value Priority weights 
   

Oil System failure rate (FL) 7.5 --- 

Personnel related risk (CS) 8.5 0.31 

Environmental related risk (CS) 5.5 0.48 

Organisational related risk (CS) 3 0.21 

 

Crisp deneutrosophic output values for different categories are, 

𝜇(𝑅𝐿𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙 𝑟𝑖𝑠𝑘) = 8.184206, 𝜇(𝑅𝐿𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑟𝑖𝑠𝑘) = 7 and 

𝜇(𝑅𝐿𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑖𝑠𝑘) = 5.431818 

The overall risk of the system, 

𝑅𝐿𝑠𝑦𝑠𝑡𝑒𝑚 = 8.184206 × 0.31 + 7 × 0.48 + 5.431818 × 0.21 = 7.03779 

Referring to risk level expressions (Appendix II), the crisp value (7.03779) of the overall risk 

of the system lies between substantial and high regions. Neutrosophication of the crisp value 

evaluates the overall risk of the system to be 98.4625% in the substantial region and 

1.53705% in the high risk region on the risk expression scale. The result of [72] obtained 

using fuzzy logic based approach evaluates the risk to be 100 % in the substantial region. 

 

5.4 Model II: Using Neutrosophic Set Theory 

A model is proposed using NST and DST for risk assessment of marine systems onboard 

ships. NST is used because of its capability in handling uncertainty due to hesitancy. The 

model is combined with the ER approach. SVNS is used in the model to assess the risk. In the 

neutrosophic set, three components are used to represent uncertainty i.e., truth (𝑇𝐴(𝑥), degree 

of belongingness), falsity (𝐹𝐴(𝑥), degree of non- belongingness) and indeterminacy (𝐼𝐴(𝑥), 

degree of hesitancy). 

 

5.4.1 Neutrosophic Set and its Operations 

Neutrosophic sets are described in section 1.6. 

If 𝑃 = 〈𝑎1, 𝑏1, 𝑐1〉 and 𝑄 = 〈𝑎2, 𝑏2, 𝑐2〉 be two SVNN. The product of two SVNN is defined as 

[42], 

𝑃 ∪ 𝑄 = 〈𝑚𝑎𝑥(𝑎1, 𝑎2),𝑚𝑖𝑛(𝑏1, 𝑏2),𝑚𝑖𝑛(𝑐1, 𝑐2)〉 

𝑃 ∩ 𝑄 = 〈𝑚𝑖𝑛(𝑎1, 𝑎2),𝑚𝑎𝑥(𝑏1, 𝑏2),𝑚𝑎𝑥(𝑐1, 𝑐2)〉 

𝑃 ⊗𝑄 = 〈𝑎1 + 𝑎2 − 𝑎1𝑎2, 𝑏1𝑏2, 𝑐1𝑐2〉                 (5.9) 
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5.4.2 ER Approach for Synthesising Evidence 

BBA is the core of evidential reasoning. Like fuzzy sets, neutrosophic sets can be used to 

gather linguistic data from experts. But to use neutrosophic sets, in evidential reasoning, 

experts’ judgments in neutrosophic numbers need to be suitably converted into corresponding 

BBAs. A simple method is proposed in this section to obtain the BBAs of a single valued 

neutrosophic number. ER approach is then used to combine more than one piece of evidence. 

The result is compared with the new alternative approach proposed to DST in section 4.6. 

Consider an SVNN, 

 

𝑃 = {〈𝑇𝑃(𝑥),  𝐼𝑃(𝑥), 𝐹𝑃(𝑥)〉; 𝑥 ∈ 𝑋} 

BBA’s are given by, 

𝑚𝑃(𝑇) =
𝑇𝑃(𝑥)

(𝑇𝑃(𝑥) +  𝐼𝑃(𝑥) + 𝐹𝑃(𝑥))
 

 

𝑚𝑃(𝐹) =
𝐹𝑃(𝑥)

(𝑇𝑃(𝑥) +  𝐼𝑃(𝑥) + 𝐹𝑃(𝑥))
 

 

𝑚𝑃(𝑇, 𝐹) =
𝐼𝑃(𝑥)

(𝑇𝑃(𝑥)+ 𝐼𝑃(𝑥)+𝐹𝑃(𝑥))
                (5.10) 

 

𝑚𝑃(𝑇), 𝑚𝑃(𝐹) and 𝑚𝑃(𝑇, 𝐹) represent belief in (𝑇), (𝐹) and (𝑇 ∪ 𝐹)  

𝑚𝑃(𝑇) + 𝑚𝑃(𝐹) + 𝑚𝑃(𝑇, 𝐹) = 1                 (5.11) 

 

and  

𝑚𝑃(𝑇) = 𝑚𝑃(𝐹) = 𝑚𝑃(𝑇, 𝐹) = 0  for 𝑃 = 〈0, 0, 0〉             (5.12) 

 

5.4.3 Obtaining Risk Parameters 

First, identify critical failure modes of the system. Obtain risk parameters (𝐹𝐿 and 𝐶𝑆) for 

identified failure modes using neutrosophic terms from Table 5.3. 

 

5.4.4 Neutrosophic Safety Score and BBA 

The neutrosophic risk/safety score of the system is obtained by the traditional definition of 

risk, 𝑅 = 𝐹𝐿 × 𝐶𝑆. The safety score is then converted into BBAs. 
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Table 5.3: Linguistic Terms for Risk Parameters 

Linguistic Terms SVNN 
 

Absolute High (AH) < 1, 0, 0 > 

Very Very High (VVH) < 0.9, 0.1, 0.1 > 

Very High (VH) < 0.8, 0.15, 0.2 > 

High (H) < 0.7, 0.25, 0.3 > 

Fairly High (FH) < 0.6, 0.35, 0.4 > 

Medium (M) < 0.5, 0.5, 0.5 > 

Fairly Low (FL) < 0.4, 0.65, 0.6 > 

Low (L)  <0.3, 0.75, 0.7 > 

Very Low (VL) < 0.2, 0.85, 0.8 > 

Very Very Low (VVL) < 0.1, 0.9, 0.9 > 

Absolute Low (AL) < 0, 1, 1 > 

 

 

5.4.5 Obtaining Safety Level of the System 

The safety score of every failure mode is combined using the ER approach to get the safety 

level of the system. The correlation coefficient described in section 3.6.7.3 is used to get the 

similarity between safety level and safety expressions. Safety expressions expressed in 

linguistic terms are given in Table 5.4. The correlation coefficient gives a distributed 

assessment of the safety level. 

 

Table 5.4: Linguistic Terms for Safety Expressions 

Linguistic Terms SVNN  
Poor (P) < 1, 0, 0 > 

Average (A) < 0.7, 0.25, 0.3 > 

Good (G) < 0.3, 0.75, 0.7 > 

Excellent ( E ) < 0, 1, 1 > 

 

 

5.4.6 Illustrative Example: A System Onboard the Ship 

A typical system onboard a ship is shown in Figure 5.7. Three failure modes of a system are 

identified. Risk parameters as given by experts are shown in Table 5.5. The neutrosophic 

safety score and BBAs of failure modes are given in Table 5.6 and Table 5.7 while BBAs of 

safety expressions are shown in Table 5.8. 
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System  

Risk of Failure:  ̃ 

Failure Mode F1 
Failure Likelihood : Medium 

Consequence Severity: Very Very Low 

Failure Mode F2 

Failure Likelihood : Low 

Consequence Severity: Very Low 

Failure Mode F3 
Failure Likelihood : Low 

Consequence Severity: High 

 

Figure 5.7: A Typical System-I Onboard Ship 

Table 5.5: Risk Parameters as given by Experts 

Failure Modes FL CS 
 

F1 M (< 0.50, 0.50, 0.50 >) VVL (< 0.10, 0.90, 0.9 >) 

F2 L (< 0.30, 0.75, 0.70 >) VL (< 0.20, 0.85, 0.80 >) 

F3 L (< 0.30, 0.75, 0.70 >) H (< 0.79, 0.25, 0.30 >) 

 

Table 5.6: Neutrosophic Safety Score of Failure Modes 

Failure Modes Safety Score  
F1 < 0.55, 0.45, 0.45 > 

F2 < 0.44, 0.6375, 0.56 > 

F3 < 0.79, 0.1875, 0.21 > 

 

Table 5.7: BBAs of Failure Modes 

Failure Modes 
BBAs 

m(T) m(F) M(T, F) 
    

F1 0.37931 0.310345 0.310345 

F2 0.268702 0.341985 0.389313 

F3 0.665263 0.176842 0.157895 

 

Table 5.8. BBAs of Safety Expressions 

Linguistic Terms 
BBAs 

m(T) m(F) M(T, F) 
    

Poor (P) 1 0 0 

Average (A) 0.56 0.24 0.2 

Good (G) 0.171429 0.4 0.428571 

Excellent ( E ) 0 0.5 0.5 

 

Correlation coefficients for the system safety are, 

𝑆𝑟(𝛼
∗, ′𝑃𝑜𝑜𝑟′) = 0.930722,  𝑆𝑟(𝛼

∗, ′𝐴𝑣𝑒𝑟𝑎𝑔𝑒′) = 0.983024,  

𝑆𝑟(𝛼
∗, ′𝐺𝑜𝑜𝑑′) = 0.754486 and 𝑆𝑟(𝛼

∗, ′𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡′) = 0.598074. 

After normalising the values, the system is evaluated to be 30.10 % Average, 28.49 % Poor, 

23.10 % Good and 18.31 % Excellent. The result in graphical form is shown in Figure 5.8. 
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Figure 5.8: Safety Level of the System 

 

The new alternative approach to DST described in section 4.6 is applied to the above example 

to see the impact on the results after considering the possible error in judgements by experts. 

New correlation coefficients obtained are, 

𝑆𝑟(𝛼
∗, ′𝑃𝑜𝑜𝑟′) = 0.977483,  𝑆𝑟(𝛼

∗, ′𝐴𝑣𝑒𝑟𝑎𝑔𝑒′) = 0.983664,  

𝑆𝑟(𝛼
∗, ′𝐺𝑜𝑜𝑑′) = 0.849068 and 𝑆𝑟(𝛼

∗, ′𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡′) = 0.779572. 

After normalising the values, the system is evaluated to be 27.40 % Average, 27.23 % Poor, 

23.65 % Good and 21.72 % Excellent. The result in graphical form is shown in Figure 5.9. It 

is seen that the safety level curve is flat in the region of Average-Good-Excellent and system 

level appears to be better than that provided when a possible error from experts is ignored. 

 

 

Figure 5.9: Safety Level of the System (with alternative approach) 

 

5.5 Model III: Using Plithogenic Set Theory 

In this study, PST is used to carry out a risk assessment. The Plithogenic sets [43, 44] are 

discussed in section 1.7. These are the extended versions of neutrosophic sets. The peculiarity 

of these sets is the contradiction degrees created between the attribute values and the 

dominant attribute value identified by experts amongst the given attribute set. Plithogenic set 
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concept is recently floated by Smarandache [43, 44] and used in multi-criteria decision 

making models in combination with well-established methods such as TOPSIS [125], VIKOR 

[126] and QFD [127]. As per the author’s knowledge, plithogenic sets are tried for the first 

time in risk assessment in this study in conjunction with the ER approach. The model is 

applied for the risk assessment of marine systems. The sensitivity analysis is carried out to 

show the suitability of the model. 

 

5.5.1 Plithogenic Set and its Operations 

Plithogenic aggregation operators are linear combinations of the fuzzy 𝑡𝑛𝑜𝑟𝑚 (denoted ˄𝐹), 

and fuzzy 𝑡𝑐𝑜𝑛𝑜𝑟𝑚  (denoted ˅𝐹) . Let 𝑐𝑑𝑖  be the contradiction degree between the most 

important (dominant) attribute value and the attribute values 𝑑𝐴 and 𝑑𝐵. If 𝑡𝑐𝑜𝑛𝑜𝑟𝑚 is applied 

between two attribute values of criteria 𝑖, then the aggregation of two attributes is given by 

[126], 

 

𝑑𝐴𝐵(𝑥, 𝑣𝑇) = (𝑇, 𝐼, 𝐹)

= ((1 − 𝑐𝑑𝑖) ⋅ [𝑑𝐴(𝑥, 𝑣𝑇)𝑡𝑐𝑜𝑛𝑜𝑟𝑚𝑑𝐵(𝑥, 𝑣𝑇)] + 𝑐𝑑𝑖

⋅ [𝑑𝐴(𝑥, 𝑣𝑇)𝑡𝑛𝑜𝑟𝑚𝑑𝐵(𝑥, 𝑣𝑇)],
1

2
(𝑑𝐴(𝑥, 𝑣𝐼)𝑡𝑛𝑜𝑟𝑚𝑑𝐵(𝑥, 𝑣𝐼)

+ 𝑑𝐴(𝑥, 𝑣𝐼)𝑡𝑐𝑜𝑛𝑜𝑟𝑚𝑑𝐵(𝑥, 𝑣𝐼)), (1 − 𝑐𝑑𝑖) ⋅ [𝑑𝐴(𝑥, 𝑣𝐹)𝑡𝑛𝑜𝑟𝑚𝑑𝐵(𝑥, 𝑣𝐹)]

+ 𝑐𝑑𝑖[𝑑𝐴(𝑥, 𝑣𝐹)𝑡𝑐𝑜𝑛𝑜𝑟𝑚𝑑𝐵(𝑥, 𝑣𝐹)] ) 

Using symbols, 

 

𝑑𝐴𝐵(𝑥, 𝑣𝑇) = (𝑇, 𝐼, 𝐹) = ((1 − 𝑐𝑑𝑖) ⋅ [𝑑𝐴(𝑥, 𝑣𝑇)˅𝐹𝑑𝐵(𝑥, 𝑣𝑇)] + 𝑐𝑑𝑖 ⋅

[𝑑𝐴(𝑥, 𝑣𝑇)˄𝐹𝑑𝐵(𝑥, 𝑣𝑇)],
1

2
(𝑑𝐴(𝑥, 𝑣𝐼)˄𝐹𝑑𝐵(𝑥, 𝑣𝐼) + 𝑑𝐴(𝑥, 𝑣𝐼)˅𝐹𝑑𝐵(𝑥, 𝑣𝐼)), (1 − 𝑐𝑑𝑖) ⋅

[𝑑𝐴(𝑥, 𝑣𝐹)˄𝐹𝑑𝐵(𝑥, 𝑣𝐹)] + 𝑐𝑑𝑖[𝑑𝐴(𝑥, 𝑣𝐹)˅𝐹𝑑𝐵(𝑥, 𝑣𝐹)] )             (5.13) 

If 𝑡𝑛𝑜𝑟𝑚  is applied between two attribute values of criteria 𝑖, then the aggregation of two 

attributes is given by, 
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𝑑𝐴𝐵(𝑥, 𝑣𝑇) = (𝑇, 𝐼, 𝐹)

= ((1 − 𝑐𝑑𝑖) ⋅ [𝑑𝐴(𝑥, 𝑣𝑇)𝑡𝑛𝑜𝑟𝑚𝑑𝐵(𝑥, 𝑣𝑇)] + 𝑐𝑑𝑖

⋅ [𝑑𝐴(𝑥, 𝑣𝑇)𝑡𝑐𝑜𝑛𝑜𝑟𝑚𝑑𝐵(𝑥, 𝑣𝑇)],
1

2
(𝑑𝐴(𝑥, 𝑣𝐼)𝑡𝑛𝑜𝑟𝑚𝑑𝐵(𝑥, 𝑣𝐼)

+ 𝑑𝐴(𝑥, 𝑣𝐼)𝑡𝑐𝑜𝑛𝑜𝑟𝑚𝑑𝐵(𝑥, 𝑣𝐼)), (1 − 𝑐𝑑𝑖) ⋅ [𝑑𝐴(𝑥, 𝑣𝐹)𝑡𝑐𝑜𝑛𝑜𝑟𝑚𝑑𝐵(𝑥, 𝑣𝐹)]

+ 𝑐𝑑𝑖[𝑑𝐴(𝑥, 𝑣𝐹)𝑡𝑛𝑜𝑟𝑚𝑑𝐵(𝑥, 𝑣𝐹)] ) 

Using symbols, 

𝑑𝐴𝐵(𝑥, 𝑣𝑇) = (𝑇, 𝐼, 𝐹) = ((1 − 𝑐𝑑𝑖) ⋅ [𝑑𝐴(𝑥, 𝑣𝑇)˄𝐹𝑑𝐵(𝑥, 𝑣𝑇)] + 𝑐𝑑𝑖 ⋅

[𝑑𝐴(𝑥, 𝑣𝑇)˅𝐹𝑑𝐵(𝑥, 𝑣𝑇)],
1

2
(𝑑𝐴(𝑥, 𝑣𝐼)˄𝐹𝑑𝐵(𝑥, 𝑣𝐼) + 𝑑𝐴(𝑥, 𝑣𝐼)˅𝐹𝑑𝐵(𝑥, 𝑣𝐼)), (1 − 𝑐𝑑𝑖) ⋅

[𝑑𝐴(𝑥, 𝑣𝐹)˅𝐹𝑑𝐵(𝑥, 𝑣𝐹)] + 𝑐𝑑𝑖[𝑑𝐴(𝑥, 𝑣𝐹)˄𝐹𝑑𝐵(𝑥, 𝑣𝐹)] )              (5.14) 

 

5.5.2 Identifying Experts’ Weights and Failure Modes  

Let 𝐸 = {𝐸1, 𝐸2, … , 𝐸𝑘} and 𝐹 = {𝐹1, 𝐹2, … , 𝐹𝑚} be the sets of 𝑘 experts and 𝑚 failure modes  

respectively. The importance of experts is chosen from Table 5.9. Let 𝐸𝑡 = 〈𝑎𝑡, 𝑏𝑡, 𝑐𝑡〉 be a 

plithogenic number and represents the importance of 𝑡𝑡ℎ expert. Its crisp value is obtained by 

[126],  

𝑆̅(𝐸𝑡) =
(2+𝑎𝑡−𝑏𝑡−𝑐𝑡)

3
                  (5.15) 

The weight vector 𝑊𝐸
𝑇 of experts is obtained by normalising the crisp value 𝑆̅(𝐸). 

𝑊𝐸
𝑇 = (𝑤1, 𝑤2, … , 𝑤𝑘)                 (5.16) 

 

Consider 𝐿 = {𝐿1, 𝐿2, … , 𝐿𝑚}  and 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑚} be the sets of 𝐹𝐿 and 𝐶𝑆 for the failure 

mode. The linguistic expressions for 𝐹𝐿 and 𝐶𝑆 are shown in Table 5.10. 

 

Table 5.9: Linguistic Expressions for Expert’s Weights 

Linguistic expressions 
Plithogenic numbers               

< T, I, F > 
 

Very Important (VI) < 0.9, 0.1, 0.1 > 

Important (I) < 0.75, 0.25, 0.2 > 

Medium (M) < 0.5, 0.5, 0.5 > 

Unimportant (UI) < 0.35, 0.75, 0.80 > 

Very unimportant (VUI) < 0.1, 0.9, 0.9 > 

 



73 
 

Table 5.10: Linguistic Expressions for FL and CS 

Linguistic expressions Plithogenic numbers 

<T, I, F >  

Very Very High (VVH) / Catastrophic (CS) < 0.90, 0.10, 0.10 > 

High (H) / Critical (C ) < 0.70, 0.25, 0.30 > 

Moderate (Mo) < 0.50, 0.50, 0.50 > 

Low (L) / Marginal (M) < 0.30, 0.75, 0.70 > 

Very Very Low (VVL) / Negligible (N) < 0.10, 0.90, 0.90 > 

 

5.5.3 Constructing Plithogenic Risk Parameter Matrix 

Suitable contradiction degrees 𝑐𝑑𝑗 are assigned by experts to each failure mode. 

𝑐𝑑𝑗 = {𝑐𝑑1, 𝑐𝑑2, … , 𝑐𝑑𝑚}   

The plithogenic data provided by experts on 𝐹𝐿 and 𝐶𝑆 of failure mode are presented in the 

matrix 𝐷̃. 

            𝐹1  𝐹2   ⋯   𝐹𝑚 ⋮   𝐹1  𝐹2   ⋯  𝐹𝑚 

𝐷̃ =

𝐶𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑔𝑟𝑒𝑒𝑠
𝐸1

𝐸2

⋮
𝐸𝑘 [

 
 
 
 
𝑐𝑑1 𝑐𝑑2 ⋯ 𝑐𝑑𝑚 ⋮ 𝑐𝑑1 𝑐𝑑2 ⋯ 𝑐𝑑𝑚

𝐿11 𝐿12 ⋯ 𝐿1𝑚 ⋮ 𝐶11 𝐶12 ⋯ 𝐶1𝑚
𝐿21 𝐿22 ⋯ 𝐿2𝑚 ⋮ 𝐶21 𝐶22 ⋯ 𝐶2𝑚
 ⋮      ⋮   ⋱    ⋮ ⋮   ⋮  ⋮     ⋱     ⋮

𝐿𝑘1 𝐿𝑘2 ⋯ 𝐿𝑘𝑚 ⋮ 𝐶𝑘1 𝐶𝑘2 ⋯ 𝐶𝑘𝑚 ]
 
 
 
 

        (5.17) 

 

𝐿𝑖𝑗 = (𝑇𝑖𝑗
𝐿 , 𝐼𝑖𝑗

𝐿 , 𝐹𝑖𝑗
𝐿) and 𝐶𝑖𝑗 = (𝑇𝑖𝑗

𝐶 , 𝐼𝑖𝑗
𝐶 , 𝐹𝑖𝑗

𝐶) are plithogenic numbers for likelihood and severity 

of 𝑖𝑡ℎ expert for 𝑗𝑡ℎ failure mode. 

 

5.5.4 Estimating Plithogenic Risk Score of Failure Modes 

Plithogenic risk score of failure modes is obtained by plithogenic product of their 

corresponding 𝐹𝐿 and 𝐶𝑆. 

𝑅𝑖𝑗 = (𝐿)𝑖𝑗(𝑡𝑛𝑜𝑟𝑚)(𝐶)𝑖𝑗                 (5.18) 

𝑖 = 1, 2, … , 𝑘 and 𝑗 = 1, 2, … ,𝑚 

 

       𝐹1    𝐹2  ⋯  𝐹𝑚 

𝑅̃ =

𝐸1

𝐸2

⋮
𝐸𝑘

[

𝑅11 𝑅12 ⋯ 𝑅1𝑚

𝑅21 𝑅22 ⋯ 𝑅2𝑚

⋮    ⋮    ⋱    ⋮
𝑅𝑘1 𝑅𝑘2 ⋯ 𝑅𝑘𝑚

]                (5.19) 

where 𝑅𝑖𝑗 = (𝑇𝑖𝑗
𝑅 , 𝐼𝑖𝑗

𝑅 , 𝐹𝑖𝑗
𝑅) 
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5.5.5 Obtaining Combined Risk Score of Failure Modes 

BBA of the plithogenic risk score is obtained in a similar way described in section 5.4.2. The 

ER approach is then used to combine the risk score for individual failure mode generated by 

all the experts. 

 

5.5.6 Ranking of Failure Modes 

The ranking is done by mapping the risk score with the plithogenic risk expressions given in 

Table 5.11. Consider, 

𝑅 = {𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5} = {′𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ′, ′𝐻𝑖𝑔ℎ′, ′𝑀𝑒𝑑𝑖𝑢𝑚′, ′𝐿𝑜𝑤′, ′𝑉𝑒𝑟𝑦 𝐿𝑜𝑤′} be the set of 

risk expressions. The similarity response of different failure modes is obtained by normalising 

the correlation coefficient, 

 

      𝐹1  𝐹2   ⋯  𝐹𝑚 

𝑆̃ =

𝑅1

𝑅2

𝑅3

𝑅4

𝑅5 [
 
 
 
 
𝑆11 𝑆12 ⋯ 𝑆1𝑚
𝑆21 𝑆22 ⋯ 𝑆2𝑚
𝑆31 𝑆32 ⋯ 𝑆3𝑚
𝑆41 𝑆42 ⋯ 𝑆4𝑚
𝑆51 𝑆52 ⋯ 𝑆5𝑚]

 
 
 
 

                (5.20) 

The weighted risk score is given by,  

[𝑅𝑆]1×𝑚 = [𝑊]𝑅
𝑇 × [𝑆̃]

5×𝑚
                 (5.21) 

[𝑊]𝑅
𝑇 → weight vector of risk expressions. 

The weighted risk score is used to rank the failure modes. The higher the weighted score, the 

more critical is the failure modes. The proposed steps in the flowchart are shown in Figure 

5.10. 

 

 

Table 5.11: Linguistic Expressions for Risk Level 

Linguistic 

expressions 

Plithogenic numbers          

< T, I, F > 
Crisp 

Normalised  

Weight 

BBA's 

m(T) m(T, F) m(F) 
 

Very High (VH) < 0.90, 0.10, 0.10 > 0.9 0.36 0.8182 0.0909 0.0909 

High (H) < 0.70, 0.25, 0.30 > 0.72 0.29 0.56 0.2 0.24 

Medium (Me) < 0.50, 0.50, 0.50 > 0.5 0.2 0.3333 0.3333 0.3333 

Low (L)  < 0.30, 0.75, 0.70 > 0.28 0.11 0.1714 0.4286 0.4 

Very Low (VL) < 0.10, 0.90, 0.90 > 0.1 0.04 0.0526 0.4737 0.4737 

 



75 
 

 

 

Figure 5.10: The Flowchart for Plithogenic Model 

 

5.5.7 Illustration of the Model 

A model is applied to estimate the risk associated with a typical system onboard the ship. 

Four experts (𝑘 = 4)  from the maritime field identified five failure modes (𝑚 = 5)  of a 

typical system onboard a ship. The experts proposed the contradiction degrees of failure 

modes as 𝑐𝑑 = {𝑐𝑑1, 𝑐𝑑2, … , 𝑐𝑑5} = {0,0.25,0.50,0.75,1.00}. The importance given to four 

experts based on their experience and knowledge is, 𝐸 =

〈(0.9, 0.1, 0.1), (0.75, 0.25, 0.2), (0.9, 0.1, 0.1), (0.5, 0.5, 0.5)〉 . The weight vector obtained 

for the experts is, 𝑊𝐸
𝑇 = (0.294, 0.25, 0.294, 0.162). A typical system on the ship is shown in 

Figure 5.11. The plithogenic data provided by experts on the likelihood and consequences of 

failure modes are presented in the matrix 𝐷̃. 

 

 

Figure 5.11: A Typical System-II Onboard Ship 

 

 

Step 1

Step 2

Step 3

Step 4

Identifying experts, failure modes and suitable 

semantic expressions 

Estimating plithogenic risk score of failure modes 

Obtaining combined risk score of failure modes

Ranking of failure modes                                             



76 
 

 

          𝐹1    𝐹2   𝐹3   𝐹4    𝐹5      𝐹1  𝐹2   𝐹3  𝐹4   𝐹5 

𝐷̃ =

𝐶𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑔𝑟𝑒𝑒𝑠
𝐸1
𝐸2

𝐸3

𝐸4
[
 
 
 
 
   0   0.25 0.50 0.75   1.0  ⋮  0 0.25 0.50 0.75 1.0
𝑉𝑉𝐻    𝐻   𝑉𝑉𝐻   𝐻     𝐻  ⋮ 𝐶𝑆   𝑀    𝑀    𝑀   𝑁 
   𝐻     𝑀𝑜  𝑀𝑜    𝐻     𝐻  ⋮  𝐶  𝐶𝑆    𝐶    𝑀    𝑁  
   𝐻   𝑉𝑉𝐻    𝐻    𝑀𝑜  𝑀𝑜 ⋮ 𝐶𝑆  𝐶    𝑀    𝑁    𝑀  
𝑉𝑉𝐻    𝐻    𝑀𝑜  𝑀𝑜 𝑉𝑉𝐻 ⋮  𝐶   𝐶     𝑁    𝑁    𝑁  ]

 
 
 
 

 

 

Plithogenic risk score, BBA’s of risk score and normalised similarity score are given in 

Appendix-III. 

The weight vector obtained for plithogenic risk expressions is 𝑊𝑅
𝑇 =

(0.36, 0.29, 0.2, 0.11, 0.04) . The weighted risk score is, [𝑅𝑆] =

(0.211178, 0.202089, 0.197743, 0.198414, 0.209815). The final ranking of failure modes 

in decreasing order of criticality is 𝐹1 > 𝐹5 > 𝐹2 > 𝐹4 > 𝐹3. 

The result shows that 𝐹1 is the most critical failure mode and requires immediate attention. 

This is mainly because 𝐹𝐿 of 𝐹1 is very very high. If this failure mode occurs, the resulting 

severity is also catastrophic/critical. 𝐹5 is at second place. 𝐹2, 𝐹4 and 𝐹3 follow in that order to 

be next critical failure modes. 

 

5.5.8 Sensitivity Analysis 

Sensitivity analysis is performed to see the effect of risk control options. New ranking order is 

obtained when the likelihood of a highly sensitive failure mode criterion is reduced when the 

model is run repeatedly. The result is given in Table 5.12. 

 

Table 5.12: Sensitivity Analysis 

Sr. 

No. 

Critical 

failure 

mode 

Revised likelihood 

values of critical failure 

mode 

New ranking order 

    

1 F1 ( H, Mo, H, H) F5 > F2 > F1 > F4 > F3 

2 F5 ( VVH, Mo, H, Mo) F2 > F1 > F5 > F4 > F3 

3 F2 ( H, Mo, H, H) F1 > F5 > F2 > F4 > F3 

4 F1 ( H, Mo, Mo, Mo) F5 > F2 > F4 > F3 > F1 

5 F5 ( Mo, Mo, L, Mo) F2 > F4 > F3 > F5 > F1 

 

Sensitivity analysis shows that by attending the critical failure mode on priority, the 

likelihood of occurrence of that failure mode can be reduced. This can lower the chances of 

failure and improve the safety of the system. 
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5.6 Summary 

In this chapter, three different models for assessing risk and the safety of the system in 

maritime transportation are proposed. First, neutrosophic IF-THEN rules are constructed to 

elicit the experts’ judgements and assess the risk from diversified dimensions such as 

personnel, organisational and environmental perspectives. The proposed model is validated 

using an example [72]. The result is reasonably better and in line with [72]. Second, 

neutrosophic sets in combination with the ER approach are proposed for precise risk 

assessment. The model is illustrated taking a contrived example from the ship system. The 

results show that the safety of the system is evaluated as average and can be improved further 

to good and excellent by reducing the values of risk parameters. The results are also verified 

w.r.t the proposed alternative approach to DST. Third, the model using plithogenic sets is 

created and its effectiveness is demonstrated in risk assessment. The model ranked the failure 

modes in descending order as per their criticality. The sensitivity analysis performed on the 

model showed how the criticality of failure modes changed with the change in the risk 

parameters. A comparative study of three proposed models and their suitability for different 

types of applications is given in Table 5.13. The usefulness of neutrosophic sets in risk 

assessment in dynamic conditions is shown in chapter six. 

 

Table 5.13: A comparative Study of Three Models 

 

 

 

 

Sr. No. Model Suitability

1. Useful in dealing with uncertainties

2. Suitable when data collected are in semantic expressions

3. Works well when IF-THEN rules are accurately framed

4. Useful when data are imprecise and incomplete

5. Useful in dealing with non-linearity in complex situations

1. Useful in dealing with uncertainties

2. Suitable when data collected are in semantic expressions

3. Suitable in solving MCDM problems when uncertainty arises due 

to hesitancy

4. Model can be used with ER to solve MCDM problems if suitable 

methods can be designed to convert SVNN into BBA’s

1. Useful in dealing with uncertainties

2. Suitable when data are collected in semantic expressions

3. Beneficial when dissimilarity or contradiction degree is properly 

defined between attribute values and dominant attribute value

3

Model-III

Using Plithogenic Set 

Theory

1

Model-I 

Using Neutrosophic Logic

2

Model-II

Using Neutrosophic Set 

Theory
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Chapter 6 

Dynamic Decision Making Model 

Most of the decision making theories are devised considering static data. Such data are 

believed to be available at the start. In the real world, decisions are required in dynamic 

conditions wherein the factors influencing the decisions change periodically. Decision making 

in dynamic conditions requires a fusion of information gathered at different periods and 

different operating conditions. This necessitates the data to be captured dynamically in 

varying periods and assessed periodically. This is necessitated because the decisions taken at 

a particular time influence the decisions taken in the subsequent period. In this study, Interval 

Neutrosophic Number (INN) and DSmT are used for decision making in a dynamic 

environment. 

 

6.1 Dynamic Interval Valued Neutrosophic Set (DIVNS) 

The neutrosophic set and its set theoretic operations are described in section 1.6. A dynamic 

interval valued neutrosophic set is defined as [128], 

Let 𝑈 be a universe of discourse, 

𝑥([𝑇𝑥
𝐿(𝑡), 𝑇𝑥

𝑈(𝑡) ], [𝐼𝑥
𝐿(𝑡), 𝐼𝑥

𝑈(𝑡) ], [𝐹𝑥
𝐿(𝑡), 𝐹𝑥

𝑈(𝑡) ] ) 

where 𝑡 ≥ 0 and 𝑥 ∈ 𝑈  

𝑇𝑥
𝐿(𝑡) < 𝑇𝑥

𝑈(𝑡), 𝐼𝑥
𝐿(𝑡) < 𝐼𝑥

𝑈(𝑡), 𝐹𝑥
𝐿(𝑡) < 𝐹𝑥

𝑈(𝑡) 

and 

[𝑇𝑥
𝐿(𝑡), 𝑇𝑥

𝑈(𝑡) ], [𝐼𝑥
𝐿(𝑡), 𝐼𝑥

𝑈(𝑡) ], [𝐹𝑥
𝐿(𝑡), 𝐹𝑥

𝑈(𝑡) ] ⊆ [0, 1]               (6.1) 

In DIVNS, all intervals are changing w.r.t. time (𝑡). 

 

6.1.1 Set Theoretic Operations of DIVNS 

Consider two Dynamic Interval Valued Neutrosophic Numbers (DIVNN): 

𝑎(𝑡) = {〈𝑇𝑥
𝐴(𝑡1), 𝐼𝑥

𝐴(𝑡1), 𝐹𝑥
𝐴(𝑡1) 〉, … , 〈𝑇𝑥

𝐴(𝑡𝑘), 𝐼𝑥
𝐴(𝑡𝑘), 𝐹𝑥

𝐴(𝑡𝑘) 〉} 

𝑏(𝑡) = {〈𝑇𝑥
𝐵(𝑡1), 𝐼𝑥

𝐵(𝑡1), 𝐹𝑥
𝐵(𝑡1) 〉, … , 〈𝑇𝑥

𝐵(𝑡𝑘), 𝐼𝑥
𝐵(𝑡𝑘), 𝐹𝑥

𝐵(𝑡𝑘) 〉}                                    (6.2) 

where  𝑡 = {𝑡1, 𝑡2, … , 𝑡𝑘} is a time sequence at each time 𝑡𝑙, 1 ≤ 𝑙 ≤ 𝑘  

Thong et al. [128] defined the following operations. 
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a) Addition of two DIVNN 

𝑎(𝑡) ⊕ 𝑏(𝑡) =

{
〈𝑇𝑥

𝐴(𝑡1) + 𝑇𝑥
𝐵(𝑡1) − 𝑇𝑥

𝐴(𝑡1) × 𝑇𝑥
𝐵(𝑡1), 𝐼𝑥

𝐴(𝑡1) × 𝐼𝑥
𝐵(𝑡1), 𝐹𝑥

𝐴(𝑡1) × 𝐹𝑥
𝐵(𝑡1)〉,… ,

〈𝑇𝑥
𝐴(𝑡𝑘) + 𝑇𝑥

𝐵(𝑡𝑘) − 𝑇𝑥
𝐴(𝑡𝑘) × 𝑇𝑥

𝐵(𝑡𝑘), 𝐼𝑥
𝐴(𝑡𝑘) × 𝐼𝑥

𝐵(𝑡𝑘), 𝐹𝑥
𝐴(𝑡𝑘) × 𝐹𝑥

𝐵(𝑡𝑘)〉
}            (6.3)

                        

 

b) Multiplication of two DIVNN 

𝑎(𝑡) ⊗ 𝑏(𝑡)

= {
〈𝑇𝑥

𝐴(𝑡1) × 𝑇𝑥
𝐵(𝑡1), 𝐼𝑥

𝐴(𝑡1) + 𝐼𝑥
𝐵(𝑡1) − 𝐼𝑥

𝐴(𝑡1) × 𝐼𝑥
𝐵(𝑡1), 𝐹𝑥

𝐴(𝑡1) + 𝐹𝑥
𝐵(𝑡1) − 𝐹𝑥

𝐴(𝑡1) × 𝐹𝑥
𝐵(𝑡1) 〉, … ,

〈𝑇𝑥
𝐴(𝑡𝑘) × 𝑇𝑥

𝐵(𝑡𝑘), 𝐼𝑥
𝐴(𝑡𝑘) + 𝐼𝑥

𝐵(𝑡𝑘) − 𝐼𝑥
𝐴(𝑡𝑘) × 𝐼𝑥

𝐵(𝑡𝑘), 𝐹𝑥
𝐴(𝑡𝑘) + 𝐹𝑥

𝐵(𝑡𝑘) − 𝐹𝑥
𝐴(𝑡𝑘) × 𝐹𝑥

𝐵(𝑡𝑘) 〉
} 

                       (6.4) 

c) Scalar multiplication of two DIVNN 

𝛼 × 𝑎(𝑡) = {
〈1 − (1 − 𝑇𝑥

𝐴(𝑡1))
𝛼
, 𝐼𝑥

𝐴(𝑡1)
𝛼, 𝐹𝑥

𝐴(𝑡1)
𝛼 〉, … ,

〈1 − (1 − 𝑇𝑥
𝐴(𝑡𝑘))

𝛼
, 𝐼𝑥

𝐴(𝑡𝑘)
𝛼, 𝐹𝑥

𝐴(𝑡𝑘)
𝛼 〉

}                          (6.5) 

 

d) Power of the DIVNN 

𝑎(𝑡)𝛼 = {
〈𝑇𝑥

𝐴(𝑡1)
𝛼, 1 − (1 − 𝐼𝑥

𝐴(𝑡1))
𝛼
, 1 − (1 − 𝐹𝑥

𝐴(𝑡1))
𝛼
 〉, … ,

〈𝑇𝑥
𝐴(𝑡𝑘)

𝛼, 1 − (1 − 𝐼𝑥
𝐴(𝑡𝑘))

𝛼
, 1 − (1 − 𝐹𝑥

𝐴(𝑡𝑘))
𝛼
 〉

}              (6.6) 

 

6.2 Basic Belief Assignment of Interval Neutrosophic Number 

(INN) 

Consider an INN. 𝐵𝐵𝐴𝑂(⋅) function converts any INN into its corresponding BBA. 

𝑚(⋅) ≡ 𝐵𝐵𝐴𝑂(⋅) =
𝑚𝑒𝑎𝑛(⋅)

𝑠𝑢𝑚_𝑜𝑓_𝑡ℎ𝑒_𝑚𝑒𝑎𝑛(⋅)
                           (6.7) 

where (⋅) finds the mean of the neutrosophic component interval given by, 

𝑚𝑒𝑎𝑛(⋅) =
(⋅)𝐿+(⋅)𝑈

2
                   (6.8) 

and 𝑠𝑢𝑚_𝑜𝑓_𝑡ℎ𝑒_𝑚𝑒𝑎𝑛(⋅) gives the summation of the means of all the three components of 

INN. 

 

6.2.1 Dynamic Basic Belief Assignment of Interval Neutrosophic Number 

Consider a decision maker 𝐷𝑞, (𝑞 = 1, 2, … , ℎ), evaluate the alternative 𝐴𝑎, (𝑎 = 1, 2, … , 𝑣) 

w.r.t. criterion 𝐶𝑝, (𝑝 = 1, 2, … , 𝑛), in time 𝑡𝑙, (𝑙 = 1, 2, … , 𝑘). The evaluation characteristic 

is given by, 
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𝑋𝑎𝑝𝑞(𝑡𝑙) = {[𝑇𝑎𝑝𝑞
𝐿 (𝑋𝑡𝑙), 𝑇𝑎𝑝𝑞

𝑈 (𝑋𝑡𝑙)], [𝐼𝑎𝑝𝑞
𝐿 (𝑋𝑡𝑙), 𝐼𝑎𝑝𝑞

𝑈 (𝑋𝑡𝑙)], [𝐹𝑎𝑝𝑞
𝐿 (𝑋𝑡𝑙), 𝐹𝑎𝑝𝑞

𝑈 (𝑋𝑡𝑙)]  }         (6.9) 

 

Dynamic Basic Belief Assignment Operator (DBBAO) and DSmT of information fusion are 

combined to get the Dynamic Basic Belief Assignment (DBBA). Belief components of 𝑇 ∪ 𝐹 

and 𝑇 ∩ 𝐹 are assigned to 𝑇 ∪ 𝐹 as DSmT is closed on ∪ and ∩. 

Dynamic basic belief mass, 

𝑚𝐷𝑎𝑝
(𝐶) ≡ 𝐷𝐵𝐵𝐴𝑂(𝐶) = ∑ [∏ [∑ ∏ 𝑚𝑙𝑞(𝑋𝑡𝑙)

ℎ
𝑞=1𝑥1,𝑥2,…,𝑥𝑞∈𝐷𝛩

𝑥1∩𝑥2∩…∩𝑥𝑞=𝐶𝑎

]𝑘
𝑙=1 ]𝑥1,𝑥2,…,𝑥𝑙∈𝐷

𝛩

𝑥1∩𝑥2∩…∩𝑥𝑙=𝐶

    (6.10) 

for 𝑎 = 1, 2, … , 𝑣 and 𝑝 = 1, 2, … , 𝑛 

 

6.2.2 Dynamic Weight Vector 

Evaluation of alternatives is done w.r.t. the laid criteria. These criteria are assessed by 

different experts in different periods. The importance of criteria is expressed in linguistic 

terms. These are converted into neutrosophic numbers and aggregated to get the dynamic 

weight vector (DWV). A dynamic weight vector operator (DWVO) is proposed to get the 

DWV. 

The evaluation characteristic of a criterion 𝐶𝑝 by the decision maker 𝐷𝑞 in time 𝑡𝑙 is, 

𝑋𝑝𝑞(𝑡𝑙) = {[𝑇𝑝𝑞
𝐿 (𝑋𝑡𝑙), 𝑇𝑝𝑞

𝑈 (𝑋𝑡𝑙)], [𝐼𝑝𝑞
𝐿 (𝑋𝑡𝑙), 𝐼𝑝𝑞

𝑈 (𝑋𝑡𝑙)], [𝐹𝑝𝑞
𝐿 (𝑋𝑡𝑙), 𝐹𝑝𝑞

𝑈 (𝑋𝑡𝑙)]}           (6.11) 

The averaged aggregation characteristic is, 

𝑋̅𝑝 = {[𝑇̅𝑝
𝐿(𝑋), 𝑇̅𝑝

𝑈(𝑋)], [𝐼𝑝̅
𝐿(𝑋), 𝐼𝑝̅

𝑈(𝑋)], [𝐹̅𝑝
𝐿(𝑋), 𝐹̅𝑝

𝑈(𝑋)]} 

where, 

 

𝑇̅𝑝(𝑋) =

[
 
 
 
 

〈1 −

[
 
 
 
 

∏[1 − [1 −∏(1 − 𝑇𝑖𝑞
𝐿 (𝑋))

1
ℎ⁄

ℎ

𝑞=1

]]

1
𝑘⁄

𝑘

𝑖=1
]
 
 
 
 

〉 , 〈1 −

[
 
 
 
 

∏[1 − [1 −∏(1 − 𝑇𝑖𝑞
𝑈(𝑋))

1
ℎ⁄

ℎ

𝑞=1

]]

1
𝑘⁄

𝑘

𝑖=1
]
 
 
 
 

〉

]
 
 
 
 

 

 

𝐼𝑝̅(𝑋) = [〈∏[∏[𝐼𝑖𝑞
𝐿 (𝑋)]

1
ℎ⁄

ℎ

𝑞=1

]

1
𝑘⁄𝑘

𝑖=1

〉 , 〈∏[∏[𝐼𝑖𝑞
𝑈 (𝑋)]

1
ℎ⁄

ℎ

𝑞=1

]

1
𝑘⁄𝑘

𝑖=1

〉] 

 

and  

𝐹̅𝑝(𝑋) = [〈∏ [∏ [𝐹𝑖𝑞
𝐿 (𝑋)]

1
ℎ⁄ℎ

𝑞=1 ]

1
𝑘⁄

𝑘
𝑖=1 〉 , 〈∏ [∏ [𝐹𝑖𝑞

𝑈(𝑋)]
1

ℎ⁄ℎ
𝑞=1 ]

1
𝑘⁄

𝑘
𝑖=1 〉]

           (6.12) 
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DWV is a column vector,  

𝑊 = (𝑤̅𝑑)𝑛 ×1 

𝑤̅𝑑 ≡ 𝐷𝑊𝑉𝑂(𝑋̅𝑝) =
𝑚𝑒𝑎𝑛(𝑇̅𝑝(𝑋))+𝑚𝑒𝑎𝑛(𝐼𝑝̅(𝑋))+𝑚𝑒𝑎𝑛(𝐹𝑝(𝑋))

∑ [𝑠𝑢𝑚_𝑜𝑓_𝑡ℎ𝑒_𝑚𝑒𝑎𝑛(𝑋̅𝑝)]
𝑛
𝑝=1

                         (6.13) 

 

6.3 Dynamic Information Fusion 

Information collected in a dynamic, complex and uncertain environment is fused to rank the 

alternatives. The model is further developed to assess the safety of the system. The steps for 

both above methods are presented in the next sub sections. 

 

6.3.1 Method to Evaluate and Rank the Alternatives 

Step 1: Every alternative is evaluated by a team of experts w.r.t. criteria in different periods. 

Suitability ratings for evaluation are given in Table 6.1. The evaluation is represented as a 

characteristic matrix (𝑋𝑎𝑝𝑞(𝑡𝑡𝑙))𝑣×𝑘
. 

 

Table 6.1: Suitability Ratings as Linguistic Variables 

Linguistic Terms INS 
  

Very_Poor (Ve_Po) ([0.1, 0.2], [0.6, 0.7], [0.7, 0.8]) 

Poor (Po) ([0.2, 0.3], [0.5, 0.6], [0.6, 0.7]) 

Medium (Me) ([0.3, 0.5], [0.4, 0.6], [0.4, 0.5]) 

Good ( Go) ([0.5, 0.6], [0.4, 0.5], [0.3, 0.4]) 

Very_Good (Ve_Go) ([0.6, 0.7], [0.2, 0.3], [0.2, 0.3]) 

 

Step 2: DSmT is applied on the evaluated characteristic matrix using DBBAO to get the 

dynamic mass. 

Step 3: The importance of criteria is evaluated in different periods. Linguistic variables are 

given in Table 6.2. 

 

Table 6.2: Importance Weights as Linguistic Variables 

Linguistic Terms INS   
Unimportant (U_IPA) ([0.1, 0.2], [0.4, 0.5], [0.6, 0.7]) 

Ordinary_Important (O_IPA) ([0.2, 0.4 ], [0.5, 0.6], [0.4, 0.5]) 

Important (IPA) ([0.4, 0.6], [0.4, 0.5], [0.3, 0.4]) 

Very_Important (V_IPA) ([0.6, 0.8], [0.3, 0.4], [0.2, 0.3]) 

Absolutely _Important (A_IPA) ([0.7, 0.9], [0.2, 0.3], [0.1, 0.2]) 
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Step 4: The averaged aggregation of all the criteria is found out.  

Step 5: The DWV is obtained. 

Step 6: The Weighted Dynamic Basic Belief Assignment (WDBBA) (𝑚𝑤𝐷) is obtained for 

all the alternatives using DBBA (𝑚𝐷) and DWV (𝑤̅𝐷) of the criteria. 

𝑚𝑤𝐷𝑎𝑝
(𝑋) = 𝑤̅𝑑 ×𝑚𝐷𝑎𝑝

(𝑋)                 (6.14) 

For ∀𝑎 = 1, 2, … , 𝑣  

Step 7: The information is synthesized using 𝑚𝑤𝐷 and applying the classic DSmT to get the 

dynamic belief masses for all the alternatives.  The obtained dynamic belief masses are 

normalised to get the final belief masses. 

 

𝑚𝐷𝑎
(𝐶) = ∑ [∏ 𝑚𝑑𝑎

𝑛
𝑝=1 (𝑋)]𝑋1,𝑋2,…,𝑋𝑛∈𝐷𝛩

𝑋1∩𝑋2∩…∩𝑋𝑛=𝐶

               (6.15) 

For ∀𝑎 = 1, 2, … , 𝑣  

 

Step 8: The final BBAs of all alternatives are compared with the ideal alternative 

〈(1, 1), (0, 0), (0, 0)〉 using the similarity measure proposed by Jiang [116]. The alternatives 

are ranked as per their correlation coefficients. The flowchart of the model for alternatives is 

shown in Figure 6.1. 

 

Figure 6.1: The Flowchart to Evaluate and Rank the Alternatives 

 

6.3.2 Method to Assess the Safety of the System 

Step 1: The different failure modes are identified. 

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Obtain weighted dynamic basic belief assignments

Apply classic DSmT

Rank the alternatives using similarity measure

Evaluate alternatives w.r.t. criteria

Get the dynamic mass of alternatives

Evaluate criteria in different periods

Find averaged aggregation of all criteria

Calculate dynamic weight vector
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Step 2: The evaluated characteristic matrix by ′𝑞′ decision maker on 𝑎𝑡ℎ  failure mode is 

obtained in 𝑙𝑡ℎ period. 

(𝑋𝑎𝑞(𝑡𝑙))
𝑣×𝑘

= {[𝑇𝑎𝑞
𝐿 (𝑋𝑡𝑙), 𝑇𝑎𝑞

𝑈 (𝑋𝑡𝑙)], [𝐼𝑎𝑞
𝐿 (𝑋𝑡𝑙), 𝐼𝑎𝑞

𝑈 (𝑋𝑡𝑙)], [𝐹𝑎𝑞
𝐿 (𝑋𝑡𝑙), 𝐹𝑎𝑞

𝑈 (𝑋𝑡𝑙)] }           (6.16)
 

𝑎 = 1,2, … , 𝑣;  𝑞 = 1,2, … , ℎ and 𝑙 = 1,2, … , 𝑘 

Step 3: The horizontal integration using DBBAO and DSmT is carried out on the 

characteristic matrix to get dynamic belief masses of all failure modes. 

Step 4: The vertical integration using DSmT and dynamic belief masses is carried out to get 

the dynamic belief masses of the system. 

Step 5: The dynamic belief masses of the system are mapped back to the risk expressions 

using similarity measures [116]. The safety expressions are given in Table 6.3. 

 

Table 6.3: Safety Expressions to Evaluate the System 

Linguistic Expressions INS 
 

Poor (P) ([0.1, 0.2], [0.2, 0.3], [0.8, 0.9]) 

Average (A) ([0.4, 0.5], [0.4, 0.5], [0.6, 0.7]) 

Good (G) ([0.6, 0.7], [0.4, 0.5], [0.4, 0.5]) 

Excellent ( E) ([0.8, 0.9], [0.2, 0.3], [0.1, 0.2]) 

 

The flowchart of the model for assessing the safety of the system is shown in Figure 6.2. 

 

Figure 6.2: The Flowchart to Assess the Safety of the System 

 

6.4 Applications 

Two examples are given to validate and demonstrate the proposed methods of ranking the 

alternatives and assessing the safety of the system. 

 

6.4.1 Example 1: The Proposed Ranking Model 

The example is taken from [128] to evaluate lecturers’ performance in the case study of 

ULIS-VNU. Consider five lecturers i.e. 𝐴1, 𝐴2, … , 𝐴5  and three decision-makers i.e. 

Step 1

Step 2

Step 3

Step 4

Step 5

Identify various failure modes

Collect decision makers views on failure modes

Carry out horizontal integration applying DSmT

Carry out vertical integration applying DSmT

Obtain the safety level of the system
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𝐷1, 𝐷2, 𝐷3 . Five lecturers are evaluated with respect to 6 criteria: total publications (𝐶1), 

teaching student evaluations (𝐶2), personality characteristics (𝐶3),  professional society (𝐶4),  

teaching experience (𝐶5), fluency of foreign language (𝐶6).  The evaluated matrix along with 

their dynamic basic belief masses and the evaluation of criteria for their importance along 

with the dynamic weight vector are given in Appendix-IV. Normalised weighted dynamic 

belief masses and normalised correlation coefficients are given in Table 6.4 and Table 6.5. 

 

 

Table 6.4: Normalised Weighted Dynamic Belief Masses 

Lecturers Normalised Weighted Dynamic Belief masses 
 

A1 (0.697808, 0.078287, 0.223905) 

A2 (0.760933, 0.050429, 0.188578) 

A3 (0.796668, 0.042129, 0.161202) 

A4 (0.701103, 0.077390, 0.221507) 

A5 (0.662146, 0.097506, 0.240348) 

 

Table 6.5: Normalised Correlation Coefficient 
Lecturers Normalised Correlation Coefficients 

 

r1(α*, A1) 0.198675 

r2(α*, A2) 0.202459 

r3(α*, A3) 0.204062 

r4(α*, A4) 0.198903 

r5(α*, A5) 0.195901 

 

The ranking order of five lecturers is 𝐴3 > 𝐴2 > 𝐴4 > 𝐴1 > 𝐴5. The ranking order as given 

by [128] is 𝐴2 > 𝐴3 > 𝐴4 > 𝐴1 > 𝐴5. The ranking order is in line with [128] except for the 

first two alternatives. 

 

6.4.2 Example 2: The Proposed Model for Assessing the Safety of the 

System 

An example of Steering Gear failure onboard ship is taken to illustrate the model. Two 

experts from the marine field having over 20 years of sailing experience identified the failure 

modes of the system. Equal weights are assigned to both experts. The steering gear system 

with failure modes is shown in Figure 6.3. The evaluated characteristic matrix for two 

different periods is given in Table 6.6. 
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Figure 6.3: Steering Gear System with Failure Modes 

 

 

Table 6.6: Evaluated Characteristic Matrix with Dynamic Belief Masses 

Failure 

Modes 

Experts 

Dynamic Basic Belief masses t1 t2 

D1 D2 D1 D2 
 

F1 Me Me Go Go (0.379971, 0.281706, 0.338324) 

F2 Go Go Go Go (0.473601, 0.212394, 0.314005) 

F3 Me Go Me Go (0.38612, 0.283486, 0.330394) 

F4 Po Po Me Me (0.194758, 0.481636, 0.323606) 

F5 Me Me Me Go (0.341035, 0323677, 0.335288) 

 

By vertical integration of all the masses using DSmT, we get the system’s dynamic belief 

masses as, 

𝑚(𝑇) = 0.325928,  𝑚(𝐹) = 0.340302 and 𝑚(𝑇, 𝐹) = 0.33377 

These dynamic masses are mapped back to the safety expressions using similarity measures. 

After normalising, the safety level of the system obtained is,  

𝛽𝑃𝑜𝑜𝑟 = 0.23539, 𝛽𝐴𝑣𝑒𝑟𝑎𝑔𝑒 = 0.266823, 𝛽𝐺𝑜𝑜𝑑 = 0.265923 and  

𝛽𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 = 0.231864  

The steering gear system is assessed as ‘Average’ with a belief of 26.68 %, as ‘Good’ with a 

belief of 26.59 %, as ‘Poor’ with a belief of 23.54 % and as ‘Excellent;’ with a belief of 

23.19%. The result is shown in Figure 6.4. 

System

Malfunctioning of limit switches (F4)

Rudder Angle Transmitter and Tiller Link failure (F5)

Steering Gear

Failure Modes

Oil Leakage (F1)

Unsatisfactory Steering (F2)

High Oil Temperature (F3)



86 
 

 

Figure 6.4: Safety Level of the System 

The safety level of the system is assessed for one more period. The data for the third period is 

collected after taking risk control options which reduced the likelihood of occurrence of 

failure mode. The data for the third period is given in Table 6.7. 

With the incorporation of new data, the safety level of the system obtained is shown in Figure 

6.5. 𝛽𝑃𝑜𝑜𝑟 = 0.1907, 𝛽𝐴𝑣𝑒𝑟𝑎𝑔𝑒 = 0.2550, 𝛽𝐺𝑜𝑜𝑑 = 0.2771 and  𝛽𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 =

0.2772 

The steering gear system with the inclusion of the third period is assessed as ‘Excellent’ with 

a belief of 27.72 %, as ‘Good’ with a belief of 27.71 %, as ‘Average’ with a belief of 25.50 % 

and as ‘Poor’ with a belief of 19.07%. From Figure 6.4 and Figure 6.5, it is seen that by 

considering the data in subsequent periods and assessing the safety level of the system 

periodically, the performance of the system can be monitored dynamically. 

Table 6.7: Experts Data for Third Period 

Failure 

Modes 

Experts 

t3 

D1 D2 
   

F1 Ve_Go Go 

F2 Ve_Go Ve_Go 

F3 Go Ve_Go 

F4 Go Go 

F5 Go Ve_Go 

 

 

Figure 6.5: Safety Level of the System (Including the Third Period) 
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6.5 Summary 

This chapter dealt with the last part of the problem statement. A dynamic decision making 

model is proposed using neutrosophic sets. Three operators BBAO, DBBAO and DWVO are 

proposed to facilitate the decision making when information is collected at different periods. 

Two methods are proposed namely the method to rank the alternatives and the method to 

assess the safety of the system. DSmT of information fusion is used to integrate and fuse the 

information collected from experts using INS. Linguistic expressions for evaluation of 

alternatives, importance weight criteria and safety expressions are provided using INS. For 

the illustrative example safety level of the system is showed as average. The model showed 

that the safety of the system can be increased from average to good and further to excellent by 

incorporating the new data once proper measures are taken to reduce the effect of critical 

parameters. 
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Chapter 7 

Summary and Conclusions 

This concluding chapter presents the extract of the work done in this thesis under the title 

“Risk Assessment and Dynamic Decision Making in Maritime Transportation”. Limitations 

and future scope in this area are presented in the end. 

 

7.1 Discussion 

The research problem, its solution and the research work are mainly carried out in three 

stages. 

• Checking the effectiveness of tools like Bayesian Belief Network, Evidential reasoning and 

Fuzzy multi criteria methods suitable for efficient reasoning under uncertainty. 

• Creating a framework for estimating the risk in maritime transportation. 

• Introducing a framework for dynamic decision making in integrated approach/method. 

Major work is the development of novel risk assessment models for the safety of maritime 

transportation. It involved collecting the data from professionals having quite a lot of 

seagoing experience, devising various operators required to execute the model, validating the 

model qualitatively and quantitatively wherever applicable, carrying out a sensitivity analysis 

of the model to ascertain the impact of input parameters on the outcome of the model. Experts 

are not chosen randomly but those who have quite experience and knowledge from the related 

field to draw meaningful conclusions. The experts are chosen to represent the population of 

interest. The research has resulted in several contributions in the field of risk assessment and 

decision making. 

The research work carried out in this thesis is summarised as follows. 

1. A general method using ISM is proposed when the past data for hazards and failure 

likelihood of hazards are scarce and not available in totality. It is difficult to accurately 

measure these parameters due to the complexity of the system. Therefore, hazard 

identification and their causable interrelationships associated with the given problem are 

done using experts’ judgements. An ISM model is built using the collected information. 

The hazards of similar nature are grouped in factor groups and the model is developed 

and networked in these factor groups. 
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2. The factors identified for the given problem may not be independent of each other and 

may have a dependence on other factors. Any of these factors may trigger accidents. To 

assess the risk of a system, we require the appropriate weights of these factors. To obtain 

the precise weights in such a complex networked structure is quite difficult. The best 

suited method under such circumstances is FANP. This method is used to get the weights 

of factors and assess the risk of the system.  

3. Experts expressed the importance of factors, factor groups and risk parameters (FL and 

CS) using linear triangular/trapezoidal fuzzy numbers. In crisp to fuzzy combine, all the 

ranges representing crisp values are retained with their corresponding membership 

degrees. Fuzzy IF–THEN rules are created to get the risk due to these factors. These risks 

are synthesised using the ER approach to get the overall risk of the system. 

4. In real life, reliable statistical data for risk assessment are not available and one has to 

rely heavily on subjective judgements provided by experts. Such data collected being 

qualitative are fuzzy and contain a lot of uncertainty. Unless this uncertainty is handled 

properly in the initial stages, the model may give false results and not represent reality. 

Neutrosophic sets because of the inclusion of indeterminacy components help to 

incorporate this uncertainty. A novel model using neutrosophic IF-THEN rules is 

employed for handling the uncertainty in the data. A model developed is validated taking 

an example from Sii [72] and the result is found to be more convincing than that of Sii 

[72]. 

5. A neutrosophic set because of its superiority in handling uncertainty is used to develop a 

hybrid model for risk assessment in combination with the ER approach. A simple novel 

method is proposed to convert the SVNN to the corresponding BBA. ER approach is then 

used to synthesise the safety scores of every failure mode using the obtained BBAs to get 

the risk level of the system. 

6. A plithogenic set that can contain more than one attribute, is an extension of the 

neutrosophic set. With the introduction of contradiction degrees, better accuracy in the 

aggregation operators is expected in this type of set. A model using a plithogenic set and 

ER approach is developed by introducing a novel method to convert the plithogenic 

number to its BBA.  Sensitivity analysis performed on an illustrative example based on 

this model affirmed the superiority of this method of iteratively reducing the risk 

associated with the factors and enhancing the safety of the system. 

7. Risk assessment in dynamic conditions demands the collection of data dynamically in 

varying periods. A model using INN is developed to dynamically assess the safety of the 
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system. Combining the data dynamically using the ER approach requires the dynamic 

belief masses. First, BBAO is designed to obtain the BBA of INN which is further 

extended (DBBAO) to get the DBBA of INN. 

8. For assessing safety in dynamic conditions, various alternatives are evaluated with 

respect to each criterion. The importance of criteria expressed in linguistic terms are 

converted to INN and aggregated to get DWV using DWVO. The suitability of DWVO is 

to properly assign the weights of the criteria according to their importance.  

9. The risk assessment model with DSmT using DBBA and DWV in dynamic conditions is 

carried out. The classic model of DSmT is used for the first time in risk assessment to 

check its suitability in such cases. DSmT has overcome the basic limitations of DST as 

highlighted in section 3.6.3.2. The two models are proposed, one for the ranking of 

alternatives and the other to assess the safety of the system. The model is validated using 

a well-established example from Thong [128] and shown its application in assessing 

safety. 

10. DST is often criticised for giving illogical results when sources of evidence have a high 

degree of conflict. A new alternative rule is proposed in which possible error from an 

expert while judging the hypotheses is considered. The new approach proposed in DST is 

applied to the models to highlight its superiority. 

 

7.2 Conclusions 

The conclusions of this research work are listed below:  

1. The risk and safety level of the system can be computed even when the data of risk 

parameters are available in qualitative form. 

2. If the past data is not available, the model can still be constructed to incorporate the 

subjective judgements of experts to get reliable results. 

3. ISM is more suitable for drawing a directed graph and building an interconnected 

network of factors when the past data on factors (causes) of accidents are not available 

and the only source is the experts’ judgements.  

4. FANP is the most suited and appropriate method to get the weights of factors when they 

are interconnected and influence each other. 

5. Neutrosophic sets can provide ease (over fuzzy sets) to experts for judgements. The 

hesitancy component in the neutrosophic sets can remove the uncertainty associated 

while evaluating a particular hypothesis. 



91 
 

6. Neutrosophic logic can be employed for assessing the safety level of the system by 

carefully constructing IF-THEN rules. 

7. Plithogenic set, an extension of the neutrosophic set, is a recent development in set 

theory. The peculiarity of these sets is the contradiction degrees created between the 

attribute values and the dominant attribute value. With the inclusion of contradiction 

degrees, the results obtained using plithogenic sets are better and close to reality. 

8. Neutrosophic and plithogenic sets in combination with the ER approach can model the 

scenario of risk assessment in a better way.  A suitable method is required to get the BBA 

from the neutrosophic and plithogenic numbers. 

9. In real life, we need to make decisions dynamically with periodically changing data. A 

dynamic model can capture this data that can help to improve the safety level of the 

system. 

10. An alternative approach is proposed to D-S theory considering the EIJ of the experts. 

This model when applied to a given problem gives better results with a conflicting piece 

of evidence. 

 

7.3 Contributions 

The contributions of this research work are as follows: 

1. The hybrid model using ISM, FANP and ER approach is developed to get the data from 

experts’ judgements, build the causable model and assess the risk. The model is suitable 

when the past data are not available, the system is complex with several influencing 

factors and exact interrelationships between factors are not known.  

2. The model using neutrosophic logic is constructed with IF-THEN rules. The model is 

suitable for analysing the risk of the system from diversified dimensions such as 

personnel, organisational and environmental perspectives. 

3. An integrated model using the neutrosophic set theory and ER approach is proposed for 

precise assessment of risk in a complex environment. A simple novel method to convert 

SVNN to its BBA is developed. 

4. A decision making model using the D-S theory of evidential reasoning is developed for 

assessing the risk and ranking criteria in a complex system. 

5. The model for dynamic decision making is developed by creating three operators BBA, 

DBBAO and DWVO to get BBA, DBBA and DWV for the hazards.  The model used 

DSmT and interval neutrosophic numbers that collected criteria values at different 
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periods to solve the decision making problems in a neutrosophic environment. The model 

is effectively utilised for assessing the safety of the system in dynamic conditions. 

6. The models developed illustrate their usability in assessing the performance of the system 

periodically. The models help to monitor and enhance the performance of the system by 

running the model iteratively after executing proper risk control options. 

7. A new alternative is added in DST to overcome its limitations when the series of 

evidence to be combined are in a high degree of conflict. The proposed alternative 

incorporated the possibility of error from experts while making judgements. 

 

7.4 Limitations of the Work 

This academic research that is carried out and reported in this thesis is mainly to enhance the 

risk assessment and decision making techniques by developing newer models and 

methodologies by employing fuzzy/neutrosophic/plithogenic set theory and evidential 

reasoning. The research has achieved its aims of providing an integrated framework for 

estimating risk and dynamic decision making in maritime transportation. However, due to 

time constraints, some of the problems cannot be fully explored and needs further 

investigation in the future. While attempting this, it is inevitable to carry a few limitations in 

the work. These limitations are as follows.   

1. Almost all models (except two) are tested with contrived data. 

2. Two models are validated taking examples from the previous research work. The results 

are compared and the proposed models showed improved performance. 

3. Prominent arguments from experts, decision makers and stakeholders are used to validate 

the research models through the inferential qualitative technique. Model validity is tested 

with regard to the understanding of the theoretical bases by the experts. The experts 

participated and appreciated the methodological aspects of the study and its validity in the 

implementation.   

4. Partial validation of one model is done by carrying out sensitivity analysis. 

5. The membership grades in some models are assumed to be linear triangular/trapezoidal 

which may not be the case in practice and may take other shapes such as bell shaped, 

pentagonal, cylindrical and so on.  

6. Only a few criteria are considered while developing models. In real life, there may be 

more criteria as constraints. 

7. The identified risk factors may not have clear interrelationships and may be difficult to 

ascertain. In the present study, in certain cases the risk factors are considered independent 
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(except in one case), where it is considered that some factors may influence others but 

still the exact relationship is unclear. 

8. The identified factors, affecting (triggering) the accidents, for developing the model may 

not be exhaustive. In complex systems, there may be more factors not fitting in the 

model. 

9. The experts’ judgements may not be perfect and accurate. The expert may sometimes 

inadvertently give the wrong judgement. The error from the expert may also creep in if 

the information required cannot be adequately expressed/processed and the expert is 

incoherent. 

10. The traditional risk matrices used for evaluation are not full proof and require experts’ 

judgements for validation. Moreover, the number of experts chosen for the study may be 

insufficient for proper evaluation. The horizontal expansion can be done by increasing the 

number of experts with a stretch of varying experience. 

11. While developing a model on dynamic decision making, only dynamicity of varying 

periods is considered assuming other surrounding conditions remain the same which may 

not be the case in reality. 

 

7.5 Future Scope 

The limitations discussed in the previous section offer scope for the future. The following 

work could be considered as possible extensions and scope for future work. 

1. The models developed in this study can be tested with more practical data for checking 

their suitability in varied scenarios.   

2. The models developed can be applied to a full-fledged case study of a maritime 

transportation accident. 

3. The model can be suitably modified using membership functions such as pentagonal, 

cylindrical, normal and so on. The results and performance of the models may be 

verified.  

4. The refined neutrosophic and plithogenic sets can be used for further developing the 

existing models for refined and more precise risk assessment. 
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This research work has resulted in the development of risk assessment models for 

maritime transportation, safety analysis of maritime transportation in dynamic 

conditions and development of the new alternative approach to Dempster-Shafer theory 

of evidential reasoning to overcome its limitations of giving illogical and counterintuitive 

results especially when the series of evidence provided by various experts are in a high 

degree of conflict. 
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Appendix I 

ANP Matrices and Experts’ Judgements 

 

Unweighted Supermatrix 

   Oil Leakage Electrical Faults 

  Oil 

Leakage 

Electrical 

Faults 
F1 F2 F3 F4 F5 F6 F7 

 Oil 

Leakage 
1 0 0 0 0 0 0 0 0 

Electrical 

Faults 
0 1 0 0 0 0 0 0 0 

F1 0.2887439 0 1 0.8628277 0.673207 0 0 0 0 

F2 0.6223279 0 0.8687735 1 0.326793 0.8071371 0.78866 0.8457707 0 

F3 0.0889283 0 0.1312265 0.1371723 1 0.1928629 0.21134 0.1542293 1 

F4 0 0.3598041 0 0.251772 0.3119842 1 0.6207346 0.6917151 0 

F5 0 0.4839005 0 0.6482228 0.4990046 0.7615188 1 0.3082849 1 

F6 0 0.0982142 0 0.1000052 0.1393649 0.2384812 0.2940082 1 0 

F7 0 0.0580811 0 0 0.0496464 0 0.0852572 0 1 

 

 

Weighted Supermatrix 

   Oil Leakage Electrical Faults 

  
 Oil 

Leakage 

Electrical 

Faults 
F1 F2 F3 F4 F5 F6 F7 

 Oil 

Leakage 
0.5 0 0 0 0 0 0 0 0 

Electrical 

Faults 
0 0.5 0 0 0 0 0 0 0 

F1 0.1443719 0 0.5 0.2876092 0.2244023 0 0 0 0 

F2 0.3111639 0 0.4343868 0.3333333 0.108931 0.2690457 0.2628867 0.2819236 0 

F3 0.0444641 0 0.0656132 0.0457241 0.3333333 0.0642876 0.0704467 0.0514098 0.3333333 

F4 0 0.1799021 0 0.083924 0.1039947 0.3333333 0.2069115 0.2305717 0 

F5 0 0.2419503 0 0.2160743 0.1663349 0.2538396 0.3333333 0.1027616 0.3333333 

F6 0 0.0491071 0 0.0333351 0.046455 0.0794937 0.0980027 0.3333333 0 

F7 0 0.0290406 0 0 0.0165488 0 0.0284191 0 0.3333333 
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Limit Supematrix 

   Oil Leakage Electrical Faults 

  Oil 

Leakage 

Electrical 

Faults 
F1 F2 F3 F4 F5 F6 F7 

 Oil 

Leakage 
5.421E-20 0 0 0 0 0 0 0 0 

Electrical 

Faults 
0 5.421E-20 0 0 0 0 0 0 0 

F1 0.2150562 0.2150562 0.2150562 0.2150562 0.2150562 0.2150562 0.2150562 0.2150562 0.2150562 

F2 0.3078224 0.3078224 0.3078224 0.3078224 0.3078224 0.3078224 0.3078224 0.3078224 0.3078224 

F3 0.0846495 0.0846495 0.0846495 0.0846495 0.0846495 0.0846495 0.0846495 0.0846495 0.0846495 

F4 0.1319755 0.1319755 0.1319755 0.1319755 0.1319755 0.1319755 0.1319755 0.1319755 0.1319755 

F5 0.1860807 0.1860807 0.1860807 0.1860807 0.1860807 0.1860807 0.1860807 0.1860807 0.1860807 

F6 0.064382 0.064382 0.064382 0.064382 0.064382 0.064382 0.064382 0.064382 0.064382 

F7 0.0100336 0.0100336 0.0100336 0.0100336 0.0100336 0.0100336 0.0100336 0.0100336 0.0100336 

 

Priority Vectors for Overheating / Explosion factor groups 

 F8 F9 F10 F11 Weights 

F8 1 0.186 0.165 0.186 0.0548 

F9 5.382 1 0.565 0.565 0.2296 

F10 6.07 1.769 1 1.925 0.4208 

F11 5.384 1.769 0.519 1 0.2948 

 

Experts’ Judgements - Likelihood of factors 

 Factors Expert1 Expert2 Expert3 Expert4 Expert5 Expert6 
       

Damaged 'O' ring (F1) Average 

Reasonably 

Frequent Frequent Average Low Average 

Improper Maintenance (F2) Frequent Average Frequent Frequent Frequent Average 

Hot Work accidents (F3) 

Reasonably 

Frequent Very Low 

Reasonably 

Low Low Average Very Low 

Chafing (F4) 

Reasonably 

Low Low Average 

Reasonably 

Low Average Very Low 

Short Circuit (F5) 

Reasonably 

Frequent Average 

Reasonably 

Frequent 

Reasonably 

Frequent 

Reasonably 

Frequent Frequent 

Overloading of Switches (F6) Low Frequent Frequent Average Average Low 

Static Electricity (F7) Average Average 

Reasonably 

Frequent 

Reasonably 

Low Average Low 

Turbocharger Explosion (F8) Low Low Low 

Reasonably 

Low Average Average 

Boiler Explosion (F9) Very Low Average 

Reasonably 

Frequent Average Very Low Very Low 

Cargo Fire (F10) 

Reasonably 

Frequent Low Average Average 

Reasonably 

Frequent Average 

Crankcase Explosion (F11) Average 

Reasonably 

Low 

Reasonably 

Low Very Low Low 

Reasonably 

Low 
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Experts’ Judgements – Consequence severity of factors 

Factors Expert1 Expert2 Expert3 Expert4 Expert5 Expert6 
       

Damaged 'O' ring (F1) Critical Catastrophic Catastrophic Marginal Marginal Marginal 

Improper Maintenance (F2) Critical Catastrophic Critical Critical Negligible Catastrophic 

Hot Work accidents (F3) Catastrophic Catastrophic Marginal Marginal Catastrophic Critical 

Chafing (F4) Marginal Marginal Critical Marginal Negligible Negligible 

Short Circuit (F5) Catastrophic Catastrophic Critical Catastrophic Catastrophic Catastrophic 

Overloading of Switches (F6) Marginal Marginal Critical Marginal Critical Negligible 

Static Electricity (F7) Negligible Negligible Negligible Marginal Marginal Critical 

Turbocharger Explosion (F8) Marginal Marginal Negligible Critical Critical Marginal 

Boiler Explosion (F9) Critical Marginal Critical Marginal Catastrophic Negligible 

Cargo Fire (F10) Catastrophic Critical Marginal Catastrophic Critical Marginal 

Crankcase Explosion (F11) Critical Critical Critical Critical Critical Catastrophic 

 

 

Membership Values of Likelihood and Consequence Severity of factors 

 
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 

            

μ (Severity)  

Marginal 

(0.148), 
Critical 

(0.852) 

Marginal 
(1.0) 

Critical 
(1.0) 

Negligible 

(0.277), 
Marginal 

(0.723) 

Critical 

(0.313), 
Catastrophic 

(0.687) 

Marginal 
(1.0) 

Negligibl

e (0.567), 
Marginal 

(0.433) 

Marginal 
(1.0) 

Marginal 
(1.0) 

Critical 
(1.0) 

Critical 
(1.0) 

μ 

(Likelihood

) 

Average 
(1.0) 

Average 

(0.056), 

Reasonabl
y 

Frequent 

(0.944)  

Very 
Low 

(0.2195), 

Low 
(0.7805)  

Very Low 

(0.241), 
Low 

(0.8795) 

Average 
(0.225), 

Reasonably  

Frequent 
(0.775) 

Reasonabl
y Low 

(0.369), 

average 
(0.631) 

Reasonab
ly Low 

(0.511), 

Average 
(0.489) 

Low 

(0.511), 
Reasonably 

Low (0.489) 

Very 
Low 

(0.415), 

Low 
(0.7925) 

Reasonably 
Low 

(0.023), 

Average 
(0.977) 

Very 
Low 

(0.413), 

Low 
(0.7935) 
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Appendix II 

Model I: Neutrosophic Logic Data 

Model I: Failure Likelihood 

Linguistic 

terms Trapezoidal neutrosophic number meaning 

Failure rate 

(1/year) 

Crisp 

values 
     

Very Low (0, 0, 1, 2.5; 0, 0, 0.5, 1.75; 0, 0, 1, 2.25) Very less chance of failure <10-8 0.75 

Low (0.5, 2, 3, 4.5; 1.25, 2, 2.75, 3.75; 1.75, 2.5, 3.25, 4.25) 

May happen at the most 

once in lifetime 10-7 - 10-6 
2.625 

Reasonably 

Low (2.5, 4, 5, 6.5; 3.25, 4, 4.75, 5.75; 3.75, 4.5, 5.25, 6.25)  Between low and average 10-5 - 10-4 
4.625 

Average (4.5, 6, 7, 8.5; 5.25, 6, 6.75, 7.75; 5.75, 6.5, 7.25, 8.25) occasional failure 10-3 - 10-2 6.625 

Frequent (6.5, 8, 9, 9.5; 7.25, 8, 8.75, 9.25; 7.75, 8.65, 9.25, 9.75) Repeated failure 10-2 - 10-1 8.45833 

Highly 

Frequent (8.5, 9.5, 10, 10; 8.25, 9.5, 10, 10, 9, 9.75, 10, 10) Failure is almost inevitable >1 
9.54167 

 

Model I: Consequence Severity (personnel related risk) 

Linguistic 

terms Trapezoidal neutrosophic number Meaning 

Crisp 

values 
    

Negligible (0, 0, 1, 3; 0, 0, 0.5, 2.25; 0, 0, 1.25, 3) No Injury 0.91667 

Minor (0.5, 2, 3, 4.5; 1, 2.25, 3, 4.25; 1.5, 2.75, 3.5, 4.75) Single or minor injury 2.75 

Moderate (3, 4, 6, 7; 3.25, 4, 5.5, 6.75; 4, 4.75, 6.25, 7.5)  Multiple injuries 5.16667 

Severe (5.5, 7, 8, 9.5; 6, 7.25, 8, 9.25; 6.5, 7.75, 8.5, 9.75) Single death or several severe injuries 7.75 

Catastrophic (7, 9, 10, 10; 8, 9.25, 10, 10; 8.5, 9.75, 10, 10) Large number of fatalities 9.29167 

 

Model I: Consequence Severity (environmental related risk) 

Linguistic 

terms Trapezoidal neutrosophic number Meaning 

Crisp 

values 
    

Negligible (0, 0, 1, 3; 0, 0, 0.5, 2.25; 0, 0, 1.25, 3) 

No environmental degradation 

caused 
0.91667 

Minor (0.5, 2, 3, 4.5; 1, 2.25, 3, 4.25; 1.5, 2.75, 3.5, 4.75) 

Minor damage due to discharge of 

materials 
2.75 

Moderate (3, 4, 6, 7; 3.25, 4, 5.5, 6.75; 4, 4.75, 6.25, 7.5)  

Intermittent discharge of oil, 

chemicals etc. 
5.16667 

Severe (5.5, 7, 8, 9.5; 6, 7.25, 8, 9.25; 6.5, 7.75, 8.5, 9.75) 

Long term damage due to discharge 

of oil, chemicals etc. 
7.75 

Catastrophic (7, 9, 10, 10; 8, 9.25, 10, 10; 8.5, 9.75, 10, 10) 

Significant damage due to heavy 

discharge of oil, chemicals etc. 
9.29167 
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Model I: Consequence Severity (organisational related risk) 

Linguistic 

terms Trapezoidal neutrosophic number Meaning 

Crisp 

values 
    

Negligible (0, 0, 1, 3; 0, 0, 0.5, 2.25; 0, 0, 1.25, 3) Insignificant damage property 0.91667 

Minor (0.5, 2, 3, 4.5; 1, 2.25, 3, 4.25; 1.5, 2.75, 3.5, 4.75) Minor damage 2.75 

Moderate (3, 4, 6, 7; 3.25, 4, 5.5, 6.75; 4, 4.75, 6.25, 7.5)  

Significant damage requiring outside 

support for repair 
5.16667 

Severe (5.5, 7, 8, 9.5; 6, 7.25, 8, 9.25; 6.5, 7.75, 8.5, 9.75) Major damage to ship 7.75 

Catastrophic (7, 9, 10, 10; 8, 9.25, 10, 10; 8.5, 9.75, 10, 10) Total loss of ship 9.29167 

 

Model I: Risk Level Expressions 

Linguistic 

terms Trapezoidal neutrosophic number 

Crisp 

values 
  

Low (0,0,2,3;0,0,1,2.25;0,0,1.75,2.75) 1.04167 

Possible (2,3,5,6;2.25,3.25,4,5;3,4,4.75,5.75) 4 

Substantial (5,6,8,9;5.25,6.25,7,8;6,7,7.75,8.75) 7 

High (8,9,10,10;8.25,9.25,10,10;9,10,10,10) 9.45833 

 

Model I: Neutrosophic IF-THEN Rules 

Rule Antecedent (FL) Antecedent (CS) Consequent 
 

#1 'Very Low' 'Negligible' 'Low' 

#2 'Very Low' 'Minor' 'Low' 

#3 'Very Low' 'Moderate' 'Possible' 

#4 'Very Low' 'Severe' 'Possible' 

#5 'Very Low' 'Catastrophic' 'Possible' 

#6 'Low' 'Negligible' 'Low' 

#7 'Low' 'Minor' 'Possible' 

#8 'Low' 'Moderate' 'Possible' 

#9 'Low' 'Severe' 'Possible' 

#10 'Low' 'Catastrophic' 'Substantial' 

#11 'Reasonably Low' 'Negligible' 'Possible' 

#12 'Reasonably Low' 'Minor' 'Possible' 

#13 'Reasonably Low' 'Moderate' 'Possible' 

#14 'Reasonably Low' 'Severe' 'Substantial' 

#15 'Reasonably Low' 'Catastrophic' 'Substantial' 

#16 'Average' 'Negligible' 'Possible' 

#17 'Average' 'Minor' 'Possible' 

#18 'Average' 'Moderate' 'Substantial' 

#19 'Average' 'Severe' 'Substantial' 

#20 'Average' 'Catastrophic' 'Substantial' 

#21 'Frequent' 'Negligible' 'Possible' 

#22 'Frequent' 'Minor' 'Substantial' 
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#23 'Frequent' 'Moderate' 'Substantial' 

#24 'Frequent' 'Severe' 'Substantial' 

#25 'Frequent' 'Catastrophic' 'High' 

#26 'Highly Frequent' 'Negligible' 'Substantial' 

#27 'Highly Frequent' 'Minor' 'Substantial' 

#28 'Highly Frequent' 'Moderate' 'Substantial' 

#29 'Highly Frequent' 'Severe' 'High' 

#30 'Highly Frequent' 'Catastrophic' 'High' 
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Appendix III 

Model III: Plithogenic Model Data 

Model –III: Plithogenic risk score 

  1F         2F             3F           4F             5F  



















=

090.0,500.0,910.0575.0,700.0,425.0700.0,700.0,300.0405.0,250.0,595.0370.0,175.0,630.0

350.0,625.0,650.0575.0,700.0,425.0500.0,500.0,500.0283.0,175.0,715.0370.0,175.0,630.0

270.0,575.0,730.0355.0,500.0,645.0400.0,375.0,600.0425.0,300.0,575.0510.0,250.0,490.0

270.0,575.0,730.0355.0,500.0,645.0400.0,425.0,600.0645.0,500.0,355.0190.0,1000.0,810.0

~

4

3

2

1

E

E

E

E

R

 

Model –III: BBA’s of risk score 

 F1 F2 F3 F4 F5 

 m(T) m(T,F) m(F) m(T) m(T,F) m(F) m(T) m(T,F) m(F) m(T) m(T,F) m(F) m(T) m(T,F) m(F) 
                

E1 0.7364 0.0909 0.1727 0.2367 0.3333 0.43 0.4211 0.2982 0.2807 0.43 0.3333 0.2367 0.4635 0.3651 0.1714 

E2 0.392 0.2 0.408 0.4423 0.2308 0.3269 0.4364 0.2727 0.2909 0.43 0.3333 0.2367 0.4635 0.3651 0.1714 

E3 0.5362 0.1489 0.3149 0.6085 0.1489 0.2426 0.3333 0.3333 0.3333 0.25 0.4118 0.3382 0.4 0.3846 0.2154 

E4 0.5362 0.1489 0.3149 0.476 0.2 0.324 0.1765 0.4118 0.4118 0.25 0.4118 0.3382 0.6067 0.3333 0.06 

 

Model –III : Normalised similarity score 

       1F    2F          3F      4F   5F  





















=

167601.0192025.0193514.018429.0164902.0

189011.0

21019.0

222267.0

204942.0

214258.0

208697.0

205768.0

214494.0

208053.0

199509.0

212939.0

213485.0

186631.0

209691.0

224551.0

21093.0180078.017817.0189777.0214225.0

~

5

4

3

2

1

R

R

R

R

R

R  
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Appendix IV 

Dynamic Decision Making Model Data 

 

Example -1: The evaluated matrix along with their dynamic basic belief masses 

Criteria Lecturers 

Decision Makers 

Dynamic Basic Belief Masses                           

(T, F, T∪F) 
t1 t2 t3 

D1 D2 D3 D1 D2 D3 D1 D2 D3 
 

C1 

A1 Me Go Go Go Go Go Go Ve_Go Go (0.537456, 0.167772, 0.294773) 

A2 Go Go Ve_Go Ve_Go Go Ve_Go Ve_Go Go Ve_Go (0.677230, 0.089733, 0.233037) 

A3 Me Go Go Go Go Go Go Go Ve_Go (0.551952, 0.157914, 0.290134) 

A4 Go Me Go Go Go Go Go Go Go (0.506046, 0.189117, 0.304836) 

A5 Me Go Me Go Go Me Go Go Go (0.445630, 0231638, 0.322731) 

C2 

A1 Go Go Go Ve_Go Go Go Go Go Go (0.545188, 0.161556, 0.293256) 

A2 Ve_Go Go Ve_Go Me Go Go Ve_Go Go Go (0.587106, 0.137222, 0.275673) 

A3 Ve_Go Go Go Go Me Go Go Me Go (0.495164, 0.194219, 0.310617) 

A4 Go Go Go Go Ve_Go Go Go Go Ve_Go (0.592985, 0.134266, 0.272749) 

A5 Ve_Go Go Go Go Ve_Go Go Go Go Me (0.516687, 0.172812, 0.310501) 

C3 

A1 Ve_Go Ve_Go Go Go Ve_Go Go Go Me Go (0.547366, .152625, 0.300009) 

A2 Go Ve_Go Go Ve_Go Go Ve_Go Go Go Ve_Go (0.639759, 0.107299, 0.252942) 

A3 Go Ve_Go Ve_Go Go Go Go Go Ve_Go Go (0.605431, 0.125957, 0.268611) 

A4 Go Go Go Ve_Go Go Go Ve_Go Go Go (0.577997, 0.142833, 0.279170) 

A5 Ve_Go Go Go Go Ve_Go Go Go Go Go (0.564545, 0.147920, 0.287535) 

C4 

A1 Me Go Me Go Go Me Me Go Me (0.374181, 0.293782, 0.332038) 

A2 Go Me Go Go Me Go Go Me Go (0.456588, 0.224954, 0.318457) 

A3 Go Go Go Go Go Me Go Go Ve_Go (0.542148, 0.163564, 0.294288) 

A4 Me Po Me Go Me Me Go Go Me (0.335600, 0.325733, 0.338667) 

A5 Me Me Po Me Me Me Me Go Me (0.279417, 0.384679, 0.335904) 

C5 

A1 Me Go Me Me Go Go Go Me Go (0.427180, 0.248386, 0.324434) 

A2 Go Ve_Go Go Ve_Go Go Go Go Ve_Go Go (0.597962, 0.130556, 0.271483) 

A3 Go Go Me Go Go Go Go Ve_Go Go (0.527769, 0.173730, 0.298501) 

A4 Ve_Go Go Go Ve_Go Go Go Ve_Go Go Go (0.597962, 0.130556, 0.271483) 

A5 Go Go Go Go Go Go Go Ve_Go Go (0.557417, 0.155493, 0.287090) 

C6 

A1 Ve_Go Go Go Ve_Go Go Ve_Go Ve_Go Go Ve_Go (0.668533, 0.094153, 0.223732) 

A2 Go Go Go Go Ve_Go Go Go Go Ve_Go (0.592985, 0.134266, 0.272749) 

A3 Ve_Go Go Ve_Go Ve_Go Go Ve_Go Ve_Go Go Ve_Go (0.693488, 0.081472, 0.225040) 

A4 Go Ve_Go Go Go Ve_Go Go Go Go Go (0.564545, 0.147920, 0.287535) 

A5 Go Go Go Ve_Go Go Go Go Ve_Go Go (0.577997, 0.142833, 0.279170) 
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Example-1: The evaluated matrix along with their dynamic basic belief masses 

Criteria 

Decision Makers Dynamic 

weight 

vector 

t1 t2 t3 

D1 D2 D3 D1 D2 D3 D1 D2 D3 
 

C1 IPA IPA IPA IPA V_IPA IPA V_IPA IPA V_IPA 0.166934 

C2 V_IPA V_IPA IPA V_IPA V_IPA V_IPA A_IPA V_IPA V_IPA 0.16657 

C3 IPA IPA V_IPA IPA IPA V_IPA V_IPA IPA V_IPA 0.167202 

C4 IPA V_IPA IPA IPA O_IPA IPA IPA IPA IPA 0.165894 

C5 IPA IPA IPA V_IPA IPA V_IPA IPA IPA IPA 0.166197 

C6 V_IPA V_IPA IPA IPA IPA IPA V_IPA V_IPA IPA 0.167202 
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