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Abstract 

Reliability has received utmost importance in today’s world as the people are continuously 

looking for reliable and safe mechanical systems. Mechanical properties like stress and strength 

require precise designing as these are vital in determining the safety of the component. In real 

life, we know that properties like stress and strength do not take a fixed value due to the various 

uncertainties in materials, loading conditions, environmental conditions, etc. Hence, reliability-

based design will be suitable in such cases which takes into account the probability of failure if 

the stress and strength does not take a definite value but follows a certain distribution. It is 

essential to consider reliability right at the modeling and design stage of mechanical components 

and systems. In reliability-based design, a large amount of work has been carried out in cases of 

stress-strength interference models of type P (strength > stress) with various distributions. 

However, there are some distributions for which the stress-strength models are not developed or 

do not have a closed form. Also, there is wide scope for improving the stress-strength reliability 

estimation for various distributions.  

In the first part of the thesis, various interference models have been developed when stress and 

strength follow distributions such as Laplace, exponential, Weibull and gamma. Analysis 

techniques like Taguchi analysis and response surface analysis have been carried out to study 

the change in reliability with variation in parameters. Simulation studies have been carried out 

to validate the proposed models. 

The second part of the thesis deals with the estimation of reliability for stress-strength 

interference. Stress and strength have been considered to be following Weibull distribution as it 

fits a large number of data and has been used in many applications in mechanical systems. A 

recent metaheuristic technique, Jaya algorithm has been used in estimation and has been proved 

to give results with high accuracy and faster compilation time. Simulation studies have been 

conducted to show the variation of estimated reliability with variation in distribution parameters. 

Analysis also has been carried out to evaluate the effectiveness of Jaya algorithm in estimation 

of reliability. The methodology has been applied to real-life data in order to show its 

implementation. 

In the third part of the thesis, the principle of strength degradation has been considered in 

estimation of reliability as we know that the strength of the material does not remain same but, 

deteriorates over time. For this part, the strength is considered to be normally distributed as it is 

widely used in degradation studies. Similar methodology can be applied for other distributions 

like Weibull, gamma, etc.    
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Chapter 1 

1. Introduction 

1.1 General 

Every customer expects that a product they buy should ensure reliability and safety; else, no 

customer would buy a product that is not reliable and is unsafe. A traditional design for safety 

includes considering a term ‘factor of safety’ having a value greater than unity which is the ratio 

of strength of the body to stress acting on the body. It considers the design to be safe if the 

strength is greater than stress. But, it is well known that these parameters in the real world are 

subjected to various uncertainties due to changes in temperatures, pressure, humidity, etc. [1]. 

The traditional method does not consider these uncertainties and thus, has a greater probability 

of failure and is unreliable [2]. A good engineering design should prevent accidents, failures, 

damages and injuries [3]. Reliability-based design ensures safety and quality while at the same 

time avoiding under-design or over-design of the component. There is a lot of application of 

component reliability of the form P (X > Y), i.e., strength (X) being greater than stress (Y). Thus, 

accurate calculation and prediction of reliability is critical in practical applications [4]. In 

functional testing, components can fail due to many reasons, and material properties can follow 

different distributions [5]. Hence, reliability calculations for such distributions become 

extremely important to avoid real-life problems and losses. 

1.2 Reliability Based Design 

The design of complex systems and components used in the modern technological world is 

crucial because a minor failure can have serious effects. Thus, proper design is vital in order to 

avoid failure. The conventional design considers the factor of safety which is the ratio of strength 

to stress. The value of the factor of safety is decided based on the experience. We know that the 

system properties like stress and strength are random variables. Thus, reliability must be 

considered at the design stage to optimize safety, cost, weight, etc. The reliability-based design 
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considers the stress and strength as random variables and the uncertainties present in them [6]. 

The reliability-based design approach originated in the aerospace industry and has now been 

applied in consumer goods as well because of its effectiveness. The reliability-based design 

approach is shown in Figure 1.1 below: 

 

Figure 1.1 Reliability based design approach 

The figure shows that stress will follow a particular distribution depending on the load statistics 

history. The stress uncertainty will also be influenced by external factors like temperature, 

humidity, environment, etc. These external factors will influence uncertainties in strength as 

well. The strength distribution will also depend on the material statistics, material properties over 

time, and the type of loading like static loading, fatigue loading, etc. The reliability of the design 

will thus depend on the distributions followed by stress and strength. Considering this concept 

in the design of mechanical systems is crucial, thereby improving safety. 
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1.3 Probability Distributions 

In real life, the properties like stress and strength which the mechanical components undergo do 

not have a definite value but vary in a range. Generally, these properties follow a particular 

distribution. A probability distribution is a function that gives probable values that a random 

variable can take within a given range. Two common terms with probability distributions are 

probability density function (pdf) and cumulative distribution function (cdf). The pdf gives the 

probability of the random variable taking a value within a particular range. The cdf provides the 

probability of a random variable taking values lesser than a certain considered value in the 

distribution. There are many distributions that are used in reliability studies for mechanical 

systems. Some of the common distributions are considered in this chapter.  

1.3.1. Normal distribution 

A normal distribution is identified by a bell-shaped curve with its mean at the centre and the 

spread whose probability density decreases as we move away from the mean. The distribution is 

described by two parameters i.e. mean and standard deviation. The mean is the central tendency 

located at the peak of bell-shaped curve. The standard deviation is a measure of variability and 

describes the spread of the distribution. The pdf of normal distribution is given as  

 

 
𝑓(𝑥) =

1

𝜎√2𝜋
𝑒−
1
2
 (
𝑥−µ𝑛
𝛿

)
2

   1.1 

 

The cdf of normal distribution is  

 

 
𝐹(𝑥) =

1

𝜎√2𝜋
∫ 𝑒−

1
2
 (
𝑡−µ𝑛
𝛿
)
2

𝑑𝑡
𝑥

−∞

 1.2 

 

where x is a random variable following normal distribution, µ𝑛 is the mean and δ is the standard 

deviation of the normal distribution. A normal distribution is symmetrical about the mean with 

most values at the centre and skewed at the sides. The applications of normal distribution can be 

seen in many fields like engineering, science, natural, social sciences, etc. as many variables in 

these fields tend to follow this distribution. The plot of distribution with variation in parameters 

mean and standard deviation is shown in Figure 1.2. 
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Figure 1.2 Normal distribution plot 

1.3.2 Lognormal distribution 

A lognormal distribution widely used in statistics is a probability distribution function of a 

random variable whose logarithm is normally distributed. The distribution is used in reliability 

applications. The pdf of lognormal distribution can be given as  

 
𝑓(𝑥) =

1

𝑥𝛿√2𝜋
𝑒
−
1
2
 (
ln (𝑥)−µ𝑛

𝛿
)
2

   1.3 

 

The cdf of exponential distribution is given as  

 

 
𝐹(𝑥) = Փ(

ln (𝑥) − µ𝑛
𝛿

) 1.4 

 

where x is a random variable following lognormal distribution, µ𝑛 is the mean and δ is the 

standard deviation of the lognormal distribution. A lognormal plot differs from normal 

distribution in various ways. The main differences are a lognormal distribution is not a 

symmetrical distribution like normal. Also, since the logarithm values are positive, the lognormal 

distribution is right skewed. The mean in lognormal distribution gives the location of the graph 

whereas δ defines the shape of the distribution plot. The plot of lognormal distribution with 

variation in parameters mean and standard deviation is shown in Figure 1.3. 
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Figure 1.3 Lognormal distribution plot 

 

1.3.3 Exponential distribution 

The exponential distribution gives time between events in a Poisson process. It is also used in 

reliability studies to model the failure rate of components. A single parameter exponential 

distribution is defined by rate parameter or scale parameter (reciprocal of rate parameter). The 

pdf of exponential distribution is given as  

 𝑓(𝑥) = 𝜆𝑒−𝜆𝑥        𝑥 > 0 

𝑓(𝑥) = 0                 𝑥 < 0 
1.5 

 

The cdf of exponential distribution is given as  

 

 𝐹(𝑥) = 1 − 𝑒−𝜆𝑥        𝑥 > 0 

𝐹(𝑥) = 0                      𝑥 < 0 
1.6 

 

where x is a random variable following exponential distribution and λ is the rate parameter. The 

probability distribution plot of exponential distribution with variation in rate parameter is shown 

in Figure 1.4. 
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Figure 1.4 Exponential distribution plot 

1.3.4 Laplace distribution 

Laplace distribution which is sometimes also called as double-sided exponential distribution 

since it looks like a symmetrical image of exponential distribution joined together at one end. 

The pdf of Laplace distribution is give by 

 
𝑓(𝑥) =

1

2𝜙
𝑒
−
|𝑥 − 𝜃|
𝜙  1.7 

 

 
𝑓(𝑥) =

1

2𝜙
𝑒
−
(𝑥 − 𝜃)
𝜙       𝑥 >   𝜃 

 

1.8 

 

 
𝑓(𝑥) =

1

2𝜙
𝑒
−
(𝜃 − 𝑥)
𝜙       𝑥 <  𝜃 

 

1.9 

The cdf of Laplace distribution is 

 

 
𝐹(𝑥) = 1 −

1

2
𝑒
−
(𝑥 − 𝜃)
𝜙       𝑥 >  𝜃  1.10 

 

 
𝐹(𝑥) =

1

2
𝑒
(𝑥 − 𝜃)
𝜙       𝑥 <  𝜃 

 

 1.11 
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where x is a random variable following Laplace distribution, θ is the location parameter and ϕ is 

the scale parameter. The probability distribution plot for Laplace distribution with varying 

parameters is shown in Figure 1.5. 

 

Figure 1.5 Laplace distribution plot 

1.3.4 Weibull distribution 

Three-parameter Weibull distribution has been extensively used in reliability and lifetime studies 

as it is known to fit a wide range of data and is immensely flexible [7–9]. The pdf of three 

parameter Weibull distribution is given by 

 
𝑓(𝑥; μ, 𝜎, 𝑝) =

𝑝

𝜎𝑝
(𝑥 − μ)𝑝−1 exp {−(

𝑥 − μ

𝜎
)
𝑝

} , 𝑥 > μ, 𝜎 > 0, 𝑝 > 0 1.12 

 

and cdf is given by 

 
𝐹(𝑥; μ, 𝜎, 𝑝) = 1 − exp {−(

𝑥 − 𝜇

𝜎
)
𝑝

}  1.13 

 

where, x is a random variable following Weibull distribution, μ is the location parameter, 𝜎 is 

the scale parameter and p is the shape parameter. Random variable X has a pdf denoted by X  ̴  

W(μ, 𝜎,  p). 
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Figure 1.6 Weibull distribution plot for μ = 0, σ = 1, 𝑝 = 0.5, 1, 2, 2.5, 3.4 

The density curve of the three-parameter Weibull distribution can take a wide variety of shapes 

by appropriately choosing the shape parameter. A curve of decreasing density function is 

obtained when σ takes the values from 0 to 1. When 𝜎 = 1, the Weibull distribution is identical 

to the two-parameter exponential distribution; when 𝜎 = 2, it becomes the Rayleigh distribution; 

when 𝜎 = 2.5, it approximates the lognormal distribution. When 𝜎 > 1, the curve is bell-shaped 

and is right-skewed. In many cases, a value of 𝜎 = 3.4 is used to approximate the normal 

distribution [10]. The probability distribution plot for Weibull distribution with varying 

parameters is shown in Figure 1.6. Because of such flexibility, the Weibull distribution is one of 

the most widely used models in reliability studies and life testing. The Weibull distribution is 

also used in engineering sciences, medicine, agriculture and biology [11–14].  

1.3.5 Gamma distribution 

Gamma distribution is another widely used distribution because of its flexibility and relation to 

normal and exponential distribution. The pdf of gamma distribution can be given by  

 
𝑓(𝑥) =

1

𝛽k⎾k
(𝑥)k−1𝑒

−
(𝑥)
β  1.14 

and cdf is given by  

 
𝐹(𝑥) =

1

⎾k
 𝛾 (k,

𝑥

𝛽
) 1.15 

where x is a random variable following gamma distribution, k is the shape parameter and β is the 

scale parameter of gamma distribution. 𝛾 (k,
𝑥

𝛽
) is the lower incomplete gamma function. The 

distribution plot for gamma distribution is show in Figure 1.7. 
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Figure 1.7 Gamma distribution plot 

 

1.4 Stress-Strength Interference Theory 

Stress-strength analysis finds many applications in the mechanical or structural systems. These 

systems differ from electrical or electronic systems in a number of ways. The electrical or 

electronic systems fail because of prolonged use due to deterioration. Also, these systems are 

mass-produced because of which a lot of data is available and the reliability for these systems is 

evaluated by considering time to failure as the random variable. On the other hand, the 

mechanical or structural systems are not mass produced; hence the data available is sometimes 

insufficient. Also, the failures in these cases occur because of small variations or difference in 

load and strength. Thus, the reliability of mechanical or structural systems is dealt with using 

interference theory. The stress-strength interference theory states that if stress and strength 

follow a particular distribution, their interference area gives the probability of failure. Figure 1.8 

shows the interference with stress and strength following a particular distribution. The figure 

depicts two curves of the distribution of stress and the distribution of strength. The common area 

between the two curves which is hatched (interference area) gives the probability of failure. 

Apart from mechanical systems the interference theory can be used to compare the two variables 

which finds applications in other fields like medical, service, etc.  
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Figure 1.8 Stress-strength interference 

 

The reliability can be found using stress-strength interference model which is given by: 

 
𝑅 = 𝑃(𝑋 > 𝑌) =  ∫ 𝑓(𝑥) (∫ 𝑓(𝑦)𝑑𝑦

𝑥

0

)𝑑𝑥
∞

0

 1.16 

where X is the random variable for strength and Y is the random variable for stress.  

Alternatively, the reliability can also be found by using the equation 

 
𝑅 = 𝑃(𝑋 > 𝑌) =  ∫ 𝑓(𝑦)(∫ 𝑓(𝑥)𝑑𝑥

∞

𝑦

)𝑑𝑦
∞

0

 1.17 

While using the above equation, one should note that the units of stress and strength in the above 

expression should be the same. The context of stress and strength can be used in various 

applications. For example, if the system under study is a structure subjected to some load, then 

the stress will be the maximum load acting, and the strength will be the yield strength of the 

structure. For a machine tool, the power required for machining operation will be considered as 

the stress, and the rated horsepower of the machine tool can be regarded as the strength. For 

aerospace applications, the maximum pressure generated by fuel ignition can be considered as 

the stress and the strength of the rocket chamber for the successful firing of the rocket. In medical 

applications, the theory can be used to compare the effect of one treatment over another. 

Similarly, the concept can also be used for comparing the strength of one material being greater 

than another. The theory can be used in non-mechanical applications as well. For example, in a 
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hydrological system, the stress can be considered as the demand of water, and the strength can 

be considered as the available supply.  

1.5 Aims and Objectives 

Reliability is critical in predicting the functioning of components at a given time. Stress-strength 

interference theory which has been described in this chapter earlier is also a crucial concept in 

predicting the reliability of the components. There are many stress-strength interference models 

which have been developed. But there are distributions for which the interference models are not 

available in closed form. The first objective of this research work is to develop a reliability model 

for stress-strength interference having distributions such as Laplace, exponential, Weibull, 

gamma, etc., for which the model in close form is not available. As we know from the stress-

strength interference theory, the reliability depends significantly on the parameters driving the 

stress and strength distributions. Weibull distribution is one of the most widely used distribution 

in reliability studies. This research aims to estimate the stress-strength reliability when stress and 

strength follow Weibull distribution. It also aims to study the variation in reliability with the 

variation in stress-strength parameters. In real life, a mechanical component's strength does not 

remain the same and degrades over time. Even in fatigue loading, the strength of the material 

decreases with the number of cyclic loads. Thus, the nature of strength can be considered to be 

dynamic. The final objective of the research is to evaluate reliability model for stress-strength 

interference taking strength degradation into consideration.  

1.6 Organization of Report 

This thesis has been divided into seven chapters. The first chapter deals with the introduction to 

the topic and explains the concepts of reliability-based design, various types of probability 

distributions that are used in the research work along with the distribution plots with varying 

parameters, and the stress-strength interference theory. The aims and objectives have been 

presented at the end of the chapter. The second chapter gives a detailed literature review of the 

existing research work in the area of stress-strength interference, reliability estimation, and time-

dependent stress-strength reliability. The problem description and solution methodologies have 

been discussed in the third chapter. The fourth chapter includes the stress-strength interference 

models developed when stress and strength follow exponential and Laplace distributions and 

vice versa. Also, the models for evaluating stress-strength interference for Weibull and gamma 

distribution have been depicted in this chapter. The fifth chapter deals with the methodology of 

estimation and discusses the stress-strength reliability estimation for stress and strength first for 
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two parameter Weibull distribution with common scale parameter and then for three-parameter 

Weibull distribution with common shape parameter. The sixth chapter depicts the methodology 

to develop stress-strength interference models in case of strength degradation where the strength 

is considered to deteriorate with time or in case of fatigue loading. A polynomial regression has 

been considered and the study has been carried out to see the effect of type of degradation on 

reliability. The flow of research work has been depicted in Figure 1.9. The final chapter states 

the conclusions, contributions and limitations of the research work. The future scope for the 

research has also been stated for the further work that can be carried out in this field of research.    
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Figure 1.9 Flow of research work 
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Chapter 2 

2. Literature Review 

2.1 General  

Reliability of the form P [X > Y] is used in cases of stress-strength interference [15]. Stress and 

strength are important properties of a material. These properties do not have a single fixed value 

because of the uncertainties present in the environment like temperature, humidity, etc. So, they 

can be considered to follow a certain distribution. According to the interference theory, if stress 

and strength follow a certain distribution, their interference area gives the probability of failure. 

The concept of stress-strength interference in evaluating reliability has been used by many 

researchers in their studies. Liu et al. [16] evaluated the reliability of automotive seat adjuster by 

using the stress-strength interference model. The finite element model of the seat adjuster was 

constructed, and the analysis was verified with the bench test. The theory has also been used in 

medical applications by Miller and Freivalds [17] to obtain the probability of failure of tendons 

in carpel tunnel syndrome.  

2.2 Stress-Strength Interference 

Reliability models have been developed when strength and stress are seen to be following 

normal, lognormal, exponential distribution and their interference [18].  

2.2.1 Reliability when stress and strength follow normal distribution 

Consider the strength (random variable X) and stress (random variable Y) follow normal 

distribution with pdf 

 

 
𝑓(𝑥) =

1

δ𝑥√2π
exp(−

1

2
(
x − μ𝑛𝑥
δ𝑥

)
2

) 2.1 

and  
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𝑓(𝑦) =

1

δ𝑦√2π
exp(−

1

2
(
y − μ𝑛𝑦

δ𝑦
)

2

) 2.2 

 

respectively, where μ𝑛𝑥 is the mean of strength, δ𝑥 is the standard deviation of strength, μ𝑛𝑦 is 

the mean of stress and δ𝑦 is the standard deviation of strength. 

As per the interference theory, the reliability of the system will be equal to [19] 

 

𝑅 = ∫
1

δ𝑥√2π
exp(−

1

2
(
x − μ𝑛𝑥
δ𝑥

)
2

)(∫
1

δ𝑦√2π
exp (−

1

2
(
y − μ𝑛𝑦

δ𝑦
)

2

)𝑑𝑦
𝑥

0

)𝑑𝑥
∞

0

 2.3 

 

On simplifying the above equation, the reliability can be obtained as 

 

 

𝑅 = ɸ

(

 
μ𝑛𝑥 − μ𝑛𝑦

√δ𝑥
2 + δ𝑦

2

)

  2.4 

 

2.2.2 Reliability when stress and strength follow lognormal distribution 

Consider that the strength (random variable X) and stress (random variable Y) follow lognormal 

distribution with pdf 

 
𝑓(𝑥) =

1

x. δ𝑥√2π
exp(−

1

2
(
ln (x) − μ𝑛𝑥

δ𝑥
)
2

) 2.5 

 

and 

 
𝑓(𝑦) =

1

y. δ𝑦√2π
exp(−

1

2
(
ln (y) − μ𝑛𝑦

δ𝑦
)

2

) 2.6 

 

respectively, where μ𝑛𝑥 is the mean and δ is the standard deviation of ln(X), μ𝑛𝑦 is the mean and 

δ𝑦 is the standard deviation of ln(Y). 

As per the interference theory, the reliability of the system will be equal to [20] 

𝑅 = ∫
1

x. δ𝑥√2π
exp (−

1

2
(
ln (x) − μ𝑛𝑥

δ𝑥
)
2

)(∫
1

y. δ
𝑦√2π

exp(−
1

2
(
ln (y) − μ𝑛𝑦

δ𝑦
)

2

)𝑑𝑦
𝑥

0

)𝑑𝑥
∞

0

 2.7 
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On simplifying the above equation, the reliability can be obtained as 

 

 

𝑅 = ɸ

(

 
μ𝑛𝑥 − μ𝑛𝑦

√δ𝑥
2 + δ𝑦

2

)

  2.8 

 

2.2.3 Reliability when stress and strength follow exponential distribution 

Consider that the strength (random variable X) and stress (random variable Y) follow lognormal 

distribution with pdf 

 𝑓(𝑥) = 𝜆𝑥 𝑒
−𝜆𝑥𝑥 2.9 

and 

 𝑓(𝑦) = 𝜆𝑦 𝑒
−𝜆𝑦𝑦 2.10 

 

where 𝜆 is the rate parameter.  

As per the interference theory, the reliability of the system will be equal to  

 

 
𝑅 = ∫ 𝜆𝑥 𝑒

−𝜆𝑥𝑥 (∫ 𝜆𝑦 𝑒
−𝜆𝑦𝑦𝑑𝑦

𝑥

0

)𝑑𝑥
∞

0

 2.11 

 

On simplifying the above equation, the reliability can be obtained as [21] 

 
𝑅 =

𝜆𝑦

𝜆𝑥 + 𝜆𝑦
 2.12 

2.2.4 Reliability when strength follows normal distribution and stress follows 

exponential distribution 

Consider that the strength follows normal distribution (random variable X) and stress follows 

exponential distribution (random variable Y) with pdf 

 

 
𝑓(𝑥) =

1

σ𝑥√2π
exp(−

1

2
(
x − μ𝑥
σ𝑥

)
2

) 2.13 

and  

 𝑓(𝑦) = 𝜆𝑦 𝑒
−𝜆𝑦𝑦 2.14 
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then the reliability of the system can be given as  

 
𝑅 = ∫

1

σ𝑥√2π
exp(−

1

2
(
x − μ𝑥
σ𝑥

)
2

)(∫ 𝜆𝑦 𝑒
−𝜆𝑦𝑦𝑑𝑦

𝑥

0

)𝑑𝑥
∞

0

 2.15 

 

On simplification, the closed form of reliability can be obtained as [22] 

  

 
𝑅 = 1 − 𝜙 (−

μ𝑠
𝜎𝑠
) − 𝑒𝑥𝑝 [−

1

2
(2μ𝑠𝜆𝑠 − 𝜆𝑠

2𝜎𝑠
2)] [1 − 𝜙 (−

μ𝑠 − 𝜆𝑠 𝜎𝑠
2

𝜎𝑠
)] 2.16 

 

2.2.5 Reliability when strength follows exponential distribution and stress 

follows normal distribution 

Consider that the strength follows exponential distribution (random variable X) and stress 

follows normal distribution (random variable Y) with pdf 

 

 𝑓(𝑥) = 𝜆𝑥 𝑒
−𝜆𝑥𝑥 2.17 

and  

 
𝑓(𝑦) =

1

σ𝑦√2π
exp(−

1

2
(
y − μ𝑦

σ𝑦
)

2

) 2.18 

then the reliability of the system can be given as  

 
𝑅 = ∫ 𝜆𝑥 𝑒

−𝜆𝑥𝑥 (∫
1

σ𝑦√2π
exp(−

1

2
(
y − μ𝑦

σ𝑦
)

2

)𝑑𝑦
𝑥

0

)𝑑𝑥
∞

0

 2.19 

 

Equation 2.19 can be further simplified to obtain the closed form of reliability [23]. On 

simplification, the closed form of reliability can be obtained as  

 
𝑅 = 𝜙 (−

μ𝑠
𝜎𝑠
) + 𝑒𝑥𝑝 [−

1

2
(2μ𝑠𝜆𝑠 − 𝜆𝑠

2𝜎𝑠
2)] [1 − 𝜙 (−

μ𝑠 − 𝜆𝑠 𝜎𝑠
2

𝜎𝑠
)] 2.20 
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2.2.6 Reliability when stress and strength follow Laplace distribution 

Consider that the strength with random variable X and stress with random variable Y follow 

Laplace distribution. Their corresponding pdf will be as shown in equation 2.13, 2.14 and 2.15 

for strength and 2.16, 2.17 and 2.18 for stress respectively. 

 
𝑓(𝑥) =

1

2𝜙1
𝑒
−
|𝑥 − 𝜃1|
𝜙1  2.21 

 

 
𝑓(𝑥) =

1

2𝜙1
𝑒
−
(𝑥 − 𝜃1)
𝜙1       𝑥 >   𝜃1 2.22 

 

 
𝑓(𝑥) =

1

2𝜙1
𝑒
−
(𝜃1 − 𝑥)
𝜙1       𝑥 <  𝜃1 2.23 

   

 
𝑓(𝑦) =

1

2𝜙2
𝑒
−
|𝑦 − 𝜃2|
𝜙2  2.24 

 

 
𝑓(𝑦) =

1

2𝜙2
𝑒
−
(𝑦 − 𝜃2)
𝜙2       𝑦 >   𝜃2 2.25 

 

 
𝑓(𝑦) =

1

2𝜙2
𝑒
−
(𝜃2 − 𝑦)
𝜙2       𝑦 <  𝜃2 2.26 

 

where 𝜃1 and 𝜙1 are the location and scale parameters for strength,  𝜃2 and 𝜙2 are the location 

and scale parameters for stress.  

As per the interference theory, the reliability of the system will be equal to  

 

 
𝑅 = ∫

1

2𝜙1
𝑒
−
|𝑥 − 𝜃1|
𝜙1 (∫

1

2𝜙2
𝑒
−
|𝑦 − 𝜃2|
𝜙2 𝑑𝑦

𝑥

0

)𝑑𝑥
∞

0

 2.27 

 

On simplifying the above equation, the reliability can be obtained as [24] 

 

𝑅 =
𝜙1

2

2(𝜙1
2 − 𝜙2

2)
𝑒𝑥𝑝 (

𝜃1 − 𝜃2
𝜙1

) −
𝜙2

2

2(𝜙1
2 − 𝜙2

2)
𝑒𝑥𝑝 (

𝜃1 − 𝜃2
𝜙2

)  if 𝜃1 < 𝜃2 2.28 
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𝑅 = 1 +
𝜙1

2

2(𝜙2
2 − 𝜙1

2)
𝑒𝑥𝑝 (

𝜃2 − 𝜃1
𝜙1

) −
𝜙2

2

2(𝜙2
2 − 𝜙1

2)
𝑒𝑥𝑝 (

𝜃2 − 𝜃1
𝜙2

)  𝑖𝑓 𝜃1 > 𝜃2 2.29 

2.2.7 Reliability when stress and strength follow Weibull distribution 

Consider that the strength (random variable X) and stress (random variable Y) follow Weibull 

distribution with pdf 

 
𝑓(𝑥) =

𝑝1
𝜎1𝑝1

(𝑥 − μ1)
𝑝1−1 exp {− (

𝑥 − μ1
𝜎1

)
𝑝1

} , 𝑥 > μ1, 𝜎1 > 0, 𝑝1 > 0 2.30 

 

and 

 
𝑓(𝑦) =

𝑝2
𝜎2𝑝2

(𝑦 − μ2)
𝑝2−1 exp {− (

𝑦 − μ2
𝜎2

)
𝑝2

} , 𝑦 > μ2, 𝜎2 > 0, 𝑝2 > 0 

 

2.31 

where μ1, 𝜎1 𝑎𝑛𝑑 𝑝1 are the location, scale and shape parameter respectively for strength and 

μ2, 𝜎2 𝑎𝑛𝑑 𝑝2 are location, scale and shape parameter respectively for stress. 

As per the interference theory, the reliability of the system will be equal to  

 

𝑅 = ∫
𝑝1
𝜎1
𝑝1
(𝑥 − μ1)

𝑝1−1 exp {−(
𝑥 − μ1
𝜎1

)
𝑝1
} (∫

𝑝2
𝜎2
𝑝2
(𝑦 − μ2)

𝑝2−1 exp {−(
𝑦 − μ2
𝜎2

)
𝑝2
} 𝑑𝑦

𝑥

0

)𝑑𝑥
∞

0

 

2.32 

 

 
𝑅 = ∫

𝑝1
𝜎1
𝑝1
(𝑥 − μ1)

𝑝1−1 exp {−(
𝑥 − μ1
𝜎1

)
𝑝1
} (𝑒

−
𝑒𝑝2ln (−μ2)

𝜎2
𝑝2 − 𝑒

−
𝑒𝑝2ln (𝑥−μ2)

𝜎2
𝑝2 )𝑑𝑥

∞

0

 2.33 

 

Equation 2.25 cannot be solved further and hence, the calculation of stress-strength reliability 

for Weibull distribution has to be solved using numerical or graphical methods [25]. This can 

sometimes lead to complications and is time consuming. 

2.2.8 Reliability when stress and strength follow gamma distribution 

Consider that the strength (random variable X) and stress (random variable Y) follow gamma 

distribution with pdf 

 
𝑓(𝑥) =

1

𝛽1
k1⎾k1

(𝑥)k1−1𝑒
−
(𝑥)
𝛽1             𝛽1 > 0, k1 > 0 2.34 

 

and 
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𝑓(𝑦) =

1

𝛽2
k2⎾k2

(𝑦)k2−1𝑒
−
(𝑦)
𝛽2           𝛽2 > 0, k2 > 0 2.35 

 

where 𝛽1 𝑎𝑛𝑑 k1 scale and shape parameters respectively for strength and 𝛽2 𝑎𝑛𝑑 k2 are scale 

and shape parameters respectively for stress. 

As per the interference theory, the reliability of the system will be equal to [26] 

 

 
𝑅 = ∫

1

𝛽1
k1⎾k1

(𝑥)k1−1𝑒
−
(𝑥)
𝛽1 (∫

1

𝛽2
k2⎾k2

(𝑦)k2−1𝑒
−
(𝑦)
𝛽2     𝑑𝑦

𝑥

0

)𝑑𝑥
∞

0

 2.36 

 

Equation 2.28 cannot be solved entirely in order to obtain a model and thus is dependent on 

numerical or graphical techniques which is time-consuming and may not give accurate results.  

Similarly, the reliability models have been developed for other distributions of stress and 

strength. S. Nadarajah, 2003 [27] developed stress-strength interference for stress and strength 

following lifetime distributions i.e. exponential and gamma distribution. He has also developed 

a reliability model for stress and strength following bivariate gamma distribution [24]. Patowary 

et al., 2013 [28] studied and proposed a mathematical model for stress-strength reliability for 

stress and strength following mixture of distributions. An inference on reliability was also drawn, 

stating standby redundancy aids in achieving high reliability. An et al., 2008 [29] developed a 

discrete stress-strength interference model based on universal generating function. K. Shen, 1992 

[30] proposed a new empirical approach based on the subinterval probabilities of stress and 

strength in the interference region to compute the unreliability bounds. Kotz et al., 2003 [31] 

reviewed the stress-strength interference models and showed practical results in application of 

stress-strength interference concepts in industrial systems. Many studies have been carried out 

in developing stress-strength reliability models for various distributions. However, it has been 

identified that the reliability model for many distributions is not yet developed.  

2.3 Stress-Strength Reliability Estimation 

The technological developments in the field of aircraft, nuclear power plants, infrastructure, 

transportation, etc. have raised serious concerns with reliability and safety, as a small error in the 

design of applications in these sectors can cause a huge disaster. Novel challenges are posed 

every day and thus, the field of reliability and safety is gaining increasing importance. The 

designing and assessment of components or operating procedures in the above-mentioned 

industries based on reliability can be very effective in preventing failures or accidents [32,33]. 
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Properties of a component like stress and strength require precise designing as these are vital in 

determining the safety of the component. In real life, we know that properties like stress and 

strength of mechanical components do not take a fixed value due to the various uncertainties in 

materials, loading conditions, environmental conditions, etc. Thus, they can be considered to 

follow a particular distribution which can be determined based on the application or prior data. 

Traditional methods may not be the best approach for designing mechanical components as they 

do not consider uncertainties. Hence, reliability-based design will be suitable in such cases which 

takes into account the probability of failure if the stress and strength takes various values within 

its range. In the context of stress and strength, reliability can be defined as the probability of 

strength being greater than stress [29,34–36].  

In order to determine reliability, estimating the parameters of stress and strength distribution is 

crucial.  A vast amount of research has been carried in estimation of reliability of components 

subjected to various distributions stress and strength.  

2.3.1 Stress-strength reliability estimation for various distributions 

Church and Harris, 1970 [37] studied the estimation of stress-strength reliability when stress and 

strength follow normal distribution. Kelley et al., 1976 [38] compared the maximum likelihood 

estimation method with Uniformly Minimum Variance Unbiased Estimator (UMVUE) in 

estimation of stress-strength reliability when stress and strength follow exponential distribution. 

MLE method was seen to be less complicated in estimation of reliability. Awad and Charraf, 

1986 [39] carried out studies in estimation of reliability when the stress and strength are two 

independent Burr random variables.  

Badr et al., 2019 [40] derived a closed form of stress-strength reliability models for 

exponentiated Frechet distribution using Maximum likelihood estimation, Bayes estimation and 

uniformly minimum variance unbiased estimator. Analysis was carried out using simulation to 

compare the results in terms of bias and mean squared error (MSE), and to see the effect of 

sample size and parameters on reliability estimation. It was observed that the MSE decreases 

with increase in sample size of either stress or strength, with other being constant. It was also 

observed that as the parameter of strength increases, the reliability estimation increases and if 

the parameter of stress increases, the reliability estimation decreases.  

Kayal et al., 2020 [41] worked on evaluating multicomponent stress-strength reliability for Chen 

distribution using classical and Bayes estimation method. Similar studies have been conducted 

by many other researchers in the estimation of stress-strength reliability by analyzing different 

estimation methods for stress and strength following various distributions. Raqab and Kundu, 

2005 [42] have presented a simple iterative procedure for estimating the stress-strength reliability 
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using MLE for a scaled Burr type X distribution when the scale parameter is unknown. 

Chaudhary and Tomer, 2018 [43] estimated stress-strength reliability for Maxwell distribution 

by MLE and Bayes estimates using progressive type-II censored samples. Rezaei et al., 2015 

[44] worked on estimation of stress-strength reliability for generalized Pareto distribution based 

on progressively censored samples using MLE and inferred that when the common scale 

parameter is unknown, the maximum likelihood estimator gives good results. They 

recommended the bootstrap percentile method for estimating the confidence intervals when the 

sample size is very small. Siju et al. 2020 [45] presented reliability estimation for the stress and 

strength following exponential distribution using MLE for three states namely, working, 

deteriorating and failed state. Pham, 2020 [46] applied the stress-strength reliability model for 

exponential distribution in human heart condition. The data was collected for average heart rate 

in 15 second period and the reliability of k out of n interval system was evaluated. A k-out-of-n 

interval system is a system with a series of n events in a given interval of time that successes if 

and only if at least k of the events succeed. Jha et al., 2020 [47] presented reliability estimation 

for a multicomponent setup when stress and strength follow unit Gompertz distribution with 

common scale parameter under progressive Type II censoring scheme using MLE.  

Abravesh et al., 2018 [48] worked on estimating the reliability for stress-strength interference 

for distributions with power hazard function based on upper record values and the model was 

applied for steel specimen data. An et al. 2008 [29] treated stress and strength as discrete random 

variables and proposed a stress-strength interference model based on universal generating 

function. It was found that reducing the length of subinterval improved the estimation accuracy 

when the range of stress and strength is fixed. The advantage of the method is that the actual 

distributions of stress and strength need not be known in evaluating the reliability for this case. 

Gadde, 2017 [49] studied estimation of stress-strength reliability for erlang truncated exponential 

distribution with different shape parameters for a multicomponent setup. The method of MLE is 

used and simulation studies are carried out. It was observed that the average bias was negative 

when the shape parameter of strength was less than or equal to that of stress. The MSE was seen 

to be decreasing when the shape parameter of strength or stress increases.  

2.3.2 Stress-strength reliability estimation for Weibull distributions 

Kundu and Gupta, 2006 [50] studied the estimation of stress-strength reliability for two 

parameter Weibull distribution with common shape parameter. If X and Y follow Weibull 

distribution with W(σ1, p) and W(σ2, p) respectively, then the reliability can be given as  
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 𝑅 = 𝑃(𝑋 > 𝑌) =
𝜎1

𝜎1 + 𝜎2
 2.37 

The maximum likelihood estimator of R was obtained by using a log likelihood function. 

 

 𝐿(𝜎1, 𝜎2, 𝑝) = (m + n) ln(p) − nln(𝜎1) − 𝑚𝑙𝑛(𝜎2)

+ (𝑝 − 1)  ×  (∑ln(𝑥𝑖)

𝑛

𝑖=1

+∑ln(𝑦𝑗)

𝑚

𝑗=1

) −
1

𝜎1
∑𝑥𝑖

𝑝

𝑛

𝑖=1

−
1

𝜎2
∑𝑦𝑗

𝑝

𝑚

𝑗=1

 

 

      2.38 

The MLE of σ1, σ2, p can be obtained as 𝜎1̂ , 𝜎2̂, 𝑝̂ respectively as a solution of  

 𝜕𝐿

𝜕𝑝
=
𝑚 + 𝑛

𝑝
+∑ln(𝑥𝑖)

𝑛

𝑖=1

+∑ln(𝑦𝑗)

𝑚

𝑗=1

−
1

𝜎1
∑𝑥𝑖

𝑝

𝑛

𝑖=1

ln(𝑥𝑖)

−
1

𝜎2
∑𝑦𝑗

𝑝

𝑚

𝑗=1

ln(𝑦𝑗) = 0 

      2.39 

   

 

 𝜕𝐿

𝜕𝜎1
= −

𝑛

𝜎1
+
1

𝜎12
∑𝑥𝑖

𝑝

𝑛

𝑖=1

= 0 2.40 

 

 

 
𝜎1̂(𝑝) =  

1

𝑛
∑𝑥𝑖

𝑝

𝑛

𝑖=1

 2.41 

 

 𝜕𝐿

𝜕𝜎2
= −

𝑚

𝜎2
+
1

𝜎22
∑𝑦𝑗

𝑝

𝑚

𝑗=1

= 0 

 

2.42 

 

 
𝜎2̂(𝑝) =  

1

𝑚
∑𝑦𝑗

𝑝

𝑚

𝑗=1

 2.43 

 

 

𝑝̂ is obtained as a solution of non-linear equation of the form 
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 ℎ(𝑝) =  𝑝 2.44 

 
ℎ(𝑝) =

𝑚 + 𝑛 + ∑ ln(𝑥𝑖
𝑝)𝑛

𝑖=1 + ∑ ln(𝑦𝑗
𝑝)𝑚

𝑗=1

∑ 𝑥𝑖𝑝
𝑛
𝑖=1 ln(𝑥𝑖)
1
𝑛
∑ 𝑥𝑖𝑝
𝑛
𝑖=1

+
∑ 𝑦𝑗𝑝
𝑚
𝑗=1 ln(𝑦𝑗)

1
𝑚
∑ 𝑦𝑗𝑝
𝑚
𝑗=1

 
2.45 

 

 

The estimate of p is obtained as an iterative procedure when the difference between two 

consecutive iterations is sufficiently small. The iterative process may be complicated or time 

consuming and depends on the initial guess of p when starting the iterative process.  

The reliability estimate then can be obtained as  

 

 
𝑅̂ =

𝜎1̂
𝜎1̂ + 𝜎2̂

 2.46 

 

The author in the end mentions that obtaining reliability considering varying shape parameters 

is quite complicated.  

Valiollahi et al., 2013 [51] presented a different approach in estimating the stress-strength 

reliability for Weibull distribution with same scale parameters but different shape parameters 

under progressive type-II censoring scheme. A different form of two parameter Weibull 

distribution has been considered with X and Y following Weibull distribution W(𝑝1, 𝜎) and 

W(𝑝2, 𝜎) respectively with pdfs 

 

 
𝑓(𝑥, 𝑝1, 𝜎) =

𝑝1
𝜎
𝑥𝑝1−1𝑒−

𝑥𝑝1

𝜎               𝑥 > 0, 𝑝1, 𝜎 > 0 2.47 

 

and 

 
𝑓(𝑦, 𝑝2, 𝜎) =

𝑝2
𝜎
𝑦𝑝2−1𝑒−

𝑦𝑝2

𝜎               𝑥 > 0, 𝑝2, 𝜎 > 0 2.48 

 

The difference between this form and the one we have considered in our earlier description is 

that the scale parameter has been taken as 𝜎 instead of 𝜎𝑝.  

The reliability is obtained as  

 𝑅 = 𝑃(𝑋 > 𝑌) = 1 − 𝐻(𝑝1, 𝑝2, 𝜎) 2.49 

where,  



25 
 

 
𝐻(𝑝1, 𝑝2, 𝜎) = ∫

𝑝1
𝜎

∞

0

𝑥𝑝1−1𝑒−
1
𝜎
(𝑥𝑝1+𝑥𝑝2) 𝑑𝑥 2.50 

 

The estimation of reliability is carried out using progressive Type II censored data on both 

variables. Considering X as a progressively Type II censored sample from W(𝑝1, 𝜎) with 

censored scheme r = (r1, r2, ….rn) and Y as a progressively Type II censored sample from 

W(𝑝2, 𝜎) with censored scheme r = (r'1, r'2, ….r'n), the likelihood function of  𝑝1, 𝑝2, 𝜎 is given 

as 

 
𝐿(𝑝1, 𝑝2, 𝜎) = 𝑐1∏𝑓(𝑥𝑖)

𝑛

𝑖=1

[1 − 𝐹(𝑥𝑖)]
𝑟𝑖   x   𝑐2∏𝑓(𝑦𝑗)

𝑚

𝑗=1

[1 − 𝐹(𝑦𝑗)]
𝑟′𝑗

 2.51 

 

where, 

 𝑐1 = 𝑁(𝑁 − 1 − 𝑟1)(𝑁 − 2 − 𝑟1 − 𝑟2)… . (𝑁 − 𝑛 + 1 − 𝑟1…− 𝑟𝑛−1) 2.52 

 

 𝑐2 = 𝑀(𝑀 − 1 − 𝑟′1)(𝑀 − 2 − 𝑟′1 − 𝑟′2)… . (𝑀 −𝑚 + 1 − 𝑟′1…− 𝑟′𝑚−1) 2.53 

 

The log-likelihood function is obtained as  

 
𝐿(𝑝1, 𝑝2, 𝜎) ∝  𝑛𝑙𝑛(𝑝1) + 𝑚𝑙𝑛(𝑝2) − (𝑛 + 𝑚)𝑙𝑛( 𝜎) + (𝑝1 − 1)∑𝑙𝑛(𝑥𝑖)

𝑛

𝑖=1

+ (𝑝2 − 1)∑𝑙𝑛(𝑦𝑗)

𝑚

𝑗=1

−
1

𝜎
[∑(𝑟𝑖 + 1)

𝑛

𝑖=1

𝑥𝑖
𝑝1 −∑(𝑟′𝑗 + 1)

𝑚

𝑗=1

𝑦𝑗
𝑝2] 

      2.54 

 

 

The MLE’s of 𝑝1, 𝑝2 and 𝜎 can be obtained as  

 
𝜕𝑙

𝜕𝜎
= −

𝑛 +𝑚

𝜎
+
1

𝜎2
[∑(𝑟𝑖 + 1)

𝑛

𝑖=1

𝑥𝑖
𝑝1 +∑(𝑟′𝑗 + 1)

𝑚

𝑗=1

𝑦𝑗
𝑝2] = 0 

 

2.55 

 

𝜎̂ =
1

𝑛 +𝑚
[∑(𝑟𝑖 + 1)

𝑛

𝑖=1

𝑥𝑖
𝑝1̂ +∑(𝑟′𝑗 + 1)

𝑚

𝑗=1

𝑦𝑗
𝑝2̂] 

 

     2.56 
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 𝜕𝑙

𝜕𝑝1
=
𝑛

𝑝1
+∑𝑙𝑛(𝑥𝑖)

𝑛

𝑖=1

−
1

𝜎
∑(𝑟𝑖 + 1)

𝑛

𝑖=1

𝑥𝑖
𝑝1𝑙𝑛(𝑥𝑖) = 0 2.57 

 

 

 𝜕𝑙

𝜕𝑝2
=
𝑚

𝑝2
+∑𝑙𝑛(𝑦𝑗)

𝑚

𝑗=1

−
1

𝜎
∑(𝑟′𝑗 + 1)

𝑚

𝑗=1

𝑦𝑗
𝑝2𝑙𝑛(𝑦𝑗) = 0 2.58 

 

 

Substituting 𝜎̂ in equation 2.57 and 2.58, 𝑝1̂ and  𝑝2̂ can be obtained as a solution of following 

non linear equations. 

 𝑛

𝑝1
+∑𝑙𝑛(𝑥𝑖)

𝑛

𝑖=1

−
(𝑛 +𝑚)∑ (𝑟𝑖 + 1)

𝑛
𝑖=1 𝑥𝑖

𝑝1𝑙𝑛(𝑥𝑖)

∑ (𝑟𝑖 + 1)
𝑛
𝑖=1 𝑥𝑖

𝑝1̂ + ∑ (𝑟′𝑗 + 1)
𝑚
𝑗=1 𝑦𝑗

𝑝2̂
= 0 

 

2.59 

 

 𝑚

𝑝2
+∑𝑙𝑛(𝑦𝑗)

𝑚

𝑗=1

−
(𝑛 +𝑚)∑ (𝑟′𝑗 + 1)

𝑚
𝑗=1 𝑦𝑗

𝑝2𝑙𝑛(𝑦𝑗)

∑ (𝑟𝑖 + 1)
𝑛
𝑖=1 𝑥𝑖

𝑝1̂ +∑ (𝑟′𝑗 + 1)
𝑚
𝑗=1 𝑦𝑗

𝑝2̂
= 0 

 

2.60 

The equations 2.59 and 2.60 do not have explicit solutions and have to be solved with an iterative 

process. Once the estimates of parameters are obtained, the reliability estimate can be found by 

using the equation 

 𝑅̂ = 1 − 𝐻(𝑝1̂,  𝑝2̂,  𝜎̂) 2.61 

 

Kundu and Raqab, 2009 [52] conducted research on estimating the stress-strength reliability for 

three parameter Weibull distribution with common location and shape parameter but different 

scale parameter using modified maximum likelihood estimation method (MMLE).  

Consider X as (X1, X2, X3, ……Xn) and Y as (Y1, Y2, Y3, ….Yn) are independent random 

variables in an ordered manner following Weibull distribution W(μ, 𝜎1, 𝑝) and W(μ, 𝜎2, 𝑝) 

respectively, then the likelihood function can be given as 
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𝑙(μ, 𝜎1, 𝜎2, 𝑝) ∝  𝑝

𝑚+𝑛𝜎1
−𝑛𝜎2

−𝑚∏(𝑥𝑖 − μ)
𝑝−1

𝑛

𝑖=1

+∏(𝑦𝑗 − μ)
𝑝−1

𝑚

𝑗=1

𝑒
−
1
𝜎1
∑ (𝑥𝑖−μ)

𝑝−1𝑛
𝑖=1 𝑒

−
1
𝜎2
∑ (𝑦𝑗−μ)

𝑝−1𝑚
𝑗=1  

×   1{𝑧 > μ}   

     2.62  

where z = min(x1, y1) and 1{𝑧 > μ} has a value of 1 if z > μ or 0 if z < μ. The parameter μ is 

estimated to be μ̂ = z. Based on m+n-1 observations (ignoring the smallest value), the modified 

maximum likelihood estimation will then be equal to for x1 < y1 

 𝑙( μ̂, 𝜎1, 𝜎2, 𝑝) ∝ (𝑚 + 𝑛 − 1) ln(𝑝) − (𝑛 − 1) ln(𝜎1) − 𝑚 ln(𝜎2)

+ (p − 1) ∑ln(𝑥𝑖 − μ̂)

𝑛

𝑖=2

+ (p − 1) ∑ ln(𝑦𝑗 − μ̂)

𝑚

𝑗=1

−
1

𝜎1
∑(𝑥𝑖 − μ̂)

𝑝

𝑛

𝑖=2

−
1

𝜎2
∑(𝑦𝑗 − μ̂)

𝑝
𝑚

𝑗=1

 

     2.63 

 

and for x1 > y1 

 𝑙( μ̂, 𝜎1, 𝜎2, 𝑝) ∝ (𝑚 + 𝑛 − 1) ln(𝑝) − 𝑛 ln(𝜎1) − (𝑚 − 1) ln(𝜎2)

+ (p − 1) ∑ln(𝑥𝑖 − μ̂)

𝑛

𝑖=1

+ (p − 1) ∑ ln(𝑦𝑗 − μ̂)

𝑚

𝑗=2

−
1

𝜎1
∑(𝑥𝑖 − μ̂)

𝑝

𝑛

𝑖=1

−
1

𝜎2
∑(𝑦𝑗 − μ̂)

𝑝
𝑚

𝑗=2

 

 

    2.64 

 

Thus the parameter estimates 𝜎1̂, 𝜎2̂ and p̂ can be obtained by maximizing the above likelihood 

equation with respect to 𝜎1, 𝜎2 𝑎𝑛𝑑 𝑝. The estimates can be obtained as 

𝜎1̂(p) =
∑ (𝑥𝑖 − μ̂)

𝑝𝑛
𝑖=2

𝑛 − 1
    𝑎𝑛𝑑   𝜎2̂(p) =

∑ (𝑦𝑗 − μ̂)
𝑝𝑚

𝑗=1

𝑚
    𝑖𝑓 x1  <  𝑦1 

and 

𝜎1̂(p) =
∑ (𝑥𝑖 − μ̂)

𝑝𝑛
𝑖=1

𝑛
    𝑎𝑛𝑑   𝜎2̂(p) =

∑ (𝑦𝑗 − μ̂)
𝑝𝑚

𝑗=2

𝑚 − 1
    𝑖𝑓 x1 > 𝑦1 
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ℎ(𝑝) =

(𝑚 + 𝑛 − 1) + ∑ ln(𝑥𝑖 − μ̂)
𝑝𝑛

𝑖=2 + ∑ ln(𝑦𝑗 − μ̂)
𝑝𝑚

𝑗=1

∑ (𝑥𝑖 − μ̂)
𝑝𝑛

𝑖=1 ln(𝑥𝑖 − μ̂)
1

𝑛 − 1
∑ (𝑥𝑖 − μ̂)𝑝
𝑛
𝑖=2

+
∑ (𝑦𝑗 − μ̂)

𝑝𝑚
𝑗=1 ln(𝑦𝑗 − μ̂)

1
𝑚
∑ (𝑦𝑗 − μ̂)𝑝
𝑚
𝑗=2

 
2.65 

 

The equation 2.25 can be solved using simple iterative procedure and p can be obtained when 

the difference between pk and pk+1 is sufficiently small. Once the MMLEs μ̂, 𝜎1̂, 𝜎2̂ and p̂ are 

obtained the MMLE of R can be obtained as 

 
𝑅̂ =

𝜎1̂
𝜎1̂ + 𝜎2̂

 2.66 

 

Nadarajah and Jia, 2017 [53] studied the estimation of stress-strength reliability for two 

parameter Weibull distribution by taking a particular case of Fox-Wright function for obtaining 

the closed form of reliability. The MLE method has been used to obtain the estimates of shape 

and scale parameters. 

Jia et al., 2017 [54] presented estimation of stress-strength reliability for two parameter Weibull 

distribution using Bayes estimation technique. For obtaining the closed form of R, a certain case 

of Fox Wright function was considered as in the previous case. For obtaining the Bayes 

estimates, prior distributions are assumed for Weibull parameters and posterior distributions are 

presented. A sampling method based on Monte Carlo Markov Chain (MCMC) is used to obtain 

the Bayes estimates for reliability.  

Pobočíková and Sedliačková, 2014 [55] compared four methods namely least squares estimation, 

weighted least squares estimation, method of moments, and MLE for estimating the parameters 

of Weibull distribution. The analysis is carried out using Monte Carlo simulation. It has been 

shown that the MLE is the most suitable technique, while the weighted least squares method can 

be used for small sample sizes. 

2.3.3 Application of metaheuristic techniques in estimation 

Recently metaheuristic techniques of optimization are gaining vast importance in the field of 

estimation. Abbasi et al., 2006 [56] studied estimation of parameters of Weibull distribution 

using simulated annealing algorithm. The method of simulated annealing in optimization is 

framed in accordance with the annealing process in material science. The process of annealing 

is about heating a metal and then slowly cooling it to reduce the defects. Simulated annealing 

has the advantage of not being trapped in local minima. The algorithm is mainly used for the 

minimization problem. Apart from finding better minima for the objective function, the 

algorithm also accepts a higher value with a probability 𝑝 = 𝑒−
𝛥

𝑇 where Δ is the increase in the 
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value of objective function T is the control parameter. The algorithm begins by initializing the 

control parameter and selecting an initial solution. The value of objective function is found using 

the initial solution. A solution is then generated in the neighbourhood of initial solution. If the 

new solution gives a lesser value of objective function (better minima) than the initial solution, 

the new solution is carried forward as the current best solution. If the new solution gives a greater 

value of objective function (worse minima) than the initial solution, then the new solution is not 

rejected totally. It is accepted with a certain probability. The process is carried on for the set 

number of iterations. The control parameter is reduced with each iteration using a suitable 

method. Then the final solution is compared with the initial solution which was first obtained. If 

the final solution is better, it is accepted as the new best solution. In estimation of Weibull 

parameters, the optimization of the maximum likelihood function is carried out in order to 

estimate the parameters.  

Örkcü et al., 2015 [57] studied estimation of parameters of Weibull distribution using the 

differential evolution (DE) method. The method of DE has the advantages of simplicity in 

implementation, effective, robust, and reliable global optimization algorithm. The algorithm 

begins with initialization of DE parameters population size, crossover factor (crossover rate), 

mutation factor (scaling factor), and the population. Then the function value for the current 

population is calculated. Then the population is modified based on the random number 

generation, crossover factor, and mutation factor. The function value is then evaluated for the 

new population generated. If the new population gives a function value more optimum 

(maximum or minimum) than the function value by the previous population, the new population 

is accepted. The iterations are carried out till the termination criteria is met.  

Abbasi et al., 2011 [58] merged the variable neighborhood search (VNS) algorithm with the 

simulated annealing algorithm in order to improve the optimization of parameters for Weibull 

distribution, calling it hybrid neighborhood search and simulated annealing (HNSA). The main 

aim of the VNS method is to explore different neighborhoods when a local optimum is obtained 

using the local search method. The algorithm for VNS works in two phases. In the first phase, a 

set of neighborhood structures is determined. Then an initial solution is obtained, and the 

termination criteria are set. In the second phase, a new solution is randomly generated in the 

neighborhood and a local optimum search is made in the current neighborhood to get a new 

optimum solution. If the new optimum solution gives a better function value (minimum or 

maximum) than the initial solution, then the new solution is set as the current best solution. This 

is repeated for all the structured neighborhoods to get the current best solution. In HNSA, the 

simulated annealing is carried out after the VNS process explained above to improve the solution 

if possible.  
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Örkcü et al., 2015 [59] worked on estimation of three parameters of Weibull distribution using 

particle swarm optimization (PSO) method. A maximum likelihood estimation technique was 

used to obtain the likelihood function which was maximized by using PSO. The method of PSO 

is inspired by flock of birds which move together in search of food. In PSO, an initial population 

that consists of set of solutions (particles) with different parameters is generated. All the particles 

move towards the best solution with each iteration keeping record of its current position. Each 

particle has a memory that helps to keep record of its previous best solution. If the new solution 

is better than the previous solution then the new solution is taken as the updated particle. Each 

particle also tracks the overall best among all the particles to which it is attracted and at each 

point compares its solution to the overall best solution. Acitas et al., 2019 [60] proposed a new 

approach in estimating the parameters of Weibull distribution using particle swarm optimization. 

The problem with particle swarm optimization is the initial search space. The researchers in this 

paper have shown a methodology in narrowing down the search space which improves the 

effectiveness of estimation. The proposed methodology has been applied to strength of glass 

fibres data to show the application. 

Jaya Algorithm is one of the recent effective optimization technique that continuously works 

towards taking you closer to the best solution and away from the worst solution. Du et al., 2018 

[61] used Jaya algorithm in solving optimization-based structural damage identification problem. 

The author presented the effectiveness of the technique even in high noise levels. R. V. Rao et 

al., 2017 [62] presented the application of the algorithm in optimizing the process parameters in 

machining while handling multiple objectives. Similarly, the technique has been used by other 

researchers for obtaining solutions in optimization problems with effectiveness and at a faster 

rate [63,64].  

2.4 Time-dependent Stress-Strength Reliability 

It is a known fact that reliability does not remain constant and decreases over a period of time as 

a result of degradation [65]. Alternatively, it can be said that reliability decreases over a number 

of cycles in case of fatigue stress [66–68]. Fatigue stress is a type of loading in which repetitive 

or cyclic loads act on a material for a period of time. Over a large number of loading cycles, the 

materials tend to fail at a stress level much lesser than the strength of that material. This is known 

as failure due to material fatigue. Several major accidents that can be remembered in history are 

as a result of fatigue failure and natural uncertainties [69,70]. These accidents could have been 

prevented by robust and reliable design. Thus, failure prediction and modeling is an important 

aspect in material design. Many studies have been carried out in assessing the dynamic reliability 
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of components under various load conditions. Also, we are aware that automobile systems are 

exposed to severe environmental conditions during their lifetime. The automotive electronic 

circuits face the problem of shearing of solder joints over a period of time or over the distance 

traveled. In this paper, a simple method is exhibited for evaluating time-dependent reliability by 

degradation modeling using Jaya algorithm which is a recent metaheuristic technique of 

optimization. The above methodology has been applied to a data of solder strength of automotive 

circuits to show its effectiveness. A plot for reliability vs time has been obtained in order to see 

the failure behavior of the components over a period of time and a plot for the convergence 

behavior of Jaya algorithm has been obtained to show the performance of the algorithm over the 

number of iterations. 

In mechanical components, failure occurs when the stress applied exceeds the strength of the 

material. In actual practice, the strength is not constant because of uncertainties and can be 

assumed to follow a particular distribution [19]. So, utmost care should be taken while designing 

the components so as to avoid the failure because of uncertainties in strength of the component. 

Bhuyan and Dewanji, 2015 [71] proposed two methods in estimation of reliability in case of 

strength degradation. The stress was considered to be accumulating due to shocks and the 

strength was considered to be undergoing random degradation. The phenomenon of strength 

degradation and stress accumulation has been accounted for in a single model. The method of 

inversion and simulation was presented in evaluating the reliability. The authors proved benefits 

of simulation method over other methods and concluded that the method of simulation is superior 

compared to the other methods in estimation of reliability. Park and Tang, 2006 [72] used the 

cycle counting approach to represent the time-dependent stress as several time-independent 

stress levels and developed a method to solve the problem by accumulated damage analysis with 

the first-order reliability analysis. Fatigue failure mechanism and reliability were considered as 

time dependent and that the properties of a component vary with time. A reliability factor 

determined by inverse reliability analysis which employs performance measure approach has 

been used. The study showcases a methodology for determining the fatigue life and reliability in 

dynamic conditions.  

Lv et al., 2009 [73]  developed a reliability model for gears with multiple failure modes using 

stress-strength interference concepts considering strength degradation. The results showed that 

the reliability of gears decreases gradually with time. Eryilmaz, 2013 [74] conducted stress-

strength reliability studies for the strength degradation and stress remaining constant over time. 

Also, some results were provided for lifetimes of systems with same strength and subjected to 

different stresses. Stress-strength analysis was also carried out for the multicomponent form. 
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Finally, some examples have been taken in which strength is considered to undergo Weibull 

distribution to show the implementation of the methodology.  

Liu and Frangopol, 2018 [75] presented reliability estimation studies when the strength is time 

dependent. In evaluating structural reliability, multiple failure modes should be considered. The 

failures may occur because of the cumulative effect of multiple shocks or hazards such as 

corrosion, pressure, etc. The methodology has been applied to ship structure for permanent set 

and buckling failure. In addition to the consideration of progressive damage, the damage due to 

shocks may have significant variation in safety assessment. The reliability reduces significantly 

while considering the hazards due to shocks. The reliability is also affected by the intensity and 

frequency of the shock hazards. Cumulative time approach in calculating the failure probability 

takes into account the strength degradation and the history of loading. Peng et al., 2019 [76] 

suggested a different approach in estimating the time dependent reliability because the evaluation 

of reliability using traditional approach of uncertain loads and design parameters is time 

consuming. The authors proposed a method in estimating the dynamic reliability of mechanical 

structure using surrogate modeling and data clustering technology. The methodology was based 

on observing the physics of failure with respect to time and building a surrogate model using BP 

neural network. Data clustering was used to identify least reliable domains. The extreme values 

of response in a particular time interval was identified using Genetic Algorithm and BP neural 

network was used to establish surrogate model at extreme values.  

Gao et al., 2013 [77] studied evaluating the reliability in case of strength degradation of a 

mechanical structure. The loads acting on a mechanical structure may vary and thus the strength 

distribution is considered at each load point. The author mentions that this method leads to large 

errors in reliability calculation because of neglecting the correlation of the load and remaining 

strength in the degradation path. The method for quantitatively analysing the influence of 

material parameters on the reliability has been depicted. The traditional method of considering 

the large dispersion of strength in the initial stage resulting in lower reliability has been discussed 

by analysing that the dispersion of initial strength at different lifetimes having different effects 

on the reliability. Wang et al., 2015 [78] evaluated time dependent reliability when the 

uncertainty data is not sufficient. A non-probabilistic convex process model is proposed in 

estimating the reliability based on set theory and regularization treatment. Yadav et al., 2011 

[79] developed a framework for optimization of reliability in case of strength degradation using 

multi objective optimization and quadratic quality loss concepts. The improvement in reliability 

comes at an initial loss in quality but it is beneficial over the products life cycle. The design using 

the proposed model will reduce repair/ warranty costs and increase customer satisfaction. Zhang 

et al., 2017 [65] proposed a stress-strength interference model for structural reliability in case of 
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strength degradation. A time dependent model for stress was developed using quadratic response 

surface method and the strength degradation was developed considered to be linear or 

exponential. The method of estimation of structural reliability has been developed using Copula 

selection method.  

Wu et al., 2011 [80] introduced a dynamic reliability model in case of strength deterioration. The 

stress was considered to be stochastic following Poisson distribution and the strength was 

modeled by gamma distribution which was considered to be dynamic following increments with 

gamma distribution having common scale parameters.  Jose and Drisya, 2020 [81] presented 

studies on time dependent stress-strength models for random stress at random cycles of time. A 

model for stress-strength reliability was de introduced random cycle time following particular 

distribution and studied time-dependent stress-strength reliability for stress and strength 

following continuous phase-type distribution. The run time is considered to be a random variable 

following Weibull, gamma and exponential distribution. Simulation studies are carried out to see 

the effects of time on the stress-strength reliability. In call cases, the reliability was observed to 

be increasing with time. It was noted that the reliability decreases with increase in shape 

parameter in case of Weibull distribution. For gamma distribution, the reliability increases with 

increase in shape parameter value and decrease in rate parameter value of cycle distribution. In 

case of exponential distribution, the reliability increases with rate parameter value of cycle time 

distribution.  

Lu and Meeker, 1993 [82] developed statistical methods using nonlinear mixed-effects model to 

obtain time to failure distribution for various degradation models. Reliability assessment was 

also carried out by finding point estimates and confidence intervals using Monte Carlo 

simulations. Wu et al., 1997 [83] presented various methods in estimation of fatigue damage and 

fatigue life in case of random loading. Chiodo and Mazzanti, 2006 [84] developed a model for 

estimating the reliability of electrical components in case of voltage surges which is considered 

as the stress. The general difficulty on modeling in such cases is because the stress data is easily 

available but the strength data is not sufficiently present. The proposed methodology is based on 

Bayesian approach and takes into account the degradation of components over its usage. The 

peak of stress in case of voltage surges is considered to be following Weibull distribution and 

strength is modeled by Weibull distribution with its aging based on inverse power law.  

Rathod et al., 2011 [85] derived a degradation model in fatigue loading by the principle of 

damage accumulation considering normal distribution for strength with decreasing mean and 

linearly increasing variability over time along with reliability analysis. The methodology is 

developed based on linear damage accumulation model, probabilistic S-N curve and pdf 

transformation from fatigue life to damage accumulation. The damage accumulation was 
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considered to follow a distribution with changing expected value and variance. The application 

of proposed methodology has been shown in case of  single stress and multi stress level loading. 

Zhu et al., 2013 [86] carried out time-dependent reliability analysis for railway axle steels by 

evaluating the nonlinear damage accumulation model while considering the number of cycles 

following log-normal distribution.  

The maximum likelihood estimation method has been used by many researchers for getting the 

best estimates of the fit model. Bhuyan and Dewanji, 2017 [87] mentioned that for a mechanical 

component in real life the strength degrades and the stress accumulates with time due to 

cumulative damage due to shocks and developed a model for estimating reliability in such cases. 

He proposed two sampling plans for estimation. The first sampling plan is by observing the time 

to failure and the number of shocks given up to failure. In second sampling plan the system is 

checked at specific time intervals and the number of shocks given up to that time. The condition 

of the system at each time point is checked to see the effect of damage accumulation. The MLE 

technique is used in estimation and simulation studies are carried out in order to check the 

performance of the proposed methodology. Feng et al., 2018 [88] presented a methodology to 

predict probabilistic S-N curves using the maximum likelihood method and carried out 

simulations to validate the results. D’Anna et al., 2017 [89] proposed a model for estimating the 

structural reliability considering the fatigue life to follow Birnbaum- Saunders model distribution 

and both the parameters depending on stress. The model parameters were estimated using the 

maximum likelihood estimation method and it was observed that the model gave a good fit for 

the fatigue failure data of aluminum coupons under cyclic stress obtained by accelerated life 

tests.  

2.5 Summary 

The literature review shows some of the stress-strength interference models which have been 

developed for stress and strength following various distributions. But there are still some models 

for which the interference models are not available yet. Also, some common distributions like 

Weibull, gamma, etc. do not have closed form of interference models and have computational 

difficulties. In the area of reliability estimation, a lot of work has been carried out in estimating 

the stress-strength reliability for various distributions. Some techniques have been shown that 

are used in estimating parameters of Weibull distribution since this distribution is widely used 

in mechanical systems. There is a scope to further enhance and improve the estimation methods 

using advanced techniques. Recently, some metaheuristic techniques have been used in 

estimation and are seen to perform quite well. In the last part of this chapter, a brief overview of 
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the concept of strength degradation has been shown. The studies carried out in estimating the 

reliability in case of strength degradation has been discussed. A brief summary of literature 

review has been presented in Table 2.1. 

 

Table 2.1 Summary of literature review 

Reliability-based Design 

Reliability [29], [34-36] 

Failure and uncertainties [1-4], [32-33] 

Reliability-based design and applications [176] 

Stress-strength interference 

Stress strength interference theory [24] 

Applications of stress strength interference theory [15-

17] 

Stress-strength reliability models [18-31] 

Estimation of stress-strength reliability 

Stress-strength reliability estimation for various 

distributions [37-49], [165-166] 

Stress-strength reliability estimation for Weibull 

distributions [50-55] 

Design of experiments 

DOE in reliability [127-128] 

Taguchi analysis [124-128], [130] 

Response surface analysis [129-136] 

Traditional methods of estimation 

Maximum likelihood estimation [98-105], [144-148], 

[155-157] 

Least squares estimation [106-107], [158-161], [168-

169] 

Weighted least squares estimation [108-111] 

Optimization techniques in estimation 

Application of various optimization techniques in 

estimation [56-64], [170-173] 

Jaya algorithm in estimation [112-122], [174] 

Time dependent stress-strength 

reliability 

Strength degradation [65-68] 

Regression in degradation [178], [179, 181] 

Fatigue failure [69-70] 

Estimation of reliability in strength degradation [71-

89], [180] 
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Chapter 3  

3. Problem Description and Solution 

Methodologies 

3.1 Introduction 

Reliability based design is significant for mechanical systems where stress and strength is 

involved. There are many stress-strength interference models developed as can be seen in 

Chapter 2. But there are still some distributions for which the stress-strength interference does 

not have closed form. This research aims to develop models of stress-strength interference for 

some important distributions used in mechanical systems. Also, when it comes to estimation of 

reliability, a number of methods have been developed with various optimization techniques. This 

research will try to improvise on the existing methods to estimate the reliability of mechanical 

systems.  

As we know that the property like strength does not remain fixed but changes over time or over 

number of cyclic loads. The existing methods of estimating reliability in such cases is 

complicated and time consuming. The interference model in such a case needs to be evaluated 

with a simple methodology.  

3.2 Problem Statement 

The problem statements considered for the present work are as follows: 

1. Development of stress-strength interference models for the stress and strength following 

Laplace and exponential distribution respectively and vice versa; and to evaluate closed form 

interference models for the distributions like Weibull and gamma. 

2. Improving the estimation of stress-strength reliability by integration of conventional 

estimation methods with advanced optimization technique. 

3. Estimation of stress-strength reliability in case of non-linear strength degradation as it has a 

problem of slow convergence and non-convergence to real roots.  
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3.3 Motivation for Research Work 

In the field of stress-strength interference, a number of models have been developed when stress 

and strength follow various distributions. Saralees Nadarajah, 2004 [24] mentioned that there are 

many distributions for which the stress-strength form of reliability has not been derived. Also, 

some frequently used distributions like Weibull, gamma, etc. do not have a closed form of 

reliability because of the issues in integration of stress-strength equation. In this research an 

attempt has been made to depict a methodology to obtain a closed form of reliability for the 

distributions like Weibull, gamma, etc in which solving the stress-strength integration equation 

is complicated and sometimes not possible. In estimation of stress-strength reliability, a number 

of methods have been used as shown in the literature review. There is a need to simplify and 

enhance the estimation technique in order to obtain precise estimates of the parameters under 

consideration.  

3.4 General Assumptions 

In developing stress-strength reliability models, the stress and strength are continuous and 

independent random variables. The analysis has been carried out for a specific range of 

parameters. The study can be extended to other values of parameters as per the data under 

observation. 

In estimation of stress-strength reliability, the first case considers the data to be following two 

parameter Weibull distribution with common scale parameter and different shape parameter.  

In the second case, the data is considered to be following three parameter Weibull distribution 

with common shape parameter and varying scale parameter. Bias and mean squared error are 

used as the basis for comparison of estimation. Kologomorov Smirnov test has been used to 

check the fit of the model to the data.   

For reliability in case of strength degradation, the strength follows normal distribution with 

linearly and non-linearly varying mean and linearly varying standard deviation. The stress 

applied is deterministic in nature. In case of application to solder joints, the failure of circuit 

board is because of the failure of solder connections. 

3.5 Scope of the Problem 

Reliability-based design has gained vast importance in recent times as it takes care of the 

variation in the material properties which might affect the design and safety of a component. The 

application of reliability assessments with traditional design improves safety in order to give a 
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robust design under the uncertainties considered [90]. Some of the most widely used methods in 

reliability analysis are First Order Reliability Method (FORM), Second Order Reliability Method 

(SORM), stress strength interference theory, Monte Carlo simulations, etc. The method of 

FORM is mainly used in structural reliability which involves design considering load and 

strength factors, reliability index and limit state function. The reliability index represents a 

relative measure of the ability to perform required function. The load factors include effects due 

to dead loads, live loads, wind loads, etc. and strength factors include the effects of variability in 

material property, dimensions, model error, etc. The values of load and stress factors in different 

conditions and reliability index for various materials used in structural industry are available in 

standard structural codebooks [91–93]. The major disadvantage of FORM is that gives precise 

solutions only if the limit state is linear and the basic variables are normally distributed [94]. But 

in general, variables do not necessarily follow normal distribution. The method of SORM is more 

accurate than FORM as it approximates quadratic polynomial for the limit state function. But 

the numerical evaluation for failure probability of quadratic polynomial is difficult and not very 

efficient [95]. Monte Carlo simulations are direct and simple but involve high computational 

cost for complex systems. This study deals with reliability-based design using stress strength 

interference theory which is flexible, simple and effective. Stress-strength interference theory 

explained in the previous chapter is one of the important concepts in reliability-based design. 

Many models have been developed for stress-strength reliability when stress and strength follow 

distributions like exponential, normal, lognormal, etc. and their interference. But there are many 

distributions like Weibull, gamma, interactions of Laplace and exponential, etc. for which the 

reliability models have not yet been developed. So, there is a broad scope to work in this area to 

develop models for which the closed form reliability is not developed yet. This will help 

researchers to optimize their work in encounter of stress-strength situations of these distributions. 

In estimation of reliability, studies are being carried out to evaluate the stress-strength reliability 

using various modern techniques. The method of estimation can be further enhanced by 

integration of such modern estimation and optimization techniques. A comparative study with 

existing estimation methods can be performed. Also, in case of material degradation, some 

research shows the effect of degradation on reliability. We know that degradation can take many 

forms. Not much research has been performed on varying the type of degradation and studying 

its effect on reliability. This thesis works out on some of these gaps and tries to propose effective 

solutions. The scope of the research work is outlined in Figure 3.1. 
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Figure 3.1 Scope of the research work 
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3.6 Solution Methodologies 

The stress-strength interference reliability model has been developed for stress and strength 

following Laplace and exponential distribution and vice versa. Taguchi analysis has been used 

to show the variation in reliability with the change in parameters of stress and strength 

distribution. The response surface analysis has also been used to give the two-parameter 

interaction towards reliability. The stress-strength interference model for distributions like 

Weibull and gamma does not have closed form and the integral is unsolvable. In these cases, 

Design of Experiments (DOE) technique has been used and a methodology has been shown to 

develop a model for the parameters taking values in a particular range for a certain application. 

Taguchi analysis and response surface analysis has been used to study the variation of reliability 

with the variation of parameters.  

For estimation of reliability, Weibull distribution has been considered since it is widely used in 

reliability studies. Two cases of Weibull distribution have been considered. First a two parameter 

Weibull distribution with stress and strength having common scale parameter but different shape 

parameter. Three estimation methods have been used namely maximum likelihood, least squares 

and weighted least squares estimation. Bayesian analysis and UMVUE are some of the other 

methods used in estimation of reliability for Weibull distribution but they have been excluded 

from this research. Bayesian analysis has some limitations like validity of the chosen prior 

distribution and high computational cost especially with large number of parameters [96]. 

UMVUE is inconsistent and the accuracy of the results vary depending on the values of 

distribution parameters [97]. Jaya algorithm has been used in optimization of functions obtained 

in respective estimation method. In the second case, a three parameter Weibull distribution has 

been considered with stress and strength having common shape parameter and different scale 

parameter. Maximum likelihood technique has been used in estimation. Jaya algorithm has been 

used to optimize the likelihood function.  

The reliability model in case of strength degradation has been developed for polynomial 

degradation of mean considering the strength following normal distribution. 

We know that a probability distribution is driven by its parameters. Given a data and knowing 

its distribution, it is sometimes very crucial to identify the parameters of the distribution. The 

parameter estimation methods help us in identifying the values of parameters from a sample data 

of the population. There are many parameter estimation methods. Some of the most widely used 

estimation techniques are maximum likelihood estimation, least squares estimation and weighted 

least squares estimation.  
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3.3.1 Maximum likelihood estimation 

The method of maximum likelihood is a popular estimation technique and has been used by 

several authors in estimating the parameters of various distributions [98–100]. Chacko and 

Mohan, 2017 [101] used the MLE method in estimating the parameters of two-parameter 

Kumaraswamy-exponential distribution for progressive type-II censored samples. Tzavelas, 

2009 [102] proposed estimation of parameters of three-parameter gamma distribution using 

MLE via reparameterization of function and predictor-corrector method. MLE method has also 

been used by Aggarwala and Balakrishnan, 2002  [103] in the estimation of scale and location 

parameters of Laplace distribution. Ng et al., 2009 [104] discussed estimating the parameters of 

three-parameter Weibull distribution for type II progressively censored samples using MLE and 

weighted MLE. Abushal, 2021 [105] applied MLE technique to estimate the unknown 

parameters and reliability characteristics for Akash distribution. Consider x1, x2 ..., xn is a random 

sample of size ‘n’ from a population of a particular distribution then the likelihood function can 

be given as:  

 
𝐿 =∏𝑓(𝑥𝑖)

𝑛

𝑖=1

 3.1 

By maximizing the likelihood function 3.1 using various traditional or advanced techniques, the 

estimates of parameters can be obtained. 

3.3.2 Least squares estimation 

The method of least squares aims to find the best estimates in order to minimize the sum of 

squares of residuals. The least squares estimation technique was used by Swain et al. [106] in 

Johnson’s translation system for modeling glucose levels in diabetes, in the analysis of statistical 

models, and structural reliability. Ashour and Eltehiwy [107] proposed the application of the 

technique in estimation of parameters of exponentiated power Lindley distribution. In least 

squares estimation method, the parameters are adjusted in order to fit the best model. If xi is the 

independent variable and yi a dependent variable for data set with n number of points (i=1, 2, 3, 

…., n), then the model can be given by f(x, β) = βo + β1x (considering a straight line), where βo 

is the y intercept and β1 is the slope. The parameters are found by measuring the residual that 

best fits the model. The residual is the difference between the observed value and the value 

predicted by the model. 

 𝑟 = 𝑦𝑖 − f(𝑥𝑖, β) 3.2 
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The sum of squares will be 

 
𝑆 =∑𝑟𝑖

2

𝑛

𝑖=1

 

 

3.3 

 

 
𝑆 =∑(𝑦𝑖 − f(𝑥𝑖, β))

𝑛

𝑖=1

 3.4 

 

By minimizing the sum of squared residuals using various techniques, the parameters can be 

calculated. 

3.3.3 Weighted least squares estimation 

Weighted least squares which is a modification of least squares estimation method considers the 

variances in the errors while evaluating the estimates. The weighted least squares estimation 

technique has been used in many applications [108]. The method was used by Wu et al., 1987 

[109] in moving identification and found the suitability of the application in time-varying 

systems. The technique has also been used in estimation of parameters of multiplicative 

generalization of binomial distribution [110]. The method of weighted least squares estimation 

is similar to least squares estimation. In weighted least squares instead of minimizing the sum of 

squared residuals we minimize the weighted sum of squared. Benchiha et al., 2021 [111] used 

LSE and WLSE techniques in estimating the parameters of weighted generalized Quasi Lindley 

distribution. 

 
𝑆 =∑𝑤𝑖 (𝑦𝑖 − f(𝑥𝑖, β))

𝑛

𝑖=1

 3.5 

 

  The weights 𝑤𝑖 is inversely proportional to the variances of the measurement. The parameters 

can then be estimated by minimizing the weighted sum of squares function. 

3.3.4 Jaya algorithm 

Jaya algorithm is a recent heuristic optimization technique capable of solving a large number of 

optimization problems with high effectiveness and was first proposed by Rao and Waghmare, 

2017 [112]. It is a gradient-free optimization algorithm which continuously moves closer to the 

best solution and away from the worst solution [113,114]. It has many applications in in 

optimizing the designs of heat exchangers, heat pipes and heat sinks, ice thermal energy storage 
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system, machining processes, nano-finishing processes, casting processes and other disciplines 

of engineering and science [115]. The researchers have used the technique in several applications 

and found satisfactory results. Meshram et al., 2020 [116] carried out electrical discharge 

machining with around eight control variables and two responses. Taguchi’s L12 orthogonal 

array was used in designing the experiment. The regression equations were taken as objective 

functions and Jaya algorithm was used in optimization, observing improvement in response 

variables. Caldeira and Gnanavelbabu, 2019 [63] presented the implementation of Jaya 

algorithm for effectively solving the flexible job-shop scheduling problem. Gupta et al., 2019 

[117] discussed the superiority of Jaya algorithm over other similar metaheuristic techniques in 

optimizing standard functions for the application of workflow scheduling in cloud computing. 

Jin et al., 2019 [118] identified the parameters of wind turbine power models using Jaya 

algorithm and monitoring with multivariate control charts. Similarly, the algorithm has been used 

by many other researchers in such optimization problems [119–122]. 

Consider an objective function to be optimized for some unknown parameters. A random set of 

parameters with a certain population size are generated within the specified boundaries. The 

function value is found for each set of parameters in the population. The best and the worst 

function value are noted. Then the set of parameters are updated based on the following equation:  

 U'b,c,a = Ub,c,a + r1,b,a (Ub,best,a -│Ub,c,a│) - r2,b,a (Ub,worst,a -│Ub,c,a│) 3.6 

where a is the iteration number, b is the parameter variable and c is the population size.  Ub,c,a is 

the value of parameter b for iteration a and population number c. U'b,c,a is the updated value for 

the same based on equation 6. If the new set of parameters for a given population number gives 

a better solution, then U'b,c,a is the new accepted set for the respective population. The updated 

set will then be taken as the input for next iteration. Figure 3.2 shows the flowchart of the Jaya 

algorithm.  
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Figure 3.2 Flowchart of Jaya algorithm [123] 

 

3.3.5 Design of experiments 

Design of experiments (DOE) is a systematic tool to find the relations between the input variables 

and the response. DOE gives a significant experimental setup sufficient to find the relation 

between input variables and output response which helps in saving time, cost and resources. 

Taguchi method and response surface methodology (RSM) are some of the widely used 

techniques in DOE. Taguchi method is used to obtain a set of significant experiments and to find 

the most influential parameter towards the response. RSM is also used to obtain a set of 

significant parameters and analyze for the influencing parameters. Additionally, RSM gives a 

prediction model of input variables and the output response. Khare et al, 2018 [124] used DOE 

in optimizing the surface roughness of AA 6061 material in turning operation. The cutting speed, 
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feed rate, depth of cut and rake angle were taken as the input parameters while the surface 

roughness was taken as the response. Taguchi’s method was used for carrying out the DOE and 

analysis. It was found that the rake angle was the most influential parameter towards the surface 

roughness followed by cutting speed. The set of optimum parameters was also found. Similarly 

Taguchi analysis has been used by many researchers in their studies [125–128]. Laghari et al., 

2018 [129] developed prediction models for tool wear and surface roughness in turning of 

Al/SiCp workpiece using response surface methodology (RSM). Cutting speed, feed rate and 

depth of cut were taken as the independent variables towards the response. The response surface 

methodology was proved to be effective in modeling the prediction equation. Ammeri et al., 

2015 [130] combined Taguchi method and RSM in determining the optimal lot size for the 

manufactured product in supply chain. RSM has been used to develop models and carrying out 

analysis of parameters and response [131–134]. Nair et al., 2004 [135] used design of 

experiments for design of accelerated test experiments for reliability improvement. Rigdon et 

al., 2022 [136] studied on the use of design of experiments to understand and improve product 

reliability. A detailed description of the statistical distributions, methods to model reliability, 

various DOE methods that can be used and the analysis that can be carried out has been made in 

this research.  

3.7 Summary 

In this chapter, the problem statements have been identified based on the literature review. Also, 

the motivation for this research work and various assumptions considered in the research work 

have been summarized. This chapter further discusses the solution methodologies that have been 

adopted in this research work and an introduction to the solution techniques has been given along 

with some of the overview of the work that has been carried out in the respective fields.   
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Chapter 4 

4. Stress-Strength Interference Models 

Reliability has received utmost importance in today’s world as people are continuously looking 

for reliable and safe mechanical systems. Thus, it is very essential to consider reliability right at 

the modelling and design stage of mechanical components and systems. In reliability based 

design, a large amount of work has been carried out in cases of stress-strength interference 

models of type P (X > Y) with various distributions. But there are some distributions for which 

the stress-strength models are yet to be developed. In this chapter an attempt has been made to 

develop stress-strength models for some common distributions of which the reliability models 

are not yet available.  

4.1 Strength – Laplace Distribution, Stress - Exponential 

Distribution 

Laplace distribution is used to fit the data which has more kurtosis than the normal distribution 

and is more concentrated towards the mean. The distributions which have heavier tails are 

usually modelled by this distribution. Exponential distribution has been used to in modelling of 

stress-strength data in various studies [137]. 

4.1.1 Model development 

Consider strength (s) follows Laplace distribution and stress (l) follow exponential distribution. 

According to the interference theory, the reliability of the component can be evaluated using 

equation: 

 
R = ∫ g(s) [∫ f(l) dl

s

0

]  ds  
∞

0

 4.1 

 

 
R = ∫

1

2ϕ
e
−
|s−θ|
ϕ [∫  λe−λl dl

s

0

]  ds  
∞

0

 4.2 



47 
 

   

 
R = ∫

1

2ϕ
e
−
|s−θ|
ϕ [1 − e−λs] ds  

∞

0

 4.3 

   

 
R = ∫

1

2ϕ
e
−
(θ−s)
ϕ [1 − e−λs] ds +

θ

0

∫
1

2ϕ
e
−
(s−θ)
ϕ [1 − e−λs] ds 

∞

θ

 4.4 

 

Solving the integral in equation (4) and further simplification gives us the reliability expression 

as: 

 

R = 1 −
λϕ e

−θ
ϕ  

2(λϕ − 1)
+

e−λθ

(λϕ − 1)(λϕ + 1)
  

4.5 

 

Equation 4.5 can be used to find the reliability when the strength follows Laplace distribution 

and stress follows exponential distribution. The distribution plot for Laplace strength and 

exponential stress is shown in Figure 4.1. The dotted curve depicts Laplace distribution with 

parameters θ = 2.5 and ϕ = 1. The solid line depicts exponential distribution with parameter 

λ = 1. 
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Figure 4.1 Distribution plot for Laplace strength and exponential stress 

4.1.2 Results and analysis 

Taguchi analysis shows the variation of reliability with change in parameters of stress and 

strength. Figure 4.2 shows the main effects plot for means of reliability when the strength follows 

Laplace distribution and stress follows exponential distribution. As can be seen in the the figure, 

the reliability increases when the rate parameter of the exponential distribution and the location 
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parameter of Laplace distribution increases. It can also be noted that the reliability increases 

when the scale parameter of Laplace distribution decreases.  

 

 

Figure 4.2 Taguchi analysis for Laplace strength and exponential stress 

Table 4.1 gives the order of influence of each parameter on the response. It can be seen that when 

strength follows Laplace distribution and stress follows exponential distribution, the location 

parameter of Laplace distribution is most influential followed by the rate parameter of 

exponential distribution and then the scale parameter of Laplace distribution. 

Table 4.1 Response tables for means for Laplace strength and exponential stress 

Level λ θ ϕ 

1 0.3571 0.3636 0.5550 

2 0.5477 0.5319 0.5092 

3 0.6467 0.6561 0.4873 

Delta 0.2897 0.2925 0.0677 

Rank 2 1 3 

 

The contour plot depicted in Figure 4.3 shows two parameter interaction towards the 

response(reliability). As can be seen in the figure, when the value of  λ is held at 1, the reliability 

values greater than 0.7 are obtained when parameter θ has values greater than 1.25 and parameter 

ϕ has values lesser than 0.75. When the value of θ is held at 1, the reliability values greater than 

0.7 are obtained when  λ has values greater than 1 and ϕ has values on the lower side. When the 

value of ϕ is held at 1.125, higher reliability values can be obtained when θ is greater than 1.25 

and ϕ is greater than 1.2. 

  

θ λ ϕ 

1.125 
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Figure 4.3 Contour plot for reliability in case of Laplace strength and exponential stress 

 

4.1.3 Validation of the model  

Simulation studies are conducted for validation of the model. Sets of random numbers of sample 

size 100, 1000, 10000 each were generated for exponential and Laplace distribution with 

parameters λ = 0.5, θ = 2.5, ϕ = 1 and λ = 1.5, θ = 3, ϕ = 1 respectively using Matlab statistical 

software. Reliability was evaluated with the random numbers using the principle P(Y> X). 

Reliability is also calculated using the model proposed in this paper. Both the results are shown 

in Table 4.2 which includes the parameter set, the sample size, reliability using simulation, 

reliability using the proposed methodology, bias and the error. The reliability obtained from the 

proposed model for the above sets of parameters considered is equal to 0.659 and 0.9342 

respectively. Simulation studies show that as the sample size increases the reliability using 

simulation moves closer to the reliability obtained with proposed model. The bias and the error 

decreases with the increase in sample size for both sets of parameters. Figure 4.4 shows the 

corresponding plot for error. For a sample size of 10000, the error for the two sets of parameters 

considered is 0.0197% and 0.0321% respectively, which shows the precision of the proposed 

model in evaluating reliability. 
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Table 4.2 Validation of the model for Laplace strength and exponential stress 

Sr No. Parameters Sample 

Size 

Reliability 

using 

Simulation 

R estimated as 

per proposed 

model 

Bias Error (%) 

1 𝜆 = 0.5,  

𝜃 = 2.5, 𝜙 = 1 

100 0.652 0.659 -0.007 1.0736 

1000 0.6598 0.659 -0.0008 0.1215 

10000 0.65913 0.659 -0.00013 0.0197 

2 𝜆 = 1.5,  

𝜃 = 3, 𝜙 = 1 

100 0.926 0.9342 0.0082 0.8855 

1000 0.9303 0.9342 0.0039 0.4189 

10000 0.9339 0.9342 0.0003 0.0321 

 

 

 

Figure 4.4 Plot of error for validation experiment for Laplace strength and exponential stress 

 

4.2 Strength – Exponential Distribution, Stress - Laplace 

Distribution 

4.2.1 Model development 

This model considers that strength (s) follows exponential distribution and stress (l) follows 

Laplace distribution. The reliability can be computed using the equation as derived below: 

 

 
R = ∫ g(l) [∫ f(s) ds

∞

l

]  dl 
∞

0

 4.6 

 

 
R = ∫

1

2ϕ
e
−
|l−θ|
ϕ [∫ λe−λs ds

∞

l

]  dl 
∞

0

 4.7 
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R = ∫

1

2ϕ
e
−
|l−θ|
ϕ [∫ λe−λs ds

∞

l

]  dl 
∞

0

 4.8 

 

 
R = ∫

1

2ϕ
e
−
|l−θ|
ϕ [e−λl] dl 

∞

0

 4.9 

 

 

 
R = ∫

1

2ϕ
e
−
(θ−l)
ϕ [e−λl] dl + ∫

1

2ϕ
e
−
(l−θ)
ϕ [e−λl] dl 

∞

θ

 
θ

0

 4.10 

 

Solving the integral in equation (7) and simplification, equation obtained for reliability is: 

 

 

R =
λϕ e

−θ
ϕ  

2(λϕ − 1)
−

e−λθ

(λϕ − 1)(λϕ + 1)
     

4.11 

 

Equation 4.11 can be used to find the reliability when the strength follows exponential 

distribution and stress follows Laplace distribution. The distribution plot for exponential strength 

and Laplace stress is shown in Figure 4.5. The curve for exponential distribution is depicted by 

a solid line with parameters λ = 1.2, whereas the Laplace distribution is depicted by a dotted line 

with parameters θ = 0.2 and ϕ = 1. 
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Figure 4.5 Distribution plot for Laplace stress and exponential strength 
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4.2.2 Results and analysis 

The main effects plot for means of response (reliability) is shown in Figure 4.6 when the strength 

follows exponential distribution and stress follows Laplace distribution. As can be seen in the 

figure, reliability decreases when λ increases. It can also be seen that as  

θ and ϕ increases, the probability of failure increases (reliability decreases). The order of 

influence of each parameter towards the response can be seen in Table 4.3 which shows that λ is 

the most influential parameter towards the response followed by ϕ and θ. 

 

 

Figure 4.6 Taguchi analysis for Laplace stress and exponential strength 

 

Table 4.3 Response tables for means Laplace stress and exponential strength 

Level λ θ ϕ 

1 0.4607 0.3597 0.3662 

2 0.2551 0.2996 0.3088 

3 0.1775 0.2341 0.2184 

Delta 0.2832 0.1256 0.1478 

Rank 1 3 2 

 

The two-parameter interaction towards the response(reliability) can be seen in the contour plot 

depicted in Figure 4.7. As seen in the figure, when the value of λ is set at 1, higher levels of 

reliability are obtained when θ is lesser than 1 and ϕ is lesser than 1.1 for the considered 

parameter range. When the value of θ is set to 1, the reliability can be seen lying in higher ranges 

with λ value lesser than 0.75 and ϕ value in the lower range. When the value of ϕ is held at 

1.125, higher reliability can be obtained with λ less than 0.75 and θ less than 1.2.  

 

λ θ ϕ 
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Figure 4.7 Contour plot for reliability in case of Laplace stress and exponential strength 

4.2.3 Validation of the model 

Validation is carried out by simulation studies using simulated number generation. Random 

numbers of sample size 100, 1000, 10000 each were generated for Laplace and exponential 

distribution with parameters λ = 0.2, θ = 1.2, ϕ = 0.4 and λ = 0.8, θ = 1.5, ϕ = 1 respectively. 

Reliability was evaluated using simulation and was also found out using the model proposed in 

the research. Results are shown in Table 4.4. The reliability obtained for the above set of 

parameters are 0.3903 and 0.7895 respectively. It can be observed that as the sample size 

increases, the bias decreases, error decreases and the reliability obtained from simulation moves 

closer to the reliability obtained from the proposed model. Figure 4.8 shows the corresponding 

plot of error. For sample size of 10000, the error for the two sets of parameters are 0.09233% 

and 0.0076% respectively.   

Table 4.4 Validation of the model for Laplace stress and exponential strength 

 Sr No. Parameters Sample 

Size 

Reliability 

using 

Simulation 

R estimated as 

per proposed 

model 

Bias Error (%) 

1 𝜆 = 0.8, 𝜃 = 1.5, 

𝜙 = 1 

100 0.385 0.3903 0.0053 1.3766 

1000 0.3875 0.3903 0.0028 0.7226 

10000 0.38994 0.3903 0.00036 0.09232 

2 𝜆 = 0.2, 𝜃 = 1.2, 

𝜙 = 0.4 

100 0.7825 0.7895 0.007 0.8946 

1000 0.78815 0.7895 0.00135 0.1713 

10000 0.78944 0.7895 0.00006 0.0076 

 

 

 

A 1

B 1

C 1.125

Hold Values

B*A

1.501.251.000.750.50

1.50

1.25

1.00

0.75

0.50

C*A

1.501.251.000.750.50

1.8

1.5

1.2

0.9

0.6

C*B

1.501.251.000.750.50

1.8

1.5

1.2

0.9

0.6

>  

–  

–  

–  

<  0.2

0.2 0.3

0.3 0.4

0.4 0.5

0.5

2

Reliability

Contour Plots of Reliability 2

A = λ 
B = θ 

C= ϕ 



54 
 

 

Figure 4.8 Plot of error for validation experiment for exponential strength and Laplace stress 

 

4.3 Strength – Weibull Distribution, Stress - Weibull 

Distribution 

4.2.1 Model development 

Weibull distribution is most commonly used to describe mechanical systems. The interference 

model of reliability when the stress and strength follow Weibull distribution is given as: 

 

 
𝑅 = ∫

𝑝2
𝜎2
(
s − μ2
𝜎2

)
𝑝2−1

𝑒
−
(𝑠−μ2)
𝜎2    [∫

𝑝1

𝜎1
 (
𝑙 − μ1
𝜎1

)
𝑝1−1

𝑒
−
(𝑙−μ1)
𝜎1 𝑑𝑙

𝑠

0

] 𝑑𝑠
∞

0

   4.12 

 

The integration of the above model is complicated and does not have a closed form. This study 

attempts to obtain the closed form of stress-strength reliability using design of experiments 

(DOE) when the stress and strength follow Weibull distribution. Minitab 16 was the software 

used to conduct design of experiments and analysis. The design chosen was L27 for 6 factors of 

3 level each. The parameters chosen for DOE are shown in Table 4.5. The results of design of 

experiments with response are displayed in Table 4.6. The stress-strength equation was partly 

solved manually and partly using Wolfram Mathematica software. 
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Table 4.5 Factors and levels for stress and strength following Weibull distribution 

Distribution Factors Levels 

Stress 

Shape Parameter: 𝑝1 0.5, 1.5, 2.5 

Scale Parameter: 𝜎1 1, 1.5, 2 

Location Parameter: μ1 0, 0.5, 1 

Strength 

Shape Parameter: 𝑝2 1.5, 2.5, 3.5 

Scale Parameter: 𝜎2 1, 1.5, 2 

Location Parameter: μ2 1.5, 2, 2.5 

 

Table 4.6 Design of experiments for stress and strength following Weibull distribution 

Stress Strength Reliability 

p1 σ1 μ1 p2 σ2 μ2 R 

0.5 1 0 1.5 1 1.5 0.78155 

0.5 1 0 1.5 1.5 2 0.83273 

0.5 1 0 1.5 2 2.5 0.86709 

0.5 1.5 0.5 2.5 1 1.5 0.67035 

0.5 1.5 0.5 2.5 1.5 2 0.74267 

0.5 1.5 0.5 2.5 2 2.5 0.79106 

0.5 2 1 3.5 1 1.5 0.56323 

0.5 2 1 3.5 1.5 2 0.65846 

0.5 2 1 3.5 2 2.5 0.72007 

1.5 1 0.5 3.5 1 2 0.97066 

1.5 1 0.5 3.5 1.5 2.5 0.996097 

1.5 1 0.5 3.5 2 1.5 0.979634 

1.5 1.5 1 1.5 1 2 0.722195 

1.5 1.5 1 1.5 1.5 2.5 0.8851964 

1.5 1.5 1 1.5 2 1.5 0.743035 

1.5 2 0 2.5 1 2 0.815387 

1.5 2 0 2.5 1.5 2.5 0.91893406 

1.5 2 0 2.5 2 1.5 0.85073635 

2.5 1 1 2.5 1 2.5 0.99773487 

2.5 1 1 2.5 1.5 1.5 0.91938117 

2.5 1 1 2.5 2 2 0.993511113 

2.5 1.5 0 3.5 1 2.5 0.99883877 
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2.5 1.5 0 3.5 1.5 1.5 0.97996489 

2.5 1.5 0 3.5 2 2 0.998682329 

2.5 2 0.5 1.5 1 2.5 0.87792976 

2.5 2 0.5 1.5 1.5 1.5 0.6762277 

2.5 2 0.5 1.5 2 2 0.87038164 

 

R = 0.879 + 0.1346 p1 - 0.6489 σ1 - 0.3621 μ1 + 0.2496 p2 + 0.5987 σ2 - 0.4066 μ2 

    - 0.04577 p1*p1 + 0.0502 σ1* σ1 + 0.0215 μ1* μ1 - 0.01542 p2* p2 - 0.0504 σ2* σ2 

    + 0.0009 μ2* μ2 - 0.00085 p1* σ2 + 0.04883 p1*μ2 - 0.0652 σ1* σ2 + 0.2211 σ1* μ2 

    - 0.0930 μ1* σ2 + 0.1933 μ1*μ2 - 0.0925 p2* σ2 

4.13 

 

Equation 4.13 is the reliability model evaluated by DOE analysis and can be used for reliability 

prediction for the parameters within the considered range. The R-sq value for the above equation 

is 99.82% which shows that the equation can predict reliability with significantly less variability.  

4.3.2 Response surface analysis 

The response surface analysis was carried out to study the two-parameter interaction towards the 

reliability. Figure 4.9 shows the main effects plot for reliability. It can be seen that the reliability 

increases with increase in location and scale parameter of strength, and decrease with increase 

in location and scale parameter of stress. A notable observation that can be made is that reliability 

increases with increase in shape parameter of both the stress and strength distribution.  Figure 

4,10 shows the interaction plot for reliability. Figure 4.11 shows contour plot of two parameter 

interaction towards reliability for stress and strength following Weibull distribution. When the 

parameters are held at middle values from the levels considered, a high reliability greater than 

0.9 is obtained when parameter set lies in a region inscribed by the origin and the following as 

shown in the figure: p1 greater than 1.4 and σ1 on the minimum side preferably lesser than 1.4 in 

p1 x σ1 interaction, μ1 lesser than 0.25 and p1 greater than 1.7 in μ1 x p1 interaction, μ2 greater 

than 2.2 and p1 greater than 1.7 in μ2 x p1 interaction, μ1 lesser than 0.5 and σ1 lesser than 1.4 in 

μ1 x σ1 interaction, p2 greater than 2.4 and σ1 on the minium side in p2 x σ1 interaction, σ2 greater 

than 1.5 and σ1 lesser than 1.25 in σ2 x σ1 interaction, σ1 close to 1 in μ2 x σ1 interaction, and σ2 

greater than 1.75 and μ1 lesser than 0.2 σ2 x μ1 interaction. 
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Figure 4.9 Main effects plot for reliability for Weibull stress and strength 

 

 

Figure 4.10 Interaction plot for reliability for Weibull stress and strength 
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Figure 4.11 Contour plot for reliability in case of stress and strength following Weibull 

distribution 

 

4.3.3 Validation experiment 

Two parameter sets are considered for the validation experiment. The parameter values are as 

shown below: 

1) p1 = 2.5    σ1 = 1    μ1 = 0    p2 = 3.5    σ2 = 2    μ2 = 2 

2) p1 = 0.5    σ1 = 1   μ1 = 0   p2 = 2.5   σ2 = 2   μ2 = 2.5 

The results of the validation experiment have been depicted in Table 4.7. A set of 100, 1000 and 

10000 numbers were generated for both the stress and strength distributions. Simulation was 

carried out using Matlab software. The distribution plot of corresponding stress-strength 

interference is shown in Figure 4.12. The error in probability obtained from the model and that 

obtained from random number generation is below 1% and is depicted in Figure 4.14. The 

optimization of equation 4.13 was carried out using Jaya algorithm and the reliability obtained 

was 0.99999 with the parameter set p1 = 2.5, σ1 = 1, μ1 = 0, p2 = 1.5, σ2 = 1, μ2 = 2.5. The 

distribution plot with the optimum set of parameters is shown in Figure 4.14. 
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Table 4.7 Results of validation experiment for stress and strength following Weibull 

distribution 

Sr No. Parameters Sample 

Size 

Reliability 

using 

Simulation 

R estimated as 

per proposed 

model 

Bias Error (%) 

1 p1 = 2.5, σ1 = 1   

μ1 = 0, p2 = 3.5   

σ2 = 2, μ2 = 2 

100 0.9876 0.99633 0.00873 0.88396 

1000 0.99143 0.99633 0.0049 0.49424 

10000 0.99612 0.99633 0.00021 0.02108 

2 p1 = 0.5, σ1 = 1   

μ1 = 0, p2 = 2.5   

σ2 = 2, μ2 = 2.5 

100 0.8732 0.8687 -0.0045 0.5153 

1000 0.87078 0.8687 -0.0021 0.24116 

10000 0.86973 0.8687 -0.0010 0.11843 

 

 

 

Figure 4.12 Distribution plots for stress and strength following Weibull distribution 

 

 

Figure 4.13 Plot of error in estimation of stress-strength reliability for Weibull distribution 
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Figure 4.14 Stress-strength interference with optimum set of parameters for Weibull 

distribution 

4.4 Strength – Gamma Distribution, Stress - Gamma 

Distribution 

4.4.1 Model development 

Gamma distribution is most commonly used in life testing, including mechanical systems. The 

interference model of reliability when the stress and strength follow gamma distribution is given 

as: 

 

 
𝑅 = ∫

1

β2
k2⎾𝑘2

(𝑠)𝑘2−1𝑒
−
(𝑠)
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1

β1
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(𝑙)𝑘1−1𝑒
−
(𝑙)
β1𝑑𝑙

𝑠

0

] 𝑑𝑠
∞

0

 4.14 

 

where k1 and β1 are the shape and scale parameters respectively of stress and k2 and β2 are the 

shape and scale parameters respectively of strength. The integration of the above model is 

complicated as it leads to a form of incomplete gamma function. The reliability, in this case, can 

be found by numerical integration or by graphical approach which is time-consuming.  

In this research, an attempt was made to develop a model for stress-strength interference was 

developed using response surface methodology when the stress and strength follow gamma 

distribution. The software used to conduct design of experiment and analysis was Minitab 16. 

The design chosen was L9 for 4 factors of 3 level each. The parameters chosen for DOE are as 

shown in Table 4.8. The design of experiments along with the response is shown in Table 4.9. 

The reliability was calculated partly by manual integration and partly using Wolfram 

Mathematica software. 
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Table 4.8 Factors and levels for stress and strength following gamma distribution 

Distribution Factors Levels 

Stress 
Shape Parameter: k1 1, 2, 3 

Scale Parameter: β1 1, 1.25, 1.5 

Strength 
Shape Parameter: k2 4, 5, 6 

Scale Parameter: β2 1, 1.25, 1.5 

 

 

Table 4.9 Design of experiments for stress and strength following Weibull distribution 

Stress Factors Strength Factors Reliability 

k1 β1 k2 β2 R 

1 1 4 1 0.9375 

1 1.25 5 1.25 0.96875 

1 1.5 6 1.5 0.984375 

2 1 5 1.5 0.95904 

2 1.25 6 1 0.892195 

2 1.5 4 1.25 0.750538 

3 1 6 1.25 0.916646 

3 1.25 4 1.5 0.737166 

3 1.5 5 1 0.580096 

 

R = 0.515115 + 0.162159*k1 + 0.227822*β1 + 0.0914395*k2 - 0.0436033*β2 -

0.0210245*k1*k1 - 0.216925*β1*λ1 - 0.0078125*k2*k2 - 0.034456*β2* β2 -

0.199411*k1*β1 + 0.013921k1*k2 + 0.015164*β1*k2 + 0.266573*β1*β2 - 

0.0189620*k2*β2 

4.15 

 

Equation 4.15 is the reliability model obtained from DOE studies and can be used in reliability 

prediction for the parameters lying within the considered range. The R-sq value is 99.35% which 

shows significantly less variability in the reliability prediction. 

4.4.2 Response surface analysis 

The main effects plot is depicted in Figure 4.15. It can be observed that the reliability decreases 

if the shape and scale parameter of stress increases while the reliability increases with increase 

in shape and scale parameter of strength. Figure 4.17 and 4.18 shows the interaction plot and 

contour plot respectively for two parameter interaction. If the parameters are set at their mid 
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values, then the reliability greater than 0.9 can be obtained in the region inscribed by origin and 

the parameters as follows: β1 less than 4 and k1 lesser than 2 for β1 x k1 interaction, k2 greater 

than 4.5 and k1 lesser than 1.5 in k2 x k1 interaction, β2 greater than 1.1 and k1 less than 1.5 in β2 

x k1 interaction, k2 greater than 5 and β1 less than 1.5 in k2 x β1 interaction, β2 greater than 1.25 

and β1 on the minimum side close to 1 in β2 x β1 interaction.  

 

 

Figure 4.15 Main effects plot for stress and strength following gamma distribution 

 

 
Figure 4.16 Interaction plot for stress and strength following gamma distribution 
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Figure 4.17 Contour plot for reliability in case of stress and strength following gamma 

distribution 

 

4.4.3 Validation experiment 

The parameters chosen for the validation experiment are as shown below: 

1) k1 = 1    β1 = 1    k2 = 5    β2= 1.25     

2) k1 = 2, β1 = 1.25, k2 = 4, β2 = 1.5 

The results of the validation experiment have been depicted in Table 4.10. Sets of 100, 1000 and 

10000 numbers were generated for both the distributions. The simulation analysis was carried 

out using Matlab software. The distribution plots for both parameter sets are shown in Figure 

4.18. The error in probability obtained from the model and that obtained from random number 

generation is below 2%. For a sample size of 10000, the error for parameter set 1 and 2 are 

0.0407% and 1.0186% respectively. The corresponding plot of error is shown in Figure 4.19. 

The optimization of equation 4.15 was carried out using Jaya algorithm and the reliability 

obtained was 0.98735 with the parameter set k1 = 1.2252, β1 = 1.4459, k2 = 6, β2 = 1.5. The 

distribution plot with the optimum set of parameters is shown in Figure 4.20. 
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Table 4.10 Results of validation experiment for stress and strength following gamma 

distribution 

 Sr No. Parameters Sample 

Size 

Reliability 

using 

Simulation 

R estimated as 

per proposed 

model 

Bias Error (%) 

1 k1 = 1, β1 = 1,  

k2 = 5, β2 = 1.25 

 

100 0.983 0.9814 -0.0016 0.1628 

1000 0.98271 0.9814 -0.00131 0.1333 

10000 0.9818 0.9814 -0.0004 0.0407 

2 k1 = 2, β1 = 1.25,  

k2 = 4, β2 = 1.5 

100 0.8564 0.8737 0.0173 2.0201 

1000 0.8631 0.8737 0.0106 1.2281 

10000 0.86489 0.8737 0.00881 1.0186 

 

 

Figure 4.18 Distribution plot for stress and strength following gamma distribution 

 

 

Figure 4.19 Plot of error in estimation of stress-strength reliability for gamma distribution 
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Figure 4.20 Stress-strength interference with optimum set of parameters for gamma 

distribution 

The models derived in equations 4.5, 4.11, 4.13 and 4.15 can be compared with the estimation 

model of well-established normal distribution depicted in equation 2.4. The models evaluated in 

equation 4.5 and equation 4.11 for strength Laplace distribution and stress exponential 

distribution and vice versa are complicated to solve and will be more efficient using advanced 

numerical calculators. The stress strength reliability model for normal distribution is 

comparatively simpler and easier to solve. The models evaluated in 4.13 and 4.15 for Weibull 

and gamma distribution respectively are lengthy and hence may take some time to calculate or 

feed into the calculators. Also, these models can estimate reliability only when the range of 

parameters are known. The estimate of normal distribution on the other hand has fewer terms 

and is flexible for the data with infinite range. Another limitation of the models evaluated in the 

above section need some analytical software in estimation of distribution parameters for a given 

data set. The estimation of parameters in case of normal distribution is manageable even using 

manual calculation for data of small sample size. Even for a large data, the parameters can be 

estimated using central limit theorem resulting in precise calculations. Thus, the normal 

distribution can be first tried to obtain a fit for a given data compared to the other distributions 

mentioned above because of the simplicity of the model and ease in estimation of parameters. If 

normal distribution does not give a good fit, then other suitable distributions can be tried and 

worked upon using above evaluated equations. 
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4.5 Summary 

In this chapter, two interference models for reliability have been developed when stress follows 

exponential distribution and strength follows Laplace distribution and vice versa. Additionally, 

a methodology to derive a model for Weibull and gamma distribution has been proposed. 

Analysis has been carried out to show the influence of parameters on reliability. Validation for 

all the models have been conducted using simulation. Interference plots and error plots have been 

shown for the parameter sets considered for validation. The models have been optimized to 

obtain the parameters which maximize the reliability and their interference plots have been 

depicted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



67 
 

 

 

 

 

 

Chapter 5 

5. Estimation of Stress-Strength Reliability  

5.1 Estimating the Parameters of Weibull Distribution 

Predicting crucial data such as the strength of materials or lifespan of a component requires real-

life statistics in order to fit a distribution model. Various statistical distributions like normal, 

Weibull, beta, gamma, etc., have been used to model the data. For precise estimation, the 

distribution should fit the data samples. Thus, in order to obtain the distribution properties, 

accurate parameter estimation of the related function is required. Determining the statistical 

distribution is one of the main problems in real-time forecasting since the improper selection of 

distribution will result in incorrect estimation.  

The estimation of parameters of Weibull distribution is essential for its proper implementation 

and can sometimes be a strenuous task. There are many methods for estimating the parameters 

of Weibull distribution. Some of the common methods used are maximum likelihood (ML), 

modified maximum likelihood (MML), moment estimators, method of least squares, etc.[138–

141]. Teimouri et al., 2013 [142] and  Akram and Hayat (2014) [143] carried out a comparison 

of methods of estimation for parameters of Weibull distribution. ML is the most widely used 

because of its good statistical properties like consistency, efficiency, lack of bias, normality, etc. 

These properties are satisfied when regularity conditions are met [144–146]. It should be noted 

that the ML method does not provide precise estimators of the parameters directly in some cases. 

Therefore, we use numerical methods. However, the drawbacks of numerical methods are slow 

convergence, non-convergence of iterations and convergence to wrong roots [147,148]. Using 

effective metaheuristics in such cases can help in improving estimation quality with lesser time. 

A brief overview of the use of metaheuristics in estimation of parameters has been presented in 

Chapter 2. In this paper, we have focused on estimating the parameters of three-parameter 

Weibull distribution via maximum likelihood estimation using Jaya algorithm. 
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5.1.1. Likelihood function for Weibull distribution 

The method of maximum likelihood is a popular estimation technique and has been used by 

several authors in estimating the parameters of various distributions[98–100]. Also, MLE is one 

of the most preferred methods in estimation of parameters for Weibull distribution[52]. Consider 

x1, x2 ..., xn is a random sample of size ‘n’ from a population of Weibull distribution W(μ, 𝜎,  p), 

then the likelihood function can be given as:  

 

 
𝐿 =∏𝑓(𝑥𝑖)
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The likelihood function (5.3) has to be maximized in order to obtain the best estimates of 

parameters μ, 𝜎 and  p. In this study, Jaya algorithm is used to maximize the likelihood function 

and attain the estimates for the parameters of Weibull distribution.  

5.1.2. Implementation of Jaya algorithm to Weibull parameter estimation  

For analyzing the performance of Jaya algorithm, three sets of parameters (2, 2, 2), (4, 3, 2) and 

(5, 2, 3) have been considered. The number of variables is taken as 3 considering the three 

parameters to be estimated and the population size is taken as 10. The sample sizes considered 

are 100, 500, and 1000. Search space is chosen as (0,100) for all the parameters. The beauty of 

this algorithm is that the estimated values of parameters approach the real values even if the 

search space is large. However, as the search space increases, the number of iterations and time 

taken to approach the real values increases. The number of iterations is considered as the 

stopping criteria. In this case, the number of iterations is considered as 200 and total 10 

independent experiments are performed to check the repeatability of the algorithm. The 

compilation has been carried out using Matlab R2018a software on a processing unit of 1.7 GHz, 

Intel (R) i3, 4.00 GB RAM, 64-bit Operating System. The proposed steps for the implementation 

of Jaya algorithm to estimation of parameters is given in Table 5.1. 
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Table 5.1 Steps for implementation of Jaya algorithm 

Input:     p – Population size or number of candidates 

                v – Number of design variables or generators 

               MI – Maximum number of iterations 

                A – Sample from a population 

               min – Minimum value of search space 

               max – Maximum value of search space 

                f – fitness function 

Output: max(f) – Best solution (maximum) of the fitness function 

               min(f) – Worst solution (minimum) of the fitness function 

               Ubest – Best candidate of fitness function value 

               Uworst – Worst candidate of fitness function value 

                

Start: 

   For k = 1 to p do (i.e., population size) 

      For i = 1 to v do (i.e., design variables) 

         Initialize population sample Xi,k  

      End 

   End 

         Evaluate Xbest,1 and Xworst,1 (Based on solution of fitness function) 

         Evaluate max(f) = function value for corresponding to candidate Xbest,i  

                        min(f) = function value for corresponding to candidate Xworst,i 

   Set l = 1 (Initialize iteration number) 

   While maximum number of iterations (maxGen) is not met 

   For k := 1 to pop do (i.e., population size) 

      For i := 1 to var do (i.e., design variables) 

         Set r1,i,l  = a random number between [0,1] 

         Set r2,i,l  = a random number between [0,1] 

      Update  X’i,k,l = Xi,k,l + r1,i,l (Xi,best,l – Xi,k,l) – r2,i,l (Xi,worst,l – Xi,k,l) 

      End 

      If solution X’i,k,l  better than  Xi,k,l (Based on the solution(maximum) of fitness function) 

         Set Xi,k,l+1 = X’i,k,l 

      Else 

         Set Xi,k,l+1 = Xi,k,l 
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      End 

   End 

      Set l = l+1 

      Update Xbest,i  and  Xworst,i 

      Update max(f) and min(f) 

   End While maximum iterations or termination criterion are satisfied 

   print:  Xbest,i , Xworst,i , max(f) , min(f) 

End         

 

A comparative study has also been carried out for the performance of estimation using Jaya 

algorithm with that of simulated annealing (SA), differential evolution (DE) and hybrid 

neighborhood search with simulated annealing (HNSA)[56–58], which are some common 

metaheuristic estimation techniques. Table 5.2 – 5.4 gives the simulation results for Jaya 

algorithm in comparison to the other methods from the literature. In these examples, µ ̂,

𝜎 ̂ and 𝑝 ̂ denote the estimated parameter values of location, scale and shape parameter 

respectively,  𝑓 ̂ denotes likelihood function at estimated values of parameters, 𝑓 denotes 

likelihood function at real values of parameters and t denotes run time in seconds. The results 

show that in some cases of estimation with HNSA and DE, the log-likelihood function value 

with the real parameters has a better maximum value than that of the estimated parameters for 

the same set of generated data. This means that there is a better solution available. The method 

of SA gives fair results, but the compilation time is too long compared to other algorithms. The 

Jaya algorithm always moves towards the best estimates as it can be seen that in all the cases, 

the likelihood function values using estimated parameters are always greater than the likelihood 

function values using real parameters. Moreover, the compilation time for Jaya algorithm is very 

less as it gives results within a few seconds depending on the sample size. As the heuristic 

algorithms are random in nature, their convergence behavior is crucial to understand the 

approach of the algorithm towards the optimum solution. Figure 5.1 – 5.3 shows the likelihood 

function behavior of Jaya algorithm which exhibits the values taken by the likelihood function 

with respect to the iterations during the process of maximization. It can be seen from the graph 

that the Jaya algorithm values converge after around 25-70 iterations. 
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Table 5.2 Results for estimation of Weibull parameters for (µ, σ, p) = (2, 2, 2) 

Sample 

Size 

 Parameters SA  HNSA  DE  Jaya algorithm  

n=100 µ ̂ 2.25181 1.9493 2.052 2.1534 

𝜎 ̂ 1.6363 2.0991 1.684 2.1645 

𝑝 ̂ 1.8392 2.0962 2.04 1.9393 

𝑓 ̂ -134.6563 -127.606 -114.883 -132.3427 

𝑓 (-137.2584) (-127.5285) (-110.494) (-132.7944) 

tc 72.2188 16.6547 0.5911 0.402844 

n=500  µ ̂ 2.0718 1.9741 1.984 1.9928 

𝜎 ̂ 1.9306 2.0989 2.016 2.0546 

𝑝 ̂ 1.8329 2.2154 2.237 2.063 

𝑓 ̂ -615.3697 -636.6678 -609.516 -642.85 

𝑓 (-618.3805) (-635.3678) (-613.856) (-643.4578) 

tc 89.6094 21.0010 1.502 1.618632 

n=1000  µ ̂ 2.0354 1.9405 2.031 1.9782 

𝜎 ̂ 1.9051 2.0998 2.001 2.0175 

𝑝 ̂ 1.9511 2.029 2.087 2.084 

𝑓 ̂ -1301.8 -1277.8 -1235.975 -1269.4 

𝑓 (-1305.5) (-1274.2) (-1240.203) (-1270.4) 

tc 96.2500 27.9880 2.6507 2.830968 
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Figure 5.1 Jaya algorithm approach towards ML function maximum for (µ, σ, p) = (2, 2, 2): (a) 

sample size = 100, (b) sample size = 500,     (c) sample size = 1000 

 

Table 5.3 Results for estimation of Weibull parameters for (µ, σ, p) = (4, 3, 2) 

Sample 

Size 

 Parameters SA  HNSA  DE  Jaya algorithm  

n=100 µ ̂ 4.0707 3.8148 4.108 4.1323 

𝜎 ̂ 3.0067 2.8295 2.797 2.8295 

𝑝 ̂ 1.8974 1.9289 2.228 1.9445 

𝑓 ̂ -93.1223 -144.782 -153.881 -166.1462 

𝑓 (-93.4527)  (-143.5801)  (-156.601)   (-166.4581)  

tc 86.7500 17.6824 0.586 0.45026 

n=500  µ ̂ 4.1451 4.1685 4.03 3.9927 

𝜎 ̂ 2.917 3.1096 2.856 2.9517 

𝑝 ̂ 1.8267 1.9905 2.07 2.046 

𝑓 ̂ -458.2988 -743.32 -810.039 -831.9281 

𝑓 (-461.2994)  (-733.2223)  (-813.217)  (-832.6032)  

tc  87.2969 23.0984 1.502 1.595823 

n=1000  µ ̂ 3.9295 3.9321 4.003 4.0163 

𝜎 ̂ 3.2164 2.9165 2.893 2.962 
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𝑝 ̂ 2.094 2.0896 2.043 1.9615 

𝑓 ̂ -974.2441 -1489.3 -1640.7 -1694.7 

𝑓 (-974.9306)  (-1465.0)  (-1644.208)  (-1694.9)  

tc 90.6250 31.5077 2.694 2.820331 

 

 

Figure 5.2 Jaya algorithm approach towards ML function maximum for (µ, σ, p) = (4, 3, 2): (a) 

sample size = 100, (b) sample size = 500,     (c) sample size = 1000 

 

Table 5.4 Results for estimation of Weibull parameters for (µ, σ, p) = (5, 2, 3) 
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𝑓 ̂ -838.5784 -855.4235 -441.658 -484.3014 

𝑓 -838.9136 -836.7576 -447.947 -485.582 

tc  86.7813 22.6629 1.500 1.5326 

n=1000  µ ̂ 4.9547 4.9012 5.054 4.9738 

𝜎 ̂ 1.9814 2.1581 1.937 2.0215 

𝑝 ̂ 3.1251 3.1997 3.016 3.1029 

𝑓 ̂ -1743.1 -1759.2 -941.907 -961.63 

𝑓 -1746.6 -1748.7 -943.630 -962.1128 

tc 91.8125 24.3881 2.646 2.9228 

 

 

Figure 5.3 Jaya algorithm approach towards ML function maximum for (µ, σ, p) = (5, 2, 3): (a) 

sample size = 100, (b) sample size = 500,     (c) sample size = 1000 

5.1.3 Application to strength of glass fibres 

In order to consider the implementation of the proposed methodology, the fibre glass data which 

is widely used in statistical studies is considered. Appendix I consists of breaking strength for 

63 glass fibres of length 1.5 cm first studied by Smith and Naylor, 1987 [149]. The data was 

modeled using the proposed method and the results are presented in Table 5.5 along with a 

comparison of modeling the data by recent literature using particle swarm optimization (PSO) 

[60]. The parameters  µ ̂,  𝜎 ̂ and 𝑝 ̂ are estimated to be -1.5672, 3.2087 and 11.7605 respectively. 

It is evident from the results that the Jaya algorithm gives a better maximum likelihood function 
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value (-14.2853) compared to that with PSO algorithm (-14.2860). Hence it can be concluded in 

this case that Jaya algorithm gives better estimates than particle swarm optimization algorithm. 

Figure 5.4 shows the histogram with fitted densities and probability plot for the strength of glass 

fibre data with estimated parameters. It can be seen that the Weibull distribution with estimated 

parameters using Jaya algorithm provides a very good fitting for the data.   

Table 5.5 Results for estimation of Weibull parameter for strengths of glass fibre data 

Sample 

Size 

Parameters PSO with 

PSS 

PSO with 

SS1 

PSO with 

SS2 

PSO with 

SS3 

Jaya 

algorithm 

with SS3 

n=63 

µ  -1.0058 -1.9987 0 Not 

included 

because of 

worst 

performance 

-1.5672 

σ  3.1420 3.6384  1.6281 3.2087  

p  11.5076 13.4402 5.7807  11.7605  

f̂ -14.2860  -14.3030  -15.2068  -14.2853  

 

 

Figure 5.4 The histogram and fitted density for glass fibre data 

 

5.2 Estimation of Reliability for Stress and Strength following 

Weibull Distribution with Common Scale Parameter 

Designing and assessing mechanical or structural components based on reliability can be very 

effective in preventing failures or accidents. Properties of a component like stress and strength 

require precise designing as these are vital in determining the component's safety. In real life, we 

know that properties like stress and strength of mechanical components do not take a fixed value 

due to the various uncertainties in materials, loading conditions, environmental conditions, etc. 
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Thus, they can be considered to follow a particular distribution which can be determined based 

on the application or prior data. Traditional methods may not be the best approach for designing 

of mechanical components as it does not take uncertainties into consideration. Hence, reliability-

based design will be suitable in such cases which takes into account the probability of failure if 

the stress and strength takes various values within its range. Reliability of the form P [X > Y] is 

used in cases of stress-strength interference. According to the interference theory, if stress and 

strength follow a particular distribution, then their interference area gives the probability of 

failure. The concept of stress-strength interference in evaluating reliability has been used by 

many researchers in their studies.  

Weibull distribution has been widely used by researchers in their study as it is capable of fitting 

large data types [150–152]. If x and y are the random variables following Weibull distribution 

W(𝜎, 𝑝1) and W(𝜎, 𝑝2) respectively then their pdf can be given as: 

 
𝑓(𝑥; 𝜎, 𝑝1) =

𝑝1
𝜎𝑝1

(𝑥)𝑝1−1 exp {−(
𝑥

𝜎
)
𝑝1
} , 𝑥 > 0, 𝜎 > 0, 𝑝1 > 0 5.4 

and 

 
𝑓(𝑦; 𝜎, 𝑝2) =

𝑝2
𝜎𝑝2

(𝑦)𝑝2−1 exp {−(
𝑦

𝜎
)
𝑝2
} , 𝑦 > 0, 𝜎 > 0, 𝑝2 > 0 5.5 

respectively. The corresponding cumulative distribution function (cdf) for strength and stress is 

given by  

 
𝐹(𝑥; 𝜎, 𝑝1) = 1 − exp {− (

𝑥

𝜎
)
𝑝1
} 5.6 

and 

 
𝐹(𝑦; 𝜎, 𝑝2) = 1 − exp {−(

𝑦

𝜎
)
𝑝2
} 5.7 

where 𝑝1 and 𝑝2 are shape parameters for strength and stress respectively, and 𝜎 is the common 

scale parameter. It is difficult to evaluate the stress-strength reliability model when both 

parameters of Weibull distribution are different. The purpose of the present study is to show the 

effectiveness of Jaya algorithm in the estimation of reliability for Weibull distribution. Hence, it 

has been assumed that the scale parameter for stress and strength distribution remains the same. 

Stress-strength Weibull distribution with common scale parameter has been used in estimating 

the reliability for strength of carbon fibers [51]. 

5.2.1. Reliability estimation  

If X and Y denote the strength and stress distribution with common scale parameter but different 

shape parameter then according to interference theory the reliability can be given as 
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𝑅 = 𝑃 (𝑋 > 𝑌) = ∫ (𝑓(𝑥; 𝜎, 𝑝1)∫ 𝑓(𝑦; 𝜎, 𝑝2)𝑑𝑦

𝑥

0

)𝑑𝑥
∞

0

 5.8 

 

 

 

𝑅 = 𝑃 (𝑋 > 𝑌) = ∫

(

 

𝑝1
𝜎𝑝1

(𝑥)𝑝1−1 exp {−(
𝑥

𝜎
)
𝑝1
} .

∫
𝑝2
𝜎𝑝2

(𝑦)𝑝2−1 exp {− (
𝑦

𝜎
)
𝑝2
} 𝑑𝑦

𝑥

0 )

 𝑑𝑥
∞

0

 5.9 

 

 

𝑅 = 𝑃 (𝑋 > 𝑌) = ∫ (

𝑝1
𝜎𝑝1

(𝑥)𝑝1−1 exp {−(
𝑥

𝜎
)
𝑝1
} .

{1 − exp {−(
𝑥

𝜎
)
𝑝2
}}

)𝑑𝑥
∞

0

 5.10 

 

 

 
𝑅 = 𝑃 (𝑋 > 𝑌) = 1 − ∫

𝑝1
𝜎𝑝1

(𝑥)𝑝1−1 exp {−((
𝑥

𝜎
)
𝑝1
+ (
𝑥

𝜎
)
𝑝2
)} 𝑑𝑥

∞

0

 5.11 

 

If 𝑝1̂, 𝑝2̂ and σ̂ are the estimated parameters of Weibull distribution, then the estimated reliability 

𝑅̂ can be given as 

 

 
𝑅̂ = 1 − ∫

𝑝1̂

𝜎̂𝑝1̂
(𝑥)𝑝1̂−1 exp {−((

𝑥

𝜎̂
)
𝑝1̂
+ (
𝑥

𝜎̂
)
𝑝2̂
)} 𝑑𝑥

∞

0

 5.12 

 

In this study, some of the most widely used estimation methods are implemented namely 

maximum likelihood estimation, least squares estimation, and weighted least squares estimation. 

Louzada et al., 2016 [153] used these methods in estimating the parameters of extended 

exponential geometric distribution for medical data. Datsiou and Overend, 2018 [154] presented 

a comparison of various methods including MLE and LSE in the estimation of parameters for 

Weibull distribution applied to a data of strength of glass fibers by evaluating the fitness of the 

parameters using Anderson Darling goodness of fit test. The above estimation methods are 

simple and easy to evaluate.  

5.2.2 Maximum likelihood estimation in estimation of reliability 

Maximum likelihood estimation is one of the common and effective methods in the estimation 

of parameters[155–157]. Also, MLE is one of the most preferred methods in estimation of 

parameters for Weibull distribution [52]. Let x1, x2, x3 …xn be a random sample of size n drawn 
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from W(𝜎, 𝑝1) and y1, y2, y3, …., yn be the random sample of size m from W(𝜎, 𝑝2). Then the 

likelihood function can be given as: 

 
𝐿 =∏𝑓(𝑥𝑖)

𝑛

𝑖=1

∏𝑓(𝑦𝑗)

𝑚

𝑗=1

 5.13 

 

 

𝐿 =∏
𝑝1
𝜎𝑝1

(𝑥𝑖)
𝑝1−1 exp {− (

𝑥𝑖
𝜎
)
𝑝1
} 

𝑛

𝑖=1

.∏
𝑝2
𝜎𝑝2

(𝑦𝑗)
𝑝2−1 exp {−(

𝑦𝑗

𝜎
)
𝑝2

}

𝑚

𝑗=1

 5.14 

 

 ln 𝐿 = 𝑛 ln 𝑝1 +𝑚 ln𝑝2 − 𝑛𝑝1 ln 𝜎 − 𝑚𝑝2 ln 𝜎

+ (𝑝1 − 1)∑ln (𝑥𝑖)+

𝑛

𝑖=1

(𝑝2 − 1)∑ln(𝑦𝑗)

𝑚

𝑗=1

−
1

𝜎𝑝1
∑(𝑥𝑖)

𝑝1 −
1

𝜎𝑝2
∑(𝑦𝑗)

𝑝2

m

j=1

𝑛

𝑖=1

 

 

5.15 

The log-likelihood function 5.15 is to be maximized in order to obtain the best estimates of 

parameters.  

5.2.3 Least squares estimation in estimation of reliability 

The least squares estimation technique was used by many researchers in the field of estimation 

and has been presented in the Literature review. The method of least square and weighted least 

square have a property of unbiased estimation for large number of observations and have been 

used in estimating stress-strength reliability for various distributions including Weibull 

distribution [158–161].  

Consider x1, x2, x3, …, xn is the random sample in ascending order of size n following Weibull 

distribution W(σ, p1) and y1, y2, y3, …, ym is the random sample in ascending order of size m 

following Weibull distribution W(σ, p2). Then the least squares criterion can be obtained as [55] 

 

 
𝑆 =∑(ln(ln (

1

1 − 𝐹(𝑥𝑖)̂
)) − 𝑝1 ln(𝑥𝑖) + 𝑝1 ln(𝜎))

2𝑛

𝑖=1

+∑(ln(ln(
1

1 − 𝐹(𝑦𝑗)̂
)) − 𝑝2 ln(𝑦𝑗) + 𝑝2 ln(𝜎))

2𝑚

𝑗=1

 

5.16 
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The estimates of parameters can be obtained by minimizing function 5.16. The estimate values 

of F(x) and F(y) can be obtained by mean rank as 

𝐹(𝑥𝑖)̂ =
𝑖

𝑛+1
 and 𝐹(𝑦𝑗)̂ =

𝑗

𝑚+1
 

5.2.4 Weighted least squares estimation in estimation of reliability 

Weighted least squares which is a modification of least squares estimation method has been used 

in many applications. The criterion to be minimized for weighted least squares can be given as  

 
𝑆𝑤 =∑𝑤𝑖 (ln (ln (

1

1 − 𝐹(𝑥𝑖)̂
)) − 𝑝1 ln(𝑥𝑖) + 𝑝1 ln(𝜎))

2𝑛

𝑖=1

+∑𝑤𝑗 (ln (ln(
1

1 − 𝐹(𝑦𝑗)̂
)) − 𝑝2 ln(𝑦𝑗) + 𝑝2 ln(𝜎))

2𝑚

𝑗=1

 

5.17 

where 𝑤𝑖 = (1 − 𝐹(𝑥𝑖)̂)𝑙𝑛(1 − 𝐹(𝑥𝑖)̂) 
2and 𝑤𝑗 = (1 − 𝐹(𝑦𝑗)̂) 𝑙𝑛 (1 − 𝐹(𝑦𝑗)̂)

2

 

The estimates of parameters using weighted least squares method can be obtained by minimizing 

equation 5.17.  

Equations 5.15, 5.16 and 5.17 discussed above are optimization problems. Solutions to these 

equations using numerical computation do not yield precise results. It also has problems of slow 

convergence and non-convergence to real roots. So, these methods have to be assisted with a 

suitable optimization technique in order to improve their effectiveness. In this case, Jaya 

algorithm is used to optimize these functions. 

5.2.5 Jaya algorithm in estimation of stress-strength reliability 

The application of metaheuristic techniques in optimization problems has seen increasing 

importance in modern times [162,163]. In this section, Jaya algorithm has been used in order to 

estimate the stress-strength reliability for Weibull distribution. The detailed steps in using Jaya 

algorithm in estimation of reliability are as follows:  

1. Specify the population size and number of design variables. 

2. Set the boundary conditions. 

3. Generate a random set of parameters with the number of sets equal to population size and 

the number of parameters equal to the number of design variables.  

4. Trim the generated set as per boundary conditions. 

5. Calculate the function value for each set based on the objective function 5.15, 5.16 and 

5.17 for MLE, LSE and WLSE respectively. 

6. Identify the best and the worst function value.  
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7. Update the parameter set based on equation (3.6) within the boundary conditions. 

Calculate the updated function value and identify the best and worst function values for 

the parameter sets. 

8. If the updated function value of a set is better than the earlier function value of the 

respective set, replace the earlier set of the design parameters with the updated parameter 

set. This completes the first iteration. 

9. The iteration number can be considered as the termination criteria. 

10. Note the estimated parameters and calculate reliability based on equation 5.12. 

The flowchart for application of Jaya algorithm in estimation of stress strength reliability has 

been depicted in Figure 5.5.  
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Figure 5.5 Flowchart for Jaya algorithm in estimation of stress strength reliability  
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5.2.6 Simulation studies and comparison of estimation methods 

Random numbers were generated with shape parameters for strength, shape parameter for stress, 

and common scale parameter (p1, p2, σ) taken as (1.5, 2, 1), (2, 2, 1), (2.5, 2, 1) and (2.5, 2, 2). 

The sample sizes taken were (25, 25), (50, 50), (100, 100) and (500, 500). Total 500 experiments 

were conducted to check the repeatability of the estimation method. The parameters were 

estimated using the proposed methodology for MLE, LSE, and WLSE methods. The reliability 

was evaluated along with bias and mean squared error. The results of simulation studies are 

presented in Table 5.6 – 5.8. The estimation using proposed methodology gives very good results 

with reliability estimates close to the actual reliability. It can be noted that the accuracy of 

estimation increases with increase in sample size. The trend is strongly followed by MLE method 

compared to the other two. However, as the sample size increases, the time taken for compilation 

also increases. Another fact that can be observed is that if the shape parameter for strength 

increases in comparison to that of stress, the reliability increases. Also, the reliability decreases 

with an increase in common scale parameter. Figure 5.5 – 5.7 shows the box plots in estimation 

of reliability for 500 experiments across the sample sizes for considered different sets of 

parameters. It can be seen that the accuracy of the estimation increases as the sample size 

increases. For example, all the estimates of 500 experiments are very close to the actual reliability 

values in case of sample size (500, 500), whereas the spread increases with a decrease in sample 

size. Though the spread is observed to be more in case of a smaller sample size, the mean of 

reliability estimate is close to the actual reliability values. Also, the values for bias and MSE are 

lesser as compared to the other estimation methods in the literature. A notable observation can 

be made of many outliers wide away from the actual reliability in case of estimation with LSE 

and WLSE. Figure 5.8 – 5.10 shows the convergence behavior of Jaya algorithm for different 

sample sizes using MLE, LSE, and WLSE respectively. It can be noted that the algorithm 

converges to real roots after around 40 to 60 iterations for MLE, 80 to 100 iterations for LSE, 

and around 80-120 for WLSE. Figure 5.11 – 5.14 shows comparative graphs of bias and mean 

squared error (MSE) for the three estimation methods. It can be seen that the algorithm with 

MLE gives lesser bias and MSE in almost all the cases. This shows that Jaya algorithm with 

MLE is superior as compared to the other two estimation methods. 
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Table 5.6 Simulation results of 500 experiments for MLE using Jaya algorithm 

(p1, p2, σ) R (n, m) 𝑅̂ Bias MSE T(s) 

(1.5, 2, 1) 0.48063 (25, 25) 0.48173 0.0011 0.000214321 12.791 

(50, 50) 0.481418 0.000788 0.000103129 21.257 

(100, 100) 0.480968 0.000338 4.2815E-05 39.671 

(500, 500) 0.48077 0.00014 9.90769E-06 191.624 

(2, 2, 1) 0.5 (25, 25) 0.498637 -0.00136 0.000204486 12.378 

(50, 50) 0.500416 0.000416 0.000114916 21.639 

(100, 100) 0.499798 -0.0002 0.0000509602 40.261 

(500, 500) 0.500074 0.0000736 0.00000896665 198.089 

(2.5, 2, 1) 0.5151 (25, 25) 0.516159 0.001059 0.000206911 12.4769 

(50, 50) 0.515342 0.000242 0.000109094 23.1445 

(100, 100) 0.51516 0.0000597 0.0000482781 39.5029 

(500, 500) 0.515126 0.0000258 0.0000101923 188.5496 

(2.5, 2, 2) 0.515049 (25, 25) 0.515432 0.000383 0.00021713 12.642 

(50, 50) 0.514981 -0.000068 0.00010362 21.849 

(100, 100) 0.515108 0.0000589 0.0000512349 38.137 

(500, 500) 0.515019 -0.00003 0.00000925878 186.955 

 

Table 5.7 Simulation results of 500 experiments for LSE using Jaya algorithm 

(p1, p2, σ) R (n, m) 𝑅̂ Bias MSE T(s) 

(1.5, 2, 1) 0.48063 (25, 25) 0.483988 0.003358 0.000374892 8.208396 

(50, 50) 0.482671 0.002041 0.000296409 13.715322 

(100, 100) 0.480902 0.000272 0.000120576 24.107568 

(500, 500) 0.481391 0.000761 0.0000338445 116.482948 

(2, 2, 1) 0.5 (25, 25) 0.501092 0.001092 0.000709956 8.772598 

(50, 50) 0.500238 0.000238 0.000227603 13.440006 

(100, 100) 0.500839 0.000839 0.000243236 23.763826 

(500, 500) 0.500048 0.0000482 0.0000223605 107.937992 

(2.5, 2, 1) 0.5151 (25, 25) 0.515538 0.000438 0.000568429 8.1625 

(50, 50) 0.517007 0.001907 0.000734081 13.4845 

(100, 100) 0.515227 0.000127 0.000108498 23.929722 

(500, 500) 0.514984 -0.00012 0.0000234756 118.805165 

(2.5, 2, 2) 0.515049 (25, 25) 0.517451 0.002402 0.001412757 8.75954 
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(50, 50) 0.517467 0.002418 0.000708432 13.9196 

(100, 100) 0.515638 0.000589 0.000117623 23.839686 

(500, 500) 0.515736 0.000686798 0.000178473 119.150790 

 

Table 5.8 Simulation results of 500 experiments for WLSE using Jaya algorithm 

(p1, p2, 

σ) 

R (n, m) 𝑅̂ Bias MSE T(s) 

(1.5, 2, 

1) 

0.48063 (25, 25) 0.484014 0.003384 0.001492711 10.315126 

(50, 50) 0.481896 0.001266 0.000637294 18.109618 

(100, 100) 0.481325 0.000695 0.000666559 30.799488 

(500, 500) 0.482667 0.002037 0.000730472 143.485757 

(2, 2, 1) 0.5 (25, 25) 0.502422 0.002422 0.001433974 10.609115 

(50, 50) 0.503042 0.003042 0.00127458 18.112464 

(100, 100) 0.502669 0.002669 0.001481735 31.145245 

(500, 500) 0.503678 0.003678 0.001585831 143.482368 

(2.5, 2, 

1) 

0.5151 (25, 25) 0.516737 0.001637 0.001899504 11.188098 

(50, 50) 0.518774 0.003674 0.001496135 17.097244 

(100, 100) 0.517434 0.002334 0.00137011 31.350793 

(500, 500) 0.517283 0.002183 0.000599416 143.034958 

(2.5, 2, 

2) 

0.515049 (25, 25) 0.517838 0.002789 0.002217398 10.456831 

(50, 50) 0.516697 0.001648 0.000536541 17.376978 

(100, 100) 0.519082 0.004033 0.001620499 32.245491 

(500, 500) 0.5165 0.001451149 0.000401925 143.257339 
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Figure 5.6 Box plots for reliability estimates across different sample sizes with MLE 

 

Figure 5.7 Box plots for reliability estimates across different sample sizes with LSE 
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Figure 5.8 Box plots for reliability estimates across different sample sizes with WLSE 

 

Figure 5.9 Convergence behavior of Jaya algorithm for different sample sizes with MLE 
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Figure 5.10 Convergence behavior of Jaya algorithm for different sample sizes with LSE 

 

Figure 5.11 Convergence behavior of Jaya algorithm for different sample sizes with WLSE 
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Figure 5.12 Comparison of bias and MSE for estimation methods using Jaya algorithm for (p1, 

p2, σ) = (1.5, 2, 1) 

 

 

Figure 5.13 Comparison of bias and MSE for estimation methods using Jaya algorithm for (p1, 

p2, σ) =  (2, 2, 1) 

 

 

Figure 5.14 Comparison of bias and MSE for estimation methods using Jaya algorithm for (p1, 

p2, σ) =  (2.5, 2, 1) 
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Figure 5.15 Comparison of bias and MSE for estimation methods using Jaya algorithm for (p1, 

p2, σ) =  (2.5, 2, 2) 

 

5.2.7 Application to real life data 

The methodology has been applied to real-life data of strength of carbon fibers of gauge length 

10mm and 20mm first studied by Badar and Priest [41] and then transformed by Valiollahi et al. 

[7] to fit for a common scale parameter. The transformed data sets are shown in Tables 5.9 and 

5.10. Using the proposed methodology, the estimated parameters (𝑝1̂, 𝑝2̂, σ̂) are obtained as 

(5.5061, 5.0514, 0.9999) using MLE, (5.5647, 5.7374, 0.9982) using LSE and (5.6584, 4.9353, 

0.9880) using WLSE method. The Kolmogorov-Smirnov test was used to check the fit of the 

estimated Weibull model to the data sets. The K-S statistic, p-value, and estimated reliability 

using the three methods are given in Table 5.11. Figure 5.15 – 5.20 shows the fitted pdf and 

probability plot with estimated parameters using various methods for data sets I and II. The 

proposed methodology gives rapid results in a very short time compared to other common 

estimation methods using metaheuristic techniques [56,57,59,60].  The Akaike information 

criterion was used to find the best fit model for the given data among MLE, LSE and WLSE. 

The results are displayed in Table 5.12. It can be seen that the minimum value for AIC is obtained 

with MLE and the maximum value is obtained for LSE. Thus, it can be inferred that the proposed 

methodology using MLE gives the best fit model and LSE gives the worst fit model for the given 

data sets. 

 

Table 5.9 Data of gauge length 20mm (Data set I) 

0.495 0.496 0.558 0.585 0.641 0.68 0.702 0.704 0.733 0.739 

0.742 0.753 0.757 0.762 0.765 0.775 0.778 0.791 0.807 0.822 

0.839 0.845 0.85 0.856 0.857 0.858 0.868 0.868 0.89 0.899 

0.899 0.915 0.918 0.919 0.935 0.939 0.947 0.948 0.956 0.963 

0.968 0.97 0.976 0.992 0.993 0.997 0.999 1.013 1.017 1.028 
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1.045 1.046 1.056 1.06 1.063 1.064 1.074 1.086 1.114 1.136 

1.157 1.163 1.166 1.168 1.18 1.22 1.295 1.352 1.352   

 

Table 5.10 Data of gauge length 10mm (Data set II) 

0.573 0.643 0.665 0.672 0.681 0.709 0.712 0.723 0.723 0.738 

0.74 0.746 0.76 0.761 0.762 0.764 0.777 0.789 0.789 0.79 

0.792 0.802 0.807 0.826 0.827 0.862 0.88 0.883 0.886 0.886 

0.898 0.904 0.914 0.943 0.947 0.949 0.971 0.972 0.976 0.978 

0.985 0.987 0.994 1.005 1.009 1.019 1.028 1.036 1.054 1.056 

1.067 1.072 1.074 1.094 1.162 1.168 1.172 1.198 1.214 1.215 

1.274 1.326 1.514               

 

Table 5.11 Comparison of MLE, LSE and WLSE in data fit and estimation of reliability 

Estimation 

method 

𝑝1̂ 𝑝2̂ σ̂ K-S p-value Reliability Compilation 

time(s) 

MLE 5.5061 5.0514 0.9999 0.0564 (DS I) 

0.0881 (DS II) 

0.9773 (DS I) 

0.6929 (DS II) 

0.505824 0.079715 

LSE 5.5647

  

5.7374 0.9982 0.0513 (DS I) 

0.1096 (DS II) 

0.9920 (DS I) 

0.4145 (DS II) 

0.497935 0.888459 

WLSE 5.6584 4.9353 0.9880 0.0523 (DS I) 

0.1002 (DS II) 

0.9900 (DS I) 

0.5295 (DS II) 

0.509234 1.359188 

 

Table 5.12 Model comparison based on AIC 

Estimation 

method 

No. of 

estimated 

parameters 

Log 

Likelihood 

AIC Delta AIC Rank 

MLE 3 31.2502 -56.5004 0 1 

LSE 3 29.9176 -53.8352 2.6653 3 

WLSE 3 30.8663 -55.7326 0.2714 2 
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Figure 5.16 The fitted pdf and probability plot for Data set I with MLE 

 

 

Figure 5.17 The fitted pdf and probability plot for Data set II with MLE 

 

 

Figure 5.18 The fitted pdf and probability plot for Data set I with LSE 
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Figure 5.19 The fitted pdf and probability plot for Data set II with LSE 

 

 

Figure 5.20 The fitted pdf and probability plot for Data set I with WLSE 

 

 

Figure 5.21 The fitted pdf and probability plot for Data set II with WLSE 
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5.3 Estimation of Reliability for Stress and Strength following 

Weibull Distribution with Common Shape Parameter 

In the context of stress and strength, reliability can be defined as the probability of strength being 

greater than stress. If stress and strength follow Weibull distribution, then the interference area 

of the two distributions give the probability of failure as can be seen in Figure 5.21.  

 

Figure 5.22 Stress-Strength interference for Weibull stress & strength distribution 

In order to determine reliability, estimating the parameters of stress and strength distribution is 

crucial.  Vast research has been carried in estimation of reliability of components subjected to 

various distributions of stress and strength. [165,166]. Recent studies have shown increasing 

usage of metaheuristics in estimation of parameters. This section deals with estimation of 

parameters of three-parameter Weibull distribution with common shape parameter and different 

scale parameter. 

Weibull distribution is widely used in reliability studies because of its flexibility and ability to 

fit a wide range of data [167]. Extensive research has been carried out in estimating the reliability 

when stress and strength follow Weibull distribution. If X and Y denote the Weibull random 

variables for the strength and stress respectively, having common shape (μ), location parameter 

(p) and different scale parameters (σ1 for strength and σ2 for stress), then their probability 

density function (pdf) is given by  

 
𝑓(𝑥; μ, 𝜎1, 𝑝) =

𝑝

𝜎1
(𝑥 − μ)𝑝−1 exp {−

1

𝜎1
(𝑥 − μ)𝑝} , 𝑥 > μ, 𝜎1 > 0, 𝑝 > 0 5.18 

and  

 
𝑓(𝑦; μ, 𝜎2, 𝑝) =

𝑝

𝜎2
(𝑦 − μ)𝑝−1 exp {−

1

𝜎2
(𝑦 − μ)𝑝} , 𝑦 > μ, 𝜎2 > 0, 𝑝 > 0 5.19 

 

respectively. The corresponding cumulative distribution function (cdf) for strength and stress is 

given by 
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𝐹(𝑥; μ, 𝜎1, 𝑝) = 1 − exp {−

1

𝜎1
(𝑥 − μ)𝑝} 5.20 

 

 
𝐹(𝑦; μ, 𝜎2, 𝑝) = 1 − exp {−

1

𝜎2
(𝑦 − μ)𝑝} 5.21 

respectively, where x > μ, y > μ, σ1 > 0, σ2 > 0 and p > 0. 

5.3.1 Maximum likelihood estimation in estimation of reliability 

One of the classical and efficient method used in estimation of parameters is maximum 

likelihood estimation [168,169]. The method is considered to be simple, effective and can get 

accurate results if assisted with proper computational techniques. Let x be a random sample of 

size n drawn from W(μ, 𝜎1,  p) and y be the random sample of size m from W(μ, 𝜎2,  p). Then 

the likelihood function can be given as: 

 

 
𝐿 =∏𝑓(𝑥𝑖)

𝑛

𝑖=1

∏𝑓(𝑦𝑗)

𝑚

𝑗=1

 5.22 

 

 

𝐿 =∏
𝑝

𝜎1
(𝑥𝑖 − μ)

𝑝−1 exp {−
1

𝜎1
(𝑥 − μ)𝑝} 

𝑛

𝑖=1

.∏
𝑝

𝜎2
(𝑦𝑗

𝑚

𝑗=1

− μ)𝑝−1 exp {−
1

𝜎2
(𝑦 − μ)𝑝} 

5.23 

   

 ln 𝐿 = (𝑚 + 𝑛) ln 𝑝 −  𝑛 ln 𝜎1 −𝑚 ln𝜎2

+ (𝑝 − 1) [∑ln (𝑥𝑖 − μ)+

𝑛

𝑖=1

∑ln(𝑦𝑗 − μ)

𝑚

𝑗=1

]

−
1

𝜎1
∑(𝑥𝑖 − μ)

𝑝 −
1

𝜎2
∑(𝑦𝑗 − μ)

𝑝
m

j=1

𝑛

𝑖=1

 

5.24 

 

The purpose is to maximize the log-likelihood function (5.24) i.e. the parameter values at which 

the log-likelihood function attains it’s maximum. Solving likelihood equations involving 

nonlinear functions using numerical methods can be difficult because of the problems associated 

with it like non convergence, slower convergence and convergence to wrong values. Hence using 
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a heuristic technique can be a good choice in solving the likelihood equations. In this paper, Jaya 

algorithm is used to maximize the above likelihood equation.  

5.3.2 Reliability estimation using Jaya algorithm 

Metaheuristics have been used for a long time for solving optimization problems and are found 

to be effective in converging to real roots [170–173]. Ant colony optimization, genetic algorithm, 

particle swarm optimization, differential evolution, etc. are some of the metaheuristic techniques 

which have been used widely by researchers in optimization problems. Jaya algorithm is one 

such recently developed metaheuristic for solving optimization problems effectively. The 

specialty of the algorithm is that it constantly tries to move towards success and away from 

failure with each iteration. The algorithm has been used by many researchers in solving 

optimization problems [112,174]. For the cases involving stress-strength interference, the 

reliability can be given as P (X > Y) which is equal to 

 
𝑅 = 𝑃 (𝑋 > 𝑌) = ∫ (𝑓(𝑥; μ, 𝜎1, 𝑝)∫ 𝑓(𝑦; μ, 𝜎2, 𝑝)𝑑𝑦

𝑥

0

)𝑑𝑥
∞

0

 5.25 

 

 

𝑅 = 𝑃 (𝑋 > 𝑌) = ∫

(

 
 

𝑝

𝜎1
(𝑥 − μ)𝑝−1 exp {−

1

𝜎1
(𝑥 − μ)𝑝} .

∫
𝑝

𝜎2
(𝑦 − μ)𝑝−1 exp {−

1

𝜎2
(𝑦 − μ)𝑝} 𝑑𝑦

𝑥

0 )

 
 
𝑑𝑥

∞

0

 

 

5.26 

On simplification, the reliability can be obtained as [175] 

 𝑅 =
𝜎1

𝜎1 + 𝜎2
 5.27 

 

The log likelihood function for estimated values of parameters can be given as:  

 ln 𝐿 = (𝑚 + 𝑛) ln 𝑝̂ −  𝑛 ln 𝜎1̂ −𝑚 ln 𝜎2̂

+ (𝑝̂ − 1) [∑ln (𝑥𝑖 − μ̂)+

𝑛

𝑖=1

∑ln
1

𝜎2̂
(𝑦𝑗 − μ̂)

𝑚

𝑗=1

]

−
1

𝜎1̂
∑(𝑥𝑖 − μ̂)

𝑝 −
1

𝜎2̂
∑(𝑦𝑗 − μ̂)

𝑝
m

j=1

𝑛

𝑖=1

 

5.28 

where μ̂ and  p̂ are common estimated values of location and shape parameter. 𝜎1̂ is the scale 

parameter for strength and 𝜎2̂ is the scale parameter for stress. The parameters are to be estimated 

in such a manner to maximize the likelihood function (5.28). Hence it becomes an optimization 
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problem. In this study, Jaya algorithm has been used to maximize the likelihood function (5.28). 

Table 5.13 shows the detailed steps for evaluating reliability using Jaya algorithm. The number 

of design variables taken are 4 considering the four parameters to be estimated and the population 

size is taken as 10. Number of iterations is considered as the termination criteria. The initial 

population is randomly generated within the specified range and constraints. The best 

(maximum) and the worst (minimum) solution is calculated based on the log-likelihood function. 

The population is then updated based on equation (3.6). If the new population gives a better 

maximum value for equation (5.28) than the previous one, then the new population is accepted 

and the next iteration begins with the updated population. If the new population does not give a 

better maximum than the previous one, the next iteration will be proceeded with the previous 

population. After the fixed number of iterations are completed and no variation in the 

convergence is observed, the final variables obtained in the population are the optimum 

parameter estimates. Run the above steps for a number of times to find the best population which 

gives the best maximum.  

If 𝜎1̂ and 𝜎2̂ are the estimates of scale parameters for strength and stress respectively, then the 

reliability estimate, bias and mean squared error can be calculated as: 

 
𝑅̂ =

𝜎1̂
𝜎1̂ + 𝜎2̂

 5.29 

 

 

Bias =
1

𝑁
∑𝑅̂ − 𝑅

𝑁

𝑖=1

 5.30 

 

MSE =
1

𝑁
∑(𝑅̂ − 𝑅)2
𝑁

𝑖=1

 5.31 

Table 5.13 Steps for reliability estimation using Jaya algorithm 

1. Generate data of 500 samples of Weibull distribution with real parameters 

2. Input the population size = 10 and number of design variables as 4 

3. Set the maximum number of iterations for each sample 

4. Specify the boundaries for the variables 

5. Generate a random population within the constraints 

6. Compute the maximum likelihood function value from equation (5.28) 

7. Update the population based on equation (1.16) 

8. If the updated population gives a better maximum, then accept the new population; else 

reject. This completes one iteration. 
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9. Go for the next iteration and similarly run the program till the maximum iteration number 

is reached. 

10. The final set of variables is the best solution of estimated parameters for the current 

experiment. 

11. Compute reliability from equation (5.29). 

12. Run the program for 500 experiments.  

13. Compute bias and MSE based on equation (5.30) and (5.31) respectively. 

 

5.3.3 Simulation studies 

Simulations are performed in order to study the effectiveness of the proposed methodology. The 

data is randomly generated for strength and stress using Weibull distribution with shape 

parameter 1.5 and location parameter 2. The study has been carried out by varying the scale 

parameter and analyzing its effect on reliability. The scale parameter for strength is taken as 2, 

2.5 and that for stress is considered as 1, 1.5, 2, 2.5 and 3. The sample sizes selected are (25, 25), 

(50, 50), (100, 100) and (500, 500). Total 500 independent experiments are conducted to check 

the repeatability of the proposed methodology. The number of iterations of 200 is set as the 

termination criteria. Table 5.14 depicts the estimated values of reliability using the proposed 

methodology for different sample sizes when μ = 2, σ1 = 2, p = 1.5 and  σ2 taking values 1, 1.5, 

2, 2.5, 3. Figure 5.22 – 5.25 illustrates the estimated values of reliability for the simulation of 

500 experiments. A general trend that can be observed in the figure and is evident from 

interference theory that as the scale parameter of stress, σ2 increases, the reliability decreases. 

Also, the accuracy of reliability estimation increases with increase in sample size. The reliability 

estimates using the proposed methodology are compared with the reliability using Monte Carlo 

simulations, R (MCS) for estimated parameters. It can be observed that the results of reliability 

estimates using the proposed methodology are very close to the reliability using Monte Carlo 

simulations. Comparison is also made by calculating bias, mean standard error and compilation 

time. Table 5.15 and Figure 5.26 – 5.29 shows these results for the same set of parameters with 

σ1 = 2.5. The computational code for Jaya algorithm was compiled using MATLAB 2018a 

software. The estimated reliability values obtained in all the cases are very close to the real 

reliability values. Also, as the sample size increases, the mean squared error reduces and the 

estimated reliability moves closer to the real reliability. But simultaneously, as the sample size 

increases, the time taken for compilation also increases. So, optimization for reliability is a trade-

off between the accuracy of reliability value and the compilation time. Figure 5.30 shows the 
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convergence behavior of the proposed algorithm for different sample sizes. It can be seen that 

the Jaya algorithm values converge towards real roots after at most 50 iterations in all cases.  

 

Table 5.14 Results of reliability estimate, bias, mean square error (MSE) and compilation time 

(t) when μ = 2, σ1 = 2, p = 1.5 

(n, m)  σ2 = 1 

(R = 

0.66667) 

σ2 = 1.5 

(R = 

0.57143) 

σ2 = 2 

(R = 

0.5000) 

σ2 = 2.5 

(R = 

0.44444) 

σ2 = 3 

(R = 0.4) 

(25, 25) 𝑅̂ 0.670476 0.576460 0.498645 0.441998 0.393946 

Bias 0.003809 0.005030  -0.00135 -0.00245  -0.00605 

MSE 0.005173 0.002481 0.002880 0.002352 0.002320 

t (s) 37.32877 37.31540 37.43130 37.53155 37.40354 

𝑅 (MCS) 0.674064 0.576148 0.501425 0.443737 0.398676 

(50, 50) 𝑅̂ 0.670214 0.572828 0.502343 0.441395 0.398309 

Bias 0.003547 0.001398 0.002343  -0.00305  -0.00169 

MSE 0.000945 0.001070 0.001256 0.001094 0.001081 

t (s) 64.15220 65.14447 64.16610 66.30122 65.09571 

𝑅 (MCS) 0.667521 0.573944 0.495442 0.441390 0.400954 

(100, 

100) 

𝑅̂ 0.668761 0.571466 0.499421 0.443630 0.399801 

Bias 0.002091 0.000036 -0.00058  -0.00081  -0.00020 

MSE 0.000471 0.000524 0.000576 0.000565 0.000497 

t (s) 118.1140 118.1314 119.1136 118.6877 119.5847 

𝑅 (MCS) 0.670214 0.573284 0.497913 0.441619 0.398044 

(500, 

500) 

𝑅̂ 0.667812 0.571279 0.500259 0.444384 0.400183 

Bias 0.001142  -0.00015 0.000259  -0.00006 0.000183 

MSE 0.000077 0.000096 0.000112 0.000109 0.000089 

t (s) 550.1336 551.3976 551.2057 550.0018 552.2750 

𝑅 (MCS) 0.666857 0.572780 0.502463 0.444391 0.400233 

 

Table 5.15 Results of reliability estimate, bias, mean square error (MSE) and compilation time 

(t) when μ = 2, σ1 = 2.5, p = 1.5 

(n, m)  σ2=1 

(R = 0.714286) 

σ2=1.5 

(R = 0.625) 

σ2=2 

(R = 0.5556) 

σ2=2.5 

(R = 0.5) 

σ2=3 

(R = 0.4545) 

(25, 25) 𝑅̂ 0.721895 0.627828 0.554906 0.504770 0.454122 

Bias 0.007609 0.002828  -0.00069 0.004770  -0.00038 

MSE 0.002197 0.005127 0.003727 0.003775 0.003993 

t (s) 37.38062 37.44218 37.30677 37.72256 37.48941 

𝑅 (MCS) 0.722723 0.624677 0.557381 0.497248 0.453166 

(50, 50) 𝑅̂ 0.719250 0.627199 0.557145 0.497970 0.454175 

Bias 0.004964 0.002199 0.001545  -0.00203  -0.00033 

MSE 0.000790 0.001007 0.001086 0.001220 0.001062 

t (s) 64.84338 65.14443 65.03510 65.00493 65.67913 

𝑅 (MCS) 0.710195 0.627185 0.556801 0.501515 0.455153 
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(100, 100) 𝑅̂ 0.717133 0.626887 0.555828 0.499655 0.455104 

Bias 0.002847 0.001887 0.000228  -0.00035 0.000604 

MSE 0.000350 0.000519 0.000579 0.000685 0.000545 

t (s) 119.8956 120.6025 120.1363 120.2996 120.6354 

𝑅 (MCS) 0.716262 0.621087 0.557070 0.500421 0.005419 

(500, 500) 𝑅̂ 0.714634 0.626094 0.555492 0.500190 0.454426 

Bias 0.000348 0.001094  -0.00011 0.000190 0.000074 

MSE 0.000067 0.000086 0.000103 0.000113 0.000109 

t (s) 637.9747 626.1736 626.3683 631.7630 635.9884 

𝑅 (MCS) 0.715995 0.624330 0.552340 0.500700 0.453526 

 

 

 

Figure 5.23 Histogram of 500 experiments for μ = 2, σ1 = 2, p = 1.5 and sample size (10, 10) 

 

 

     (σ2 = 1, R = 0.66667)                                       (σ2 = 1.5, R = 0.57143)                                           (σ2 = 2, R = 0.5) 

 

                                                (σ2 = 2.5, R = 0.44444)                                        (σ2 = 3, R = 0.4) 

 



100 
 

 

Figure 5.24 Histogram of 500 experiments for μ = 2, σ1 = 2, p = 1.5 and sample size (50, 50) 

 

 

Figure 5.25 Histogram of 500 experiments for μ = 2, σ1 = 2, p = 1.5 and sample size (100, 100) 

 

 

                  (σ2 = 1, R = 0.66667)                                      (σ2 = 1.5, R = 0.57143)                                          (σ2 = 2, R = 0.5) 

 

        (σ2 = 2.5, R = 0.44444)                                         (σ2 = 3, R = 0.4) 

 

                  (σ2 = 1, R = 0.66667)                                     (σ2 = 1.5, R = 0.57143)                                           (σ2 = 2, R = 0.5) 

 

    (σ2 = 2.5, R = 0.44444)                                        (σ2 = 3, R = 0.4) 
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Figure 5.26 Histogram of 500 experiments for μ = 2, σ1 = 2, p = 1.5 and sample size (500, 500) 

 

 

Figure 5.27 Histogram of 500 experiments for μ = 2, σ1 = 2.5, p = 1.5 and sample size (25, 25) 

 

 

                  (σ2 = 1, R = 0.66667)                                     (σ2 = 1.5, R = 0.57143)                                          (σ2 = 2, R = 0.5) 

 

  (σ2 = 2.5, R = 0.44444)                                (σ2 = 3, R = 0.4) 

 

                          (σ2= 1, R = 0.714286)                               (σ2= 1.5, R = 0.625)             (σ2= 2, R = 0.5556) 

 

               (σ2= 2.5, R = 0.5)              (σ2= 3, R = 0.4545) 
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Figure 5.28 Histogram of 500 experiments for μ = 2, σ1 = 2.5, p = 1.5 and sample size (50, 50) 

 

 

 

Figure 5.29 Histogram of 500 experiments for μ = 2, σ1 = 2.5, p = 1.5 and sample size (100, 

100) 

 

 

                          (σ2= 1, R = 0.714286)                               (σ2= 1.5, R = 0.625)             (σ2= 2, R = 0.5556) 

 

                (σ2= 2.5, R = 0.5)               (σ2= 3, R = 0.4545) 

 

                          (σ2= 1, R = 0.714286)                               (σ2= 1.5, R = 0.625)             (σ2= 2, R = 0.5556) 

 

                (σ2= 2.5, R = 0.5)               (σ2= 3, R = 0.4545) 
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Figure 5.30 Histogram of 500 experiments for μ = 2, σ1 = 2.5, p = 1.5 and sample size (500, 

500) 

 

 

 

Figure 5.31 Convergence behavior of Jaya algorithm for different sample sizes 

 

                          (σ2= 1, R = 0.714286)                                (σ2= 1.5, R = 0.625)             (σ2= 2, R = 0.5556) 

 

                (σ2= 2.5, R = 0.5)               (σ2= 3, R = 0.4545) 

 

                          Sample Size = (10, 10)                                                     Sample Size = (50, 50) 

  

              Sample Size = (100, 100)                                                                        Sample Size = (500, 500) 
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5.3.4 Application to real life data 

The proposed methodology has been applied to the strength data shown in Appendix II 

previously used by many researchers in their studies [54,164]. The data depicts the strength of 

single glass fibers for 63 samples of length 10mm and 69 samples of length 20mm. The reliability 

in this context is evaluated based on the strength of gauge length 10mm being greater than the 

strength of gauge length 20mm.  

The scale parameter for data of gauge length 10 mm is estimated to be 16.1367 and that for gauge 

length 20 mm is estimated to be 5.1950. The location and shape parameters are considered 

common for both the data and are found to be 0.9980 and 3.3837 respectively. The Kolmogorov-

Smirnov test was conducted to check the fitness of estimated parameters with the data. For the 

data of gauge length 10mm, the Kolmogorov-Smirnov statistic was found to be 0.0410, p-value 

0.998 and log-likelihood function value as -59.4464. The Kolmogorov-Smirnov statistic, p-value 

and log-likelihood function value for data of gauge length 20mm are calculated to be 0.0783, 

0.8196 and -49.0843 respectively. This shows that the Weibull distribution with estimated 

parameters gives a good fit for both the data sets. The maximum value of log-likelihood function 

in equation (5.28) is obtained as -108.5307. The estimated reliability is 0.7564. The interference 

of distributions with the estimated parameters can be seen in Figure 5.31. 

 

Figure 5.32 Weibull plots for gauge length data with estimated parameters 

Table 5.16 shows the results of the proposed methodology to that of the existing literature [50–

53]. The proposed methodology gives a better log-likelihood value compared to the ones in the 

literature. The reliability obtained using the proposed methodology is close to the results 

obtained by Kundu and Gupta, 2006 and Kundu and Raqab, 2009. The results for reliability 

estimate is higher compared to the estimate by Valiollahi et al., 2013 and slightly on the lower 

side compared to the results of  Nadarajah and Jia, 2017.  
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Table 5.16 Comparison of results for proposed methodology 

 Data 

Set 

Shape 

Parameter 

Scale 

Parameter 

Location 

Parameter 

K-S p-

value 

Log 

likelihood 

value 

Reliability 

Proposed 

Methodology 

I 3.3837 16.1367 0.9980 0.0410 0.998 -59.4464 0.7564 

II 3.3837 5.1950 0.9980 0.0783 0.8196 -49.0843 

Kundu and 

Gupta, 2006 

I 3.8770 37.2333 - 0.0800 0.8154 -60.1524 0.7624 

II 3.8770 11.6064 - 0.0461 0.9985 -48.8703 

Kundu and 

Raqab, 2009 

I 4.6344 86.9579 1.312 0.0767 0.8525 - 0.7406 

II 4.6344 248.3652 1.312 0.0464 0.9984 - 

Nadarajah 

and Jia, 2017 

I 5.049 0.12547 - 0.088 0.719 -39.438 0.8000 

II 6.725 0.01046 - 0.050 0.997 -68.149 

Valiollahi et 

al., 2013 

I 5.049 424.574 - 0.0867 0.7197 - 0.5002 

II 5.505 214.131 - 0.0578 0.9658 - 

 

5.4 Summary 

This chapter deals with studies on stress-strength reliability estimation for Weibull distribution. 

In the first part of the chapter, a new methodology has been proposed for estimating the 

parameters of Weibull distribution. Simulation studies are carried out and the methodology has 

been implemented to the real-life data of strength of glass fibres. The results have been compared 

with other similar methodologies in the literature. In the second part, a methodology has been 

proposed in estimating the stress-strength reliability for Weibull distribution. First, the 

methodology has been applied to estimate the stress-strength reliability when stress and strength 

follow two Weibull distribution with common scale parameter and different shape parameter. 

Three estimation techniques have been compared and application to real life data has been 

presented. Then, the methodology has been applied to three Weibull distribution with common 

shape parameter and different scale parameter in estimation of stress-strength reliability. The 

technique has been applied to real life data and a comparative study has been carried out for the 

same data with other estimation techniques in the literature. 
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Chapter 6 

6. Estimation of Reliability considering 

Strength Degradation  

Reliability is the probability that a component or a product will perform its functions under given 

conditions for a specific period. With increasing developments in the sectors of transportation, 

infrastructure, energy generation, etc., there is a need for robust design in these areas taking into 

account the uncertainties present in nature. Reliability studies consider these uncertainties of 

nature, giving a rigid and dependable analysis. Thus studies on reliability modeling have been 

given much importance in recent times [176]. As discussed earlier, evidences in a few cases have 

been seen that the reliability does not remain constant over time and it undergoes deterioration 

as a result of degradation of material properties like strength. This chapter deals with estimating 

reliability in case of strength degradation. Also, a discussion has been made on whether the type 

of degradation affects reliability.  

6.1 Stress-Strength Reliability Model for Time Dependent and 

Fatigue Strength 

The main objective of this study is to develop a simple yet effective methodology to evaluate the 

reliability of a component subjected to stress over a period of time taking strength degradation 

with time into consideration. The proposed method will seek to give close results with less 

compilation time. The methodology will be applied to the shear strength of solders data in 

automotive circuits and a plot for reliability prediction over time will be presented. A lot of 

research has been conducted in estimating the reliability in case of dynamic strength.  

Most of the mechanical components are subjected to fatigue due to varying/cyclic loads during 

their lifetime. The failure of many mechanical components has been traced down to fatigue as 

the major cause. Thus, it is very important to predict the failure of such components and improve 

the product life by reliability-based design. Even though a large amount of work has been carried 
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out in the field of fatigue, many challenges can still be seen in this area. The current study carries 

out reliability studies for a component whose strength decreases with time or number of cycles.  

Consider the conceptual monotonically decreasing degradation path depicted in Figure 6.1 [177]. 

The presumed distribution of strength is depicted with increasing time i.e., at t1, t2 and t3 

respectively. As can be seen, the distribution of strength is degrading over a period of time which 

in this case is considered to be nonlinear. At any given time, the degradation of strength will 

follow a particular distribution. In this research, the distribution is assumed to be normal with a 

non-linearly varying mean and linearly varying standard deviation. In Figure 6.1, it can be seen 

that the mean of strength decreases and the standard deviation increases over time. A failure will 

occur when the strength reaches below the threshold value D. Note that this may not be the case 

for all failure mechanisms, but this behavior is often observed in mechanical components. For 

any particular time, reliability can then be estimated as the probability that the degradation 

measure is greater than a critical threshold value. 

 

Figure 6.1 Strength degradation path example 

Consider the strength with a random variable for X following normal distribution.  

 
f(x t⁄ ) =

1

δ√2π
exp(−

1

2
(
x − μ𝑛(t)

δ(t)
)

2

) 6.1 
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Fx(x t⁄ ) = ∫
1

δ√2π
exp(−

1

2
(
u − μ𝑛(t)

δ(t)
)

2

)du

∞

0

 6.2 

 

 
Fx(x t⁄ ) = ϕ(

x − μ(t)

δ(t)
) 6.3 

 

where f(x t⁄ ) and Fx(x t⁄ ) are defined as the probability density function and cumulative 

distribution function for random strengths conditional on time or number of cycles. The terms 

μ𝑛(t) and δ(t) denotes mean and standard deviation of the distribution which are dependent on 

time. 

6.1.1 Likelihood function for dynamic strength 

The method of maximum likelihood has been used by researchers to find the best estimates of 

the parameters of a probability distribution by maximizing the likelihood function. The 

methodology has been found to be very effective in estimation of parameters. The likelihood 

function can be obtained as: 

 

L(a t⁄ ) =∏∏fx(xij ti⁄ )

ni

𝑗=1

𝑚

𝑖=1

 6.4 

 

 

L(a x⁄ , t) =∏∏
1

(a4 + a5ti)√2π
exp(−

1

2
(
xij − (a0 − a1ti − a2ti

2)

a4 + a5t
)

2

)

ni

𝑗=1

𝑚

𝑖=1

 6.5 

 

 
log(L) = n∑log (

1

a4 + a5ti
)

𝑚

𝑖=1

+mnlog (
1

√2π
)

−
1

2
∑ ∑ (

xij − (a0 − a1ti − a2ti
2)

a4 + a5ti
)

2
𝑛𝑖

𝑗=1

𝑚

𝑖=1
 

6.6 
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6.1.2 Jaya algorithm in estimation of dynamic reliability 

If N components are connected in series, the failure time of a component, T, is the minimum of 

N individual components failure times.  

Ti = minimum{t; xi(t) ≤ D} i = 1,2,3, … . . N 

T = minimum{T1, T2, T3……TN} 

Reliability can be given as 

R(t) = 1 − FT(t) = Pr(T > t) = Pr{minimumTi > t} 

= Pr(T1 > t ∩ T2 > t ∩ T3 > t…∩ TN > t) 

= Pr(T1 > t)Pr(T2 > t) Pr(T3 > t)… Pr(TN > t) 

=(1 − Fx(D/t))(1 − Fx(D/t)) (1 − Fx(D/t))…. (1 − Fx(D/t)) 

 R = (1 − Fx(D/t))
N

 6.7 

 

As studied for various data of SN curves, it has been observed that the quadratic model gives a 

better fit than a linear model [178,179]. The parameters μ(t) and σ(t) which are dependent on 

time are modeled as  

 μ(t) = a1 − a2t − a3t
2 6.8 

 

 σ(t) = a4 + a5t 6.9 

The reliability thus becomes time-dependent and can be given as 

R(t) = Pr(y > D) 

                                                  = 1 − Fy(D t⁄ )         - for a single component 

 = 1 − Fy(D t⁄ )N        -for N components 

 

 
                           R= (1 − ϕ(

D−(a0−a1t−a2t
2)

a4+a5t
))   - for a single component 6.10 

 

 
R= (1 − ϕ(

D−(a0−a1t−a2t
2)

a4+a5t
))

N

  - for N components 6.11 

 

For the normal distribution example, the conditional probability density function and reliability 

can be evaluated by estimating the parameters a1, a2, a3 and a4. If normal distribution is not 
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suitable, other distributions (e.g., Weibull, gamma, exponential, etc.) can be considered 

depending on the application and past data.  

Jaya algorithm has been used to maximize the likelihood function in order to obtain the estimates 

of parameters. The algorithm is simple and is seen to perform very effectively. In this study, Jaya 

algorithm has been used to maximize the likelihood function 11. The number of design variables 

is taken as 5 and the population size is taken as 10. The iteration number of 500 is considered as 

the termination criteria. 

6.1.3. Application to shearing of solder joints in automotive circuits 

We know that automotive systems have to operate under different conditions like temperature, 

humidity, etc., in its lifetime. The automotive electrical circuits tend to deteriorate over the 

number of miles run as a result of working in severe environmental conditions. Thus, the solders 

in automotive electronic circuits tend to shear over a period of time thus undergoing a failure 

because of fatigue, creep, etc. A solder connection failure will occur when its strength (measured 

by a shear strength test) reduces to a critical threshold. The circuit card assembly consisting of a 

number of solder connections fails when any one of the solder connections deteriorates to the 

critical level. Therefore, reliability can be defined as the probability that the minimum shear 

strength, at a particular time, exceeds the critical value. Failure time of circuit card is the 

minimum of N individual solder connection failure times. Prediction based on reliability is 

crucial in degradation modeling and thus creating suitable designs for safety and quality. 

Degradation modeling is based on the probability that the predicted distribution of strength 

intersects the predefined failure threshold limit. The proposed methodology has been applied to 

the data for shearing of solder joints in automotive circuits with 7 solder resistors in series which 

was first mentioned by Coit et al., 2005 [180] which is shown in Appendix III. The time ti is 

considered as the number of miles the car travels before the occurrence of a failure and xij is the 

shear strength. It was also shown that the normal distribution gives a suitable fit for the strength 

data of individual circuit boards.  

Using the proposed methodology, the estimates for the parameters obtained are shown in Table 

6.1. It can be noted that at time ti=0, the mean equals to a0, i.e., 6.029325. Parameters a1, a2, a4 

and a5 are found out to be 0.0000067502, 4.675394 x 10-11, 0.479823 and 4.56611 x 10-06 

respectively. The maximum function value is obtained as -156.8523 and the time taken for the 

compilation is 0.78237 seconds. It can be observed that the function converges to real roots after 

around 80 iterations. The scatter plot of the data along with the fitted line plot is shown in Figure 

6.2. As can be seen in the figure, as the mileage increases, the mean of strength decreases. Also, 
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it can be observed that the spread increases with an increase in mileage. The convergence 

behavior of Jaya algorithm is shown in Figure 6.3. 

 

 

Table 6.1 Estimation of parameters using proposed methodology for dynamic strength 

a0 6.029325 

a1 0.0000067502 

a2 4.675394 x 10-11 

a4 0.479823 

a5 4.56611 x 10-06 

fmax -156.8523 

Compilation time (s) 0.78237 

 

 

Figure 6.2 Scatter and fitted line plot for shearing strength vs time to shear 

 

Figure 6.3 Convergence behaviour of Jaya algorithm 

100000900008000070000600005000040000300002000010000

7.0

6.5

6.0

5.5

5.0

4.5

4.0

Mileage (ti)

S
h

e
a
r 

st
re

n
g

th
 (

x
ij)



112 
 

As per the literature [180] by experimental examination of the failed modules, a failure threshold 

of 4.0 was determined. The time-dependent reliability thus can be given as 

 

R(t) = (1 − ϕ(
4 − (6.029325 − 0.0000067502t − 4.675394 x 10−11t2)

0.479823 + 4.56611 x 10−6t
))

7

 6.12 

 

Equation 6.12 is the reliability model for dynamic strength considering strength degradation. The 

plot for reliability vs. mileage is shown in Figure 6.4. The reliability starts decreasing 

significantly after around 20000 cycles. This is mainly due to degradation of material properties 

over time and the variation in data because of the driving conditions. A steep fall can be observed 

for reliability after around 50000 cycles. This can be because of the increase in variation of data 

after 50000 cycles as can be seen in Figure 6.2 in addition to the continuing degradation in 

material properties. This shows that the reliability in the existing literature may be overestimated. 

 

Figure 6.4 Reliability vs mileage 

6.2 Polynomial Regression in Evaluating Reliability 

In recent years many studies carried out conclude that the strength of a material does not remain 

same and changes over a period of time. The concept is well known as strength degradation 

which has been explained in the previous section. In this study, the reliability model has been 

applied to real-life data to see its impact on reliability calculations.  

6.2.1 Regression in degradation 

If stress and strength are considered to be following a certain distribution at a particular time, 

then as per the degradation principle its mean and standard deviation will both change over time. 

In this study, three cases for degradation of mean are considered namely linear degradation, 
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quadratic degradation and cubic degradation in order to see its effect on reliability. The standard 

deviation is assumed to be increasing linearly.   

Considering the mean μ(t) to be undergoing linear degradation and the standard deviation  σ(t) 

increasing linearly, the reliability and the log-likelihood function can be derived as follows: 

 μ(t) = a1 − a2t 6.13 

 σ(t) = a4 + a5t 6.14 

 

 
𝑅 = (1 − ϕ(

𝐷 − μ𝑛𝑠(t)

σ𝑆
)) 6.15 

 

 
𝑅 = (1 − 𝜙(

D − (𝑎0 − 𝑎1𝑡)

(𝑎4 + 𝑎5𝑡)
)) 6.16 

 

 

 
log(L) = n∑log (

1

a4 + a5ti
)

𝑚

𝑖=1

+mnlog (
1

√2π
)

−
1

2
∑ ∑ (

xij − (a0 − a1ti)

a4 + a5ti
)

2𝑛𝑖

𝑗=1

𝑚

𝑖=1
 

6.17 

 

Equation 6.16 can be used in order to find the reliability when the strength undergoes linear 

degradation. If the degradation is considered to be quadratic, then the equation can be derived as 

follows:  

 μ(t) = a1 − a2t − a3t
2 6.18 

 σ(t) = a4 + a5t 6.19 

 

 
𝑅 = (1 − 𝜙(

𝐷 − (a0 − a1t − a2t
2)

(𝑎4 + 𝑎5𝑡)
)) 6.20 
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log(L) = n∑log (

1

a4 + a5ti
)

𝑚

𝑖=1

+mnlog (
1

√2π
)

−
1

2
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xij − (a0 − a1ti − a2ti
2)

a4 + a5ti
)

2
𝑛𝑖

𝑗=1

𝑚

𝑖=1
 

6.21 

 

Equation 6.19 gives the reliability considering the mean of the distribution to be undergoing 

quadratic degradation and the standard deviation increasing linearly. If the degradation is cubic 

then the reliability can be derived as follows:  

 μ(t) = a1 − a2t − a3t
2 − a4t

3 6.22 

 σ(t) = a4 + a5t 6.23 

 

 
𝑅 = (1 − 𝜙(

𝐷 − (a0 − a1t − a2t
2 − a3t

3)

(𝑎4 + 𝑎5𝑡)
)) 6.24 

 

 
log(L) = n∑log (

1

a4 + a5ti
)

𝑚

𝑖=1

+mnlog (
1

√2π
)

−
1

2
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xij − (a0 − a1ti − a2ti
2 − a3ti

3)

a4 + a5ti
)

2
𝑛𝑖

𝑗=1

𝑚

𝑖=1
 

6.25 

 

Equation 6.22 gives reliability when the strength undergoes cubic degradation and the standard 

deviation increases linearly. In further sections these reliability models are applied to real life 

data. 

6.2.2 Polynomial regression applied to data of solder joints in automotive 

circuits 

The models derived above have been applied to the data of shearing of solder joints in automotive 

circuits, the example which has been taken in section 6.1. Jaya algorithm has been used in order 

to optimize the likelihood functions 6.17, 6.21 and 6.25 respectively and estimate the function 

parameters. The results can be seen in Table 6.2. For linear degradation, the parameters a0 , a1, 

a4 and a5 are obtained as 6.1307635, 1.163556, 0.4788977 and 4.604448 respectively. The 

function value is obtained as -157.0919 and the time taken for compilation is just 1.3112 seconds. 
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The mean squared error is 0.259611. In the case of quadratic degradation, the parameters a0 , a1, 

a2, a4 and a5 are obtained as  6.029325, 0.67502, 4.675394, 0.479823 and 4.56611 respectively. 

The function value is -156.8523 and the MSE is 0.258672 which are slightly lesser than that 

obtained with linear degradation. But the time taken is 3.2671 which is more than double that of 

linear degradation. For the case of cubic degradation, the parameters a0 , a1, a2, a3, a4 and a5 are 

obtained as 6.197852, 2.023697, 25.942755, -19.873713, 0.484025 and 4.459873 respectively. 

The function value and MSE are -156.6676 and 0.257742 respectively which are lesser than that 

obtained with linear and quadratic degradation. The time taken is 4.375 seconds which is higher 

compared to the other two models. Figure 6.5, 6.7 and 6.9 shows the model fit for the data in 

linear, quadratic and cubic degradation respectively. Figure 6.6, 6.8 and 6.10 shows the analysis 

for model fit to data for linear, quadratic and cubic degradation respectively. In all the cases, the 

residuals are normally distributed and do not follow any specific pattern. The reliability for the 

three models have been calculated using equation 6.16, 6.19 and 6.24 respectively. The failure 

threshold value is taken as 4 which is determined by the literature mentioned in section 6.1. 

Figure 6.11 shows the comparison of dynamic reliability for polynomial regression. It can be 

observed that the reliability follows almost similar degradation for linear, quadratic and cubic 

degradation up to around 40000 miles. Thereafter, the linear degradation takes a steeper downfall 

compared to the other two up to around 80000 miles. The reliability with cubic degradation falls 

rapidly after 85000 miles. 

 

Table 6.2 Results of polynomial regression in estimation of parameters for shearing of 

automotive circuits data 

Model fit Linear Quadratic Cubic 

a0 6.1307635 6.029325 6.197852 

a1 (x 10-5) 1.163556 0.67502 2.023697 

a2 (x 10-11) - 4.675394 -25.942755 

a3 (x 10-16) - - 19.873713 

a4 0.4788977 0.479823 0.484025 

a5 (x 10-6) 4.604448 4.56611 4.459873 

f -157.0919 -156.8523 -156.6676 

tc
 (s) 1.3112 3.2671 4.375 

SSE 49.8454 49.6650 49.4864 

MSE 0.259611 0.258672 0.257742 

RMSE 0.509521 0.508598 0.507683 
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Figure 6.5 Model fit for the data considering linear degradation (Automotive circuits data) 

 

 

Figure 6.6 Analysis of model fit for linear degradation (Automotive circuits data) 
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Figure 6.7 Model fit for the data considering quadratic degradation (Automotive circuits data) 

 

 

 

Figure 6.8 Analysis of model fit for quadratic degradation (Automotive circuits data) 
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Figure 6.9 Model fit for the data considering cubic degradation (Automotive circuits data) 

 

 

Figure 6.10 Analysis of model fit for cubic degradation (Automotive circuits data) 
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Figure 6.11 Comparison of reliability for polynomial regression (Automotive circuits data) 

 

6.2.3 Application to SCM440 steel strength data 

Yoshiyuki Furuya studied the degradation of SCM440 steel strength due to fatigue mechanism 

and compared a few models to fit the data [181]. In the current section, the methodology 

discussed in section 6.2.2 has been applied to the data of SCM440 steel strength to see the effect 

of degradation on reliability. The results of estimation have been depicted in Table 6.3. In case 

of a linear degradation the parameters a0 , a1, a4 and a5 are obtained as 1438.763475, 87.493161, 

102.30078 and 6.94 x 10-15. The function value is obtained as -492.7328 and MSE is 5295.02. 

The compilation time is 6.135829 seconds. For quadratic degradation, the parameters a0 , a1, a2, 

a4 and a5 are obtained as 1740.69486, 176.250131, -6.376601, -101.46551 and 0.02783907 

respectively. The function value and MSE are -492.0498 and 5231.8 respectively, which are 

lesser than the ones obtained with linear degradation. The compilation time is 6.92 seconds 

which is close to the time for linear degradation. In case of cubic degradation, the parameters a0 

, a1, a2, a3, a4 and a5 are obtained as 2547.84, 530.12, -57.067, 2.3737, 96.4391 and 0.565694 

respectively. As can be observed, the equation parameters widely differ from each other 

depending on the type of degradation.  The function value is obtained as -491.5448 and MSE is 

5205.96 which are lesser compared to linear and quadratic degradation. The compilation time is 

7.66 seconds which is not very high compared to the time taken for other degradations. It can be 

inferred from the function value that a cubic degradation gives better fit for the considered data 

SCM440 steel followed by quadratic and then linear degradation.  
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Figure 6.12 and Figure 6.13 shows the model fit and the analysis for the polynomial regression 

respectively considering linear degradation. Figure 6.14 and Figure 6.15 shows the model fit 

along and the analysis for the polynomial regression respectively considering quadratic 

degradation. Figure 6.16 and Figure 6.17 shows the model fit along and the analysis for the 

polynomial regression respectively considering cubic degradation. In all the cases, the residuals 

follow normal distribution and does not have a specific pattern. The reliability is calculated using 

equations 6.16, 6.19 and 6.24 for linear, quadratic and cubic degradation respectively. The 

comparative plot of reliability for polynomial regression is shown in Figure 6.18. The threshold 

stress is taken as 700MPa. As can be seen, for all the three cases, reliability remains constant 

(high) upto around 103 cycles. In cubic degradation, the reliability takes a sudden fall after 103 

cycles.  The reliability in case of quadratic degradation decreases suddenly after 104 cycles and 

in case of linear degradation after 105 cycles. Thus, it can be inferred from the graph that the type 

of degradation has a strong influence on reliability and should be taken into account during the 

design stages.  

 

Table 6.3 Results of polynomial regression in estimation of parameters for SCM440 steel 

strength data 

Model fit Linear Quadratic Cubic 

a0 1438.763475 1740.69486 2547.84 

a1 87.493161 176.250131 530.12 

a2 - -6.376601 -57.067 

a3 - - 2.3737 

a4 102.30078 101.46551 96.4391 

a5 6.94 x 10-15 0.02783907 0.565694 

f -492.7328 -492.0498 -491.5448 

tc (s) 6.135829 6.92 7.66 

SSE 444782 439470.132 437300 

MSE 5295.02 5231.8 5205.96 

RMSE 72.7669 72.3311 72.1523 
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Figure 6.12 Model fit for the data considering linear degradation (SCM440 data) 

 

 

Figure 6.13 Analysis of model fit for linear degradation (SCM440 data) 
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Figure 6.14 Model fit for the data considering quadratic degradation (SCM440 data) 

 

 

Figure 6.15 Analysis of model fit for quadratic degradation (SCM440 data) 
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Figure 6.16 Model fit for the data considering cubic degradation (SCM440 data) 

 

 

Figure 6.17 Analysis of model fit for quadratic degradation (SCM440 data) 
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Figure 6.18 Comparison of reliability for polynomial regression (SCM440 steel strength data) 

6.3 Summary 

This chapter discusses the reliability evaluation considering strength degradation with time or 

number of cycles. A model has been developed for reliability considering quadratic degradation 

and a methodology has been proposed for solving and computing the reliability. The 

methodology has been applied to the data of shearing of solder joints in automotive circuits. In 

the next section, a study is carried out to see whether the type of degradation affects reliability 

by considering polynomial degradation i.e., linear, quadratic and cubic. The methodology has 

been applied to automotive circuits data and the data of steel strengths for SCM440 steel. The 

comparative plot for reliability for both the applications have been obtained and the conclusions 

have been drawn.  

 

 

 

 

 

 

 

 

 

 



125 
 

 

 

 

 

 

Chapter 7 

7. Summary and Conclusions 

This final chapter discusses the conclusions of the work done in this thesis under the title 

“Investigative Studies in Reliability Based Design Approach for Mechanical Systems.” The 

contributions and limitations of the research work have been expressed, and the future scope for 

the additional or further work that can be carried out in this field has been presented. 

7.1 Discussion 

The work done in the thesis can mainly be categorized into 3 phases. In phase 1, the stress-

strength reliability models are obtained for distributions Laplace, exponential, Weibull and 

gamma for which the closed form of reliability was not present. The models were analyzed and 

validated. In phase 2, the stress-strength reliability model was evaluated and a methodology to 

obtain reliability estimates was proposed. Two cases of stress-strength Weibull distribution were 

considered. First, two-parameter Weibull distribution with common scale parameter and 

different shape parameter and next, three parameter Weibull distribution with common shape 

parameter but different scale parameter. In phase 3, the strength was considered to be dynamic 

with time or number of cycles in cyclic loading. Normal distribution was considered to model 

reliability and polynomial regression for degradation was studied. 

7.2 Conclusions 

The conclusions of this research work are listed below:  

1. In the present work, two reliability models based on stress-strength interference theory are 

developed. The first model gives reliability when strength follows Laplace distribution and 

stress follows exponential distribution. The second model gives reliability when strength 

follows exponential distribution and stress follows Laplace distribution. Taguchi analysis 

gives the influence of parameters on the response. When strength follows Laplace 

distribution and stress follows exponential distribution, θ is observed to be the most 
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influential parameter followed by λ and then ϕ. If θ, λ increases and ϕ decreases, reliability 

is seen to be increasing. When strength follows exponential distribution and stress follows 

Laplace distribution, λ is observed to be the most influential parameter followed by ϕ and 

then θ. In this case, increase in reliability is observed if all the parameters λ, ϕ, θ are 

increasing. The validation experiment shows that the reliability obtained by simulation is 

almost equal to the reliability obtained from the proposed model. Also, as the size of random 

numbers generated increases, the reliability estimates move closer to the reliability obtained 

from the model. Thus, the proposed models give fairly accurate reliability with stress and 

strength following Laplace and exponential distributions and vice versa. The study can be 

extended to the cases such as degradation of strength over time (Xie L.  and Wang Z.2009), 

considering interdependency among stress and strength (Huang H., Member S., and An 

Z.2009) and fatigue design considerations (Menan F., Adragna P. A. and François M.2015). 

2. A methodology proposed for developing the stress-strength reliability model for Weibull 

and gamma distributions for which the closed form models are not available. The main 

effects plot, interaction plot and contour plot show the influence of parameters on reliability. 

The validation experiments show the accuracy of reliability prediction within the considered 

range of parameters. 

3. Weibull distribution is an important model and estimation of its parameters is encountered 

in many real-life problems including reliability and life testing. In this article, Jaya algorithm 

has been used along with the MLE technique in order to estimate the parameters of three-

parameter Weibull distribution. Simulation studies carried out show that the algorithm gives 

close estimates of parameters to real values and shows a rapid convergence behaviour. As 

the sample size increases, better estimates are obtained but the compilation time increases 

with increase in sample size. A comparative study with SA, HNSA, DE and PSO shows that 

Jaya algorithm gives better results in estimating the three parameters of Weibull distribution. 

The proposed method using Jaya algorithm was also applied to real-life data of strength of 

glass fibres and the results show that it outperforms the methodology applied in literature 

for a similar study. Also, a histogram with fitted curve and probability plot shows that the 

estimated parameters using Jaya algorithm gives a very good fit for the data.  

4. In this research, the estimation of reliability for stress-strength interference has been carried 

out using Jaya algorithm via maximum likelihood estimation. It was considered that the 

stress and strength follow Weibull distribution with common location and shape parameter 

but different scale parameter. The methodology has been applied to simulated data sets of 

different sample sizes and different scale parameters. The results show that the estimated 

reliability values using the proposed methodology are very close to the real reliability values 
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and the reliability using Monte Carlo simulations for estimated parameters. Also, as the 

sample size increases, the estimated reliability moves closer to the real reliability and mean 

squared error also decreases supporting the general trend of estimated values approaching 

closer to real values. An application to real life data is also shown along with the estimated 

reliability and interference graph. The inclusion of location parameter in the study 

significantly affects the reliability results. A better maximum log-likelihood value is 

obtained compared to the ones existing in the literature.  

5. This research deals with estimation P (X > Y) for X and Y following Weibull distribution 

with different shape parameters and same scale parameters. The estimation methods used 

are maximum likelihood estimation, least squares estimation, and weighted least squares 

estimation. Jaya algorithm has been used in optimizing the estimation functions. The 

reliability estimate equation has been presented and simulation studies are carried out in 

order to validate the model and compare the performance of the algorithm with the above 

estimation methods. Box plots showed the increasing accuracy of estimation with an 

increase in sample size. Jaya algorithm shows a consistent convergence towards the real 

roots. It was observed that the algorithm with maximum likelihood estimation outperforms 

the other two techniques studied with respect to the bias and mean squared error. The 

technique was applied to real-life data and it was observed that the estimated models with 

the proposed methodology give a very good fit for all the three estimation methods which 

were confirmed by the Kolmogorov-Smirnov test. The proposed methodology using MLE 

gives the best fit followed by WLSE and then LSE for the real-life data of strength of carbon 

fibers.  There are many methods for estimating the parameters via various optimization 

techniques. But the proposed methodology gives highly accurate results with faster 

compilation time compared to most of these methods. Further studies can be carried out 

using the proposed methodology considering the location parameter and investigating its 

effects on reliability calculation. Also, the methodology can be applied to X and Y values 

following other distributions like gamma, exponential, Laplace, etc. 

6. In this study, a methodology has been proposed for evaluating the time-dependent reliability 

of a component subjected to deterministic stress. A nonlinear model for the mean and linear 

model for standard deviation has been considered. The maximum likelihood estimation via 

Jaya algorithm has been used to obtain the estimates of the parameters. The method has been 

applied to the shear strength data of automotive circuits and SCM440 steel strength data and 

a plot for reliability vs. time has been obtained. It has been observed that the proposed 

methodology is simple, fast and gives very good results. The reliability varies significantly 
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with the type of degradation considered. So, the degradation model is crucial in anticipating 

the reliability of the components. 

7.3 Contributions 

The contributions of this research work are as follows: 

1. A stress-strength interference model when strength follows Laplace distribution and stress 

follows exponential distribution and vice versa. The model can be used in mechanical 

systems in order to find the reliability of the system when the strength and stress follow 

Laplace and exponential distribution respectively and vice versa. 

2. A methodology to evaluate the closed form of stress-strength interference model when stress 

and strength follow Weibull distribution. A similar methodology is shown for cases when 

stress and strength follow gamma distribution. The model is suitable if the range of 

parameters driving the distribution is known. 

3. A methodology to determine the parameters of Weibull distribution with high accuracy, 

faster compilation time and its application to real life data.  

4. A methodology to determine the stress-strength reliability for stress and strength following 

Weibull distribution with high accuracy and faster compilation time. Similar procedure can 

also be applied to find stress-strength reliability for stress and strength following other 

distributions. 

5. An improved methodology to estimate the stress-strength reliability in case of dynamic 

strength. The model can be applied if the strength is time dependent and even for fatigue 

strength where the strength varies with cyclic loading.  

7.4 Limitations of the Work 

This research is conducted mainly to conduct a few investigations, develop some important 

models and propose novel methodologies to get improvised results. The research has completed 

its aims and objectives. More problems as cited below can be further explored and investigated. 

A few limitations of the research are as follows:   

1. The methodology proposed for developing a closed form of stress-strength reliability model 

for Weibull and gamma distribution will be applicable only if the parameter range for the 

distributions is known. The predictions for reliability from the model can be made only in 

the parameter range. Also, the variation of parameters in predicting reliability is considered 

to be linear.  
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2. The methodology for stress-strength reliability estimation has been shown for Weibull 

distribution. The methodology has to be explored for other distributions where in new 

challenges may occur. It was also assumed that one of the parameters remains the same for 

simplicity in reliability calculations.  

3. This work mainly deals with point estimation. The methods shown in this study can be 

further used to compute confidence intervals in estimation of reliability using various 

techniques available in the literature.  

4. The methodology proposed in strength degradation considers linear, quadratic and cubic 

strength degradation of the mean. Various other degradations may be possible and needs 

more investigation. The standard deviation is considered to be varying linearly, whereas in 

real life the standard deviation also can follow another type of variation.   

5. The degradation model is considered for strength following normal distribution. The 

methodology can be studied for more distributions for further investigations. Also, the 

methodology for degradation considers stress to be deterministic. However, in real life, the 

stress may also follow a particular distribution.   

7.5 Future Scope 

The limitations discussed in the previous section offer scope for the future. The following work 

could be considered as possible extensions and scope for future work. 

1. More stress-strength interference models can be developed for stress and strength following 

other distributions such as Gompertz, beta, Lomax, Kumaraswamy distribution, etc. and 

their interactions. Also, reliability models for interactions of Weibull, gamma with other 

common distributions can be developed. The methodology can further be explored 

considering non-linear relations between the parameters and reliability.  

2. The methodology of stress-strength reliability estimation can be applied to other common 

distributions like gamma, Laplace, Cauchy, etc. Further research can be carried out by 

varying the location and shape parameters and analyzing its influence on reliability. Studies 

on confidence interval estimation of reliability can be carried out using the proposed 

methodology in assistance to various estimation techniques in literature. Also, studies can 

be carried out to enhance the performance of Jaya algorithm by some modifications and 

narrowing/ proposing a search space for faster convergence to the optimum values.   

3. More common degradations can be studied other than the ones studied in this research. Also, 

nonlinear variations in standard deviation can be considered to see its effects on reliability 

evaluation. 
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4. The methodology of degradation can be applied for strength following other distributions 

like Weibull, gamma, etc. Also, the studies can be further explored for non-deterministic 

nature of acting loads by considering the uncertainty in stress as well. 
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Appendix I: Strength of Glass Fibres Data 

n xn  n xn 

1 0.55  39 2.24 

2 0.93  40 0.81 

3 1.25  41 1.13 

4 1.36  42 1.29 

5 1.49  43 1.48 

6 1.52  44 1.5 

7 1.58  45 1.55 

8 1.61  46 1.61 

9 1.64  47 1.62 

10 1.68  48 1.66 

11 1.73  49 1.7 

12 1.81  50 1.77 

13 2  51 1.84 

14 0.74  52 0.84 

15 1.04  53 1.24 

16 1.27  54 1.3 

17 1.39  55 1.48 

18 1.49  56 1.51 

19 1.53  57 1.55 

20 1.59  58 1.61 

21 1.61  59 1.63 

22 1.66  60 1.67 

23 1.68  61 1.7 

24 1.76  62 1.78 

25 1.82  63 1.89 

26 2.01    

27 0.77    

28 1.11    

29 1.28    

30 1.42    

31 1.5    

32 1.54    

33 1.6    

34 1.62    

35 1.66    

36 1.69    

37 1.76    

38 1.84    
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Appendix II: Strength Data of Gauge 

Length 10 mm and 20 mm 

 

 Strength data of gauge length 10mm (Data Set I) 

1.901 2.132 2.203 2.228 2.257 2.35 2.361 

2.396 2.397 2.445 2.454 2.474 2.518 2.522 

2.525 2.532 2.575 2.614 2.616 2.618 2.624 

2.659 2.675 2.738 2.74 2.856 2.917 2.928 

2.937 2.937 2.977 2.996 3.03 3.125 3.139 

3.145 3.22 3.223 3.235 3.243 3.264 3.272 

3.294 3.332 3.346 3.377 3.408 3.435 3.493 

3.501 3.537 3.554 3.562 3.628 3.852 3.871 

3.886 3.971 4.024 4.027 4.225 4.395 5.02 

 

 

Strength data of gauge length 20mm (Data Set II) 

1.312 1.314 1.479 1.552 1.7 1.803 1.861 

1.865 1.944 1.958 1.966 1.997 2.006 2.021 

2.027 2.055 2.063 2.098 2.14 2.179 2.224 

2.24 2.253 2.27 2.272 2.274 2.301 2.301 

2.359 2.382 2.382 2.426 2.434 2.435 2.478 

2.49 2.511 2.514 2.535 2.554 2.566 2.57 

2.586 2.629 2.633 2.642 2.648 2.684 2.697 

2.726 2.77 2.773 2.8 2.809 2.818 2.821 

2.848 2.88 2.809 2.818 2.821 2.848 2.88 

2.954 3.012 3.067 3.084 3.09 3.096 3.128 

3.233 3.433 3.585 3.585    
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Appendix III:  Shearing Data of Solder 

Joints in Automotive Circuits 

Board ti xij Board ti xij Board ti xij Board ti xij Board ti xij 

A1 91392 5.98 A8 35855 5.65 A16 22233 6.48 A23 14811 6.01 A32 35143 5.65 

A1 91392 5.57 A8 35855 5.42 A16 22233 5.51 A23 14811 6.27 A32 35143 5.3 

A1 91392 5.71 A9 91898 6.25 A16 22233 6.67 A23 14811 6.23 A32 35143 5.43 

A1 91392 4.51 A9 91898 5.13 A16 22233 6.68 A24 40351 5.15 A32 35143 6.26 

A1 91392 4.81 A9 91898 4.49 A16 22233 5.74 A24 40351 5.86 A33 44464 5.64 

A1 91392 4.03 A9 91898 4.68 A17 58178 5.81 A24 40351 5.39 A33 44464 5.86 

A2 34155 5.73 A10 50917 5.66 A17 58178 6 A24 40351 5.46 A33 44464 5.8 

A2 34155 5.56 A10 50917 5.47 A17 58178 5.09 A24 40351 5.3 A33 44464 4.83 

A2 34155 5.69 A10 50917 4.88 A17 58178 6.1 A24 40351 6.22 A33 44464 4.6 

A2 34155 4.4 A10 50917 6.3 A17 58178 4.97 A25 78689 5.2 A34 84897 4.86 

A2 34155 5.73 A11 16579 6.08 A18 74882 5.41 A25 78689 6.25 A34 84897 5.41 

A2 34155 6.42 A11 16579 5.97 A18 74882 4.59 A25 78689 6.4 A34 84897 5.15 

A3 44654 5.94 A11 16579 5.52 A18 74882 5.21 A25 78689 5.58 A35 37268 6.15 

A3 44654 5.8 A11 16579 5.45 A18 74882 5.28 A25 78689 5.11 A35 37268 5.49 

A3 44654 6.31 A11 16579 6.21 A18 74882 4.93 A26 68171 5.88 A35 37268 4.9 

A3 44654 5.57 A11 16579 6.51 A19 54152 6.03 A26 68171 5.68 A35 37268 5.91 

A3 44654 5.53 A12 82278 4.94 A19 54152 5.98 A26 68171 3.97 A35 37268 5.88 

A4 43284 5.6 A12 82278 4.94 A19 54152 4.77 A26 68171 5.1 A36 33627 5.36 

A4 43284 5.56 A12 82278 3.69 A19 54152 5.48 A27 26170 6.17 A36 33627 5.85 

A4 43284 5.31 A12 82278 6.2 A19 54152 6.43 A27 26170 5.61 A36 33627 6.5 

A4 43284 5.82 A12 82278 4.54 A20 35233 5.04 A27 26170 5.36 A36 33627 5.65 

A5 72641 5.22 A13 56255 5.2 A20 35233 5.9 A27 26170 5.84 A37 47320 6.32 

A5 72641 6.29 A13 56255 5.26 A20 35233 5.28 A28 34648 4.98 A37 47320 5.29 

A5 72641 5.97 A13 56255 5.61 A20 35233 5.84 A28 34648 6.35 A37 47320 5.6 

A5 72641 5.67 A13 56255 5.63 A20 35233 5.99 A28 34648 5.68 A37 47320 5.42 

A6 38830 5.34 A13 93534 5.7 A20 35233 6.47 A28 34648 5.66 A37 47320 4.79 

A6 38830 5.5 A13 93534 5.41 A21 52757 5.12 A29 34949 6.18 A37 47320 6.23 

A6 38830 5.31 A13 93534 4.64 A21 52757 5.15 A29 34949 6.73 A38 29420 5.86 

A6 38830 6.17 A13 93534 4.4 A21 52757 5.17 A29 34949 5.39 A38 29420 6.57 

A6 38830 5.75 A14 87170 4.34 A21 52757 5.48 A29 34949 5.33 A38 29420 5.7 

A7 47913 5.37 A14 87170 4.88 A21 52757 5.37 A30 14214 6.16 A38 29420 5.64 

A7 47913 4.82 A14 87170 4.91 A22 78878 5.15 A30 14214 5.9 A38 29420 5.37 

A7 47913 6.28 A14 87170 4.71 A22 78878 6.24 A30 14214 5.62 A38 29420 5.46 

A7 47913 5.66 A14 87170 6.04 A22 78878 5.14 A30 14214 5.12 A39 21899 5.67 

A7 47913 6.12 A15 21265 6 A22 78878 4.67 A31 96128 3.99 A39 21899 5.65 

A7 47913 5.24 A15 21265 5.91 A22 78878 5.4 A31 96128 5.17 A39 21899 6.22 

A7 47913 6.26 A15 21265 6.32 A22 78878 4.74 A31 96128 4.87 A39 21899 4.95 

A8 35855 5.91 A15 21265 5.92 A23 14811 5.48 A31 96128 4.29    

A8 35855 5.92 A16 22233 5.75 A23 14811 5.86 A32 35143 6.39    
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