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Chapter 1

INTRODUCTION

The study of differential Equations is a broad area of mathematical research. It

has contributed significantly to the growth of Mathematics and its uses, particu-

larly for the advancement of Physics, Chemistry and Engineering. From last two

centuries, differential equations have been widely used in Biology, Information

Technology, Social Sciences and Economics, to mention few outside the group of

physical sciences. Different real world problems can be converted into mathemat-

ical problems (model) and analysed. Most of the mathematical models contain

differential equations which are mainly non-linear and cannot be solved analyti-

cally. In the absence of method of solving these equations, the study of properties

of solutions, without obtaining it, attains importance. Hence it is seen that one

studies properties such as boundedness, oscillatory behavior, periodicity, stability,

etc. of the solutions.

In 1940, the study of stability problems for various functional equations was

sparked by the famous talk presented by Stanislaw Marcin Ulam [62], at the Math-

ematics Club of the University of Wisconsin. In this talk he discussed a number
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of important unsolved problems. Among them was one concerning the stability

of group homomorphism.

In 1941, D.H. Hyers [19], solved this problem of Ulam for the case where

G1 and G2 are Banach spaces. This gives a partial solution to Ulam’s question

in terms of stability of linear functional equations and opened up new avenues

for research in the field of functional equations and differential equations. The

result in [19], is now known as Hyers-Ulam (HU) stability for the additive Cauchy

equation f (x+ y) = f (x)+ f (y).

The various extensions of HU stability has been named with additional word.

One such extension is Hyers-Ulam-Rassias (HUR) stability, published in 1978 by

Th. M. Rassias [55]. In this paper the condition for stability is weakened and

result is proved for Cauchy difference equation by making use of a direct method.

After this remarkable HUR stability result, many mathematicians have looked into

stability results for other types of differential equations. Since then, many results

on HU and HUR stability of various functional equations, linear and non-linear

ordinary differential equations, linear and non-linear partial differential equations,

delay differential equations, fractional differential equations etc. have been stud-

ied. In 1993, Marta Obloza seems to be the first researcher who investigated the

HU stability of linear differential equation.

E. Ahmed et. al. [2], focused on HU stability applications in Biology and Eco-

nomics. It is important to notice that there are many applications for HU stability

in other topics e.g. in nonlinear analysis problems including differential equations

and integral equations.
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1.1. RESEARCH OBJECTIVE

Differential equations are used in many different areas of study, including

physical and applied sciences. In most of the cases, these equations are non-linear

and cannot be solved analytically. If there is no way to solve these equations, it

is important to study the properties of the solution without obtaining it. One of

the important property is stability of the solutions of these equations. The study

of stability of solutions of the differential equations has developed considerably

in past few decades. This stability theory of differential equations have motivated

to take up the study on HU and HUR stability for differential equations.

The objective of this research work is to study HU and HUR stablility of dif-

ferent types of non-linear ordinary differential equations, linear partial differential

equations and non-linear partial differential equations.

Our objectives are :

To study

• HU and HUR stablility of different linear and non-linear ordinary differen-

tial equations.

• HU and HUR stablility of different linear and nonlinear partial differential

equations.

• Generalised HUR stability of different non-linear partial differential equa-

tions, by using various techniques.
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1.2. ORGANIZATION OF THE THESIS

The thesis is divided into seven chapters. The outline of these chapters is as

follows :

1. The first chapter gives an introduction to the topic and motivation for taking

up the study. We give the objective of our work and chapter wise description

of the work done.

2. Chapter 2 deals with the survey of the available literature on HU and HUR

stability of different types of equations such as functional equations, differ-

ence equations and differential equations. The survey is divided into two

parts. The first section gives the brief survey of the literature. Second sec-

tion give some basic results used for our work.

3. Chapter 3 is devoted to the study of HUR stability of third order ordinary

differential equation. In this chapter we study the HUR stability of follow-

ing third order ordinary differential equation

y′′′(x)+ p(x)y′′(x)+q(x)y′(x)+ r(x)y(x) = f (x), (1.1)

where y ∈C3[a,b], p,q,r, f ∈C[a,b] and −∞ < a < b < ∞.

This stability result is proved by imposing certain integrability conditions

on the coefficients functions p(x),q(x) and r(x) of the differential equation.

An example is provided in support of the result.

4. In chapter 4, we establish the HUR stability for first and third order linear

homogeneous partial differential equations. Further, we extend the method
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to obtain the result for nth order linear homogeneous partial differential

equation of the form :

∂u
∂ t

= an ∂ nu
∂xn , t > 0,0 < x < l,a > 0. (1.2)

These results are proved by employing Laplace transform method and using

the idea presented in [54].

5. Chapter 5 is on HUR stability of linear non-homogeneous partial differential

equations. Here we prove the HUR stability of the second order partial

differential equation of the type

r(x, t)utt(x, t)+ p(x, t)uxt(x, t)+q(x, t)ut(x, t)+ pt(x, t)ux(x, t)

−px(x, t)ut(x, t) = g(x, t,u(x, t)).

(1.3)

Further in the chapter, we have established the HUR stability for the third

order non-homogeneous partial differential equation:

s(x, t)uttt(x, t)+ r(x, t)utt(x, t)+ p(x, t)uxt(x, t)+q(x, t)ut(x, t)

+pt(x, t)ux(x, t)− px(x, t)ut(x, t) = g(x, t,u(x, t)).

(1.4)

These results are proved by using Banach contraction principle and some

results in [18].

6. The Chapter 6 deals with the HU stability of the nonlinear ordinary and

partial differential equations :

ux(x, t)+K(x,u(x, t)) = 0, (1.5)

uxx(x, t)+F(x,u)ux(x, t)+H(x,u) = 0. (1.6)
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These results are proved by employing Banach’s contraction principle.

Further in this chapter, we have established the HU stability for the second

order non-linear ordinary and partial differential equations :

uxx(x, t) = f (x, t,u(x, t),ux(x, t)), 0≤ x≤ a,0≤ t ≤ b. (1.7)

and

uxt(x, t) = f (x, t,u(x, t),ux(x, t)) 0≤ x≤ a,0≤ t ≤ b. (1.8)

These results are proved by employing Grownwall type inequality and some

integral inequalities.

7. Finally in Chapter 7, we discuss the generalised HUR stability of the fol-

lowing second order non-linear ordinary partial differential equation :

uxx(x, t) = f (x, t,u(x, t),ux(x, t)). (1.9)

Then, we establish the generalised HUR stability for the following second

order non-linear partial differential equation.

uxt(x, t) = f (x, t,u(x, t),ux(x, t),ut(x, t),uxx(x, t)). (1.10)

These results are proved by employing Grownwall type inequality, some

integral inequalities and using the result in [41].

At last, we give a brief summary of the results obtained in

this thesis and present some problems for further study. The thesis ends

with a complete bibliography.



Chapter 2

SURVEY OF LITERATURE

2.1 INTRODUCTION

This chapter deals with the survey of the literature on Hyers-Ulam (HU) and

Hyers-Ulam-Rassias (HUR) type stability of various linear, nonlinear ordinary

and partial differential equations. HU stability of differential equations has drawn

much attention since Ulam’s presentation [62] of the problem on stability of group

homomorphism in 1940. Its various extensions have been named with additional

word/s. One such extension is HUR stability. We plan to give review of HU and

HUR stability results of ordinary and partial differential equations in section 1.

Section 2 contains some basic theorems (results) used for the work undertaken.

2.2 REVIEW OF LITERATURE

In 1940, Stanislaw Marcin Ulam [62], presented a wide ranging talk to the Math-

ematics Club of the University of Wisconsin, where he discussed a number of
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important unsolved problems. Among them was one concerning the stability of

group homomorphism, namely:

Let G1 be a group and G2 be a metric group with a metric d. For a given ε > 0 ,

does there exist a δ > 0 such that if a function h : G1 −→G2 satisfies the inequality

d(h(xy),h(x)h(y))< δ , for all x,y ∈ G1, then there exists a homomorphism

H : G1 −→ G2 with d(h(x),H(x))< ε , for all x ∈ G1?

In 1941, D.H. Hyers [19] solved this problem of Ulam for the case where G1

and G2 are Banach spaces. He proved that, if f : G1 −→ G2 be such that f (tx) is

a continuous function in t for each fixed x ∈ G1, where t ∈ (−∞,∞) and if ∃ ε > 0

such that || f (x+ y)− f (x)− f (y)|| ≤ ε, for all x,y ∈ G1, then there exists a linear

map T : G1 −→ G2 such that || f (x)−T (x)|| ≤ δ , for all x ∈ G1.

This is now known as Hyers-Ulam (HU) stability for the additive Cauchy

equation f (x+ y) = f (x)+ f (y).

In 1945, D. H. Hyers and S. M. Ulam [20], established the existence of a

true isometry U(x), which approximates given ε-isometry T (x). An ε-isometry is

a transformation T (x) : E → E′ such that, |ρ(x,y)− ρ(T (x),T (y))| < ε, for some

ε > 0, where E and E′ are metric spaces. Precisely, they proved the existence

of a constant k > 0 depending only on the metric spaces E and E′ such that

||(T (x),U(x))||< kε , for all x ∈ E.

In 1978, Th. M. Rassias [55] weakened the condition for Cauchy difference

equation and proved the following result by making use of a direct method.

Theorem 2.1.1 : [55]

Consider G1 and G2 to be two Banach spaces, and let f : G1 −→ G2 be a mapping

such that f (tx) is a continuous function in t for each fixed x. Assume that there

exist ε ≥ 0 and p ∈ [0,1) such that || f (x+ y)− f (x)− f (y)|| ≤ ε(||x||p + ||y||p), for
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all x,y ∈ G1. Then there exists a unique linear mapping T : G1 −→ G2 such that

|| f (x)−T (x)|| ≤ 2ε

2−2p (||x||p), for any x ∈ G1.

This stability criterion is now called Hyers-Ulam-Rassias (HUR) stability.

This result of Rassias stability has influenced a number of Mathematicians to in-

vestigate the stability problems for various functional equations (see [7], [19],[23],[25],

[31],[33],[36],[38],[40],[56] and [59]). Since then, this type of stability criteria

have been applied to various other kinds of equations (see Jung [33], Sahoo and

Khannapan [59]).

S. Czerwik [15], established the following result of the HUR stability of quadratic

functional equation f (x + y) + f (x− y) = 2 f (x) + 2 f (y), by applying fixed point

Method.

Theorem 2.1.2 : [15]

Let E1 and E2 be a normed space and a Banach space respectively. If there is a

function f : E1→ E2 satisfying the inequality

|| f (x+ y)+ f (x− y)− 2 f (x)− 2 f (y)|| ≤ δ +θ((||x||p + ||y||p), for some δ ,θ ≥ 0

and p < 2 and for all x,y ∈ E1 \ {0}, then there exists a unique quadratic function

Q : E1→ E2 such that || f (x)−Q(x)|| ≤ (1
3)(δ + c)+2(4−2p)−1θ ||x||p, for any x ∈

E1 \{0}, where c = || f (0)||.

Next, we have the following result giving the direct method.

Theorem 2.1.3 : [8]

Let a and b be nonnegative real numbers with α = a+b > 0. Let H : [0,∞)2→ [0,∞)

be a function, for which, there exists a positive number k < α such that

H(αs,αt) ≤ αH(s, t), for all s, t ∈ [0,∞). Given a real normed space E1 and a real

Banach space E2, assume that a function f : E1→ E2 satisfies the inequality

|| f (ax+ by)− a f (x)− b f (y)|| ≤ H(||x||, ||y||), ∀x,y ∈ E1. Then there exists a unique
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function A : E1→ E2 such that A(ax+by) = aA(x)+bA(y), for any x and y in E1 and

|| f (x)−A(x)|| ≤ (α− k)−1H(||x||, ||x||), ∀x ∈ E1.

This result was proved by using additive function A which is explicitely con-

structed from the given function f by A(x) = lim
n→∞

2n f (2−nx). This method is

known as direct method. It’s an important and the most powerful tool for study of

stability for various functional equations.

L. Losonczi [40] has proved the stability of the Hosszu’s functional equation

f (x+ y− xy) = f (x)+ f (y)− f (xy). Result is given below.

Theorem 2.1.4 : [40]

Let Y be a Banach space and suppose that a function f : R→ Y satisfies the func-

tional inequality || f (x+ y− xy)− f (x)− f (y)+ f (xy)|| ≤ ε, for some ε > 0 and for

all x,y ∈ R. Then there exist a unique additive function A : R→ E and a unique

constant b ∈ Y such that || f (x)−A(x)−b|| ≤ 20ε, for all x ∈ R.

This result is proved by using local stability, in HU sense, for Cauchy’s func-

tional equation. Further paper contains a local stability theorem for additive func-

tions in Banach space settings.

In 1997, S. M. Jung [23] has proved some results on HU and HUR stability of

the gamma functional equation. Following results are from [23].

Theorem 2.1.5 :

If a mapping f : (0,∞)→ R satisfies the inequality | f (x+1)− x f (x)| ≤ δ , δ > 0,

∀x > n0, n0 is a given non-negative integer, then there exists a unique solution

F : (0,∞)→ R of the gamma functional equation f (x+1) = x f (x) with

|F(x)− f (x)| ≤ 3δ
x , ∀x > n0.

In the following theorem, let δ ,ε > 0 be given and α(x),β (x) be functions
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defined as follows:

α(x) = Π
∞
i=0[1−δ (x+ i)−(1+ε)], β (x) = Π

∞
i=0[1+δ (x+ i)−(1+ε)],

for any x > δ 1/(1+ε , and n0 ∈ Z.

Theorem 2.1.6 :

If a mapping f : (0,∞)→ (0,∞) satisfies the inequality | f (x+1)
x f (x) −1| ≤ δ

x1+ε
, ∀x> n0,

then there exists a unique solution F : (0,∞)→ [0,∞) of the gamma functional

equation with α(x)≤ F(x)/ f (x)≤ β (x), for any x > max{n0,δ
1/(1+ε)}.

This is called general or modified HUR stability.

In [24], Jung has investigated the stability problem of the quadratic func-

tional equation of Pexider type viz. f (x+ y)+ f (x− y) = 2 f (x)+ 2 f (y). This re-

sult generalizes the result in [15]. Using the same ideas, Jung and Sahoo [35]

proved the HU stability of a quadratic functional equation of Pexider type, viz.

f1(x+ y)+ f2(x− y) = f3(x)+ f4(y).

Next, Jung has discussed HU stability of logarithmic functional equation

f (x+ y)− f (x)− f (y) = f (x−1 + y−1). Following is the result.

Theorem 2.1.7 : [25]

If a function f : R→ R satisfies the functional inequality

| f (x + y)− f (x)− f (y)− f (x−1 + y−1)| ≤ δ , for some 0 ≤ δ < log(2) and for all

x,y ∈ R \ {0}, then there exists a unique logarithmic function l : R \ {0} → R such

that | f (x)− l(x)| ≤ 5δ − 11
2 log(2− eδ ), for each x ∈ R\{0}.

In 2001, J. Chmieli’nski and S. M. Jung [13], established the HU Stability of

the Wigner Equation |< f (x)| f (y)> |= |< x|y > |, for all x,y ∈ E, where E is a real

or complex Hilbert space with the inner product and the associated norm denoted

by < ·|· > and || · || respectively. Let 1 6= c > 0 and d ≥ 0 be given constants. D be
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the set defined by

D =


{x ∈ E : ||x|| ≥ d}, if 0 < c < 1,

{x ∈ E : ||x|| ≤ d}, if c > 1.

The case D = {0} is trivial and not considered. Let φ : E ×E → [0,∞) be a

function satisfying the property

lim
m+n→∞

cm+n
φ(c−mx,c−ny) = 0,∀x,y ∈ D.

We have the following result from [13].

Theorem 2.1.8 :

If f : E→F satisfies the property ||< f (x)| f (y)> |−|< x|y> || ≤ φ(x,y), for all x,y∈

D , then there exists a unique (up to a phase equivalent function) mapping I : E→F

satisfying the Wigner equation and such that || f (x)− I(x)|| ≤
√

φ(x,x),∀x ∈ D.

Next, we have a result that gives HUR stability of the Beta functional equation

by construction of a Cauchy Sequence.

Theorem 2.1.9: [38]

Let F : (0,∞)× (0,∞)→ (0,∞) be a mapping that satisfies the inequality

| xy
(x+y)(x+y+1)

F(x,y)
F(x+1,y+1) −1 | ≤ ψ(x,y), for all x,y > n0, where n0 ∈ Z and

ψ : (0,∞)× (0,∞)→ (0,1) is a mapping such that

α(x,y) := ∑
∞
i=0 log(1−ψ(x+ i,y+ i)) and β (x,y) := ∑

∞
i=0 log(1+ψ(x+ i,y+ i))

are bounded for x,y > n0. Then there exists a unique solution T : (0,∞)× (0,∞)→

(0,∞) of the beta functional equation

F(x+1,y+1)−1 =
(x+ y)(x+ y+1)

xy
F(x,y)−1,

with eα(x,y) ≤ F(x,y)
T (x,y) ≤ eβ (x,y).

In 2002, G. H. Kim, Bing XU and W. Zhang [37], proved the generalized

HUR stability of the generalized gamma functional equation g(x+ p) = a(x)g(x),
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by using Ratio Test and under some conditions of convergence of the series. They

proved the following result.

Theorem 2.1.10 : [37]

Consider the approximate solution f : (0,+∞)→ R of g(x+ p) = a(x)g(x) , which

satisfy the inequality | f (x+ p)−a(x) f (x)| ≤Ψ(x), for all x> n0, where Ψ : (0,+∞)→

(0,+∞) is a fixed function and n0 is a non-negative constant. If lim in f
k→∞

Ψ(x+p(k−1))
Ψ(x+pk) ×

a(x+ pk)> 1, for all x > n0, then the equation g(x+ p) = a(x)g(x) has the general-

ized Hyers-Ulam-Rassias stability.

In 2006, S. M. Jung and P. K. Sahoo [36], established the HUR type stability

for a Davison functional equation f (xy)+ f (x+ y) = f (xy+ x)+ f (y), for a class of

functions from a Ring into a Banach space. They proved the result by using the

Direct method.

In the following result, L. C Adariu and V. Radu [11], proved the stability of

Jensen’s functional equation. This result was proved by using fixed point Method.

Theorem 2.1.11 : [11]

Let E1 and E2 be a (real or complex) vector space and a Banach space, respec-

tively. Assume that a function f : E1→ E2 satisfies f (0) = 0 and the inequality

||2 f (x+y
2 )− f (x)− f (y)|| ≤ φ(x,y), for all x,y ∈ E1, where φ : E2

1 → [0,∞) is a given

function. Moreover, assume that there exists a positive constant L < 1 such that

φ(x,0) = Lqiφ(
x
qi
,0), where q0 = 2 and q1 = 1

2 . If φ satisfies lim
n→∞

q−n
i φ(qn

i x,qn
i y) =

0, for all x,y ∈ E1, then there exists a unique additive function A : E1 → E2 such

that, || f (x)−A(x)|| ≤ L1−i
1−L φ(x,0), for any x ∈ E1.

In 2009, S. M. Jung [31] proved the HU stability of generalized Fibonacci

functional equation f (x) = p f (x−1)−q f (x−2), in the class of functions f : R→

X , where X is a real (or complex) Banach space.
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Theorem 2.1.12 : [31]

If a function f : R→ X satisfies the inequality || f (x)− p f (x− 1)+ q f (x− 2)|| ≤ ε

, for all x ∈ R and for some ε ≥ 0, then there exists a unique solution function

F : R→ X of the functional equation f (x) = p f (x−1)−q f (x−2) such that

|| f (x)−F(x)|| ≤ |a|−|b||a−b|
ε

(|a|−1)(1−|b|) , for all x ∈ R.

Note that the estimate obtained in above theorem is better than the estimate

obtained for the equations of higher order in [9]. In 2011, P. K. Sahoo and P.

Kannapan [59], proved the result for the HU stability of Abel functional equation

f (x+ y) = g(xy)+h(x− y). We state the result below.

Theorem 2.1.13 : [59]

If functions f ,g,h : R→ R satisfy the functional inequality | f (x+ y)−g(xy)

−h(x−y)| ≤ ε, for some ε ≥ 0 and for all x,y∈R, then there exists a unique additive

function A : R→ R such that | f (x)−A(x2
4 )− f (0)| ≤ 22ε,

|g(x)−A(x)− f (0)+h(0)| ≤ 21ε and |h(x)−A(x2
4 )−h(0)| ≤ 22ε, for all x ∈ R.

Now we shall have a look at the results on HU type stability of differential

equations. HU stability for differential equations is defined as follows.

Definition 2.1.1 : The differential equation

φ( f (t),y(t),y′(t), · · · ,y(n)(t)) = 0 (2.1)

is said be Hyers-Ulam stable on an interval I, if for a given ε > 0 and a function

y1 such that

|φ( f (t),y1(t),y
′
1(t), · · · ,y

(n)
1 (t))| ≤ ε, (2.2)

there exist a solution y2 of (2.1) such that

|y1(t)− y2(t)| ≤ k(ε), (2.3)
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where k(ε)→ 0 as ε → 0 and does not depend on y1 and y2.

A differential equation (2.1) is said to be Hyers-Ulam-Rassias stable with a

preassigned function ε(t), if ε is replaced by ε(t) in the inequality (2.2) and k(ε)

is replaced by ψ(t) in the inequality (2.3)

In a similar way one can define HU and HUR stablility for partial differential

equation,

φ(g(x),u(x),ux1(x),ux2(x), · · · ,uxn(x),ux1x2(x), · · · ,ux1x2···xn(x)) = 0, x = (x1, ...,xn)

on a domain Ω ⊆ Rn.

M. Obloza (see [48], [49]) seems to be the first researcher who investigated the

HU stability of linear differential equations in 1993. The author has established

the following results.

Theorem 2.1.14 : [48]

Let I ⊂ R be a bounded interval and suppose that g is a continuous real valued

function defined on I such that
∫
I |g(t)|dt < ∞. Then the equation x′(t)+g(t)x(t) =

p(t) is stable in sense of Hyers, where p is a continuous real valued function

defined on interval I.

In the same paper [48], following two results are proved.

Theorem 2.1.15 :

Let I denote the interval [A,+∞), for some A > 0. Suppose that there exits C > 0

and T ≤ A such that g(t)≤C, for t ≥ T . Then the equation x′(t)+g(t)x(t) = p(t) is

stable in the sense of Hyers.



2.2 REVIEW OF LITERATURE 16

Theorem 2.1.16 :

Let I = [A,+∞), for some A > 0. Suppose that there exits a positive number T ≥ A

such that g(t)≤ 1√
t
,∀t ≥ T . Then the equation x′(t)+g(t)x(t) = p(t) is stable in the

sense of Hyers.

Further in 1997, Obloza established the connection between HU stability and Lya-

punov stability. Following results are proved in [49].

Theorem 2.1.17 :

Let δ > 0 and let us assume the following:

(i) f : R2→R is a continuous function Lipschitzian with respect to the second

variable with constant L .

(ii) x1,x2 are solutions of equation x′(t) = f (t,x(t)) defined on R.

(iii) There exists τ ∈ R such that |x1(τ)− x2(τ)| ≤ δ , then there exists a d > 0

(independent of δ )such that the inequality |x1(t)− x2(t)| ≤ 2δ holds for all t ∈

[τ−d,τ +d]. This result is used to prove the following:

Theorem 2.1.18 :

Let us assume the following:

(i) f : R2→R is a continuous function Lipschitzian with respect to the second

variable.

(ii) The equation x′ = f (t,x), f ∈ (C,Lip) is stable in the sense of Hyers.

Then it is stable in the sense of Lyapunov.

The converse of the above theorem is not true and an illustrative example is given

in the same paper. In 1998, Alsina and Ger (see [5]), proved the stability for first

order linear differential equation . They proved the following result.
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Theorem 2.1.19 :

Given ε > 0, if f : I→ R is a differentiable function satisfying | f ′(x)− f (x)| ≤ ε , for

all x∈ I , then there exists a function g satisfying g′ = g such that | f (x)−g(x)| ≤ 3ε ,

for all x ∈ I.

After this paper ([5]), many researchers have investigated the HU and HUR

stability of different types of differential equations. For more results on HU and

HUR stability of ordinary and partial differential equations, one can refer [ [1],

[14], [16], [17], [26], [27], [28], [29], [32], [34], [43], [44], [45], [46], [47], [52],

[53], [54], [55], [57] and references therein].

In 2002, Takahasi et al. [60] extended the work for Banach space valued dif-

ferential equation y′(t) = λy over an interval I. Defining m(I,λ ) = inf{e−Reλ t ; t ∈ I}

and M(I,λ ) = sup{e−Reλ t ; t ∈ I}, their main result is stated as follows:

Theorem 2.1.20 : [60]

For ε > 0 and φ : I → X , a strongly differentiable function such that ||φ ′(t)−

λφ(t)|| ≤ ε , for all t ∈ I, following assertions are true :

a) If Re λ 6= 0, then there exists an element xφ ∈ X such that

||φ(t)− eλ txφ || ≤ |Re λ |−1{1− m(I,λ )
M(I,λ )}ε , for all t ∈ I. In particular, if m(I,λ ) = 0,

then xφ with the property that ||φ(t)− eλ txφ ||< ∞ is unique.

b) If Re λ = 0 and the diameter δ (I) of I is finite, then there exists an xφ ∈ X

such that ||φ(t)− eλ txφ || ≤ εδ (I), for all t ∈ I.

c) If Re λ = 0 and δ (I) = ∞, then the HU stability of the differential equation

y′ = λy does not hold.

In 2003 , the above result was extended to Banach space valued first order

differential equation of the form u′+hu = v. They proved the following result.
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Theorem 2.1.21 : [43]

Let h : R→ C be a continuous function and Th : C1(R,X)→ C(R,X) be the lin-

ear operator defined by (Thu)(t) = u′(t)+ h(t)u(t) , for all u ∈C1(R,X) and t ∈ R.

Suppose that one of Ch
de f
=

sup
t∈R

1
|g̃(t)|

∫
∞
t |g̃(s)|ds, Dh

de f
=

sup
t∈R

1
|h̃(t)|

∫ t
−∞ |h̃(s)|ds and

Eh
de f
=

sup
t∈R

1
|h̃(t)| |

∫ t
0 |h̃(s)|ds| is finite. Then Th has the Hyers - Ulam stability with

Hyers Ulam stability constants Ch,Dh and Eh respectively. Moreover if, Ch < ∞

or Dh < ∞ then for each v ∈C(R,X) and u ∈C1(R,X) satisfying ||Th(u)− v||∞ < ∞,

there exists an element u0 ∈C1(R,X) with the condition Thu0 = v and ||u−u0||∞ <

∞ is uniquely determined.

In 2003, T. Miura, S. Miyajima and S. Takahasi [43], proved the converse of

the above theorem. They have proved the following.

Theorem 2.1.22 :

Let h: R → C be a complex valued continuous function and let Th : C1(R,X)→

C(R,X) be the linear operator defined by (Thu)(t) = u′(t) + h(t)u(t), for all u ∈

C1(R,X) and t ∈ R. Suppose that Th has the Hyers - Ulam stability. Then the

following assertions held.

a) If inft∈(0,∞) |h̃(t)| = 0, then Ch < ∞. Moreover, Ch is the HUS constant for

Th.

b) If inft∈(−∞,0) |h̃(t)|= 0, then Dh < ∞. Moreover, Dh is the HUS constant for

Th.

c) If inft∈R |h̃(t)|> 0, then Eh < ∞.

d) Either inft∈(−∞,0) |h̃(t)| or inft∈(0,∞) |h̃(t)| is positive.

In [61], the authors completely characterised the HU-stability of the above

first order linear Banach space valued differential equation in terms of Ch,Dh and

Eh. HU stability of linear differential equation of second order with constant co-
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efficients for compact intervals were studied by Y. Li. et al. [39]. HU stability for

Banach space valued nth order linear differential equations with constant coeffi-

cients was studied by Cimpean and Popa [14] by using the arguments provided in

[39]. In this paper authors obtained stability of the linear differential equation in

Aoki -Rassias sense. We state the definition.

Definition 2.1.2 : Let (X , ||.||) be a Banach space over C and I = (a,b), a,b ∈

R∪ {±∞},a < b and φ : I → [0,∞) be a given mapping. The equation y(n)(x)−

∑
n−1
j=0 a jy

( j)(x) = f (x),x ∈ I is said to be stable in Aoki-Rassias sense if there exists

a mapping ψ : I → [0,∞) such that for every function y ∈ Cn(I,X), satisfying the

relation ||y(n)(x)−∑
n−1
j=0 a jy

( j)(x)− f (x)|| ≤ φ(x), ∀x ∈ I, there exists a solution

u ∈C(n)(I,X)) of the equation such that ||y(x)−u(x)|| ≤Ψ(x),∀x ∈ I.

Note that when φ and ψ are constants, the equation is said to be HU stable.

Here ψ depends on φ . As a consequence we obtain the HU stability of the equa-

tion. A connection with the dynamical system is established.

Let ℜ(λ ) denote the real part of the complex number λ and let f ∈C(I,X) . De-

fine Lλ (h)(x) =


eℜ(λ )x ∫ b

x h(t)e−ℜ(λ )t dt, if eℜ(λ )x ≥ 0,

eℜ(λ )x ∫ x
a h(t)e−ℜ(λ )t dt, if eℜ(λ )x < 0,

for every h for which

integrals converge.

The main result is given below:

Theorem 2.1.23 : [14]

Let ε : I→ [0,∞) be a continuous function and suppose that LrkoLrk−1o · · ·oLr1(ε)

are integrable on every interval [c,b) if R(rk+1)≥ 0, respectively on every interval

(a,c] if R(rk+1) < 0,1 ≤ k ≤ n−1. Then for every mapping y ∈Cn(I,X) satisfying

the inequality ||y(n)(x)−
n−1

∑
j=0

a jy
( j)(x)− f (x)|| ≤ ε(x), ∀x ∈ I , there exist a unique

solution u ∈Cn(I,X) of equation y(n)(x)−
n−1

∑
j=0

a jy
( j)(x) = f (x) ∀x ∈ I = (a,b) such
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that ||y(x)−u(x)|| ≤ LrnoLrn−1o · · ·oLr1(ε)(x), ∀ x ∈ I.

Jung [28] proved the HUR stability for first order non-homogeneous linear dif-

ferential equation with variable coefficients, where the coefficient function satisfy

certain integrability condition. These ideas were applied to second order non-

homogeneous equations by Javadian et al. [22]. This was then extended to nth

order linear equations in [21]. Also using Grownwall’s inequality HU stability for

second order linear differential equations was established in [4].

HUR stability for linear differential operators of nth order with non constant

coefficients were studied in [51] and [45]. In 2012, D. Popa and I. Rosa [51],

proved the HUR stability under the assumption that the nth order equation can be

factorized into n first order equations [12]. This factorisation methods could be

applied to non linear equations such as Riccati and Lienard equations.

In [52], the authors proved the following HU stability results.

Theorem 2.1.24 : [52]

Suppose that |α(x)| ≤ L < 1, for all x≥ x0 and that

y ∈C2(I), I = [x0,x]⊆ R, x0 > 0. is such that it satisfies the inequality

|y′′+ y−α(x)y| ≤ ε , with the initial conditions y(x0) = 0 = y′(x0).

Then the equation y′′+ y = α(x)y has the HU stability.

In the same paper, they have obtained the following result.

Theorem 2.1.25 : [52]

Let I = [x0,x] ⊆ R, x0 > 0. Suppose |h(x)| ≤ A, for all x ≥ x0 and that y ∈C2(I), is

such that it satisfies the inequality |y′′+ y− h(x)yβ | ≤ ε, β ∈ (0,1) with the initial

conditions y(x0) = 0 = y′(x0). If A <
(β+1)

2 { max
x≥x0

|y(x)|}−β , for x ≥ x0, then the

equation y′′+ y = h(x)yβ , β ∈ (0,1), has the HU stability.
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Using this result the authors have proved the HU stability for the nonlinear

equation

z′′+ pz′+qz = h(x)zβ e(
β−1

2 )e
∫

p(t)dt , β ∈ (0,1),

where h, p ∈ C1(I), p(x) > 0, x0 > 0, q ∈ C(I), I = [x0,x] and h is bounded for all

sufficiently large x ∈ R.

The results in this paper are supported by illustrations. Some special case of

the equation under study is discussed.

In [3], the authors proved the HUR stability of linear differential equation of

second order and a nonlinear differential equation of second order with initial

condition. They prove these results by using same arguments as used in [52].

In [53], the authors proved the HU stability of nonlinear differential equation

y′′−F(x,y(x))= 0 on [a,b], with initial condition at y(a)= 0. Here the ε−approximate

solution z is assumed to satisfy

|F(x,z(x))| ≤ A|z|α , α > 0, |z(x)| ≤ |z′(x)| and 0 < A < { max
x∈[a,b] |z(x)|}

1−α .

The idea used here is similar to that used in [52]. Using this they proved the

HU stability of Emden - Fowler nonlinear differential equation with zero initial

conditions at x = a. Following is the result.

Theorem 2.1.26 : [53]

Suppose that z : [a,b]→ R is a twice differentiable function. If L(b−a)2
2 < 1, then

the equation z′′ = φ(x,z(x)), with the initial condition z(a) = z′(a) = 0, is stable in

the Hyers-Ulam sense, where z ∈C2(I), I = [a,b],−∞ < a < b < ∞ and φ(x,z(x)) is

continuous for x ∈ I,x ∈ R.

In [4], the authors proved the HU stability of nonlinear differential equation

of second order of the form u′′(t)+F(t,u(t)) = 0 , where F : [t0,∞)×R→ (0,∞)

with t0 ≥ 0 and u : [t0,∞)→ [0,∞) is a twice continuously differentiable function
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with u(t0) = 0 = u′(t0) and
∫

∞
t0
|u′(t)|dt ≤ L,L > 0 by using a variant of Grownwall’s

inequality. They proved the following.

Theorem 2.1.27 : [4]

Given constants L > 0, t0 ≥ 0 , assume that F : [t0,∞)×R→ (0,∞) is a function

satisfying F ′(t,u(t))
F(t,u(t)) > 0 with F(t,0) =1, for all t ≥ t0 and u ∈U(L, t0). If a function

u : [t0,∞)→ (0,∞) satisfies u∈U(L, t0) and the inequality |u′′(t)+F(t,u(t))| ≤ ε , for

all t ≥ t0 and for some ε > 0 , then there exists a solution u0 : [t0,∞)→ [0,∞) of

the differential equation u′′(t)+F(t,u(t)) = 0 such that |u(t)−u0(t)| ≤ Lε , for any

t ≥ t0.

In the same paper, they have proved the following result.

Theorem 2.1.28 : [4]

Given constants L > 0, t0 ≥ 0 , assume that h : [t0,∞)→ (0,∞) is a differentiable

function. Let α be an odd integer larger than 0. If a function u : [t0,∞)→ [0,∞)

satisfies u ∈ U(L, t0) and the inequality |u′′(t) + h(t)u(t)α | ≤ ε , for all t ≥ t0 and

for some ε > 0 , then there exists a solution u0 : [t0,∞)→ [0,∞) of the differential

equation u′′(t) + h(t)u(t)α = 0 such that |u(t)− u0(t)| ≤ (
βLε

h(t0)
)

1
β , for any t ≥ t0,

where β = α +1.

In 2003, T. Miura, S. Miyajima and S. Takahasi [44], proved that, if P(z) is a

polynomial of degree n with complex coefficients and D = d
dx , then the differential

equation P(D) f = 0 is HU stable if and only if the equation P(Z) = 0 has no pure

imaginary solution. This work has been extended in [10] to n×n complex linear

system x′ = Ax , where A is n×n complex matrix. It is shown here that this linear

system is HU stable iff A is dichotomic i.e. the spectrum of A does not intersect

with the imaginary axis.

The stability for partial differential equations have been investigated in [18],
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[30], [42] and [54]. In [18], authors have proved the HU stability of the first and

second order partial differential equations of the forms :

yx(x, t) = f (x, t,y(x, t)) , ayx(x, t)+byt(x, t) = f (x,y, f (x, t)),

p(x, t)yxt(x, t)+q(x, t)yt(x, t)+ pt(x, t)yx(x, t)− px(x, t)yt(x, t) = f (x, t,y(x, t))

and p(x, t)yxx(x, t)+q(x, t)yx(x, t) = f (x, t,y(x, t))

by using Banach’s contraction principle.

In [30], Jung proved the HU stability for linear partial differential equation of

first order of the form : aux(x,y)+buy(x,y)+g(y)u(x,y)+h(y) = 0, a≤ 0,b > 0.

They proved the result by using change of axes and the result concerning the HU

stability of a linear differential equation of first order established in [28].

In 2012, N. Lungu and D. Popa [42], proved the HU stability of first order par-

tial differential equation of the form : p(x,y)ux(x,y)+q(x,y)uy(x,y) = p(x,y)r(x)u+

f (x,y). They proved the stability by using change of co-ordinates and using the

following result.

Theorem 2.1.29 :

Let φ : [a,b)→ R be a solution of the differential equation y′ = q(x,y)
p(x,y) . Then u is a

solution of equation p(x,y)ux(x,y)+q(x,y)uy(x,y) = p(x,y)r(x)u+ f (x,y) if and only

if there exists a function F ∈C1(I,X) such that

u(x,y) = e−L(x){∫ x
a

f (θ ,φ(θ)+y−φ(x))
p(θ ,φ(θ)+y−φ(x))eL(θ)dθ +F(y−φ(x))

}
, for every (x,y) ∈ D ,

where L(x) =−
∫ x
a r(θ)dθ ,x ∈ [a,b) , I = {y−φ(x) : (x,y) ∈D}, X is a Banach space

over K (K is one the fields R or C) , D = [a,b)×R,a ∈ R and b ∈ R∪ {+∞} ,

p,q ∈C(D,K), f ∈C(D,X) and r ∈C([a,b),R).

In [54], HUR stability for the heat equation have been studied. In this pa-

per author have proved HUR stability for heat equation on Rn by using Fourier

transform method and result on its convolution. Further he has proved the HUR
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stability for heat equation of the type: ∂u
∂ t = a2 ∂2u

∂x2 , t > 0, 0 < x < l,a > 0, with

the initial condition u(x,0) = µ(x), 0 ≤ x ≤ l and boundary conditions u(0, t) =

v1(t),ux(0, t) = v2(t), t ≥ 0,

where l ∈ R+,µ(x) ∈C(−∞,∞),v1(t),v2(t) ∈C(−∞,∞) and u(x, t) ∈C2
1(R× (0,∞)).

The above stability result was proved by using Laplace transform.

In [41], authors have proved the HU stability of the hyperbolic partial differen-

tial equation of the type ∂2u
∂x∂y = f (x,y,u(x,y), ∂u

∂x (x,y),
∂u
∂y (x,y)) ,0≤ x < a,0≤ y < b

. They proved the following result.

Theorem 2.1.30 : [41]

One assumes that

(i) a < ∞,b < ∞; (ii) f ∈C([0,a]× [0,b]×B3,B);

(iii) ∃ L f > 0 such that | f (x,y,z1,z2,z3)− f (x,y, t1, t2, t3)| ≤L f max{|zi−ti|, i= 1,2,3},

for all x ∈ ([0,a],y ∈ ([0,b] and z1,z2,z3, t1, t2, t3 ∈ B,where B is a real or

complex Banach space.

Then,

(a) for φ ∈C1([0,a],B) and Ψ ∈C1([0,b],B) ,the hyperbolic PDE

∂ 2u
∂x∂y

(x,y) = f (x,y,u(x,y),
∂u
∂x

(x,y),
∂u
∂y

(x,y)), (2.4)

has a unique solution, which satisfies

u(x,0) = φ(x),∀x ∈ [0,a], u(0,y) = Ψ(y),∀y ∈ [0,b];

(b) Equation 6.12 is Hyers-Ulam stable.

They proved this by using the result involving integral inequalities. In the same

paper authors have discussed the HUR stability of the equation 6.12.

In [6], the authors have proved the HU stability for poisson’s problem with

Dirichlet boundary conditions {
−∆u= f , in Ω

u=0, on ∂Ω
, with respect to weak solutions in
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H1
0 (Ω), where f ∈H−1(Ω),H : G1 −→G2,G1 be a group and G2 be a metric group,

operator A : H1
0 (Ω)−→ H1

0 (Ω), Ω be a bounded domain in Rd such that it’s border

∂Ω is sufficiently smooth. They proved the HU stability using fixed point equation

as x = A(x) , weakly picard operator and by the following result :

Theorem 2.1.31 :

Let (X ,d) be a metric group. If A : X −→ X is a ψ- weakly picard operator then the

fixed point equation x = A(x) is generalized HU stable.

Further, in the same paper, authors have proved the HU stability of nonlinear

elliptic problem {
−∆u(x)= f (x,y),inΩ

u=0, on ∂Ω
, where f : Ω×R−→ R and remaining symbols

with their meaning as discussed above.

It may be mentioned that HU stability has application in Biology and Eco-

nomics [2].

2.3 PRELIMINARIES

In this section, we shall state some basic theorems, without proofs, used during

this work.

THEOREM 2.2.1 [22] :

Let X be a complex Banach space. Assume that p,q : I → C and f : I → X are

continuous functions and y1 : I→ X is a nonzero twice continuously differentiable

function which satisfies the differential equation y′′1(x)+ p(x)y′1(x)+q(x)y1(x) = 0.

If a twice continuously differentiable function y : I→ X satisfies

|y′′(x)+ p(x)y′(x)+q(x)y− f (x)| ≤ ψ(x), for all x ∈ I, where k = y
y1(a)

∈ X and

ψ : I→ (0,∞), is a continuous function, then there exists a unique x0 ∈ X such that
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∥∥∥∥∥y(x)− y1(x)

{∫ x

a

[
e

{
−
∫ s
a(

2y′1(u)
y1(u)

+p(u))du
}
·

(
x0 +

∫ s
a

f (v)
y1(v)

· e
∫ v
a (

2y′1(u)
y1(u)

+p(u))du
dv

)]
ds+ k

}∥∥∥∥∥
≤ ||y1(x)||×

∫ x

a

[
e
−ℜ

(∫ s
a(

2y′1(u)
y1(u)

+p(u))du
)
·

∣∣∣∫ b
s e

{
ℜ

(∫ t
a(

2y′1(u)
y1(u)

+p(u))du
)
· ψ(t)
||y1(t)||

dt
}∣∣∣]ds.

THEOREM 2.2.2 [54] :

If u(x, t) ∈C2
1(R× (0,∞)), then the initial-boundary value problem

∂u
∂ t = a2 ∂2u

∂x2 , t > 0,0 < x < l,

with initial condition u(x,0) = µ(x), 0≤ x≤ l

and the boundary conditions u(0, t) = v1(t), ux(0, t) = v2(t) t ≥ 0,

where µ(x) ∈C(−∞,∞), is stable in the sense of Hyers-Ulam-Rassias.

THEOREM 2.2.3 [18] (Banach Contraction Principle) :

Let (X ,d) be a complete metric space and T : X → X be a contraction, that is, there

exists α ∈ (0,1) such that d(T x,Ty) ≤ αd(x,y),∀x,y ∈ X . Then ∃ a unique a ∈ X

such that Ta = a. Moreover, a = lim
n→∞

T nx and d(a,x)≤ 1
(1−α)

d(x,T x),∀x ∈ X .

THEOREM 2.2.4 [18] :

Let c ∈ I, I = [a,b] with a < b, p,q : I× I→ R be continuous functions with

p(x, t) 6= 0,∀x, t ∈ I, φ : I× I→ (0,∞) be a continuous function, L : I× I→ [1,∞) be

an integrable function and f : I× I×R→R be a continuous function. Assume that
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there exists, 0 < β < 1 such that

∫ x

c
L(τ, t)φ(τ, t)ds < βφ(x, t);

h(x,c) =−
{

p(x,c)yx(x,c)− px(x,c)y(x,c)+q(x,c)y(x,c)
}

;

K(x, t,y(x, t)) =−{p(x, t)}−1{(px(x, t)−q(x, t))y(x, t)+h(x,c)−
∫ t

c
f (x,τ,y(x,τ))dτ

}
and

|K(x, t,u(x, t))−K(x, t,v(x, t))| ≤ L(x, t)|u(x, t)− v(x, t)|,

∀c,x, t ∈ I and h,y,u,v ∈C(I× I). Let y : I× I→ R be a function such that

|p(x, t)yxt(x, t)+q(x, t)yt(x, t)+ pt(x, t)yx(x, t)− px(x, t)yt(x, t)− f (x, t,y(x, t))|

≤ φ(x, t),

∀x, t ∈ I and px(x, t) = q(x, t) holds.

Then there exists a unique solution y0 : I× I→ R of the differential equation

p(x, t)yxt(x, t)+q(x, t)yt(x, t)+ pt(x, t)yx(x, t)− px(x, t)yt(x, t) = f (x, t,u(x, t))

such that

|y(x, t)− y0(x, t)| ≤
β

(1−β )
φ(x, t), ∀x, t ∈ I.

THEOREM 2.2.5 [41] :

One assumes that

(i) f ∈C([0,∞)× [0,∞×B3,B);

(ii) there exists l f ∈C1([0,∞)× [0,∞,R+) such that

| f (x,y,z1,z2,z3)− f (x,y, t1, t2, t3)| ≤ l f (x,y)max{|zi− ti|, i = 1,2,3},

for all x,y ∈ [0,∞);

(iii) there exist λ 1
φ
,λ 2

φ
,λ 3

φ
> 0 such that
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∫ x
0
∫ y
0 φ(s, t)dsdt ≤ λ 1

φ
φ(x,y), ∀x,y ∈ [0,∞);∫ y

0 φ(s, t)dt ≤ λ 2
φ

φ(x,y), ∀x,y ∈ [0,∞);∫ x
0 ds≤ λ 3

φ
φ(x,y), ∀x,y ∈ [0,∞);

(iv) φ : R+×R+→ R+ is increasing.

Then the hyperbolic partial differential equation

∂2u
∂x∂y = f (x,y,u(x,y), ∂u

∂x (x,y),
∂u
∂y (x,y)), 0≤ x < a,0≤ y < b (a = ∞ and b = ∞),

is generalised Ulam-Hyers-Rassias stable.



Chapter 3

HYERS ULAM RASSIAS

STABILITY OF THIRD ORDER

LINEAR ORDINARY

DIFFERENTIAL EQUATION

Some contents of this chapter is presented at the Conference [see CP1].
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3.1 INTRODUCTION

In this chapter we study the Hyers Ulam Rassias stability of third order linear

ordinary differential equation. As mentioned earlier generalized Hyers - Ulam

stability of the linear differential equation of second order have been investigated

in [22]. In fact, they proved the stability of the linear ordinary differential equation

of the type

y′′(x)+ p(x)y′(x)+q(x)y(x) = f (x),

with the condition that there exists a nonzero twice differential function y1 : I−→C

such that y′′1 + p(x)y′1 +q(x)y1 = 0, for all x ∈ I = (a,b), where C is a complex Ba-

nach space.

We extend this idea to prove the stability of the third order non-homogeneous

linear ordinary differential equation of the type

y′′′(x)+ p(x)y′′(x)+q(x)y′(x)+ r(x)y(x) = f (x), (3.1)

where y ∈C3[a,b], p,q,r, f ∈C[a,b] and −∞ < a < b < ∞.

We prove the result by imposing certain integrability conditions on its coeffi-

cients. An example have been considered as an illustration.

First, we define the Hyers Ulam Rassias stability of the differential equation

(3.1).

DEFINITION 3.1.1 : Let X be a normed space and let I be an open interval.

We say that the differential equation (3.1) has the Hyers - Ulam - Rassias stable,
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if for any function h : I −→ X satisfying the differential inequality

|h′′′(x)+ p(x)h′′(x)+q(x)h′(x)+ r(x)h(x)− f (x)| ≤Ψ(x), for all x ∈ I,

there exist a solution g : I −→ X of (3.1) such that |h(x)− g(x)| ≤ ψ(x), for any

x ∈ I, where Ψ,ψ : I −→ (0,∞) are continuous functions not depending on h and g

explicitly.

3.2 MAIN RESULT

In this section we prove our main result of this chapter. We discuss the Hyers-

Ulam-Rassias stability of (3.1). For the sake of convenience, all the integrals and

derivatives will be viewed as existing.

Let I = (a,b) be an arbitrary interval and y1 : I −→C be a non- zero solution of

corresponding homogeneous equation of (3.1), where

y′′′1 (x)+ p(x)y′′1(x)+q(x)y′1(x)+ r(x)y1(x) = 0. (3.2)

It may be noted that there exists a solution y1 of (3.2) (may be complex valued)

such that it does not vanish on I (see for example [12]). We have the following

result.

THEOREM 3.2.1 : Let C be a Banach space. Assume that p,q,r, f : I−→C are

continuous functions and y1 : I −→C is a non-zero thrice continuously differential

function which satisfies the differential inequality (3.2). If a thrice continuously

differential function y : I −→C satisfies

|y′′′(x)+ p(x)y′′(x)+q(x)y′(x)+ r(x)y(x)− f (x)| ≤Ψ(x), (3.3)
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for all x ∈ I, where Ψ : I −→ (0,∞) is a continuous function, then there exist a

unique z(b) ∈C such that

∣∣∣y(x)− y1(x)
{∫ x

a
u0(t)

[
v′1(a)+ z(b)

∫ t

a
e
−
∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx
ds

+
∫ t
a e
−
∫ s
a(

2u′o(x)
u0(x)

+p1(x)dx)(∫ s
a{

f1(l)
u0(l)

}e
∫ l
a(

2u′o(x)
u0(x)

+p1(x))dx
dl
)

ds
]
dt+v(a)

}∣∣∣
≤ |y1(x)|×

∫ x

a
|u0(t)|

[∫ t

a
e
−ℜ

(∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx
)
·

∣∣∣∫ b

s
e
ℜ

(∫ t
a[

2u′0(x)
u0(x)

+p1(x)]dx
)

Ψ2(t)dt
∣∣∣ds
]
dt, (3.4)

where v(a) = y(a)
y1(a)

∈C, v′1(a) =
v′(a)
u0(a)

, Ψ2(x) =
Ψ1(x)
|u0(x)|

, Ψ1(x) =
Ψ(x)
|y1(x)|

,

∫ b
a e

ℜ

(∫ t
a[

2u′0(x)
u0(x)

+p1(x)]dx
)

Ψ2(t)dt < ∞ and u0(x) is a twice differential func-

tion which is a solution of

u′′0(x)+ p1(x)u
′
0(x)+q1(x)u0(x) = 0,

with p1(x) = {
3y′1(x)
y1(x)

+ p(x)} and q1(x) = {
3y′′1(x)
y1(x)

+
2p(x)y′1(x)

y1(x)
+q(x)}.

Proof. : Assume that

v(x) =
y(x)
y1(x)

, ∀x ∈ I. (3.5)

It follows from equation (3.2), (3.3) and (3.5) that

|(v(x)y1(x))
′′′+ p(x)(v(x)y1(x))

′′+q(x)(v(x)y1(x))
′+ r(x)(v(x)y1(x))− f (x)|

= |(v′(x)y1(x)+ v(x)y′1(x))
′′+ p(x)(v′(x)y1(x)+ v(x)y′1(x))

′
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+ q(x)(v′(x)y1(x)+ v(x)y′1(x))+ r(x)(v(x)y1(x))− f (x)|

= |(v′′(x)y1(x)+ v′(x)y′1(x)+ v′(x)y′1(x)+ v(x)y′′1(x))
′

+p(x)
[
v′′(x)y1(x)+ v′(x)y′1(x)+ v′(x)y′1(x)+ v(x)y′′1(x)

]

+q(x)[v′(x)y1(x)+ v(x)y′1(x)]+ r(x)(v(x)y1(x))− f (x)|

= |
[
v′′′(x)y1(x)+ v′′(x)y′1(x)+ v′′(x)y′1(x)+ v′(x)y′′1(x)+ v′′(x)y′1(x)

+ v′(x)y′′1(x)+ v′(x)y′′1(x)+ v(x)y′′′1 (x)
]
+

p(x)[v′′(x)y1(x)+ v′(x)y′1(x)+ v′(x)y′1 + v(x)y′′1(x)]

+ q(x)(v′(x)y1(x)+ v(x)y′1(x))+ r(x)v(x)y1(x)− f (x)|

= |v′′′(x)y1(x)+ v′′(x){3y′1(x)+ p(x)y1(x)}

+ (v′(x)){3y′′1(x)+2p(x)y′1(x)+q(x)y1(x)}

+ v(x){y′′′1 (x)+ p(x)y′′1(x)+q(x)y′1(x)+ r(x)y1(x)}− f (x)|

= |v′′′(x)y1(x)+ v′′(x)
{

3y′1(x)+ p(x)y1(x)
}

+v′(x)
[
3y′′1(x)+2p(x)y′1(x)+q(x)y1(x)

]
− f (x)|
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= |y1(x)||v′′′(x)+v′′(x)
{3y′1(x)

y1(x)
+ p(x)

}
+v′(x)

{3y′′1(x)
y1(x)

+
2p(x)y′1(x)

y1(x)
+q(x)

}
− f (x)

y1(x)
|

≤Ψ(x).

⇒ |v′′′(x)+ v′′(x)
{3y′1(x)

y1(x)
+ p(x)

}
+ v′(x)

{3y′′1(x)
y1(x)

+
2p(x)y′1(x)

y1(x)
+q(x)

}
− f (x)

y1(x)
|

≤ Ψ(x)
|y1(x)|

.

Letting Ψ(x)
|y1(x)|

= Ψ1(x), we get

|v′′′(x)+ v′′(x)
{3y′1(x)

y1(x)
+ p(x)

}
+ v′(x)

{3y′′1(x)
y1(x)

+
2p(x)y′1(x)

y1(x)
+q(x)

}
− f (x)

y1(x)
|

≤Ψ1(x).

(3.6)

Let {
3y′1(x)
y1(x)

+ p(x)}= p1(x), {
3y′′1(x)
y1(x)

+
2p(x)y′1(x)

y1(x)
+q(x)}= q1(x) and

f1(x) =
f (x)

y1(x)
.

Then (3.6) becomes

|v′′′(x)+ p1(x)v
′′(x)+q1(x)v

′(x)− f1(x)| ≤Ψ1(x). (3.7)

Let u0(x) be a solution of

u′′0(x)+ p1(x)u
′
0(x)+q1(x)u0(x) = 0. (3.8)

Let
v′(x)
u0(x)

= v′1(x), (3.9)
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and let z(s) = e

∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx
v′′1(s)−

∫ s
a{

f1(t)
u0(t)

e

∫ t
a(

2u′o(x)
u0(x)

+p1(x))dx
}dt.

Then

|z(s)− z(l)|=
∣∣∣∫ s

l

d
dt

[
e

∫ t
a(

2u′o(x)
u0(x)

+p1(x))dx
v′′1(t)−

∫ t

a

f1(l)
u0(l)

(e

∫ l
a(

2u′o(x)
u0(x)

+p1(x))dx
)dl
]
dt
∣∣∣.

|z(s)− z(l)|=
∣∣∣∫ s

l
e

∫ t
a(

2u′o(x)
u0(x)

+p1(x))dx[
v′′′1 (t)+(

2u′o(x)
u0(x)

+ p1(x))v
′′
1(t)−

f1(t)
u0(t)

]
dt
∣∣∣.

(3.10)

Then using the equations (3.7) and (3.9), we get∣∣∣uo(x)
[
v′′′1 (x)+

(
2u′o(x)
u0(x)

+ p1(x)
)

v′′1(x)−
f1(x)
u0(x)

]∣∣∣≤Ψ1(x).

That is∣∣∣v′′′1 (x)+
(

2u′o(x)
u0(x)

+ p1(x)
)

v′′1(x)−
f1(x)
u0(x)

∣∣∣≤ Ψ1(x)
|uo(x)|

.

Letting Ψ1(x)
|uo(x)|

= Ψ2(x), we get

∣∣∣v′′′1 (x)+
(2u′o(x)

u0(x)
+ p1(x)

)
v′′1(x)−

f1(x)
u0(x)

∣∣∣≤Ψ2(x). (3.11)

Then from (3.10), the integrability condition
∫ b
a e

ℜ(
∫ t
a[

2u′o(x)
u0(x)

+p1(x)]dx)
(Ψ2(t))dt <

∞, implies

|z(s)− z(l)| ≤
∣∣∣∫ s

l
e
ℜ

(∫ t
a[

2u′0(x)
u0(x)

+p1(x)]dx
)
(Ψ2(t))dt

∣∣∣. (3.12)

which implies that {z(s)}sεI is a Cauchy net. So

lim
s→b

z(s)≡ z(b)

exists, where z(b) ∈C.



3.2 MAIN RESULT 36

For any x ∈ I, consider∣∣∣∣∣y(x)− y1(x)

{∫ x

a
u0(t)

[
v′1(a)+ z(b)

∫ t

a
e
−
∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx
ds

+
∫ t
a e
−
∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx(∫ s
a

f1(l)
u0(l)

e

∫ l
a (

2u′o(x)
u0(x)

+p1(x))dx
dl
)

ds

]
dt+v(a)

}∣∣∣∣∣
=

∣∣∣∣∣v(x)y1(x)− y1(x)

{∫ x

a
u0(t)

[
v′1(a)+ z(b)

∫ t

a
e
−
∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx
ds

+
∫ t
a e
−
∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx(∫ s
a

f1(l)
u0(l)

e

∫ l
a (

2u′o(x)
u0(x)

+p1(x))dx
dl
)

ds

]
dt+v(a)

}∣∣∣∣∣
=

∣∣∣∣∣y1(x)

{
v(x)−

∫ x

a
u0(t)

[
v′1(a)+ z(b)

∫ t

a
e
−
∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx
ds

+
∫ t
a e
−
∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx(∫ s
a

f1(l)
u0(l)

e

∫ l
a(

2u′o(x)
u0(x)

+p1(x))dx
dl
)

ds

]
dt+v(a)

}

−v(a)

∣∣∣∣∣

=

∣∣∣∣∣y1(x)

{∫ x
a v′(t)dt−

∫ x

a
u0(t)

[
v′1(a)+ z(b)

∫ t

a
e
−
∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx
ds

+
∫ t
a e
−
∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx(∫ s
a

f1(l)
u0(l)

e

∫ l
a (

2u′o(x)
u0(x)

+p1(x))dx
dl
)

ds

]
dt

}∣∣∣∣∣
By using equation (3.9) we get,

=

∣∣∣∣∣y1(x)

{∫ x

a
u0(t)v

′
1(t)dt−

∫ x

a
u0(t)

[
v′1(a)+z(b)

∫ t

a
e
−
∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx
ds

+
∫ t
a e
−
∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx(∫ s
a

f1(l)
u0(l)

e

∫ l
a (

2u′o(x)
u0(x)

+p1(x))dx
dl
)

ds

]
dt

}∣∣∣∣∣
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=

∣∣∣∣∣y1(x)

{∫ x

a
u0(t)

[
v′1(t)−

(
v′1(a)+ z(b)

∫ t

a
e
−
∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx
ds

+
∫ t
a e
−
∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx(∫ s
a

f1(l)
u0(l)

e

∫ l
a (

2u′o(x)
u0(x)

+p1(x))dx
dl
)

ds

)]
dt

}∣∣∣∣∣
=

∣∣∣∣∣y1(x)

{∫ x

a
u0(t)

[∫ t

a
v′′1(s)ds− z(b)

∫ t

a
e
−
∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx
ds

−
∫ t

a
e
−
∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx(∫ s

a

f1(l)
u0(l)

e

∫ l
a (

2u′o(x)
u0(x)

+p1(x))dx
dl
)

ds

]
dt

}∣∣∣∣∣
=

∣∣∣∣∣y1(x)

{∫ x

a
u0(t)

[∫ t

a
e
−
∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx
(

e

∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx
v′′1(s)

−z(b)−
∫ s

a

f1(l)
u0(l)

e

∫ l
a (

2u′o(x)
u0(x)

+p1(x))dx
dl

)
ds

]
dt

}∣∣∣∣∣
=

∣∣∣∣∣y1(x)

{∫ x

a
u0(t)

[∫ t

a
e
−
∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx
{z(s)− z(b)}ds

]
dt

}∣∣∣∣∣
≤ |y1(x)|

∣∣∣∣∣
∫ x

a
u0(t)

[∫ t

a
e
−ℜ

(∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx
)
{z(s)− z(l)}ds

]
dt

∣∣∣∣∣+
|y1(x)|

∣∣∣∣∣
∫ x

a
u0(t)

[∫ t

a
e
−ℜ

(∫ s
a(

2u′o(x)
u0(x)

+p1(x)dx
)
{z(l)− z(b)}ds

]
dt

∣∣∣∣∣

≤ |y1(x)|×
∫ x

a
|u0(t)|

[∫ t

a
e
−ℜ

(∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx
)
|z(s)− z(l)|ds

]
dt +

|y1(x)|×
∫ x

a
|u0(t)|

[∫ t

a
e
−ℜ

(∫ s
a(

2u′o(x)
u0(x)

+p1(x)dx
)
|z(l)− z(b)|ds

]
dt

By using equation (3.12), we have
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≤ |y1(x)|
∫ x

a
|u0(t)|

[∫ t

a
e
−ℜ

(∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx
)
·

∣∣∣∫ s
l e

ℜ

(∫ t
a[

2u′0(x)
u0(x)

+p1(x)]dx
)

Ψ2(t)dt
∣∣∣ds

]
dt

+ |y1(x)|×
∫ x

a
|u0(t)|

[∫ t

a
e
−ℜ

(∫ s
a(

2u′o(x)
u0(x)

+p1(x)dx
)
|z(l)− z(b)|ds

]
dt

→ |y1(x)|×
∫ x

a
|u0(t)|

[∫ t

a
e
−ℜ

(∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx
)
·

∣∣∣∫ b
s e

ℜ

(∫ t
a[

2u′0(x)
u0(x)

+p1(x)]dx
)

Ψ2(t)dt
∣∣∣ds

]
dt,

as l→ b.

Now, we prove the uniqueness of z(b). Assume that z(b1),z(b2) ∈C also satis-

fies the inequality (3.4) in place of z(b). Then we have,

|y1(x)|

∣∣∣∣∣
∫ x

a
u0(t)

[
{z(b2)− z(b1)}

∫ t

a
e
−
∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx
ds

]
dt

∣∣∣∣∣
≤ 2|y1(x)|

∫ x

a
|u0(t)|

[∫ t

a
e
−ℜ

(∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx
)
·

∣∣∣∫ b
s e

ℜ

(∫ t
a[

2u′0(x)
u0(x)

+p1(x)]dx
)

Ψ2(t)dt
∣∣∣ds

]
dt.

⇒ |z(b2)− z(b1)|

∣∣∣∣∣
∫ x

a
u0(t)

(∫ t

a
e
−
∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx
ds

)
dt

∣∣∣∣∣
≤ 2

∫ x

a
|u0(t)|

[∫ t

a
e
−ℜ

(∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx
)
·

∣∣∣∫ b
s e

ℜ

(∫ t
a[

2u′0(x)
u0(x)

+p1(x)]dx
)

Ψ2(t)dt
∣∣∣ds

]
dt.
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⇒ |z(b2)− z(b1)|

≤
2
∫ x

a
|u0(t)|

[∫ t

a
e
−ℜ

(∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx
)∣∣∣∫ b

s
e
ℜ

(∫ t
a[

2u′0(x)
u0(x)

+p1(x)]dx
)

Ψ2(t)dt
∣∣∣ds

]
dt

∣∣∣∫ x

a
u0(t)

(∫ t

a
e
−
∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx
ds
)

dt
∣∣∣

It follows from the integrability hypothesis that

∣∣∣∫ b
s e

ℜ

(∫ t
a[

2u′0(x)
u0(x)

+p1(x)]dx
)

Ψ2(t)dt
∣∣∣→ 0 as s→ b.

This implies that z(b1) = z(b2).

Hence, every third order linear differential equation has the Hyers - Ulam -

Rassias stability with the condition that there exists a solution of corresponding

homogeneous equation.

Remark 3.2.2 It follows from Theorem (3.2.1) that

ỹ(x) = y1(x)
{∫ x

a
u0(t)

[
c1 + c2

∫ t

a
e
−
∫ s
a(

2u′o(x)
u0(x)

+p1(x))dxds
.

+
∫ t

a
e
−
∫ s
a(

2u′o(x)
u0(x)

+p1(x))dx(∫ s

a

f1(l)
u0(l)

e

∫ l
a(

2u′o(x)
u0(x)

+p1(x))dx
dl
)

ds
]
dt + c3

}
(3.13)

is the general solution of the differential equation (3.1), where c1,c2,c3 are

arbitrary constants.
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3.3 AN ILLUSTRATION

We now give an example in support of the result obtained in previous section.

Example 3.3.1 Consider the differential equation

y′′′(x)−λy(x) = f (x) (3.14)

where λ ∈ C. Let I = (a,b) be an open interval and a,b ∈ R be arbitrarily given

with a < b. Let f : I −→C, ψ : I −→ (0,∞) be continuous functions. Assume that

y : I −→C is a thrice continuously differentiable function satisfying the differential

inequality

|y′′′(x)−λy(x)− f (x)| ≤ ψ(x) (3.15)

for all x ∈ I. Let λ
1
3 = a + i b and (3a -

√
3) <0.

We know that y1(x) = e−kx is a solution of corresponding homogeneous equa-

tion (3.14), where k = λ
1
3 .

It follows from Theorem 3.2.1 that there exist a solution u0 = e(
3k
2 +

√
3ki
2 )x of

u′′0(x)+
3y′1
y1

u′0(x)+
3y′′1
y1

u0(x) = 0.

Again it follows from Theorem 3.2.1, Remark 3.2.2 and (3.15) that there exist

a solution ỹ : I −→C of (3.14) such that

ỹ(x) = e−kx
{∫ x

a
e(

3k
2 +

√
3ki
2 )t

[
c1 + c2

(1− e
√

3ki(a−t)
√

3ki

)
+
∫ t

a

{
e−
√

3ki(s−a)
(∫ s

a
f (l)e(

√
3i−1)kl

2 −
√

3kiadl
)}

ds

]
dt + c3

}
, (3.16)

for all x∈ I with the integrability condition
∫ b
a {e

ℜ(
∫ t
a
√

3kidx)
ψ2(t)}dt <∞ where

ψ2(t) =
ψ1(t)
|uo|

,ψ1(t) =
ψ(t)
|y1|

and
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∣∣∣∣∣y(x)− e−kx
{∫ x

a
e(

3k
2 +

√
3ki
2 )t

[
v′1(a)+ z(b)

(1− e
√

3ki(a−t)
√

3ki

)
+
∫ t
a

{
e−
√

3ki(s−a)
(∫ s

a f (l)e(
√

3i−1)kl
2 −
√

3kiadl
)}

ds

]
dt+v(a)

}∣∣∣∣∣
≤ |e−kx|×

∫ x

a
|e(

3k
2 +

√
3ki
2 )t |

[∫ t

a
e−ℜ(

√
3ki(s−a))·∣∣∣∫ b

s eℜ(
√

3ki(t−a))
(

Ψ(t)

|e−kt ||e( 3k
2 +

√
3ki
2 )t|

)
dt
∣∣∣ds
]
dt.
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4.1 INTRODUCTION

In this chapter, we establish the Hyers-Ulam-Rassias (HUR) stability for linear

homogeneous partial differential equations. We use the Laplace transform method

to prove our results.

First , we establish the HUR stability of first order linear homogeneous partial

differential equation, of the form

∂u
∂ t

= a
∂u
∂x

, t > 0,0 < x < l,a > 0 (4.1)

with the initial condition

u(x,0) = µ(x), 0≤ x≤ l (4.2)

and boundary condition

u(0, t) = v0(t), t > 0, (4.3)

where l ∈ R, µ(x) ∈C[0, l], v0(t) ∈C(−∞,∞) and u(x, t) ∈C1
1((0, l)× (0,∞)).

Then, we establish the HUR stability of third order linear homogeneous partial

differential equation, of the type

∂u
∂ t

= a3 ∂ 3u
∂x3 , t > 0,0 < x < l,a > 0 (4.4)

with the initial condition

u(x,0) = µ(x), 0≤ x≤ l (4.5)

and boundary conditions

u(0, t) = v0(t), ux(0, t) = v1(t), uxx(0, t) = v2(t), t ≥ 0, (4.6)
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where l ∈ R, µ(x) ∈C([0, l], v0(t),v1(t),v2(t) ∈C(−∞,∞) and

u(x, t) ∈C3
1((0, l)× (0,∞)).

Further , we extend the result and prove the HUR stability of the nth order

linear homogeneous partial differential equation, of the form

∂u
∂ t

= an ∂ nu
∂xn , t > 0,0 < x < l,a > 0 (4.7)

with initial condition

u(x,0) = µ(x), 0≤ x≤ l (4.8)

and the boundary conditions

u(0, t) = v0(t),ux(0, t) = v1(t),uxx(0, t) = v2(t), · · · · · ·uxx···x(0, t) = vn−1(t) (4.9)

where a, l ∈ R, µ(x) ∈C[0, l], v0(t),v1(t),v2(t),v3(t), · · · · · · ,vn−1(t) ∈C(−∞,∞) and

u(x, t) ∈Cn
1((0, l)× (0,∞)).

First, we define HUR stability of the equation (4.1).

Definition 4.1 : We will say that the equation (4.1) is HUR stable with respect

to φ(x, t)> 0, if ∃ ψ(x, t)> 0 such that for each ε > 0 and for each solution w(x, t) ∈

C1
1((0, l)× (0,∞)) of the inequality

|∂u
∂ t
−a

∂u
∂x
| ≤ εφ(x, t) (4.10)

with conditions (4.2) and (4.3), ∃ a solution u(x, t) ∈C1
1((0, l)× (0,∞)) of the equa-

tion (4.1) such that

|w(x, t)−u(x, t)| ≤ εψ(x, t) (4.11)

∀(x, t) ∈ ((0, l)× (0,∞)),φ(x, t) ∈C((0, l)× (0,∞)) and ψ(x, t) ∈C((0, l)× (0,∞)).
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Similarly, we can define the HUR Stability of Initial - Boundary value prob-

lems (I-BVPs) (4.4)− (4.6) and (4.7) - (4.9) .

Definition 4.2 : [58] For each function f : (0,∞)→ F (R or C) of exponential

order, the Laplace transform of f (t) is defined by

L{ f (t)}= F(s) =
∫

∞
0 e−st f (t)dt.

There exists a unique number −∞≤ σ < ∞ such that this integral converges if

ℜ(s) > σ and diverges if ℜ(s) < σ . The number σ is called abscissa of conver-

gence and is denoted by σ f .

Definition 4.3 : [58] Let f (t) be a continuous function whose Laplace trans-

form F(s) has the abscissa of convergence σ f . Then the inverse Laplace transform

is given by

f (t) = 1
2π

∫
∞
−∞ e(α+iy)tF(α + iy)dy, for any real α > σ f .

4.2 HUR STABILITY OF (4.1)

In this section we prove the HUR stability of first order linear partial differential

equation (4.1). We obtain the results by using the idea in [54].

Theorem 4.2.1 : If w(x, t)∈C1
1((0, l)×(0,∞)) is an approximate solution of the

I-BVP (4.1) - (4.3), then I-BVP (4.1) - (4.3) is HUR stable.

Proof : Given ε > 0. Suppose w(x, t) be an approximate solution of the I-

BVP (4.1) - (4.3). We have to show that, there exists an exact solution u(x, t) ∈

C1
1((0, l)× (0,∞)) of the equation (4.1) such that |w(x, t)−u(x, t)| ≤ εψ(x, t), where

ψ(x, t) ∈C((0, l)× (0,∞)).
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From the definition of HUR stability, we have

|∂w
∂ t −a∂w

∂x | ≤ εα(t− l
a).

⇒−εα(t− l
a
)≤ ∂w

∂ t
−a

∂w
∂x
≤ εα(t− l

a
), (4.12)

where α(t− c) = 0, for t ≤ c and α(t− c) = x(t− c), for t ≥ c,c≥ 0.

Taking Laplace transform of equation (4.12), we get

−εL{α(t− l
a)} ≤ L{∂w

∂ t −a∂w
∂x } ≤ εL{α(t− l

a)}.

⇒ |L{wt −awx}| ≤ εL{α(t− l
a)}. Hence

|L{wt}−aL{wx}| ≤ εL
{

α(t− l
a
)
}
. (4.13)

Also since w(0, t) = v0(t), we get L{w(0, t)}= L{v0(t)}=W (0, p) =V0(p).

Assuming the operation of differentiation w. r. t. x is interchangeable with

integration w. r. t. t in Laplace transform, we get

L{∂w
∂x
}= dW

dx
(x, p) (4.14)

and

L{∂w
∂ t
}= pW (x, p)−w(x,0). (4.15)

From equations, (4.13), (4.14) and (4.15), we get

|pW (x, p)−w(x,0)−adW
dx (x, p)| ≤ εL{α(t− l

a)}.

⇒ |−a{dW
dx (x, p)− pW (x,p)

a +
µ(x)

a }| ≤ εL{α(t− l
a)}.

⇒ |a{dW
dx (x, p)− pW (x,p)

a +
µ(x)

a }| ≤ εL{α(t− l
a)}.

⇒ |dW
dx (x, p)− pW (x,p)

a +
µ(x)

a | ≤
ε
aL{α(t− l

a)}.

⇒ |dW
dx (x, p)− pW (x,p)

a +
µ(x)

a | ≤
ε
a ×

x
p2 e−

pl
a .

Hence

−ε

a
× x

p2 e−
pl
a ≤ dW

dx
(x, p)− pW (x, p)

a
+

µ(x)
a
≤ ε

a
× x

p2 e−
pl
a .

(4.16)
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Integrating the equation (4.16) from 0 to x, we get

− εx2

2ap2 e−
pl
a ≤W (x, p)−W (0, p)− p

a

∫ x

0
W (s, p)ds+

1
a

∫ x

0
µ(s)ds≤ εx2

2ap2 e−
pl
a ,

(4.17)

where

W (0, p) = L{w(0, t)}. (4.18)

It is easily verified that the function U(x, p) = L{u(x, t)}, which is given by

U(x, p) =W (0, p)+ p
a
∫ x
0 U(s, p)ds− 1

a
∫ x
0 µ(s)ds has to satisfy the equation

dW
dx (x, p)− pW (x,p)

a +
µ(x)

a = 0 with the boundary condition (4.18).

Next, consider the difference

∆ = |W (x, p)−U(x, p)|.

= |W (x, p)−W (0, p)− p
a
∫ x
0 U(s, p)ds+ 1

a
∫ x
0 µ(s)ds|.

= |W (x, p)−W (0, p)− p
a
∫ x
0 W (s, p)ds+ 1

a
∫ x
0 µ(s)ds+ p

a
∫ x
0 W (s, p)ds− P

a
∫ x
0 U(s, p)ds|.

≤ |W (x, p)−W (0, p)− p
a
∫ x
0 W (s, p)ds+ 1

a
∫ x
0 µ(s)ds|+ p

a
∫ x
0 |W (s, p)−U(s, p)|ds.

≤ εx2

2ap2 e−
pl
a + p

a
∫ x
0 |W (s, p)−U(s, p)|ds, (by equation (4.17)).

≤ εlx
2ap2 e−

pl
a + p

a
∫ x
0 |W (s, p)−U(s, p)|ds.

By using Grownwall inequality, we get

|W (x, p)−U(x, p)| ≤ εlx
2ap2 e−

pl
a × e

∫ x
0

p
a ds

.

⇒ |W (x, p)−U(x, p)| ≤ εlx
2ap2 e−

pl
a × e

px
a .

⇒ |W (x, p)−U(x, p)| ≤ εlx
2ap2 e−

pl
a × e

pl
a .

⇒ |W (x, p)−U(x, p)| ≤ εlx
2ap2 .

⇒ |W (x, p)−U(x, p)| ≤ εl
2a ×

x
p2 .
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⇒ |W (x, p)−U(x, p)| ≤ εl
2a ×L{α(t)}.

⇒− εl
2a ×L{α(t)} ≤W (x, p)−U(x, p)≤ εl

2a ×L{α(t)}.

⇒− εl
2a ×L{α(t)} ≤ L{w(x, t)−u(x, t)} ≤ εl

2a ×L{α(t)}.

Taking inverse Laplace transform, we get,

− εl
2a ×α(t)≤ w(x, t)−u(x, t)≤ εl

2a ×α(t).

⇒ |w(x, t)−u(x, t)| ≤ εl
2a ×α(t).

Consequently, we get

max
o≤x≤l |w(x, t)−u(x, t)| ≤ εl

2a ×α(t).

Hence the I-BVP (4.1) - (4.3) is HUR stable.

4.3 HUR STABILITY of (4.4)

In this section we discuss the HUR stability of third order linear partial differential

equation (4.4).

Theorem 4.3.1 : If w(x, t) ∈ C3
1((0, l)× (0,∞)) be an approximate solution of

the I-BVP (4.4) - (4.6), then I-BVP (4.4) - (4.6) is HUR stable.

Proof : Given ε > 0. Suppose w(x, t) be an approximate solution of the I-

BVP (4.4) - (4.6). We have to show that there exists an exact solution u(x, t) ∈

C3
1((0, l)× (0,∞)) of the equation (4.4) such that |w(x, t)−u(x, t)| ≤ εψ(x, t), where

ψ(x, t) ∈C((0, l)× (0,∞)).

From the definition of HUR stability we have
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|∂w
∂ t −a3 ∂3w

∂x3 | ≤ εα(t− l3

a3 ).

⇒−εα(t− l3

a3 )≤
∂w
∂ t
−a3 ∂ 3w

∂x3 ≤ εα(t− l3

a3 ), (4.19)

where α(t− c) = 0, for t ≤ c and α(t− c) = x(t− c), for t ≥ c,c≥ 0.

Taking Laplace transform of the equation (4.19), we get

−εL{α(t− l3

a3 )} ≤ L{∂w
∂ t −a3 ∂3w

∂x3 } ≤ εL{α(t− l3

a3 )}.

⇒ |L{∂w
∂ t −a3 ∂3w

∂x3 }| ≤ εL{α(t− l3

a3 )}.

⇒ |L
{

∂w
∂ t

}
−a3L

{
∂ 3w
∂x3

}
| ≤ εL{α(t− l3

a3 )}. (4.20)

Also since w(x, t) satisfies boundary conditions (4.6) , we get

L{w(0, t)} = L{v0(t)} = W (0, p) = V0(p),L{wx(0, t)} = L{v1(t)} = Wx(0, p) =

V1(p) and L{wxx(0, t)}= L{v2(t)}=Wxx(0, p) =V2(p).

Interchanging of operations within Laplace transform, we get

L
{

∂ 3w
∂x3

}
=

d3W
dx3 (x, p) (4.21)

and

L
{

∂w
∂ t

}
= pW (x, p)−w(x,0) (4.22)

Equations (4.20), (4.21) and (4.22) give

|pW (x, p)−w(x,0)−a3 d3W
dx3 (x, p)| ≤ εL{α(t− l3

a3 )}.

⇒ |−a3{d3W
dx3 (x, p)− pW (x,p)

a3 +
µ(x)
a3 }| ≤ εL{α(t− l3

a3 )}.

⇒ |a3{d3W
dx3 (x, p)− pW (x,p)

a3 +
µ(x)
a3 }| ≤ εL{α(t− l3

a3 )}.

⇒ |d
3W

dx3 (x, p)− pW (x,p)
a3 +

µ(x)
a3 | ≤

ε

a3L{α(t− l3

a3 )}.
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⇒ |d
3W

dx3 (x, p)− pW (x,p)
a3 +

µ(x)
a3 | ≤

ε

a3 ×
x

p2 e
− pl3

a3 .

− εx
a3 p2 × e

− pl3

a3 ≤ d3W
dx3 (x, p)− pW (x, p)

a3 +
µ(x)
a3 ≤

εx
a3 p2 × e

− pl3

a3 . (4.23)

Integrating the inequality (4.23) thrice, from 0 to x we get

− εx4

24p2a3 e
− pl3

a3 ≤W (x, p)−W (0, p)− dW
dx

(0, p)x− d2W
dx2 (0, p)

x2

2

− p
2a3

∫ x

0
W (s, p)(x− s)2ds+

1
2a3

∫ x

0
µ(s)(x− s)2ds≤ εx4

24p2a3 e
− pl3

a3 (4.24)

where

W (0, p) =V0(p),Wx(0, p) =V1(p),Wxx(0, p) =V2(p). (4.25)

It is easily verified that the function U(x, p) = L{u(x, t)} which is given by

U(x, p) = V0(p)+V1(p)x+V2(p)x2
2

+ p
2a3

∫ x
0 U(s, p)(x− s)2ds− 1

2a3
∫ x
0 µ(s)(x− s)2ds

has to satisfy the equation

d3W
dx3 (x, p)− pW (x, p)

a3 +
µ(x)
a3 = 0

with the boundary condition (4.25).

Next, consider the difference ,

∆ = |W (x, p)−U(x, p)|.

= |W (x, p)−V0(p)−V1(p)x−V2(p)x2
2 −

p
2a3

∫ x
0 U(s, p)(x−s)2ds+ 1

2a3
∫ x
0 µ(s)(x− s)2ds|.

= |W (x, p)−V0(p)−V1(p)x−V2(p)x2
2 −

p
2a3

∫ x
0 W (s, p)(x−s)2ds+ 1

2a3
∫ x
0 µ(s)(x− s)2ds

+ p
2a3

∫ x
0 W (s, p)(x− s)2ds− p

2a3
∫ x
0 U(s, p)(x− s)2ds|.
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≤ |W (x, p)−V0(p)−V1(p)x−V2(p)x2
2 −

p
2a3

∫ x
0 W (s, p)(x−s)2ds+ 1

2a3
∫ x
0 µ(s)(x− s)2ds|

+ p
2a3

∫ x
0 |W (s, p)−U(s, p)|(x− s)2ds.

≤ εx4

24p2a3 e
− pl3

a3 + p
2a3

∫ x
0 |W (s, p)−U(s, p)|(x− s)2ds (by equation (4.24)) .

≤ εl3x
24p2a3 e

− pl3

a3 + p
2a3

∫ x
0 |W (s, p)−U(s, p)|(x− s)2ds.

By using Grownwall inequality, we get

|W (x, p)−U(x, p)| ≤ εl3x
24p2a3 e

− pl3

a3 × e
p

2a3
∫ x
0 (x−s)2ds

.

⇒ |W (x, p)−U(x, p)| ≤ εl3x
24p2a3 e

− pl3

a3 × e
px3

6a3 .

⇒ |W (x, p)−U(x, p)| ≤ εl3x
24p2a3 e

− pl3

a3 × e
pl3

6a3 .

⇒ |W (x, p)−U(x, p)| ≤ εl3x
24p2a3 e

−5pl3

6a3 .

⇒ |W (x, p)−U(x, p)| ≤ εl3

24a3 ×
x

p2 e
−5pl3

6a3 .

⇒ |W (x, p)−U(x, p)| ≤ εl3

24 a3 ×L{α(t− 5l3

6a3 )}.

⇒− εl3

24 a3 ×L{α(t− 5l3

6a3 )} ≤W (x, p)−U(x, p)≤ εl3

24 a3 ×L{α(t− 5l3

6a3 )}.

⇒− εl3

24 a3 ×L{α(t− 5l3

6a3 )} ≤ L{w(x, t)−u(x, t)} ≤ εl3

24 a3 ×L{α(t− 5l3

6a3 )}.

Taking inverse Laplace transform, we get,

− εl3

24 a3 ×{α(t− 5l3

6a3 )} ≤ w(x, t)−u(x, t)≤ εl3

24 a3 ×{α(t− 5l3

6a3 )} .

⇒ |w(x, t)−u(x, t)| ≤ εl3

24 a3 ×{α(t− 5l3

6a3 )}.
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Consequently, we have

max
o≤x≤l |w(x, t)−u(x, t)| ≤ εl3

24 a3 {α(t− 5l3

6a3 )}.

Hence the I-BVP (4.4)− (4.6) is HUR stable.

4.4 HUR STABILITY OF (4.7)

In this section we shall extend the results of previous sections and prove the HUR

stability of nth order linear homogeneous partial differential equation (4.7).

Theorem 4.4.1 : If w(x, t) ∈Cn
1((0, l)× (0,∞)) is an approximate solution of the I-

BVP (4.7) - (4.9), then I-BVP (4.7) - (4.9) is HUR stable.

Proof : Let ε > 0 be given. Let w(x, t) be an approximate solution of the I-BVP

(4.7) - (4.9). We shall show that there is an exact solution u(x, t)∈Cn
1((0, l)×(0,∞))

of the equation (4.7) such that |w(x, t)−u(x, t)| ≤ εψ(x, t), where ψ(x, t) ∈C((0, l)×

(0,∞)).

Using the definition of HUR stability, we get∣∣∣∂w
∂ t −an ∂nw

∂xn

∣∣∣≤ εα(t− ln
an ).

This gives

−εα(t− ln

an )≤
∂w
∂ t
−an ∂ nw

∂xn ≤ εα(t− ln

an ), (4.26)

where α(t− c) = 0, for t ≤ c and α(t− c) = x(t− c), for t ≥ c,c≥ 0.

Taking Laplace transform of the equation (4.26), we get

−εL{α(t− ln
an )} ≤ L{∂w

∂ t −an ∂nw
∂xn } ≤ εL{α(t− ln

an )},

and hence∣∣∣L{∂w
∂ t −an ∂nw

∂xn }
∣∣∣≤ εL{α(t− ln

an )}.
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This gives,

∣∣∣L{∂w
∂ t

}
−anL

{
∂ nw
∂xn

}∣∣∣≤ εL
{

α(t− ln

an )
}
. (4.27)

Further, since w(x, t) satisfies boundary conditions (4.9), we get

L{w(0, t)}= L{v0(t)}=W (0, p) =V0(p),

L{wx(0, t)}= L{v1(t)}=Wx(0, p) =V1(p),

L{wxx(0, t)}= L{v2(t)}=Wxx(0, p) =V2(p), · · · · · · ,

· · · · · · ,L{wxx······x(0, t)}= L{vn−1(t)}=Wxx······x(0, p) =Vn−1(p).

As L
{

∂nw
∂xn

}
= dnW

dxn (x, p), L
{

∂w
∂ t

}
= pW (x, p)−w(x,0) and

L
{

α(t− ln
an )
}
= x

p2 e
−p ln

an , with (4.27), we get

∣∣∣−an{dnW
dxn (x, p)− pW (x,p)

an +
µ(x)
an }

∣∣∣≤ ε
x

p2 e
−p ln

an .

⇒ |an{dnW
dxn (x, p)− pW (x,p)

an +
µ(x)
an }| ≤ ε

x
p2 e
−p ln

an .

⇒
∣∣∣dnW

dxn (x, p)− pW (x,p)
an +

µ(x)
an
∣∣∣≤ ε

an
x

p2 e
−p ln

an .

Hence we get

− ε

an
x
p2 e
−p ln

an ≤ dnW
dxn (x, p)− pW (x, p)

an +
µ(x)
an ≤

ε

an
x
p2 e
−p ln

an . (4.28)

Integrating the inequality (4.28), n times from 0 to x, we get

− εxn+1

(n+1)!p2an e
−p ln

an ≤W (x, p)−W (0, p)− dW (0,p)
dx x− d2W

dx2 (0, p)x2
2!

−d3W
dx3 (0, p)x3

3! · · · · · ·−
dn−1W
dxn−1 (0, p)xn−1

n−1 −
p

(n−1)!an
∫ x
0 W (s, p)(x− s)n−1ds

+ 1
(n−1)!an

∫ x
0 µ(s)(x− s)n−1ds≤ εxn+1

(n+1)!p2an e
−p ln

an ,

i. e.

− εxn+1

(n+1)!p2an e
−p ln

an ≤W (x, p)−V0(p)−V1(p)x−V2(p)
x2

2!

−V3(p)
x3

3!
· · · · · ·−Vn−1(p)

xn−1

n−1
− p

(n−1)!an

∫ x

0
W (s, p)(x− s)n−1ds
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+
1

(n−1)!an

∫ x

0
µ(s)(x− s)n−1ds≤ εxn+1

(n+1)!p2an e
−p ln

an . (4.29)

It is easily verified that the function U(x, p) = L{u(x, t)} which is given by

U(x, p) =V0(p)+V1(p)x+V2(p)x2
2! + · · · · · · · · ·+Vn−1(p) xn−1

(n−1)!

+ p
(n−1)!an

∫ x
0 U(s, p)(x− s)n−1ds− 1

(n−1)!an
∫ x
0 µ(s)(x− s)n−1ds

has to satisfy the equation dnW
dxn (x, p)− pW

an (x, p)+ µ(x)
an = 0, with the boundary

conditions

W (0, p) =V0(p),Wx(0, p) =V1(p), · · · · · · ,Wxx···x(0, p) =Vn−1(p). (4.30)

Next consider, the difference,

∆ = |W (x, p)−U(x, p)|.

=
∣∣∣W (x, p)−V0(p)−V1(p)x−V2(p)x2

2! −·· · · · · · · ·−Vn−1(p) xn−1
(n−1)!

− p
(n−1)!an

∫ x
0 U(s, p)(x− s)n−1ds+ 1

(n−1)!an
∫ x
0 µ(s)(x− s)n−1ds

∣∣∣.
=
∣∣∣W (x, p)−V0(p)−V1(p)x−V2(p)x2

2! −·· · · · · · · ·−Vn−1(p) xn−1
(n−1)!

− p
(n−1)!an

∫ x
0 W (s, p)(x− s)n−1ds+ 1

(n−1)!an
∫ x
0 µ(s)(x− s)n−1ds

+ p
(n−1)!an

∫ x
0 W (s, p)(x− s)n−1ds− p

(n−1)!an
∫ x
0 U(s, p)(x− s)n−1ds

∣∣∣.
≤
∣∣∣W (x, p)−V0(p)−V1(p)x−V2(p)x2

2! −·· · · · · · · ·−Vn−1(p) xn−1
(n−1)!

− p
(n−1)!an

∫ x
0 W (s, p)(x− s)n−1ds+ 1

(n−1)!an
∫ x
0 µ(s)(x− s)n−1ds

∣∣∣
+ p
(n−1)!an

∫ x
0 |W (s, p)−U(s, p)|(x− s)n−1ds.

≤ εxn+1

(n+1)!p2an e
− pln

an + p
(n−1)!an

∫ x
0 |W (s, p)−U(s, p)|(x− s)n−1ds,

(by equation (4.29)).

≤ εln
(n+1)!an

x
p2 e
− pln

an + p
(n−1)!an

∫ x
0 |W (s, p)−U(s, p)|(x− s)n−1ds.
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By using Grownwall inequality we get

|W (x, p)−U(x, p)| ≤ εln
(n+1)!an

x
p2 e
− pln

an e

∫ x
0

p
(n−1)!an (x−s)n−1ds

.

⇒ |W (x, p)−U(x, p)| ≤ εln
(n+1)!an

x
p2 e
− pln

an e
pln

n!an .

⇒ |W (x, p)−U(x, p)| ≤ εln
(n+1)!an

x
p2 e

− p(n!−1)ln
ann! .

⇒ |W (x, p)−U(x, p)| ≤ εln
(n+1)!an L{α(t− (n!−1)ln

n!an )}.

⇒− εln
(n+1)!an L{α(t− (n!−1)ln

n!an )}≤W (x, p)−U(x, p)≤ εln
(n+1)!an L{α(t− (n!−1)ln

n!an )}.

⇒− εln
(n+1)!anL{α(t− (n!−1)ln

n!an )}≤L{w(x, t)−u(x, t)}≤ εln
(n+1)!anL{α(t− (n!−1)ln

n!an )}.

Taking inverse Laplace transform, we get,

⇒− εln
(n+1)!an

{
α(t− (n!−1)ln

n!an )
}
≤ w(x, t)−u(x, t)≤ εln

(n+1)!an
{

α(t− (n!−1)ln
n!an )

}
.

⇒ |w(x, t)−u(x, t)| ≤ εln
(n+1)!an

{
α(t− (n!−1)ln

n!an )
}
.

Consequently, we have

max
o≤x≤l |w(x, t)−u(x, t)| ≤ εln

(n+1)!an
{

α(t− (n!−1)ln
n!an )

}
.

Hence the I-BVP (4.7) - (4.9) is HUR stable.

Remark 4.4.1. We have established the HUR stability for first, third and nth or-

der linear homogeneous partial differential equations (4.1), (4.4) and (4.7) respec-

tively by employing Laplace transform method.



Chapter 5

HUR STABILITY OF LINEAR

NON-HOMOGENEOUS PDE

Some contents of this chapter is presented at the Conference [see CP3].
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5.1 INTRODUCTION

In this chapter, we study the HUR stability of the second and third order linear

non-homogeneous partial differential equation. We prove the results by employ-

ing Banach contraction principle.

For this purpose, we consider second order linear non-homogeneous partial

differential equation of the type

r(x, t)utt(x, t)+ p(x, t)uxt(x, t)+q(x, t)ut(x, t)+ pt(x, t)ux(x, t)

−px(x, t)ut(x, t) = g(x, t,u(x, t)).

(5.1)

Here p,q,r : J× J→ R are differentiable functions at least once w. r. t. both the

arguments and r(x, t) 6= 0,∀x, t ∈ J,J = [a,b] is a closed interval and g : J×J×R→R

is a continuous function.

Also, we consider third order linear non-homogeneous partial differential equa-

tion of the type

s(x, t)uttt(x, t)+ r(x, t)utt(x, t)+ p(x, t)uxt(x, t)+q(x, t)ut(x, t)+ pt(x, t)ux(x, t)

−px(x, t)ut(x, t) = g(x, t,u(x, t)).

(5.2)

Here s, p,q,r : J× J→ R are differentiable functions at least once w. r. t. both the

arguments and s(x, t) 6= 0,∀x, t ∈ J,J = [a,b] is a closed interval and g : J×J×R→R

is a continuous function.

We have proved the HUR stability of the above two equations. First, we need

following definition.

Definition 5.1.1 : A function u : J× J→ R is called a solution of the equation

(5.1) (or (5.2)) if u ∈C2(J× J) ( or u ∈C3(J× J)) and satisfies the equation (5.1)

(or (5.2)).

We now define the HUR stability for (5.1) and (5.2).
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Definition 5.1.2 : The equation (5.1) is said to be HUR stable if the following

holds:

Let φ : J× J→ (0,∞) be a continuous function. Then there exists a continuous

function Ψ : J× J→ (0,∞), which depends on φ such that whenever u : J× J→ R

is a continuous function with

|r(x, t)utt(x, t)+ p(x, t)uxt(x, t)+q(x, t)ut(x, t)+ pt(x, t)ux(x, t)

−px(x, t)ut(x, t)−g(x, t,u(x, t))| ≤ φ(x, t),

(5.3)

there exists a solution u0 : J× J→ R of (5.1) such that

|u(x, t)−u0(x, t)| ≤Ψ(x, t), ∀(x, t) ∈ J× J.

Definition 5.1.3: The equation (5.2) is said to be HUR stable if the following

holds:

Let φ : J× J→ (0,∞) be a continuous function. Then there exists a continuous

function Ψ : J× J→ (0,∞), which depends on φ such that whenever u : J× J→ R

is a continuous function with

|s(x, t)uttt(x, t)+ r(x, t)utt(x, t)+ p(x, t)uxt(x, t)+q(x, t)ut(x, t)

+ pt(x, t)ux(x, t)− px(x, t)ut(x, t)−g(x, t,u(x, t))| ≤ φ(x, t),

(5.4)

there exists a solution u0 : J× J→ R of (5.2) such that

|u(x, t)−u0(x, t)| ≤Ψ(x, t), ∀(x, t) ∈ J× J.

We need the following result.

Theorem 5.1.1:( Banach Contraction Principle ) :

Let (Y,d) be a complete metric space, then each contraction map T : Y → Y has a

unique fixed point, that is, there exists b ∈ Y such that T b = b.

Moreover, d(b,w)≤ 1
(1−α)

d(w,Tw),∀w ∈ Y and 0≤ α < 1.

We shall follow the approach of Gordji et al. [18] to establish our results.



5.2 HUR STABILITY OF (5.1) 59

5.2 HUR STABILITY OF (5.1)

In this section we prove the HUR stability of the second order linear non-homogeneous

PDE (5.1). We have the following result.

Theorem 5.2.1: Let c∈ J. Let p, q, r, g be as in (5.1) with following additional

conditions:

(i) |r(x, t)| ≥ 1,∀x, t ∈ J.

(ii) φ : J× J→ (0,∞) be a continuous function and M : J× J→ [1,∞) be an inte-

grable function.

(iii) Assume that there exists α,0 < α < 1 such that

∫ t

c
M(x,s)φ(x,s)ds≤ αφ(x, t). (5.5)

Let

h(x,c) =−
{

r(x,c)ut(x,c)+ p(x,c)ux(x,c)− px(x,c)u(x,c)+q(x,c)u(x,c)
}

(5.6)

and

K(x, t,u(x, t)) =−{|r(x, t)|}−1×
{

p(x, t)ux(x, t)+h(x,c)

−
∫ t

c
f (x,τ,u(x,τ))dτ−

∫ t

c
ut(x,τ)rt(x,τ)dτ

}
.

(5.7)

Suppose that the following holds :

C1 : |K(x, t, l(x, t))−K(x, t,m(x, t))| ≤M(x, t)|l(x, t)−m(x, t)|, ∀ c,x, t ∈ J and

h,u, l,m ∈C(J× J).

C2 : u : J× J→ R be a function satisfying the inequality (5.3) .

C3 : px(x, t) = q(x, t),∀(x, t) ∈ J× J.
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Then there exists a unique solution u0 : J× J→ R of the equation (5.1) of the

form

u0(x, t) = u(x,c)+
∫ t

c
K(x,s,u0(x,s))ds

such that

|u(x, t)−u0(x, t)| ≤
α

(1−α)
φ(x, t),∀x, t ∈ J.

Proof : Consider

|r(x, t)utt(x, t)+ p(x, t)uxt(x, t)+q(x, t)ut(x, t)+ pt(x, t)ux(x, t)

−px(x, t)ut(x, t)−g(x, t,u(x, t))|

= |{r(x, t)ut(x, t)+ p(x, t)ux(x, t)− px(x, t)u(x, t)+q(x, t)u(x, t)}t

−g(x, t,u(x, t))− rt(x, t)ut(x, t)|

From the inequality (5.3), we get

|
{

r(x, t)ut(x, t)+ p(x, t)ux(x, t)− px(x, t)u(x, t)+q(x, t)u(x, t)
}

t

−g(x, t,u(x, t))− rt(x, t)ut(x, t)| ≤ φ(x, t).

Integrating from c to t, we get,

|r(x, t)ut(x, t)+ p(x, t)ux(x, t)− px(x, t)u(x, t)+q(x, t)u(x, t)

−
{

r(x,c)ut(x,c)+ p(x,c)ux(x,c)− px(x,c)u(x,c)+q(x,c)u(x,c)
}

−
∫ t
c g(x,τ,u(x,τ))dτ−

∫ t
c uτ (x,τ)rτ (x,τ)dτ| ≤

∫ t
c φ(x,τ)dτ.

Using condition C3, we get,∣∣∣r(x, t)ut(x, t)+ p(x, t)ux(x, t)+h(x,c)−
∫ t
c g(x,τ,u(x,τ))dτ

−
∫ t
c uτ (x,τ)rτ (x,τ)

∣∣∣≤ ∫ t
c φ(x,τ)dτ,

where h(x,c) is given by equation (5.6).

⇒ |r(x, t)|
∣∣∣ut(x, t)+ |r(x, t)|−1

[
p(x, t)ux(x, t)+h(x,c)−

∫ t
c g(x,τ,u(x,τ))dτ

−
∫ t
c uτ (x,τ)rτ (x,τ)

]∣∣∣≤ ∫ t
c φ(x,τ)dτ.

⇒ |r(x, t)||ut(x, t)−K(x, t,u(x, t))| ≤
∫ t
c φ(x,τ)dτ,
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where K(x, t,u(x, t)) is given by equation (5.7).

⇒ |ut(x, t)−K(x, t,u(x, t))| ≤ |r(x, t)|−1 ∫ t
c φ(x,τ)dτ.

⇒ |ut(x, t)−K(x, t,u(x, t))| ≤
∫ t
c φ(x,τ)dτ, (∵ |r(x, t)| ≥ 1).

Since M : J× J→ [1,∞) is an integrable function, we have

|ut(x, t)−K(x, t,u(x, t))| ≤
∫ t
c M(x,τ)φ(x,τ)dτ.

Using inequality (5.5), we have

⇒ |ut(x, t)−K(x, t,u(x, t))| ≤
∫ t
c M(x,τ)φ(x,τ)dτ ≤ αφ(x, t).

⇒ |ut(x, t)−K(x, t,u(x, t))| ≤ αφ(x, t).

⇒ |ut(x, t)−K(x, t,u(x, t))| ≤ φ(x, t), (∵ 0 < α < 1).

⇒−φ(x, t)≤ ut(x, t)−K(x, t,u(x, t))≤ φ(x, t). (5.8)

⇒ ut(x, t)−K(x, t,u(x, t))≤ φ(x, t).

Integrating from c to t, we get

∫ t

c
{uτ (x,τ)−K(x,τ,u(x,τ))}dτ ≤

∫ t

c
φ(x,τ)dτ

∴ u(x, t)−
{

u(x,c)+
∫ t

c
K(x,τ,u(x,τ))dτ

}
≤
∫ t

c
φ(x,τ)dτ.

Since M : J× J→ [1,∞) is an integrable function, we have

u(x, t)−
{

u(x,c)+
∫ t

c
K(x,τ,u(x,τ))dτ

}
≤
∫ t

c
M(x,τ)φ(x,τ)dτ.

By using inequality (5.5), we get

u(x, t)−
{

u(x,c)+
∫ t

c
K(x,τ,u(x,τ))dτ

}
≤
∫ t

c
M(x,τ)φ(x,τ)dτ

≤ αφ(x, t).
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Thus

u(x, t)−
{

u(x,c)+
∫ t

c
K(x,τ,u(x,τ))dτ

}
≤ αφ(x, t) (5.9)

In a similar way, from the left inequality of (5.8), we obtain

−
[
u(x, t)−

{
u(x,c)+

∫ t

c
K(x,τ,u(x,τ))dτ

}]
≤ αφ(x, t) (5.10)

From the inequalities (5.9) and (5.10), we get

∣∣∣u(x, t)−{u(x,c)+
∫ t

c
K(x,τ,u(x,τ))dτ

}∣∣∣≤ αφ(x, t). (5.11)

Let Y be the set of all continuously differentiable functions l : J×J→R. We define

a metric d and an operator T on Y as follows : For l,m ∈ Y

d(l,m) = sup
x,t∈J

|l(x, t)−m(x, t)|
φ(x, t)

and the operator

(T m)(x, t) = u(x,c)+
∫ t

c
K(x,τ,m(x,τ))dτ. (5.12)

Consider

d(T l,T m) = supx,t∈J

{
(T l)(x,t)−(T m)(x,t)

φ(x,t)

}

= supx,t∈J

{∫ t
c K(x,τ,l(x,τ))dτ−

∫ t
c K(x,τ,m(x,τ))dτ

φ(x,t)

}

≤ supx,t∈J

{∫ t
c |K(x,τ,l(x,τ))−K(x,τ,m(x,τ))|dτ

φ(x,t)

}
.

By using condition C1, we get

d(T l,T m)≤ supx,t∈J

{∫ t
c{M(x,τ)|l(x,τ)−m(x,τ)|}dτ

φ(x,t)

}

= supx,t∈J

{∫ t
c{M(x,τ)φ(x,τ)×|l(x,τ)−m(x,τ)|

φ(x,τ) }dτ

φ(x,t)

}
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≤ supx,t∈J

{∫ t
c{M(x,τ)φ(x,τ)×supx,τ∈J

|l(x,τ)−m(x,τ)|
φ(x,τ) }dτ

φ(x,t)

}

= d(l,m)× supx,t∈J

{∫ t
c{M(x,τ)φ(x,τ)}dτ

φ(x,t)

}

By using inequality (5.5), we get

d(T l,T m)≤ αd(l,m).

Hence by Banach contraction principle, there exists a unique u0 ∈ X such that

Tu0 = u0, that is

u(x,c)+
∫ t
c K(x,τ,u0(x,τ))dτ = u0(x, t) (by using equation (5.12))

and

d(u0,u)≤
1

(1−α)
d(u,Tu). (5.13)

Now by inequality (5.11), we get

|u(x, t)− (Tu)(x, t)| ≤ αφ(x, t).

⇒ |u(x, t)− (Tu)(x, t)|
φ(x, t)

≤ α.

⇒ supx,t∈J
|u(x, t)− (Tu)(x, t)|

φ(x, t)
≤ α.

Thus

d(u,Tu)≤ α (5.14)

Again

d(u0,u) = sup
x,t∈J

|u0(x, t)−u(x, t)|
φ(x, t)

.
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From equation (5.13), we get

d(u0,u)≤
1

(1−α)
d(u,Tu).

sup
x,t∈J

|u0(x, t)−u(x, t)|
φ(x, t)

≤ 1
(1−α)

d(u,Tu).

|u0(x, t)−u(x, t)|
φ(x, t)

≤ sup
x,t∈J

|u0(x, t)−u(x, t)|
φ(x, t)

≤ 1
(1−α)

d(u,Tu).

|u0(x, t)−u(x, t)|
φ(x, t)

≤ 1
(1−α)

d(u,Tu).

From equation (5.14), we get

|u0(x, t)−u(x, t)|
φ(x, t)

≤ 1
(1−α)

α.

|u(x, t)−u0(x, t)| ≤
α

(1−α)
φ(x, t), ∀x, t ∈ J.

Consequently, the equation (5.1) is HUR stable.

5.3 HUR STABILITY OF (5.2)

In this section we prove the HUR stability of third order linear non-homogeneous

PDE (5.2). We prove the following result.

Theorem 6.3.1: Let c ∈ J. Let p, q, r, s, g be as in (5.2) with additional

conditions:

(i) |s(x, t)| ≥ 1,∀x, t ∈ J.

(ii) φ : J×J→ (0,∞) be a continuous function and M : J×J→ [1,∞) be an integrable

function.

(iii) Assume that there exists α,0 < α < 1 such that∫ t

c
M(x,s)φ(x,s)ds≤ αφ(x, t) (5.15)

and ∫ t

c

∫ y

c
{M(x,z)φ(x,z)}dzdy≤ αφ(x, t). (5.16)
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Let

h(x,c)=−
{

s(x,c)utt(x,c)+r(x,c)ut(x,c)+ p(x,c)ux(x,c)− px(x,c)u(x,c)+q(x,c)u(x,c)
}

(5.17)

and

K(x, t,u(x, t)) =−{|s(x, t)|}−1×
{

r(x, t)ut(x, t)+ p(x, t)ux(x, t)+h(x,c)

−
∫ t

c
g(x,τ,u(x,τ))dτ−

∫ t

c
uτ (x,τ)rτ (x,τ)dτ−

∫ t

c
sτ (x,τ)uττ (x,τ)dτ

}
.

(5.18)

Suppose that the following holds :

C1 : |K(x, t, l(x, t))−K(x, t,m(x, t))| ≤M(x, t)|l(x, t)−m(x, t)|, ∀ c,x, t ∈ J and

h,u, l,m ∈C(J× J).

C2 : u : J× J→ R be a function satisfying the inequality (5.4).

C3 : px(x, t) = q(x, t),∀(x, t) ∈ J× J.

Then there exists a unique solution u0 : J× J→ R of the equation (5.2) of the

form

u0(x, t) = u(x,c)+
∫ t
c
∫ y
c K(x,z,u0(x,z))dzdy

such that

|u(x, t)−u0(x, t)| ≤
α

(1−α)
φ(x, t),∀x, t ∈ J.

Proof : Consider

|s(x, t)uttt(x, t)+ r(x, t)utt(x, t)+ p(x, t)uxt(x, t)+q(x, t)ut(x, t)+ pt(x, t)ux(x, t)

−px(x, t)ut(x, t)−g(x, t,u(x, t))|

=
∣∣{s(x, t)utt(x, t)+ r(x, t)ut(x, t)+ p(x, t)ux(x, t)− px(x, t)u(x, t)+q(x, t)u(x, t)

}
t

−g(x, t,u(x, t))− rt(x, t)ut(x, t)− st(x, t)utt(x, t)
∣∣.
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From the inequality (5.4), we get∣∣{s(x, t)utt(x, t)+ r(x, t)ut(x, t)+ p(x, t)ux(x, t)− px(x, t)u(x, t)+q(x, t)u(x, t)
}

t

−g(x, t,u(x, t))− rt(x, t)ut(x, t)− st(x, t)utt(x, t)
∣∣≤ φ(x, t).

Integrating from c to t, we get

∣∣s(x, t)utt(x, t)+ r(x, t)ut(x, t)+ p(x, t)ux(x, t)− px(x, t)u(x, t)+q(x, t)u(x, t)

−
{

s(x,c)utt(x,c)+r(x,c)ut(x,c)+ p(x,c)ux(x,c)− px(x,c)u(x,c)+q(x,c)u(x,c)
}

−
∫ t
c g(x,τ,u(x,τ))dτ−

∫ t
c uτ (x,τ)rτ (x,τ)dτ−

∫ t
c sτ (x,τ)uττ (x,τ)dτ

∣∣≤ ∫ t
c φ(x,τ)dτ.

Using condition C3, we get∣∣∣s(x, t)utt(x, t)+ r(x, t)ut(x, t)+ p(x, t)ux(x, t)+h(x,c)−
∫ t
c g(x,τ,u(x,τ))dτ

−
∫ t
c uτ (x,τ)rτ (x,τ)dτ−

∫ t
c sτ (x,τ)uττ (x,τ)dτ

∣∣≤ ∫ t
c φ(x,τ)dτ ,

where h(x,c) is given by equation (5.17).

⇒ |s(x, t)|
∣∣∣utt(x, t)+ |s(x, t)|−1

{
r(x, t)ut(x, t)+ p(x, t)ux(x, t)+h(x,c)

−
∫ t
c g(x,τ,u(x,τ))dτ−

∫ t
c uτ (x,τ)rτ (x,τ)dτ−

∫ t
c sτ (x,τ)uττ (x,τ)dτ

}∣∣∣
≤
∫ t
c φ(x,τ)dτ.

⇒ |s(x, t)||utt(x, t)−K(x, t,u(x, t))| ≤
∫ t
c φ(x,τ)dτ,

where K(x, t,u(x, t)) is given by equation (5.18).

⇒ |utt(x, t)−K(x, t,u(x, t))| ≤ |s(x, t)|−1 ∫ t
c φ(x,τ)dτ.

⇒ |utt(x, t)−K(x, t,u(x, t))| ≤
∫ t
c φ(x,τ)dτ, (∵ |s(x, t)| ≥ 1).

Since M : J× J→ [1,∞) is an integrable function, we have

|utt(x, t)−K(x, t,u(x, t))| ≤
∫ t
c M(x,τ)φ(x,τ)dτ.

Using inequality (5.15), we have

|utt(x, t)−K(x, t,u(x, t))| ≤
∫ t
c M(x,τ)φ(x,τ)dτ ≤ αφ(x, t).
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⇒ |utt(x, t)−K(x, t,u(x, t))| ≤ αφ(x, t).

⇒ |utt(x, t)−K(x, t,u(x, t))| ≤ φ(x, t), (∵ 0 < α < 1).

⇒−φ(x, t)≤ utt(x, t)−K(x, t,u(x, t))≤ φ(x, t). (5.19)

⇒ utt(x, t)−K(x, t,u(x, t))≤ φ(x, t).

Integrating from c to t, we get

∫ t

c

{
uττ (x,τ)−K(x,τ,u(x,τ))

}
dτ ≤

∫ t

c
φ(x,τ)dτ.

∴ ut(x, t)−ut(x,c)−
∫ t
c K(x,τ,u(x,τ))dτ ≤

∫ t
c φ(x,τ)dτ.

Since M : J× J→ [1,∞) is an integrable function we have,

ut(x, t)−
{

ut(x,c)+
∫ t

c
K(x,τ,u(x,τ))dτ

}
≤
∫ t

c
M(x,τ)φ(x,τ)dτ.

By using inequality (5.15), we get

ut(x, t)−
{

ut(x,c)+
∫ t

c
K(x,τ,u(x,τ))dτ

}
≤
∫ t

c
M(x,τ)φ(x,τ)dτ

≤ αφ(x, t).

⇒ ut(x, t)−ut(x,c)−
∫ t
c K(x,τ,u(x,τ))dτ ≤ αφ(x, t).

⇒ ut(x, t)−ut(x,c)−
∫ t

c
K(x,τ,u(x,τ))dτ ≤ φ(x, t), (∵ 0 < α < 1). (5.20)

Again, integrating from c to t, we get

u(x, t)−u(x,c)−{u(x,c)−u(x,c)}−
∫ t
c
∫ y
c K(x,z,u(x,z))dzdy≤

∫ t
c φ(x,τ)dτ.

⇒ u(x, t)−u(x,c)−
∫ t
c
∫ y
c K(x,z,u(x,z))dzdy≤

∫ t
c φ(x,τ)dτ.

Since M : J× J→ [1,∞) is an integrable function, we have

⇒ u(x, t)−
{

u(x,c)+
∫ t
c
∫ y
c K(x,z,u(x,z))dzdy

}
≤
∫ t
c M(x,τ)φ(x,τ)dτ.

Again, by using inequality (5.15), we get
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⇒ u(x, t)−
{

u(x,c)+
∫ t
c
∫ y
c K(x,z,u(x,z))dzdy

}
≤
∫ t
c M(x,τ)φ(x,τ)dτ.

≤ αφ(x, t).

Thus

u(x, t)−
{

u(x,c)+
∫ t

c

∫ y

c
K(x,z,u(x,z))dzdy

}
≤ αφ(x, t). (5.21)

In a similar way, from the left inequality of (5.19), we obtain

−
[
u(x, t)−

{
u(x,c)+

∫ t

c

∫ y

c
K(x,z,u(x,z))dzdy

}]
≤ αφ(x, t). (5.22)

From inequalities (5.21) and (5.22), we get

∣∣∣u(x, t)−{u(x,c)+
∫ t

c

∫ y

c
K(x,z,u(x,z))dzdy

}∣∣∣≤ αφ(x, t). (5.23)

Let Y be the set of all continuously differentiable functions l : J× J→ R. We

define a metric d and an operator T on Y as follows :

For l,m ∈ Y

d(l,m) = sup
x,t∈J

|l(x, t)−m(x, t)|
φ(x, t)

and the operator

(T m)(x, t) = u(x,c)+
∫ t

c

∫ y

c
K(x,z,m(x,z))dzdy. (5.24)

Consider

d(T l,T m) = supx,t∈J

{
(T l)(x,t)−(T m)(x,t)

φ(x,t)

}

= supx,t∈J

{∫ t
c
∫ y
c K(x,z,l(x,z))dzdy−

∫ t
c
∫ y
c K(x,z,m(x,z))dzdy

φ(x,t)

}

≤ supx,t∈J

{∫ t
c
∫ y
c |K(x,z,l(x,z))−K(x,z,m(x,z))|dzdy

φ(x,t)

}
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By using condition C1, we get,

d(Tl,Tm) ≤ supx,t∈J

{∫ t
c
∫ y
c {M(x,z)|l(x,z)−m(x,z)|}dzdy

φ(x,t)

}

= supx,t∈J

{∫ t
c
∫ y
c {M(x,z)φ(x,z)×|l(x,z)−m(x,z)|

φ(x,z) }dzdy

φ(x,t)

}

≤ supx,t∈J

{∫ t
c
∫ y
c {M(x,z)φ(x,z)×supx,z∈J

|l(x,z)−m(x,z)|
φ(x,z) }dzdy

φ(x,t)

}

= d(l,m)× supx,t∈J

{∫ t
c
∫ y
c {M(x,z)φ(x,z)}dzdy

φ(x,t)

}

By using inequality (5.16), we get

d(T l,T m)≤ αd(l,m).

Hence by using Banach contraction principle, there exists a unique u0 ∈ X such

that Tu0 = u0, that is

u(x,c)+
∫ t
c
∫ y
c K(x,z,u0(x,z))dzdy= u0(x, t) (by using equation (5.24))

and

d(u0,u)≤
1

(1−α)
d(u,Tu). (5.25)

Now by inequality (5.23), we get

|u(x, t)− (Tu)(x, t)| ≤ αφ(x, t).

⇒ |u(x, t)− (Tu)(x, t)|
φ(x, t)

≤ α.

⇒ sup
x,t∈J

|u(x, t)− (Tu)(x, t)|
φ(x, t)

≤ α.

Thus

d(u,Tu)≤ α (5.26)

Again

d(u0,u) = sup
x,t∈J

|u0(x, t)−u(x, t)|
φ(x, t)

.
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From equation (5.25), we get

d(u0,u)≤
1

(1−α)
d(u,Tu).

sup
x,t∈J

|u0(x, t)−u(x, t)|
φ(x, t)

≤ 1
(1−α)

d(u,Tu).

|u0(x, t)−u(x, t)|
φ(x, t)

≤ supx,t∈J
|u0(x, t)−u(x, t)|

φ(x, t)
≤ 1

(1−α)
d(u,Tu).

|u0(x, t)−u(x, t)|
φ(x, t)

≤ 1
(1−α)

d(u,Tu).

From equation (5.26) we get,

|u0(x,t)−u(x,t)|
φ(x,t) ≤ 1

(1−α)
α.

|u(x, t)−u0(x, t)| ≤ α

(1−α)
φ(x, t), ∀x, t ∈ J.

Hence the third order PDE (5.2) is HUR stable.





Chapter 6

HYERS - ULAM STABILITY OF

NON-LINEAR ORDINARY AND

PARTIAL DIFFERENTIAL

EQUATIONS

Some contents of this chapter is published [see PP2].
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6.1 INTRODUCTION

In this chapter, we study the HU stability of the first and second order non-linear

ordinary and partial differential equations. We employ the well known Banach

contraction principle to establish our results. Also, we prove the HU stability of

the second order non-linear ordinary and partial differential equations by using

Grownwall type inequality and some integral inequalities .

We consider the following first order partial differential equation

ux(x, t)+K(x,u(x, t)) = 0, (6.1)

where K : J×R→ R is a continuous function, u(x, t) ∈ C1(J× J),J = [a,b] be a

closed interval and the second order partial differential equation

uxx(x, t)+F(x,u)ux(x, t)+H(x,u) = 0, (6.2)

where F,H : J×R→ R are continuous functions and u(x, t) ∈C2(J× J).

First, we define HU stability for these two equations.

Definition 6.1.1 : The equation (6.1) is said to be HU stable if the following

holds:

Let ε ≥ 0. Assume that, for any function u(x, t) ∈C1 satisfying the differential

inequality

|ux(x, t)+K(x,u(x, t))| ≤ ε, ∀x, t ∈ J, (6.3)

there exists a solution u0(x, t) ∈C1 of equation (6.1) and M(ε)> 0 such that

|u(x, t)−u0(x, t)| ≤M(ε), ∀(x, t) ∈ J× J.

Next, we define HU stability for equation (6.2).
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Definition 6.1.2 : The equation (6.2) is said to be HU stable if the following

holds:

Let ε ≥ 0. For any function u(x, t) ∈C2 satisfying the differential inequality

|uxx(x, t)+F(x,u)ux(x, t)+H(x,u)| ≤ ε, ∀ x, t ∈ J, (6.4)

there exists a solution u0(x, t) ∈C2 of equation (6.2) and M(ε)> 0 such that

|u(x, t)−u0(x, t)| ≤M(ε), ∀(x, t) ∈ J× J.

Further we have proved, the HU stability for the second order non-linear ordi-

nary and partial differential equations of the form:

uxx(x, t) = f (x, t,u(x, t),ux(x, t)), 0≤ x≤ a,0≤ t ≤ b, (6.5)

and

uxt(x, t) = f (x, t,u(x, t),ux(x, t)) 0≤ x≤ a,0≤ t ≤ b, (6.6)

where a,b ∈ (0,∞), f ∈ C([0,a]× [0,b]×B2,B) and (B, ||.||) be a real or complex

Banach space.

Now we define HU stability of the equations (6.5) and (6.6).

Definition 6.1.3 : Equation (6.5) is HU stable if ∃ real constants c1
f ,c

2
f > 0

such that for any ε > 0 and for any solution v(x, t) of the inequality

||vxx(x, t)− f (x, t,v(x, t),vx(x, t))|| ≤ ε, ∀ x ∈ [0,a],∀ t ∈ [0,b], (6.7)

∃ a solution u(x, t) of (6.5) with ||v(x, t)−u(x, t)|| ≤ ε c1
f and

||vx(x, t)−ux(x, t)|| ≤ ε c2
f , ∀ x ∈ [0,a],∀ t ∈ [0,b].

Remark 6.1.4 : A function v(x, t) is a solution to the inequality (6.7) iff ∃ a

continuous function g(x, t) which depends on v(x, t) such that
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i) ||g(x, t)|| ≤ ε,

ii) ∀ x ∈ [0,a],∀ t ∈ [0,b],vxx(x, t) = f (x, t,v(x, t),vx(x, t))+g(x, t).

Definition 6.1.5 : Equation (6.6) is HU stable if ∃ real constants c3
f , c4

f > 0 such

that for any ε > 0 and for any solution v(x, t) of the inequality

||vxt(x, t)− f (x, t,v(x, t),vx(x, t))|| ≤ ε, ∀ x ∈ [0,a], ∀ t ∈ [0,b], (6.8)

∃ a solution u(x, t) of (6.6) with

||v(x, t)−u(x, t)|| ≤ ε c3
f and

||vx(x, t)−ux(x, t)|| ≤ ε c4
f , ∀ x ∈ [0,a],∀ t ∈ [0,b].

Remark 6.1.6 : A function v(x, t) is a solution to the inequality (6.8) iff ∃ a

continuous function g(x, t) which depends on v(x, t) such that

i) ||g(x, t)|| ≤ ε,

ii) ∀ x ∈ [0,a],∀ t ∈ [0,b],vxt(x, t) = f (x, t,v(x, t),vx(x, t))+g(x, t).

In proving main results, we need the following results.

Theorem 6.1.1 (Banach Contraction Principle) [18] :

Let (X ,d) be a complete metric space and T : X → X be a contraction, that is, there

exists α ∈ (0,1) such that d(T x,Ty) ≤ αd(x,y),∀x,y ∈ X . Then ∃ a unique a ∈ X

such that Ta = a. Moreover, a = lim
n→∞

T nx and d(a,x)≤ 1
(1−α)

d(x,T x),∀x ∈ X .

Lemma 6.1.2 : [50] One assumes that

i) u,v,h ∈C(Rn
+,R+),

ii) for any t ≥ t0, u(t)≤ h(t)+
∫ t
t0

v(s)u(s)ds.

iii) h(t) is positive and increasing.

Then u(t)≤ h(t)× exp{
∫ t
t0

v(r)dr}, for any t ≥ t0.
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6.2 HU STABILITY OF (6.1) and (6.2)

In this section, we prove the HU stability of (6.1) and (6.2). We prove

these results by using Banach contraction principle. First, we have the following

result for (6.1).

Theorem 6.2.1 : Let x0 ∈ J and K : J×R→ R be a continuous function such

that

|K(x,v(x, t))−K(x,w(x, t))| ≤ λ |v(x, t)−w(x, t)|,∀x, t ∈ J, (6.9)

where λ > 0,λ ∈ R and v(x, t),w(x, t) ∈C1. Let

M1 = sup
x∈J

∣∣∣∫ x

x0
ds
∣∣∣, (6.10)

with 0 < λM1 < 1. Let u(x, t) ∈C1 satisfy

|ux(x, t)+K(x,u(x, t))| ≤ ε,∀x, t ∈ J, (6.11)

then there exists a unique function u0(x, t) ∈C1, such that

∂u0
∂x (x, t)+K(x,u0(x, t)) = 0 and |u(x, t)−u0(x, t)| ≤

M1
1−λM1

ε.

Proof. Consider the differential equation

ux(x, t)+K(x,u(x, t)) = 0, ∀x, t ∈ J. (6.12)

We define a metric d and an operator P on C1, respectively by

d(ζ ,η) = sup
x,t∈J

∣∣∣ζ (x, t)−η(x, t)
∣∣∣ and

(Pζ )(x, t) = u(x0, t)−
∫ x

x0
K(s,ζ (s, t))ds,∀ζ ∈C1. (6.13)

Consider,

d(Pζ ,Pη) = sup
x,t∈J

∣∣∣(Pζ )(x, t)− (Pη)(x, t)
∣∣∣
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= sup
x,t∈J

∣∣∣− ∫ x
x0

K(s,ζ (s, t))ds+
∫ x
x0

K(s,η(s, t))ds
∣∣∣

= sup
x,t∈J

∣∣∣∫ x
x0

K(s,ζ (s, t))ds−
∫ x
x0

K(s,η(s, t))ds
∣∣∣

≤ sup
x,t∈J

∣∣∣∫ x
x0
|K(s,ζ (s, t))−K(s,η(s, t))|ds

∣∣∣
≤ sup

x,t∈J

∣∣∣∫ x
x0

λ |ζ (s, t))−η(s, t)|ds
∣∣∣ (by equation (6.9))

≤ λ sup
x,t∈J

∣∣∣∫ x
x0

sup
s,t∈J

|ζ (s, t))−η(s, t)|ds
∣∣∣

≤ λ sup
x,t∈J

[
d(ζ ,η)×

∣∣∣∫ x
x0

ds
∣∣∣ ]

≤ λM1d(ζ ,η) (by equation (6.10)).

Then by using Banach contraction principle, there exists a unique u0(x, t) ∈

C1 such that Pu0(x, t) = u0(x, t). Thus u0(x, t) satisfy u(x0, t)−
∫ x
x0

K(s,u0(s, t))ds =

u0(x, t) and

d(u0,u)≤
1

1−λM1
d(u,Pu). (6.14)

Now by inequality (6.11) we get,

−ε ≤ ∂u
∂x (x, t)+K(x,u(x, t))≤ ε,∀x, t ∈ J.

Integrating from x0 to x, we get

−ε
∫ x
x0

ds≤
∫ x
x0
{∂u

∂ s (s, t)+K(s,u(s, t))}ds≤ ε
∫ x
x0

ds,

⇒−ε
∫ x
x0

ds≤ u(x, t)−u(x0, t)+
∫ x
x0

K(s,u(s, t))ds≤ ε
∫ x
x0

ds.

⇒−ε sup
x∈J

∫ x
x0

ds≤−ε
∫ x
x0

ds≤ u(x, t)−u(x0, t)+
∫ x
x0

K(s,u(s, t))ds

≤ ε
∫ x
x0

ds≤ sup
x∈J

∫ x
x0

ds.

⇒−ε sup
x∈J

∣∣∣∫ x
x0

ds
∣∣∣≤−ε sup

x∈J

∫ x
x0

ds≤−ε
∫ x
x0

ds≤ u(x, t)−u(x0, t)+
∫ x
x0

K(s,u(s, t))ds

≤ ε
∫ x
x0

ds≤ sup
x∈J

∫ x
x0

ds≤ ε sup
x∈J

∣∣∣∫ x
x0

ds
∣∣∣.
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⇒−εM1 ≤ u(x, t)−u(x0, t)+
∫ x0
x K(s,u(s, t))ds≤ εM1

⇒ |u(x, t)−u(x0, t)+
∫ x0
x K(s,u(s, t))ds| ≤ εM1.

⇒ |u(x, t)− (Pu)(x, t)| ≤ εM1.

⇒ sup
x,t∈J

|u(x, t)− (Pu)(x, t)| ≤ εM1.

⇒ d(u,Pu)≤ εM1.

Using this inequality and equation (6.14), we get

|u(x, t)−u0(x, t)|= |u0(x, t)−u(x, t)|

≤ sup
x,t∈J

∣∣∣u0(x, t)−u(x, t)
∣∣∣

= d(u0(x, t),u(x, t)).

≤ 1
1−λM1

d(u,Pu).

≤ M1
1−λM1

ε = M(ε) .

Hence the result.

Next, we prove the HU stability of (6.2).

Theorem 6.2.2 : Let x0 ∈ J and F,H : J×R→ R be a continuous functions

such that

|F(x,v(x, t))vx(x, t)−F(x,w(x, t))wx(x, t)| ≤ λ1|v(x, t)−w(x, t)|, (6.15)

and

|H(x,v(x, t))−H(x,w(x, t))| ≤ λ2|v(x, t)−w(x, t)|, ∀x, t ∈ J, (6.16)

where λ1,λ2 > 0,λ1,λ2 ∈ R and v(x, t),w(x, t) ∈C2(J× J).

Let

M2 = sup
x,y∈J

∣∣∣∫ x

x0

∫ y

x0
dsdy

∣∣∣, (6.17)
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with 0 < {λ1 +λ2}M2 < 1. If u(x, t) ∈C2(J× J) satisfy

|uxx(x, t)+F(x,u)ux(x, t)+H(x,u)| ≤ ε, ∀x, t ∈ J, (6.18)

then there exists, a unique function, u0(x, t) ∈C2(J× J) such that

∂ 2u0
∂x2 (x, t)+F(x,u0(x, t))

∂u0
∂x

(x, t)+H(x,u0(x, t)) = 0

and

|u(x, t)−u0(x, t)| ≤
M2

1−{λ1 +λ2}M2
ε.

Proof. Consider the differential equation

∂ 2u
∂x2 (x, t)+F(x,u(x, t))

∂u
∂x

(x, t)+H(x,u(x, t)) = 0,∀x, t ∈ J. (6.19)

We define a metric d and an operator P on C2(J× J), respectively by

d(ζ ,η) = sup
x,t∈J

|ζ (x, t)−η(x, t)| and

(Pζ )(x, t) = u(x0, t)−
∫ x

x0

∫ y

x0
F(s,ζ (s, t))ζs(s, t)dsdy−

∫ x

x0

∫ y

x0
H(s,ζ (s, t))dsdy,

(6.20)

∀ ζ ∈C2(J× J).

Consider

d(Pζ ,Pη) = sup
x,t∈J

∣∣∣(Pζ )(x, t)− (Pη)(x, t)
∣∣∣

= sup
x,t∈J

∣∣∣− ∫ x
x0
∫ y
x0 F(s,ζ (s, t))ζs(s, t)dsdy−

∫ x
x0
∫ y
x0 H(s,ζ (s, t))dsdy

+
∫ x
x0
∫ y
x0 F(s,η(s, t))ηs(s, t)dsdy+

∫ x
x0
∫ y
x0 H(s,η(s, t))dsdy

∣∣∣
= sup

x,t∈J

∣∣∣∫ x
x0
∫ y
x0 F(s,ζ (s, t))ζs(s, t)dsdy+

∫ x
x0
∫ y
x0 H(s,ζ (s, t))dsdy

−
∫ x
x0
∫ y
x0 F(s,η(s, t))ηs(s, t)dsdy−

∫ x
x0
∫ y
x0 H(s,η(s, t))dsdy

∣∣∣
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= sup
x,t∈J

∣∣∣∫ x
x0
∫ y
x0 F(s,ζ (s, t))ζs(s, t)dsdy−

∫ x
x0
∫ y
x0 F(s,η(s, t))ηs(s, t)dsdy

+
∫ x
x0
∫ y
x0 H(s,ζ (s, t))dsdy−

∫ x
x0
∫ y
x0 H(s,η(s, t))dsdy

∣∣∣
≤ sup

x,t∈J

∣∣∣∫ x
x0
∫ y
x0 F(s,ζ (s, t))ζs(s, t)dsdy−

∫ x
x0
∫ y
x0 F(s,η(s, t))ηs(s, t)dsdy

∣∣∣
+ sup

x,t∈J

∣∣∣∫ x
x0
∫ y
x0 H(s,ζ (s, t))dsdy−

∫ x
x0
∫ y
x0 H(s,η(s, t))dsdy

∣∣∣
≤ sup

x,t∈J

∣∣∣∫ x
x0
∫ y
x0 |F(s,ζ (s, t))ζs(s, t)−F(s,η(s, t))ηs(s, t)|dsdy

∣∣∣
+ sup

x,t∈J

∣∣∣∫ x
x0
∫ y
x0 |H(s,ζ (s, t))−H(s,η(s, t))|dsdy

∣∣∣
≤ sup

x,t∈J

∣∣∣∫ x
x0
∫ y
x0 λ1|ζ (s, t)−η(s, t)|dsdy

∣∣∣
+ sup

x,t∈J

∣∣∣∫ x
x0
∫ y
x0 λ2|ζ (s, t)−η(s, t)|dsdy

∣∣∣
(by equation (6.15) and (6.16))

≤ λ1 sup
x,t∈J

∣∣∣∫ x
x0
∫ y
x0 sup

s,t∈J
|ζ (s, t)−η(s, t)| dsdy

∣∣∣+
λ2 sup

x,t∈J

∣∣∣∫ x
x0
∫ y
x0 sup

s,t∈J
|ζ (s, t)−η(s, t)| dsdy

∣∣∣
≤ λ1 sup

x,t∈J

∣∣∣∫ x
x0
∫ y
x0 d(ζ ,η)dsdy

∣∣∣+λ2 sup
x,t∈J

∣∣∣∫ x
x0
∫ y
x0 d(ζ ,η)dsdy

∣∣∣
≤ {λ1 +λ2} sup

x,t∈J

[
d(ζ ,η)

∣∣∣∫ x
x0
∫ y
x0 dsdy

∣∣∣ ]

≤ {λ1 +λ2}d(ζ ,η)M2 (by equation (6.17))

≤ {λ1 +λ2}M2×d(ζ ,η).

Hence using Banach contraction principle, there exists a unique, u0(x, t) ∈

C2(J× J) such that Pu0(x, t) = u0(x, t). Thus u0(x, t) satisfy
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u(x0, t)−
∫ x
x0
∫ y
x0 F(s,u0(s, t))us(s, t))dsdy−

∫ x
x0
∫ y
x0 H(s,u0(s, t))dsdy = u0(x, t)

and

d(u0,u)≤
1

1− (λ1 +λ2)M2
d(u,Pu). (6.21)

Now by inequality (6.18), we get

−ε ≤ ∂2u
∂x2 (x, t)+F(x,u)∂u

∂x (x, t)+H(x,u)≤ ε, ∀x, t ∈ J.

Integrating from x0 to x, we derive

−ε
∫ x
x0

ds≤ ∂u
∂x (x, t)−

∂u
∂x (x0, t)+

∫ x
x0

F(s,u(s, t))us(s, t)ds+
∫ x
x0

H(s,u(s, t))ds≤ ε
∫ x
x0

ds.

Again integrating from x0 to x, we obtain

−ε
∫ x
x0
∫ y
x0 dsdy≤ u(x, t)−u(x0, t)−[u(x0, t)−u(x0, t)]+

∫ x
x0
∫ y
x0 F(s,u(s, t))us(s, t)dsdy

+
∫ x
x0
∫ y
x0 H(s,u(s, t))dsdy≤ ε

∫ x
x0
∫ y
x0 dsdy.

By using the equation (6.20), we get

−ε
∫ x
x0
∫ y
x0 dsdy≤ u(x, t)− (Pu)(x, t)≤ ε

∫ x
x0
∫ y
x0 dsdy.

⇒−ε sup
x,y∈J

∫ x
x0
∫ y
x0 dsdy≤−ε

∫ x
x0
∫ y
x0 dsdy≤ u(x, t)− (Pu)(x, t)≤ ε

∫ x
x0
∫ y
x0 dsdy

≤ ε sup
x,y∈J

∫ x
x0
∫ y
x0 dsdy

⇒−ε sup
x,y∈J

∣∣∣∫ x
x0
∫ y
x0 dsdy

∣∣∣≤−ε sup
x,y∈J

∫ x
x0
∫ y
x0 dsdy≤−ε

∫ x
x0
∫ y
x0 dsdy≤ u(x, t)−(Pu)(x, t)

≤ ε
∫ x
x0
∫ y
x0 dsdy≤ ε sup

x,y∈J

∫ x
x0
∫ y
x0 dsdy≤ ε sup

x,y∈J

∣∣∣∫ x
x0
∫ y
x0 dsdy

∣∣∣.
⇒−ε sup

x,y∈J

∣∣∣∫ x
x0
∫ y
x0 dsdy

∣∣∣≤ u(x, t)− (Pu)(x, t)≤ ε sup
x,y∈J

∣∣∣∫ x
x0
∫ y
x0 dsdy

∣∣∣.
⇒−εM2 ≤ u(x, t)− (Pu)(x, t)≤ εM2

⇒ |u(x, t)− (Pu)(x, t)| ≤ εM2.

⇒ sup
x,t∈J

∣∣∣u(x, t)− (Pu)(x, t)
∣∣∣≤ εM2.
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⇒ d(u,Pu)≤ εM2 , which with equation (6.21) yields

|u(x, t)−u0(x, t)|= |u0(x, t)−u(x, t)|

≤ sup
x,t∈J

|u0(x, t)−u(x, t)|

= d(u0(x, t),u(x, t)).

≤ 1
1−{λ1+λ2}M2

d(u,Pu).

≤ M2
1−{λ1+λ2}M2

ε = M(ε)

Hence the result.

Thus, we have proved the HU stability of first and second order partial dif-

ferential equations (6.1) and (6.2) respectively by employing Banach contraction

principle.

6.3 INTEGRAL INEQUALITIES

In this section, we have developed some integral inequalities, which will be used

to prove results in the next section. First, we prove the following.

Theorem 6.3.1 : If v(x, t) is a solution to the inequality (6.7) then (v,vx) satisfies

the following integral inequality system.

||v(x, t)− v(0, t)−
∫ x
0
∫ y
0 f (s, t,v(s, t),vs(s, t))dsdy|| ≤ εx2

2 ,

||vx(x, t)− vx(0, t)−
∫ x
0 f (s, t,v(s, t),vs(s, t))ds|| ≤ εx.

Proof. Let v(x, t) be a solution to the inequality

||vxx(x, t)− f (x, t,v(x, t),vx(x, t))|| ≤ ε.

Integrating w.r.t. x, we get∫ x
0 ||vss(s, t)− f (s, t,v(s, t),vs(s, t))||ds≤

∫ x
0 εds.
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Since

||
∫ x
0 {vss(s, t)− f (s, t,v(s, t),vs(s, t))}ds|| ≤

∫ x
0 ||vss(s, t)− f (s, t,v(s, t),vs(s, t))||ds,

we get

||
∫ x
0 {vss(s, t)− f (s, t,v(s, t),vs(s, t))}ds|| ≤

∫ x
0 εds.

⇒ ||vx(x, t)− vx(0, t)−
∫ x
0 f (s, t,v(s, t),vs(s, t))ds|| ≤ εx.

Integrating w.r.t. x, we get∫ x
0 ||vy(y, t)− vy(0, t)−

∫ y
0 f (s, t,v(s, t),vs(s, t))ds||dy≤

∫ x
0 εsds.

Since ||
∫ x
0 {vy(y, t)− vy(0, t)−

∫ y
0 f (s, t,v(s, t),vs(s, t))ds}dy||

≤
∫ x
0 ||vy(y, t)− vy(0, t)−

∫ y
0 f (s, t,v(s, t),vs(s, t))ds||dy,

we get

||
∫ x
0 {vy(y, t)− vy(0, t)−

∫ y
0 f (s, t,v(s, t),vs(s, t))ds}dy|| ≤

∫ x
0 εsds.

⇒ ||v(x, t)− v(0, t)−{v(0, t)− v(0, t)}−
∫ x
0
∫ y
0 f (s, t,v(s, t),vs(s, t))dsdy||

≤ εx2
2 .

⇒ ||v(x, t)− v(0, t)−
∫ x
0
∫ y
0 f (s, t,v(s, t),vs(s, t))dsdy|| ≤ εx2

2 .

Next, we prove the result related to the inequality (6.8).

Theorem 6.3.2 : : If v(x, t) is a solution to the inequality (6.8), then (v,vx,vt)

satisfies the following integral inequalities.

||v(x, t)− v(x,0)− v(0, t)+ v(0,0)−
∫ t
0
∫ x
0 f (s,z,v(s,z),vs(s,z))dsdz|| ≤ εxt,

||vt(x, t)− vt(0, t)−
∫ x
0 f (s, t,v(s, t),vs(s, t))ds|| ≤ εx,

||vx(x, t)− vx(x,0)−
∫ t
0 f (x,z,v(x,z),vx(x,z))dz|| ≤ εt.

Proof. : Let v(x, t) be a solution to the inequality

||vxt(x, t)− f (x, t,v(x, t),vx(x, t))|| ≤ ε, (6.22)
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Integrating w. r. t. x, we get

∫ x
0 ||vst(s, t)− f (s, t,v(s, t),vs(s, t))||ds≤

∫ x
0 εds.

Since

||
∫ x
0 {vst(s, t)− f (s, t,v(s, t),vs(s, t))}ds|| ≤

∫ x
0 ||vst(s, t)− f (s, t,v(s, t),vs(s, t))||ds,

we get,

||
∫ x
0 {vst(s, t)− f (s, t,v(s, t),vs(s, t))}ds|| ≤

∫ x
0 εds.

⇒ ||vt(x, t)− vt(0, t)−
∫ x
0 f (s, t,v(s, t),vs(s, t))ds|| ≤ εx.

Integrating w. r. t. t, we get

∫ t
0 ||vz(x,z)− vz(0,z)−

∫ x
0 f (s,z,v(s,z),vs(s,z))ds||dz≤

∫ t
0 εxdz.

Since

||
∫ t
0{vz(x,z)− vz(0,z)−

∫ x
0 f (s,z,v(s,z),vs(s,z))ds}dz||

≤
∫ t
0 ||vz(x,z)− vz(0,z)−

∫ x
0 f (s,z,v(s,z),vs(s,z))ds||dz,

we get,

||
∫ t
0{vz(x,z)− vz(0,z)−

∫ x
0 f (s,z,v(s,z),vs(s,z))ds}dz|| ≤

∫ t
0 εxdz.

⇒ ||v(x, t)− v(x,0)− v(0, t)+ v(0,0)−
∫ t
0
∫ x
0 f (s,z,v(s,z),vs(s,z))dsdz|| ≤ εxt.

Integrating equation (6.22) w. r. t. t we get,∫ t
0 ||vxz(x,z)− f (x,z,v(x,z),vx(x,z))||dz≤

∫ t
0 εdz.

Since

||
∫ t
0{vxz(x,z)− f (x,z,v(x,z),vx(x,z))}dz|| ≤

∫ t
0 ||vxz(x,z)− f (x,z,v(x,z),vx(x,z))||dz,

we get,

||
∫ t
0{vxz(x,z)− f (x,z,v(x,z),vx(x,z))}dz|| ≤

∫ t
0 εdz.

⇒ ||vx(x, t)− vx(x,0)−
∫ t
0 f (x,z,v(x,z),vx(x,z))dz|| ≤ εt.

which proves the required integral inequalities.
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6.4 HU STABILITY OF (6.5) and (6.6)

In this section, we prove the HU stability of second order non-linear ordinary and

partial differential equations (6.5) and (6.6). We use integral inequalities estab-

lished in the previous section. First, we have the result for the equation (6.5).

Theorem 6.4.1 : Assume that

i) f ∈C([0,a]× [0,b]×B2,B), where a,b ∈ (0,∞) .

ii) There exists L f (x, t) ∈C1([0,a]× [0,b],R+) such that
∫ a
0 L f (x, t)dx < ∞ and

|| f (x, t,z1,z2)− f (x, t, t1, t2)|| ≤ L f (x, t)
max

i∈{1,2}{||zi− ti||}, ∀ x ∈ [0,a], ∀ t ∈ [0,b]

and z1, z2, t1, t2 ∈ B.

Then (6.5) is HU stable.

Proof. Let v(x, t) be a solution to the inequality

||vxx(x, t)− f (x, t,v(x, t),vx(x, t))|| ≤ ε,∀ x ∈ [0,a],∀ t ∈ [0,b] .

Let u(x, t) be the unique solution to the problem

uxx(x, t) = f (x, t,u(x, t),ux(x, t)),

u(0, t) = v(0, t),∀ t ∈ [0,b],

u(x,0) = v(x,0),∀ x ∈ [0,a].

(6.23)

Then (u,ux(x, t)) satisfies the following system.

u(x, t) = v(0, t)+
∫ x

0

∫ y

0
f (s, t,u(s, t),us(s, t))dsdy,

ux(x, t) = vx(0, t)+
∫ x

0
f (s, t,u(s, t),us(s, t))ds.

(6.24)

By using Theorem 6.3.1, it follows that

||v(x, t)− v(0, t)−
∫ x

0

∫ y

0
f (s, t,v(s, t),vs(s, t))dsdy|| ≤ εx2

2
, (6.25)
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and

||vx(x, t)− vx(0, t)−
∫ x

0
f (s, t,v(s, t),vs(s, t))ds|| ≤ εx. (6.26)

Consider

||v(x, t)−u(x, t)||= ||v(x, t)− v(0, t)−
∫ x
0
∫ y
0 f (s, t,u(s, t),us(s, t))dsdy||.

= ||v(x, t)− v(0, t)−
∫ x
0
∫ y
0 f (s, t,v(s, t),vs(s, t))dsdy

+
∫ x
0
∫ y
0 f (s, t,v(s, t),vs(s, t))dsdy

−
∫ x
0
∫ y
0 f (s, t,u(s, t),us(s, t))dsdy||.

≤ ||v(x, t)− v(0, t)−
∫ x
0
∫ y
0 f (s, t,v(s, t),vs(s, t))dsdy||

+||
∫ x
0
∫ y
0 f (s, t,v(s, t),vs(s, t))dsdy−

∫ x
0
∫ y
0 f (s, t,u(s, t),us(s, t))dsdy||.

≤ ||v(x, t)− v(0, t)−
∫ x
0
∫ y
0 f (s, t,v(s, t),vs(s, t))dsdy||

+
∫ x
0
∫ y
0 || f (s, t,v(s, t),vs(s, t))− f (s, t,u(s, t),us(s, t))||dsdy.

≤ εx2
2 +

∫ x
0
∫ y
0 L f (s, t)×max{||v(s, t)−u(s, t)||, ||vs(s, t)−us(s, t)||}dsdy.

(by using hypothesis (ii) and equation (6.25))

≤ εx2
2 +

∫ x
0 dy

∫ y
0
(
L f (s, t)×max{||v(s, t)−u(s, t)||, ||vs(s, t)−us(s, t)||})ds.

= εx2
2 +∫ x

0 (x−s)L f (s, t)×max{||v(s, t)−u(s, t)||, ||vs(s, t)−us(s, t)||}ds.

≤ ε

(
x+ x2

2

)
+∫ x

0 a×L f (s, t)×max{||v(s, t)−u(s, t)||, ||vs(s, t)−us(s, t)||}ds,

( ∵ (x− s)≤max(x− s)≤ (a− x)≤ a).

≤ ε

(
x+ x2

2

)
+∫ x

0 (1+a)×L f (s, t)×max{||v(s, t)−u(s, t)||, ||vs(s, t)−us(s, t)||}ds.
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||v(x, t)−u(x, t)|| ≤ ε

(
x+

x2

2

)
+
∫ x

0
G(s, t)×max{||v(s, t)−u(s, t)||, ||vs(s, t)−us(s, t)||}ds,

(6.27)

where G(s, t) = (1+a)×L f (s, t).

Again consider

||vx(x, t)−ux(x, t)||= ||vx(x, t)− vx(0, t)−
∫ x
0 f (s, t,u(s, t),us(s, t))ds||.

= ||vx(x, t)− vx(0, t)−
∫ x
0 f (s, t,v(s, t),vs(s, t))ds

+
∫ x
0 f (s, t,v(s, t),vs(s, t))ds−

∫ x
0 f (s, t,u(s, t),us(s, t))ds||.

≤ ||vx(x, t)− vx(0, t)−
∫ x
0 f (s, t,v(s, t),vs(s, t))ds||

+||
∫ x
0 f (s, t,v(s, t),vs(s, t))ds−

∫ x
0 f (s, t,u(s, t),us(s, t))ds||.

≤ εx +
∫ x
0 || f (s, t,v(s, t),vs(s, t))− f (s, t,u(s, t),us(s, t))||ds.

(by using Theorem 6.3.1)

By using hypothesis (ii), we get

||vx(x, t)−ux(x, t)|| ≤ εx +
∫ x
0 L f (s, t)×max{||v(s, t)−u(s, t)||, ||vs(s, t)−us(s, t)||}ds.

≤ ε

(
x+ x2

2

)
+∫ x

0 (1+a)×L f (s, t)×max{||v(s, t)−u(s, t)||, ||vs(s, t)−us(s, t)||}ds.

||vx(x, t)−ux(x, t)|| ≤ ε

(
x+

x2

2

)
+
∫ x

0
G(s, t)×max{||v(s, t)−u(s, t)||, ||vs(s, t)−us(s, t)||}ds,

(6.28)

where G(s, t) = (1+a)×L f (s, t).

By using equations (6.27) and (6.28), we get
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max{||v(x, t)−u(x, t)||, ||vx(x, t)−ux(x, t)||} ≤ ε

(
x+ x2

2

)
+∫ x

0 G(s, t)×max{||v(s, t)−u(s, t)||, ||vs(s, t)−us(s, t)||ds.

By using Lemma 6.1.2, we get

max{||v(x, t)−u(x, t)||, ||vx(x, t)−ux(x, t)||} ≤ ε

(
x+ x2

2

)
× exp

(∫ x
0 G(s, t)ds

)
.

From which it follows that, each of ||v(x, t)−u(x, t)|| and

||vx(x, t)−ux(x, t)|| is ≤ ε

(
x+ x2

2

)
× exp

(∫ x
0 G(s, t)ds

)
.

i.e. ||v(x, t)−u(x, t)|| ≤ ε

(
x+ x2

2

)
× exp

(∫ x
0 G(s, t)ds

)
and

||vx(x, t)−ux(x, t)|| ≤ ε

(
x+ x2

2

)
× exp

(∫ x
0 G(s, t)ds

)
.

=⇒ ||v(x, t)−u(x, t)|| ≤ ε

(
a+ a2

2

)
× exp

(∫ a
0 G(s, t)ds

)
and

||vx(x, t)−ux(x, t)|| ≤ ε

(
a+ a2

2

)
× exp

(∫ a
0 G(s, t)ds

)
.

=⇒ ||v(x, t)−u(x, t)|| ≤ ε× c f and ||vx(x, t)−ux(x, t)|| ≤ ε× c f ,

where c f =
(

a+ a2
2

)
× max

t∈[0,b] exp
(∫ a

0 G(s, t)ds
)
.

Hence the equation (6.5) is HU stable.

Next, we prove result for the equation (6.6).

Theorem 6.4.2: Assume that

i) f ∈C([0,a]× [0,b]×B2,B), where a,b ∈ (0,∞).

ii) There exists L f (x, t) ∈C1([0,a]× [0,b],R+) such that
∫ b
0 L f (x, t)dt < ∞ and

|| f (x, t,z1,z2)− f (x, t, t1, t2)|| ≤ L f (x, t)
max

i∈{1,2}{||zi− ti||}, ∀ x ∈ [0,a], ∀ t ∈ [0,b]

and z1, z2, t1, t2 ∈ B.

Then the equation (6.6) is HU stable.



6.4 HU STABILITY OF (6.5) and (6.6) 88

Proof. : Let v(x, t) be a solution to the inequality

||vxt(x, t)− f (x, t,v(x, t),vx(x, t))|| ≤ ε, ∀ x ∈ [0,a],∀ t ∈ [0,b].

Let u(x, t) be the unique solution to the problem

uxt(x, t) = f (x, t,u(x, t),ux(x, t)),

u(0, t) = v(0, t),∀ t ∈ [0,b],

u(x,0) = v(x,0),∀ x ∈ [0,a].

(6.29)

Then (u,ux(x, t),ut(x, t)) satisfies the following system.

u(x, t) = v(x,0)+ v(0, t)− v(0,0)+
∫ t

0

∫ x

0
f (s,z,u(s,z),us(s,z))dsdz,

ut(x, t) = vt(0, t)+
∫ x

0
f (s, t,u(s, t),us(s, t))ds,

ux(x, t) = vx(x,0)+
∫ t

0
f (x,z,u(x,z),ux(x,z))dz.

(6.30)

By using Theorem 6.3.2, it follows that

∣∣∣∣∣∣v(x, t)− v(x,0)− v(0, t)+ v(0,0)−
∫ t

0

∫ x

0
f (s,z,v(s,z),vs(s,z))dsdz

∣∣∣∣∣∣≤ εxt, (6.31)

and

||vx(x, t)− vx(x,0)−
∫ t

0
f (x,z,v(x,z),vx(x,z))dz|| ≤ εt. (6.32)

Using equation (6.30), we get

||v(x, t)−u(x, t)||= ||v(x, t)− v(x,0)− v(0, t)+ v(0,0)

−
∫ t
0
∫ x
0 f (s,z,u(s,z),us(s,z))dsdz||.

= ||v(x, t)− v(x,0)− v(0, t)+ v(0,0)

−
∫ t
0
∫ x
0 f (s,z,v(s,z),vs(s,z))dsdz

+
∫ t
0
∫ x
0 f (s,z,v(s,z),vs(s,z))dsdz

−
∫ t
0
∫ x
0 f (s,z,u(s,z),us(s,z))dsdz||.
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≤ ||v(x, t)− v(x,0)− v(0, t)+ v(0,0)

−
∫ t
0
∫ x
0 f (s,z,v(s,z),vs(s,z))dsdz||

+||
∫ t
0
∫ x
0 f (s,z,v(s,z),vs(s,z))dsdz

−
∫ t
0
∫ x
0 f (s,z,u(s,z),us(s,z))dsdz||.

≤ ||v(x, t)− v(x,0)− v(0, t)+ v(0,0)

−
∫ t
0
∫ x
0 f (s,z,v(s,z),vs(s,z))dsdz||

+
∫ t
0
∫ x
0 || f (s,z,v(s,z),vs(s,z))− f (s,z,u(s,z),us(s,z))||dsdz.

≤ εxt

+
∫ t
0
∫ x
0 || f (s,z,v(s,z),vs(s,z))− f (s,z,u(s,z),us(s,z))||dsdz.

(By using equation (6.31)).

= εxt

+
∫ t
0 dz·x

(
|| f (x1,z,v(x1,z),vx(x1,z))− f (x1,z,u(x1,z),ux(x1,z))||

)
,

where x1 ∈ (0,x).

||v(x, t)−u(x, t)|| ≤ εxt+
∫ t

0
L f (x1,z)×max

{
||v(x1,z)−u(x1,z)||, ||vx(x1,z)−ux(x1,z)||

}
xdz,

(6.33)

(by hypothesis (ii)).

Again, by using equation (6.30), we get

||vx(x, t)−ux(x, t)||= ||vx(x, t)− vx(x,0)−
∫ t
0 f (x,z,u(x,z),ux(x,z))dz||.

= ||vx(x, t)− vx(x,0)−
∫ t
0 f (x,z,v(x,z),vx(x,z))dz

+
∫ t
0 f (x,z,v(x,z),vx(x,z))dz−

∫ t
0 f (x,z,u(x,z),ux(x,z))dz||.

≤ ||vx(x, t)− vx(x,0)−
∫ t
0 f (x,z,v(x,z),vx(x,z))dz||

+||
∫ t
0 f (x,z,v(x,z),vx(x,z))dz−

∫ t
0 f (x,z,u(x,z),ux(x,z))dz||.
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||vx(x, t)−ux(x, t)|| ≤ ||vx(x, t)− vx(x,0)−
∫ t
0 f (x,z,v(x,z),vx(x,z))dz||

+
∫ t
0 ||
{

f (x,z,v(x,z),vx(x,z))− f (x,z,u(x,z),ux(x,z))
}

dz||.

||vx(x, t)−ux(x, t)|| ≤ εt+
∫ t

0

{
L f (x,z)×max

[
||v(x,z)−u(x,z)||, ||vx(x,z)−ux(x,z)||

]}
dz.

(6.34)

(By using equation (6.32) and hypothesis (ii)).

Again, we have the following inequalities

(i) εxt ≤ ε(1+a)b and εt ≤ ε(1+a)b, ∀ x ∈ [0,a], ∀ t ∈ [0,b].

(ii) L f (x,z)≤
max

x∈[0,a] {L f (x,z)}= G(z), ∀ z ∈ [0,b].

(iii) ||v(x,z)−u(x,z)|| ≤ max
x∈[0,a]

{
||v(x,z)−u(x,z)||

}
= h1(z),∀ z ∈ [0,b].

(iv) ||vx(x,z)−ux(x,z)|| ≤ max
y∈[0,a]

{
||vx(y,z)−ux(y,z)||

}
= h2(z),∀ z ∈ [0,b].

Using the above inequalities (i)-(iv) and the equation (6.33), we get

||v(x, t)−u(x, t)|| ≤ ε(1+a)b+(1+a)
∫ t

0
G(z)×max[h1(z),h2(z)]dz. (6.35)

Again using the inequalities (i)-(iv) and the Equation (6.34), we get

||vx(x, t)−ux(x, t)|| ≤ ε(1+a)b+(1+a)
∫ t

0
G(z)×max[h1(z),h2(z)]dz. (6.36)

Using equation (6.35), we get,

h1(t) =
max

x ∈ [0,a]
||v(x, t)−u(x, t)|| ≤ ε(1+a)b+(1+a)

∫ t

0
G(z)×max[h1(z),h2(z)]dz.

(6.37)

Using equation (6.36), we get,

h2(t)=
max

y ∈ [0,a]
||vy(y, t)−uy(y, t)|| ≤ ε(1+a)b+(1+a)

∫ t

0
G(z)×max[h1(z),h2(z)]dz.

(6.38)
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Using equations (6.37) and (6.38), we get

max[h1(t),h2(t)]≤ ε(1+a)b+(1+a)
∫ t
0 G(z)×max[h1(z),h2(z)]dz.

By using Lemma 6.1.2, we get

max
t ∈ [0,b]

[h1(t),h2(t)]≤ εb(1+a)2× exp
{∫ b

0
G(z)dz

}
. (6.39)

From equation (6.39), we get

||v(x, t)−u(x, t)|| ≤ εb(1+a)2× exp
{∫ b

0 G(z)dz
}

and

||vx(x, t)−ux(x, t)|| ≤ εb(1+a)2× exp
{∫ b

0 G(z)dz
}
.

=⇒ ||v(x, t)−u(x, t)|| ≤ ε× c f and ||vx(x, t)−ux(x, t)|| ≤ ε× c f ,

where c f = b(1+a)2×exp
{∫ b

0 G(z)dz
}
.

Hence the equation (6.6) is HU stable.

Thus, we have proved the HU stability of the second order non-linear ordinary

and partial differential equations (6.5) and (6.6) respectively by using the integral

inequalities.
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7.1 INTRODUCTION

In this chapter, we have studied the generalised HUR stability for the second order

non-linear ordinary and partial differential equations by using the results in [41].

We have obtained the generalised HUR stability for the second order non-

linear ordinary differential equation of the type

uxx(x, t) = f (x, t,u(x, t),ux(x, t)), (7.1)

where f ∈C([0,a]× [0,b]×B2,B) and (B, ||.||) is a real or complex Banach space.

Further we prove the generalised HUR stability for the second order non-linear

partial differential equation of the type

uxt(x, t) = f (x, t,u(x, t),ux(x, t),ut(x, t),uxx(x, t)), (7.2)

where f ∈C([0,a]× [0,b]×B4,B).

We have obtained the required integral inequalities to prove our main results.

First, we define generalised HUR stability of the differential equations (7.1)

and (7.2).

Definition 7.1.1 : Equation (7.1) is generalised HUR stable if there exists

real constants c1( f ,φ),c2( f ,φ) > 0 such that for any continuous function φ : [0,a]×

[0,b]→ (0,∞) and for any soluion v(x, t) of the inequality

||vxx(x, t)− f (x, t,v(x, t),vx(x, t))|| ≤ φ(x, t), (7.3)

there exists a solution u(x, t) of (7.1) with

||v(x, t)−u(x, t)|| ≤ c1( f ,φ)φ(x, t)

and ||vx(x, t)−ux(x, t)|| ≤ c2( f ,φ)φ(x, t), ∀x ∈ [0,a], ∀t ∈ [0,b].
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Remark 7.1.2 : A function v(x, t) is a solution to the inequality (7.3) iff there

exists a continuous function g(x, t) which depends on v(x, t) such that

i) ||g(x, t)|| ≤ φ(x, t),

ii) vxx(x, t) = f (x, t,v(x, t),vx(x, t))+g(x, t),∀x ∈ [0,a], ∀ t ∈ [0,b].

Definition 7.1.3 : Equation (7.2) is generalised HUR stable if there exists

real constants c1( f ,φ),c2( f ,φ),c3( f ,φ),ε > 0 such that for any continuous function

φ : [0,a]× [0,b]→ (0,∞) and for any soluion v(x, t) of the inequality

||vxt(x, t)− f (x, t,v(x, t),vx(x, t),vt(x, t),vxx(x, t))|| ≤ εφ(x, t), (7.4)

there exists a solution u(x, t) of (7.2) with

||v(x, t)−u(x, t)|| ≤ c1( f ,φ)φ(x, t),

||vx(x, t)−ux(x, t)|| ≤ c2( f ,φ)φ(x, t)

and ||vt(x, t)−ut(x, t)|| ≤ c3( f ,φ)φ(x, t),∀x ∈ [0,a], ∀t ∈ [0,b].

Remark 7.1.4: A function v(x, t) is a solution to the inequality (7.4) iff there

exists a continuous function g(x, t) which depends on v(x, t) such that

i) ||g(x, t)|| ≤ φ(x, t),

ii) vxt(x, t) = f (x, t,v(x, t),vx(x, t),vt(x, t),vxx(x, t))+g(x, t),∀x ∈ [0,a], ∀t ∈ [0,b].

In proving main results following Gronwall type Lemmas are required.

Lemma 7.1.5 : [50] Assume that

i) u,v,h ∈C(Rn
+,R+).

ii) For any t ≥ t0, u(t)≤ h(t)+
∫ t
t0

v(s)u(s)ds.

iii) h(t) is positive and increasing.

Then u(t)≤ h(t) exp{
∫ t
t0

v(r)dr}, for any t ≥ t0.
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Lemma 7.1.6 : [50] Let u(x,y),η(x,y) and c(x,y) be nonnegative continuous

functions defined on x,y ∈ R+, and let η(x,y) be nondecreasing function in each

variable x,y ∈ R+. If u(x,y)≤ η(x,y)+
∫ x
0
∫ y
0 c(s, t)u(s, t)dsdt, for x,y ∈ R+,

then

u(x,y)≤ η(x,y)× exp{
∫ x
0
∫ y
0 c(s, t)dsdt}, for x,y ∈ R+.

7.2 INTEGRAL INEQUALITIES

In this section, we have proved some results on inequalities, which are required in

proving our main results. First, we prove a result for the inequality (7.3).

Theorem 7.2.1 : If v(x, t) is a solution to the inequality (7.3), then (v,vx) satis-

fies the following integral inequality system.

||v(x, t)− v(0, t)−
∫ x
0
∫ y
0 f (s, t,v(s, t),vs(s, t))dsdy|| ≤

∫ x
0
∫ z
0 φ(s, t)dsdz,

||vx(x, t)− vx(0, t)−
∫ x
0 f (s, t,v(s, t),vs(s, t))ds|| ≤

∫ x
0 φ(s, t)ds.

Proof. If v(x, t) is a solution to the inequality

||vxx(x, t)− f (x, t,v(x, t),vx(x, t))|| ≤ φ(x, t),

then integrating w. r. t. x, we get

∫ x
0 ||vss(s, t)− f (s, t,v(s, t),vs(s, t))||ds≤

∫ x
0 φ(s, t)ds.

Since

||
∫ x
0 {vss(s, t)− f (s, t,v(s, t),vs(s, t))}ds|| ≤

∫ x
0 ||vss(s, t)− f (s, t,v(s, t),vs(s, t))||ds,

we get

||
∫ x
0 {vss(s, t)− f (s, t,v(s, t),vs(s, t))}ds|| ≤

∫ x
0 φ(s, t)ds.

⇒ ||vx(x, t)− vx(0, t)−
∫ x
0 f (s, t,v(s, t),vs(s, t))ds|| ≤

∫ x
0 φ(s, t)ds.
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Integrating w. r. t. x, we get∫ x
0 ||vy(y, t)− vy(0, t)−

∫ y
0 f (s, t,v(s, t),vs(s, t))ds||dy≤

∫ x
0
∫ z
0 φ(s, t)dsdz.

Since ||
∫ x
0 {vy(y, t)− vy(0, t)−

∫ y
0 f (s, t,v(s, t),vs(s, t))ds}dy||

≤
∫ x
0 ||vy(y, t)− vy(0, t)−

∫ y
0 f (s, t,v(s, t),vs(s, t))ds||dy,

we get

||
∫ x
0 {vy(y, t)− vy(0, t)−

∫ y
0 f (s, t,v(s, t),vs(s, t))ds}dy|| ≤

∫ x
0
∫ z
0 φ(s, t)dsdz.

⇒ ||v(x, t)− v(0, t)−{v(0, t)− v(0, t)}−
∫ x
0
∫ y
0 f (s, t,v(s, t),vs(s, t))dsdy||

≤
∫ x
0
∫ z
0 φ(s, t)dsdz.

⇒ ||v(x, t)− v(0, t)−
∫ x
0
∫ y
0 f (s, t,v(s, t),vs(s, t))dsdy|| ≤

∫ x
0
∫ z
0 φ(s, t)dsdz.

Similarly, we have the result for the inequality (7.4).

Theorem 7.2.2 : If v(x, t) is a solution to the inequality (7.4), then v,vt and vx

satisfy the integral inequalities

||v(x, t)− v(x,0)− v(0, t)+ v(0,0)

−
∫ t
0
∫ x
0 f (s,z,v(s,z),vs(s,z),vz(s,z),vss(s,z))dsdz|| ≤

∫ t
0
∫ x
0 φ(s,z)dsdz,

||vt(x, t)− vt(0, t)−
∫ x
0 f (s, t,v(s, t),vs(s, t),vt(s, t),vss(s, t))ds|| ≤

∫ x
0 φ(s, t)ds

and

||vx(x, t)− vx(x,0)−
∫ t
0 f (x,z,v(x,z),vx(x,z),vz(x,z),vxx(x,z))dz|| ≤

∫ t
0 φ(x,z)dz

respectively.

Proof. If v(x, t) is a solution to the inequality

||vxt(x, t)− f (x, t,v(x, t),vx(x, t),vt(x, t),vxx(x, t))|| ≤ φ(x, t), (7.5)

then integrating w. r. t. x, we get

∫ x
0 ||vst(s, t)− f (s, t,v(s, t),vs(s, t),vt(s, t),vss(s, t))||ds≤

∫ x
0 φ(s, t)ds.
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Since

||
∫ x
0 {vst(s, t)− f (s, t,v(s, t),vs(s, t),vt(s, t),vss(s, t))}ds||

≤
∫ x
0 ||vst(s, t)− f (s, t,v(s, t),vs(s, t),vt(s, t),vss(s, t))||ds,

we get

||
∫ x
0 {vst(s, t)− f (s, t,v(s, t),vs(s, t),vt(s, t),vss(s, t))}ds|| ≤

∫ x
0 φ(s, t)ds.

⇒ ||vt(x, t)− vt(0, t)−
∫ x
0 f (s, t,v(s, t),vs(s, t),vt(s, t),vss(s, t))ds|| ≤

∫ x
0 φ(s, t)ds.

Integrating w. r. t. t, we get

∫ t
0 ||vz(x,z)− vz(0,z)−

∫ x
0 f (s,z,v(s,z),vs(s,z),vz(s,z),vss(s,z))ds||dz

≤
∫ t
0
∫ x
0 φ(s,z)dsdz.

Since

||
∫ t
0{vz(x,z)− vz(0,z)−

∫ x
0 f (s,z,v(s,z),vs(s,z),vz(s,z),vss(s,z))ds}dz||

≤
∫ t
0 ||vz(x,z)− vz(0,z)−

∫ x
0 f (s,z,v(s,z),vs(s,z),vz(s,z),vss(s,z))ds||dz,

we get

||
∫ t
0{vz(x,z)− vz(0,z)−

∫ x
0 f (s,z,v(s,z),vs(s,z),vz(s,z),vss(s,z))ds}dz||

≤
∫ t
0
∫ x
0 φ(s,z)dsdz.

⇒ ||v(x, t)− v(x,0)− v(0, t)+ v(0,0)

−
∫ t
0
∫ x
0 f (s,z,v(s,z),vs(s,z),vz(s,z),vss(s,z))dsdz|| ≤

∫ t
0
∫ x
0 φ(s,z)dsdz.

Integrating equation (7.5) w. r. t. t, we get∫ t
0 ||vxz(x,z)− f (x,z,v(x,z),vx(x,z),vz(x,z),vxx(x,z))||dz≤

∫ t
0 φ(x,z)dz.

Since

||
∫ t
0{vxz(x,z)− f (x,z,v(x,z),vx(x,z),vz(x,z),vxx(x,z))}dz||

≤
∫ t
0 ||vxz(x,z)− f (x,z,v(x,z),vx(x,z),vz(x,z),vxx(x,z))||dz,

we have
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||
∫ t
0{vxz(x,z)− f (x,z,v(x,z),vx(x,z),vz(x,z),vxx(x,z))}dz|| ≤

∫ t
0 φ(x,z)dz.

⇒ ||vx(x, t)−vx(x,0)−
∫ t
0 f (x,z,v(x,z),vx(x,z),vz(x,z),vxx(x,z))dz|| ≤

∫ t
0 φ(x,z)dz.

7.3 GENERALISED HUR STABILITY OF (7.1)

In this section we prove generalised HUR stability for the second order non-linear

ordinary differential equation (7.1). We have the following result.

Theorem 3.1 : Assume that

i) f ∈C([0,a]× [0,b]×B2,B) .

ii) There exists L f (x, t) ∈C1([0,a]× [0,b],R+) such that
∫ a
0 L f (x, t)dx < ∞ and

|| f (x, t,z1,z2)− f (x, t, t1, t2)|| ≤ L f (x, t)
max

i∈{1,2}{||zi− ti||}, ∀ x ∈ [0,a], ∀ t ∈ [0,b]

and z1, z2, t1, t2 ∈ B.

iii) φ : [0,a]× [0,b]→ (0,∞) is an increasing function.

iv) There exist constants λ 1
φ
,λ 2

φ
> 0 such that

∫ x
0
∫ z
0 φ(s, t)dsdz≤ λ 1

φ
φ(x, t),

∫ x
0 φ(s, t)ds≤ λ 2

φ
φ(x, t),∀x ∈ [0,a],∀t ∈ [0,b].

Then (7.1) is generalised HUR stable.

Proof. : Let v(x, t) be a solution to the inequality

||vxx(x, t)− f (x, t,v(x, t),vx(x, t))|| ≤ φ(x, t), ∀x ∈ [0,a],∀t ∈ [0,b].

Let u(x, t) be the unique solution to the problem

uxx(x, t) = f (x, t,u(x, t),ux(x, t)),

u(0, t) = v(0, t),∀t ∈ [0,b],

u(x,0) = v(x,0),∀x ∈ [0,a].

(7.6)
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If u(x, t) is a solution to (7.6), then (u,ux(x, t)) satisfies the following system

u(x, t) = v(0, t)+
∫ x

0

∫ z

0
f (s, t,u(s, t),us(s, t))dsdz,

ux(x, t) = vx(0, t)+
∫ x

0
f (s, t,u(s, t),us(s, t))ds.

(7.7)

Then by using Theorem 7.2.1 and hypothesis (iv), it follows that

||v(x, t)− v(0, t)−
∫ x
0
∫ y
0 f (s, t,v(s, t),vs(s, t))dsdy|| ≤

∫ x
0
∫ z
0 φ(s, t))dsdz,

i.e.

||v(x, t)− v(0, t)−
∫ x

0

∫ y

0
f (s, t,v(s, t),vs(s, t))dsdy|| ≤ λ

1
φ

φ(x, t) (7.8)

and

||vx(x, t)− vx(0, t)−
∫ x
0 f (s, t,v(s, t),vs(s, t))ds|| ≤

∫ x
0 φ(s, t)ds, i.e.

||vx(x, t)− vx(0, t)−
∫ x

0
f (s, t,v(s, t),vs(s, t))ds|| ≤ λ

2
φ

φ(x, t). (7.9)

Consider

||v(x, t)−u(x, t)||= ||v(x, t)− v(0, t)−
∫ x
0
∫ z
0 f (s, t,u(s, t),us(s, t))dsdz||.

= ||v(x, t)− v(0, t)−
∫ x
0
∫ z
0 f (s, t,v(s, t),vs(s, t))dsdz

+
∫ x
0
∫ z
0 f (s, t,v(s, t),vs(s, t))dsdz

−
∫ x
0
∫ z
0 f (s, t,u(s, t),us(s, t))dsdz||.

≤ ||v(x, t)− v(0, t)−
∫ x
0
∫ z
0 f (s, t,v(s, t),vs(s, t))dsdz||

+||
∫ x
0
∫ z
0 f (s, t,v(s, t),vs(s, t))dsdz−

∫ x
0
∫ z
0 f (s, t,u(s, t),us(s, t))dsdz||.

≤ ||v(x, t)− v(0, t)−
∫ x
0
∫ z
0 f (s, t,v(s, t),vs(s, t))dsdz||

+
∫ x
0
∫ z
0 || f (s, t,v(s, t),vs(s, t))− f (s, t,u(s, t),us(s, t))||dsdz.
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||v(x, t)−u(x, t)|| ≤ λ 1
φ

φ(x, t)

+
∫ x
0
∫ z
0 L f (s, t)×max{||v(s, t)−u(s, t)||, ||vs(s, t)−us(s, t)||}dsdz.

(by using hypothesis (ii) and equation (7.8) )

≤ λ 1
φ

φ(x, t)

+
∫ x
0 dz

∫ z
0 L f (s, t)×max{||v(s, t)−u(s, t)||, ||vs(s, t)−us(s, t)||}ds.

≤ λ 1
φ

φ(x, t)

+
∫ x
0 (x−s)L f (s, t)×max{||v(s, t)−u(s, t)||, ||vs(s, t)−us(s, t)||}ds.

≤ λ 1
φ

φ(x, t)

+
∫ x
0 aL f (s, t)×max{||v(s, t)−u(s, t)||, ||vs(s, t)−us(s, t)||}ds,

(∵ x− s≤max(x− s)≤ (a− x)≤ a).

≤ λ 1
φ

φ(x, t)

+
∫ x
0 (1+a)L f (s, t)×max{||v(s, t)−u(s, t)||, ||vs(s, t)−us(s, t)||}ds,

||v(x, t)−u(x, t)|| ≤ λ
1
φ

φ(x, t)+
∫ x

0
G(s, t)×max{||v(s, t)−u(s, t)||, ||vs(s, t)−us(s, t)||}ds,

(7.10)

where G(s,t) = (1+a)L f (s, t).

Again consider

||vx(x, t)−ux(x, t)||= ||vx(x, t)− vx(0, t)−
∫ x
0 f (s, t,u(s, t),us(s, t))ds||.

= ||vx(x, t)− vx(0, t)−
∫ x
0 f (s, t,v(s, t),vs(s, t))ds

+
∫ x
0 f (s, t,v(s, t),vs(s, t))ds−

∫ x
0 f (s, t,u(s, t),us(s, t))ds||.

≤ ||vx(x, t)− vx(0, t)−
∫ x
0 f (s, t,v(s, t),vs(s, t))ds||

+||
∫ x
0 f (s, t,v(s, t),vs(s, t))ds−

∫ x
0 f (s, t,u(s, t),us(s, t))ds||.
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≤
∫ x
0 φ(s, t)ds

+
∫ x
0 || f (s, t,v(s, t),vs(s, t))− f (s, t,u(s, t),us(s, t))||ds.

(by using Theorem (7.2.1) )

By using hypothesis (ii) and (iv), we get

||vx(x, t)−ux(x, t)|| ≤ λ 2
φ

φ(x, t)

+
∫ x
0 L f (s, t)×max{||v(s, t)−u(s, t)||, ||vs(s, t)−us(s, t)||}ds.

≤ λ 2
φ

φ(x, t)

+
∫ x
0 (1+a)L f (s, t)×max{||v(s, t)−u(s, t)||, ||vs(s, t)−us(s, t)||}ds,

||vx(x, t)−ux(x, t)|| ≤ λ
2
φ

φ(x, t)+
∫ x

0
G(s, t)×max{||v(s, t)−u(s, t)||, ||vs(s, t)−us(s, t)||}ds,

(7.11)

where G(s,t) = (1+a)L f (s, t).

Let λ 3
φ
(x, t) = max{λ 1

φ
(x, t),λ 2

φ
(x, t)}.

Then equation (7.10), yields

||v(x, t)−u(x, t)|| ≤ λ 3
φ

φ(x, t)+
∫ x
0 G(s, t)×max{||v(s, t)−u(s, t)||, ||vs(s, t)−us(s, t)||}ds

and equation (7.11), yields

||vx(x, t)−ux(x, t)|| ≤ λ 3
φ

φ(x, t)+
∫ x
0 G(s, t)×max{||v(s, t)−u(s, t)||, ||vs(s, t)−us(s, t)||}ds.

From these two yields

max{||v(x, t)−u(x, t)||, ||vx(x, t)−ux(x, t)||} ≤ λ 3
φ

φ(x, t)+∫ x
0 G(s, t)×max{||v(s, t)−u(s, t)||, ||vs(s, t)−us(s, t)||}ds.

By using Lemma (7.1.5), we get

max{||v(x, t)−u(x, t)||, ||vx(x, t)−ux(x, t)||} ≤ λ 3
φ

φ(x, t)× exp{
∫ x
0 G(s, t)ds}.

From which it follows that
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i. e. ||v(x, t)−u(x, t)|| ≤ λ 3
φ

φ(x, t)× exp{
∫ x
0 G(s, t)ds} and

||vx(x, t)−ux(x, t)|| ≤ λ 3
φ

φ(x, t)× exp{
∫ x
0 G(s, t)ds}.

=⇒ ||v(x, t)−u(x, t)|| ≤ λ 3
φ

φ(x, t)× exp{
∫ a
0 G(s, t)ds} and

||vx(x, t)−ux(x, t)|| ≤ λ 3
φ

φ(x, t)× exp{
∫ a
0 G(s, t)ds}.

||v(x, t)−u(x, t)|| ≤ φ(x, t)× c( f ,φ) and ||vx(x, t)−ux(x, t)|| ≤ φ(x, t)× c( f ,φ),

where c( f ,φ)= λ 3
φ
× max

0≤t≤b exp{
∫ a
0 G(s, t)ds}.

Hence equation (7.1) is generalised HUR stable.

7.4 GENERALISED HUR STABILITY OF (7.2).

In this section we prove generalised HUR stability for the second order non-linear

partial differential equation (7.2). We have the following result.

Theorem 4.1 : Assume that

i) f ∈C([0,a]× [0,b]×B4,B) .

ii) There exists L f (x, t) ∈C1([0,a]× [0,b],R+) such that L f (x, t) is integrable

and

|| f (x, t,z1,z2,z3,z4)− f (x, t, t1, t2, t3, t4|| ≤ L f (x, t)
min

i∈{1,2,3,4}{||zi− ti||},

∀ x ∈ [0,a],∀ t ∈ [0,b] and z1, z2, z3, z4, t1, t2, t3, t4 ∈ B.

iii) φ : [0,a]× [0,b]→ (0,∞) is an increasing function in each variable.

iv) There exist constants λ 1
φ
,λ 2

φ
,λ 3

φ
> 0 such that

∫ t
0
∫ x
0 φ(s,z)dsdz≤ λ 1

φ
φ(x, t),

∫ t
0 φ(x,z)dz≤ λ 2

φ
φ(x, t),

∫ x
0 φ(s, t)ds≤ λ 3

φ
φ(x, t), ∀ x ∈ [0,a],∀ t ∈ [0,b]

Then (7.2) is generalised HUR stable.

Proof. :
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Let v(x, t) be a solution to the inequality

||vxt(x, t)− f (x, t,v(x, t),vx(x, t),vt(x, t),vxx(x, t))|| ≤ φ(x, t), ∀x ∈ [o,a],∀t ∈ [o,b].

Let u(x, t) be the unique solution to the problem

uxt(x, t) = f (x, t,u(x, t),ux(x, t),ut(x, t),uxx(x, t)),

u(0, t) = v(0, t),∀t ∈ [o,b],

u(x,0) = v(x,0),∀x ∈ [o,a].

(7.12)

If u(x, t) is a solution to equation (7.12), then (u,ut(x, t),ux(x, t)) satisfies the

following system.

u(x, t) = v(x,0)+ v(0, t)− v(0,0)

+
∫ t

0

∫ x

0
f (s,z,u(s,z),us(s,z),uz(s,z),uss(s,z))dsdz,

ut(x, t) = vt(0, t)+
∫ x

0
f (s, t,u(s, t),us(s, t),ut(s, t),uss(s, t))ds,

ux(x, t) = vx(x,0)+
∫ t

0
f (x,z,u(x,z),ux(x,z),uz(x,z),uxx(x,z))dz.

(7.13)

Then by using Theorem 7.2.2 and hypothesis (iv), it follows that∣∣∣∣∣∣v(x, t)−v(x,0)−v(0, t)+v(0,0)−
∫ t
0
∫ x
0 f (s,z,v(s,z),vs(s,z),vz(s,z),vss(s,z))dsdz

∣∣∣∣∣∣
≤
∫ t
0
∫ x
0 φ(s,z)dsdz.

That is∣∣∣∣∣∣v(x, t)− v(x,0)−
∫ t

0

∫ x

0
f (s,z,v(s,z),vs(s,z),vz(s,z),vss(s,z))dsdz

−v(0, t)+ v(0,0)
∣∣∣∣∣∣≤ λ

1
φ

φ(x, t).

(7.14)

Also

||vt(x, t)− vt(0, t)−
∫ x
0 f (s, t,v(s, t),vs(s, t),vt(s, t),vss(s, t))ds|| ≤

∫ x
0 φ(s, t)ds.

⇒ ||vt(x, t)− vt(0, t)−
∫ x

0
f (s, t,v(s, t),vs(s, t),vt(s, t),vss(s, t))ds|| ≤ λ

3
φ

φ(x, t),

(7.15)
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(By using hypothesis (iv))

Next

||vx(x, t)− vx(x,0)−
∫ t
0 f (x,z,v(x,z),vx(x,z),vz(x,z),vxx(x,z))dz|| ≤

∫ t
0 φ(x,z)dz.

⇒ ||vx(x, t)− vx(x,0)−
∫ t

0
f (x,z,v(x,z),vx(x,z),vz(x,z),vxx(x,z))dz|| ≤ λ

2
φ

φ(x, t).

(7.16)

Using equation (7.13), we get

||v(x, t)−u(x, t)||= ||v(x, t)− v(x,0)− v(0, t)+ v(0,0)

−
∫ t
0
∫ x
0 f (s,z,u(s,z),us(s,z),uz(s,z),uss(s,z))dsdz||.

= ||v(x, t)− v(x,0)− v(0, t)+ v(0,0)

−
∫ t
0
∫ x
0 f (s,z,v(s,z),vs(s,z),vz(s,z),vss(s,z))dsdz

+
∫ t
0
∫ x
0 f (s,z,v(s,z),vs(s,z),vz(s,z),vss(s,z))dsdz

−
∫ t
0
∫ x
0 f (s,z,u(s,z),us(s,z),uz(s,z),uss(s,z))dsdz||.

≤ ||v(x, t)− v(x,0)− v(0, t)+ v(0,0)

−
∫ t
0
∫ x
0 f (s,z,v(s,z),vs(s,z),vz(s,z),vss(s,z))dsdz||

+||
∫ t
0
∫ x
0 f (s,z,v(s,z),vs(s,z),vz(s,z),vss(s,z))dsdz

−
∫ t
0
∫ x
0 f (s,z,u(s,z),us(s,z),uz(s,z),uss(s,z))dsdz||.

≤ ||v(x, t)− v(x,0)− v(0, t)+ v(0,0)

−
∫ t
0
∫ x
0 f (s,z,v(s,z),vs(s,z),vz(s,z),vss(s,z))dsdz||

+
∫ t
0
∫ x
0 ||{ f (s,z,v(s,z),vs(s,z),vz(s,z),vss(s,z))

− f (s,z,u(s,z),us(s,z),uz(s,z),uss(s,z))}||dsdz.

≤ λ 1
φ

φ(x, t)

+
∫ t
0
∫ x
0

{
L f (s,z) min

[
||v(s,z)−u(s,z)||, ||vs(s,z)−us(s,z)||,

||vz(s,z)−uz(s,z)||, ||vss(s,z)−uss(s,z)||
]}

dsdz.
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(by using hypothesis (ii) and equation (7.14) )

||v(x, t)−u(x, t)|| ≤ λ 1
φ

φ(x, t)+
∫ t
0
∫ x
0

{
L f (s,z) ||v(s,z)−u(s,z)||

}
dsdz.

By using Lemma (7.1.6), we get

||v(x, t)−u(x, t)|| ≤ λ 1
φ

φ(x, t)× exp
{∫ t

0
∫ x
0 L f (s,z)dsdz

}
.

≤ λ 1
φ

φ(x, t)× exp
{∫ b

0
∫ a
0 L f (s,z)dsdz

}
.

≤ c1( f ,φ)φ(x, t), where c1( f ,φ)= λ 1
φ
×exp

{∫ b
0
∫ a
0 L f (s,z)dsdz

}
.

Again, by using equation (7.13), we get

||vx(x, t)−ux(x, t)||= ||vx(x, t)−vx(x,0)−
∫ t
0 f (x,z,u(x,z),ux(x,z),uz(x,z),uxx(x,z))dz||.

i.e.

||vx(x, t)−ux(x, t)||= ||vx(x, t)− vx(x,0)

−
∫ t
0 f (x,z,v(x,z),vx(x,z),vz(x,z),vxx(x,z))dz

+
∫ t
0 f (x,z,v(x,z),vx(x,z),vz(x,z),vxx(x,z))dz

−
∫ t
0 f (x,z,u(x,z),ux(x,z),uz(x,z),uxx(x,z))dz||.

≤ ||vx(x, t)− vx(x,0)

−
∫ t
0 f (x,z,v(x,z),vx(x,z),vz(x,z),vxx(x,z))dz||

+||
∫ t
0 f (x,z,v(x,z),vx(x,z),vz(x,z),vxx(x,z))dz

−
∫ t
0 f (x,z,u(x,z),ux(x,z),uz(x,z),uxx(x,z))dz||.

≤ ||vx(x, t)− vx(x,0)

−
∫ t
0 f (x,z,v(x,z),vx(x,z),vz(x,z),vxx(x,z))dz||

+
∫ t
0 ||
{

f (x,z,v(x,z),vx(x,z),vz(x,z),vxx(x,z))

− f (x,z,u(x,z),ux(x,z),uz(x,z),uxx(x,z))
}

dz||.
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⇒ ||vx(x, t)−ux(x, t)|| ≤ λ 2
φ

φ(x, t)

+
∫ t
0

{
L f (x,z) min

[
||v(x,z)−u(x,z)||, ||vx(x,z)−ux(x,z)||,

||vz(x,z)−uz(x,z)||, ||vxx(x,z)−uxx(x,z)||
]}

dz,

(By using equation (7.16) and hypothesis (ii)).

⇒||vx(x, t)−ux(x, t)|| ≤ λ 2
φ

φ(x, t)+
∫ t
0

{
L f (x,z) ||vx(x,z)−ux(x,z)||

}
dz, ∀ t ∈ [0,b].

By using Lemma (7.1.5)(considering x fixed), we get

||vx(x, t)−ux(x, t)|| ≤ λ 2
φ

φ(x, t)× exp
{∫ t

0 L f (x,z)dz
}
, ∀ t ∈ [0,b].

≤ λ 2
φ

φ(x, t)× exp
{∫ b

0 L f (x,z)dz
}
.

≤ c2( f ,φ)φ(x, t), where c2( f ,φ)= λ 2
φ
× max

0≤x≤a exp
{∫ b

0 L f (x,z)dz
}
.

Next

||vt(x, t)−ut(x, t)||= ||vt(x, t)− vt(0, t)

−
∫ x
0 f (s, t,u(s, t),us(s, t),ut(s, t),uss(s, t))ds||.

i.e.

||vt(x, t)−ut(x, t)||= ||vt(x, t)− vt(0, t)

−
∫ x
0 f (s, t,v(s, t),vs(s, t),vt(s, t),vss(s, t))ds

+
∫ x
0 f (s, t,v(s, t),vs(s, t),vt(s, t),vss(s, t))ds

−
∫ x
0 f (s, t,u(s, t),us(s, t),ut(s, t),uss(s, t))ds||.

i.e.

||vt(x, t)−ut(x, t)|| ≤ ||vt(x, t)−vt(0, t)−
∫ x
0 f (s, t,v(s, t),vs(s, t),vt(s, t),vss(s, t))ds||

+ ||
∫ x
0 f (s, t,v(s, t),vs(s, t),vt(s, t),vss(s, t))ds

−
∫ x
0 f (s, t,u(s, t),us(s, t),ut(s, t),uss(s, t))ds||.

≤ ||vt(x, t)−vt(0, t)−
∫ x
0 f (s, t,v(s, t),vs(s, t),vt(s, t),vss(s, t))ds||
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+
∫ x
0 {|| f (s, t,v(s, t),vs(s, t),vt(s, t),vss(s, t))

− f (s, t,u(s, t),us(s, t),ut(s, t),vss(s, t))||}ds.

⇒ ||vt(x, t)−ut(x, t)|| ≤ λ 3
φ

φ(x, t)

+
∫ x
0

{
L f (s, t) min

[
||v(s, t)−u(s, t)||, ||vs(s, t)−us(s, t)||,

||vt(s, t)−ut(s, t)||, ||vss(s, t)−uss(s, t)||
]}

ds, ∀ x ∈ [0,a].

(By using equation (7.15) and hypothesis (ii) )

⇒ ||vt(x, t)−ut(x, t)|| ≤ λ 3
φ

φ(x, t)+
∫ x
0

{
L f (s, t)||vt(s, t)−ut(s, t)||

}
ds, ∀ x ∈ [0,a].

By using Lemma (7.1.5)(considering t fixed), we get

||vt(x, t)−ut(x, t)|| ≤ λ 3
φ

φ(x, t)× exp
{∫ x

0 L f (s, t)ds
}
, ∀ x ∈ [0,a].

≤ λ 3
φ

φ(x, t)× exp
{∫ a

0 L f (s, t)ds
}
.

≤ c3( f ,φ)φ(x, t), where c3( f ,φ)= λ 3
φ
× max

0≤t≤b exp
{∫ a

0 L f (s, t)ds
}
.

Thus we have real constants c1( f ,φ),c2( f ,φ) and c3( f ,φ) such that for any func-

tion φ(x, t) as in (iii) and for any soluion v(x, t) of the inequality (7.4), the solution

u(x, t) of (7.2) satisfy the following :

||v(x, t)−u(x, t)|| ≤ c1( f ,φ)φ(x, t), ∀ x ∈ [0,a], ∀ t ∈ [0,b],

||vx(x, t)−ux(x, t)|| ≤ c2( f ,φ)φ(x, t), ∀ t ∈ [0,b],

and ||vt(x, t)−ut(x, t)|| ≤ c3( f ,φ)φ(x, t), ∀ x ∈ [0,a].

Hence equation (7.2) is generalised HUR stable.

Thus, we have proved the generalised HUR stability of second order non-

linear ordinary and partial differential equations (7.1) and (7.2) respectively by

employing Gronwall type Lemmas.



Summary

In this thesis, as stated in the research objective, we have studied the HU and

HUR stablility of different types of differential equations. It includes the stability

of non-linear ordinary differential equations, linear partial differential equations

and non-linear partial differential equations. We have investigated these stability

results by using various approaches viz. Laplace transform method, Banach con-

traction principle and some integral inequalities, etc. The following are some of

the salient features that characterize this thesis:

1. The first chapter deals with general introduction of the topic and the prob-

lems taken up for the research.

2. Chapter 2 deals with survey of the available literature on HU and HUR sta-

bility of different types of equations such as functional equations, difference

equations and differential equations. It reflects the present status of the work

done on HU and HUR stability of different types of equations.

3. Chapter 3 is devoted to the study of HUR stability of third order ordinary

differential equation. In this chapter we have studied the HUR stability

of third order ordinary differential equation. This HUR stability result is

established by imposing certain integrability conditions on the coefficients



7.4 GENERALISED HUR STABILITY OF (7.2). 109

of the differential equation and by using the result in [22]. An example is

provided in support of the result.

4. In chapter 4, we have established the HUR stability for first, third and nth

order linear homogeneous partial differential equations. These results are

proved by employing Laplace transform method and using the idea in [54].

5. Chapter 5 focuses on HUR stability of linear non-homogeneous partial dif-

ferential equations. Here we have proved the HUR stability of the second

order partial differential equation . Further , we have established the HUR

stability for the third order non-homogeneous partial differential equation.

These results are proved by using Banach contraction principle and the re-

sults found in [18].

6. The Chapter 6 deals with the HU stability of non-linear ordinary and par-

tial differential equations. We have proved the HU stability of first order

non-linear partial differential equation and second order non-linear partial

differential equation . These results are proved by employing Banach’s con-

traction principle.

Further, in this chapter we have established the HU stability of sec-

ond order non-linear ordinary differential equation and second order non-

linear partial differential equation .These results are established by employ-

ing Grownwall type inequality and some integral inequalities.

7. The Chapter 7 focuses on the generalised HUR stability. First we have

discussed generalised HUR stability of second order non-linear ordinary

differential equation. Then we have established the generalised HUR sta-
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bility for the second order non-linear partial differential equation . These

results are proved by employing Grownwall type inequality, some integral

inequalities and using the result in [41].

Problems for further study

The following topics are suggested for further study:

There is an ample opportunity to study HU and HUR stability for delay differ-

ential equations in wide range. This can be studied in two categories of ordinary

and partial differential equations. The applications of HU and HUR stability are

not yet discussed fully.
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