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PREFACE

This thesis is about the “Development of Novel Soft-Core Embedded Architecture
for Total Haemoglobin Estimation using Multivariate System”. This architecture is
developed using Altera NIOS Il soft-core platform on DEO board having target as
CYCLONE IV. The multivariate (PLSR) algorithm is developed in C++ language and
ported on the NIOS Il platform to estimate non-invasive haemoglobin concentration in

human blood using five LED wavelengths in the range of 670 nm to 950 nm.

Chapters 1 contain an introduction to the thesis along with overview of anaemia and
prevalence of anemia globally. It focuses on the problems associated with the invasive
method and the mentions the importance in developing a non-invasive haemoglobin
device.

Chapter 2 describes a literature review on various invasive and non-invasive methods in
measuring haemoglobin. It also reviewed on the development of non-invasive
haemoglobin devices by several researchers.

Chapter 3 discusses on optical absorption of skin tissue and blood. It also discusses the
estimation of haemoglobin using visible and near-infrared light to estimate haemoglobin
using the PPG features along with the mathematical empirical formula.

Chapter 4 discusses the methodology in designing an embedded platform for estimating
non-invasive haemoglobin. It also focused on the selection of LED wavelengths,
photodetector, and the importance of standardizing LEDs power to estimate non-invasive
haemoglobin.

Chapter 5 elaborates on the various multivariate methods. It also discusses the multivariate
Partial Least Square Regression (PLSR) model that was implemented in ParLes software
for preliminary analysis.

Chapter 6 describes the design of an Altera NIOS Il soft-core system for non-invasive
haemoglobin estimation. It contains a survey of soft-core processors, DEO Nano board to
configure the NIOS Il soft-core. Also, it describes the multivariate (PLSR) model
implemented in the designed system to test and verify different validation cases.

Chapter 7 gives us a review on the results obtained for two different cases. Also, different
performances measures such as Root Mean Square Error (RMSE), R? (Coefficient of
determination), and r (Correlation coefficient) was used for comparisons. The designed

system was also validated with Bland-Altman plot and analysis.

X
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Chapter 1

Introduction

1.1 Anaemia Overview

In the present scenario, it is very important to monitor the total haemoglobin count
of patients during surgeries, deliveries, blood donations, dialysis in hospitals and also for
monitoring patients in intensive care units, etc. Anaemia is a condition in which the blood
has less than the required number of healthy Red Blood Cells (RBC) or when the
haemoglobin level in the blood drops below the normal level. Anaemia can occur due to
various causes like blood loss, decreased or faulty RBC production, destruction of RBC.
Further on, it can also originate from a variety of factors that include nutritional
deficiencies (e.g. iron deficiency and other nutritional deficiencies like vitamin B12,
vitamin A, and folate), infections (e.g., malaria, hookworm disease, Human
immunodeficiency virus (HIV)) [1, 2], chronic medical conditions (e.g., chronic kidney
disease, inflammatory/autoimmune disorders)[1, 2], haemoglobin or RBC disorders (e.g.,
sickle cell disease (SCD), thalassemia, myelodysplastic syndromes), and pharmaceutical

drug treatment (e.g., cancer chemotherapy) [3, 4].

Iron deficiency anaemia occurs due to low dietary iron consumption, chronic blood
loss, blood loss due to hookworm infection, and iron mal-absorption, all of which are more
common in low- and middle-income countries [5]. In endemic regions, malaria is a leading
cause of anaemia. Malaria causes anaemia, especially in young children, in high-
transmission areas. Malaria has been linked to maternal anaemia during pregnancy as well
as poor birth outcomes at all levels of transmission [6]. SCD and thalassemia are inherited
haemoglobin diseases that induce hemolysis of RBCs and severe, persistent anaemia [7, 8].
Haemoglobin levels are also decreased in patients due to blood loss in traumatic
hemorrhages, cardiac surgery [9]. Early detection and treatment of anaemia can help to
reduce the severity of the condition [10]. Misdiagnosis of the cause of anaemia will result
in the wrong treatment, which can result in serious clinical consequences [11]. As a result,
a quick and correct diagnosis of anaemia, as well as the identification of the underlying
illness etiology, are critical. Before blood donation, the donor's eligibility must be

identified and reviewed by a physical examination, a health history determination, and a



haemoglobin measurement. The haemoglobin levels for donor eligibility are more than
13.5 g/dL for males and more than 12.5 g/dL for females [12, 13]. Polycythemia vera is a
condition in which the number of RBCs in the blood is abnormally high. In this condition,
the blood becomes too thick and makes clotting easier. This increases the risk of heart
attacks and strokes. The condition may be caused by several health-related factors
including smoking, congenital heart disease, dehydration (decreased water), and hypoxia

(low blood oxygen levels).

1.2 Worldwide Anaemia Breakdown

According to World Health Organization (WHO), anaemia is one of the world's
most common health issues affecting pregnant women, preschool children, and adolescents
[14, 15]. In milder situations, anaemia produces weakness, tiredness, and dizziness; in
more severe cases, anaemia causes life-threatening cardiovascular collapse [3, 4].
Globally, anaemia affects 1.62 billion people, which corresponds to 24.8% of the
population. The highest prevalence is in preschool-age children (47.4%) and the lowest
prevalence is in men (12.7%). However, the population group with the greatest number of
individuals affected is non-pregnant women which are around 468 million as shown in
Table 1.1 [16, 17].

Table 1.1: Prevalence of anaemia globally.

Population Group Prevalence of anaemia Population affected number
(percent) (million)

Preschool-age children 47.4 293
School age children 254 305
Pregnant Women 41.8 56

Non-Pregnant Women 30.2 468
Men 12.7 260
Elderly 23.9 164
Total Population 24.8 1620

WHO regional estimates generated for preschool-age children and pregnant and
non-pregnant women indicate that the highest proportion of individuals affected are in
Africa (47.5-67.6%), while the greatest number affected are in South-East Asia where 315

million individuals in these three population groups are affected. The prevalence of



anaemia in each WHO region is listed in Table 1.2 [16, 17]. In the global burden of disease
(GBD) study done in 2013, the Institute for Health Metrics and Evaluation found that
anaemia affected 27.0 % of the world's population (i.e. 1.93 billion people) [7]. Anaemia
affected 41.8 % of pregnant women, 30.2% of non-pregnant women, 47.4% of preschool
children, and 25.4% of school-aged children based on the data collected between 1993 and
2005 [16].

Table 1.2: Prevalence of anaemia in each WHO region.

WHO region Preschool-age ~ Pregnant Non-pregnant
children women women
Africa 67.6 57.1 47.5
Americas 29.3 24.1 17.8
South-East Asia 65.5 48.2 45.7
Europe 21.7 25.1 19.0
Eastern Mediterranean 46.7 44.2 32.4
Western Pacific 23.1 30.7 21.5
Global 47.4 41.8 30.2

In 2021, WHO estimated that 29.6 % of non-pregnant women, 36.5 % of pregnant
women, and 39.8 % of preschool children are anaemic globally, according to data gathered
upto 2019 [17]. When compared to other developing nations, India has a high prevalence

of anaemia, as seen in Table 1.3 [17].

Table 1.3: Prevalence of anaemia in various countries.

Preschool-age Pregnant Non-pregnant

Country children Women women
Brazil 16.1 19.1 16
Australia 8.5 15.7 8.2
Afghanistan 42.6 36.5 43.2
Pakistan 41.3 44.0 41.1
India 53.0 50.1 53.1
Liberia 42.6 49.7 41.9

Yemen 61.5 575 61.8




The prevalence of anaemia in pregnant women and children is shown in Figures
1.1 and 1.2 respectively. Women in their childbearing years are more vulnerable to iron
deficiency anaemia arising from blood loss from menstruation and the increased blood
supply needs during pregnancy. Pregnant women that are anaemic have an increased rise
in low birth weight and increased prenatal and maternal mortality. Also, women who are
anaemic have severe problems during menstruation and pregnancy [18].
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Figure 1.1: Prevalence of anaemia in pregnant women [17].
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Figure 1.2: Prevalence of anaemia in preschool age children [17].



1.3 A brief history of monitoring haemoglobin in the blood

The haemoglobin molecule is made up of four protein chains with a central iron
atom that binds an oxygen molecule. The structure of haemoglobin molecule is shown in
Figure 1.3. When a haemoglobin molecule carries four oxygen molecules, it is referred to
as oxyhemoglobin, and when it is not completely saturated with oxygen, it is referred to as
reduced haemoglobin. Haemoglobin is an iron-containing oxygen-transport metalloprotein
found in RBCs that delivers oxygen to tissues while returning carbon dioxide to the lungs
[19].

Home
(Fe-protoporphyrin 1X)

Figure 1.3: Structure of haemoglobin molecule [20].

The volumetric estimation of haemoglobin in red corpuscles in the blood is defined
as hematocrit. Haemoglobin is typically tested using the whole blood count method and is
represented in grams (g) per deciliter (dL) of whole blood. [21]. The normal haemoglobin
concentration varies by gender, age, and altitude. The normal range of haemoglobin
concentration in blood is from 14 to 18 g/dL for males and 12.0 to 16 g/dL for females
[22]. The haemoglobin thresholds used to define anaemia are listed in Table 1.4 [16].

Table 1.4: Haemoglobin thresholds used to define anaemia.

Gender Group Haemoglobin Threshold (g/dL)
Preschool age children 11
Pregnant Women 12
Non- pregnant Women 11

Men 13




The current diagnostic method for haemoglobin measurement, in a clinical
laboratory, is a complete blood count using an automated hematology analyzer where
blood is collected from a vein which includes the insertion of a needle, which causes minor
discomfort to the individual. Also, it takes a lot of time to obtain the results from a
pathology laboratory which does not allow real-time monitoring of the patient in critical
situations. Hence, accurate, real-time, and non-invasive estimation of haemoglobin is very
important. A non-invasive method allows on-the-spot or continuous monitoring of
haemoglobin and provides safe management of subjects with minimal risk of infection and
reduced pain [23, 24]. To address these challenges in estimating total haemoglobin, a real-
time, non-invasive system was designed using an Altera NIOS Il soft-core system with a
finger probe consisting of five LED sources and OPT101 to detect the transmitted signal
through the finger using the photoplethysmography (PPG) principle.

1.4 Composition of blood and its functions

Blood is a fluid that moves through the vessels of the circulatory system. The main
components of blood are plasma, RBCs, white blood cells (WBCs), and platelets. Blood
has, as its main function, the transportation of oxygen and nutrients to the lungs and
tissues. Cells and platelets make up about 45% of human blood, while plasma makes up
the other 55%.

Plasma

Plasma is the main component of blood which contains 90% water, with the
remaining 10% consisting of proteins, ions, nutrients, and other wastes. Albumin is the
main protein in plasma, and it helps in the prevention of fluid leakage from blood vessels
into tissues. Antibodies, which actively protect the body against bacteria, viruses, fungi,

and cancer cells are among the other proteins found in plasma.

Red Blood Cells

RBCs, also known as erythrocytes, account for 40% of the volume of blood.
Haemoglobin is found in RBCs which is a protein that allows it to transport oxygen from
the lungs to all body tissues. Cells use oxygen to generate energy for the body, leaving
carbon dioxide as a waste product. Carbon dioxide is carried away from the tissues by
RBCs and returned to the lungs. RBCs pick up oxygen in the lungs and release it to the



surrounding tissues as they circulate through the rest of the body. RBCs are also involved
in the transport of carbon dioxide, a waste product, from tissues to the lungs. RBCs have a
lifespan of 120 days on average. In the liver and spleen, old or weakened red blood cells
are broken down, and new ones are formed in the bone marrow. The hormone
erythropoietin, which is released by the kidneys in response to low oxygen levels,
regulates RBC activity. The number of RBCs in the body remains relatively constant over

time.

White Blood Cell
WABCs, also known as leukocytes, are fewer than RBCs and account for less than

1% of the cells in the blood. WBCs play a key role in the body's defense against infection.

Platelets

Platelets, also known as thrombocytes, are small and are lesser in number than red
or white blood cells. Platelets aid in the clotting process by grouping together at a bleeding
site to create a plug that closes the blood vessel; thrombocythemia occurs when the
quantity of platelets in the blood is too high. In this condition, too much blood clotting
occurs and blocks the blood vessels, causing problems such as a transient ischemic attack
[25, 26].
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Chapter 2

Literature Review

Haemoglobin test is very important to screen and diagnose conditions that affect
the RBCs; for anaemia (low haemoglobin) or Polycythemia (high haemoglobin). Also, it's
important to test for blood donations and major surgeries. Hence it becomes crucial to
monitor the haemoglobin levels. Many different methods are used to monitor
haemoglobin, these methods can be broadly classified into invasive and non-invasive. In
this chapter, we provide an overview of the different invasive techniques like reagent-

based and reagent-less methods and non-invasive methods.

2.1 Invasive methods

In Invasive methods, blood tests are done by pricking the finger or drawing blood

from the arm under medical guidance.

2.1.1 Haemoglobincyanide method

Haemoglobin is converted to cyanmethemoglobin using this method, which
involves adding ferricyanide and potassium cyanide to a standard solution. The
erythrocytes are destroyed by a haemoglobin solution that is equally distributed. All types
of haemoglobin found in blood are converted to a single cyanmethemoglobin, with the
solution's absorbance measured at 540 nanometers in a spectrophotometer. At this
wavelength, hemoglobincyanide exhibits a broad absorption peak. The availability of an
internationally accepted reference standard calibrator is one of the advantages. It also
provides accurate and precise results. The disadvantage is that it is time-consuming. The
potassium cynaide is photosensitive and toxic. This technique is still employed in clinics,
particularly in poor countries [1].

10
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2.1.2 Vanzetti's Azide Methemoglobin method

Haemoglobin is converted to potassium ferricyanide to produce the coloured, stable
azide methemoglobin form, which has an absorbance spectrum that is almost identical to
Haemoglobincyanide. In this method, sodium azide is replaced with potassium cyanide as
a reagent. First, the blood is extracted into a dry reagent cuvette by capillary action. The
reagent then breaks down the RBC walls, releasing free haemoglobin, which is then
oxidised to methemoglobin. Finally, it is converted into azide methemoglobin a stable
colored complex. This complex is then photometrically measured at 570 nm and 880 nm
for turbidity compensation; the measurement takes between 15 to 60 seconds, depending
on the haemoglobin concentration. HemoCue 201 and EKF Hemo Control are shown in
Figures 2.1 and 2.2 respectively [2]. It is quick and gives immediate result. The use of

disposable cuvette makes it expensive.

Figure 2.1 : HemoCue 201[3].

Figure 2.2: Hemo Control [2].
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2.1.3 Reagent-Less method

HemoCue301 was the first POC device to have reagent-based cuvettes as shown in
Figure 2.3. This device measures the absorbance of oxyhaemoglobin and
deoxyhaemoglobin, while the turbidity is measured and compensated at 880 nm. The
DiaSpect technology measures haemoglobin concentration without a reagent. The optical
sensor element calculates the absorbance of the blood for a wide wavelength range [4].

Figure 2.3: HemoCue 301[5].

2.1.4 Copper sulphate method

To ensure a certain haemoglobin level for blood donation, the copper sulphate
method is utilized, which is based on the haemoglobin dependent gravity of blood. A
blood droplet is allowed to fall into a copper sulphate solution with a specific gravity equal
to blood having a cut-off haemoglobin level of 12.5 g/dL as shown in Figure 2.4. The
donor qualifies if the drop of blood sinks to the bottom in a reasonable length of time. The

donor is rejected if the drop of blood floats or takes too long to sink [6].

Figure 2.4: Specific gravity method [7].
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2.1.5 Sahli's method

The haemoglobin meter is a device that has a haemoglobin tube, pipette, stirrer,
and comparator as shown in Figure 2.5. Haemoglobin is converted to acid hematin using
hydrochloric acid. This solution is then diluted until the colour matches the comparator
block. The clinician utilizes the calibration tube to calculate the haemoglobin
concentration. This method is simple, inexpensive and the results are not always precise.
The produced colour is unstable, and it must be read after 10 minutes of standing. The

other disadvantages are inter-observer unpredictability [8].
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Figure 2.5: Sahli's method [9].

2.1.6 Hematology Analyzer

This is an automatic analyzer to provide high throughput to analyze haemoglobin
levels from the blood sample as shown in Figure 2.6. This method has a higher precision
value when compared with manual methods. The initial cost of setting up is high and it
may not be suitable outside a laboratory environment. Also, regular maintenance and
laboratory personnel are needed which increases the costs. In most instances, the sample
needs to be sent to the laboratory causing longer turn-around times for the results [5,10].
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Figure 2.6: 5-part Hematology Analyzer [10].
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2.1.7 Blood Gas Analyzer

Blood gas analyzers (BGAS) analyze a mixture of blood gas, pH, electrolytes,
metabolite parameters, and haemoglobin from whole blood samples, primarily arterial
blood. They're typically seen in intensive care units, surgery rooms, delivery wards, and
emergency rooms. This device is more robust and user-friendly, although it still requires
maintenance [3,11]. In the clinical environment, BGAs such as the ABL 800 Flex is used

as shown in Figure 2.7.

Figure 2.7: ABL800 Flex Blood Gas Analyzer [11].

2.2 Non-Invasive methods

In the non-invasive method, the tests do not require puncturing the skin. This
technique offers several advantages such as avoiding finger pricking, no pain, and

discomfort, as well no exposure to medical staff, and no biomedical waste.

2.2.1 Histogram-based image processing

The blood vessel imaging is based on infrared light absorption. In the reflection
method, IR LEDs illuminate the target and the reflected light is filtered with an IR filter.
The image is captured by a charge-coupled device camera. In the transmission method, IR
light source is located on the opposite side of the target. Many blood constituent evaluation
initiatives are based on image-based blood research, but most processing algorithms are
difficult to implement and unable to handle large images. Histogram-based image
processing has grown popular as a way to speed up image processing since it is simple to

implement and understand [12, 13].
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2.2.2 Smartphone-based non-invasive system

Smartphone-based non-invasive methods for determining haemoglobin levels have
recently been used. Because of the visibility of conjunctival mucosa and underlying micro-
vessels, some of these technologies employ images of the lower eyelid. To compute the
haemoglobin level, eyelid-based images and a colour chart are combined. These
technologies are currently unreliable for estimating haemoglobin levels. To improve access
to haemoglobin testing and properly manage patients with hematologic diseases, a
noninvasive, easy-to-use, and inexpensive assessment of haemoglobin levels is desired. A
smartphone-based haemoglobin estimate tool may also assess crucial physiological
parameters to provide a snapshot of a patient's state at home with a haemoglobin issue. In
smartphone-based, the videos are captured using near-infrared light and are processed
using image processing techniques and machine learning algorithms to estimate non-

invasive haemoglobin concentration in blood [14].

2.2.3 Impedance Plethysmography

Impedance plethysmography (IPG) is a method of measuring blood volume
changes by detecting changes in impedance. The blood volume in the arteries changes
during the cardiac cycle. The change in blood volume in peripheral tissue can be measured
by measuring the change in impedance in that tissue [15]. An alternating current is passed
through a peripheral body part that has been identified, and differential voltage changes
across it are recorded in IPG. These voltage changes are caused by changes in blood flow.

2.2.4 Optoacoustic

Optoacoustic uses short laser pulses which generate optoacoustic waves also
known as ultrasonic waves in absorbing media. The depth of the signal determines the time
resolution of the resultant signal, which is detected using an acoustic transducer. When
compared to light waves, ultrasonic waves scatter and attenuate significantly less in
tissues. Tissue characterization with submillimeter resolution can be achieved by detecting

and analyzing the temporal features and amplitude of optoacoustic pressure waves [16].
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2.2.5 Diffuse reflectance spectroscopy

Diffuse reflectance spectroscopy is a non-invasive technique for determining the
characteristic reflectance spectrum generated when light passes through a substance.
Absorption and scattering are the primary mechanisms involved, which always vary with
wavelength to produce the reflectance spectrum, which is recorded and contains
information about the optical properties and structure of the medium being studied [17].

2.2.6 Photoplethysmography

Photoplethysmography (PPG) is a low-cost, non-invasive optical method that
measures changes in blood volume in a microvascular bed of tissue [18]. PPG uses
different light sources to measure the transmission or reflection of light through the
volume of blood-based on the light absorption characteristics of haemoglobin. It is low

cost, portable, and easy to use.

Sensors

Optical sensors are photometric devices that capture an optical signal from an
external source, which can be an LED, laser, or different spectra of light [19]. Photodiodes,
which are made of InGaAs and Indium phosphor, are typically utilized as optical sensors.
Also, there are optical sensors that contain an on-chip trans-amplifier that has a high
spectral response from 500nm-1600nm. We will discuss several sensors using CMOS,
CCD, InGaAs sensor, and a specialized PPG sensor which is routinely used for acquiring
PPG signals.

CMOS sensor

Complementary Metal Oxide Semiconductor (CMOS) converts photons to
electrons for digital processing. Photolithography-light-capturing cells in CMOS chips
capture photons of various wavelengths and convert them to electrons. A digital-to-analog
converter converts electrons into different-colored pixels [20]. The RGB camera collects
three spectral images in three separate spectral ranges (600-700 nm, 500-600 nm, and 400-
500 nm) and converts the intensity of red, green, and blue values into optical density

variations and then used to map skin haemoglobin distribution.
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CCD sensor

A CCD is a light-sensitive integrated circuit (IC) in which each pixel is turned into
a color-related electrical charge. CCDs have a high sensitivity and can produce an image
even in low-light situations. Even when the illumination level is low, the image quality is

not significantly affected [21].

Photodetectors

Photodetectors are designed to detect photons. The reverse current flows through
the photodiode when it is sensing light. If the photons excite carriers in a reverse biased
PN junction, a very small current proportions to the light intensity flows. The sensitivity
depends on the wavelength of light. Photons are converted to a measurable signal by a
detector, which is employed in all spectroscopic studies. All the detectors are evaluated in
terms of spectral response, quantum efficiency, and response time. The range of optical
wavelengths or frequencies in which a photodetector has a high responsivity is known as
its spectral response. Silicon photodiodes are used in the UltraViolet and visible regions of
the spectrum and are not sensitive beyond 1100 nm. Photodiodes made of germanium are
insensitive to Ultraviolet and can detect wavelengths up to 1800 nm. Responsitivity (R;) is
defined as the ratio of radiant energy (in watts) P, incident on the photodiode to the
photocurrent output in amperes (I,). Quantum efficiency is a measure of how much a
detector can convert photons into an electrical signal. Response time is the time taken by

the detector output to respond to the changes in the light intensity [22, 23].

InGaAs photodetector and Si Photodetector

Indium Gallium Arsenide (InGaAs) is a gallium arsenide-indium arsenide alloy.
InGaAs is utilized as an infrared light detector in photodiodes. An InGaAs photodiode's
spectrum response is between 850 nm to 1800 nm [24]. The spectral response of Silicon
(Si) Photodetector is between 400 nm to 1000 nm. The spectral response for a photodiode
Is amps per watt of incident radiation. The spectral response for several semiconductor

photodiodes is shown in Figure 2.8.
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Figure 2.8: Spectral response for several semiconductor photodiodes [23].

With the rise in new technologies to estimate haemoglobin concentration, non-
invasive methods are widely used. Some of the non-invasive devices use the principle of
pulse oximetry while others capture the transmitted data using white light and calculate
haemoglobin concentrations in the tissue capillaries. Recently, non-invasive methods have
become commercially available using near-infrared spectroscopy to identify the spectral
pattern of haemoglobin in an underlying blood vessel and derive a measurement of
haemoglobin concentration. Given the advantage of obsolescence of finger-sticks and the
option for more frequent measurements in clinical settings, the literature remains unclear
about the precision and accuracy of the current non-invasive haemoglobin monitors. In
practical use, patient movement, nail polish, skin color, or ambient light have been shown
to influence the measurement. Recent technological advancements have made non-
invasive methods for point-of-care anaemia screening a promising new option. These
methods do not require a blood sample to produce results, reducing the risk of infection
and eliminating patient pain involved in testing. Non-invasive devices also have an
inherently different cost structure than invasive methods, since they do not require
additional material inputs for each test administered. Instead of analyzing blood
haemoglobin levels directly, noninvasive devices use spectrophotometry to estimate

haemoglobin concentration based on light intensity.
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2.2.7 Commercially available haemoglobin meters
Radical® Device

Masimo Corporation has developed Radical 7, a non-invasive device, which
utilizes a sensor with various LEDs in the range of 500 nm to 1400 nm that passes light
through a fingertip and measures the changes in light absorption during the blood pulsatile
cycle using a photodetector. The maximum radiant power of the strongest light is rated at
< 25 mW. This can measure haemoglobin in the range of 8 g/dL to 17 g/dL with a
precision of 1 g/dL[25]. It estimates the haemoglobin levels in approximately between

30 to 45 seconds when the finger is placed.

NBM-200

The NBM 200 works on occlusion spectroscopy technology. It uses a ring-shaped
sensor probe with LED wavelength range from 600 to 940 nm that fits on the subject's
finger. The sensor temporarily occludes the blood flow and measures the intensity of
multiwavelength light passing through the finger which is proportional to haemoglobin
concentration. The average radiated power is < 1 mW. This can measure haemoglobin in
the range of 7 to 17 g/dl with a precision of less than 1g/dL [26]. It estimates the
haemoglobin levels in approximately between 90 to 120 seconds when the finger is placed.

ASTRIM FIT

The ASTRIM FIT uses the principle of the Near-infrared spectroscopic image
measurement method. Red or near-infrared light easily passes through the living body, and
the transmitted light is detected using a CMOS camera located on the opposite side of the
LED. The density of the blood vessel image obtained from the transmission image is
determined by the degree of dimming of the blood, that is, the amount of haemoglobin in
the blood. Astrim calculates the haemoglobin estimate per unit area based on the blood
vessel image from multiple wavelength light sources and the blood vessel width. It
estimates the haemoglobin levels in approximately 40 seconds when the finger is placed
[27].
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Haemospect®

The Haemospect® device (MBR Optical systems, Wuppertal, Germany) uses
transcutaneous reflection spectroscopy to measure haemoglobin levels. The Haemospect
works by placing a sensor on the palm side of the dominant hand immediately below the
index finger, and as subsequent measurements are often necessary to obtain a reading, a
second measurement can be taken by placing the sensor on the forearm of the same arm.
The sensor projects white light into the underlying tissue, and some of this light is
absorbed while the rest is reflected in the device to be broken down into separate
wavelengths by a spectrometer and analyzed by an electronic evaluation unit connected to
the system [28]. It estimates the haemoglobin levels in approximately between 20 to 30

seconds when the finger is placed.

ToucHb

ToucHb (Biosense, Irvine, California) is a non-invasive device that works on
reflectance photometry. Instead of analyzing different wavelengths of light, it assesses
overall light intensity as a way to quantitatively measure pallor and estimate haemoglobin
concentration in the blood. This device captures an image of the patient’s exposed
conjunctiva, which is then used to measure pallor and predict blood haemoglobin

concentration in grams per deciliter [29].

| -
Masimo SpHb Orsense NMB 200 ASTRIM FIT Haemospect
(a) (b) (c) (d)

Figure 2.9: Commercially available non-invasive haemoglobin meters.

Apart from commercially available non-invasive devices as shown in Figure 2.9,
several researchers are working to improve the prediction accuracy level. Edwards et al.
[30] used NIRS to establish a non-invasive way of detecting haemoglobin flow across an
organ. They assessed changes in deoxyhemoglobin and oxyhemoglobin concentrations by

monitoring fluctuations in near-infrared light absorption in the organ. They captured the



21

spectral response using laser diodes with wavelengths of 797.5, 802.5, 831.2, 848.7, 866.5,
and 907.8 nm in the forearms of six healthy young adults to assess haemoglobin flow
using least-squares linear regression. R. Kumar et al. [31] worked on photons at two
wavelengths (741 nm & 810 nm) which were pumped into the skin of the finger and the
transmitted photons were received at a photodetector which is calibrated in terms of
haemoglobin content in the blood. For each sample, the haemoglobin level was measured
using a cyan-methemoglobin method and stored in the system. R. Doshi et al. [32]
developed a device with two wavelengths 660 nm and 940 nm along with OPT101 to
detect light transmitted through the subject's finger. The sensor probe was tested on 60
subjects from different age groups and it was observed that the AC signal was proportional
to haemoglobin measure using a conventional method. Nirupa et al. [33] acquired PPG
signals by illuminating the finger with monochromatic light at two different wavelengths
(624 nm and 850 nm). To determine haemoglobin content in blood, an empirical equation
was created utilizing a model for light attenuation via skin, bone, tissue, and blood, well-
known extinction coefficients of haemoglobin, and clinical data. Two different empirical
equations (one for the male population and the other for the female population) were
implemented and the errors in the estimated haemoglobin concentration were reduced
compared to having just one empirical equation that combines both genders for 69
subjects. Rochmanto et al. [34] developed non-invasive hemoglobin for anaemia diagnosis
with spectroscopy methods with two LEDs at the wavelength of 670 nm and 940 nm and a
photodiode to detect the transmitted light through the finger for 78 subjects of pregnant
women. M.P. Mcewen et al. [35] used multiple wavelengths of high-power light sources
with a focusing lens and two photo-detectors (BPW34B- 470 nm & PT611- 1200 nm) in
conjunction with noise cancellation techniques to estimate haemoglobin. X. Li et al. [36],
utilized spectroscopy methods for non-invasive haemoglobin measurement using eight
laser diodes in the wavelength range from 600 nm to 1100 nm to record PPG signals in
220 subjects. However, their instrument setup was not portable for the non-invasive
measurement of haemoglobin. Timm et al. [37] developed an optical-based sensor system
with three LEDs (670 nm, 810 nm, and 1300 nm) and a single photodetector (InGaAs) to
measure the intensity of the received wavelength. Later, it was processed using LabVIEW
with an empirically derived partial least squares (PLS) calibration and statistical regression
of the measurements to estimate the haemoglobin concentration. Ding et al. [38] developed
a high-performance spectrophotometric system with a broadband light source consisting of

9 LEDs (600 to 1050 nm) with a grating spectrograph and Si photodiode array and
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recorded the finger tip spectra of 109 volunteers. Konyukhov et al. [39] designed a finger
probe to acquire PPG signal (LASER diodes with four wavelengths of 658 nm, 776 nm,
974 nm, and 1348 nm) to estimated haemoglobin level using computer-based software.
Ulrich Timm et al. [40] developed a photometric device OxyTrue Hb® with four
wavelength in the range of 600 nm to 1400 nm to measure the haemoglobin and
methemoglobin concentration non-invasively and compared with the reference devices
HemoCue® and a blood gas analyzer with 1008 measurements. H. Liu et al. [41]
developed a system for non-invasive monitoring of haemoglobin concentration using eight
LEDs in the wavelength range from 610 to 940 nm with a photodiode array. The system
was a portable, continuous, and non-invasive haemoglobin monitoring system but utilized
a lot of resources and power. With the advancement in technology, several non-invasive
methods like transmission spectroscopy, reflection spectroscopy, imaging, video, and
optoacoustic spectroscopy have been proposed for the estimation of concentration in
blood.

In our study, Optical Photoplethysmography (PPG) method is used which is low-
cost, easy to use, and portable is used for non-invasive estimation of haemoglobin. The
finger probe was designed with Multichip LED's with 5 wavelengths and a photodetector
to acquire good quality PPG signals and to implement preprocessing and quality
assessment of the PPG signal to extract the main features of the PPG signal. The entire
system was designed on an Altera NIOS 1l soft-core system to customize the core as per
our requirements by minimizing the resources thereby decreasing power consumption.
And also, to improve the prediction accuracy of estimating total haemoglobin present in
blood with an error of less than 1g/dL. And finally to make the designed system portable

and inexpensive.
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Chapter 3
Haemoglobin Estimation using

Photoplethysmography

Spectroscopic measurements are mainly performed using three methods viz.
Absorption, Scattering, and Emission. Scattering spectroscopy, e.g. Raman spectroscopy,
analyses the quantity of light that a substance scatters at specific wavelengths, incidence
angles, and polarisation angles in order to determine physical electromagnetic
characteristics. Emission spectroscopy examines the light spectra emitted by a substance,
whose energy is from a variety of sources such as temperature or chemical processes.
Absorption spectroscopy uses the detection of transmitted or reflected photons with the

same wavelength as the incident beam to quantify the quantities of compounds.

3.1 Optical properties of human tissue and blood

Light can penetrate deep enough into human tissues to permit spectral
measurements. Optical imaging and non-invasive diagnosis of the human body depend
largely on the optical and physical properties of the skin and blood. The skin's composition
and morphology are extremely complex. Consequently, the composition and structure of
the skin (finger) need to be investigated in order to build a suitable optical model.

3.1.1 Structure and composition of skin tissue

Various areas of the body have different skin structures and qualities. Figure 3.1
depicts the typical structure of the skin. The skin can be divided into three parts viz.
epidermis, dermis, and subcutaneous fat. The thickness of the skin varies from 0.5 to 4.0
mm depending on the body site. The epidermis is made up of epithelial tissue, which
comprises four major cell types: keratinocytes, melanocytes, Merkel cells and Langerhans
cells. Keratinocytes create the protein keratin which protects the skin from heat, infections,
and chemicals. Melanocytes are the pigment cells responsible for skin colour. They also
protect the skin from UV rays. The Merkel cells act as touch sensors while Langerhans

cells deal with immunological response. The stratum corneum is a thin, rough, and
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protective top layer of dead and dry skin cells that covers the epidermis outermost layer.
The dermis is made of cells, fibres, nerves, oil glands, sweat glands, blood vessels, and
hair roots. The vascular network and sensory nerve endings are found in the papillary
dermis, whereas the deeper reticular dermis is mostly made up of a loose connective
structure and epithelial-derived structures like glands and follicles. Fat cells form

subcutaneous fat, which acts as a cushion between the skin and the deeper muscles[1].
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Figure 3.1: Structure of human skin [2].

Among the various possible body sites, the fingertip has several advantages.
Fingertips are easily accessible, less sensitive to minor manipulations, and generally easy
to control. In Figure 3.2, the different parts of a finger are depicted. The average adult
male's fingernail is around 1 mm thick, the epidermis is 1.5 mm thick, the dermis is 3 mm
thick, the finger bone is 6 mm thick, and the entire thickness of a finger from the dorsal to
the ventral pad side is about 14 mm thick. The fingernail is made up of a translucent rigid

protein called keratin [3].

Dorsal area

Figure 3.2: Different parts of the finger and it's thickness.
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3.1.2. Optical absorption by skin tissue and blood

VIS-NIR spectroscopy uses the visible and near-IR regions of the electromagnetic
spectrum. Melanin, lipids, proteins, and enzymes are among the chromophores found in
tissues, in addition to haemoglobin and water. The varying concentrations of these
essential components influence the tissue's overall absorption coefficient. The properties of
VIS-NIR absorption change depending on the tissue constituents. Tissue is mostly made
up of water, which absorbs light extremely well in the ultraviolet and long infrared
wavelengths. Longer wavelengths in the visible and near-infrared regions may penetrate
biological soft tissues rather deeply. Most of the biological soft tissues have low light
absorption characteristics in the VIS-NIR spectral regions. This region is termed as optical
window or therapeutic window and ranges from 600 nm to 1100 nm[4].Water and
haemoglobin contained in the RBCs are the principal absorbers in the blood. There are
various forms of haemoglobin such as methaemoglobin, carboxyhaemoglobin,
deoxyhaemoglobin, and oxyhaemoglobin of which oxy and deoxyhaemoglobin are found
in major concentrations. The absorption of oxyhaemoglobin (Hb) and deoxyhaemoglobin
(HbO,) associated with blood volume variations in peripheral and capillary arterial arteries
is generally used in the estimation of illumination wavelength of PPG. Specifically, the
light associated with particular wavelengths of skin having many peripheral blood arteries
is preferred to illumination associated with surface skin layers with no arterial blood [5].
Figure 3.3 shows the extinction coefficient of haemoglobin species for a total haemoglobin
concentration of 15 g/dL [6].
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Figure 3.3: Extinction coefficient for two species of haemoglobin [6].



30

Figure 3.4 shows an optical window of the human tissue wherein the shorter
wavelengths from 200 nm to 500 nm are significantly absorbed by melanin while water
becomes dominant at wavelengths longer than 1,150 nm [7]. Fair skin possesses less
melanin and a thinner dermis, allowing NIR radiation to penetrate deeper into human
tissue as compared to dark skin that has more melanin and a thicker dermis. Water, in the
surface layers of the skin, absorbs wavelengths between 1400 and 1500 nm, as well as
wavelengths over 1850 nm, thereby causing heating and potentially painful sensations and
burns[8].

VIS-NIR spectroscopy has several advantages which include reduced background
interference due to water absorption, insignificant skin absorbance, and larger penetration
depths at longer wavelengths, all of which are important for blood haemoglobin
monitoring. Table 3.1 depicts the wavelengths of optical light that penetrate to a certain

depth.
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Figure 3.4: Skin tissue spectral window [7].

Table 3.1: Approximate penetration depth of optical radiation in skin tissue [3].
Wavelength (nm) 500 600 700 800 1000 1200
Depth (um) 230 550 750 1200 1600 2200
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Photoplethysmography (PPG) signal quality may be affected by pigments in
different human skin types, and physiological measures may be invalidated as a result. The
melanin content of skin and its associated pigments of skin types are attributable to the
quality of PPG-based in vivo physiological monitoring [9]. As a result, incoming light with
relevant wavelength illuminations is known to be substantially attenuated by melanin in
human skin [10]. Furthermore, modeling and simulations have been carried out with
inaccuracies owing to different pigments [11,12]. Measurement inaccuracies could be
caused by ink on the skin or nail polish [13]. Melanin is responsible for a wide range of
skin colour complexions and is solely necessary for skin colour. In skin categorization, the
Von Luschan chromatic scale (VLCS) and the Fitzpatrick scale (FPS) are now used. VLCS
[14] is often used to create racial categories for populations based on skin colour. FPS
distinguishes several separate skin tones that typically come under white, or Caucasian,
and does not provide an adequate difference on the darker side of the human skin colour
gradient [15, 16]. Therefore, VLCS was utilized in the present study in order to better
depict the true diversity of skin tones within various ethnic groups of people. Table 3.2
lists the most common skin types and their corresponding regions.

Table 3.2: Human skin types and associated region [14].

Type Color/Description VLCS Area

| &1l Light/White 1-10 Europe
i Medium, white to light brown 11-15 Asia
v Olive, moderate brown 16-21 Middle East

V Brown, dark brown 22-28 Africa
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3.2. PhotoPlethsmography

Photoplethysmography (PPG) is a low-cost, non-invasive optical method that
measures changes in blood volume in a microvascular bed of tissue. The basic components
of a PPG device are a light source and a photodetector. The light source should have a very
narrow bandwidth and be as stable as possible at different temperatures, both in terms of
average intensity and peak wavelength shift. It should also be small, have a long
operational life, and be mechanically strong and dependable. The intensity should be
strong enough to provide a meaningful signal while being low enough to avoid overheating
the tissue. Light energy is converted into electrical energy by the photodetector which
should be small, quick to respond, and sensitive to the wavelength produced by the LED.
After the photodetector has detected the light, the signal is usually amplified and filtered
using low-noise electrical circuitry[17]. PPG uses different light sources to measure the
transmission or reflection of light through the blood volume based on the light absorption
characteristics of haemoglobin. The most common PPG sensors utilize an IR-LED or red
LED as the main light source. IR-LEDs and Red LED are most commonly used for
measuring the flow of blood that is more deeply concentrated in certain parts of the body.
PPG can operate in two modes: transmission and reflection, as illustrated in Figure 3.5.
The photodetector and LED are on opposing sides of the tissue in transmission mode, and
light is passed through it. The photodetector and LED are on the same side of the tissue in
reflection mode, and the detected signal originates from backscattered light. The site of
measurement is limited in transmission mode since the tissue has to be thin enough to
transmit a detectable amount of light, whereas reflection mode measurements can be sited
anywhere on the body [18]. In our approach, we will be using the transmission PPG
principle to estimate total haemoglobin in the blood.

- L (o
Photodetector LED Photodetector
Figure 3.5: Two modes of PPG: transmission mode (left) and reflection mode (right).
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3.2.1 Factors affecting PPG recordings
The measurement site (i.e. probe attachment site), the contact force, subject posture
as well as respiration, all have an impact on PPG recordings. Some of these aspects are

briefly discussed in the nextsection.

Measurement site of probe

The placement of the LED and Photodetector has a significant impact on signal
quality. To optimize sensor performance, suitable measurement locations must be located.
PPG sensors are commonly worn on the fingers due to the high signal amplitude that can
be achieved in comparison with other sites [19]. Different measuring sites for PPG sensors
have been intensively investigated in recent years, including the ring finger [20], wrist [21,
22], and earlobe [23-25]. The finger, earlobe, and forehead are routinely used in
commercial clinical PPG sensors [26]. The perfusion values of 52 anatomical sites in
healthy people revealed that the fingers, palm, face, and ears have significantly greater
perfusion values as compared to other measurement sites [27], with the transmitted PPG
signal amplitude from the earlobe having the highest perfusion value but has lesser

variations in blood compared to the fingers.

Probe contact force

The contact force between the sensor and the measurement site may influence the
PPG signal waveform. Depending on the PPG probe contact pressure, the waveform of the
acquired PPG signal varies. The PPG waveform has been related to arterial stiffness and
vascular reactivity in several investigations. According to various studies, the PPG signal
can be improved by applying mild pressure on the sensor. Transmural pressure, defined as
the differential in pressure between the interior and outside of a blood artery, is ideal for
obtaining the best PPG signal (i.e., the pressure across the wall of the blood vessel). Also,
insufficient pressure leads to inadequate contact and produces low AC signal amplitude.
However, when the PPG signal is acquired with excessive pressure, the flow of blood is
occluded and it produces low AC signal amplitude and distorted waveforms [18].
Therefore, subjects need to be requested to place their right-hand forefinger with slight

pressure inside the finger probe in order to acquire good quality PPG signals.
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3.2.2 PPG waveform

The light traveling through the biological tissue (e.g., the finger) is absorbed by
different absorbing substances. The primary absorbers of light in the region from 600 to
1000 nm are arterial and venous blood and skin pigmentation. The measured PPG signal
has two components: one alternating current (AC) and one direct current (DC). Because
the AC component is dependent on pulsatile blood flow, it varies at the same rate as the
pulse. The AC component may be used to assess blood perfusion asit is directly related to
pulsatile blood. The DC component is quasi-constant, and it refers to the tissue's
composition such as epidermis and skin other than pulsatile blood. Due to breathing,
thermoregulation, and sympathetic nervous system activity, the DC component is not
completely constant [28]. During the systolic cycle, the arteries increase in diameter and
the volume of blood increases. During the diastolic cycle, the arteries decrease in diameter
and the volume of blood also decreases. This change in volume of blood results in change
of absorption of light in the tissues which produces time-varying transmitted signal called
as Photoplethysmography signal. Figure 3.6 shows the variation in light attenuation by
tissue. The intensity of light is attenuated as it passes through the finger due to the
absorbance depending on the concentration of absorbers and optical path length of the
medium according to the Beer-Lambert law which is discussed in detail in the next section.

Systolic Peak

4 Diastolic Peak Pulse Interval
4 B Dicrotic Notch N ) A
2 AC
A < Valley v
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Figure 3.6: Variation in light attenuation by tissue and features of PPG signal.
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PPG features
Any normal PPG signal consists of a systolic phase followed by a diastolic phase,

both of which are separated by a dicrotic notch. In a typical PPG signal, the region from A
to B point is the fast beating phase, and the region from B to C point is the delaying phase.
B is the peak point of the PPG signal. At this point, the blood pressure has its maximum
value in the entire period called the systolic peak. Another peak at point D is the artiole's
dicrotic wave also known as the diastolic peak. The C point is called a dicrotic notch
(small downward deflection). The shape and depth of the notch greatly vary from person to
person depending upon his/her medical condition. In some cases, no deflection is seen
while in some the deflection is significant and in varying contours. Thus the classification
of notches could give us useful information about the condition of the patient. In pulse
waveform analysis, Dawber et al. [29] defined four classes for the PPG signals as shown in
Figure 3.7.
Class 1: A normal PPG signal with a prominent dicrotic notch.
Class 2: A PPG signal with no distinct dicrotic notch, but the downward slope becomes

horizontal.
Class 3: A PPG signal with no obvious dicrotic notch, but a well-defined change in

the angle of descent.

Class 4: A PPG signal with no evidence of a dicrotic notch.

Class 1 Class T Class 111 “lass TV
Figure 3.7: PPG classes as defined by Dawber et al. [29].

During the feature extraction from the PPG signal, time-domain features were
extracted from the PPG signal after the pre-processing. Multiple features from the PPG
signal including the systolic peak, diastolic peak, valley, rising time of PPG, falling time

of PPG, etc are present [30] as shown in Figure 3.6.
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Systolic peak (B): This is a measurement of arterial blood flow-induced pulsatile
variations in blood volume.

Diastolic peak (D): The diastolic peak is observed as a result of pressure wave reflections
in the lower body's arteries.

Valley (A): This is a measurement of the non-pulsatile changes in blood volume.

Dicrotic notch (C): This is a slight downward deflection in the PPG cycle between the
systolic and diastolic points.

Pulse Interval: The distance between the beginning and end of the PPG waveform.

In our approach, we have used only two features of the PPG signal (Systolic peak and
Valley) to estimate total haemoglobin in the blood in a non-invasive manner. This will be
discussed in Chapter 6.

3.3 Beer-Lamberts law

Non-invasive haemoglobin measurement is based on the concepts of Beer-Lambert
law which states that the attenuation of incident light (lp) crossing a material is a function
of the absorbing properties as shown in Figure 3.8 [31]. When an incident beam (lo) enters
the sample, the intensity of transmitted light (I) decreases exponentially as shown in

Equation 3.1.

[ =l e=s"cl (3.1)
where:

| ----- > intensity of transmission light
lo ----- > intensity of incident light
g ----- > Molar extinction coefficient of the substance at a specific wavelength, mol-1 cm-1
C ----- > concentration of absorbent, mol
L-----> optical path length in the medium, cm
The transmittance (T) of light passing through a medium containing an absorbing
substance is the ratio of transmitted light (I) to the incident light (lo), and absorbance is the
negative natural logarithm of the transmittance, as shown in Equation 3.2 [31].

A=-logT = —logé =eC.L (3.2)
where:
A ---->absorbance, (absorbance unit)

T----> transmittance
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Figure 3.8: Beer-Lambert law.

When the finger is placed between the source and photodetector, it absorbs the
light emitted by the LED source depending on its characteristics (tissue and blood). The
transmitted light is measured by the photodetector and is recorded as a PPG signal. Beer-
law Lambert's can also be used to compute the absorbance of a certain blood component at
a specific wavelength using Equation 3.1
The total absorbance for n different components is represented as Equation 3.3.

A=ZX €(n)c(n)L (3.3)
where €(n)= molar extinction coefficient of n™ solute, c(n)=concentration of n solute in
the solution.

Thus, the concentration of the solute can be easily computed by knowing the values of
path length L, absorbance A, and molar extinction coefficient € at a particular wavelength
A

Absorbance is an additive function —Absorbance of a mixture is a sum of the
absorbance’s of the components:A = ex[X]L + ey[Y]L + &z[Z]L where [X], [Y], [Z] are
unknowns concentrations. Hence, we use different wavelengths to get different equations
with different unknowns, which are the concentrations of haemoglobin like
oxyhaemoglobin, and deoxyhaemoglobin. These equations can be solved to obtain the

concentrations of these components [32].
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3.4 Health parameters obtained from PPG signal

Heart Rate from PPG signal

Heart rate is the number of heartbeats in a minute. To calculate, Heart rate from the
typical PPG signal shown in Figure 3.9, the time interval between adjacent peaks of the

PPG signal is determined using Equation 3.4[33].

_ PP, +PP,+PP;

PP,, = 1120 (3.4)

where PP,, is an average of three PPG intervals between successive peaks of the PPG

signal and heart rate is calculated using Equation 3.5.

1
Heart_Rate = 60 * op

(3.5)

av

1 PP1 2 PP2 3 PPz 1 PPs H PPs 6 systolic
Peak

C Compongnt bf PPG Sighal
Diastolic
Peak

Amplitude

DC Component of PPG Signal

Time

Figure 3.9: Typical PPG signal.

Heart Rate Variability from PPG signal

Heart Rate Variability (HRV) is an important parameter for the analysis of a
patient’s physiological conditions, as well as a method aiding the diagnosis of
cardiopathies [34]. The analysis of HRV signals is important when studying the autonomic
nervous system, as it supports the evaluation of the balance between the sympathetic and
parasympathetic influences in the cardiac rhythm [35]. The HRV is a valuable vital signal,
which reflects the physical condition of a patient [36]. An abnormal value between
heartbeats is one of the first indicators of the existence of an anomaly in the patient’s
health. It can reveal diverse conditions, such as respiratory and cardiac arrest, systemic

inflammatory response syndrome, renal insufficiency, cardiac insufficiency, systolic



39

arterial pressure, among others [37]. The changes in time intervals between adjacent
heartbeats is simply the HRV. To calculate HRV from sample PPG Signal. Root Mean
Square of Successive Differences (RMSSD) between normal heartbeats is found by first
calculating the time difference between each successive heartbeats [38]. Then, all these
values are squared and the average of the result is taken before taking the square root using

Equation 3.6.

HRV = \/(PPZ_PP1)2+(PP3—PP2)2+(PP4_pp3)2

: (36)

The HRV value is calculated in terms of milliseconds.
Oxygen Saturation from PPG signal

The normalization technique is used where AC component is divided by the DC
component. To calculate SpO,, the AC and DC values of the pulsating RED (670 nm) and
IR (950 nm) PPG are extracted and the ratio R is found. The Ratio of ratios ‘R’ is
approximated in Equation 3.7 which is used to eliminate the time invariant absorbance due
to the venous blood and surrounding tissues.

— ACeg70/DCs70 (3 7)
ACy50/DCos59

SpO; is computed based on the empirical calibration of the Ratio of ratios for the specific
device using Equation 3.8 [39].
Sp0,% =115 — (15 x R) (3.8)

Total Haemoglobin Estimation, from PPG Signal using an empirical formula
The change in optical density or change in absorbance is calculated using Equation
3.9.

ACComponent of the PPG
DCComponent of the PPG

Al4;] = ~log | | = {eHb*(AHB]) + eHbOZ(A[HDO,)L}  (3.9)
AA;----->represents a change in absorbance for a PPG signal at a specific wavelength.
eHb* and eHbO} --> Molar extinction coefficient for deoxyhaemoglobin &
oxyhaemoglobin at a specific wavelength.

AHb and AHbO; -->Change in concentration of deoxyhaemoglobin and oxyhaemoglobin
in moles per liter.

L----->is the length of the light path through the finger.
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where the AC Component of the PPG signal is the difference between the maximum and
minimum of the PPG signal and the DC component of the PPG signal is the minimum of
the PPG signal [40].

[Al4s70]] eHb®7°cHbOS°

aEb] 1 |AlArol| |eHBT0eHbOZ
[A[Hb 02]] = |A[Ag10] | % |eHDPOeHPOSO | x [L]? (3.10)

A[Agso] eHb®°cHb0S>°

lA[Agso]J | eHb%5%eHb O |

The concentrations of oxyhaemoglobin and deoxyhaemoglobin were calculated
using the absorbances along with the well-known molar extinction coefficients of
oxyhaemoglobin and deoxyhaemoglobin using Equation 3.10. The total haemoglobin is

calculated by adding the concentrations of oxyhaemoglobin and deoxyhaemoglobin.

A[Hb] ot = (A[HD] + A[HDO,]) X 64500 (3.11)

Equation 3.11 indicates the concentration of total haemoglobin in g/dL where 64500 is the

molecular mass of haemoglobin.

Also, blood pressure and cardiovascular diseases can be estimated from the PPG
signal with good processing algorithms. The entire algorithm for extracting PPG features
and estimating total haemoglobin using a suitable empirical formula and with Multivariate

(PLSR) model is implemented using C++, which is explained in Chapter 6.
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Chapter 4

Hardware System Designed

4.1 Objectives

In this chapter, we discuss the objectives of the present research, problem
statement, and solution. As stated earlier, the haemoglobin tests performed by a
pathological laboratory are not feasible for patients who need to continually monitor their
haemoglobin levels, since there is pain and discomfort associated with the blood sample
withdrawal, the possibility of infection, and the recurring cost. This calls for the design and

implementation of a non-invasive solution.

In the present study, our aim is to design an accurate device for the measurement of
total haemoglobin through the development of a Novel Soft-core Embedded Architecture
on the Altera FPGA platform. Briefly, our objectives may be stated as follows:

% To design a finger probe with multiple LEDs (5 or 6 wavelengths) and a single
photodetector with high efficacy.
% To implement signal conditioning and interfacing the ADC to the FPGA.
%+ To design digital filters to remove noise and moving artifacts from the PPG signal.
% To develop a Multivariate regression algorithm in FPGA to detect total haemoglobin
present in the blood using different wavelengths of light.
% To achieve RMSE of less than 1 g/dL.

4.2 Selection of LED wavelengths for haemoglobin

estimation

Light absorbance captured by a photodetector is affected by the volume of blood,
blood vessel wall movement, and the orientation of RBC [1]. Since blood absorbs more
light as compared to tissue, the intensity of the absorbed light can be used to estimate a
change in blood volume. Skin melanin and fat have significant responses with the shorter
wavelengths of light [2]. According to research studies [3, 4], shorter wavelengths of light,
such as blue and green, can only penetrate up to the capillary bed, while yellow light can
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only penetrate up to the arterioles in the dermis, and further, longer wavelengths, such as
red and near-infrared, can easily penetrate more deeply into the skin and reach the arteries
in the tissue. According to the research findings, both haemoglobin species exhibit high
absorption between 650 and 1000nm, and the oxyhemoglobin and deoxyhaemoglobin have
a significant molar extinction coefficient difference. In the wavelength range from 600nm
to 950nm, the wavelengths have been found to possess greater penetration power with low
attenuation coefficients. According to literature [5], deoxyhemoglobin blood was absorbed
more in the wavelength range of 600 to 800 nm, whereas oxyhemoglobin blood was
absorbed more in the wavelength range of 820 to 1000 nm. The isosbestic point was
located at 810 nm where deoxy and oxyhemoglobin absorption coefficients are the same.
The experimental observation was carried out in the laboratory to obtain the spectra of
blood. Here, the blood samples were diluted using double distilled water and the
absorbance was measured using UV-VIS spectroscopy (Evolution 201). It was observed
the spectra of the blood matched as per literature. For the present study, we chose
wavelengths in such a way that one wavelength is between 900 nm and 1000 nm, with
significant absorption for both oxy and deoxyhemoglobin; herein, that wavelength was 950
nm. The second wavelength was chosen at 670 nm, which is the valley of oxyhemoglobin.
The third wavelength, 810 nm, was chosen as the point of interception (Isosbestic) of oxy-
and deoxyhemoglobin. The other two wavelengths, 770 nm, and 850 nm were chosen on
each side of the interception with a significant difference in absorption between
oxyhemoglobin and deoxyhemoglobin [6]. However, depending on the availability of

high-quality LED sources in this region, the wavelength selection can be slightly changed.
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Figure 4.1: Molar extinction coefficient of haemoglobin species at five LED

wavelengths.
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4.3 Finger Probe Design

4.3.1 Excitation sources and detector
Sources

In this design, Multichip LEDs (MTMD6788594SMT6) and OPT101 (Photo
detector with inbuilt trans-impedance amplifier) were used. The Multichip LEDs have all
five sources in a small densely packaged area and the power radiated from the five LEDs

is around 5 mW as shown in Table 4.1.

Table 4.1: Power of Multichip LEDs [7]

LED Wavelengths Forward current Forward voltage Power Output
(nm) (MA) V) (mW)
670 20 1.8 5.2
770 20 1.65 6.3
810 20 1.50 5.2
850 20 1.45 4.7
950 20 1.25 7.6
Detector

OPT101 operates on low power single supply voltage with a dark current of 120
1A. OPT101 is an integrated combination of a photodiode and trans-impedance amplifier
on a single chip as shown in Figure 4.2. This eliminates the problem of leakage current
errors and noise pick up. The inbuilt trans-impedance amplifier is used to convert the
photocurrent into voltage with a gain (10°). Also, it has a high responsivity in the

wavelength range from 600 nm to 1000 nm as shown in Figure 4.3.

Block Diagram

Figure 4.2: Internal Diagram of OPT101[8] .
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Figure 4.3: Spectral responsivity of OPT101[8].

The Multichip LEDs and OPT101 were fabricated on the PCB as shown in Figure 4.4.
The two components were chosen owing to their compact size, lower space requirement,

and low dark current across the OPT101 when the finger is placed inside the finger probe.

Figure 4.4: PCB fabricated with Multichip LEDs and OPT101.

In the next section, we discuss the importance of standardizing LED power and the

steps involved in ensuring this.

4.4 Process of LEDs power standardization

The first step is to verify the wavelengths of the Multichip LEDs and it was done
using (a) Ocean Optics USB 2000+ UV- VIS Spectrometer for the wavelengths from 670
to 850 nm and (b) Ocean NIR Quest Spectrometer for 950 nm and the Multichip LED
were placed in front of the spectrometer. The USB2000 Spectrometer was connected to a
laptop via a USB port and drew power it. Ocean Optics fiber optic spectrometer systems
consist of low-cost, modular data acquisition components. The screenshot of Spectrasuite
for Ocean Optics USB2000 is shown in Figure 4.5.
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Figure 4.5: Screenshot of Spectrasuite for Ocean Optics USB2000.

The peak wavelength of all the five LEDs was observed on the Ocean Optics
Spectra Suite as shown in Figure 4.6. A small variation is observed in the measured
wavelengths of the Multichip LEDs as shown in Table 4.2.
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Figure 4.6: Peak wavelength of the Multichip LEDs.

Table 4.2: Wavelength of the Multichip LEDs (MTMD6788594SMTG6)
Wavelength of LED Wavelength Difference

(nm) measured (nm) (nm)
670 668.40 1.60
770 770.09 0.09
810 810.07 0.07
850 843.20 6.80
950 949.56 0.44
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Figure 4.7: Molar extinction coefficients vs measured wavelengths of Multichip LEDs.

The measured wavelengths of the Multichip LEDs are shown in Figure 4.7. A
small variation has been observed in the measured wavelengths. The power of the
individual LEDs (MTMDG6788594SMT6) was measured using Newport Power Meter
2936R with a Silicon Detector at a fixed distance of 1.2 cm. Initially, a fixed value of
resistance (viz. 68Q) was used and the power of the individual LEDs was measured
without standardization. These outputs are listed in Table 4.3. It is observed that the

power of the individual LEDs differs.

Table 4.3: Without standardized LEDs power

Wavelength of LED LEDs power observed
(nm) (mW)
670 0.65
770 0.75
810 0.67
850 0.66
950 0.96

When we recorded the PPG signal with these LEDs, we had to apply a calibration
factor in the software algorithm which was resulting in a slight error in the estimation of
haemoglobin. Therefore, we decided to standardize the LED power by maintaining
constant power of 0.7 mW for the individual LEDs as shown in Figure 4.8. For this, we
had to adjust the forward current flowing through the LEDs by varying the limiting

resistance. A fixed resistance value was introduced for each individual LED to maintain
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constant radiant LED power for a fixed distance. Also, the forward current (in mA)
flowing through LEDs and voltage drop of each LED were measured using a multimeter.

The resistors selected to obtain constant power are listed in Table 4.4,

Figure 4.8: Standardization of LEDs power using Newport power meter.

Table 4.4: Standardized LEDs power.

Wavelength of Current flowing Voltage drop Limiting resistance
LEDs through the LED across the LED (Q)
(nm) (mA) (Vo)
670 21.1 1.80 71
770 18.3 1.62 92
810 23.4 1.55 75
850 24.7 1.46 74
950 12.3 1.23 168

The limiting resistance for the individual LEDs is calculated using

R="2 (4.2)

where Vs is the supply voltage i.e. 3.3Vand Vp is the voltage drop of the LED, I is
forward current (in mA). For 670nm with standardization, the limiting resistance was also
calculated using Equation (4.1),

_ (33-1.80)v

= =710
(21.1 % 10-3)A
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Figure 4.9: Circuit diagram of Multichip LEDs with constant power output with
OPT101.

Using the circuit of Figure 4.9 (for constant LED power of 0.7 mW), the power
output for each LED was calibrated by adding variable resistors and verified using a
Newport power meter. The finger probe is designed with the Multichip LEDs placed on
the top side of the finger probe structure and the OPT101 positioned at the bottom side of

the finger probe structure as shown in Figure 4.10.

MULTICHIP
LEDs

OPT101

Figure 4.10: Finger Probe designed.
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4.5 System design for non-invasive haemoglobin estimation

The main objective is the prediction of the total haemoglobin with the Partial Least
Square Regression (PLSR) model designed using a soft-core system with five wavelength
PPG signal. The block diagram of the haemoglobin meter in the FPGA platform is shown
in Figure 4.11.

Software

Estimation of Haemoglobin
using PLSR model
(Quartus 18.1)

Multi-chip LEDs t _
670 nm, 770nm, B10nm t L(::}n:za\;l:r g
2o - < DEO NANO FPGA BOARD

g ALTERA

Cyclone @IV
OPT101
Photodiode with on-chip > Sl
Trans-impedance

| Liquid Crystal Display ]

Figure 4.11: Block diagram of the non-invasive haemoglobin meter in the FPGA

platform.

The heart of the designed system is the Altera N1OS Il soft-core system present in
the DEO Nano FPGA Board. The finger probe consists of a light source (Multichip LED)
on one side and a photodetector (OPT101) on the other side. Each individual LED from
the Multichip LED was standardized with constant Power of 0.7 mW. The LED sources
were controlled using the DEO Nano FPGA Board. The light emitted from the sources
travels through the fingertip and reaches the photodetector. Most of the light is absorbed
by the tissues and the venous blood. The flow of blood is pulsatile due to the cardiac cycle
and the transmitted light changes with time. The incoming real-time PPG signal is
digitized using an in-built 12-bit A/D converter ADC128S022. The PPG signal is then pre-
processed to smoothen the variations using the moving average filter. The Quality
Assessment of the PPG signal is also done to extract a good quality PPG signal. The
absorbance for each wavelength are then calculated from the extracted PPG signal of the

subjects. These are then given as inputs to the PLSR model along with the reference
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haemoglobin to calibrate the model. The PLSR model is then validated with another set of
PPG signals of the subjects (i.e., Absorbances). Also, the estimated hemoglobin is
calculated using the molar extinction coefficients of oxy hemoglobin and deoxy
hemoglobin along with the optical densities for five different wavelengths. Finally, the
total haemoglobin in blood is predicted and displayed on LCD. The entire system designed

for haemoglobin estimation is shown in Figure 4.12.

Figure 4.12: The designed haemoglobin measurement system.

In the subsequent chapters, we will discuss the implementation of the Multivariate
(PLSR) model and the designing of an Altera NIOS-1l soft-core system for the non-

invasive estimation of total haemoglobin.
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Chapter 5

Multivariate Regression system

5.1 Multivariate Analysis

Multivariate analysis in simple terms can be defined as the simultaneous analysis
of multiple variables to understand the relationship that exists between them [1]. It is a
statistical process wherein the simultaneous analysis of multiple predictor variables is done
with multiple independent variables with the help of matrix algebra. The main goal of
multivariate analysis is to reduce a large number of data variables into a smaller number of
latent variables by taking into consideration the variability existing in the data set. Thus, in
multivariate data analysis, the relationship existing between the variables and the sample in
the data set is captured and transformed into a new set of latent variables. The rows in the
data set are termed as observations which form the sample and the columns consist of
variables that represent each of the measured entities for each object. The variables are
divided into X variables called predictors and Y variables called responses. Multivariate
methods that are used to find the relationship between predictors and responses are called
regression methods [2]. Multivariate techniques can be categorized into two types:
quantitative method and classification method. The quantitative method includes multiple
linear regression, principal component regression, and partial least squares regression.
These techniques are useful in finding the relationship between X and Y variables. The
classification method includes principal component analysis, cluster analysis, factor
analysis, and discriminant analysis. These techniques are useful in situations where it is
required to identify or classify the samples into groups [3]. Different multivariate
calibration methods namely classical least-squares (CLS) and Inverse least-squares (ILS),
multiple linear regression (MLR), principal component analysis (PCA), Principal
component Regression (PCR), and Partial Least Squares Regression (PLSR) can be

employed.

56
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5.1.1 Classification methods
Discriminant Analysis

It is a method for classifying variables into groups. It uses one or more independent
factors called predictor variables to predict a dependent variable called a grouping
variable. Only in cases when the groups are already known before the analysis can this
approach be employed [4].

Factor Analysis

It is a technique that is utilized when a large data group has to be reduced into
smaller groups based on their shared variance. Factor analysis's principal objective is to
explain the data's underlying composition. There are two forms of factor analysis:
exploratory factor analysis, which is used to get a preliminary reduction of data, and

confirmatory factor analysis, which is used to validate the presence of the components [5].

Cluster Analysis

It is a method for grouping data samples having similar values across several
variables. The grouping is done so that if two samples are from the same group, they will
have the highest degree of correlation and if they are from different groups, they will have
the lowest degree of correlation. Cluster analysis is made up of a wide variety of
techniques and approaches for grouping data. It is considered to be a great tool for

exploratory data analysis [6].

Logistic Regression

Logistic Regression is one of the extensions of multiple regressions with the
exception that the output Y variable is a definite variable and not a continuous one. The
reason for this analysis is to classify the subject, into 1 of 2 categories using predictor
variables, such that the accuracy is high. Since the output is discrete, the correlation
between X and Y is nonlinear, hence the aim is to estimate the possibility, that an
individual belongs to either of the groups. A probability of O implies that the individual is
not in the main group and a probability of 1 implies that the individual is in the main
group. The analysis of the logistic regression does not involve ordinary least squares, but

uses a composite procedure of maximum likelihood estimation, in weighting X variables

[7].
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Principal component analysis (PCA

PCA is a statistical approach for characterizing spectral data variance. The causes
of these variances are better understood and interpreted using PCA. The original spectra
include a collection of correlated variables. PCA uses an orthogonal transformation to
convert correlated variables into uncorrelated variables. The first principal components
explain the maximum variance possible in the spectral data. The second principal
component is chosen such that it is orthogonal to the first principal components, and
explains the maximum possible remainder of variation in the data. This process is
continued as long as the desired amount of variation is explained by the principal
components obtained. PCA is a powerful method for reducing the dimensionality of the
spectral data matrix and eliminating noise [8, 9 ].
X=TP + E (5.1)
The orthogonal transformation decomposes the spectral data matrix X as shown in
Equation 5.1. T is termed as the scores matrix, P is the principal components matrix and E
is the noise matrix and contains the noise. The Singular Value Decomposition (SVD)
algorithm is utilized to extract the principal components for the X matrix. In building the
PCA calibration model, usually, the first k principal components are selected as the
number of latent variables or factors. With a properly chosen number of factors, the
necessary information for concentration modeling can be included while principal

components of interferences and noise can be excluded.

5.1.2 Quantitative methods
Simple Linear Regression (SLR)

Based upon the weight of X, Y is estimated using a regression equation as shown
in Equation 5.2, where X is the predictor and Y is the criterion. The slope of the regression
line is the predicted Y for every sample. It is also known as weight which is the coefficient
of X and for every change in X, Y changes per unit time. The line is formed which implies
that the variance is maximized and the error of the sum of squares is minimized. The idea
of the ordinary least squares is similar to the sum of squares (X-Mean) as the variation of
scores from the mean is less [10].

Yi= Bo+BXite (5.2)
Here, By is the line's intercept and B, is its slope and the error g; is assumed to have a mean

value of 0.
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Multiple linear regression (MLR)

MLR is a method for modeling the relationship between two or more explanatory
variables and a response variable. In MLR, the relationship between Y and X is shown by
the following Equation 5.3 [11].

Yi = Bo+ B1Xyi + BoXoi + BaXai + -+ BpXpi + & (5.3)
In this way, MLR can be written as an extension of simple linear regression, and Y is

considered as directly related to a linear combination of the explanatory variables.

Classical least-squares (CLS)

CLS is also called K-matrix calibration, as it originally involved the application of
MLR to the expression of Beer-Lambert Law. The spectral data is modeled as a function
of analyte concentration in this method.
A=KC (5.4)
For the known samples, we start with a classical least-squares calibration using the
concentration matrix C and the absorbance matrix A. We then solve for K. Each column in
K contains the pure component spectra. The least-squares solution is found for Equation
5.4 i.e. it produces K that it produces the least sum of squares of error. We employ the
computed K matrix to handle the prediction concentration of unknown samples. It may be
calculated using the following Equation 5.5.
[K™K] ™" K™ Aunkown = Cunkown (5.5)
We use [K'K]*which is known as the pseudo-inverse of K and K which is the transpose
of K. CLS has both advantages and disadvantages. The major advantage of utilizing CLS
is the estimates of true constituents are determined following the calibration procedure.
However, it also requires information on the concentrations of all components present in
the sample, which is sometimes impossible to obtain [12]. This may be avoided by
employing augmented CLS (ACLS), which relaxes the aforementioned conditions while

still allowing for robust modeling with a complex matrix.

Inverse least-squares (ILS)

The inverse expression of Beer-Lambert Law is used in this approach and this
method is also called the P-matrix technique. The ILS calibration model assumes that
sample concentration can be quantitatively predicted from sample spectra using Equation
5.6.
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C=PA (5.6)
Where concentration matrix is denoted by C and absorbance matrix by A. We utilize
calibration samples with known concentrations, also known as the training set, to generate
an inverse least square calibration [13]. We then use least squares to get the solution for
the P matrix. Each wavelength will have a coefficient in each row. According to Equation
5.7, this P matrix is used to predict the concentration of unknown samples.

Cunknown = PAunknown (5.7
The use of an ILS model eliminates the requirement for a complete understanding of the

calibration set's constitution.

Principal Component Regression (PCR)

A statistical process that converts a group of correlated variables into a group of
uncorrelated variables using an orthogonal transformation is called PCA. The number of
Principal Components is equal to or less than the total number of variables. The
transformation is described in the best possible way, so that, the 1* Principal Component
has a large variance and every subsequent component has the maximum variance, under
the limitation that it is perpendicular to the previous components. The remaining variables
are uncorrelated. The principal components are eigenvectors of a symmetric covariance
matrix and hence are orthogonal. PCA is susceptible to comparative scaling of unique
variables. The independent variables are fed to a PCA and the predictors used in MLR, are
scores of units. Factor variation is explained through Xscores. This gives much

information in factor space, however may not be involved with the estimated surface [14].

Partial Least Square Regression

PLS is a regression technique used to analyze spectroscopy data. The PLSR
technique is used to model a linear relationship between a set of predictors and a set of
response variables. This relation is then used in the prediction of the value of a response
variable for an unknown sample. The main aim of PLSR is to predict the responses. PLSR
works in a way to extract the latent factors ‘T’ and ‘U’ to account for most of the variation
in the response variables which are used for modeling the responses. T called X scores are
used to predict the U called Y scores and these Y scores are used to construct predictions
for the responses. PLS performs multiple linear regression to build a linear model. In PLS,

it finds a linear transformation by maximizing the covariance between response variables
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and predictor variables [15, 16]. PLSR links the response variable (Y), to the matrix
containing predictors (X) through a latent factor, both (Y) and (X) are centered.

The Equation 5.8 represents the PLSR model is given as

Y=XB+E (5.8)
Where Y is a x b response matrix, a is the number of observations, and b is the number of
variables.

Xis a x ¢ predictor matrix with ¢ as the number of predictor variables.

B is a ¢ x b regression coefficient matrix and E is a noise term or residual matrix which
has the same dimensions as Y.

A ¢ x d weight matrix W for X is produced in PLSR such that

T = XW where the columns of W are weight vectors for the X columns, thus producing a
x d factor score matrix T.

The weights are computed in such a way that maximum covariance exists between the
responses and the corresponding factor scores. The loadings for Y represented as Q are
then generated using ordinary least squares procedures for regression of Y on T such that
Y=TQ+E

The prediction model is complete once Q is computed and Y = XB + E where B = WQ.
For the complete description of the PLSR procedure, an additional matrix ¢ x d factor
loading matrix is required which gives factor model

X=TP+F

where F represents the residual or the unexplained part of the X score.

To estimate the haemoglobin concentration from the absorbance signal, the signal
has to be processed using multivariate techniques. The PLSR multivariate technique
extracts a given number of factors from the predictor data that takes into account the
variance existing in both predictors and responses. The optical densities (Absorbances) for
five different wavelengths are the five predictor variables and the reference haemoglobin
measured in the pathology laboratory is the response variables. Two datasets one for
calibration and one for prediction are prepared. A multivariate technique is used to develop
a calibration model for the above calibration dataset. PLSR technique builds a linear
relationship between the set of predictors and the set of responses. This is called the
calibration model. The concentration of the unknown haemoglobin is predicted by using
the above model. In the next section, we discuss the various algorithms for the PLSR

model.
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5.2. Algorithm to implement PLSR

There are several algorithms proposed to implement PLSR, of which popular one
are Non-linear Iterative Partial Least Squares (NIPALS) and Statistical Inspired
Modification of PLS (SIMPLS) introduced by Wold et al.[17] and DelJong et al.[18]

respectively.

5.2.1 NIPALS

The first step begins with centering and scaling matrix X and Y and proceeds as
follows. This algorithm has found its application in chemometric and below are the steps
involved to implement as given in S. Wold et. al. [19].

Step 1: A starting vector (u) is chosen u which is usually a column of Y. If Y has a single
column then,u =vy.

Step 2: The weights (w) of X are calculated as w = X'u/u'u (here w can be modified as Iwl
=1.0)

Step 3: The scores (t), of X, are calculated as t = Xw

Step 4: The weights (c), of Y, are calculated as ¢ = Y't/t't

Step 5:Get the updated set of scores of Y asu = Yc/ c'c.

Step 6: The convergence test is carried to check the change in tby It gig-tnew I/ It new | <¢
, here the value of ¢ is “small” for example 10 or 10°®. If not converged, go back
to step 2, otherwise continue to step 7. The process converges with one iteration if
Y is a single variable matrix and goes on to step 7.

Step 7: The component calculated is removed from X and Y and these deflated matrices
will be used to generate the next component.

p=Xt/tt X=X-tp'

Y=Y-tc
Step 8: If the number of desired components are not found go back to step 1 to find the

next components.
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5.2.2 SIMPLS

In SIMPLS algorithm, we us assume the matrices X and Y are mean-centered.

SIMPLS involves deflation of the X'Y covariance matrix. Below are the steps followed to
implement the SIMPLS algorithm [20].

For each h=1,..., N, where N is the number of components to be found.

Step 1:
Step 2:
Step 3:

Step 4:

Step 5:
Step 6:

Step 7:

Step 8:

Mean center the explanatory and response variable matrices, and represents them
as X and Y after mean centering. Calculate the covariance matrix Sp= X'Y.

The left singular vector of the matrix Sy, is taken as w,.

Normalize wy, using the expression Wy= Wy, / Iwpl.

tn the h™component vector is calculated as t,= Xwn(when h=1, t, is the first
component vector)

Normalize ty as tp=ty, / Itql.

pr the h™ loading vector of X is calculated as pr, = X "tn(when h=1, py is the first
loading vector of X).

qn the h™ loading vector of Y is calculated as gn=Y "t,. (When h=1, g is the first
loading vector of Y).

Deflated covariance matrix Sps 1 is calculated Shs1 = Sh— Vh(Vh' Sh), Where

V= pn(for h = 1)and V= pr— Vha(V ht ' pr) fora> 1 with Vi 1= (V1, Va, ... , Vh-1).

Steps 2 to 8 are repeated till N components are extracted.

The SIMPLS algorithm is fast as compared to NIPLAS algorithm [21]. SIMPLS

does not employ a breakdown of the data sets and as such is found to be fast and easy to

interpret. We have used SIMPLS in our research work due to the advantages offered by it

as outlined above. A C++ code is ported to the NIOS Il platform to implement the
SIMPLS.
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5.3 ParLeS software for preliminary analysis

ParLeS is a shareware that is developed by Raphael A. Viscarra Rossel in
LabVIEW, for research and teaching in spectroscopy and chemometrics with simple
Graphical User Interface (GUI) to perform many multivariate algorithms. ParLeS is used
to pretreat, pre-process and transform spectra using different algorithms. It is also used to
implement PLSR with cross-validation, PCA and bagging-PLSR (bootstrap aggregation-
PLSR) [22]. In addition, the unique features comprise user-friendly functionality as well as
the provision of several graphical output and assessment statistics. Figure 5.1 shows the

ParLeS software structure.

Merged
W g multiple files .
'C: from a single Modelling
directory dgnta
|

Transform/
preprocess
| pretreat

\Sewe A

/ \
Nz
Prediction/

test data
%

Assessment
statistics

in

Assesjsment L, Bagging Assegsment
statistics PLSR statistics
A

Figure 5.1: ParLes software structure [22].
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5.4 Multivariate calibration model for non-invasive
haemoglobin estimation

The "Import data modeling™ tab is used to import the data (tab-delimited ASCII
format) into the ParLeS software as shown in Figure 5.2. The path of the file must be

specified in the space provided under "Get file for modeling”. Next, the number of y

variables present in the tab-delimited ASCII file is selected for modeling. Then the data is

imported into the ParLeS software by clicking the "Import data for Modeling button”.

B ParleS version 3.1

= = ]
ParLes Import Data Modelling

Data Manipulations PCA PLSR Cross Validation PLSR Model Import Data Prediction PLSR Predict Bagging-PLSR

IMPORT DATA FOR MODELLING
DATA FOR MODELLING
Get file for modeling
‘1,|D.\Caje Imp\CAJEPHD\Research\Work done\Research May 2020\PRE-SYNOPSIS\Analysis on 65 subjects\CCASEI. bt | =
Header information - data for modeliing
Subjects Reference 670nm 770nm £10nm 250nm 850nm
Total Mumber of y variables Select y variable for medeling sizey size X
=] Ef
I 4] N
y variables Labels Selected y X variables K-label
15.4 Subjeot 10 15.2 25227 24845 2334 20823 870
15.8 Subject 11 158 23524 21783 2196 1.8479 770
147 Subjeot 18 147 27074 25088 23886 23417 810
149 0 0 0 0 0 0 0 Subject 17 149 2.4982 22108 1.8697 1.8935 850
17.2 0 0 0 0 0 0 0 Subjeot 15 172 29375 28251 25553 23387 950
185 Subject 20 165 258886 20733 18753 17209 0
Histogram i Sample spectra
DATA TO MERGE gl Yy y Statistics ple 3pt
15— &
Check to merge files from a single directory n mean | 14.48
Directory with files to merge I 1 dev 18T " 2.5+
X g i
afcy [ 3 med. | 1470 S o
File extension (e.g. *.txt) Size merged data = : max. | 18.70
= _ 1.5-1
- - T T T T i 1 min. SR e I e TR R
bt : " | SAVE MERGED FILE [] 75 10 12 15 18 20 850 700 750 200 850 900 950
L skew | -1.44
L

X-label

Figure 5.2: Importing of data for modeling into ParLes.

The ParLes programme (version 3.1) provides several preprocessing and transformation
techniques, which may be found under the data manipulation tab. As seen in Figure 5.3,
pretreatment of data such as mean centering and variance scaling is supported. Of the
above options offered, we have only mean-centered out data. In order to do the Pre-

Processing of data the “Run Selection” button is selected.
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Q ParLeS version 3.1 E?@

ParLe$S | Import Data Modelling ~ Data Manipulations ‘ PCA | PLSR Cross Validation PLSR Model Import Data Prediction PLSR Predict | Bagging-PLSR |

TRANSFORMATION

Data transformations e
Me ransformation 37
PREPROCESSING 283
26
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Ne canection ISE
Trend level for Level of wavelet 224
wavelet detrending decompasition 25
Z ]
sz [ 5 e
B T o T B L B e T
660 880 700 720 T40 760 760 800 820 840 860 880 S00 920 940 960
De-noising/ smoothing Hlabel
No de-noising
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edian filter rank/  Savitzki-Golay (SG)
SG polynomial/  data (n) to fit curve 0.6+
Wavelet filter level = (2n+1) 057
iz EIEN 043
0.3
@ E
Differentiation E 029 ><///—\/
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0
PRETREATMENT = 1';
Contre & scale data B L B L L I A B o o o o
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Mean centre Hoiabel

SAVE MANIPULATED DATA []

Figure 5.3: Preprocessing the datasets for calibration.

Different modeling techniques are supported by the software such as PCA, PLSR,
PLSR cross-validation. Under the “PLSR Model” tab the parameters needed to build a
PLSR model are specified as shown in figure 5.4. The number of factors required can be
selected using the slide bar below “Select No. of factors for PLSR. The model is built
using the "Run PLSR modeling" button. Once the model is created, the percentage of

variation is explained by each variable in the Explained variance visualization.

E ParLe5 version 3.1 EI ESE @
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E E @ ]
2| 18] @ 1 E 054
0.1 @ o= o %% E 5 E
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Figure 5.4: Partial Least Square Regression modeling.



67

The “Import Data Prediction” tab is utilized to import the data from unknown
samples for prediction in tab-delimited ASCII format under "Get file for prediction™ as

shown in Figure 5.5 The number of y variables included in the data to be imported must be

specified, and then the “Import data for prediction” button must be pressed.

"B perl < version 31 ===

ParleS | Import Data Modelling | Data Manipulations ‘ PCA | PLSR Cross Validation | PLSR Model Import Data Prediction | pLsR Predict ‘ Bagging-PLSR ‘

DATA FOR PREDICTION IMPORT DATA FOR PREDICTIOHN

Get file for preditctions

%[D\Caje Imp\CAJEPHD\ResearchWork done\Research May 2020\PRE-SYNOPSIS\Analysis on 85 subjectsWEASEIl bt |[&) -
Header information - data for prediction

Subjects Reference 570nm 770nm 810nm 850nm 550nm
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Figure 5.5: Importing of data for prediction.

Next, the “PLSR Predict” tab is used for prediction once the data has been loaded, as

illustrated in Figure 5.6. The prediction is made by pressing the “Run prediction” button.
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Figure 5.6: Partial Least Square Regression prediction.

Once the multivariate model was tested in ParLes Software, the PLSR algorithm
was written in C++ program and ported in Altera NIOS Il soft-core system to estimate

non-invasive total haemoglobin which is discussed in the next chapter.
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Chapter 6:
Design of Soft-Core System for

Haemoglobin Estimation

The Field Programmable Gate Array (FPGA) is a highly configurable logic device.
The logic density is much higher than those offered by its predecessors such as Complex
Programmable Logic Device (CPLD). Due to the versatility offered by FPGA, researchers
and hardware designers are adopting it in their product designs. This Chapter discusses the
different soft-core processors and outlines the various steps required to configure a soft-

core processor on an FPGA for the purpose of haemoglobin estimation.

6.1 Field Programmable Gate Array for haemoglobin

estimation

The term ‘FPGA’ originates from the fact that a user can deploy a gate array that is
programmable on the field at any workplace [1]. FPGA consists of configurable logic
blocks (CLBs) with user-programmable interconnect that enables customization, by
developers,so as to realize their desired applications. This customization can be
reprogrammed, if the need arises, for the accommodation of new features in the developed
application. Depending on the manufacturer, the CLB may also be referred to as a
logic block (LB), a logic element (LE), or a logic cell (LC). FPGASs are programmable
and reconfigurable logic devices that may be utilized to create complex and large circuit
designs. FPGA has three types of resources viz., input/output blocks, logic blocks and
programmable interconnection. The majority of FPGAs have flip-flops and look-up tables
(LUT) [2].The various families of FPGAs supplied by different manufacturers differ
primarily in the number of logic modules (ranging from a few hundred to hundreds of
thousand), supply voltage range, power consumption, speed, architecture, process

technology, number of pins, type of packages, etc.
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6.2 Soft-Core processors for embedded systems

An embedded system consists of hardware and software components working
together to perform a specific application. Nowadays, embedded systems play a vital role
in everyday lives. They are used in automobiles, the medical field, industrial control
systems, and entertainment electronics, etc [3]. The hardware platform of the embedded
system consists of a microcontroller, on-chip memory, an output device, and an input
device. In the current scenario, with manufacturers pushing for increased miniaturization,
the embedded system designers have to adhere to the tight constraints on area usage, size,
high-performance, good power efficiency, flexibility, adaptability, reduction in product
design and time-to-market deadlines [4]. Therefore, the hardware/software co-design
methodology is often used in designing an embedded system to reduce the time spent on
development and debugging [5]. With the increase in complexity of embedded system
design, the development of every hardware component of the system from scratch has
become too time-consuming and expensive for most of the designers. Therefore, the
prospect of using pre-designed and pre-tested intellectual property (IP) cores in designs
became an attractive alternative solution. Soft-core processors are microprocessors whose
architecture and behaviour are completely specified using hardware descriptive language
(HDL) and is implemented in Verilog or VHDL language. Many parallel processors can be
implemented on one FPGA and can use additional FPGA resources on the same chip
without being part of the processor core. The use of soft-core processors offers many
advantages to the designer of an embedded system. These include a higher level of design
re-use, increased design implementation options, simplified design update, lower latency
between processor and FPGA components. A soft-core processor permits a designer to
conveniently add or remove peripherals from the System on Peripheral Chip (SoPC). It
also enables the designer to build a system to meet his/her requirements, avoiding
excessive cost and reducing the time spent configuring unnecessary features. The
parameters of a soft-core processor built on FPGA may be modified and reconfigured at
any time merely by reprogramming the device thereby making it highly flexible. Also, it
can be synthesized for any given target ASIC or FPGA technology. This grants it
immunity from obsolence as compared to circuit or logic level descriptions of a processor
[6]. A variety of programmes that operate on soft-core processor-based platforms have
been identified. As a result, these soft-cores are increasingly becoming popular due to their
reconfigurability.
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6.3 A survey of soft-core processors

In this Section, we discuss the various soft-core processors which are available in

the market from, both, commercial vendors and open source communities.

6.3.1 Commercial cores

NIOS Il and MicroBlaze are the leading soft-core processor provided by Altera and
Xilinx, respectively. Also, Cortex — M1 is the first ARM implemented for FPGA.

NIOS 11

Altera Corporation, the manufacturer of NIOS 1, is one of the leading vendors of
CPLDs and FPGAs. NIOS Il is widely used in the design of embedded systems and DSP
applications. NIOS Il soft-core processor is Altera’s flagship IP (Intellectual Property)
core processor. NIOS Il is a 32-bit processor based on the popular Reduced Instruction Set
Computer (RISC) processor core and uses the Harvard memory architecture. There are
thirty-two 32-bit general-purpose registers in NIOS |1 soft-core. NIOS Il processor comes
in three different variants: economy, standard and fast core. Each core variant has a
different number of pipeline stages, instructions, data cache memories and hardware
components for different operations. Besides, each core varies in performance and size
depending on the features that are selected. NIOS II/f has a six-stage pipeline and executes
one instruction per cycle. It has separate Instruction and Data cache. The NIOS Il also has
a performance of more than 150 Dhrystone MIPS (DMIPS). The addition of the
peripherals with the NIOS Il processors is accomplished through the Avalon Interface Bus
which contains the necessary logic for interfacing the processor with off-the-shelf IP cores
or custom-made peripherals. It is feasible to build, debug andcreate an embedded system
on Altera’s FPGAs utilizing the associated CAD tools such as Quartus II and platform
designer development tool. These tools help in building a NIOS Il based system and in
writing system-specific application software. The main disadvantage with NIOS 11 is that
it can only be used in Altera FPGAs. It provides a solution to the interoperability and
resource wastage by various microcontrollers and is configured by the customer or
designer, as per his requirements [7]. Figure 6.1 shows the block diagram of the NIOS II

soft-core system.
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Figure 6.1: Block diagram of the NIOS 11 soft-core system [7].

MicroBlaze

Xilinx offers Spartan and Virtex families which are FPGA solutions. They also
provide soft IP cores that target their FPGAs. MicroBlaze is a 32- bit soft-core processor
that is optimized for embedded applications. It is based on Harvard architecture and can
operate at up to 200MHz on a Vertex-4 FPGA chip. This processor has a three-stage
pipeline with 32-bit instructions and a 32 register wide register file. The memory can
reside on-chip or as an external peripheral. A general-purpose interface known as the On-
chip Peripheral Bus (OPB) can be used to interface MicroBlaze with both on-chip and off-
chip memories as well as other peripherals. In addition, it features a three-stage pipelining,
32-bit instructions, 32-bit general-purpose registers, two levels of interrupts, and a shift
unit. Xilinx Platform Studio is available for creating a MicroBlaze-based system [8].

Figure 6.2 shows the block diagram of the Xilinx MicroBlaze core.
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Figure 6.2: Block diagram of the MicroBlaze soft-core system [8].

Cortex — M1

The ARM Cortex™-M1 processor is the first ARM 32-bit processor designed
specifically for implementation in FPGAs. The Cortex-M1 processor targets all major
FPGA devices and includes support for leading FPGA synthesis tools, allowing the
designer to choose the optimal implementation for each project. The main features of
Cortex-M1 include a three-stage pipeline, configurable instruction and data memories
(upto 1 MB), an integrated interrupt controller with support for upto 32 interrupts and has
AMBA AHB-Lite 32-bit bus interface. The Cortex-M1 processor can deliver 0.8 DMIPS.
It can be used with any FPGA [9]. Figure 6.3 shows the block diagram of the Cortex — M1

soft-core system.
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Figure 6.3: Block diagram of the Cortex — M1 soft-core system [9].
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6.3.2 Open-source cores

Open-source cores are IP components that are freely available in the open-source
community. Usually, these types of cores are used in academia for research as well as in
the development of embedded systems. In this Section, we discuss OpenSPARC T1,
LEON3, OpenRISC 1200, and LatticeMico32 soft-core processors that are available in the

open-source community.

OpenSPARC T1

OpenSPARC T1 is an open-source version of the Sun Microprocessor products. It
is a multi-core, 64-bit multiprocessor SPARC V9 architecture and is targeted towards
commercial applications such as application and database servers. It consists of eight
SPARC processor cores, with four hardware threads per core. One floating-point unit
external to the core is shared by all the cores and four banks of the L2 cache. Each SPARC
core has a 16 KB instruction cache, 8 KB data cache, and a fully associative instruction
and data translation look-aside buffer (TLB). All the cores are connected through a 132
GB/s crossbar interconnect for on-chip communication. An on-chip J-Bus controller
provides the requisite interconnect between the OpenSPARC T1 processor and 1/0
subsystem. [10]. Figure 6.4 shows the block diagram of the OpenSPARC T1 soft-core

system.
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Figure 6.4: Block diagram of the OpenSPARC T1 soft-core system [10].
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OpenRISC1200

OpenRISC 1200(OR1200) is one of the popular open core processors available at
OpenCores.org. The OR1200 is a 32-bit scalar RISC with Harvard architecture. The main
features of OR1200 include a five-stage integer pipeline, virtual memory support (MMU)
and basic DSP capabilities. It has 32-bit instructions and can operate on 32-bit or 64-bit
data. The Default data and instruction cache are one-way direct-mapped 8KB with 16-byte
line size each. OpenRISC 1200is one of the high-performing soft-core processors with
300 Dhrystone 2.1 MIPS at 300 MHz. It supports very few FPGA development boards and
its debugging solutions are complicated [11]. Figure 6.5 shows the block diagram of
OpenRISC1200.

Figure 6.5: Block diagram of the OpenRISC1200 soft-core system [11].

LEONS3

The LEONS is a 32-bit processor based on the SPARC V8 architecture and is
designed and maintained by Aeroflex Gaisler. The model is highly configurable for
system-on-a-chip (SOC) designs. The structure of the LEON3 processor is shown in
Figure6.6. It is based on Harvard architecture and uses the AMBA Advanced High-
performance Bus (AHB) for all on-chip communications. Its main features include a
seven-stage pipeline, separate instruction caches and data caches, a configurable number of
register windows and an optional floating-point unit. The main advantage of the LEON3
processor is that it uses a structured organization of packets, folders and VHDL records.
The complete source code for this processor is available for free and can be used
unlimitedly for research and education activities, under the GNU GPL license. Linux and
RTOS can be installed on this processor but not all FPGA development boards are
supported by LEON3 [12]. Figure 6.6 shows the block diagram of the LEON 3 soft-core

system.
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Figure 6.6: Block diagram of the LEON 3 soft-core system [12].

LatticeMico32

The LatticeMico32 is an open-source 32-bitRISC soft-core processor based on
Harvard architecture from Lattice Semiconductor. LatticeMico32 provides good
performance and flexibility by combining 32-bit wide instruction set with 32 general-
purpose registers. Its main features include a six-stage pipeline, 32-bit instruction and data
caches with capacity to handle up to 32 external interrupts. The core consumes minimal
device resources while maintaining the performance required for a broad application set. It
does not have a floating-point unit. To accelerate the development of microprocessor
systems, several optional Wishbone-compatible peripheral components may be integrated

with the LatticeMico32 [13]. Figure 6.7 shows the block diagram of the LatticeMico32
soft-core system.
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Figure 6.7: Block diagram of LatticeMico32 soft-core system [13].
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6.3.3 Comparison of soft-core processors

Each processor presents a set of parameters and characteristics that throw up
important challenges. The soft-core’s features will also significantly influence the
performance of the whole system. Table 6.1 shows a comparison of the main
characteristics of available open-source and commercial soft-core processors that have
been briefly described in the earlier Section. Each surveyed core has different performance
characteristics and features that are suitable for specific applications. Embedded system
designers should choose a processor core based on the requirements and performance
constraints of their particular application. The NIOS Il features an expandable instruction
set with up to 256 customizable instructions whereas MicroBlaze is not provided with this
kind of ability. The highest operating frequency on an FPGA can be achieved with the
NIOS Il and MicroBlaze. Both, the NIOS Il and MicroBlaze are optimized for FPGA

implementations, whereas the others are not optimized for a particular technology.

Table 6.1: Comparison of different soft-core processors.

Soft-core processor, Custom ISA Interface Maximum | Pipeline
Developing Instructions Bus Clock Stages
Organization standard Frequency
(MHz)
Nios Il Upto 256 32-bit Avalon 200 6-stages
(Altera) RISC
MicroBlaze None 32-bit | AXI, DPB, 200 3-stages
(Xilinx) RISC LMB
Cortex M1 - 32-bit AMBA -- 3-stages
(ARM) RISC | AHB Lite
OpenSPARC T1 - 32-bit | JBI, SSI 200 6-stages
(Sun Microsystems) RISC
Open RISC 1200 Unspecified | 32-bit | Wishbone 300 5-stages
(Open Cores) limit RISC
LEON3 None 32 AMBAZ2.0 400 7-stages
(AeroflexGaisler) RISC
Lattice Mico 32 - 32-bit | Wishbone 85-115 6-stages
(Lattice RISC
Semiconductor)

To select the best embedded platform for novel architecture, in this study, we have
designed a soft-core system and implemented an algorithm on Altera NIOS Il platforms to

estimate non-invasive total haemoglobin.
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6.4 DEO Nano FPGA Board (selecting a hardware platform)

The DEO-Nano board provides a compact-sized FPGA development platform well-
suited to prototype circuit designs for portable projects. The board is designed to be used
in the simplest possible implementation, targeting the Cyclone IV family devices which
contain up to 22,320 logical elements (LEs). The DEO-Nano has a set of interfaces
including two external 40-pin GPIO headers and one 26-pin header to extend designs
beyond the DEO-Nano board, on-board memory devices including SDRAM and EEPROM
for larger data storage and frame buffering along with general user peripherals like A/D
converter with LEDs, DIP switches and push-buttons. If a design needs to have mobility,
portable power is a necessity; therefore, DEO Nano board offers a two-pin external power
header for battery connection [14]. The advantage of the DEO Nano board is its size and
weight, as well as its ability to be reconfigured. All the connections made through the
FPGA device provide users with maximum flexibility. Thus, FPGA can be configured to
implement any system design. Keeping in mind the above advantages, in the present study,
we have used DEO Nano FPGA board for the creation of the NIOS 11 soft-core system. The

Top view and bottom view of the DEO-Nano board are shown in Figure 6.8.
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Figure 6.8: DEO - Nano board [14].

The block diagram of DEO-Nano board is shown in Figure 6.9. The Avalon switch
fabric network provides the interconnection to all the components. Appropriate interfaces
and IP cores are used to access various peripherals and memories such as SDRAM, 12C
EEPROM, ADC, DIP switches, etc. present on the board.
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Figure 6.9: Block diagram of DEO- Nano [14].

6.5 System-on-a-Programmable-Chip for haemoglobin

analysis

Platform Designer in Quartus 18.1 is a powerful system development tool. It
enables one to define and generate a complete System-on-a-Programmable-Chip (SOPC)
in minimal time as compared to traditional manual integration methods. To wire up the
parts of the soft-core system using traditional design methods, one needs to manually write
the HDL modules. Platform Designer is used to create soft-core system based on the NIOS
Il processor by integration of the hardware components. Using the Platform Designer, the
system components are selected in a GUI and it generates the interconnect logic
automatically by creating HDL files that define all system components. The custom logic
can be integrated inside or outside of the Platform Designer system. In this example, the
custom component within the Platform Designer system communicates with other modules
through an Avalon-MM master interface. The custom logic outside the SOPC Builder
system is connected to the SOPC Builder system through a PIO interface. The system
interconnect fabric connects all of the SOPC Builder components using the Avalon-MM or
Avalon-ST system interconnect as appropriate [15].
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6.5.1 SDRAM Interface to FPGA

The DEO-Nano features a 32-MB Synchronous Dynamic Random Access Memory
(SDRAM) device that uses 16-bit data lines to communicate with the FPGA. The chip uses
the 3.3V LVCMOS signalling standard. The positive edge of the clock signal, DRAM
CLK, is used to register all of the signals. Figure 6.10 shows the connections between the
FPGA and SDRAM [16].
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DRAM_ADDR[12..0]
DRAM_DQM[1..0]

Amw DRAM_CLK
° DRAM_CKE
DRAM_WE_N
Cyclone.ngV DRAM_CAS N
DRAM_RAS N SDRAM 16MX16
DRAM_CS_N

DRAM_BAO
DRAM_BA1

Figure 6.10: Connections between SDRAM and FPGA [16].

This SDRAM has a memory organisation of 4M x 16 bits x 4 banks. The SDRAM
requires precise timing control. The SDRAM controller circuit IP must be included in the
Platform Designer in order to access the SDRAM successfully. A connectivity network
known as the Avalon switch fabric connects the NIOS Il soft-core to the memory and
input/output interfaces. As shown in Figure 6.11, the SDRAM controller generates all
essential interface signals except the clock. The clock must be supplied separately and
must meet the clock skew requirements. To ensure this, the clock signal sent to the NIOS
Il processor must lag the SDRAM clock by 3 ns[17]. This requirement is accomplished by
a phase-locked loop circuit.
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Figure 6.11: SDRAM controller interface [17].
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6.5.2 ADC Interface to FPGA

The DEO-Nano has an ADC128S022 lower-power, eight-channel CMOS 12-bit
analog-to-digital converter. This converter has conversion rates ranging from 50 to 200
ksps. The ADC receives an analog signal via the eight analog inputs pins INO through IN7.
When performing a conversion, the ADC reads the signal on the channel selected and
converts it into a digital signal. Figure 6.12 shows the interface between ADC128S022
with 2x13 Header [18].

GPIO_2[12..0]
GPIO_2 IN[2..0]

[AYO[SRYA\,

INo Cyclone™ 1V

IN1

2X13 Header

ADC_CS_N

IN2 CS_n{
|, ADC_SADDR

IN3 DIN (¢———————=
{ing DOUT | ADC_SDAT
Analog_In([7..0] ADC SCLK
INS SCLK ¢t =

IN6

IN7

ADC128S022CIMTX

Figure 6.12: ADC128S022 with 2x13 Header [18].

SCLK

2x13 GPIO
Header

Y
g

ADC FPGA
DIN

DOUT

Figure 6.13: ADC128S022 interface to FPGA [18].

The ADC is connected to the FPGA by four wires, which are used to control the
ADC and communicate with it, as shown in Figure 6.13. ADC uses the SCLK signal as a
device clock. The (CS) signal is an active low signal used to select the ADC chip. The DIN
and DOUT wires are used for transferring addresses and data between two chips. The
address of the next channel needed for conversion is provided by the FPGA via the DIN
connection, which is mapped to the ADC_SADDR pin on the FPGA. The address is three
bits long and is supplied serially to the ADC at the rate of one bit per SCLK cycle. The
ADC sends digital values to the FPGA via the DOUT connector, which is mapped to the
ADC_SDAT pin on the FPGA. This value is 12 bits long and is serially sent to the FPGA
at 1 bit per SCLK cycle [18].
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Timing and signal requirements
The user must provide the ADC with the SCLK, (CS), and DIN signals, as well as
capture the DOUT signal when it is being transmitted. The ADC128S002 runs on a 16-

cycle operational frame as shown in Figure 6.14.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| I N R N N N NN Y NN NN NN I N N I NN N RN N N RO Y N U N N NN R N B B |
— | I TR T NN N TN N N T TN NN I R NN Y Y N N Y RO N Y Y N U Y N B |
Cs I I R I N e e e N I e O O I e T e e e e I

rTT—T—T T T 7T 77 17 1T 17 T 1T 1 17 1 1T 1 15 1 1 15T rrrrr 111

1 1 1 1 1L 1 1 1 ']
DOUT xdalalln-ﬂatalou data9 K datasx clata?’ dataﬁ" data$ I data4~ data3 x data2~ datal N data0 l

Figure 6.14: Timing requirements for the ADC.

The DOUT signal provides 12-bit converted value to the selected channel. Channel
0 is used by default when the device is turned on, and subsequent reads will use the
address specified in the previous operational frame. The data bits are transmitted in
descending order, with the highest-order bit arriving first. The user captures it on the rising
edge of SCLK. The DIN signal is used to select the channel to be converted in the next
frame. The ADC captures it on the positive edges of SCLK and delivers it in descending
order. The user should generate DIN on the negative edges of SCLK to avoid any race
conditions [18].

The DEO-Nano ADC Controller

The DEO-Nano ADC Controller IP Core is utilized to manage and control the
signals between the ADC and the FPGA, as well as to provide the converted readings to
the user [18]. The DEO-Nano ADC Controller IP core can be instantiated in a system and
made part of the NIOS Il system using the platform designer with its graphical user
interface. It reads each of the ADC's input channels in ascending order once per update
cycle and stores the acquired values locally. The updated values are accessible after the
update cycle is completed. It also permits the user to customize many aspects of its
operation. The number of channels used by the ADC Controller core is defined by the
parameter NUM CH, which is set by the user when the core is instantiated. The SCLK
frequency can also be specified via the core. In the allowable range of 0.8 to 3.2 MHz, the
user can enter the desired value. The value is placed in the registers upon the completion of

the conversion.
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6.6 Altera NIOS 11 soft-core for non-invasive haemoglobin

estimation

In our design using Platform Designer in Quartus 18.1, the SOPC components
selected were 32-bit NIOS 1l CPU, On-chip memory, SDRAM, RS232 UART, Interval
Timer, Parallel Ports, ADC, and LCD.

SOPC builder in Quartus Il where one needs to merely select the required components

This has been accomplished with the help of

from the available IP list.

Connections Name Description
C—H ck_in Clock Input
(mey ck_in_reset Reset Input
- dk Clock Qutput
— ck_reset Reset Output
B 1 nios Nios II Processor
ck Clock Input
reset Reset Input
— data_master Avalon Memory Mapped Master
p— instruction_master Avalon Memory Mapped Master
— irq Interrupt Receiver
— debug_reset_request |Reset Output
debug_mem_slave Avalon Memory Mapped Slave
custom_instruction_m... |Custom Instruction Master
E sdram SDRAM Controller Intel FPGA IP
dk Clock Input
reset Reset Input
s1 Avalon Memory Mapped Slave
tor wire Conduit
E onchip_memory2 On-Chip Memory (RAM or ROM) Intel ...
ck1 Clock Input
31 Avalon Memory Mapped Slave
resetl Reset Input
E ADC ADC Controller for DE-series Boards
ck Clock Input
reset Reset Input
adc_slave Avalon Memory Mapped Slave
< external_interface Conduit
E wuvart UART (RS-232 Serial Port) Intel FPGA IP
ck Clock Input
reset Reset Input
s1 Avalon Memory Mapped Slave
<A external_connection Conduit
irg Interrupt Sender
[E MULTICHIPLED Parallel Port
dk Clock Input
reset Reset Input
avalon_parallel_port_... |Avalon Memory Mapped Slave
<H external_interface Conduit
B Lo Avalon LCD 16207 Intel FPGA IP
reset Reset Input
ck Clock Input
> control_slave Avalon Memory Mapped Slave
ras external Conduit

Figure 6.15: Selected SOPC components to build the system.
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After selecting the SOPC components, the hardware descriptive language (HDL)

files are generated. This generated system is then brought to the Quartus Block diagram

file window and the pin mapping is done as shown in Figure 6.16.

epc
PIN B14 ad sdramclk
— ado sk, o tade sclk sck dramelk_Clk (GBI = SHRATICIK .
PINATO Toiccan T esn =
PIN_AQ adc_dout o adc_dout dout
din o —oprgrjadedin dn
PIN_B10 “
PIN_R8 { clk_clk Lo clik_clk. ok
e
T T .
PIN K15 [0 P — = W
PIN_R11 | LcDp.0) St t;‘;—’:’“” Q data
PIN_R10 | PIN_L13 IEL —— = E
PIN_P9 PIN E9Q ) multichipled
PIN_N11 PIN Fa | | mulichipled exports.0] <y DULCRIRIRA AR o port
PIN_K16 PIN_D8 e reset|
PIN_L15 PIN E6 r‘i raset_reset n rosaln
PIN_P16 PIN_C6 sdram
PINN16 | [pin_La Py S ::: ::imm 0 i
PIN_N1 PIN_M6 E Ly ba
L PIN L1 e M dram_cas n cas
PIN_N2 PIN M7 PIN LT [ P S—— dram_cke e
PIN_P1 PIN PG "= P S sdram_cs_n -
PIN_R1 - P diam dolds o1 dq‘
pnTe |[Pnr [[pinTs | sdram dm1.0] <D ;;2:—;";: = dam
Pinns || PNz || pin s | [BINLZ Jeem e < P es
PIN_T7 || PIN_P3 ENEEEE To - . wen
ual
PIN_P8 FIN_RS PIN_D3 [y SR uart o
PIN_M8_ || PIN_R3 = [ " rd
PINC3 |TX < Fooror = td
PIN_T3 =
PIN_T2 =t e
PIN_T4
PIN_R7
PIN_J1
PIN_J2

Figure 6.16: The NIOS Il instance generated in Quartus Il software.

After compiling the entire design, it displays the number of logic elements, registers, pins

and memory bits being utilized, as shown in Figure 6.17.

Flow Status

Cuartus Prime Version
Revision Mame
Top-level Entity Name
Family

Device

Timing Models

Tofal logic elements
Total registers

Total pins

Total virtual pins

Total memory bits
Embedded Multiplier 9-bit elements
Total PLLs

Successful - Wed Aug 12 00:38:18 2020
18.1.0 Build 625 09/12/2018 SJ Standard Edition
epc

TOP

Cyclone IV E

EP4CE22F17C6

Final

4672 /22,320(21 %)

2981

63 /154 (41 %)

o

386,048 [ 608,256 [ 63 % )
6/132(5%)

1/4(25%)

Figure 6.17: Resources used for system design.

The completed SOPC design is then downloaded with SRAM Object file (.sof) on
Cyclone 1V on the DEO Nano FPGA board using a USB blaster. Once downloaded, the

application program to estimate total haemoglobin is written and compiled using the NIOS
Il Software Build Tools (SBT) for Eclipse.
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6.6.1 Programming the N1OS 11 soft-core

NIOS 1l Software Build Tools (SBT) is a collection of utilities targeted to build
embedded C/C++ applications for the soft-core. The C/C++ programming is accomplished
using the Eclipse graphical user interface [19]. It provides identical support for both C and
C++ development. It also provides editing, building, and debugging for software
development tasks. Next, the code is loaded into the SDRAM of the DEO Nano FPGA
Board. Figure 6.18 shows the graphical user interface of NIOS 1l SBT.

£ Nios 1l - SOFTPLS/pls.cpp - Eclipse = || ]
File Edit Source Refactor Navigate Search Project Run NiosT Window Help
- i@~ - Grit-0 - = v~ @ G- 0 QuickAceess || 2 | ([@TNiosT) & /-

[ Project Explorer 532 Sik=3 < = 8 [F plepp 2 =8
(5 SOFTPLS - 1 #include "pls.h”
(5 SOFTPLS_bsp [epc] <

=l

avalon_adc.h”
_lcd 16207 _regs.h"

n_adc_regs.h"

-
n_parallel_port.h"

usleep(15206);
TOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,6X38);
usleep(4128);
IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE , BX26) ;
usleep(4100);

8 Nios I Console 53 0] S T =8
- cable: USB-Blaster on localhost [USB-0] device ID: Linstance ID: 0 name: jtag_uart.jtag
is 14.20 g/dL and Predicted Hemoglobin is 15.82 g/dl

Writable Smart Insert 180:1

O o e NN
Figure 6.18: Graphical user interface of NIOS Il SBT.

To test the usability of multivariate analysis, we executed for various matrix
manipulations like curve fitting, matrix transpose, finding determinant, multiplication and
inverse operations before actual implementation of SIMPLS algorithm using the designed
NIOS 11 soft-core system. To estimate haemoglobin concentration, we need to build a
calibration model using PLS multivariate technique. The acquired data is processed using
the PLS algorithm in ‘C++ language’ for computing the unknown concentration of the
haemoglobin. The designed system was tested for multivariate analysis by running
SIMPLS algorithm in C++ to estimate the haemoglobin level of blood in humans. The

flowchart followed is depicted in Figure 6.19.
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| Configure the ADC and LCD |

v
Acquire the PPG for 670nm, 770nm, 810nm, 850nm &
950nm in sequential order for 5 seconds each

v

| Preprocessing of the PPG signal |

| Detect the peak and valley voltage of the PPG for each wavelength |

| Quality Assessment of the PPG |

| Calculate Absorbance for each LED wavelength |
v

Calculate the Total Haemoglobin using Mathematical

Empirical formula for five wavelengths
v
Calibrate the PLSR model with the absorbances
along with reference haemoglobin

v

| Validate the unknown input data with the PLSR model |

/ Display Estimated Haemoglobin with PLSR on LCD /

Figure 6.19: System flowchart for estimating haemoglobin.

First, the ADC and LCD are configured. The PPG signal is recorded for five
different wavelengths of LEDs in sequential order (viz., 670 nm, 770 nm, 810 nm, 850 nm,
and 950 nm) respectively for 5 seconds each. Next, the PPG signal is filtered by using a
moving average filter. Then, the peak and valley voltage of the PPG signal is extracted for
each LED wavelength. Then, the Quality Assessment for the PPG signal is done for each
PPG signal, where the mean of peaks and the mean of valley voltage of the PPG signal are
calculated. If the peak and valley voltages are closer to the mean peak and mean valley, the
values are then saved; else, they are discarded duringthe computation. Next, the AC
component (Peak Voltage - Valley Voltage) and DC component (Valley Voltage) for each
PPG LED wavelength are calculated to obtain the absorbance for each PPG signal. This is
followed by the estimation of the total haemoglobin of the subject using the mathematical
empirical formula for the five wavelengths. The PLSR model is calibrated with the
absorbance at the five different wavelengths along with the reference haemoglobin. Next,
the PLSR model is validated with the unknown values i.e. Absorbance of the PPG signal at
five LED wavelengths. Finally, the haemoglobin concentration is predicted using the
PLSR model and displayed on the LCD.
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PPG Signal Preprocessing

The performance of the biosignal processing for the non-invasive diagnosis of
diseases andthe calculation of physiological parameters arevery important factors. The
distinctive features of the filtered PPG signal are thepeaks and valleys of the PPG signals.
These parameters are used for the calculation of Heart rate, HRV, SPO,, and Total
Haemoglobin. Also, other features like dicrotic notch, rise time from valley to peak, and
fall time from peak to the valley are used for the estimation of blood pressure and
diagnosis of cardiovascular disease. The PPG signal can be corrupted due to motion
artifacts and respiration rate. Reliable peak detection from the corrupted PPG signal is very
important for processing the signal. This involves a robust algorithm for peak and valley
detection in a noisy PPG signal.Figure 6.20(a) shows the acquired PPG signal of a subject
at five different LED wavelengths. Figure 6.20(b) shows the scaled PPG signal for 810 nm
which consists of DC and AC components of the PPG signal. The PPG signal consists of
noise which is removed by using a moving-average filter to smoothen the signal by
reducing the variations between the samples. as shown in figure 6.21(a). It was observed
that if the haemoglobin concentration in blood is low, more light is transmitted thereby

producing a larger PPG signal and vice versa.
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Figure 6.20: PPG signal before filtering.
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PPG Signal @ 670nm fromt = 0- 55
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Figure 6.21: PPG signal after filtering.

Once the entire system is designed on Altera NIOS 11, the C++ code is downloaded
into the DEO- NANO FPGA board and the finger probe is connected to the selected GPIO
pins of the FPGA. Each individual LED is sequentially turned on for a duration of 5
seconds for acquiring the PPG signal. All the five PPG signals are recorded and the main
features are extracted from the PPG signal e.g. Systolic Peak and Valley for each PPG
signal. Based on the above features, optical densities (absorbances) are calculated for each
PPG signal and the algorithm is utilized to estimate the total haemoglobin using the
empirical formula. Also, the total haemoglobin is estimated using Multivariate (PLSR)
model to estimate the total haemoglobin in blood. The results obtained are briefly

discussed in the next Chapter.
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Chapter 7

Results and Discussions

In this study, the finger probe was designed with a Multichip LED with five
wavelengths and a single silicon photodetector with an on-chip trans-impedance amplifier.
The entire experimental setup was designed to estimate non-invasive haemoglobin levels
with five LED wavelengths (670 nm, 770 nm, 810 nm, 850 nm, and 950 nm). It was safe
because the radiated LED power was standardized at 0.7 mW and the fingertip was
exposed to LED wavelengths for less than 30 seconds. To carry out this experiment we
have taken the Institutional Human Ethical Clearance (IHEC). Before acquiring the data,
the subjects were explained about the procedure involved in the research work and then
formal consent was obtained from the subjects. The PPG signals were recorded at five
different LED wavelengths, while the subjects were in the seated rest position. The
pathological measurement of haemoglobin was also done at Manda's clinic using 5 part
Hematology Analyzer (Mindray company BC 5150) at the same time to validate the
estimated result obtained from our designed system. The total haemoglobin was estimated
with empirical formula with three and five LED wavelengths and comparison was done
between them. To further improve the prediction accuracy, total haemoglobin was
estimated with multivariate (PLSR) model and is also discussed in the next section briefly.

To present our result and the performance of our model, we calculated the
goodness of fit (R?), correlation coefficient (r), Root mean square error (RMSE), and the

Bland-Altman plot, in this research work and have discussed as follows.

Root mean square error
RMSE is the square root of the mean of the square of all errors represented in

Equation 7.1.

T, (= y)?
N

RMSE = (7.1)

where x = estimated haemoglobin, y = reference haemoglobin, N is the number of

subjects.

92



93

Accuracy of Prediction

The accuracy of our system is calculated using Equation 7.2.

A=1- ( IM) x100 (7.2)

The correlation coefficient (r) shows how strongly two measurement methods are

Correlation coefficient

linearly related. r is computed as the ratio of covariance between the variables to the
product of their standard deviations. The value of r is between -1.0 and +1.0. The formula
for Pearson’s correlation is represented in Equation 7.3,

2ilxi =) (yi—y)
r = 7.3
VEi(xi—0)2/2i(vi—9)? (7.3)

where n is the sample size, x;, yi are the individual sample points and X, y are the mean
values. Although a correlation coefficient gives us an indication of the strength of linear
relationship between the two estimation methods, we need to assess the agreement
between two measurement methods. So, we used the Bland-Altman plot to assess the

agreement between two measurements.

Bland-Altman plot and analysis

To establish the overall degree of agreement in healthcare research, it is essential to
compare two techniques of measurement. Traditional correlational studies can be replaced
with the Bland—Altman plot. The Bland—Altman plot depicts agreement graphically by
using the mean and standard deviation of the differences between two measurements to
create statistical limits of agreement. The difference (Measurement Method #1 vs.
Measurement Method #2) is shown on the vertical axis, while the mean ([Measurement
Method #1 + Measurement Method #2]/2) is shown on the horizontal. The bias between
the two tests is measured by the mean of differences between reference and estimated
values. One can discover bias between the mean differences of two measures and estimate
an agreement interval using Figure 7.1. Within this interval, 95 % of the data points
should fall within £ 2 standard deviations of the mean difference. Therefore, the agreement
interval allows one to evaluate the range of variability between the two methods, and it
must be chosen before the plot is constructed depending on clinical objectives. When
analysing a Bland-Altman plot, there are a few things to keep in mind. Firstly, determine
where the mean difference falls, as this indicates whether one method of measurement

tends to overestimate (i.e., the mean difference is greater than zero) or underestimate (i.e.,
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the mean difference is less than zero). The closer the mean difference is to zero, the better
is the agreement between the two measurements. To determine the precision of this result,
95 % confidence interval (CI) of the mean difference is calculated. If the line representing
zero falls beyond the 95 % CI, there is a significant difference between the two
measurements, indicating that one technique overestimates or underestimates the other.
Secondly, the spread of the limits of agreement must be determined since the standard
deviation of the differences between the two measurements reveals random variation
around the mean. The wider limits of agreement shows less precision while narrower
limits shows less precision which indicates that the two methods are comparable.

The bias between the two tests is measured by the mean of differences between reference

and estimated values.
Bias (d) = - ¥_, d, (7.4)

where d,= Estimated value -Reference value, n = the number of subjects

Standard deviation(SD) = \/ﬁ n(d, - c_l)z (7.5)

Limits of agreement between the two tests are defined by a 95% prediction interval of a
particular value of the difference.
limits of agreement = Bias + 1.96 S, (7.6)

The limits of agreements are defined as + 1.96 times the SD from the mean of differences.
The limits of agreement are represented by the outer red coloured dotted lines, and bias is

represented by the middle blue coloured line as shown in Figure 7.1.
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Figure 7.1: Bland- Altman plot.
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7.1 Analysis of haemoglobin estimation with three and five
LED wavelengths (Case I)

In Case I, fifteen subjects were enrolled in the preliminary study. The age range of
participating subjects was 18 to 35 years with less variations with respect to age and skin.
The non-invasive total haemoglobin was estimated with three and five LED wavelengths
using mathematical empirical formula and the reference haemoglobin was measured in the

pathology laboratory.

Table 7.1: Haemoglobin estimation for 15 Subjects (Case ).

Estimated total haemoglobin Total Error in total haemoglobin
with the designed system haemoglobin measured
(Non-invasive method) measured in
Three LED Five LED pathology Three LED Five LED

Subject wavelengths  wavelengths laboratory wavelengths  wavelengths

No (g/dL) (g/dL) (g/dL) (g/dL) (g/dL)
Sub.1 16.87 17.02 17.50 -0.63 -0.48
Sub.2 16.56 17.13 17.00 -0.44 0.13
Sub.3 11.53 11.87 11.20 0.33 0.67
Sub.4 15.42 16.34 16.20 -0.78 0.14
Sub.5 13.15 13.98 14.00 -0.85 -0.02
Sub.6 12.80 12.97 12.50 0.3 0.47
Sub.7 15.03 15.83 15.70 -0.67 0.13
Sub.8 16.36 16.55 16.00 0.36 0.55
Sub.9 16.12 16.62 16.80 -0.68 -0.18
Sub.10 11.89 12.07 12.20 -0.31 -0.13
Sub.11 14.12 14.69 14.90 -0.78 -0.21
Sub.12 12.34 13.11 12.90 -0.56 0.21
Sub.13 15.16 15.49 16.10 -0.94 -0.61
Sub.14 13.45 14.49 14.20 -0.75 0.29
Sub.15 11.32 11.64 12.00 -0.68 -0.36

RMSE  0.64 g/dL 0.36 g/dL
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The result of Table 7.1, shows non-invasive measurement of total haemoglobin

using three and five LED wavelengths (non-invasive method). Also, a comparative study

was made with the haemoglobin measured using the invasive method in the pathology

laboratory. The blue and red bar graph indicates estimated haemoglobin with three LED

wavelengths and with five LED wavelengths and the green bar graph indicates the

reference hemoglobin measured in the pathology laboratory as shown in Figure 7.2.

M Estimated Total Haemoglobin with three LED wavelengths
20 M Estimated Total Haemoglobin with five LED wavelengths
3 18 m Reference Total Haemoglobin measured in Pathology Laboratory
Cvl W |
ol W |
sz |
Bl W |
: . 0N |
S N |
1 N |
= 2 -
Bl |
Sub.l Sub.2 Sub.3 Sub.4 Sub.5 Sub.6 Sub.7 Sub.8 Sub.9 Sub.10 Sub.11 Sub.12 Sub.13 Sub.14 Sub.15
Subject No
Figure 7.2: Total haemoglobin for 15 subjects (Case 1).
Figure 7.3 shows the regression analysis for estimated total haemoglobin v/s

reference haemoglobin for three and five LED wavelengths.

Estimated Total Haemoglobin
(g/dL)

20 1 ® With three LED wavelengths
12 : @ With five LED wavelengths
17 -
16 -
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14 - R?2=0.967
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12 -
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10 T T T T )
10 12 14 16 18 20

Reference Haemoglobin (g/dL)

Figure 7.3: Regression analysis for estimated total haemoglobin v/s reference haemoglobin

(Case I).
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Initially, total haemoglobin was estimated with three wavelengths (A;=670nm,
A,=810nm and A3=950nm) using mathematical empirical formula and the RMSE was 0.64
g/dL with the Regression Coefficient of R?=0.954, but our aim was to further improve the
prediction accuracy. Hence we selected another two wavelengths, 770nm and 850nm to
get more information about oxyhaemoglobin and deoxyhaemoglobin. By adding these two
wavelengths, the RMSE significantly improved to 0.36 g/dL and the Regression
Coefficient (R°=0.967) which is good. For this reason, the five wavelengths PPG is an
excellent choice for the measurement of non-invasive blood haemoglobin and we

continued our further research work with five LED wavelengths.

7.1.1 Multivariate calibration (PLSR) model in NIOS |1 soft-core system
for non-invasive haemoglobin estimation with five LED

wavelengths

Initially, multivariate PLSR model was implemented using ParLeS 3.1 software for
the analysis. For the PLSR model, 12 Subjects' PPG signals was used as the calibration set,
and 3 Subjects' PPG signal was used for validating the PLSR model. Also, the PLSR
algorithm was implemented using C++ and ported on the designed NIOS Il soft-core

system in DEO Nano FPGA Board to predict the total haemoglobin concentration in blood.

Table 7.2: Estimated total haemoglobin with five LED wavelengths.

Reference Estimated total haemoglobin

Subject No haemoglobin  With empirical formula With PLSR model

Sub. 1 16.10 15.49 15.89
Sub. 2 14.20 14.49 14.17
Sub. 3 12.00 11.64 11.98
RMSE 0.44 0.12
r 0.97 0.99

Accuracy 97.05% 99.44%

Table 7.2 shows the estimated total haemoglobin with empirical formula and with
PLSR model for five LED wavelengths. The estimated total haemoglobin with

mathematical empirical formula gave a RMSE of 0.44 g/dL and with PLSR model gave a
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RMSE of 0.12 g/dL for the validation data with three subjects. The accuracy and
correlation was also improved with the PLSR model. Also, the system was validated with
Bland-Altman plot as shown in Figure 7.4 (a) and (b), it was observed that the upper and
lower limit of 95% confidence interval agreement for estimating total haemoglobin with
empirical formula was 0.68 and -1.1 respectively and with PLSR model it was 0.12 and -
0.30. Also, the bias was -0.23 g/dL and -0.09 g/dL for estimating total haemoglobin with
empirical formula and the PLSR model respectively. The result showed that with
multivariate PLSR model, the estimation of total haemoglobin was very precise and

showed good agreement between the two measurements.

2 5 | Estimated Total Haemoglobin with Empirical formula Estimated Total Haemoglobin with PLSR model
) 25

0.68 (Bias + 1.96 SD|

0.12 (Bias + 1.96 5D)

0 o o -0,09

g ias]
0.5 -0.3 (Bias - 1.96 SD)

-1.1 (Bias - 1.96 5D)

Difference between Reference & Estimated (g/dL)
(=]
Difference between Reference & Estimated (g/dL)

12 13 14 15 16 17
Mean of Reference & Estimated (g/dL) Mean of Reference & Estimated (g/dL)
(a) (b)

Figure 7.4: Bland-Altman plot (Case I).

7.2 Analysis of haemoglobin estimation with five LED

wavelengths (Case I1)

In Case Il, seventy five subjects were enrolled in this study. The age range of
participating subjects was 18 to 60 years with an average of 29 years that included 28
females and 47 males. In this study, the subjects were chosen with diverse variations such
as age and skin. The non-invasive total haemoglobin was estimated with five LED
wavelengths using mathematical empirical formula and also multivariate (PLSR) model.

The results were compared with each other and is discussed as follows.
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Table 7.3: Haemoglobin estimation with empirical formula for 25 Subjects (Typical) with

five LED wavelengths (Case I1).

Reference Estimated Error

Subjects Age Gender Height Weight BMI haemoglobin haemoglobin

Sub.l 35 M 165 62 228 17.5 18.05 0.55
Sub.2 29 M 167 58 20.1 18.7 19.27 0.57
Sub.3 37 M 165 82 301 15.1 14.53 -0.57
Sub.4 20 M 165 65 238 16.7 16.34 -0.36
Sub5 32 M 167 90 323 16.8 16.5 -0.30
Sub6 21 M 174 60 19.8 15.5 14.83 -0.67
Sub.7 28 M 172 75 254 14.3 13.53 -0.77
Sub.8 23 M 176 92 297 15.7 15.81 0.11
Sub9 28 M 180 82 253 16.3 15.94 -0.36
Sub.10 26 M 183 61 18.2 10.5 11.25 0.75
Sub.11 27 M 176 74 239 9.9 9.53 -0.37
Sub.12 38 F 152 62 26.8 12.5 12.93 0.43
Sub.13 37 F 143 46 225 10.0 10.84 0.84
Sub.14 21 F 152 49  21.2 13.5 13.17 -0.33
Sub.15 27 F 160 54 210 13.8 14.67 0.87
Sub.16 38 M 178 86 271 18.0 16.98 -1.02
Sub.17 22 F 164 55 204 12.8 11.94 -0.86
Sub.18 40 F 158 80 32.0 13.6 13.91 0.31
Sub.19 56 M 165 80 293 15.2 15.31 0.11
Sub.20 26 F 170 63 218 14.0 14.16 0.16
Sub.21 37 F 152 56 2472 12.2 11.34 -0.86
Sub.22 37 F 163 67 252 11.2 11.18 -0.02
Sub.23 50 M 157 80 324 13.7 13.50 -0.20
Sub.24 57 F 170 78 27.0 13.9 13.26 -0.64
Sub.25 45 F 154 60 253 13.6 13.21 -0.39

Table 7.3 shows the observation of typical 25 subjects estimation of haemoglobin
with five LED wavelengths. The database included age, gender, height, weight and Body
Mass Index (BMI). The RMSE between the reference haemoglobin and the estimated total
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haemoglobin with mathematical empirical formula for five LED wavelengths was 1.09

g/dL for 75 subjects in the age group of 18 to 60 with different skin texture.

7.2.1 Multivariate calibration (PLSR) model in Altera NIOS Il soft-core
system for non-invasive haemoglobin estimation with five LED

wavelengths

Cross-validation is a technique used to find out how accurately a predictive model will
perform in practical scenario. Here, we divided the datasets manually to cross-validate our
model. For the PLSR model, 65 Subjects' PPG signals were used for calibrating the model,
and 10 Subjects' PPG signals for validating the model for three different cross-validation

scenarios having 10 subjects selected randomly for validation.

With cross-validation Set |

Table 7.4: Estimation of total haemoglobin with cross-validation Set I.

Reference Estimated total haemoglobin

Subject  haemoglobin With Empirical formula With PLSR model

Sub. 1 13.60 11.05 12.16
Sub. 2 17.50 18.05 18.09
Sub. 3 16.70 14.82 15.19
Sub. 4 18.70 19.27 18.89
Sub. 5 13.70 15.06 15.02
Sub. 6 15.90 16.29 16.56
Sub. 7 16.70 16.52 16.49
Sub. 8 12.30 11.35 12.07
Sub. 9 10.90 10.86 11.54
Sub. 10 14.20 14.24 14.48
RMSE 1.17 0.87

R 0.91 0.93

Accuracy 94.19% 95.12 %

Table 7.4 shows the estimated results with the mathematical empirical formula and

PLSR model for cross-validation Set I. The RMSE, correlation coefficient (r), and
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accuracy for estimated total haemoglobin with empirical formula was 1.17 g/dL, 0.91, and
94.19 % respectively and with PLSR model was 0.87 g/dL, 0.93, and 95.12 %
respectively. Figure 7.5 shows the regression analysis for estimated total haemoglobin v/s
reference haemoglobin for cross-validation Set I. The coefficient of determination for
estimation of total haemoglobin with empirical formula was R*=0.839 and with PLSR
model was R*=0.872.
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Figure 7.5: Regression analysis for estimated total haemoglobin v/s reference
haemoglobin for cross-validation Set |.
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Figure 7.6: Bland-Altman analysis for cross-validation Set I.

From Figure 7.6 (a), it is observed that the bias was -0.27 g/dL, SD of 1.19 g/dL,
and limits of agreement from -2.6 to 2.1 g/dL for estimating total haemoglobin with
empirical formula. For Figure 7.6 (b), the bias, SD, and limits of agreement was 0.03 g/dL,
0.91 g/dL, and -1.8 to 1.8 g/dL respectively for estimating total haemoglobin with the
PLSR model.
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With cross-validation Set 11

Table 7.5: Estimation of total haemoglobin with cross-validation Set I1.

Subject Reference Estimated haemoglobin
No haemoglobin With Empirical formula With PLSR model
Sub. 1 13.10 11.88 12.65
Sub. 2 12.70 12.79 13.22
Sub. 3 11.20 11.18 11.88
Sub. 4 16.80 16.5 16.42
Sub. 5 14.70 13.16 13.79
Sub. 6 15.40 1541 15.47
Sub. 7 14.50 13.28 13.84
Sub. 8 15.50 14.83 15.17
Sub. 9 14.30 13.53 14.08
Sub. 10 15.80 16.46 16.69
RMSE 0.83 0.57
r 0.92 0.93
Accuracy 95.52% 96.36%

Table 7.5 shows the estimated results with the mathematical empirical formula and
PLSR model for cross-validation Set Il. The RMSE, r, and accuracy were 0.83 g/dL, 0.92
and 95.52% with empirical formula and 0.57 g/dL, 0.93, and 96.36 % with the PLSR
model. The coefficient of determination for estimation of total haemoglobin with empirical

formula was R*=0.853 and with PLSR model was R?=0.870 as shown in Figure 7.7.
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® With PLSR Model

R*=0.853
R*=0.870
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Reference Haemoglobin (g/dL)

18

Figure 7.7: Regression analysis for estimated total haemoglobin v/s reference

haemoglobin for cross-validation Set I1.
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Figure 7.8: Bland-Altman analysis for cross-validation Set I1.

From Figure 7.8 (a), the bias was -0.50 g/dL, SD of 0.70 g/dL, and limits of
agreement from -1.9 to 0.88 g/dL with empirical formula. From Figure 7.8 (b), the bias,

SD, and limits of agreement were 0.08 g/dL, 0.60 g/dL, and -1.3 to 1.1 g/dL respectively
with the PLSR model.

With cross-validation Set 111

Table 7.6. Estimation of total haemoglobin with Cross-validation Set 111

Reference Estimated haemoglobin
Subject No  haemoglobin  With Empirical formula With PLSR model

Sub. 1 15.40 15.52 15.39
Sub. 2 15.80 14.84 15.18
Sub. 3 14.70 13.02 13.83
Sub. 4 16.70 16.34 16.33
Sub. 5 15.10 14.53 14.68
Sub. 6 12.90 12.77 13.58
Sub. 7 12.80 11.94 12.95
Sub. 8 15.30 13.86 14.51
Sub. 9 13.20 14.06 14.33
Sub. 10 12.50 12.93 13.40
RMSE 0.89 0.68
r 0.84 0.89

Accuracy 94.80% 95.77%
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Table 7.6 shows the estimated results with the mathematical empirical formula and

PLSR model for cross-validation Set Ill. The RMSE, r, and accuracy with empirical
formula was 0.89 g/dL, 0.84, and 94.87% respectively and with PLSR model, it was 0.68

g/dL, 0.89, and 95.77 % respectively. Figure 7.9 shows the regression analysis for

estimated haemoglobin v/s reference haemoglobin for cross-validation Set Il1l. The

coefficient of determination for estimation haemoglobin with empirical formula was
R®=0.706 and with PLSR model was R*=0.80.
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Figure 7.10: Bland-Altman analysis for cross-validation Set Il1.
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From Figure 7.10 (a), it is observed that the bias was -0.46 g/dL, SD of 0.81 g/dL,
and limits of agreement from -2.0 to 1.1 g/dL for estimating haemoglobin with empirical
formula. From Figure 7.10 (b), the bias, SD, and limits of agreement were -0.02 g/dL, 0.72
g/dL, and -1.4 to 1.4 g/dL respectively for estimating haemoglobin with the PLSR model.
In all three Bland-Altman plot and analysis for different cross-validation sets, the data
points were less spread with less bias, which clearly shows that haemoglobin estimation

with the multivariate PLSR model is more precise.

The main objective of this research work was to design a portable system for
predicting total haemoglobin with an error of less than 1g/dl which was achieved by using
five LED wavelengths to acquire the PPG signal and by applying the PLSR multivariate

technique.
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7.3 CONCLUSIONS

A low-cost, portable, non-invasive total haemoglobin meter has been designed
using fixed LED sources (Multichip LEDs) with a wavelength ranging from 670 to 950 nm
along with Silicon detector OPT101 for PPG signal acquisition. The entire soft-core
system was designed and the PLSR algorithm was implemented in the NIOS Il on Altera
Nano DEOQ Board to estimate total haemoglobin in the blood. The filtering and Quality
Assessment for the PPG signals were implemented to smoothen the PPG signal and to
extract good quality peaks. The result of this study showed a good significant correlation
between haemoglobin concentration and characteristics of the PPG signal.

In Case I: Analysis with empirical formula was done with 15 subjects in the age
group of 18 to 35 years with less variations such as age and skin. It was observed that total
haemoglobin estimation with three wavelengths gave RMSE of 0.64 g/dL and 0.36
g/dLwith five wavelengths which was much better. With the PLSR model implemented in
the FPGA Board, the system accuracy improved by estimating total haemoglobin with
RMSE of 0.12 g/dL with prediction accuracy of 99.43% for 3 subjects in the validation set
for five wavelengths.

In Case Il (5 wavelengths): Analysis was done with 75 subjects in the age group of
18 to 60 years with skin variations. With the PLSR model, the RMSE was reduced for

Cross-Validation I: 0.87 g/dL

Cross-Validation I1: 0.57 g/dL

Cross-Validation 111: 0.68 g/dL

The system was also validated with Bland-Altman Analysis and it was observed
that the PLSR model showed better agreement in estimating total haemoglobin precisely
with less bias. It was observed that RMSE with 75 subjects was slightly on the higher side

as we have considered the diverse population with variation in skin color and age.
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ANNEXURE |
Program for LCD

#include"altera_avalon_lcd_16207_regs.h"

void lcd_int()

{

usleep(15000);

IOWR_ALTERA AVALON_LCD_ 16207 COMMAND(LCD_BASE,0X38);
usleep(4000);

IOWR_ALTERA AVALON_LCD_ 16207 COMMAND(LCD_BASE,0X06);
usleep(4000);
IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X0E);
usleep(4000);
IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X01);
usleep(2000);

}

int main()

{

inti;

char j[16] =" NON-INVASIVE *;
char k[16]=" HAEMOGLOBIN *;
lcd_int();

while(1){
IOWR_ALTERA AVALON _LCD 16207 COMMAND(LCD_BASE,0X80);
usleep(2000);
for(i=0;i<16;i++){
IOWR_ALTERA_AVALON_LCD_ 16207 DATA(LCD_BASE,j[i]);
usleep (30000);
}
IOWR_ALTERA AVALON _LCD_ 16207 COMMAND(LCD_BASE,0XCO0);
usleep(2000);
for(i=0;i<16;i++){
IOWR_ALTERA AVALON_LCD_ 16207 DATA(LCD_BASE K[i]);
usleep (30000);

¥
¥

return O;

¥
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ANNEXURE II

Program for ADC and LCD
#include "altera_up_avalon_adc.h"
#include"altera_avalon_lcd 16207 regs.h"

void lcd_int()

{

usleep(15000);

IOWR_ALTERA_AVALON_LCD_16207_ COMMAND(LCD_BASE,0X38);
usleep(4000);

IOWR_ALTERA_AVALON_LCD_16207_ COMMAND(LCD_BASE,0X06);
usleep(4000);
IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X0E);
usleep(4000);
IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X01);
usleep(2000);

ks

int main()

{

inti,

alt_up_adc_dev *adc;

unsigned int thousand, hundred, ten, unit;
int count;

int data;

int channel;

char j[16]=" NON-INVASIVE *;
char k[16]=" HAEMOGLOBIN ";
lcd_int();

while(1){
IOWR_ALTERA_AVALON LCD 16207 COMMAND(LCD_BASE,0X80);
usleep(2000);
for(i=0;i<16;i++){
IOWR_ALTERA AVALON_LCD_16207_DATA(LCD_BASE,j[i]);
usleep (30000);
}
IOWR_ALTERA_AVALON LCD_ 16207 COMMAND(LCD_BASE,0XCO0);
usleep(2000);
for(i=0;i<16;i++){
IOWR_ALTERA_AVALON LCD 16207 DATA(LCD_BASEKIi]);
usleep (30000);
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}

data = 0;

channel = 0;

adc = alt_up_adc_open_dev ("/dev/ADC");

while (adc!=NULL){
alt_up_adc_update (adc);
count +=1,;
data = alt_up_adc_read (adc, channel);
data=((data*3300)/4095);
thousand=(data/1000)+48;
hundred=((data/100)%10)+48;
ten=((data/10)%10)+48;
unit=(data%?210)+48;

IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0XCO0);
usleep(2000);
IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,thousand);
usleep (30000);

IOWR_ALTERA_AVALON_LCD_16207 DATA(LCD_BASE,hundred);
usleep (30000);
IOWR_ALTERA_AVALON_LCD_ 16207 DATA(LCD_BASE ten);
usleep (30000);
IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,unit);
usleep (30000);
IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,'g);

usleep (30000);
IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,'m";
usleep (30000);

IOWR_ALTERA_AVALON_LCD_16207 DATA(LCD_BASE,/");

usleep (30000);

IOWR_ALTERA_AVALON_LCD_16207 DATA(LCD_BASE,d");
usleep (30000);
IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,'L";
usleep (30000);

¥
¥

return O;

}
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ANNEXURE 111
Program for PLSR Algorithm

#include "pls.h"

#include <iostream>

#include "altera_up_avalon_adc.h"
#include"altera_avalon_lcd_16207_regs.h
#include"system.h"

#include "unistd.h"

#include <string.h>

#include <math.h>

#include "altera_up_avalon_adc.h"
#include <stddef.h>

#include "sys/alt_dev.h"

#include "sys/alt_alarm.h"
#include "sys/alt_warning.h"

void LCD (char dat[] );

void lcd_int()

{
usleep(15000);
IOWR_ALTERA_AVALON_LCD_16207_ COMMAND(LCD_BASE,0X38);
usleep(4000);
IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X06);
usleep(4000);
IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X0E);
usleep(4000);
IOWR_ALTERA_AVALON_LCD_16207 COMMAND(LCD_BASE,0X01);
usleep(2000);

ky

void LCD(char dat[]){
int index = 0;
while(dat[index]!'="\0"{
IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,dat[index]);
usleep (30000);
index++;

¥
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float rounding(float var)
{
float value = (int)(var * 100 + .5);
return (float)value / 100;

}

int main(int argc, char ** h, char** b)

{
int index=0;
char string[] = "NIOS Il HB meter™;
char stringl1[] = "using PLSR model™;
lcd_int();
IOWR_ALTERA_AVALON_LCD_16207 COMMAND(LCD_BASE,0X01);
usleep(2000);
IOWR_ALTERA_AVALON_LCD_16207 COMMAND(LCD_BASE,0X80);
usleep(2000);
LCD(string);
IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0XCO0);
usleep(2000);
LCD(stringl);
usleep (3000000);

char textl[] = "Refer.:";
char text2[] = "Pred. :";
char text3[] = "g/dL";

Mat2D X_orig(65, 5);

X_orig << 2.9376, 2.5676, 2.4566, 2.2564, 2.2053,
2.3631, 2.0895, 1.9365, 1.8144, 1.8104,
2.52217, 2.4645, 2.334, 2.0823, 2.0489,
2.3524, 2.1783, 2.296, 1.9479, 1.921,
2.7318, 2.3192, 2.1971, 2.13609, 2.0726,
2.3816, 2.2443, 1.923, 1.8293, 1.7529,
2.7074, 2.5066, 2.3886, 2.3417, 2.164,
2.4992, 2.2108, 1.9697, 1.8935, 1.8556,
2.9375, 2.8251, 2.5553, 2.3387, 2.3347,
2.5895, 2.0733, 1.8753, 1.7809, 1.7368,
2.8824, 2.6388, 2.5194, 2.4807, 2.3776,
2.2573, 2.0136, 1.8761, 1.8014, 1.7662,
2.7592, 2.5103, 2.5103, 2.2817, 2.24809,
2.3284, 2.0843, 1.9086, 1.829, 1.7717,
1.8517, 1.7257, 1.9759, 1.9592, 1.7124,
2.6643, 2.29, 2.1602, 1.9976, 1.9648,

2.375, 2.1793, 2.0109, 1.8475, 1.7989,
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2.5037, 2.3385, 2.2092, 2.1462, 1.9245,
2.5334, 2.2443, 2.1044, 2.0458, 1.9743,
2.7536, 2.3943, 2.2928, 2.2186, 2.1788,
2.4349, 2.1261, 1.9254, 1.8826, 1.8634,
2.5312, 2.5173, 2.2315, 2.1882, 2.0412,
2.3479, 2.3212, 2.3153, 2.2249, 2.1003,
2.5924, 2.04009, 2.0144 , 1.9453 , 1.892,

2.7164, 2.5352, 2.4298 , 2.2533, 2.1736,
2.638, 2.5809, 2.4831, 2.2008 , 2.0503,
2.4098, 2.2952, 2.0128, 1.9757, 1.9295,
2.7501, 2.4623, 2.2866 , 2.2486 , 2.1732,
1.9407, 1.7504, 1.5471, 1.5542 , 1.612,

2.7323, 2.4571, 2.4276 , 2.4243 , 1.9463,
2.2617, 2.0414, 1.992 1.8705, 1.7417,
2.9807, 2.7331, 2.6502 , 2.5687 , 2.4598,
1.7306, 1.5082, 1.4418, 1.3008 , 1.2504,
2.2042, 2.0915, 1.8566 , 1.7411, 1.7164,
1.874, 1.778, 1.6524 , 1.4401, 1.4378,
2.402, 2.0792, 1.9394 , 1.8304 , 1.7795,
2.395, 2.2868, 2.2132, 1.8545, 1.7946,
2.1848, 2.0977, 1.8561 , 1.8477 , 1.8283,
1.8554, 1.6159, 1.6268 , 1.5999 , 1.5798,
2.6541, 2.1362, 2.0063 , 1.9145, 1.893,

2.2417, 2.0286, 1.9855, 1.9514 , 1.8286,
2.087, 1.9994, 1.8848 , 1.7418, 1.7072,
2.0517, 1.6963, 1.5352, 1.4714 1.434,

2.1933, 1.9613, 1.8185, 1.7727, 1.7211,
2.5634, 2.1618, 2.0338, 1.8265, 1.8175,
2.12009, 1.9592, 1.7362 , 1.7109, 1.6569,
1.8554, 1.6159, 1.6268 , 1.5999 , 1.5798,
2.5702, 2.4149, 2.2528 , 2.1292 , 2.0808,
2.5086, 2.2628, 1.9887 , 1.8942 , 1.8302,
2.3534, 2.0618, 1.9399, 1.6983, 1.6714,
2.2388, 2.3585, 2.1442 1.9058 , 1.9019,
1.9582, 1.7553, 1.6122, 1.5489, 1.6084,
2.1473, 2.0186, 1.8833, 1.7612 , 1.7494,
1.8554, 1.6159, 1.6268 , 1.5999 , 1.5798,
2.867, 2.6278, 2.5712 , 2.3531, 2.283,

2.61, 2.3078, 2.1428 , 2.0805 , 2.0138,
2.3676, 2.0992, 1.8886 , 1.7915, 1.729,

2.7504, 2.4971, 2.3623 , 2.3557, 2.2174,
2.381, 2.2598, 2.1227 2.0543, 1.9846,
2.3199, 2.0032, 1.8316, 1.7857, 1.7159,

2.1932, 1.9248, 1.7069 , 1.6553, 1.5879,
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2.5969, 2.132, 1.971 , 1.96 1.8849,
2.3567, 2.2114, 2.0379, 1.965 1.9273,
2.5552, 2.286, 2112 2.0373, 2.0198,
2.05609, 1.861, 1.7743 1.6398, 1.5952;

Mat2D Y _orig(65, 1);

Y _orig << 15.8,
14.5,
15.4,
15.8,
13.7,
16.5,
14.7,
14.9,
17.2,
16.5,
16.5,
15.4,
16.8,
14.7,
14.7,
15.5,
14.3,
15.5,
14,
15.7,
15.3,
15.4,
17.4,
15.3,
16.1,
16.3,
15.4,
16.4,
10.5,
15.6,
13.6,
17.9,
9.9,
12.5,
10,
13.9,
13.6,
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13.5,
11.6,
141,
13.7,
12.6,
13,

12.5,
13.9,
12.1,
12,

15.2,
14.9,
12.8,
14,

12.2,
12.7,
11.2,
18,

15.8,
14.7,
16.7,
15.1,
12.9,
12.8,
13.6,
13.2,
13.8,
13.1;

Mat2D X_pred(10, 5);

X_pred << 2.0864, 1.7443, 1.647, 1.5015, 1.4513,
3.0626, 2.9608, 2.7724, 2.4952, 2.3067,
2.5808, 2.457, 2.1991, 2.0228, 1.9394,
3.1313, 3.0273, 2.8775, 2.7402, 2.5642,
2.4048, 2.2908, 2.2658, 2.0594, 2.0385,
2.8708, 2.6025, 2.4245, 2.2464, 2.1535,
2.7574, 2.4977, 2.3892, 2.3567, 2.2821,
1.8992, 1.758, 1.7, 1.577, 1.5674,
1.8003, 1.7279, 1.5925, 1.4919, 1.49,
2.4384, 2.2322, 2.0104, 1.9896, 1.9781;
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Mat2D Y _actual(10, 1);
Y _actual << 13.6,
17.5,
16.7,
18.7,
13.7,
15.9,
16.7,
12.3,
10.9,
14.2;

Mat2D X = X _orig;
Mat2D Y =Y _orig;

PLS_ Model plsm;

int npred = X_orig.cols();

int nresp = Y _orig.cols();

int ncomp = 5;

plsm.initialize(npred, nresp, ncomp);

while (1){
plsm.plsr(xmat,ymat, KERNEL_TYPEL);

for(int h = 0; h<=0; h++){
IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X01);
usleep(2000);
IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0X80);
usleep(2000);
LCD(textl);
index =0;

while(display[h][index]!'="\0"){

IOWR_ALTERA_AVALON_LCD_16207_DATA(LCD_BASE,display[h][index]);
usleep (30000);
index++;
}
IOWR_ALTERA_AVALON_LCD_16207 COMMAND(LCD_BASE,0XCO0);
usleep(2000);
LCD(text2);

float dat;
dat= *(meansy.data()) + *(plsm.fitted_values(xmatp).data() + h);
dat = rounding(dat);
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std::ostringstream ss;

ss << dat;

std::string s(ss.str());

index = 0;
while(s[index]!="0"){
IOWR_ALTERA_AVALON_LCD 16207 _DATA(LCD_BASE s[index]);
usleep (30000);

index++;

}
IOWR_ALTERA_AVALON_LCD_16207_COMMAND(LCD_BASE,0XCC);
usleep(2000);

LCD(text3);

usleep(5000000);

)

return O;

}
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