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Sustainable agriculture is based on the understanding of ecosystem services. It includes
environment-friendly methods of farming that allow the production of crops or livestock without
damaging human or natural systems. Among the micro-organisms, the arbuscular mycorrhizal
(AM) fungi play a vital role in increasing the crop yield without compromising the soil fertility and
thus assist in sustainable agriculture. As President of the Mycological Society of India (MSI), I
express my deep sense of gratitude to the esteemed members of MSI for their continued efforts over
the years to promote the growth of mycology in our country and raise our Society to greater heights
inthe coming years.

This review focuses on plant-AM fungal interaction as well as provides an insight into sustainable
agroecosystems. The rhizosphere microbiome comprises functionally diverse microorganisms
ranging from plant pathogens to mutualists. Among the latter are AM fungi, which are considered
the most prominent examples of interactions between plants and microorganisms. This plant-AM
fungal interaction significantly affects the competence of the host plant's roots to absorb several
nutrients, especially phosphorus (P), from the soil. Production and application of AM fungal
inoculum are most easily recognized as an AM fungal technology. However, there is a need to
determine the mechanism of plant-AM fungal interaction within given socio-economic constraints
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for the sustainable functioning of agroecosystems.

INTRODUCTION

Recent research has focused more on understanding and
interpreting the function and composition of microbiomes
between plants and soil. The term "plant microbiome" refers
to plants' association with various microorganisms that play a
vital role in the niches inhabited. These microorganisms are
found in the endosphere occupying the inner tissues of the
host plant's roots. While the phyllosphere occupies the outer
plant surfaces, such as stems, leaves, flowers, and fruits, the
rhizosphere occupies the soil surrounding the host plant's
roots (Thomas et al., 2022). These microorganisms dwelling
in the different niches of the host plant are involved in its
ecology and physiology. They are known to significantly
increase the soil nutrient availability to the host plant and
increase its resistance to stress. These microorganisms living
either in the endosphere or phyllosphere between plants and
soil are predominantly bacteria and fungi (Berendsen et al.,
2012). Interestingly, the rhizosphere microbiome associated
with plant roots has received inimitable attention in recent
years due to its chief role in the host plant's growth, nutrition,
immunity, development, and productivity. Prospective
studies of the rhizosphere microbiome have been coupled
with the need for more sustainable production for
agroecosystems (Thomas et al., 2022).

Rhizosphere microbiome

The rhizosphere microbiome is diverse with a wide range of
microorganisms, including bacteria, oomycetes, fungi, algae,
nematodes, viruses, protozoa, and archaea (Bonkowski et al.,
2009). The soil mycobiome, particularly in itself, contains
functionally varied fungi, many of which are plant pathogens
that reduce plant performance (Nilsson ef al., 2019). On the
other side, mutualistic fungal taxa such as AM fungi are
notable examples of interactions between plants and
microbiota (Koide and Mosse, 2004; Jiang et al., 2020).
Plant-microbe interactions significantly impact plant
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functioning and plant community ecology (Moénne-Loccoz
etal., 2015). Itis assumed that fungi are the most effective soil
microorganisms involved in soil structure stabilization
(Foster, 1994). AM fungi often comprise an extensive soil
microbiome (Hayman, 1978). This plant-AM fungal
interaction significantly affects the competence of the host
plant's roots to absorb several nutrients from the soil.

Plant-arbuscular mycorrhizal (AM) fungal interaction

Rhizosphere communities are affluent in AM fungi. AM fungi
are ubiquitous soil fungi that form a symbiotic association
with plant roots (Smith and Read, 2008). Belonging to the
phylum Glomeromycota, these fungi are a monophyletic
lineage of obligate mycobionts with tight regulation of carbon
for nutrients exchange between the host and the fungus
(SchiiBler et al., 2001; Rillig et al., 2016). As the phylum is an
ancient form of symbiosis in plants, about 90% of extant plant
species are mycorrhizal (Moénne-Loccoz ef al., 2015). The
fungus penetrates plant root cell walls and develops intra-
radical structures (hyphae, arbuscules, vesicles) in the
cortical cells of the host root and extra-radical structures
(hyphae, spores) in soil. A bidirectional nutrient flux
characterizes this mutualistic association wherein the
mycobiont helps the phytobiont in the acquisition of soil
nutrients (mainly P.) while the phytobiont provides photo-
assimilates (carbon sources) to the mycobiont (Buscot et al.,
2000; Brundrett, 2009).

AM fungi being vital components at the soil-root interface,
their extra-radical hyphae and plant root hairs increase the
soil-root contact area (Geelhoed et al., 1997b). Therefore,
AM fungi enhance the plant nutrient availability, particularly
P, due to the presence of a large interface for P acquisition via
an extensive mycorrhizal extra-radical mycelium network
(Wang et al., 2017). AM fungi also improve plant nutrient
uptake of calcium (Ca) (Azcon and Barea, 1992), iron (Fe)
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(Treeby, 1992), manganese (Mn) (Kothari et al.,1991), zinc
(Zn) (Bell et al.,1989), and nitrogen (N) (Ndsholm et al,
2009). AM fungi are most beneficial in improving plant
nutrient acquisition in low-fertility soils (Brundrett, 2009). It
is assumed that they can serve as a substitute for reduced
fertilizer input (Galvez et al., 2001), thereby leading to
sustainable agriculture. Plant benefit other than nutritional
attributed by AM fungi includes enhanced plant tolerance to
biotic stress (pathogenic infection, herbivory) and abiotic
stress (drought, metal pollution, salinity) (Augé, 2004; Al-
Karaki, 2006; Bennett and Bever, 2007); Improved rooting of
micro-propagated plantlets (Strullu, 1985) resulting in an
overall increase in plant growth and development; Improved
nutrient cycling, energy flow and plant establishment in
disturbed ecosystems (Tiwari and Sati, 2008); Enhanced
diversity of plant community. AM fungi through their
extensive mycelial network interconnect a number of
unrelated individual plant species consequently impacting the
function and biodiversity of entire ecosystem (Smith et al.,
1997; Bonfante and Genre, 2010). Secretion of hydrophobic
'sticky' proteinaceous substance known as 'glomalin' by the
AM fungal hyphae in the soil also results in improved soil
stability, binding, and water retention thereby reducing soil
erosion (Rillig et al., 2002; Rillig and Mummey, 2006; Bedini
et al., 2009); Influencing microbial and chemical
environment of the mycorrhizosphere (plant root-associated
microbial communities especially mycorrhizae present in the
rhizosphere) to contribute in plant nutrient acquisition
(Azcon-Aguilar and Barea, 2015); more precisely the
hyphosphere, the zone surrounding individual hyphae
(Johansson ef al., 2004); Alleviating metal toxicity to plants
by reducing metal translocation from root to shoot (Leyval et
al., 1997) and thus contribute in revegetation and restoration
of disturbed or contaminated lands; and, Not only alter a
plant's response to dynamic environmental fluctuations, but
also modulate their metabolome through different pathways,
affecting biosynthesis of phytochemicals that are vital for
human health (Sbrana et al, 2014). Thus, AM fungi also
contribute to the earth's ecosystem services (Gianinazzi et al.,
2010).

Potential role of plant-arbuscular mycorrhizal (AM)
fungal interaction in sustainable agroecosystems

The integral significance of soil life in agroecosystem
sustainability, including plant-symbiotic associations, is
increasingly appreciated (Méder et al., 2002; Wagg et al.,
2014; Bender et al., 2016). Among these plant-symbiotic
associations, a prominent player is arbuscular mycorrhiza, the
predominant symbiotic association of fungi with plant roots
(Smith and Read, 2008). The role of arbuscular mycorrhiza in
agroecosystems is well known (Rillig ef al., 2016). The AM
fungal association has been much considered in the context of
agroecosystem sustainability, (i) because AM is the most
common and dominant type of mycorrhiza formed by most
crop plants (exception of Brassicaceae members); (ii)
because of the potentially beneficial, multi-functional role of
AM fungi in plant nutrition, pathogen protection, stress
tolerance and soil structure maintenance (Hamel, 1996; Smith
and Read, 2008; Gianinazzi et al., 2010; Leitheit et al., 2014);
(iii) because many agricultural practices (e.g., tillage,
fertilization, non-host crops) tend to negatively affect AM

fungal abundance and diversity, thus possibly affecting their
functioning; and (iv) because AM fungi can be managed
(Rilligez al., 2016).

Although native AM fungi have been demonstrated to be
equally or even better performing than commercial isolates,
most market inocula are composed of ubiquitous species in
nearly all soils in the world (Smith and Read, 2008). Among
340 AM fungal species described so far, most commercial
inocula in agriculture contain Rhizophagus, Glomus, and
Funneliformis species because these genera are most
prevalent in soils found in all climate zones (Smith and Read,
2008). AM fungal inocula can be effectively produced
starting from indigenous soils, making the AM fungal
technology more profitable for farmers and more ecologically
friendly and supportive for natural biodiversity (Berruti et al.,
2016). Moreover, inoculation with AM fungal consortia,
which co-evolves in local ecological niches, is more dynamic
and sustaining than inoculation with a single species (Sharma
et al., 2017). Using a high-quality inoculum containing a
combination of species with a high number of infective
propagules dedicated to a particular host and growing
conditions enable successful root colonization (Rouphael et
al., 2015). The most easily recognized AM fungal technology
is the production and application of AM fungal inoculum
directly addressing the decline of AM fungal abundance in
agricultural fields (Gianinazzi et al., 2002; Vosatka et al.,
2012; Solaiman et al., 2014). However, this should not be the
exclusive focus of AM fungal technology. The local AM
fungal abundance and diversity should be optimized in yield
and sustainability of ecosystem processes within given socio-
economic limitations (Rilliget al., 2016).

In conclusion, we need to ascertain the mechanism of plant-
AM fungal interaction within given socio-economic
conditions of the agroecosystem by assessment of indigenous
AM fungal abundance, diversity, and functioning in the field,
by proper management of agronomic practices with known
effects on AM fungi, by promoting mycorrhizal fungi and
their associated microbiota with desirable traits to develop the
appropriate AM fungal technology for attaining sustainable
functioning of agroecosystems.
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