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PREFACE 

This thesis is about the “Development of Novel Soft-Core Embedded Architecture 

for Total Haemoglobin Estimation using Multivariate System”. This architecture is 

developed using Altera NIOS II soft-core platform on DE0 board having target as 

CYCLONE IV. The multivariate (PLSR) algorithm is developed in C++ language and 

ported on the NIOS II platform to estimate non-invasive haemoglobin concentration in 

human blood using five LED wavelengths in the range of 670 nm to 950 nm. 

 

Chapters 1 contain an introduction to the thesis along with overview of anaemia and 

prevalence of anemia globally. It focuses on the problems associated with the invasive 

method and the mentions the importance in developing a non-invasive haemoglobin 

device.  

Chapter 2 describes a literature review on various invasive and non-invasive methods in 

measuring haemoglobin. It also reviewed on the development of non-invasive 

haemoglobin devices by several researchers.  

Chapter 3 discusses on optical absorption of skin tissue and blood. It also discusses the 

estimation of haemoglobin using visible and near-infrared light to estimate haemoglobin 

using the PPG features along with the mathematical empirical formula. 

Chapter 4 discusses the methodology in designing an embedded platform for estimating 

non-invasive haemoglobin. It also focused on the selection of LED wavelengths, 

photodetector, and the importance of standardizing LEDs power to estimate non-invasive 

haemoglobin. 

Chapter 5 elaborates on the various multivariate methods. It also discusses the multivariate 

Partial Least Square Regression (PLSR) model that was implemented in ParLes software 

for preliminary analysis.  

Chapter 6 describes the design of an Altera NIOS II soft-core system for non-invasive 

haemoglobin estimation. It contains a survey of soft-core processors, DE0 Nano board to 

configure the NIOS II soft-core. Also, it describes the multivariate (PLSR) model 

implemented in the designed system to test and verify different validation cases.  

Chapter 7 gives us a review on the results obtained for two different cases. Also, different 

performances measures such as Root Mean Square Error (RMSE), R
2
 (Coefficient of 

determination), and r (Correlation coefficient) was used for comparisons. The designed 

system was also validated with Bland-Altman plot and analysis. 
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Chapter 1 

Introduction 

1.1 Anaemia Overview 

In the present scenario, it is very important to monitor the total haemoglobin count 

of patients during surgeries, deliveries, blood donations, dialysis in hospitals and also for 

monitoring patients in intensive care units, etc. Anaemia is a condition in which the blood 

has less than the required number of healthy Red Blood Cells (RBC) or when the 

haemoglobin level in the blood drops below the normal level. Anaemia can occur due to 

various causes like blood loss, decreased or faulty RBC production, destruction of RBC. 

Further on, it can also originate from a variety of factors that include nutritional 

deficiencies (e.g. iron deficiency and other nutritional deficiencies like vitamin B12, 

vitamin A, and folate), infections (e.g., malaria, hookworm disease, Human  

immunodeficiency virus (HIV)) [1, 2], chronic medical conditions (e.g., chronic kidney 

disease, inflammatory/autoimmune disorders)[1, 2], haemoglobin or RBC disorders (e.g., 

sickle cell disease (SCD), thalassemia, myelodysplastic syndromes), and pharmaceutical 

drug treatment (e.g., cancer chemotherapy) [3, 4]. 

 

Iron deficiency anaemia occurs due to low dietary iron consumption, chronic blood 

loss, blood loss due to hookworm infection, and iron mal-absorption, all of which are more 

common in low- and middle-income countries [5]. In endemic regions, malaria is a leading 

cause of anaemia. Malaria causes anaemia, especially in young children, in high-

transmission areas. Malaria has been linked to maternal anaemia during pregnancy as well 

as poor birth outcomes at all levels of transmission [6]. SCD and thalassemia are inherited 

haemoglobin diseases that induce hemolysis of RBCs and severe, persistent anaemia [7, 8]. 

Haemoglobin levels are also decreased in patients due to blood loss in traumatic 

hemorrhages, cardiac surgery [9]. Early detection and treatment of anaemia can help to 

reduce the severity of the condition [10]. Misdiagnosis of the cause of anaemia will result 

in the wrong treatment, which can result in serious clinical consequences [11]. As a result, 

a quick and correct diagnosis of anaemia, as well as the identification of the underlying 

illness etiology, are critical. Before blood donation, the donor's eligibility must be 

identified and reviewed by a physical examination, a health history determination, and a
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 haemoglobin measurement. The haemoglobin levels for donor eligibility are more than 

13.5 g/dL for males and more than 12.5 g/dL for females [12, 13]. Polycythemia vera is a 

condition in which the number of RBCs in the blood is abnormally high. In this condition, 

the blood becomes too thick and makes clotting easier.  This increases the risk of heart 

attacks and strokes. The condition may be caused by several health-related factors 

including smoking, congenital heart disease, dehydration (decreased water), and hypoxia 

(low blood oxygen levels). 

 

1.2 Worldwide Anaemia Breakdown 

According to World Health Organization (WHO), anaemia is one of the world's 

most common health issues affecting pregnant women, preschool children, and adolescents 

[14, 15]. In milder situations, anaemia produces weakness, tiredness, and dizziness; in 

more severe cases, anaemia causes life-threatening cardiovascular collapse [3, 4]. 

Globally, anaemia affects 1.62 billion people, which corresponds to 24.8% of the 

population. The highest prevalence is in preschool-age children (47.4%) and the lowest 

prevalence is in men (12.7%). However, the population group with the greatest number of 

individuals affected is non-pregnant women which are around 468 million as shown in 

Table 1.1 [16, 17].  

Table 1.1: Prevalence of anaemia globally. 

Population Group Prevalence of anaemia 

(percent) 

Population affected number  

(million) 

Preschool-age children 47.4 293 

School age children 25.4 305 

Pregnant Women 41.8 56 

Non-Pregnant Women 30.2 468 

Men 12.7 260 

Elderly 23.9 164 

Total Population 24.8 1620 

 

WHO regional estimates generated for preschool-age children and pregnant and 

non-pregnant women indicate that the highest proportion of individuals affected are in 

Africa (47.5–67.6%), while the greatest number affected are in South-East Asia where 315 

million individuals in these three population groups are affected. The prevalence of 
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anaemia in each WHO region is listed in Table 1.2 [16, 17]. In the global burden of disease 

(GBD) study done in 2013, the Institute for Health Metrics and Evaluation found that 

anaemia affected 27.0 % of the world's population (i.e. 1.93 billion people) [7]. Anaemia 

affected 41.8 % of pregnant women, 30.2% of non-pregnant women, 47.4% of preschool 

children, and 25.4% of school-aged children based on the data collected between 1993 and 

2005 [16]. 

 

Table 1.2: Prevalence of anaemia in each WHO region. 

WHO region Preschool-age 

children 

Pregnant 

women 

Non-pregnant 

women 

Africa 67.6 57.1 47.5 

Americas 29.3 24.1 17.8 

South-East Asia 65.5 48.2 45.7 

Europe 21.7 25.1 19.0 

Eastern Mediterranean 46.7 44.2 32.4 

Western Pacific 23.1 30.7 21.5 

Global 47.4 41.8 30.2 

 

In 2021, WHO estimated that 29.6 % of non-pregnant women, 36.5 % of pregnant 

women, and 39.8 % of preschool children are anaemic globally, according to data gathered 

upto 2019 [17]. When compared to other developing nations, India has a high prevalence 

of anaemia, as seen in Table 1.3 [17]. 

 

Table 1.3: Prevalence of anaemia in various countries. 

Country 

Preschool-age 

children 

Pregnant 

 Women 

Non-pregnant 

 women 

Brazil 16.1 19.1 16 

Australia 8.5 15.7 8.2 

Afghanistan 42.6 36.5 43.2 

Pakistan 41.3 44.0 41.1 

India 53.0 50.1 53.1 

Liberia 42.6 49.7 41.9 

Yemen 61.5 57.5 61.8 
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The prevalence of anaemia in pregnant women and children is shown in Figures 

1.1 and 1.2 respectively. Women in their childbearing years are more vulnerable to iron 

deficiency anaemia arising from blood loss from menstruation and the increased blood 

supply needs during pregnancy. Pregnant women that are anaemic have an increased rise 

in low birth weight and increased prenatal and maternal mortality. Also, women who are 

anaemic have severe problems during menstruation and pregnancy [18]. 

 

Figure 1.1: Prevalence of anaemia in pregnant women [17]. 

 

Figure 1.2: Prevalence of anaemia in preschool age children [17]. 
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1.3 A brief history of monitoring haemoglobin in the blood 

The haemoglobin molecule is made up of four protein chains with a central iron 

atom that binds an oxygen molecule. The structure of haemoglobin molecule is shown in 

Figure 1.3. When a haemoglobin molecule carries four oxygen molecules, it is referred to 

as oxyhemoglobin, and when it is not completely saturated with oxygen, it is referred to as 

reduced haemoglobin. Haemoglobin is an iron-containing oxygen-transport metalloprotein 

found in RBCs that delivers oxygen to tissues while returning carbon dioxide to the lungs 

[19].  

 

Figure 1.3: Structure of haemoglobin molecule [20]. 

 

The volumetric estimation of haemoglobin in red corpuscles in the blood is defined 

as hematocrit. Haemoglobin is typically tested using the whole blood count method and is 

represented in grams (g) per deciliter (dL) of whole blood. [21]. The normal haemoglobin 

concentration varies by gender, age, and altitude. The normal range of haemoglobin 

concentration in blood is from 14 to 18 g/dL for males and 12.0 to 16 g/dL for females 

[22]. The haemoglobin thresholds used to define anaemia are listed in Table 1.4 [16]. 

 

Table 1.4: Haemoglobin thresholds used to define anaemia. 

Gender Group Haemoglobin Threshold (g/dL) 

Preschool age children 11 

Pregnant Women 12 

Non- pregnant Women 11 

Men 13 
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The current diagnostic method for haemoglobin measurement, in a clinical 

laboratory, is a complete blood count using an automated hematology analyzer where 

blood is collected from a vein which includes the insertion of a needle, which causes minor 

discomfort to the individual. Also, it takes a lot of time to obtain the results from a 

pathology laboratory which does not allow real-time monitoring of the patient in critical 

situations. Hence, accurate, real-time, and non-invasive estimation of haemoglobin is very 

important. A non-invasive method allows on-the-spot or continuous monitoring of 

haemoglobin and provides safe management of subjects with minimal risk of infection and 

reduced pain [23, 24]. To address these challenges in estimating total haemoglobin, a real-

time, non-invasive system was designed using an Altera NIOS II soft-core system with a 

finger probe consisting of five LED sources and OPT101 to detect the transmitted signal 

through the finger using the photoplethysmography (PPG) principle.  

 

1.4 Composition of blood and its functions 

Blood is a fluid that moves through the vessels of the circulatory system. The main 

components of blood are plasma, RBCs, white blood cells (WBCs), and platelets.  Blood 

has, as its main function, the transportation of oxygen and nutrients to the lungs and 

tissues. Cells and platelets make up about 45% of human blood, while plasma makes up 

the other 55%. 

 

Plasma 

Plasma is the main component of blood which contains 90% water, with the 

remaining 10% consisting of proteins, ions, nutrients, and other wastes. Albumin is the 

main protein in plasma, and it helps in the prevention of fluid leakage from blood vessels 

into tissues. Antibodies, which actively protect the body against bacteria, viruses, fungi, 

and cancer cells are among the other proteins found in plasma. 

 

Red Blood Cells 

RBCs, also known as erythrocytes, account for 40% of the volume of blood. 

Haemoglobin is found in RBCs which is a protein that allows it to transport oxygen from 

the lungs to all body tissues. Cells use oxygen to generate energy for the body, leaving 

carbon dioxide as a waste product. Carbon dioxide is carried away from the tissues by 

RBCs and returned to the lungs. RBCs pick up oxygen in the lungs and release it to the 
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surrounding tissues as they circulate through the rest of the body. RBCs are also involved 

in the transport of carbon dioxide, a waste product, from tissues to the lungs.  RBCs have a 

lifespan of 120 days on average. In the liver and spleen, old or weakened red blood cells 

are broken down, and new ones are formed in the bone marrow. The hormone 

erythropoietin, which is released by the kidneys in response to low oxygen levels, 

regulates RBC activity. The number of RBCs in the body remains relatively constant over 

time. 

 

White Blood Cell 

WBCs, also known as leukocytes, are fewer than RBCs and account for less than 

1% of the cells in the blood. WBCs play a key role in the body's defense against infection. 

 

Platelets 

Platelets, also known as thrombocytes, are small and are lesser in number than red 

or white blood cells. Platelets aid in the clotting process by grouping together at a bleeding 

site to create a plug that closes the blood vessel; thrombocythemia occurs when the 

quantity of platelets in the blood is too high. In this condition, too much blood clotting 

occurs and blocks the blood vessels, causing problems such as a transient ischemic attack 

[25, 26].  
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Chapter 2 

Literature Review 

 

Haemoglobin test is very important to screen and diagnose conditions that affect 

the RBCs; for anaemia (low haemoglobin) or Polycythemia (high haemoglobin). Also, it's 

important to test for blood donations and major surgeries. Hence it becomes crucial to 

monitor the haemoglobin levels. Many different methods are used to monitor 

haemoglobin, these methods can be broadly classified into invasive and non-invasive. In 

this chapter, we provide an overview of the different invasive techniques like reagent-

based and reagent-less methods and non-invasive methods. 

2.1 Invasive methods 

In Invasive methods, blood tests are done by pricking the finger or drawing blood 

from the arm under medical guidance. 

 

2.1.1 Haemoglobincyanide method 

Haemoglobin is converted to cyanmethemoglobin using this method, which 

involves adding ferricyanide and potassium cyanide to a standard solution. The 

erythrocytes are destroyed by a haemoglobin solution that is equally distributed. All types 

of haemoglobin found in blood are converted to a single cyanmethemoglobin, with the 

solution's absorbance measured at 540 nanometers in a spectrophotometer. At this 

wavelength, hemoglobincyanide exhibits a broad absorption peak. The availability of an 

internationally accepted reference standard calibrator is one of the advantages. It also 

provides accurate and precise results. The disadvantage is that it is time-consuming. The 

potassium cynaide is photosensitive and toxic. This technique is still employed in clinics, 

particularly in poor countries [1]. 
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2.1.2 Vanzetti's Azide Methemoglobin method 

Haemoglobin is converted to potassium ferricyanide to produce the coloured, stable 

azide methemoglobin form, which has an absorbance spectrum that is almost identical to 

Haemoglobincyanide. In this method, sodium azide is replaced with potassium cyanide as 

a reagent. First, the blood is extracted into a dry reagent cuvette by capillary action. The 

reagent then breaks down the RBC walls, releasing free haemoglobin, which is then 

oxidised to methemoglobin. Finally, it is converted into azide methemoglobin a stable 

colored complex. This complex is then photometrically measured at 570 nm and 880 nm 

for turbidity compensation; the measurement takes between 15 to 60 seconds, depending 

on the haemoglobin concentration. HemoCue 201 and EKF Hemo Control are shown in 

Figures 2.1 and 2.2 respectively [2]. It is quick and gives immediate result. The use of 

disposable cuvette makes it expensive. 

 

Figure 2.1 : HemoCue 201[3]. 

 

 

 

 

 

 

 

 

Figure 2.2: Hemo Control [2]. 
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2.1.3 Reagent-Less method 

HemoCue301 was the first POC device to have reagent-based cuvettes as shown in 

Figure 2.3. This device measures the absorbance of oxyhaemoglobin and 

deoxyhaemoglobin, while the turbidity is measured and compensated at 880 nm. The 

DiaSpect technology measures haemoglobin concentration without a reagent. The optical 

sensor element calculates the absorbance of the blood for a wide wavelength range [4].  

 

 

Figure 2.3: HemoCue 301[5]. 

 

2.1.4 Copper sulphate method 

To ensure a certain haemoglobin level for blood donation, the copper sulphate 

method is utilized, which is based on the haemoglobin dependent gravity of blood. A 

blood droplet is allowed to fall into a copper sulphate solution with a specific gravity equal 

to blood having a cut-off haemoglobin level of 12.5 g/dL as shown in Figure 2.4. The 

donor qualifies if the drop of blood sinks to the bottom in a reasonable length of time. The 

donor is rejected if the drop of blood floats or takes too long to sink [6]. 

 

 

Figure 2.4: Specific gravity method [7]. 
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2.1.5 Sahli's method 

The haemoglobin meter is a device that has a haemoglobin tube, pipette, stirrer, 

and comparator as shown in Figure 2.5. Haemoglobin is converted to acid hematin using 

hydrochloric acid. This solution is then diluted until the colour matches the comparator 

block. The clinician utilizes the calibration tube to calculate the haemoglobin 

concentration. This method is simple, inexpensive and the results are not always precise. 

The produced colour is unstable, and it must be read after 10 minutes of standing. The 

other disadvantages are inter-observer unpredictability [8]. 

 

Figure 2.5: Sahli's method [9]. 

 

2.1.6 Hematology Analyzer 

This is an automatic analyzer to provide high throughput to analyze haemoglobin 

levels from the blood sample as shown in Figure 2.6. This method has a higher precision 

value when compared with manual methods. The initial cost of setting up is high and it 

may not be suitable outside a laboratory environment. Also, regular maintenance and 

laboratory personnel are needed which increases the costs. In most instances, the sample 

needs to be sent to the laboratory causing longer turn-around times for the results [5,10]. 

 

Figure 2.6: 5-part Hematology Analyzer [10]. 
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2.1.7 Blood Gas Analyzer 

Blood gas analyzers (BGAS) analyze a mixture of blood gas, pH, electrolytes, 

metabolite parameters, and haemoglobin from whole blood samples, primarily arterial 

blood. They're typically seen in intensive care units, surgery rooms, delivery wards, and 

emergency rooms. This device is more robust and user-friendly, although it still requires 

maintenance [3,11]. In the clinical environment, BGAs such as the ABL 800 Flex is used 

as shown in Figure 2.7. 

 

Figure 2.7: ABL800 Flex Blood Gas Analyzer [11]. 

 

2.2 Non-Invasive methods 

In the non-invasive method, the tests do not require puncturing the skin. This 

technique offers several advantages such as avoiding finger pricking, no pain, and 

discomfort, as well no exposure to medical staff, and no biomedical waste. 

 

2.2.1 Histogram-based image processing 

The blood vessel imaging is based on infrared light absorption. In the reflection 

method, IR LEDs illuminate the target and the reflected light is filtered with an IR filter. 

The image is captured by a charge-coupled device camera. In the transmission method, IR 

light source is located on the opposite side of the target. Many blood constituent evaluation 

initiatives are based on image-based blood research, but most processing algorithms are 

difficult to implement and unable to handle large images. Histogram-based image 

processing has grown popular as a way to speed up image processing since it is simple to 

implement and understand [12, 13]. 
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2.2.2 Smartphone-based non-invasive system 

Smartphone-based non-invasive methods for determining haemoglobin levels have 

recently been used. Because of the visibility of conjunctival mucosa and underlying micro-

vessels, some of these technologies employ images of the lower eyelid. To compute the 

haemoglobin level, eyelid-based images and a colour chart are combined. These 

technologies are currently unreliable for estimating haemoglobin levels. To improve access 

to haemoglobin testing and properly manage patients with hematologic diseases, a 

noninvasive, easy-to-use, and inexpensive assessment of haemoglobin levels is desired. A 

smartphone-based haemoglobin estimate tool may also assess crucial physiological 

parameters to provide a snapshot of a patient's state at home with a haemoglobin issue. In 

smartphone-based, the videos are captured using near-infrared light and are processed 

using image processing techniques and machine learning algorithms to estimate non-

invasive haemoglobin concentration in blood [14].  

 

2.2.3 Impedance Plethysmography 

Impedance plethysmography (IPG) is a method of measuring blood volume 

changes by detecting changes in impedance. The blood volume in the arteries changes 

during the cardiac cycle. The change in blood volume in peripheral tissue can be measured 

by measuring the change in impedance in that tissue [15]. An alternating current is passed 

through a peripheral body part that has been identified, and differential voltage changes 

across it are recorded in IPG. These voltage changes are caused by changes in blood flow.  

 

2.2.4 Optoacoustic 

 Optoacoustic uses short laser pulses which generate optoacoustic waves also 

known as ultrasonic waves in absorbing media. The depth of the signal determines the time 

resolution of the resultant signal, which is detected using an acoustic transducer. When 

compared to light waves, ultrasonic waves scatter and attenuate significantly less in 

tissues. Tissue characterization with submillimeter resolution can be achieved by detecting 

and analyzing the temporal features and amplitude of optoacoustic pressure waves [16]. 
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2.2.5 Diffuse reflectance spectroscopy 

Diffuse reflectance spectroscopy is a non-invasive technique for determining the 

characteristic reflectance spectrum generated when light passes through a substance. 

Absorption and scattering are the primary mechanisms involved, which always vary with 

wavelength to produce the reflectance spectrum, which is recorded and contains 

information about the optical properties and structure of the medium being studied [17]. 

 

2.2.6 Photoplethysmography 

 Photoplethysmography (PPG) is a low-cost, non-invasive optical method that 

measures changes in blood volume in a microvascular bed of tissue [18]. PPG uses 

different light sources to measure the transmission or reflection of light through the 

volume of blood-based on the light absorption characteristics of haemoglobin. It is low 

cost, portable, and easy to use. 

 

Sensors 

Optical sensors are photometric devices that capture an optical signal from an 

external source, which can be an LED, laser, or different spectra of light [19]. Photodiodes, 

which are made of InGaAs and Indium phosphor, are typically utilized as optical sensors. 

Also, there are optical sensors that contain an on-chip trans-amplifier that has a high 

spectral response from 500nm-1600nm. We will discuss several sensors using CMOS, 

CCD, InGaAs sensor, and a specialized PPG sensor which is routinely used for acquiring 

PPG signals. 

 

CMOS sensor 

Complementary Metal Oxide Semiconductor (CMOS) converts photons to 

electrons for digital processing. Photolithography-light-capturing cells in CMOS chips 

capture photons of various wavelengths and convert them to electrons. A digital-to-analog 

converter converts electrons into different-colored pixels [20]. The RGB camera collects 

three spectral images in three separate spectral ranges (600-700 nm, 500-600 nm, and 400-

500 nm) and converts the intensity of red, green, and blue values into optical density 

variations and then used to map skin haemoglobin distribution. 
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CCD sensor 

A CCD is a light-sensitive integrated circuit (IC) in which each pixel is turned into 

a color-related electrical charge. CCDs have a high sensitivity and can produce an image 

even in low-light situations. Even when the illumination level is low, the image quality is 

not significantly affected [21]. 

 

Photodetectors 

Photodetectors are designed to detect photons. The reverse current flows through 

the photodiode when it is sensing light. If the photons excite carriers in a reverse biased 

PN junction, a very small current proportions to the light intensity flows. The sensitivity 

depends on the wavelength of light. Photons are converted to a measurable signal by a 

detector, which is employed in all spectroscopic studies. All the detectors are evaluated in 

terms of spectral response, quantum efficiency, and response time. The range of optical 

wavelengths or frequencies in which a photodetector has a high responsivity is known as 

its spectral response. Silicon photodiodes are used in the UltraViolet and visible regions of 

the spectrum and are not sensitive beyond 1100 nm. Photodiodes made of germanium are 

insensitive to Ultraviolet and can detect wavelengths up to 1800 nm. Responsitivity (Rλ) is 

defined as the ratio of radiant energy (in watts) P, incident on the photodiode to the 

photocurrent output in amperes (Ip). Quantum efficiency is a measure of how much a 

detector can convert photons into an electrical signal. Response time is the time taken by 

the detector output to respond to the changes in the light intensity [22, 23]. 

 

InGaAs photodetector and Si Photodetector 

Indium Gallium Arsenide (InGaAs) is a gallium arsenide-indium arsenide alloy. 

InGaAs is utilized as an infrared light detector in photodiodes. An InGaAs photodiode's 

spectrum response is between 850 nm to 1800 nm [24]. The spectral response of Silicon 

(Si) Photodetector is between 400 nm to 1000 nm. The spectral response for a photodiode 

is amps per watt of incident radiation. The spectral response for several semiconductor 

photodiodes is shown in Figure 2.8. 
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Figure 2.8: Spectral response for several semiconductor photodiodes [23].  

With the rise in new technologies to estimate haemoglobin concentration, non-

invasive methods are widely used. Some of the non-invasive devices use the principle of 

pulse oximetry while others capture the transmitted data using white light and calculate 

haemoglobin concentrations in the tissue capillaries. Recently, non-invasive methods have 

become commercially available using near-infrared spectroscopy to identify the spectral 

pattern of haemoglobin in an underlying blood vessel and derive a measurement of 

haemoglobin concentration. Given the advantage of obsolescence of finger-sticks and the 

option for more frequent measurements in clinical settings, the literature remains unclear 

about the precision and accuracy of the current non-invasive haemoglobin monitors. In 

practical use, patient movement, nail polish, skin color, or ambient light have been shown 

to influence the measurement. Recent technological advancements have made non-

invasive methods for point-of-care anaemia screening a promising new option. These 

methods do not require a blood sample to produce results, reducing the risk of infection 

and eliminating patient pain involved in testing. Non-invasive devices also have an 

inherently different cost structure than invasive methods, since they do not require 

additional material inputs for each test administered. Instead of analyzing blood 

haemoglobin levels directly, noninvasive devices use spectrophotometry to estimate 

haemoglobin concentration based on light intensity. 
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2.2.7 Commercially available haemoglobin meters 

Radical® Device 

Masimo Corporation has developed Radical 7, a non-invasive device, which 

utilizes a sensor with various LEDs in the range of 500 nm to 1400 nm that passes light 

through a fingertip and measures the changes in light absorption during the blood pulsatile 

cycle using a photodetector. The maximum radiant power of the strongest light is rated at 

≤ 25 mW. This can measure haemoglobin in the range of 8 g/dL to 17 g/dL with a 

precision of ±1 g/dL[25].  It estimates the haemoglobin levels in approximately between 

30 to 45 seconds when the finger is placed. 

 

NBM-200  

The NBM 200 works on occlusion spectroscopy technology. It uses a ring-shaped 

sensor probe with LED wavelength range from 600 to 940 nm that fits on the subject's 

finger. The sensor temporarily occludes the blood flow and measures the intensity of 

multiwavelength light passing through the finger which is proportional to haemoglobin 

concentration. The average radiated power is ≤ 1 mW. This can measure haemoglobin in 

the range of 7 to 17 g/dl with a precision of less than 1g/dL [26]. It estimates the 

haemoglobin levels in approximately between 90 to 120 seconds when the finger is placed. 

 

ASTRIM FIT 

The ASTRIM FIT uses the principle of the Near-infrared spectroscopic image 

measurement method. Red or near-infrared light easily passes through the living body, and 

the transmitted light is detected using a CMOS camera located on the opposite side of the 

LED. The density of the blood vessel image obtained from the transmission image is 

determined by the degree of dimming of the blood, that is, the amount of haemoglobin in 

the blood. Astrim calculates the haemoglobin estimate per unit area based on the blood 

vessel image from multiple wavelength light sources and the blood vessel width. It 

estimates the haemoglobin levels in approximately 40 seconds when the finger is placed 

[27].  
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Haemospect® 

The Haemospect® device (MBR Optical systems, Wuppertal, Germany) uses 

transcutaneous reflection spectroscopy to measure haemoglobin levels. The Haemospect 

works by placing a sensor on the palm side of the dominant hand immediately below the 

index finger, and as subsequent measurements are often necessary to obtain a reading, a 

second measurement can be taken by placing the sensor on the forearm of the same arm. 

The sensor projects white light into the underlying tissue, and some of this light is 

absorbed while the rest is reflected in the device to be broken down into separate 

wavelengths by a spectrometer and analyzed by an electronic evaluation unit connected to 

the system [28]. It estimates the haemoglobin levels in approximately between 20 to 30 

seconds when the finger is placed. 

 

ToucHb 

ToucHb (Biosense, Irvine, California) is a non-invasive device that works on 

reflectance photometry. Instead of analyzing different wavelengths of light, it assesses 

overall light intensity as a way to quantitatively measure pallor and estimate haemoglobin 

concentration in the blood. This device captures an image of the patient’s exposed 

conjunctiva, which is then used to measure pallor and predict blood haemoglobin 

concentration in grams per deciliter [29]. 

 

Figure 2.9: Commercially available non-invasive haemoglobin meters. 

 

Apart from commercially available non-invasive devices as shown in Figure 2.9, 

several researchers are working to improve the prediction accuracy level. Edwards et al. 

[30] used NIRS to establish a non-invasive way of detecting haemoglobin flow across an 

organ. They assessed changes in deoxyhemoglobin and oxyhemoglobin concentrations by 

monitoring fluctuations in near-infrared light absorption in the organ. They captured the 
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spectral response using laser diodes with wavelengths of 797.5, 802.5, 831.2, 848.7, 866.5, 

and 907.8 nm in the forearms of six healthy young adults to assess haemoglobin flow 

using least-squares linear regression. R. Kumar et al. [31] worked on photons at two 

wavelengths (741 nm & 810 nm) which were pumped into the skin of the finger and the 

transmitted photons were received at a photodetector which is calibrated in terms of 

haemoglobin content in the blood. For each sample, the haemoglobin level was measured 

using a cyan-methemoglobin method and stored in the system. R. Doshi et al. [32] 

developed a device with two wavelengths 660 nm and 940 nm along with OPT101 to 

detect light transmitted through the subject's finger. The sensor probe was tested on 60 

subjects from different age groups and it was observed that the AC signal was proportional 

to haemoglobin measure using a conventional method. Nirupa et al. [33] acquired PPG 

signals by illuminating the finger with monochromatic light at two different wavelengths 

(624 nm and 850 nm). To determine haemoglobin content in blood, an empirical equation 

was created utilizing a model for light attenuation via skin, bone, tissue, and blood, well-

known extinction coefficients of haemoglobin, and clinical data. Two different empirical 

equations (one for the male population and the other for the female population) were 

implemented and the errors in the estimated haemoglobin concentration were reduced 

compared to having just one empirical equation that combines both genders for 69 

subjects. Rochmanto et al. [34] developed non-invasive hemoglobin for anaemia diagnosis 

with spectroscopy methods with two LEDs at the wavelength of 670 nm and 940 nm and a 

photodiode to detect the transmitted light through the finger for 78 subjects of pregnant 

women. M.P. Mcewen et al. [35] used multiple wavelengths of high-power light sources 

with a focusing lens and two photo-detectors (BPW34B- 470 nm & PT611- 1200 nm) in 

conjunction with noise cancellation techniques to estimate haemoglobin. X. Li et al. [36], 

utilized spectroscopy methods for non-invasive haemoglobin measurement using eight 

laser diodes in the wavelength range from 600 nm to 1100 nm to record PPG signals in 

220 subjects. However, their instrument setup was not portable for the non-invasive 

measurement of haemoglobin. Timm et al. [37] developed an optical-based sensor system 

with three LEDs (670 nm, 810 nm, and 1300 nm) and a single photodetector (InGaAs) to 

measure the intensity of the received wavelength. Later, it was processed using LabVIEW 

with an empirically derived partial least squares (PLS) calibration and statistical regression 

of the measurements to estimate the haemoglobin concentration. Ding et al. [38] developed 

a high-performance spectrophotometric system with a broadband light source consisting of 

9 LEDs (600 to 1050 nm) with a grating spectrograph and Si photodiode array and 
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recorded the finger tip spectra of 109 volunteers. Konyukhov et al. [39] designed a finger 

probe to acquire PPG signal (LASER diodes with four wavelengths of 658 nm, 776 nm, 

974 nm, and 1348 nm) to estimated haemoglobin level using computer-based software. 

Ulrich Timm et al. [40] developed a photometric device OxyTrue Hb® with four 

wavelength in the range of 600 nm to 1400 nm to measure the haemoglobin and 

methemoglobin concentration non-invasively and compared with the reference devices 

HemoCue® and a blood gas analyzer with 1008 measurements. H. Liu et al. [41] 

developed a system for non-invasive monitoring of haemoglobin concentration using eight 

LEDs in the wavelength range from 610 to 940 nm with a photodiode array. The system 

was a portable, continuous, and non-invasive haemoglobin monitoring system but utilized 

a lot of resources and power. With the advancement in technology, several non-invasive 

methods like transmission spectroscopy, reflection spectroscopy, imaging, video, and 

optoacoustic spectroscopy have been proposed for the estimation of concentration in 

blood.  

 

In our study, Optical Photoplethysmography (PPG) method is used which is low-

cost, easy to use, and portable is used for non-invasive estimation of haemoglobin. The 

finger probe was designed with Multichip LED's with 5 wavelengths and a photodetector 

to acquire good quality PPG signals and to implement preprocessing and quality 

assessment of the PPG signal to extract the main features of the PPG signal. The entire 

system was designed on an Altera NIOS II soft-core system to customize the core as per 

our requirements by minimizing the resources thereby decreasing power consumption. 

And also, to improve the prediction accuracy of estimating total haemoglobin present in 

blood with an error of less than 1g/dL. And finally to make the designed system portable 

and inexpensive.  
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Chapter 3  

Haemoglobin Estimation using 

Photoplethysmography 

 

Spectroscopic measurements are mainly performed using three methods viz. 

Absorption, Scattering, and Emission.  Scattering spectroscopy, e.g. Raman spectroscopy, 

analyses the quantity of light that a substance scatters at specific wavelengths, incidence 

angles, and polarisation angles in order to determine physical electromagnetic 

characteristics. Emission spectroscopy examines the light spectra emitted by a substance, 

whose energy is from a variety of sources such as temperature or chemical processes. 

Absorption spectroscopy uses the detection of transmitted or reflected photons with the 

same wavelength as the incident beam to quantify the quantities of compounds.  

 

3.1 Optical properties of human tissue and blood 

Light can penetrate deep enough into human tissues to permit spectral 

measurements. Optical imaging and non-invasive diagnosis of the human body depend 

largely on the optical and physical properties of the skin and blood. The skin's composition 

and morphology are extremely complex. Consequently, the composition and structure of 

the skin (finger) need to be investigated in order to build a suitable optical model. 

 

3.1.1 Structure and composition of skin tissue 

Various areas of the body have different skin structures and qualities. Figure 3.1 

depicts the typical structure of the skin. The skin can be divided into three parts viz. 

epidermis, dermis, and subcutaneous fat. The thickness of the skin varies from 0.5 to 4.0 

mm depending on the body site. The epidermis is made up of epithelial tissue, which 

comprises four major cell types: keratinocytes, melanocytes, Merkel cells and Langerhans 

cells. Keratinocytes create the protein keratin which protects the skin from heat, infections, 

and chemicals. Melanocytes are the pigment cells responsible for skin colour.  They also 

protect the skin from UV rays. The Merkel cells act as touch sensors while Langerhans 

cells deal with immunological response. The stratum corneum is a thin, rough, and 
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protective top layer of dead and dry skin cells that covers the epidermis outermost layer. 

The dermis is made of cells, fibres, nerves, oil glands, sweat glands, blood vessels, and 

hair roots. The vascular network and sensory nerve endings are found in the papillary 

dermis, whereas the deeper reticular dermis is mostly made up of a loose connective 

structure and epithelial-derived structures like glands and follicles. Fat cells form 

subcutaneous fat, which acts as a cushion between the skin and the deeper muscles[1]. 

 

Figure 3.1: Structure of human skin [2]. 

 

Among the various possible body sites, the fingertip has several advantages. 

Fingertips are easily accessible, less sensitive to minor manipulations, and generally easy 

to control. In Figure 3.2, the different parts of a finger are depicted. The average adult 

male's fingernail is around 1 mm thick, the epidermis is 1.5 mm thick, the dermis is 3 mm 

thick, the finger bone is 6 mm thick, and the entire thickness of a finger from the dorsal to 

the ventral pad side is about 14 mm thick. The fingernail is made up of a translucent rigid 

protein called keratin [3]. 

 

Figure 3.2: Different parts of the finger and it's thickness. 
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3.1.2. Optical absorption by skin tissue and blood 

VIS-NIR spectroscopy uses the visible and near-IR regions of the electromagnetic 

spectrum. Melanin, lipids, proteins, and enzymes are among the chromophores found in 

tissues, in addition to haemoglobin and water. The varying concentrations of these 

essential components influence the tissue's overall absorption coefficient. The properties of 

VIS-NIR absorption change depending on the tissue constituents. Tissue is mostly made 

up of water, which absorbs light extremely well in the ultraviolet and long infrared 

wavelengths. Longer wavelengths in the visible and near-infrared regions may penetrate 

biological soft tissues rather deeply. Most of the biological soft tissues have low light 

absorption characteristics in the VIS-NIR spectral regions. This region is termed as optical 

window or therapeutic window and ranges from 600 nm to 1100 nm[4].Water and 

haemoglobin contained in the RBCs are the principal absorbers in the blood. There are 

various forms of haemoglobin such as methaemoglobin, carboxyhaemoglobin, 

deoxyhaemoglobin, and oxyhaemoglobin of which oxy and deoxyhaemoglobin are found 

in major concentrations. The absorption of oxyhaemoglobin (Hb) and deoxyhaemoglobin 

(HbO2) associated with blood volume variations in peripheral and capillary arterial arteries 

is generally used in the estimation of illumination wavelength of PPG. Specifically, the 

light associated with particular wavelengths of skin having many peripheral blood arteries 

is preferred to illumination associated with surface skin layers with no arterial blood [5]. 

Figure 3.3 shows the extinction coefficient of haemoglobin species for a total haemoglobin 

concentration of 15 g/dL [6]. 

 

Figure 3.3: Extinction coefficient for two species of haemoglobin [6]. 
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Figure 3.4 shows an optical window of the human tissue wherein the shorter 

wavelengths from 200 nm to 500 nm are significantly absorbed by melanin while water 

becomes dominant at wavelengths longer than 1,150 nm [7]. Fair skin possesses less 

melanin and a thinner dermis, allowing NIR radiation to penetrate deeper into human 

tissue as compared to dark skin that has more melanin and a thicker dermis. Water, in the 

surface layers of the skin, absorbs wavelengths between 1400 and 1500 nm, as well as 

wavelengths over 1850 nm, thereby causing heating and potentially painful sensations and 

burns[8]. 

VIS-NIR spectroscopy has several advantages which include reduced background 

interference due to water absorption, insignificant skin absorbance, and larger penetration 

depths at longer wavelengths, all of which are important for blood haemoglobin 

monitoring. Table 3.1  depicts the wavelengths of optical light that penetrate to a certain 

depth. 

 

 

Figure 3.4: Skin tissue spectral window [7]. 

 

Table 3.1: Approximate penetration depth of optical radiation in skin tissue [3]. 

Wavelength (nm) 500 600 700 800 1000 1200 

Depth (µm) 230 550 750 1200 1600 2200 
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Photoplethysmography (PPG) signal quality may be affected by pigments in 

different human skin types, and physiological measures may be invalidated as a result. The 

melanin content of skin and its associated pigments of skin types are attributable to the 

quality of PPG-based in vivo physiological monitoring [9]. As a result, incoming light with 

relevant wavelength illuminations is known to be substantially attenuated by melanin in 

human skin [10]. Furthermore, modeling and simulations have been carried out with 

inaccuracies owing to different pigments [11,12]. Measurement inaccuracies could be 

caused by ink on the skin or nail polish [13]. Melanin is responsible for a wide range of 

skin colour complexions and is solely necessary for skin colour. In skin categorization, the 

Von Luschan chromatic scale (VLCS) and the Fitzpatrick scale (FPS) are now used. VLCS 

[14] is often used to create racial categories for populations based on skin colour. FPS 

distinguishes several separate skin tones that typically come under white, or Caucasian, 

and does not provide an adequate difference on the darker side of the human skin colour 

gradient [15, 16]. Therefore, VLCS was utilized in the present study in order to better 

depict the true diversity of skin tones within various ethnic groups of people. Table 3.2 

lists the most common skin types and their corresponding regions. 

 

Table 3.2: Human skin types and associated region [14]. 

Type Color/Description VLCS Area 

I & II Light/White 1-10 Europe 

III Medium, white to light brown 11-15 Asia 

IV Olive, moderate brown 16-21 Middle East 

V Brown, dark brown 22-28 Africa 

 

 

 

 

 

 

 

 

 

 



32 
 

 
 

3.2. PhotoPlethsmography 

Photoplethysmography (PPG) is a low-cost, non-invasive optical method that 

measures changes in blood volume in a microvascular bed of tissue. The basic components 

of a PPG device are a light source and a photodetector. The light source should have a very 

narrow bandwidth and be as stable as possible at different temperatures, both in terms of 

average intensity and peak wavelength shift. It should also be small, have a long 

operational life, and be mechanically strong and dependable. The intensity should be 

strong enough to provide a meaningful signal while being low enough to avoid overheating 

the tissue. Light energy is converted into electrical energy by the photodetector which 

should be small, quick to respond, and sensitive to the wavelength produced by the LED. 

After the photodetector has detected the light, the signal is usually amplified and filtered 

using low-noise electrical circuitry[17]. PPG uses different light sources to measure the 

transmission or reflection of light through the blood volume based on the light absorption 

characteristics of haemoglobin. The most common PPG sensors utilize an IR-LED or red 

LED as the main light source. IR-LEDs and Red LED are most commonly used for 

measuring the flow of blood that is more deeply concentrated in certain parts of the body. 

PPG can operate in two modes: transmission and reflection, as illustrated in Figure 3.5. 

The photodetector and LED are on opposing sides of the tissue in transmission mode, and 

light is passed through it. The photodetector and LED are on the same side of the tissue in 

reflection mode, and the detected signal originates from backscattered light. The site of 

measurement is limited in transmission mode since the tissue has to be thin enough to 

transmit a detectable amount of light, whereas reflection mode measurements can be sited 

anywhere on the body [18]. In our approach, we will be using the transmission PPG 

principle to estimate total haemoglobin in the blood. 

 

 

Figure 3.5: Two modes of PPG: transmission mode (left) and reflection mode (right). 
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3.2.1 Factors affecting PPG recordings 

The measurement site (i.e. probe attachment site), the contact force, subject posture 

as well as respiration, all have an impact on PPG recordings. Some of these aspects are 

briefly discussed in the nextsection. 

 

Measurement site of probe 

The placement of the LED and Photodetector has a significant impact on signal 

quality. To optimize sensor performance, suitable measurement locations must be located. 

PPG sensors are commonly worn on the fingers due to the high signal amplitude that can 

be achieved in comparison with other sites [19]. Different measuring sites for PPG sensors 

have been intensively investigated in recent years, including the ring finger [20], wrist [21, 

22], and earlobe [23-25]. The finger, earlobe, and forehead are routinely used in 

commercial clinical PPG sensors [26]. The perfusion values of 52 anatomical sites in 

healthy people revealed that the fingers, palm, face, and ears have significantly greater 

perfusion values as compared to other measurement sites [27], with the transmitted PPG 

signal amplitude from the earlobe having the highest perfusion value but has lesser 

variations in blood compared to the fingers. 

 

Probe contact force 

The contact force between the sensor and the measurement site may influence the 

PPG signal waveform. Depending on the PPG probe contact pressure, the waveform of the 

acquired PPG signal varies. The PPG waveform has been related to arterial stiffness and 

vascular reactivity in several investigations. According to various studies, the PPG signal 

can be improved by applying mild pressure on the sensor. Transmural pressure, defined as 

the differential in pressure between the interior and outside of a blood artery, is ideal for 

obtaining the best PPG signal (i.e., the pressure across the wall of the blood vessel). Also, 

insufficient pressure leads to inadequate contact and produces low AC signal amplitude. 

However, when the PPG signal is acquired with excessive pressure, the flow of blood is 

occluded and it produces low AC signal amplitude and distorted waveforms [18]. 

Therefore, subjects need to be requested to place their right-hand forefinger with slight 

pressure inside the finger probe in order to acquire good quality PPG signals. 
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3.2.2  PPG waveform 

The light traveling through the biological tissue (e.g., the finger) is absorbed by 

different absorbing substances. The primary absorbers of light in the region from 600 to 

1000 nm are arterial and venous blood and skin pigmentation.  The measured PPG signal 

has two components: one alternating current (AC) and one direct current (DC). Because 

the AC component is dependent on pulsatile blood flow, it varies at the same rate as the 

pulse. The AC component may be used to assess blood perfusion asit is directly related to 

pulsatile blood. The DC component is quasi-constant, and it refers to the tissue's 

composition such as epidermis and skin other than pulsatile blood. Due to breathing, 

thermoregulation, and sympathetic nervous system activity, the DC component is not 

completely constant [28]. During the systolic cycle, the arteries increase in diameter and 

the volume of blood increases. During the diastolic cycle, the arteries decrease in diameter 

and the volume of blood also decreases. This change in volume of blood results in change 

of absorption of light in the tissues which produces time-varying transmitted signal called 

as Photoplethysmography signal. Figure 3.6 shows the variation in light attenuation by 

tissue. The intensity of light is attenuated as it passes through the finger due to the 

absorbance depending on the concentration of absorbers and optical path length of the 

medium according to the Beer-Lambert law which is discussed in detail in the next section. 

 

Figure 3.6: Variation in light attenuation by tissue and features of PPG signal. 
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PPG features  

Any normal PPG signal consists of a systolic phase followed by a diastolic phase, 

both of which are separated by a dicrotic notch. In a typical PPG signal, the region from A 

to B point is the fast beating phase, and the region from B to C point is the delaying phase. 

B is the peak point of the PPG signal. At this point, the blood pressure has its maximum 

value in the entire period called the systolic peak. Another peak at point D is the artiole's 

dicrotic wave also known as the diastolic peak. The C point is called a dicrotic notch 

(small downward deflection). The shape and depth of the notch greatly vary from person to 

person depending upon his/her medical condition. In some cases, no deflection is seen 

while in some the deflection is significant and in varying contours. Thus the classification 

of notches could give us useful information about the condition of the patient. In pulse 

waveform analysis, Dawber et al. [29] defined four classes for the PPG signals as shown in 

Figure 3.7.  

Class 1: A normal PPG signal with a prominent dicrotic notch. 

Class 2: A PPG signal with no distinct dicrotic notch, but the downward slope becomes   

              horizontal. 

Class 3: A PPG signal with no obvious dicrotic notch, but a well-defined change in  

              the angle of descent. 

Class 4: A PPG signal with no evidence of a dicrotic notch. 

 

Figure 3.7: PPG classes as defined by Dawber et al. [29]. 

 

During the feature extraction from the PPG signal, time-domain features were 

extracted from the PPG signal after the pre-processing. Multiple features from the PPG 

signal including the systolic peak, diastolic peak, valley, rising time of PPG, falling  time 

of  PPG, etc are present [30] as shown in Figure 3.6. 
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Systolic peak (B): This is a measurement of arterial blood flow-induced pulsatile 

variations in blood volume. 

Diastolic peak (D): The diastolic peak is observed as a result of pressure wave reflections 

in the lower body's arteries. 

Valley (A): This is a measurement of the non-pulsatile changes in blood volume. 

Dicrotic notch (C): This is a slight downward deflection in the PPG cycle between the 

systolic and diastolic points. 

Pulse Interval: The distance between the beginning and end of the PPG waveform. 

 

In our approach, we have used only two features of the PPG signal (Systolic peak and 

Valley) to estimate total haemoglobin in the blood in a non-invasive manner.  This will be 

discussed in Chapter 6. 

 

3.3 Beer-Lamberts law 

Non-invasive haemoglobin measurement is based on the concepts of Beer-Lambert 

law which states that the attenuation of incident light (I0) crossing a material is a function 

of the absorbing properties as shown in Figure 3.8 [31]. When an incident beam (I0) enters 

the sample, the intensity of transmitted light (I) decreases exponentially as shown in 

Equation 3.1. 

                  𝐼 = 𝐼𝑂𝑒−𝜀𝜆.𝐶.𝐿                       (3.1) 

where: 

I ----->  intensity of transmission light 

I0 ----->  intensity of incident light 

ε -----> Molar extinction coefficient of the substance at a specific wavelength, mol-1 cm-1 

c ----->  concentration of absorbent, mol 

L-----> optical path length in the medium, cm 

The transmittance (T) of light passing through a medium containing an absorbing 

substance is the ratio of transmitted light (I) to the incident light (I0), and absorbance is the 

negative natural logarithm of the transmittance, as shown in Equation 3.2 [31]. 

                                                    𝐴 = −𝑙𝑜𝑔 𝑇 = −𝑙𝑜𝑔
𝐼

𝐼𝑂
= 𝜀𝜆. 𝐶. 𝐿   (3.2) 

where: 

A ---->absorbance, (absorbance unit) 

T----> transmittance 
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Figure 3.8: Beer-Lambert law. 

 

When the finger is placed between the source and photodetector, it absorbs the 

light emitted by the LED source depending on its characteristics (tissue and blood). The 

transmitted light is measured by the photodetector and is recorded as a PPG signal. Beer-

law Lambert's can also be used to compute the absorbance of a certain blood component at 

a specific wavelength using Equation 3.1 

The total absorbance for n different components is represented as Equation 3.3. 

     A= Σ €(n)c(n)L          (3.3) 

where €(n)= molar extinction coefficient of n
th

 solute, c(n)=concentration of n
th

 solute in 

the solution.  

Thus, the concentration of the solute can be easily computed by knowing the values of 

path length L, absorbance A, and molar extinction coefficient € at a particular wavelength 

λ. 

Absorbance is an additive function →Absorbance of a mixture is a sum of the 

absorbance’s of the components:𝐴 = εX[X]L + εY[Y]L + εZ[Z]L where [X], [Y], [Z] are 

unknowns concentrations. Hence, we use different wavelengths to get different equations 

with different unknowns, which are the concentrations of haemoglobin like 

oxyhaemoglobin, and deoxyhaemoglobin. These equations can be solved to obtain the 

concentrations of these components [32]. 
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3.4 Health parameters obtained from PPG signal  

Heart Rate from PPG signal 

Heart rate is the number of heartbeats in a minute. To calculate, Heart rate from the 

typical PPG signal shown in Figure 3.9, the time interval between adjacent peaks of the 

PPG signal is determined using Equation 3.4[33]. 

 

                                                         PPav =
PP1+PP2+PP3

3
                     (3.4) 

where PPav is an average of three PPG intervals between successive peaks of the PPG 

signal and heart rate is calculated using Equation 3.5. 

                                                                    𝐻𝑒𝑎𝑟𝑡_𝑅𝑎𝑡𝑒 = 60 ∗
1

PPav
         (3.5) 

 

Figure 3.9: Typical PPG signal. 

 

Heart Rate Variability from PPG signal 

Heart Rate Variability (HRV) is an important parameter for the analysis of a 

patient’s physiological conditions, as well as a method aiding the diagnosis of 

cardiopathies [34]. The analysis of HRV signals is important when studying the autonomic 

nervous system, as it supports the evaluation of the balance between the sympathetic and 

parasympathetic influences in the cardiac rhythm [35]. The HRV is a valuable vital signal, 

which reflects the physical condition of a patient [36]. An abnormal value between 

heartbeats is one of the first indicators of the existence of an anomaly in the patient’s 

health. It can reveal diverse conditions, such as respiratory and cardiac arrest, systemic 

inflammatory response syndrome, renal insufficiency, cardiac insufficiency, systolic 
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arterial pressure, among others [37]. The changes in time intervals between adjacent 

heartbeats is simply the HRV. To calculate HRV from sample PPG Signal. Root Mean 

Square of Successive Differences (RMSSD) between normal heartbeats is found by first 

calculating the time difference between each successive heartbeats [38]. Then, all these 

values are squared and the average of the result is taken before taking the square root using 

Equation 3.6.  

 

    𝐻𝑅𝑉 = √(PP2−PP1)2+(PP3−PP2)
2+(PP4−PP3)2

3
                    (3.6) 

The HRV value is calculated in terms of milliseconds. 

Oxygen Saturation from PPG signal  

The normalization technique is used where AC component is divided by the DC 

component. To calculate SpO2, the AC and DC values of the pulsating RED (670 nm) and 

IR (950 nm) PPG are extracted and the ratio R is found. The Ratio of ratios ‘R’ is 

approximated in Equation 3.7 which is used to eliminate the time invariant absorbance due 

to the venous blood and surrounding tissues.   

                                                                   𝑅 =
𝐴𝐶670/𝐷𝐶670

𝐴𝐶950/𝐷𝐶950
                 (3.7) 

SpO2 is computed based on the empirical calibration of the Ratio of ratios for the specific 

device using Equation 3.8 [39].  

     SpO2% = 115 – (15 × R)            (3.8) 

 

Total Haemoglobin Estimation, from PPG Signal using an empirical formula 

The change in optical density or change in absorbance is calculated using Equation 

3.9. 

∆[𝐴𝜆] = −𝑙𝑜𝑔 [
𝐴𝐶𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑃𝑃𝐺

𝐷𝐶𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑃𝑃𝐺
] = {𝜀𝐻𝑏𝜆(∆[𝐻𝑏]) + 𝜀𝐻𝑏𝑂2

𝜆(∆[𝐻𝑏𝑂2])𝐿}      (3.9) 

ΔAλ----->represents a change in absorbance for a PPG signal at a specific wavelength. 

𝜀𝐻𝑏𝜆 𝑎𝑛𝑑  𝜀𝐻𝑏𝑂2
𝜆 --> Molar extinction coefficient for deoxyhaemoglobin & 

oxyhaemoglobin  at a specific wavelength.  

ΔHb and  ΔHbO2  -->Change in concentration of deoxyhaemoglobin and oxyhaemoglobin  

in moles per liter. 

L----->is the length of the light path through the finger. 
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where the AC Component of the PPG signal is the difference between the maximum and 

minimum of the PPG signal and the DC component of the PPG signal is the minimum of 

the PPG signal [40].  

[
∆[𝐻𝑏]

∆[𝐻𝑏𝑂2]
] =

[
 
 
 
 
∆[𝐴670]
∆[𝐴770]
∆[𝐴810]
∆[𝐴850]
∆[𝐴950]]

 
 
 
 

×

[
 
 
 
 
 
𝜀𝐻𝑏670𝜀𝐻𝑏𝑂2

670

𝜀𝐻𝑏770𝜀𝐻𝑏𝑂2
770

𝜀𝐻𝑏810𝜀𝐻𝑏𝑂2
810

𝜀𝐻𝑏850𝜀𝐻𝑏𝑂2
850

𝜀𝐻𝑏950𝜀𝐻𝑏𝑂2
950]

 
 
 
 
 
−1

× [𝐿]−1    (3.10) 

The concentrations of oxyhaemoglobin and deoxyhaemoglobin were calculated 

using the absorbances along with the well-known molar extinction coefficients of 

oxyhaemoglobin and deoxyhaemoglobin using Equation 3.10. The total haemoglobin is 

calculated by adding the concentrations of oxyhaemoglobin and deoxyhaemoglobin. 

 

                                         ∆[𝐻𝑏]𝑡𝑜𝑡𝑎𝑙 = (∆[𝐻𝑏] + ∆[𝐻𝑏𝑂2]) × 64500  
(3.11) 

 

Equation 3.11 indicates the concentration of total haemoglobin in g/dL where 64500 is the 

molecular mass of haemoglobin. 

 

Also, blood pressure and cardiovascular diseases can be estimated from the PPG 

signal with good processing algorithms. The entire algorithm for extracting PPG features 

and estimating total haemoglobin using a suitable empirical formula and with Multivariate 

(PLSR) model is implemented using C++, which is explained in Chapter 6. 
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Chapter 4  

Hardware System Designed 

 

4.1 Objectives 

In this chapter, we discuss the objectives of the present research, problem 

statement, and solution. As stated earlier, the haemoglobin tests performed by a 

pathological laboratory are not feasible for patients who need to continually monitor their 

haemoglobin levels, since there is pain and discomfort associated with the blood sample 

withdrawal, the possibility of infection, and the recurring cost. This calls for the design and 

implementation of a non-invasive solution. 

 

In the present study, our aim is to design an accurate device for the measurement of 

total haemoglobin through the development of a Novel Soft-core Embedded Architecture 

on the Altera FPGA platform.  Briefly, our objectives may be stated as follows: 

 To design a finger probe with multiple LEDs (5 or 6 wavelengths) and a single 

photodetector with high efficacy.  

 To implement signal conditioning and interfacing the ADC to the FPGA. 

 To design digital filters to remove noise and moving artifacts from the PPG signal. 

 To develop a Multivariate regression algorithm in FPGA to detect total haemoglobin 

present in the blood using different wavelengths of light. 

 To achieve RMSE of less than 1 g/dL. 

 

4.2 Selection of LED wavelengths for haemoglobin   

         estimation 

Light absorbance captured by a photodetector is affected by the volume of blood, 

blood vessel wall movement, and the orientation of RBC [1]. Since blood absorbs more 

light as compared to tissue, the intensity of the absorbed light can be used to estimate a 

change in blood volume. Skin melanin and fat have significant responses with the shorter 

wavelengths of light [2]. According to research studies [3, 4], shorter wavelengths of light, 

such as blue and green, can only penetrate up to the capillary bed, while yellow light can
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only penetrate up to the arterioles in the dermis, and further, longer wavelengths, such as 

red and near-infrared, can easily penetrate more deeply into the skin and reach the arteries 

in the tissue. According to the research findings, both haemoglobin species exhibit high 

absorption between 650 and 1000nm, and the oxyhemoglobin and deoxyhaemoglobin have 

a significant molar extinction coefficient difference. In the wavelength range from 600nm 

to 950nm, the wavelengths have been found to possess greater penetration power with low 

attenuation coefficients. According to literature [5], deoxyhemoglobin blood was absorbed 

more in the wavelength range of 600 to 800 nm, whereas oxyhemoglobin blood was 

absorbed more in the wavelength range of 820 to 1000 nm. The isosbestic point was 

located at 810 nm where deoxy and oxyhemoglobin absorption coefficients are the same. 

The experimental observation was carried out in the laboratory to obtain the spectra of 

blood. Here, the blood samples were diluted using double distilled water and the 

absorbance was measured using UV-VIS spectroscopy (Evolution 201). It was observed 

the spectra of the blood matched as per literature. For the present study, we chose 

wavelengths in such a way that one wavelength is between 900 nm and 1000 nm, with 

significant absorption for both oxy and deoxyhemoglobin; herein, that wavelength was 950 

nm. The second wavelength was chosen at 670 nm, which is the valley of oxyhemoglobin. 

The third wavelength, 810 nm, was chosen as the point of interception (Isosbestic) of oxy- 

and deoxyhemoglobin. The other two wavelengths, 770 nm, and 850 nm were chosen on 

each side of the interception with a significant difference in absorption between 

oxyhemoglobin and deoxyhemoglobin [6]. However, depending on the availability of 

high-quality LED sources in this region, the wavelength selection can be slightly changed. 

 

Figure 4.1: Molar extinction coefficient of haemoglobin species at five LED 

wavelengths. 
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4.3 Finger Probe Design 

4.3.1 Excitation sources and detector 

Sources  

 In this design, Multichip LEDs (MTMD6788594SMT6) and OPT101 (Photo 

detector with inbuilt trans-impedance amplifier) were used. The Multichip LEDs have all 

five sources in a small densely packaged area and the power radiated from the five LEDs 

is around 5 mW as shown in Table 4.1.  

 

Table 4.1: Power of Multichip LEDs [7] 

LED Wavelengths 

(nm) 

Forward current 

(mA) 

Forward voltage 

(V) 

Power Output 

(mW) 

670 

770 

810 

850 

950 

20 

20 

20 

20 

20 

1.8 

1.65 

1.50 

1.45 

1.25 

5.2 

6.3 

5.2 

4.7 

7.6 

 

Detector 

OPT101 operates on low power single supply voltage with a dark current of 120 

μA. OPT101 is an integrated combination of a photodiode and trans-impedance amplifier 

on a single chip as shown in Figure 4.2. This eliminates the problem of leakage current  

errors and noise pick up. The inbuilt trans-impedance amplifier is used to convert the 

photocurrent into voltage with a gain (10
6
). Also, it has a high responsivity in the 

wavelength range from 600 nm to 1000 nm as shown in Figure 4.3. 

 

Figure 4.2: Internal Diagram of OPT101[8] . 
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Figure 4.3: Spectral responsivity of OPT101[8]. 

 

The Multichip LEDs and OPT101 were fabricated on the PCB as shown in Figure 4.4. 

The two components were chosen owing to their compact size, lower space requirement, 

and low dark current across the OPT101 when the finger is placed inside the finger probe.  

 

Figure 4.4: PCB fabricated with Multichip LEDs and OPT101.  

 

In the next section, we discuss the importance of standardizing LED power and the 

steps involved in ensuring this. 

 

4.4 Process of LEDs power standardization 

The first step is to verify the wavelengths of the Multichip LEDs and it was done 

using (a) Ocean Optics USB 2000+ UV- VIS Spectrometer for the wavelengths from 670 

to 850 nm and (b) Ocean NIR Quest Spectrometer for 950 nm and the Multichip LED 

were placed in front of the spectrometer. The USB2000 Spectrometer was connected to a 

laptop via a USB port and drew power it. Ocean Optics fiber optic spectrometer systems 

consist of low-cost, modular data acquisition components. The screenshot of Spectrasuite 

for Ocean Optics USB2000 is shown in Figure 4.5. 
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Figure 4.5: Screenshot of Spectrasuite for Ocean Optics USB2000. 

 

The peak wavelength of all the five LEDs was observed on the Ocean Optics 

Spectra Suite as shown in Figure 4.6. A small variation is observed in the measured 

wavelengths of the Multichip LEDs as shown in Table 4.2. 

 

Figure 4.6: Peak wavelength of the Multichip LEDs. 

 

Table 4.2:  Wavelength of the Multichip LEDs (MTMD6788594SMT6) 

Wavelength of LED 

(nm) 

Wavelength 

measured (nm) 

Difference 

(nm) 

670 668.40 1.60 

770 770.09 0.09 

810 810.07 0.07 

850 843.20 6.80 

950 949.56 0.44 
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Figure 4.7:  Molar extinction coefficients vs measured wavelengths of Multichip LEDs. 

 

The measured wavelengths of the Multichip LEDs are shown in Figure 4.7.  A 

small variation has been observed in the measured wavelengths. The power of the 

individual LEDs (MTMD6788594SMT6) was measured using Newport Power Meter 

2936R with a Silicon Detector at a fixed distance of 1.2 cm. Initially, a fixed value of 

resistance (viz. 68Ω) was used and the power of the individual LEDs was measured 

without standardization. These outputs are listed in Table 4.3.  It is observed that the 

power of the individual LEDs differs.  

 

Table 4.3: Without standardized LEDs power 

Wavelength of LED 

(nm) 

LEDs power observed 

(mW) 

670 0.65 

770 0.75 

810 0.67 

850 0.66 

950 0.96 

 

When we recorded the PPG signal with these LEDs, we had to apply a calibration 

factor in the software algorithm which was resulting in a slight error in the estimation of 

haemoglobin. Therefore, we decided to standardize the LED power by maintaining 

constant power of 0.7 mW for the individual LEDs as shown in Figure 4.8. For this, we 

had to adjust the forward current flowing through the LEDs by varying the limiting 

resistance. A fixed resistance value was introduced for each individual LED to maintain 
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constant radiant LED power for a fixed distance. Also, the forward current (in mA) 

flowing through LEDs and voltage drop of each LED were measured using a multimeter. 

The resistors selected to obtain constant power are listed in Table 4.4. 

 

Figure 4.8: Standardization of LEDs power using Newport power meter. 

 

Table 4.4:  Standardized LEDs power. 

Wavelength of 

LEDs 

(nm) 

Current flowing 

through the LED 

(mA) 

Voltage drop 

across the LED 

(VD) 

Limiting resistance 

(Ω) 

670 21.1 1.80 71 

770 18.3 1.62 92 

810 23.4 1.55 75 

850 24.7 1.46 74 

950 12.3 1.23 168 

 

The limiting resistance for the individual LEDs is calculated using 

 

     𝑅 =
𝑉𝑆−𝑉𝐷

𝐼
     (4.1) 

where VS is the supply voltage i.e. 3.3Vand VD is the voltage drop of the LED, I is 

forward current (in mA). For 670nm with standardization, the limiting resistance was also 

calculated using Equation (4.1), 

R =
(3.3 − 1.80)v

(21.1 ∗ 10−3)A
= 71Ω 
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Figure 4.9: Circuit diagram of Multichip LEDs with constant power output with 

OPT101. 

 

Using the circuit of Figure 4.9 (for constant LED power of 0.7 mW), the power 

output for each LED was calibrated by adding variable resistors and verified using a 

Newport power meter. The finger probe is designed with the Multichip LEDs placed on 

the top side of the finger probe structure and the OPT101 positioned at the bottom side of 

the finger probe structure as shown in Figure 4.10. 

 

Figure 4.10: Finger Probe designed. 
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4.5 System design for non-invasive haemoglobin estimation 

The main objective is the prediction of the total haemoglobin with the Partial Least 

Square Regression (PLSR) model designed using a soft-core system with five wavelength 

PPG signal. The block diagram of the haemoglobin meter in the FPGA platform is shown 

in Figure 4.11. 

 

Figure 4.11: Block diagram of the non-invasive haemoglobin meter in the FPGA 

platform. 

 

The heart of the designed system is the Altera NIOS II soft-core system present in 

the DE0 Nano FPGA Board. The finger probe consists of a light source (Multichip LED) 

on one side and a photodetector (OPT101) on the other side. Each individual LED from 

the Multichip LED was standardized with constant Power of 0.7 mW. The LED sources 

were controlled using the DE0 Nano FPGA Board. The light emitted from the sources 

travels through the fingertip and reaches the photodetector. Most of the light is absorbed 

by the tissues and the venous blood. The flow of blood is pulsatile due to the cardiac cycle 

and the transmitted light changes with time. The incoming real-time PPG signal is 

digitized using an in-built 12-bit A/D converter ADC128S022. The PPG signal is then pre-

processed to smoothen the variations using the moving average filter. The Quality 

Assessment of the PPG signal is also done to extract a good quality PPG signal. The 

absorbance for each wavelength are then calculated from the extracted PPG signal of the 

subjects. These are then given as inputs to the PLSR model along with the reference 
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haemoglobin to calibrate the model. The PLSR model is then validated with another set of 

PPG signals of the subjects (i.e., Absorbances). Also, the estimated hemoglobin is 

calculated using the molar extinction coefficients of oxy hemoglobin and deoxy 

hemoglobin along with the optical densities for five different wavelengths. Finally, the 

total haemoglobin in blood is predicted and displayed on LCD. The entire system designed 

for haemoglobin estimation is shown in Figure 4.12. 

 

 

Figure 4.12: The designed haemoglobin measurement system. 

 

In the subsequent chapters, we will discuss the implementation of the Multivariate 

(PLSR) model and the designing of an Altera NIOS-II soft-core system for the non-

invasive estimation of total haemoglobin. 
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Chapter 5 

Multivariate Regression system 

 

5.1 Multivariate Analysis 

Multivariate analysis in simple terms can be defined as the simultaneous analysis 

of multiple variables to understand the relationship that exists between them [1]. It is a 

statistical process wherein the simultaneous analysis of multiple predictor variables is done 

with multiple independent variables with the help of matrix algebra. The main goal of 

multivariate analysis is to reduce a large number of data variables into a smaller number of 

latent variables by taking into consideration the variability existing in the data set. Thus, in 

multivariate data analysis, the relationship existing between the variables and the sample in 

the data set is captured and transformed into a new set of latent variables. The rows in the 

data set are termed as observations which form the sample and the columns consist of 

variables that represent each of the measured entities for each object. The variables are 

divided into X variables called predictors and Y variables called responses. Multivariate 

methods that are used to find the relationship between predictors and responses are called 

regression methods [2]. Multivariate techniques can be categorized into two types: 

quantitative method and classification method. The quantitative method includes multiple 

linear regression, principal component regression, and partial least squares regression. 

These techniques are useful in finding the relationship between X and Y variables. The 

classification method includes principal component analysis, cluster analysis, factor 

analysis, and discriminant analysis. These techniques are useful in situations where it is 

required to identify or classify the samples into groups [3]. Different multivariate 

calibration methods namely classical least-squares (CLS) and Inverse least-squares (ILS), 

multiple linear regression (MLR), principal component analysis (PCA), Principal 

component Regression (PCR), and Partial Least Squares Regression (PLSR) can be 

employed.  
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5.1.1 Classification methods 

Discriminant Analysis 

It is a method for classifying variables into groups. It uses one or more independent 

factors called predictor variables to predict a dependent variable called a grouping 

variable. Only in cases when the groups are already known before the analysis can this 

approach be employed [4]. 

 

Factor Analysis 

It is a technique that is utilized when a large data group has to be reduced into 

smaller groups based on their shared variance. Factor analysis's principal objective is to 

explain the data's underlying composition. There are two forms of factor analysis: 

exploratory factor analysis, which is used to get a preliminary reduction of data, and 

confirmatory factor analysis, which is used to validate the presence of the components [5]. 

 

Cluster Analysis 

It is a method for grouping data samples having similar values across several 

variables. The grouping is done so that if two samples are from the same group, they will 

have the highest degree of correlation and if they are from different groups, they will have 

the lowest degree of correlation. Cluster analysis is made up of a wide variety of 

techniques and approaches for grouping data. It is considered to be a great tool for 

exploratory data analysis [6]. 

 

Logistic Regression 

Logistic Regression is one of the extensions of multiple regressions with the 

exception that the output Y variable is a definite variable and not a continuous one. The 

reason for this analysis is to classify the subject, into 1 of 2 categories using predictor 

variables, such that the accuracy is high. Since the output is discrete, the correlation 

between X and Y is nonlinear, hence the aim is to estimate the possibility, that an 

individual belongs to either of the groups. A probability of 0 implies that the individual is 

not in the main group and a probability of 1 implies that the individual is in the main 

group. The analysis of the logistic regression does not involve ordinary least squares, but 

uses a composite procedure of maximum likelihood estimation, in weighting X variables 

[7]. 
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Principal component analysis (PCA 

PCA is a statistical approach for characterizing spectral data variance. The causes 

of these variances are better understood and interpreted using PCA. The original spectra 

include a collection of correlated variables. PCA uses an orthogonal transformation to 

convert correlated variables into uncorrelated variables. The first principal components 

explain the maximum variance possible in the spectral data. The second principal 

component is chosen such that it is orthogonal to the first principal components, and 

explains the maximum possible remainder of variation in the data. This process is 

continued as long as the desired amount of variation is explained by the principal 

components obtained. PCA is a powerful method for reducing the dimensionality of the 

spectral data matrix and eliminating noise [8, 9 ]. 

X =  TP +  E                                      (5.1) 

The orthogonal transformation decomposes the spectral data matrix X as shown in 

Equation 5.1. T is termed as the scores matrix, P is the principal components matrix and E 

is the noise matrix and contains the noise. The Singular Value Decomposition (SVD) 

algorithm is utilized to extract the principal components for the X matrix. In building the 

PCA calibration model, usually, the first k principal components are selected as the 

number of latent variables or factors.  With a properly chosen number of factors, the 

necessary information for concentration modeling can be included while principal 

components of interferences and noise can be excluded. 

 

5.1.2 Quantitative methods 

Simple Linear Regression (SLR) 

Based upon the weight of X, Y is estimated using a regression equation as shown 

in Equation 5.2, where X is the predictor and Y is the criterion. The slope of the regression 

line is the predicted Y for every sample. It is also known as weight which is the coefficient 

of X and for every change in X, Y changes per unit time. The line is formed which implies 

that the variance is maximized and the error of the sum of squares is minimized. The idea 

of the ordinary least squares is similar to the sum of squares (X-Mean) as the variation of 

scores from the mean is less [10]. 

         𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑒𝑖                                        (5.2)                                               

Here, β0 is the line's intercept and β1 is its slope and the error ei is assumed to have a mean 

value of 0. 
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Multiple linear regression (MLR) 

MLR is a method for modeling the relationship between two or more explanatory 

variables and a response variable. In MLR, the relationship between Y and X is shown by 

the following Equation 5.3 [11]. 

                             𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖 + ⋯+ 𝛽𝑝𝑋𝑝𝑖 + 𝑒𝑖      (5.3) 

In this way, MLR can be written as an extension of simple linear regression, and Y is 

considered as directly related to a linear combination of the explanatory variables. 

 

 Classical least-squares (CLS) 

 CLS is also called K-matrix calibration, as it originally involved the application of 

MLR to the expression of Beer-Lambert Law. The spectral data is modeled as a function 

of analyte concentration in this method. 

A = KC                                         (5.4) 

For the known samples, we start with a classical least-squares calibration using the 

concentration matrix C and the absorbance matrix A. We then solve for K. Each column in 

K contains the pure component spectra. The least-squares solution is found for Equation 

5.4  i.e. it produces K that it produces the least sum of squares of error. We employ the 

computed K matrix to handle the prediction concentration of unknown samples. It may be 

calculated using the following Equation 5.5. 

[KTK]−1KTAunkown = Cunkown                                (5.5) 

We use [K
T
K]

-1
which is known as the pseudo-inverse of K and K

T 
which is the transpose 

of K. CLS has both advantages and disadvantages. The major advantage of utilizing CLS 

is the estimates of true constituents are determined following the calibration procedure. 

However, it also requires information on the concentrations of all components present in 

the sample, which is sometimes impossible to obtain [12]. This may be avoided by 

employing augmented CLS (ACLS), which relaxes the aforementioned conditions while 

still allowing for robust modeling with a complex matrix. 

 

Inverse least-squares (ILS) 

 The inverse expression of Beer-Lambert Law is used in this approach and this 

method is also called the P-matrix technique. The ILS calibration model assumes that 

sample concentration can be quantitatively predicted from sample spectra using Equation 

5.6. 
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C = PA                (5.6) 

Where concentration matrix is denoted by C and absorbance matrix by A. We utilize 

calibration samples with known concentrations, also known as the training set, to generate 

an inverse least square calibration [13]. We then use least squares to get the solution for 

the P matrix. Each wavelength will have a coefficient in each row. According to Equation 

5.7, this P matrix is used to predict the concentration of unknown samples. 

Cunknown = PAunknown              (5.7) 

The use of an ILS model eliminates the requirement for a complete understanding of the 

calibration set's constitution.  

 

Principal Component Regression (PCR) 

A statistical process that converts a group of correlated variables into a group of 

uncorrelated variables using an orthogonal transformation is called PCA. The number of 

Principal Components is equal to or less than the total number of variables. The 

transformation is described in the best possible way, so that, the 1
st
 Principal Component 

has a large variance and every subsequent component has the maximum variance, under 

the limitation that it is perpendicular to the previous components. The remaining variables 

are uncorrelated. The principal components are eigenvectors of a symmetric covariance 

matrix and hence are orthogonal. PCA is susceptible to comparative scaling of unique 

variables. The independent variables are fed to a PCA and the predictors used in MLR, are 

scores of units. Factor variation is explained through Xscores. This gives much 

information in factor space, however may not be involved with the estimated surface [14]. 

 

Partial Least Square Regression  

PLS is a regression technique used to analyze spectroscopy data. The PLSR 

technique is used to model a linear relationship between a set of predictors and a set of 

response variables. This relation is then used in the prediction of the value of a response 

variable for an unknown sample. The main aim of PLSR is to predict the responses. PLSR 

works in a way to extract the latent factors ‘T’ and ‘U’ to account for most of the variation 

in the response variables which are used for modeling the responses. T called X scores are 

used to predict the U called Y scores and these Y scores are used to construct predictions 

for the responses. PLS performs multiple linear regression to build a linear model. In PLS, 

it finds a linear transformation by maximizing the covariance between response variables 
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and predictor variables [15, 16]. PLSR links the response variable (Y), to the matrix 

containing predictors (X) through a latent factor, both (Y) and (X) are centered. 

The Equation 5.8 represents the PLSR model is given as  

Y = XB + E                (5.8) 

Where Y is a x b response matrix, a is the number of observations, and b is the number of 

variables.  

X is a x c predictor matrix with c as the number of predictor variables.  

B is a c x b regression coefficient matrix and E is a noise term or residual matrix which 

has the same dimensions as Y.  

A c x d weight matrix W for X is produced in PLSR such that 

T = XW where the columns of W are weight vectors for the X columns, thus producing a 

x d factor score matrix T.  

The weights are computed in such a way that maximum covariance exists between the 

responses and the corresponding factor scores. The loadings for Y represented as Q are 

then generated using ordinary least squares procedures for regression of  Y on T such that  

Y = TQ + E  

The prediction model is complete once Q is computed and Y = XB + E where B = WQ.  

For the complete description of the PLSR procedure, an additional matrix c x d factor 

loading matrix is required which gives factor model  

X = TP + F  

where F represents the residual or the unexplained part of the X score.  

 

To estimate the haemoglobin concentration from the absorbance signal, the signal 

has to be processed using multivariate techniques. The PLSR multivariate technique 

extracts a given number of factors from the predictor data that takes into account the 

variance existing in both predictors and responses. The optical densities (Absorbances) for 

five different wavelengths are the five predictor variables and the reference haemoglobin 

measured in the pathology laboratory is the response variables. Two datasets one for 

calibration and one for prediction are prepared. A multivariate technique is used to develop 

a calibration model for the above calibration dataset. PLSR technique builds a linear 

relationship between the set of predictors and the set of responses. This is called the 

calibration model. The concentration of the unknown haemoglobin is predicted by using 

the above model. In the next section, we discuss the various algorithms for the PLSR 

model.   
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5.2. Algorithm to implement PLSR  

There are several algorithms proposed to implement PLSR, of which popular one 

are Non-linear Iterative Partial Least Squares (NIPALS) and Statistical Inspired 

Modification of PLS (SIMPLS) introduced by Wold et al.[17] and DeJong et al.[18] 

respectively.  

 

5.2.1 NIPALS 

The first step begins with centering and scaling matrix X and Y and proceeds as 

follows. This algorithm has found its application in chemometric and below are the steps 

involved to implement as given in S. Wold et. al. [19]. 

Step 1: A starting vector (u) is chosen u which is usually a column of Y. If Y has a single 

column then, u = y. 

Step 2: The weights (w) of X are calculated as w = X'u/u'u (here w can be modified as ‖w‖ 

= 1.0) 

Step 3: The scores (t), of X, are calculated as t = Xw 

Step 4: The weights (c), of Y, are calculated as c = Y't/t't 

Step 5:Get the updated set of scores of Y as u = Yc/ c'c. 

Step 6: The convergence test is carried to check the change in t by  ‖t old - t new ‖ / ‖ t new ‖ <ε 

, here the value of ε is “small” for example 10
-6

 or 10
-8

. If not converged, go back 

to step 2, otherwise continue to step 7. The process converges with one iteration if 

Y is a single variable matrix and goes on to step 7. 

 Step 7: The component calculated is removed from X and Y and these deflated matrices 

will be used to generate the next component.                                                                                              

p = X't/ t't  X = X - tp'                                                                                                                                            

Y =  Y - tc' 

Step 8: If the number of desired components are not found go back to step 1 to find the 

next components. 
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5.2.2 SIMPLS 

In SIMPLS algorithm,  we us assume the matrices X and Y are mean-centered. 

SIMPLS involves deflation of the X
T
Y covariance matrix. Below are the steps followed to 

implement the SIMPLS algorithm [20]. 

For each h =1,…, N, where N is the number of components to be found. 

Step 1: Mean center the explanatory and response variable matrices, and represents them 

as X and Y after mean centering. Calculate the covariance matrix Sh= X
T
Y. 

Step 2: The left singular vector of the matrix Sh is taken as wh. 

Step 3: Normalize wh using the expression wh= wh / ‖wh‖. 

Step 4: th the h
th

component vector is calculated as th= Xwh(when h=1, t1 is the first 

component vector) 

Step 5: Normalize th  as th= th / ‖th‖. 

Step 6: ph the h
th

 loading vector of X is calculated as ph = X
T
th(when h=1, p1 is the first 

loading vector of X). 

Step 7: qh the h
th

 loading vector of Y is calculated as qh= Y
T
th. (when h=1, q1 is the first 

loading vector of Y). 

Step 8: Deflated covariance matrix Sh+ 1 is calculated Sh+1 = Sh– vh(vh
T
Sh), where                                         

            vh= ph(for h = 1)and vh= ph– Vh-1(V h-1
T
ph) for a >  1 with Vh- 1= (v1, v2, … , vh- 1). 

Steps 2 to 8 are repeated till N components are extracted. 

 

The SIMPLS algorithm is fast as compared to NIPLAS algorithm [21]. SIMPLS 

does not employ a breakdown of the data sets and as such is found to be fast and easy to 

interpret. We have used SIMPLS in our research work due to the advantages offered by it 

as outlined above. A C++ code is ported to the NIOS II platform to implement the 

SIMPLS.  
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5.3 ParLeS software for preliminary analysis 

ParLeS is a shareware that is developed by Raphael A. Viscarra Rossel in 

LabVIEW, for research and teaching in spectroscopy and chemometrics with simple 

Graphical User Interface (GUI) to perform many multivariate algorithms. ParLeS is used 

to pretreat, pre-process and transform spectra using different algorithms. It is also used to 

implement PLSR with cross-validation, PCA and bagging-PLSR (bootstrap aggregation-

PLSR) [22]. In addition, the unique features comprise user-friendly functionality as well as 

the provision of several graphical output and assessment statistics. Figure 5.1 shows the 

ParLeS software structure.  

 

Figure 5.1: ParLes software structure [22]. 
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5.4 Multivariate calibration model for non-invasive   

haemoglobin estimation 

The "Import data modeling" tab is used to import the data (tab-delimited ASCII 

format) into the ParLeS software as shown in Figure 5.2. The path of the file must be 

specified in the space provided under "Get file for modeling". Next, the number of y 

variables present in the tab-delimited ASCII file is selected for modeling. Then the data is 

imported into the ParLeS software by clicking the "Import data for Modeling button”. 

  

 

Figure 5.2: Importing of data for modeling into ParLes. 

 

The ParLes programme (version 3.1) provides several preprocessing and transformation 

techniques, which may be found under the data manipulation tab. As seen in Figure 5.3, 

pretreatment of data such as mean centering and variance scaling is supported. Of the 

above options offered, we have only mean-centered out data. In order to do the Pre-

Processing of data the “Run Selection” button is selected.  
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Figure 5.3: Preprocessing the datasets for calibration. 

 

Different modeling techniques are supported by the software such as PCA, PLSR, 

PLSR cross-validation. Under the “PLSR Model” tab the parameters needed to build a 

PLSR model are specified as shown in figure 5.4. The number of factors required can be 

selected using the slide bar below “Select No. of factors for PLSR. The model is built 

using the "Run PLSR modeling" button. Once the model is created, the percentage of 

variation is explained by each variable in the Explained variance visualization. 

 

 

 Figure 5.4: Partial Least Square Regression modeling. 



67 
 

  
 

The “Import Data Prediction” tab is utilized to import the data from unknown 

samples for prediction in tab-delimited ASCII format under "Get file for prediction" as 

shown in Figure 5.5 The number of y variables included in the data to be imported must be 

specified, and then the “Import data for prediction” button must be pressed.  

 

Figure 5.5: Importing of data for prediction. 

 

Next, the “PLSR Predict” tab is used for prediction once the data has been loaded, as 

illustrated in Figure 5.6. The prediction is made by pressing the “Run prediction” button. 

 

Figure 5.6: Partial Least Square Regression prediction. 

 

Once the multivariate model was tested in ParLes Software, the PLSR algorithm 

was written in C++ program and ported in Altera NIOS II soft-core system to estimate 

non-invasive total haemoglobin which is discussed in the next chapter.  
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Chapter 6:  

Design of Soft-Core System for 

Haemoglobin Estimation 

 

The Field Programmable Gate Array (FPGA) is a highly configurable logic device. 

The logic density is much higher than those offered by its predecessors such as Complex 

Programmable Logic Device (CPLD). Due to the versatility offered by FPGA, researchers 

and hardware designers are adopting it in their product designs. This Chapter discusses the 

different soft-core processors and outlines the various steps required to configure a soft-

core processor on an FPGA for the purpose of haemoglobin estimation. 

 

6.1 Field Programmable Gate Array for haemoglobin 

estimation 

The term ‘FPGA’ originates from the fact that a user can deploy a gate array that is 

programmable on the field at any workplace [1]. FPGA consists of configurable logic 

blocks (CLBs) with user-programmable interconnect that enables customization, by 

developers,so as to realize their desired applications. This customization can be 

reprogrammed, if the need arises, for the accommodation of new features in the developed 

application. Depending on the manufacturer, the CLB may also be referred to as a 

logic block (LB), a logic element (LE), or a logic cell (LC). FPGAs are programmable 

and reconfigurable logic devices that may be utilized to create complex and large circuit 

designs. FPGA has three types of resources viz., input/output blocks, logic blocks and 

programmable interconnection. The majority of FPGAs have flip-flops and look-up tables 

(LUT) [2].The various families of FPGAs supplied by different manufacturers differ 

primarily in the number of logic modules (ranging from a few hundred to hundreds of 

thousand), supply voltage range, power consumption, speed, architecture, process 

technology, number of pins, type of packages, etc.  
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6.2 Soft-Core processors for embedded systems 

An embedded system consists of hardware and software components working 

together to perform a specific application.  Nowadays, embedded systems play a vital role 

in everyday lives. They are used in automobiles, the medical field, industrial control 

systems, and entertainment electronics, etc [3]. The hardware platform of the embedded 

system consists of a microcontroller, on-chip memory, an output device, and an input 

device. In the current scenario, with manufacturers pushing for increased miniaturization, 

the embedded system designers have to adhere to the tight constraints on area usage, size,  

high-performance, good power efficiency, flexibility, adaptability, reduction in product 

design and time-to-market deadlines [4]. Therefore, the hardware/software co-design 

methodology is often used in designing an embedded system to reduce the time spent on 

development and debugging [5].  With the increase in complexity of embedded system 

design, the development of every hardware component of the system from scratch has 

become too time-consuming and expensive for most of the designers. Therefore, the 

prospect of using pre-designed and pre-tested intellectual property (IP) cores in designs 

became an attractive alternative solution. Soft-core processors are microprocessors whose 

architecture and behaviour are completely specified using hardware descriptive language 

(HDL) and is implemented in Verilog or VHDL language. Many parallel processors can be 

implemented on one FPGA and can use additional FPGA resources on the same chip 

without being part of the processor core. The use of soft-core processors offers many 

advantages to the designer of an embedded system.  These include a higher level of design 

re-use, increased design implementation options, simplified design update, lower latency 

between processor and FPGA components. A soft-core processor permits a designer to 

conveniently add or remove peripherals from the System on Peripheral Chip (SoPC). It 

also enables the designer to build a system to meet his/her requirements, avoiding 

excessive cost and reducing the time spent configuring unnecessary features. The 

parameters of a soft-core processor built on FPGA may be modified and reconfigured at 

any time merely by reprogramming the device thereby making it highly flexible. Also, it 

can be synthesized for any given target ASIC or FPGA technology.  This grants it 

immunity from obsolence as compared to circuit or logic level descriptions of a processor 

[6]. A variety of programmes that operate on soft-core processor-based platforms have 

been identified. As a result, these soft-cores are increasingly becoming popular due to their 

reconfigurability. 
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6.3 A survey of soft-core processors 

In this Section, we discuss the various soft-core processors which are available in 

the market from, both, commercial vendors and open source communities. 

 

6.3.1 Commercial cores 

NIOS II and MicroBlaze are the leading soft-core processor provided by Altera and 

Xilinx, respectively. Also, Cortex – M1 is the first ARM implemented for FPGA.  

 

NIOS II  

Altera Corporation, the manufacturer of NIOS II, is one of the leading vendors of 

CPLDs and FPGAs.  NIOS II is widely used in the design of embedded systems and DSP 

applications. NIOS II soft-core processor is Altera’s flagship IP (Intellectual Property) 

core processor. NIOS II is a 32-bit processor based on the popular Reduced Instruction Set 

Computer (RISC) processor core and uses the Harvard memory architecture. There are 

thirty-two 32-bit general-purpose registers in NIOS II soft-core. NIOS II processor comes 

in three different variants: economy, standard and fast core. Each core variant has a 

different number of pipeline stages, instructions, data cache memories and hardware 

components for different operations. Besides, each core varies in performance and size 

depending on the features that are selected. NIOS II/f has a six-stage pipeline and executes 

one instruction per cycle. It has separate Instruction and Data cache.  The NIOS II also has 

a performance of more than 150 Dhrystone MIPS (DMIPS). The addition of the 

peripherals with the NIOS II processors is accomplished through the Avalon Interface Bus 

which contains the necessary logic for interfacing the processor with off-the-shelf IP cores 

or custom-made peripherals. It is feasible to build, debug andcreate an embedded system 

on Altera’s FPGAs utilizing the associated CAD tools such as Quartus II and platform 

designer development tool. These tools help in building a NIOS II based system and in 

writing system-specific application software.  The main disadvantage with NIOS II is that 

it can only be used in Altera FPGAs. It provides a solution to the interoperability and 

resource wastage by various microcontrollers and is configured by the customer or 

designer, as per his requirements [7]. Figure 6.1 shows the block diagram of the NIOS II 

soft-core system. 
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Figure 6.1: Block diagram of the NIOS II soft-core system [7]. 

 

MicroBlaze 

 Xilinx offers Spartan and Virtex families which are FPGA solutions. They also 

provide soft IP cores that target their FPGAs. MicroBlaze is a 32- bit soft-core processor 

that is optimized for embedded applications. It is based on Harvard architecture and can 

operate at up to 200MHz on a Vertex-4 FPGA chip. This processor has a three-stage 

pipeline with 32-bit instructions and a 32 register wide register file. The memory can 

reside on-chip or as an external peripheral. A general-purpose interface known as the On-

chip Peripheral Bus (OPB) can be used to interface MicroBlaze with both on-chip and off-

chip memories as well as other peripherals. In addition, it features a three-stage pipelining, 

32-bit instructions, 32-bit general-purpose registers, two levels of interrupts, and a shift 

unit. Xilinx Platform Studio is available for creating a MicroBlaze-based system [8]. 

Figure 6.2 shows the block diagram of the Xilinx MicroBlaze core. 
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Figure 6.2: Block diagram of the MicroBlaze soft-core system [8]. 

 

Cortex – M1 

 The ARM Cortex™-M1 processor is the first ARM 32-bit processor designed 

specifically for implementation in FPGAs. The Cortex-M1 processor targets all major 

FPGA devices and includes support for leading FPGA synthesis tools, allowing the 

designer to choose the optimal implementation for each project. The main features of 

Cortex-M1 include a three-stage pipeline, configurable instruction and data memories 

(upto 1 MB), an integrated interrupt controller with support for  upto 32 interrupts and has 

AMBA AHB-Lite 32-bit bus interface. The Cortex-M1 processor can deliver 0.8 DMIPS. 

It can be used with any FPGA [9]. Figure 6.3 shows the block diagram of the Cortex – M1 

soft-core system. 

 

 

Figure 6.3: Block diagram of the Cortex – M1 soft-core system [9]. 
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6.3.2 Open-source cores 

Open-source cores are IP components that are freely available in the open-source 

community. Usually, these types of cores are used in academia for research as well as in 

the development of embedded systems. In this Section, we discuss OpenSPARC T1, 

LEON3, OpenRISC 1200, and LatticeMico32 soft-core processors that are available in the 

open-source community.  

 

OpenSPARC T1 

 OpenSPARC T1 is an open-source version of the Sun Microprocessor products. It 

is a multi-core, 64-bit multiprocessor SPARC V9 architecture and is targeted towards 

commercial applications such as application and database servers. It consists of eight 

SPARC processor cores, with four hardware threads per core. One floating-point unit 

external to the core is shared by all the cores and four banks of the L2 cache. Each SPARC 

core has a 16 KB instruction cache, 8 KB  data cache, and a fully associative instruction 

and data translation look-aside buffer (TLB). All the cores are connected through a 132 

GB/s crossbar interconnect for on-chip communication. An on-chip J-Bus controller 

provides the requisite interconnect between the OpenSPARC T1 processor and I/O 

subsystem. [10]. Figure 6.4 shows the block diagram of the OpenSPARC T1 soft-core 

system. 

 

Figure 6.4: Block diagram of the OpenSPARC T1 soft-core system [10]. 
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OpenRISC1200 

OpenRISC 1200(OR1200) is one of the popular open core processors available at 

OpenCores.org.  The OR1200 is a 32-bit scalar RISC with Harvard architecture. The main 

features of OR1200 include a five-stage integer pipeline, virtual memory support (MMU) 

and basic DSP capabilities. It has 32-bit instructions and can operate on 32-bit or 64-bit 

data. The Default data and instruction cache are one-way direct-mapped 8KB with 16-byte 

line size each.  OpenRISC 1200is one of the high-performing soft-core processors with 

300 Dhrystone 2.1 MIPS at 300 MHz. It supports very few FPGA development boards and 

its debugging solutions are complicated [11]. Figure 6.5 shows the block diagram of 

OpenRISC1200. 

 

Figure 6.5: Block diagram of the OpenRISC1200 soft-core system [11]. 

 

LEON3 

The LEON3 is a 32-bit processor based on the SPARC V8 architecture and is 

designed and maintained by Aeroflex Gaisler. The model is highly configurable for 

system-on-a-chip (SOC) designs. The structure of the LEON3 processor is shown in 

Figure6.6. It is based on Harvard architecture and uses the AMBA Advanced High-

performance Bus (AHB) for all on-chip communications. Its main features include a 

seven-stage pipeline, separate instruction caches and data caches, a configurable number of 

register windows and an optional floating-point unit. The main advantage of the LEON3 

processor is that it uses a structured organization of packets, folders and VHDL records. 

The complete source code for this processor is available for free and can be used 

unlimitedly for research and education activities, under the GNU GPL license. Linux and 

RTOS can be installed on this processor but not all FPGA development boards are 

supported by LEON3 [12]. Figure 6.6 shows the block diagram of the LEON 3 soft-core 

system. 
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Figure 6.6: Block diagram of the LEON 3 soft-core system [12]. 

 

LatticeMico32 

The LatticeMico32 is an open-source 32-bitRISC soft-core processor based on 

Harvard architecture from Lattice Semiconductor. LatticeMico32 provides good 

performance and flexibility by combining 32-bit wide instruction set with 32 general-

purpose registers. Its main features include  a six-stage pipeline, 32-bit instruction and data 

caches with capacity to handle up to 32 external interrupts. The core consumes minimal 

device resources while maintaining the performance required for a broad application set. It 

does not have a floating-point unit. To accelerate the development of microprocessor 

systems, several optional Wishbone-compatible peripheral components may be integrated 

with the LatticeMico32 [13]. Figure 6.7 shows the block diagram of the LatticeMico32 

soft-core system. 

 

Figure 6.7: Block diagram of LatticeMico32 soft-core system [13]. 
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6.3.3 Comparison of soft-core processors 

Each processor presents a set of parameters and characteristics that throw up 

important challenges. The soft-core’s features will also significantly influence the 

performance of the whole system. Table 6.1 shows a comparison of the main 

characteristics of available open-source and commercial soft-core processors that have 

been briefly described in the earlier Section. Each surveyed core has different performance 

characteristics and features that are suitable for specific applications. Embedded system 

designers should choose a processor core based on the requirements and performance 

constraints of their particular application. The NIOS II features an expandable instruction 

set with up to 256 customizable instructions whereas MicroBlaze is not provided with this 

kind of ability. The highest operating frequency on an FPGA can be achieved with the 

NIOS II and MicroBlaze. Both, the NIOS II and MicroBlaze are optimized for FPGA 

implementations, whereas the others are not optimized for a particular technology. 

 

Table 6.1: Comparison of different soft-core processors. 

Soft-core processor, 

Developing 

Organization 

Custom 

Instructions 

ISA 

 

Interface 

Bus 

standard 

Maximum 

Clock 

Frequency 

(MHz) 

Pipeline 

Stages 

Nios II 

(Altera) 

Upto 256  32-bit 

RISC 

Avalon 200  6-stages 

MicroBlaze 

(Xilinx) 

None 32-bit 

RISC 

AXI, DPB, 

LMB 

200  3-stages 

Cortex M1 

(ARM) 

- 32-bit 

RISC 

AMBA 

AHB Lite 

-- 3-stages 

OpenSPARC T1 

(Sun Microsystems) 

- 32-bit 

RISC 

JBI, SSI 200  6-stages 

Open RISC 1200 

(Open Cores) 

Unspecified 

limit 

32-bit 

RISC 

Wishbone 300  5-stages 

LEON3 

(AeroflexGaisler) 

None 32  

RISC 

AMBA2.0 400  7-stages 

Lattice Mico 32 

(Lattice 

Semiconductor) 

- 32-bit 

RISC 

Wishbone 85–115  6-stages 

 

To select the best embedded platform for novel architecture, in this study, we have 

designed a soft-core system and implemented an algorithm on Altera NIOS II platforms to 

estimate non-invasive total haemoglobin. 
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6.4 DE0 Nano FPGA Board (selecting a hardware platform)                                                                                

The DE0-Nano board provides a compact-sized FPGA development platform well-

suited to prototype circuit designs for portable projects. The board is designed to be used 

in the simplest possible implementation, targeting the Cyclone IV family devices which 

contain up to 22,320 logical elements (LEs). The DE0-Nano has a set of interfaces 

including two external 40-pin GPIO headers and one 26-pin header to extend designs 

beyond the DE0-Nano board, on-board memory devices including SDRAM and EEPROM 

for larger data storage and frame buffering along with general user peripherals like A/D 

converter with LEDs, DIP switches and push-buttons. If a design needs to have mobility, 

portable power is a necessity; therefore, DE0 Nano board offers a two-pin external power 

header for battery connection [14]. The advantage of the DE0 Nano board is its size and 

weight, as well as its ability to be reconfigured. All the connections made through the 

FPGA device provide users with maximum flexibility. Thus, FPGA can be configured to 

implement any system design. Keeping in mind the above advantages, in the present study, 

we have used DE0 Nano FPGA board for the creation of the NIOS II soft-core system. The 

Top view and bottom view of the DE0-Nano board are shown in Figure 6.8. 

 

 

Figure 6.8: DE0 - Nano board [14]. 

 

The block diagram of DE0-Nano board is shown in Figure 6.9. The Avalon switch 

fabric network provides the interconnection to all the components. Appropriate interfaces 

and IP cores are used to access various peripherals and memories such as SDRAM, I2C 

EEPROM, ADC, DIP switches, etc. present on the board.  
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Figure 6.9: Block diagram of DE0- Nano [14]. 

 

6.5 System-on-a-Programmable-Chip for haemoglobin 

analysis 

Platform Designer in Quartus 18.1 is a powerful system development tool. It 

enables one to define and generate a complete System-on-a-Programmable-Chip (SOPC) 

in minimal time as compared to traditional manual integration methods. To wire up the 

parts of the soft-core system using traditional design methods, one needs to manually write 

the HDL modules. Platform Designer is used to create soft-core system based on the NIOS 

II processor by integration of the hardware components. Using the Platform Designer, the 

system components are selected in a GUI and it generates the interconnect logic 

automatically by creating HDL files that define all system components. The custom logic 

can be integrated inside or outside of the Platform Designer system. In this example, the 

custom component within the Platform Designer system communicates with other modules 

through an Avalon-MM master interface. The custom logic outside the SOPC Builder 

system is connected to the SOPC Builder system through a PIO interface. The system 

interconnect fabric connects all of the SOPC Builder components using the Avalon-MM or 

Avalon-ST system interconnect as appropriate [15]. 
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6.5.1 SDRAM Interface to FPGA  

The DE0-Nano features a 32-MB Synchronous Dynamic Random Access Memory 

(SDRAM) device that uses 16-bit data lines to communicate with the FPGA. The chip uses 

the 3.3V LVCMOS signalling standard. The positive edge of the clock signal, DRAM 

CLK, is used to register all of the signals. Figure 6.10 shows the connections between the 

FPGA and SDRAM  [16]. 

 

Figure 6.10: Connections between SDRAM and FPGA [16]. 

 

This SDRAM has a memory organisation of 4M x 16 bits x 4 banks. The SDRAM 

requires precise timing control. The SDRAM controller circuit IP must be included in the 

Platform Designer in order to access the SDRAM successfully. A connectivity network 

known as the Avalon switch fabric connects the NIOS II soft-core to the memory and 

input/output interfaces. As shown in Figure 6.11, the SDRAM controller generates all 

essential interface signals except the clock. The clock must be supplied separately and 

must meet the clock skew requirements. To ensure this, the clock signal sent to the NIOS 

II processor must lag the SDRAM clock by 3 ns[17]. This requirement is accomplished by 

a phase-locked loop circuit.  

 

Figure 6.11: SDRAM controller interface [17]. 
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6.5.2 ADC Interface to FPGA 

The DE0-Nano has an ADC128S022 lower-power, eight-channel CMOS 12-bit 

analog-to-digital converter. This converter has conversion rates ranging from 50 to 200 

ksps. The ADC receives an analog signal via the eight analog inputs pins IN0 through IN7. 

When performing a conversion, the ADC reads the signal on the channel selected and 

converts it into a digital signal. Figure 6.12 shows the interface between ADC128S022 

with 2x13 Header [18]. 

 

Figure 6.12:  ADC128S022 with 2x13 Header [18]. 

 

 

Figure 6.13: ADC128S022 interface to FPGA [18]. 

 

The ADC is connected to the FPGA by four wires, which are used to control the 

ADC and communicate with it, as shown in Figure 6.13. ADC uses the SCLK signal as a 

device clock. The (𝐶𝑆̅̅̅̅ ) signal is an active low signal used to select the ADC chip. The DIN 

and DOUT wires are used for transferring addresses and data between two chips. The 

address of the next channel needed for conversion is provided by the FPGA via the DIN 

connection, which is mapped to the ADC_SADDR pin on the FPGA. The address is three 

bits long and is supplied serially to the ADC at the rate of one bit per SCLK cycle. The 

ADC sends digital values to the FPGA via the DOUT connector, which is mapped to the 

ADC_SDAT pin on the FPGA. This value is 12 bits long and is serially sent to the FPGA 

at 1 bit per SCLK cycle [18]. 
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Timing and signal requirements  

The user must provide the ADC with the SCLK, (𝐶𝑆̅̅̅̅ ), and DIN signals, as well as 

capture the DOUT signal when it is being transmitted. The ADC128S002 runs on a 16-

cycle operational frame as shown in Figure 6.14. 

 

Figure 6.14: Timing requirements for the ADC. 

 

The DOUT signal provides 12-bit converted value to the selected channel. Channel 

0 is used by default when the device is turned on, and subsequent reads will use the 

address specified in the previous operational frame. The data bits are transmitted in 

descending order, with the highest-order bit arriving first. The user captures it on the rising 

edge of SCLK. The DIN signal is used to select the channel to be converted in the next 

frame. The ADC captures it on the positive edges of SCLK and delivers it in descending 

order. The user should generate DIN on the negative edges of SCLK to avoid any race 

conditions [18]. 

 

The DE0-Nano ADC Controller 

The DE0-Nano ADC Controller IP Core is utilized to manage and control the 

signals between the ADC and the FPGA, as well as to provide the converted readings to 

the user [18]. The DE0-Nano ADC Controller IP core can be instantiated in a system and 

made part of the NIOS II system using the platform designer with its graphical user 

interface. It reads each of the ADC's input channels in ascending order once per update 

cycle and stores the acquired values locally. The updated values are accessible after the 

update cycle is completed. It also permits the user to customize many aspects of its 

operation. The number of channels used by the ADC Controller core is defined by the 

parameter NUM CH, which is set by the user when the core is instantiated. The SCLK 

frequency can also be specified via the core. In the allowable range of 0.8 to 3.2 MHz, the 

user can enter the desired value. The value is placed in the registers upon the completion of 

the conversion.   
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6.6 Altera NIOS II soft-core for non-invasive haemoglobin  

estimation 

In our design using Platform Designer in Quartus 18.1, the SOPC components 

selected were 32-bit NIOS II CPU, On-chip memory, SDRAM, RS232 UART, Interval 

Timer, Parallel Ports, ADC, and LCD.   This has been accomplished with the help of 

SOPC builder in Quartus II where one needs to merely select the required components 

from the available IP list. 

 

Figure 6.15: Selected SOPC components to build the system. 
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After selecting the SOPC components, the hardware descriptive language (HDL) 

files are generated. This generated system is then brought to the Quartus Block diagram 

file window and the pin mapping is done as shown in Figure 6.16.  

 

Figure 6.16: The NIOS II instance generated in Quartus II software. 

 

After compiling the entire design, it displays the number of logic elements, registers, pins 

and memory bits being utilized, as shown in Figure 6.17. 

 

Figure 6.17: Resources used for system design. 

 

The completed SOPC design is then downloaded with SRAM Object file (.sof) on 

Cyclone IV on the DE0 Nano FPGA board using a USB blaster. Once downloaded, the 

application program to estimate total haemoglobin is written and compiled using the NIOS 

II  Software Build Tools (SBT) for Eclipse.  
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6.6.1 Programming the NIOS II soft-core 

NIOS II Software Build Tools (SBT) is a collection of utilities targeted to build 

embedded C/C++ applications for the soft-core. The C/C++ programming is accomplished 

using the Eclipse graphical user interface [19]. It provides identical support for both C and 

C++ development. It also provides editing, building, and debugging for software 

development tasks. Next, the code is loaded into the SDRAM of the DE0 Nano FPGA 

Board.  Figure 6.18 shows the graphical user interface of NIOS II SBT. 

 

 

Figure 6.18: Graphical user interface of NIOS II SBT. 

 

To test the usability of multivariate analysis, we executed for various matrix 

manipulations like curve fitting, matrix transpose, finding determinant, multiplication and 

inverse operations before actual implementation of SIMPLS algorithm using the designed 

NIOS II soft-core system. To estimate haemoglobin concentration, we need to build a 

calibration model using PLS multivariate technique. The acquired data is processed using 

the PLS algorithm in ‘C++ language’ for computing the unknown concentration of the 

haemoglobin. The designed system was tested for multivariate analysis by running 

SIMPLS algorithm in C++ to estimate the haemoglobin level of blood in humans. The 

flowchart followed is depicted in Figure 6.19. 
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Figure 6.19: System flowchart for estimating haemoglobin. 

 

First, the ADC and LCD are configured. The PPG signal is recorded for five 

different wavelengths of LEDs in sequential order (viz., 670 nm, 770 nm, 810 nm, 850 nm, 

and 950 nm) respectively for 5 seconds each. Next, the PPG signal is filtered by using a 

moving average filter. Then, the peak and valley voltage of the PPG signal is extracted for 

each LED wavelength. Then, the Quality Assessment for the PPG signal is done for each 

PPG signal, where the mean of peaks and the mean of valley voltage of the PPG signal are 

calculated. If the peak and valley voltages are closer to the mean peak and mean valley, the 

values are then saved; else, they are discarded duringthe computation. Next, the AC 

component (Peak Voltage - Valley Voltage) and DC component (Valley Voltage) for each 

PPG LED wavelength are calculated to obtain the absorbance for each PPG signal. This is 

followed by the estimation of the total haemoglobin of the subject using the mathematical 

empirical formula for the five wavelengths. The PLSR model is calibrated with the 

absorbance at the five different wavelengths along with the reference haemoglobin. Next, 

the PLSR model is validated with the unknown values i.e. Absorbance of the PPG signal at 

five LED wavelengths. Finally, the haemoglobin concentration is predicted using the 

PLSR model and displayed on the LCD. 

Start 

Configure the ADC and LCD 

Acquire the PPG for 670nm, 770nm,  810nm, 850nm  & 

950nm in sequential order for 5 seconds each 

Preprocessing of the PPG signal 

Calculate Absorbance for each LED wavelength 

Calibrate the PLSR model with the absorbances 
along with reference haemoglobin 

 

 
Validate the unknown input data with the PLSR model  

 

Calculate the Total Haemoglobin using Mathematical 

Empirical formula for five wavelengths 

 

Stop 

Quality Assessment of the PPG 

signal 

Display Estimated Haemoglobin with PLSR on LCD 

Detect the peak and valley voltage of the PPG for each wavelength 
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PPG Signal Preprocessing 

The performance of the biosignal processing for the non-invasive diagnosis of 

diseases andthe calculation of physiological parameters arevery important factors. The 

distinctive features of the filtered PPG signal are thepeaks and valleys of the PPG signals. 

These parameters are used for the calculation of Heart rate, HRV, SPO2, and Total 

Haemoglobin. Also, other features like dicrotic notch, rise time from valley to peak, and 

fall time from peak to the valley are used for the estimation of blood pressure and 

diagnosis of cardiovascular disease. The PPG signal can be corrupted due to motion 

artifacts and respiration rate. Reliable peak detection from the corrupted PPG signal is very 

important for processing the signal. This involves a robust algorithm for peak and valley 

detection in a noisy PPG signal.Figure 6.20(a) shows the acquired PPG signal of a subject 

at five different LED wavelengths. Figure 6.20(b) shows the scaled PPG signal for 810 nm 

which consists of DC and AC components of the PPG signal. The PPG signal consists of 

noise which is removed by using a moving-average filter to smoothen the signal by 

reducing the variations between the samples. as shown in figure 6.21(a). It was observed 

that if the haemoglobin concentration in blood is low, more light is transmitted thereby 

producing a larger PPG signal and vice versa. 

 

 

Figure 6.20: PPG signal before filtering. 



89 
 

 
  

 

Figure 6.21: PPG signal after filtering. 

 

Once the entire system is designed on Altera NIOS II, the C++ code is downloaded 

into the DE0- NANO FPGA board and the finger probe is connected to the selected GPIO 

pins of the FPGA. Each individual LED is sequentially turned on for a duration of 5 

seconds for acquiring the PPG signal. All the five PPG signals are recorded and the main 

features are extracted from the PPG signal e.g. Systolic Peak and Valley for each PPG 

signal. Based on the above features, optical densities (absorbances) are calculated for each 

PPG signal and the algorithm is utilized to estimate the total haemoglobin using the 

empirical formula. Also, the total haemoglobin is estimated using Multivariate (PLSR) 

model to estimate the total haemoglobin in blood. The results obtained are briefly 

discussed in the next Chapter. 
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Chapter 7 

Results and Discussions 

 

In this study, the finger probe was designed with a Multichip LED with five 

wavelengths and a single silicon photodetector with an on-chip trans-impedance amplifier. 

The entire experimental setup was designed to estimate non-invasive haemoglobin levels 

with five LED wavelengths (670 nm, 770 nm, 810 nm, 850 nm, and 950 nm). It was safe 

because the radiated LED power was standardized at 0.7 mW and the fingertip was 

exposed to LED wavelengths for less than 30 seconds. To carry out this experiment we 

have taken the Institutional Human Ethical Clearance (IHEC). Before acquiring the data, 

the subjects were explained about the procedure involved in the research work and then  

formal consent was obtained from the subjects. The PPG signals were recorded at five 

different LED wavelengths, while the subjects were in the seated rest position. The 

pathological measurement of haemoglobin was also done at Manda's clinic using 5 part 

Hematology Analyzer (Mindray company BC 5150) at the same time to validate the 

estimated result obtained from our designed system. The total haemoglobin was estimated 

with empirical formula with three and five LED wavelengths and comparison was done 

between them. To further improve the prediction accuracy, total haemoglobin was 

estimated with multivariate (PLSR) model and is also discussed in the next section briefly.  

To present our result and the performance of our model, we calculated the 

goodness of fit (R
2
), correlation coefficient (r), Root mean square error (RMSE), and the 

Bland-Altman plot, in this research work and have discussed as follows. 

 

Root mean square error  

RMSE is the square root of the mean of the square of all errors represented in 

Equation 7.1. 

     𝑅𝑀𝑆𝐸 = √∑ (𝑥− y)2𝑁
𝑖=1

𝑁
          (7.1) 

where x = estimated haemoglobin, y = reference haemoglobin,  N is the number of 

subjects. 
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Accuracy of Prediction 

 The accuracy of our system is calculated using Equation 7.2.  

                                                                 𝐴 = 1 − (√
∑ (𝑥− y)/x𝑁

𝑖=1

𝑁
)𝑥100         (7.2) 

Correlation coefficient  

The correlation coefficient (r) shows how strongly two measurement methods are 

linearly related. r is computed as the ratio of covariance between the variables to the 

product of their standard deviations. The value of r is between -1.0 and +1.0. The formula 

for Pearson’s correlation is represented in Equation 7.3,  

                                                      𝑟 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑖

√∑ (𝑥𝑖−𝑥̅)2𝑖 √∑ (𝑦𝑖−𝑦̅)2𝑖
                     (7.3) 

where n is the sample size, xi, yi are the individual sample points and 𝑥̅, 𝑦̅ are the mean 

values. Although a correlation coefficient gives us an indication of the strength of linear 

relationship between the two estimation methods, we need to assess the agreement 

between two measurement methods. So, we used the Bland-Altman plot to assess the 

agreement between two measurements.  

 

Bland-Altman plot and analysis  

To establish the overall degree of agreement in healthcare research, it is essential to 

compare two techniques of measurement. Traditional correlational studies can be replaced 

with the Bland–Altman plot. The Bland–Altman plot depicts agreement graphically by 

using the mean and standard deviation of the differences between two measurements to 

create statistical limits of agreement. The difference (Measurement Method #1 vs. 

Measurement Method #2) is shown on the vertical axis, while the mean ([Measurement 

Method #1 + Measurement Method #2]/2) is shown on the horizontal. The bias between 

the two tests is measured by the mean of differences between reference and estimated 

values. One can discover bias between the mean differences of two measures and estimate 

an agreement interval using Figure 7.1. Within this interval, 95 %  of the data points 

should fall within ± 2 standard deviations of the mean difference. Therefore, the agreement 

interval allows one to evaluate the range of variability between the two methods, and it 

must be chosen before the plot is constructed depending on clinical objectives. When 

analysing a Bland–Altman plot, there are a few things to keep in mind. Firstly, determine 

where the mean difference falls, as this indicates whether one method of measurement 

tends to overestimate (i.e., the mean difference is greater than zero) or underestimate (i.e., 
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the mean difference is less than zero). The closer the mean difference is to zero, the better 

is the agreement between the two measurements. To determine the precision of this result,  

95 % confidence interval (CI) of the mean difference is calculated. If the line representing 

zero falls beyond the 95 % CI, there is a significant difference between the two 

measurements, indicating that one technique overestimates or underestimates the other. 

Secondly, the spread of the limits of agreement must be determined since the standard 

deviation of the differences between the two measurements reveals random variation 

around the mean. The wider limits of agreement shows less precision while narrower 

limits shows less precision which indicates that the two methods are comparable. 

The bias between the two tests is measured by the mean of differences between reference 

and estimated values. 

     Bias (d̅) =
1

n
∑ da

n
a=1          (7.4) 

where  da= Estimated value -Reference value, n = the number of subjects 

  Standard deviation(𝑆𝐷) = √
1

n−1
∑ (da − d̅)

2n
a=1         (7.5) 

Limits of agreement between the two tests are defined by a 95% prediction interval of a 

particular value of the difference.  

    limits of agreement = Bias ± 1.96 Sd                    (7.6) 

 

The limits of agreements are defined as ± 1.96 times the SD from the mean of differences. 

The limits of agreement are represented by the outer red coloured dotted lines, and bias is 

represented by the middle blue coloured line as shown in Figure 7.1. 

 

Figure 7.1: Bland- Altman plot. 
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7.1 Analysis of haemoglobin estimation with three and  five 

LED wavelengths (Case I) 

 

In Case I, fifteen subjects were enrolled in the preliminary study. The age range of 

participating subjects was 18 to 35 years with less variations with respect to age and skin. 

The non-invasive total haemoglobin was estimated with three and five LED wavelengths 

using mathematical empirical formula and the reference haemoglobin was measured in the 

pathology laboratory. 

 

Table 7.1: Haemoglobin estimation for 15 Subjects (Case I). 

Subject 

No 

Estimated total haemoglobin 

with the designed system 

(Non-invasive method) 

Total 

haemoglobin 

measured in 

pathology 

laboratory 

(g/dL) 

Error in total haemoglobin 

measured 

Three LED 

wavelengths 

(g/dL) 

Five LED 

wavelengths 

(g/dL) 

Three LED 

wavelengths 

(g/dL) 

Five LED 

wavelengths 

(g/dL) 

Sub.1 16.87 17.02 17.50 -0.63 -0.48 

Sub.2 16.56 17.13 17.00 -0.44 0.13 

Sub.3 11.53 11.87 11.20 0.33 0.67 

Sub.4 15.42 16.34 16.20 -0.78 0.14 

Sub.5 13.15 13.98 14.00 -0.85 -0.02 

Sub.6 12.80 12.97 12.50 0.3 0.47 

Sub.7 15.03 15.83 15.70 -0.67 0.13 

Sub.8 16.36 16.55 16.00 0.36 0.55 

Sub.9 16.12 16.62 16.80 -0.68 -0.18 

Sub.10 11.89 12.07 12.20 -0.31 -0.13 

Sub.11 14.12 14.69 14.90 -0.78 -0.21 

Sub.12 12.34 13.11 12.90 -0.56 0.21 

Sub.13 15.16 15.49 16.10 -0.94 -0.61 

Sub.14 13.45 14.49 14.20 -0.75 0.29 

Sub.15 11.32 11.64 12.00 -0.68 -0.36 

RMSE 0.64 g/dL 0.36 g/dL 
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The result of Table 7.1, shows non-invasive measurement of total haemoglobin 

using three and five LED wavelengths (non-invasive method). Also, a comparative study 

was made with the haemoglobin measured using the invasive method in the pathology 

laboratory. The blue and red bar graph indicates estimated haemoglobin with three LED 

wavelengths and with five LED wavelengths and the green bar graph indicates the 

reference hemoglobin measured in the pathology laboratory as shown in Figure 7.2. 

 

 

Figure 7.2: Total haemoglobin for 15 subjects (Case I). 

 

Figure 7.3 shows the regression analysis for estimated total haemoglobin v/s 

reference haemoglobin for three and five LED wavelengths.  

 

 

Figure 7.3: Regression analysis for estimated total haemoglobin v/s reference haemoglobin 

(Case I). 
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Initially, total haemoglobin was estimated with three wavelengths  (λ1=670nm, 

λ2=810nm and λ3=950nm) using mathematical empirical formula and the RMSE was 0.64 

g/dL with the Regression Coefficient of R
2
=0.954, but our aim was to further improve the 

prediction accuracy.  Hence we selected another two wavelengths, 770nm and 850nm to 

get more information about oxyhaemoglobin and deoxyhaemoglobin. By adding these two 

wavelengths, the RMSE significantly improved to 0.36 g/dL and the Regression 

Coefficient (R
2
=0.967) which is good. For this reason, the five wavelengths PPG is an 

excellent choice for the measurement of non-invasive blood haemoglobin and we 

continued our further research work with five LED wavelengths. 

 

7.1.1 Multivariate calibration (PLSR) model in NIOS II soft-core system 

for non-invasive haemoglobin estimation with five LED 

wavelengths 

 

Initially, multivariate PLSR model was implemented using ParLeS 3.1 software for 

the analysis. For the PLSR model, 12 Subjects' PPG signals was used as the calibration set, 

and 3 Subjects' PPG signal was used for validating the PLSR model. Also, the PLSR 

algorithm was implemented using C++ and ported on the designed NIOS II soft-core 

system in DE0 Nano FPGA Board to predict the total haemoglobin concentration in blood. 

 

Table 7.2: Estimated total haemoglobin with five LED wavelengths. 

Subject No  

Reference 

haemoglobin 

Estimated total haemoglobin 

With empirical formula  With PLSR model  

Sub. 1  16.10 15.49 15.89 

Sub. 2  14.20 14.49 14.17 

Sub. 3  12.00 11.64 11.98 

 RMSE 0.44 0.12 

 r 0.97 0.99 

 Accuracy 97.05% 99.44% 

 

Table 7.2 shows the estimated total haemoglobin with empirical formula and with 

PLSR model for five LED wavelengths. The estimated total haemoglobin with 

mathematical empirical formula gave a RMSE of 0.44 g/dL and with PLSR model gave a 
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RMSE of 0.12 g/dL for the validation data with three subjects. The accuracy and 

correlation was also improved with the PLSR model. Also, the system was validated with 

Bland-Altman plot as shown in Figure 7.4 (a) and (b), it was observed that the upper and 

lower limit of 95% confidence interval agreement for estimating total haemoglobin with 

empirical formula was 0.68 and -1.1 respectively and with PLSR model it was 0.12 and -

0.30. Also, the bias was -0.23 g/dL and -0.09 g/dL for estimating total haemoglobin with 

empirical formula and the PLSR model respectively. The result showed that with 

multivariate PLSR model, the estimation of total haemoglobin was very precise and 

showed good agreement between the two measurements. 

 

Figure 7.4: Bland-Altman plot (Case I). 

 

7.2 Analysis of haemoglobin estimation with five LED 

wavelengths (Case II) 

 

In Case II, seventy five subjects were enrolled in this study. The age range of 

participating subjects was 18 to 60 years with an average of 29 years that included 28 

females and 47 males. In this study, the subjects were chosen with diverse variations such 

as age and skin. The non-invasive total haemoglobin was estimated with five LED 

wavelengths using mathematical empirical formula and also multivariate (PLSR) model. 

The results were compared with each other and is discussed as follows. 
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Table 7.3: Haemoglobin estimation with empirical formula for 25 Subjects (Typical) with 

five LED wavelengths (Case II). 

Subjects Age Gender Height Weight BMI 

Reference 

haemoglobin 

Estimated 

haemoglobin 

Error  

 

Sub.1 35 M 165 62 22.8 17.5 18.05  0.55 

Sub.2 29 M 167 58 20.1 18.7 19.27  0.57 

Sub.3 37 M 165 82 30.1 15.1 14.53 -0.57 

Sub.4 20 M 165 65 23.8 16.7 16.34 -0.36 

Sub.5 32 M 167 90 32.3 16.8 16.5 -0.30 

Sub.6 21 M 174 60 19.8 15.5 14.83 -0.67 

Sub.7 28 M 172 75 25.4 14.3 13.53 -0.77 

Sub.8 23 M 176 92 29.7 15.7 15.81  0.11 

Sub.9 28 M 180 82 25.3 16.3 15.94 -0.36 

Sub.10 26 M 183 61 18.2 10.5 11.25  0.75 

Sub.11 27 M 176 74 23.9 9.9 9.53 -0.37 

Sub.12 38 F 152 62 26.8 12.5 12.93  0.43 

Sub.13 37 F 143 46 22.5 10.0 10.84  0.84 

Sub.14 21 F 152 49 21.2 13.5 13.17 -0.33 

Sub.15 27 F 160 54 21.0 13.8 14.67  0.87 

Sub.16 38 M 178 86 27.1 18.0 16.98 -1.02 

Sub.17 22 F 164 55 20.4 12.8 11.94 -0.86 

Sub.18 40 F 158 80 32.0 13.6 13.91  0.31 

Sub.19 56 M 165 80 29.3 15.2 15.31  0.11 

Sub.20 26 F 170 63 21.8 14.0 14.16  0.16 

Sub.21 37 F 152 56 24.2 12.2 11.34 -0.86 

Sub.22 37 F 163 67 25.2 11.2 11.18 -0.02 

Sub.23 50 M 157 80 32.4 13.7 13.50 -0.20 

Sub.24 57 F 170 78 27.0 13.9 13.26 -0.64 

Sub.25 45 F 154 60 25.3 13.6 13.21 -0.39 

 

Table 7.3 shows the observation of typical 25 subjects estimation of haemoglobin 

with five LED wavelengths. The database included age, gender, height, weight and Body 

Mass Index (BMI). The RMSE between the reference haemoglobin and the estimated total 
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haemoglobin with mathematical empirical formula for five LED wavelengths was 1.09 

g/dL for 75 subjects in the age group of 18 to 60 with different skin texture. 

 

7.2.1 Multivariate calibration (PLSR) model in Altera NIOS II soft-core 

system for non-invasive haemoglobin estimation with five LED 

wavelengths 

 

Cross-validation is a technique used to find out how accurately a predictive model will 

perform in practical scenario. Here, we divided the datasets manually to cross-validate our 

model. For the PLSR model, 65 Subjects' PPG signals were used for calibrating the model, 

and 10 Subjects' PPG signals for validating the model for three different cross-validation 

scenarios having 10 subjects selected randomly for validation. 

 

With cross-validation Set I 

Table 7.4: Estimation of total haemoglobin with cross-validation Set I.  

Subject  

Reference 

haemoglobin 

Estimated total haemoglobin 

With Empirical formula With PLSR model  

Sub. 1  13.60 11.05 12.16 

Sub. 2  17.50 18.05 18.09 

Sub. 3  16.70 14.82 15.19 

Sub. 4  18.70 19.27 18.89 

Sub. 5  13.70 15.06 15.02 

Sub. 6  15.90 16.29 16.56 

Sub. 7  16.70 16.52 16.49 

Sub. 8  12.30 11.35 12.07 

Sub. 9  10.90 10.86 11.54 

Sub. 10  14.20 14.24 14.48 

 RMSE 1.17 0.87 

 R 0.91 0.93 

 Accuracy 94.19% 95.12 % 

 

Table 7.4 shows the estimated results with the mathematical empirical formula and 

PLSR model for cross-validation Set I. The RMSE, correlation coefficient (r), and 
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accuracy for estimated total haemoglobin with empirical formula was 1.17 g/dL, 0.91, and 

94.19 % respectively and with PLSR model was 0.87 g/dL, 0.93, and 95.12 % 

respectively. Figure 7.5 shows the regression  analysis for estimated total haemoglobin v/s 

reference haemoglobin for cross-validation Set I. The coefficient of determination for 

estimation of total haemoglobin with empirical formula was R
2
=0.839 and with PLSR 

model was R
2
=0.872.   

 

 

Figure 7.5: Regression analysis for estimated total haemoglobin v/s reference 

haemoglobin for cross-validation Set I. 

 

Figure 7.6: Bland-Altman analysis for cross-validation Set I. 

 

From Figure 7.6 (a), it is observed that the bias was -0.27 g/dL, SD of 1.19 g/dL, 

and limits of agreement from -2.6 to 2.1 g/dL for estimating total haemoglobin with 

empirical formula. For Figure 7.6 (b), the bias, SD, and limits of agreement was 0.03 g/dL, 

0.91 g/dL, and -1.8 to 1.8 g/dL respectively for estimating total haemoglobin with the 

PLSR model.  

R² = 0.839 

R² = 0.872 

10

11

12

13

14

15

16

17

18

19

20

10 12 14 16 18 20

Es
ti

m
at

e
d

 T
o

ta
l H

ae
m

o
gl

o
b

in
 

(g
/d

L)
 

Reference Haemoglobin (g/dL) 

With Empirical formula

With PLSR Model



102 
 

 
 

With cross-validation Set II 

Table 7.5: Estimation of total haemoglobin with cross-validation Set II. 

Subject 

No 

Reference 

haemoglobin 

Estimated haemoglobin 

With Empirical formula With PLSR model 

Sub. 1  13.10 11.88 12.65 

Sub. 2  12.70 12.79 13.22 

Sub. 3  11.20 11.18 11.88 

Sub. 4  16.80 16.5 16.42 

Sub. 5  14.70 13.16 13.79 

Sub. 6  15.40 15.41 15.47 

Sub. 7  14.50 13.28 13.84 

Sub. 8  15.50 14.83 15.17 

Sub. 9  14.30 13.53 14.08 

Sub. 10  15.80 16.46 16.69 

 RMSE 0.83 0.57 

 r 0.92 0.93 

 Accuracy 95.52% 96.36% 

 

Table 7.5 shows the estimated results with the mathematical empirical formula and 

PLSR model for cross-validation Set II. The RMSE, r, and accuracy were 0.83 g/dL, 0.92 

and 95.52% with empirical formula and 0.57 g/dL, 0.93, and 96.36 % with the PLSR 

model. The coefficient of determination for estimation of total haemoglobin with empirical 

formula was R
2
=0.853 and with PLSR model was R

2
=0.870 as shown in Figure 7.7. 

 

Figure 7.7: Regression analysis for estimated total haemoglobin v/s reference 

haemoglobin for cross-validation Set II. 
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Figure 7.8: Bland-Altman analysis for cross-validation Set II. 

From Figure 7.8 (a), the bias was -0.50 g/dL, SD of 0.70 g/dL, and limits of 

agreement from -1.9 to 0.88 g/dL with empirical formula. From Figure 7.8 (b), the bias, 

SD, and limits of agreement were 0.08 g/dL, 0.60 g/dL, and -1.3 to 1.1 g/dL respectively 

with the PLSR model.  

 

With cross-validation Set III 

Table 7.6. Estimation of total haemoglobin with Cross-validation Set III 

Subject No 

Reference 

haemoglobin 

Estimated haemoglobin 

With Empirical formula With PLSR model  

Sub. 1  15.40 15.52 15.39 

Sub. 2  15.80 14.84 15.18 

Sub. 3  14.70 13.02 13.83 

Sub. 4  16.70 16.34 16.33 

Sub. 5  15.10 14.53 14.68 

Sub. 6  12.90 12.77 13.58 

Sub. 7  12.80 11.94 12.95 

Sub. 8  15.30 13.86 14.51 

Sub. 9  13.20 14.06 14.33 

Sub. 10  12.50 12.93 13.40 

 RMSE 0.89 0.68 

 r 0.84 0.89 

 Accuracy 94.80% 95.77% 
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Table 7.6 shows the estimated results with the mathematical empirical formula and 

PLSR model for cross-validation Set III. The RMSE, r, and accuracy with empirical 

formula was 0.89 g/dL, 0.84, and  94.87% respectively and with PLSR model, it was 0.68 

g/dL, 0.89, and 95.77 % respectively. Figure 7.9 shows the regression analysis for 

estimated haemoglobin v/s reference haemoglobin for cross-validation Set III. The 

coefficient of determination for estimation haemoglobin with empirical formula was 

R
2
=0.706 and with PLSR model was R

2
=0.80. 

 

 

Figure  7.9: Regression analysis for estimated haemoglobin v/s reference haemoglobin 

for cross-validation Set III . 

 

Figure 7.10: Bland-Altman analysis for cross-validation Set III. 
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From Figure 7.10 (a), it is observed that the bias was -0.46 g/dL, SD of 0.81 g/dL, 

and limits of agreement from -2.0 to 1.1 g/dL for estimating haemoglobin with empirical 

formula. From Figure 7.10 (b), the bias, SD, and limits of agreement were -0.02 g/dL, 0.72 

g/dL, and -1.4 to 1.4 g/dL respectively for estimating haemoglobin with the PLSR model. 

In all three Bland-Altman plot and analysis for different cross-validation sets, the data 

points were less spread with less bias, which clearly shows that haemoglobin estimation 

with the multivariate PLSR model is more precise. 

 

The main objective of this research work was to design a portable system for 

predicting total haemoglobin with an error of less than 1g/dl which was achieved by using 

five LED wavelengths to acquire the PPG signal and by applying the PLSR multivariate 

technique. 
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7.3 CONCLUSIONS 

 

A low-cost, portable, non-invasive total haemoglobin meter has been designed 

using fixed LED sources (Multichip LEDs) with a wavelength ranging from 670 to 950 nm 

along with Silicon detector OPT101 for PPG signal acquisition. The entire soft-core 

system was designed and the PLSR algorithm was implemented in the NIOS II on Altera 

Nano DE0 Board to estimate total haemoglobin in the blood. The filtering and Quality 

Assessment for the PPG signals were implemented to smoothen the PPG signal and to 

extract good quality peaks. The result of this study showed a good significant correlation 

between haemoglobin concentration and characteristics of the PPG signal.  

In Case I: Analysis with empirical formula was done with 15 subjects in the age 

group of 18 to 35 years with less variations such as age and skin. It was observed that total 

haemoglobin estimation with three wavelengths gave RMSE of 0.64 g/dL and 0.36 

g/dLwith five wavelengths which was much better. With the PLSR model implemented in 

the FPGA Board, the system accuracy improved by estimating total haemoglobin with 

RMSE of 0.12 g/dL with prediction accuracy of 99.43% for 3 subjects in the validation set 

for five wavelengths. 

In Case II (5 wavelengths): Analysis was done with 75 subjects in the age group of 

18 to 60 years with skin variations. With the PLSR model, the RMSE was reduced for  

Cross-Validation I: 0.87 g/dL 

Cross-Validation II: 0.57 g/dL  

Cross-Validation III: 0.68 g/dL 

The system was also validated with Bland-Altman Analysis and it was observed 

that the PLSR model showed better agreement in estimating total haemoglobin precisely 

with less bias. It was observed that RMSE with 75 subjects was slightly on the higher side 

as we have considered the diverse population with variation in skin color and age. 
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ANNEXURE I 

Program for LCD 

 

#include"altera_avalon_lcd_16207_regs.h" 

void lcd_int() 

{ 

usleep(15000); 

IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X38); 

usleep(4000); 

IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X06); 

usleep(4000); 

IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X0E); 

usleep(4000); 

IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X01); 

usleep(2000); 

} 

 

int main() 

{ 

int i; 

char j[16] ="   NON-INVASIVE  "; 

char k[16]="    HAEMOGLOBIN  "; 

lcd_int(); 

 

while(1){ 

 IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X80); 

 usleep(2000); 

 for(i=0;i<16;i++){ 

 IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,j[i]); 

 usleep (30000); 

 } 

 IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0XC0); 

 usleep(2000); 

 for(i=0;i<16;i++){ 

 IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,k[i]); 

 usleep (30000); 

 } 

 } 

 return 0; 

 } 
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ANNEXURE II 

 

Program for ADC and LCD 

#include "altera_up_avalon_adc.h" 

#include"altera_avalon_lcd_16207_regs.h" 

 

void lcd_int() 

{ 

usleep(15000); 

IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X38); 

usleep(4000); 

IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X06); 

usleep(4000); 

IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X0E); 

usleep(4000); 

IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X01); 

usleep(2000); 

} 

 

int main() 

{ 

int i; 

alt_up_adc_dev *adc; 

unsigned int thousand, hundred, ten, unit; 

int count; 

int data; 

int channel; 

char j[16]="  NON-INVASIVE "; 

char k[16]="  HAEMOGLOBIN  "; 

lcd_int(); 

 

while(1){ 

 IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X80); 

 usleep(2000); 

 for(i=0;i<16;i++){ 

 IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,j[i]); 

 usleep (30000); 

 } 

 IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0XC0); 

 usleep(2000); 

 for(i=0;i<16;i++){ 

 IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,k[i]); 

 usleep (30000); 
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 } 

 

data = 0; 

channel = 0; 

adc = alt_up_adc_open_dev ("/dev/ADC"); 

while (adc!=NULL){ 

 alt_up_adc_update (adc); 

 count += 1; 

 data = alt_up_adc_read (adc, channel); 

 data=((data*3300)/4095); 

 thousand=(data/1000)+48; 

 hundred=((data/100)%10)+48; 

 ten=((data/10)%10)+48; 

 unit=(data%10)+48; 

 

 IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0XC0); 

 usleep(2000); 

 IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,thousand); 

 usleep (30000); 

 IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,hundred); 

 usleep (30000); 

 IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,ten); 

 usleep (30000); 

 IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,unit); 

 usleep (30000); 

 IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,'g'); 

 usleep (30000); 

 IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,'m'); 

 usleep (30000); 

 IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,'/'); 

 usleep (30000); 

 IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,'d'); 

 usleep (30000); 

 IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,'L'); 

 usleep (30000); 

} 

} 

return 0; 

} 
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ANNEXURE III 

Program for PLSR Algorithm 

 

#include "pls.h" 

#include <iostream> 

#include "altera_up_avalon_adc.h" 

#include"altera_avalon_lcd_16207_regs.h" 

#include"system.h" 

#include "unistd.h" 

#include <string.h> 

#include <math.h> 

#include "altera_up_avalon_adc.h" 

#include <stddef.h> 

#include "sys/alt_dev.h" 

#include "sys/alt_alarm.h" 

#include "sys/alt_warning.h" 

 

void LCD (char dat[] ); 

void lcd_int() 

{ 

 usleep(15000); 

 IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X38); 

 usleep(4000); 

 IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X06); 

 usleep(4000); 

 IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X0E); 

 usleep(4000); 

 IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X01); 

 usleep(2000); 

 } 

 

void LCD(char dat[]){ 

   int index = 0; 

         while(dat[index]!='\0'){ 

        IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,dat[index]); 

        usleep (30000); 

        index++; 

        } 

} 
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float rounding(float var) 

{ 

 float value = (int)(var * 100 + .5); 

     return (float)value / 100; 

} 

 

int main(int argc, char ** h, char** b) 

{ 

 int index=0; 

 char string[] =  "NIOS II HB meter"; 

 char string1[] = "using PLSR model"; 

 lcd_int(); 

 IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X01); 

     usleep(2000); 

     IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X80); 

     usleep(2000); 

 LCD(string); 

 IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0XC0); 

     usleep(2000); 

     LCD(string1); 

     usleep (3000000); 

 

    char text1[] = "Refer.:"; 

    char text2[] = "Pred. :"; 

    char text3[] = "g/dL"; 

 

 Mat2D X_orig(65, 5); 

        X_orig << 2.9376, 2.5676, 2.4566, 2.2564, 2.2053, 

   2.3631, 2.0895, 1.9365, 1.8144, 1.8104, 

   2.5227, 2.4645, 2.334,  2.0823, 2.0489, 

   2.3524, 2.1783, 2.296,  1.9479, 1.921, 

   2.7318, 2.3192, 2.1971, 2.1369, 2.0726, 

   2.3816, 2.2443, 1.923,  1.8293, 1.7529, 

   2.7074, 2.5066, 2.3886, 2.3417, 2.164, 

   2.4992, 2.2108, 1.9697, 1.8935, 1.8556, 

   2.9375, 2.8251, 2.5553, 2.3387, 2.3347, 

   2.5895, 2.0733, 1.8753, 1.7809, 1.7368, 

   2.8824, 2.6388, 2.5194, 2.4807, 2.3776, 

   2.2573, 2.0136, 1.8761, 1.8014, 1.7662, 

   2.7592, 2.5103, 2.5103, 2.2817, 2.2489, 

   2.3284, 2.0843, 1.9086, 1.829,  1.7717, 

   1.8517, 1.7257, 1.9759, 1.9592, 1.7124, 

   2.6643, 2.29,  2.1602, 1.9976, 1.9648, 

   2.375,  2.1793, 2.0109, 1.8475, 1.7989, 
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   2.5037, 2.3385, 2.2092, 2.1462, 1.9245, 

   2.5334, 2.2443, 2.1044, 2.0458, 1.9743, 

   2.7536, 2.3943, 2.2928, 2.2186, 2.1788, 

   2.4349, 2.1261, 1.9254, 1.8826, 1.8634, 

   2.5312, 2.5173, 2.2315, 2.1882, 2.0412, 

   2.3479, 2.3212, 2.3153, 2.2249, 2.1003, 

   2.5924, 2.0409, 2.0144 , 1.9453 , 1.892, 

   2.7164, 2.5352, 2.4298 , 2.2533 , 2.1736, 

   2.638,  2.5809, 2.4831 , 2.2008 , 2.0503, 

   2.4098, 2.2952, 2.0128 , 1.9757 , 1.9295, 

   2.7501, 2.4623, 2.2866 , 2.2486 , 2.1732, 

   1.9407, 1.7504, 1.5471 , 1.5542 , 1.612, 

   2.7323, 2.4577, 2.4276 , 2.4243 , 1.9463, 

   2.2617, 2.0414, 1.992 , 1.8705 , 1.7417, 

   2.9807, 2.7331, 2.6502 , 2.5687 , 2.4598, 

   1.7306, 1.5082, 1.4418 , 1.3008 , 1.2504, 

   2.2042, 2.0915, 1.8566 , 1.7411 , 1.7164, 

   1.874,  1.778,  1.6524 , 1.4401 , 1.4378, 

   2.402,  2.0792, 1.9394 , 1.8304 , 1.7795, 

   2.395,  2.2868, 2.2132 , 1.8545 , 1.7946, 

   2.1848, 2.0977, 1.8561 , 1.8477 , 1.8283, 

   1.8554, 1.6159, 1.6268 , 1.5999 , 1.5798, 

   2.6541, 2.1362, 2.0063 , 1.9145 , 1.893, 

   2.2417, 2.0286, 1.9855 , 1.9514 , 1.8286, 

   2.087,  1.9994, 1.8848 , 1.7418 , 1.7072, 

   2.0517, 1.6963, 1.5352 , 1.4714 , 1.434, 

   2.1933, 1.9613, 1.8185 , 1.7727 , 1.7211, 

   2.5634, 2.1618, 2.0338 , 1.8265 , 1.8175, 

   2.1209, 1.9592, 1.7362 , 1.7109 , 1.6569, 

   1.8554, 1.6159, 1.6268 , 1.5999 , 1.5798, 

   2.5702, 2.4149, 2.2528 , 2.1292 , 2.0808, 

   2.5086, 2.2628, 1.9887 , 1.8942 , 1.8302, 

   2.3534, 2.0618, 1.9399 , 1.6983 , 1.6714, 

   2.2388, 2.3585, 2.1442 , 1.9058 , 1.9019, 

   1.9582, 1.7553, 1.6122 , 1.5489 , 1.6084, 

   2.1473, 2.0186, 1.8833 , 1.7612 , 1.7494, 

   1.8554, 1.6159, 1.6268 , 1.5999 , 1.5798, 

   2.867,  2.6278, 2.5712 , 2.3531 , 2.283, 

   2.61,  2.3078, 2.1428 , 2.0805 , 2.0138, 

   2.3676, 2.0992, 1.8886 , 1.7915 , 1.729, 

   2.7504, 2.4971, 2.3623 , 2.3557 , 2.2174, 

   2.381,  2.2598, 2.1227 , 2.0543 , 1.9846, 

   2.3199, 2.0032, 1.8316 , 1.7857 , 1.7159, 

   2.1932, 1.9248, 1.7069 , 1.6553 , 1.5879, 
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   2.5969, 2.132,  1.971 , 1.96 , 1.8849, 

   2.3567, 2.2114, 2.0379 , 1.965 , 1.9273, 

   2.5552, 2.286,  2.112 , 2.0373 , 2.0198, 

   2.0569, 1.861,  1.7743 , 1.6398, 1.5952; 

 

 Mat2D Y_orig(65, 1); 

 

       Y_orig << 15.8, 

   14.5, 

   15.4, 

   15.8, 

   13.7, 

   16.5, 

   14.7, 

   14.9, 

   17.2, 

   16.5, 

   16.5, 

   15.4, 

   16.8, 

   14.7, 

   14.7, 

   15.5, 

   14.3, 

   15.5, 

   14, 

   15.7, 

   15.3, 

   15.4, 

   17.4, 

   15.3, 

   16.1, 

   16.3, 

   15.4, 

   16.4, 

   10.5, 

   15.6, 

   13.6, 

   17.9, 

   9.9, 

   12.5, 

   10, 

   13.9, 

   13.6, 
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   13.5, 

   11.6, 

   14.1, 

   13.7, 

   12.6, 

   13, 

   12.5, 

   13.9, 

   12.1, 

   12, 

   15.2, 

   14.9, 

   12.8, 

   14, 

   12.2, 

   12.7, 

   11.2, 

   18, 

   15.8, 

   14.7, 

   16.7, 

   15.1, 

   12.9, 

   12.8, 

   13.6, 

   13.2, 

   13.8, 

   13.1; 

 

Mat2D X_pred(10, 5); 

       X_pred << 2.0864, 1.7443, 1.647,  1.5015, 1.4513, 

   3.0626, 2.9608, 2.7724, 2.4952, 2.3067, 

   2.5808, 2.457,  2.1991, 2.0228, 1.9394, 

   3.1313, 3.0273, 2.8775, 2.7402, 2.5642, 

   2.4048, 2.2908, 2.2658, 2.0594, 2.0385, 

   2.8708, 2.6025, 2.4245, 2.2464, 2.1535, 

   2.7574, 2.4977, 2.3892, 2.3567, 2.2821, 

   1.8992, 1.758,  1.7,  1.577,  1.5674, 

   1.8003, 1.7279, 1.5925, 1.4919, 1.49, 

   2.4384, 2.2322, 2.0104, 1.9896, 1.9781; 
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Mat2D Y_actual(10, 1); 

     Y_actual << 13.6, 

    17.5, 

    16.7, 

    18.7, 

    13.7, 

    15.9, 

    16.7, 

    12.3, 

    10.9, 

    14.2; 

 

    Mat2D X = X_orig ; 

    Mat2D Y = Y_orig ; 

 

    PLS_Model plsm; 

    int npred = X_orig.cols(); 

    int nresp = Y_orig.cols(); 

    int ncomp = 5; 

    plsm.initialize(npred, nresp, ncomp); 

 

while (1){ 

    plsm.plsr(xmat,ymat, KERNEL_TYPE1); 

     

   for(int h = 0; h<= 0; h++){ 

        IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X01); 

       usleep(2000); 

       IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X80); 

        usleep(2000); 

       LCD(text1); 

       index =0; 

          while(display[h][index]!='\0'){ 

                

IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,display[h][index]); 

                  usleep (30000); 

                  index++; 

                  } 

 IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0XC0); 

       usleep(2000); 

       LCD(text2); 

 

   float dat; 

   dat=  *(meansy.data()) + *(plsm.fitted_values(xmatp).data() + h); 

   dat = rounding(dat); 
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   std::ostringstream ss; 

   ss << dat; 

   std::string s(ss.str()); 

   index = 0; 

  while(s[index]!='\0'){ 

   IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,s[index]); 

   usleep (30000); 

   index++; 

   } 

   IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0XCC); 

   usleep(2000); 

   LCD(text3); 

   usleep(5000000); 

   }   } 

return 0; 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	0c1b8413449df02b73759a8f27d2016c77de0589b567acfcc8d47f212ac822c1.pdf
	0c1b8413449df02b73759a8f27d2016c77de0589b567acfcc8d47f212ac822c1.pdf
	0c1b8413449df02b73759a8f27d2016c77de0589b567acfcc8d47f212ac822c1.pdf

