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Abstract
Leaf and fruit infections are the primary cause of the maximum harm to the crop, which 
decreases the quality and amount of the goods. To improve the productivity of plants, the 
timely identification of the infection is vital, which is a highly challenging task. Deep learn-
ing (DL) with image processing allows farmers to distinguish between healthy and infected 
crops. This work intends to identify healthy and diseased citrus leaf images using a convo-
lutional neural network (CNN) on the Platform as a Service (PaaS) cloud. The dataset of 
five types of healthy and unhealthy citrus images was used, namely, black spot, melanose, 
canker, greening, and healthy. Furthermore, the four-transfer learning (TL) pre-trained 
deep CNN (DCNN) models, namely, ResNet152V2, InceptionResNetV2, DenseNet121, 
and DenseNet201, were used to classify the leaf type. The performance of the CNN and 
four DCNNs were assessed using the confusion matrix (accuracy, precision, recall, and 
F1-score) and receiver operating characteristic-area under the curve (ROC-AUC) curve. 
An augmentation technique was utilised to enhance the dataset images, which helped to 
improve the model’s performance and achieved an accuracy of 98% precision and recall 
and an F1 score of 99% and an ROC-AUC score of 0.99. Moreover, the suggested CNN 
has only 15 layers, 427317 parameters, and 1.68MB size, while DCNN models have more 
layers, parameters, and large size. The small-size CNN was deployed to the Platform as a 
Service (PaaS) cloud. The deployed model link is available on a smartphone to upload a 
citrus leaf image to the cloud, and the result is instantly available on a mobile screen.
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1  Introduction

In India, the citrus industry is the country’s third-largest after the mango and banana 
fruit industry. India ranks ninth among the world’s top orange producers, contribut-
ing 3% to the total orange production worldwide and just 1.72% exported. Mandarin 
oranges from Nagpur, Maharashtra, are some of the best oranges in the world. Plant 
diseases are the main reasons for degrading the crop’s quantity and quality, leading to 
economic losses [1–4]. To maximize crop yield, precise and timely detection of plant 
infection is essential [5]. The critical challenge is diagnosing diseases early to under-
take efficient and targeted plant preservation interventions in crop production [6]. The 
standards of fruits, herbs, leaves, stems, and their products can be affected by illnesses, 
such as viruses, fungi, phytoplasmas, viroids, bacteria, and other pathogens. As the 
population rises, food production should increase for a steady supply [7]. Diseases and 
disorders affect plants and their products [8]. In the disease category, fungi, bacteria, 
or algae are the main reason for infection or illness. In the disorder category, rainfall, 
temperature, nutrient deficiency, moisture, etc., are the main reasons for the disorder 
[9, 10]. Environmental conditions are favourable for agriculture in developing countries 
like India, but incomes are low due to minimal investment in crop management infra-
structure [10]. The pesticide is used for disease control after diagnosis. If the diagnosis 
is incorrect, the cost and the commodity will be affected by using the wrong pesticide 
[9]. The disease control of plants using pesticides is one of agriculture’s most important 
research fields [11].

Fruits and vegetables benefit health and help reduce disease risks [12]. Citrus fruit is 
a natural source of carbohydrates, potassium, vitamin C, and glucose. For heart and sugar 
patients, the use of citrus fruit is helpful. High-water content of more than 85% helps 
to avoid dehydration by supplying fewer calories in energy to minimize weight [13]. Citrus 
is the world’s second most significant fruit in cultivation and production. A group of vita-
mins, fibre, and minerals such as carotenoids, limonoids, and flavonoids that show healthy 
organic activity, which is present in citrus fruit [2]. Citrus fruit has antioxidants, which ben-
efit human health [14]. The critical task of improving plant quality for economic growth is 
identifying and recognizing plant lesions [15]. More commercial and spontaneous hybrids 
of citrus varieties are available such as grapefruits, lemons, limes, oranges, and citric fruit 
[2]. Citrus plants can be infected by lesions, such as black spots and cankers [16]. The signs 
of these diseases are also first observed in leaves as spots. The leaves constitute the funda-
mental unit of plants and differ in form, scale, colour, structure, and texture [17, 18]. Numer-
ous researchers have appealed to the classification of citrus leaves in South Asia [13, 18].

The deep learning (DL) method of artificial intelligence (AI) plays an essential role in 
the identification of infections by utilizing leaf images [19]. Various techniques are already 
available to detect diseases of citrus leaves, such as edges, borders, clustering, sedimenta-
tion, active contour, thresholding, etc. However, most of them require more memory, or 
the model size is also significant. CNN has been invented to fit almost all areas using an 
automated image extraction method [20], but many applications’ performance could be 
better. The results of the CNN were improved by utilizing the rectified linear unit (ReLU) 
and the dropout concepts. The main advantage of CNN and pre-trained transfer learning 
(TL) DCNN models is automatically extracting features from the input image. Therefore, 
no feature extraction techniques are required. It improves the network’s reliability and the 
number of parameters utilized in future CNN computations. This is one of the reasons why 
CNN is considered superior in the classification applications.
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The use of CNN models in agricultural applications increased rapidly due to their vari-
ous advantages. CNN gives cutting-edge output for many image recognition applications, 
such as object identification and recognition, image subtitling, and tracking [21]. Differ-
ent CNN architectures, such as Inception and residual networks, were proposed for the 
classification and object recognition applications. Smart agriculture is suitable for devel-
oping technological devices with highly accurate algorithmic adaption [23–25]. Various 
environmental factors affect agriculture productivity, including weather, soil reserves, and 
quality. Many startups in agriculture are involved  for better outcome, including the Agri 
Information Management System, Livestock Monitoring, Climate Recipes, the Intelligent 
Spot Spraying System (ISSS), and Image-Based Anomaly Detection. CNN can detect crop 
disease by scanning the leaf images [26–29].

The primary motivation for this paper is to build CNN and four DCNN models in 
Python. Test with different kernel sizes, convolution layers, max-pooling/average polling, 
dense layers, and dropout layers with their hyperparameters fine-tuning to extract and rec-
ognise characteristics that distinguish the unique type of citrus disease that affects leaves. 
CNN and DCNN models were executed using the Python programming language. This 
paper aims to organise data to aid in the economy of thought, save this data from reaffirm-
ing the categorised things of their characteristics, and discover new relationships and con-
cepts in those identified characteristics. This effort also assists in predicting their behav-
iour, compiling a list of their optimal utilisation, assessing their output, and researching 
results that may be applied to other industries. Moreover, the key motivation for this effort 
is that the framework should function in the real world; authors should install it on real-
time systems, cloud systems, or embedded systems. If the system for forecasting can be 
accessed on mobile, then other hardware is not required; all that is required for prediction 
is a mobile device with an internet connection. The authors attempted to create an efficient 
model that could be accessed by mobile, PC, or laptop.

The manuscript is  organised in the following sections. Section  2 discusses the litera-
ture reviews, the objective of the work, and the research gap with the main contributions. 
Section 3 discusses the materials and methods, including the proposed framework, data-
set information, CNN, and DCNN model details with pseudocode. Section 4 presents the 
obtained experimental results. Section 5 discusses the comparison of obtained results with 
literature-reported work. Section 6 concludes the proposed work.

2 � Related work

This section will discuss the literature-reported plant disease detection methods, includ-
ing citrus diseases. Around the world, various citrus varieties are grown. However, a 
hand-held, efficient disease detection system on the mobile or embedded system can be 
developed to detect diseases at early stage. Different methodology for segmentation and 
extraction, including threshold, edge, regional, Gabor, wavelet transform, and principal 
component analysis (PCA), was discussed by Prajapati et al. [30]. Most plant diseases were 
recognized using leaf symptoms [31, 32].

Iqbal et  al. [2] present a review article on automatic image processing techniques to 
identify citrus plant illness. Xiang et  al. [5] implemented a lightweight CNN-based sys-
tem with channel shuffle operation and multiple-size module (L-CSMS) to detect plant 
diseases. They achieved 97.9% and 90.6% accuracy on the PlantVillage and plant disease 
severity datasets, respectively. Hamuda et al. [32] presented a survey on image processing 
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for plant segmentation and removal of the background techniques. They used colour seg-
mentation with green pixel masking to eliminate the background and employed the infected 
image with the Otsu threshold technique. Revathi et  al. [33] introduced the Homogene-
ous Pixel Counting technique for Cotton Diseases Detection (HPCCDD) to identify and 
categorize cotton diseases from mobile captured images. The proposed method employed 
various strategies, including RGB feature ranging techniques, colour image segmentation, 
and the utilization of Sobel and Canny filters to identify disease spots and edges for disease 
identification. Their approach achieved an impressive accuracy of 98.1%. Patil et al. [34] 
employed an SVM classifier to differentiate the illness after identifying features such as 
contrast, texture, cluster shade, homogeneity, and cluster prominence. The authors found 
fungal diseases in sugar cane by simple and triangular threshold values for the segmenta-
tions of leaves and lesions and achieved 98.60% accuracy. Szczypiski et al. [35] proposed 
a method based on isolated kernels’ image-derived form, texture parameters, and colour 
to classify barley varieties. Attributes dimension reduction, linear classifiers, and artificial 
neural networks (ANN) were used, achieving accuracy between 67% and 86%. Pydipati 
et  al. [36] introduced a colour co-occurrence method (CCM) for identifying normal and 
diseased citrus leaves with greasy spots, melanose, and scabs. The method combined tex-
ture-based hue, saturation, and intensity (HSI) colour attributes with statistical categoriza-
tion technique and achieved accuracies of over 95%.

Rauf et al. [37] generated a citrus fruits and leaves dataset of infected and uninfected 
plants such as canker, black spot, scab, melanose, and greening to detect and classify illness 
utilizing the ML approach. Qadri et al. [38] proposed a machine vision (MV) framework 
for classifying the eight types of lemon leaves. The collected digital images were converted 
into a multi-feature dataset comprised of histogram, binary, spectral, texture, scalability, 
rotational, and translational invariant characteristics. The optimized multi-features dataset 
was fed into various MV classifiers: Random Forest (RF), Multilayer Perceptron (MLP), 
Nave Bayes (NB), and J48. They also applied a 10-fold cross-validation technique. MLP 
obtained an overall accuracy of 98.14%. Parraga-Alava et  al. [39] suggested a VGG16-
based method to detect aphid lemon leaf images and reach an average of 81% and 97% 
rates on a real lemon leaf dataset. Yang et al. [40] created a leaf segmentation and identifi-
cation framework from 2500 complex background images using Mask Region-based CNN 
(Mask R-CNN) and VGG16 methodologies. They trained a Mask R-CNN model for leaf 
segmentation and fed over 1500 training photos from 15 species to a VGG16 for leaf cat-
egorization. The average mis-classification error of 80 test images utilizing Mask R-CNN 
was 1.15%, and the average accuracy for categorizing leaves in 150 test photos using 
VGG16 was 91.5%. Guo et al. [41] used the VGG16 and region proposal network (RPN) 
for plant illness detection (bacterial plaque, black rot, and rust). The RPN was employed to 
identify and localize the leaves and image segmentation through the Chan–Vese algorithm. 
They achieved an accuracy of 83.57%.

Tsolakidis et  al. [42] developed a framework for plant leaf detection using the Histo-
gram of Oriented Gradients and Zernike Moments approaches. The venation identification 
approach was used by Kolivand et al. [43] to categorize leaf forms and identify species of 
plants. The suggested method includes canny edge detection, curve extraction, leaf bound-
ary removal, hue normalization picture, and image fusion. Furthermore, the lines retrieved 
from pre-processing were further split into smaller pieces to localize the edge direction 
effectively. Flavia and Acer databases assess and evaluate 32 leaf pictures of Malaysian 
plants and achieved an average accuracy of 98.6% and 89.83%, respectively. Puri et al. [44] 
proposed a framework using mask analysis and an SVM to recognize the different varieties 
of medical plant leaves and achieved the highest accuracy of 90.27%. Vilasini et al. [45] 
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employed cell phones to recognize Indian leaf varieties utilizing KNN, SVM, and CNN 
algorithms. They use a cluster of edge detectors, a traditional Sobel edge detector, and 
a Laplacian edge detector to segment leaf edges and veins. The results of the Sobel and 
Laplacian operators were averaged with Prewitt edge detection, and the leaf skeleton was 
created for further categorization. They obtained 100%, 92%, and 80% accuracy for the 2, 
5, and 10 classes, respectively.

Deepalakshmi et al. [46] suggested a CNN-based approach for distinguishing between 
diseased and healthy leaves of different plants. They employ CNN as a feature extractor 
and the extracted features aid in identifying the most suitable class. The suggested sys-
tem identifies the picture class with greater than 94.5% accuracy in an average time frame 
of 3.8 seconds. To categorise four forms of citrus leaf illnesses (canker, greening, sooty 
mould, and leaf-miner), Dang-Ngoc et  al. [47] developed a hierarchical SVM method. 
Various image pre-processing methods were used, and leaf characteristics were retrieved 
in multiple colour spaces, with the most significant ones selected based on feature distri-
bution assessment. These specified characteristics were supplied to SVM to identify and 
categorise illnesses. They obtained a recognition rate of 92.5% and a high accuracy rate of 
91.76% for diseased leaves.

2.1 � Research gap and objectives

According to the literature mentioned earlier, most scientists created ML models such as 
SVM, RF, and others, as well as DL models such as CNN, VGG16, and others, to diagnose 
illnesses and get satisfactory outcomes. The references [5, 33–36] used CNN, HPCCDD, 
SVM, CCM and other methods. They achieved accuracies between 90.6% to 98.6%  but 
they have not reported the model size. The Parraga-Alava et al. [39], Yang et al. [40], and 
Guo et  al. [41] used VGG16 and achieved lower accuracies compared to our work. All 
the literature reported work also achieved lower performance than our work. Most of the 
researchers repeated the accuracy metric, but in this work, the imbalanced dataset was 
used, and the accuracy metric is not a good performance measure which can evaluate the 
models, but F1-score and ROC-AUC curve could be better choices with accuracy, preci-
sion, and recall metrics.

The authors discovered an opportunity to increase the categorization system’s per-
formance. By exploring the issue with conventional models, the study aims to produce 
a new awareness of it. In this study, the authors used the technology-assisted research 
technique. This research aims to improve existing systems by altering CNN frameworks 
to successfully diagnose citrus plant diseases while lowering model size and parameters. 
The authors used the small  citrus leaf dataset with a basic random sampling approach. 
Moreover, most researchers implemented the models, but the model size still needs to 
be reported, which is essential when the models are deployed to real-time systems, cloud 
or embedded systems. Developing an efficient design with a small model can fill this 
research gap.

The main objective of this study is to develop a small-size, reliable and efficient method 
for recognizing citrus leaf diseases with healthy leaves that will benefit farmers and other 
users, especially those doing smart farming. The authors feel that more research may be 
required to establish techniques for detecting citrus leaf diseases. To fill these research 
gaps, an efficient method was proposed by integrating camera captures colour imaging with 
a customized CNN and four DCNN (ResNet152V2, InceptionResNetV2, DenseNet121, 
and DenseNet201) models for identifying citrus leaf diseases. Image processing with ML 
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or DL is used in a variety of new ways to build dependable approaches with speedy results. 
Furthermore, typical image processing algorithms are susceptible to background noise, 
which reduces the model’s performance. The suggested system must meet these require-
ments while considering computing expenses, noise, and accuracy. Moreover, if the com-
plete system is available on a smartphone, it will be easy for users to check the citrus leaf 
disease on the phone instantly. These requirements were considered; the authors developed 
a small-size CNN and deployed it to the PaaS cloud so the user could access the system-
deployed link on his smartphone. The user will access the system link with just one click 
with an internet connection. The user captures the photo using a smartphone camera and 
uploads it to the system-deployed link, and the result will display instantly on the smart-
phone screen.

Previously, experts or producers utilized manual approaches to disease identification, 
but they are time-consuming and costly. Agro-technology improvement can help farm-
ers recognize the disease in the early stage. It will aid in increasing agricultural output 
and farmer income. If the farm is small, the classification challenge is straightforward and 
can be performed with the naked eye without much experience. Because smart farming 
demands an early illness-predicting model, this research problem must be considered. 
Farmers may profit from the proposed plan if the sickness prediction model is accessible 
through a mobile phone or other embedded device. 

CNNs have demonstrated beneficial results; however, notwithstanding their impres-
sive results, CNNs face unique problems, such as a trade-off between usefulness and CPU 
utilization. CNN, in contrast, demands a significant size of RAM and incurs comput-
ing resource costs in classification and verification, rendering its implementation on IoT 
networks, smartphones, and single-board processors impractical in most scenarios. As a 
result, analyzing images on a local computer is often tricky, even without graphics pro-
cessing units (GPUs) or cloud application services. The main contribution of this work 
includes:

•	 Develop an effective system with customized CNN using various layer combinations 
and fine-tuning their hyperparameters, which helps to extract the best features for cit-
rus leaf disease classification. The methodology aimed to solve traditional issues, such 
as high data noise in photos and the inefficiency of DL/ML approaches. The recom-
mended solution incorporates pre-processing procedures such as imaging re-sizing 
and scaling to address the limitations of recognizing citrus leaf illnesses from camera-
obtained pictures, which influence accuracy;

•	 The proposed technique is primarily based on a CNN and DCNN, which extract benefi-
cial characteristics and help in performance improvement. To help in successful feature 
extraction, the Adam and RMSprop optimizers were fine-tuned with varied hyperpa-
rameters, including learning rate;

•	 The authors experimented with different kernel sizes of convolutional layers, which 
helped to reduce processing duration and computational burden while enhancing model 
efficacy;

•	 The augmentation method was applied to enhance the dataset, which helped improve 
the models’ performance;

•	 A confusion matrix and AUC-ROC were utilized for checking model performance; and
•	 The CNN achieved an F1 score of 99%, and the model size is also small. It should also 

be highlighted that none of the investigators has revealed the model’s size, which is 
critical for deploying it on the embedded platform and cloud. As a result, the proposed 
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CNN model is smaller than others. This makes deploying the model on the PaaS cloud 
less costly and will display results quickly.

3 � Materials and methods

The proposed CNN-based citrus leaf disease prediction system is shown in Fig. 1. The cit-
rus leaf images dataset of healthy and unhealthy images was used [37]. A dataset consists 
of 609 RGB images of citrus leaves such as black spots, canker, greening, melanose, and 
healthy. The dataset images were resized to 224×224×3 and 299×299×3, and the feature 
scaling method was applied. Feature scaling is a technique used to standardize or normal-
ize the characteristics in dataset photographs, which multiplied every element by 255. The 
label encoding approach was utilized to turn labels into numbers that ML/DL algorithms 
may process. Every group has its numerical value, allowing systems to work efficiently 
with the coded label. A label encoder was used to label each image, allocating a label (0, 1, 
2, 3, and 4). The training dataset’s augmentation process was utilized to enhance the pic-
tures artificially. The CNN and DCNN were developed using Python. The healthy or dis-
eased citrus leaf was predicted using CNN and DCNN. The performance measures, such as 
accuracy, precision, recall, F1 score, and the ROC-AUC curve, were employed to evaluate 
the model performance. After the model performance assessment, the CNN was deployed 
to the cloud.

3.1 � Citrus leaves images dataset

The citrus leaves image dataset includes five categories of healthy and unhealthy citrus 
photos (black spot, melanose, canker, greening, and healthy), with 609 pictures [37]. The 

Fig. 1   Entire citrus leaf disease detection system framework
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details of the citrus leave photos dataset are shown in Table 1. The citrus leaf image col-
lection was separated into a training dataset (506 photos), and a validation dataset (103 
images) at around 80:20. Figure 2 depicts various dataset citrus leaves.

3.2 � Data augmentation

The data augmentation process is the artificial generation of new images from the original 
dataset while maintaining the label of the newly generated images [48]. It is a conveni-
ent and commonly used tool for producing more data for training to enhance the model 
performance. The data augmentation method is often used for image analysis in ML [49]. 
The stochastic and pipeline-based approach is used for image augmentation. This approach 
enables the user to increase the training dataset using chain operations such as shears, ver-
tical and horizontal rotations, zoom, crops, etc. The augmentation parameters used in this 
work are tabulated in Table 2. The dataset is small, but due to the augmentation, the dataset 
images were increased from 503 (training dataset images) to approximately 7084 images. 
Figure 3 shows the augmented image of the black spot diseased leaf.

Table 1   Dataset details Leaf Types Training Dataset Validation 
Dataset

Total Images

Black Spot 141 30 171
Melanose 10 03 13
Canker 133 30 163
Greening 174 30 204
healthy 48 10 58
Total 506 103 609

Fig. 2   Citrus leaf dataset images a) Black spot, b) Melanose, c) Canker, d) Greening, and e) Healthy
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3.3 � Convolutional neural network (CNN)

The standard architecture of any CNN model includes convolution layers (CL), pooling 
layers (PL), dropout layers, flatten layers (FL), dense layers, etc [22, 50]. CL consists of fil-
ters or kernels. Input features and weights pass through the CL, which gives corresponding 
output features. The suggested CNN framework uses the ReLU activation function to pre-
dict citrus leaf disease. The activation function is essential in CNN to learn and carry out 
more complex tasks. Various low-level characteristics, such as edges, corners, and lines, 
are extracted in the first CL [51]. The CLs’ assembly guides the CNN network to acquire 
more global features. With a rise in the number of CLs, network parameters exponentially 
grow. Pooling operations are then carried out throughout the area to decrease the number 
of network parameters.

In this work, average polling reduces the representation’s spatial size. A 3x3 filter with 
a stride of 2 was a standard size for the pooling layer. Flatten or fully connected (FC) 
layer was among the final layers of the CNN architecture. Figure  4 shows the proposed 
CNN architectures, and Table 3 depicts the output shape of the layers and the number of 

Table 2   List of augmented parameters

Augmentation parameters Value Training dataset Images after augmen-
tation process

Total images

width_shift_range 0.20 506 2x506 1012
rotation_range 45 506 2x506 1012
shear_range 0.15 506 2x506 1012
height_shift_range 0.20 506 2x506 1012
vertical_flip True 506 2x506 1012
horizontal_flip True 506 2x506 1012
zooming range 0.40 506 2x506 1012

Total 7084

Fig. 3   Augmented image of black spot disease
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parameters. The proposed CNN had three CL layers, which have kernel sizes of 94, 32, and 
16 first, second, and third CL, respectively. The filter size of 3x3 and ReLU was utilized 
for all CLs, with padding set to ’same’. Following CL, batch normalization (BN), average 
pooling layer (APL) with a pool size of 2 and stride of 2, then again BN was applied. The 
first dense layer contains 32, followed by the ReLU. Finally, an FC layer was made up of 5 
Softmax neurons, as depicted in Table 3.

3.4 � DCNN models

The DCNNs models, like Resnet152V2, InceptionResNetV2, DenseNet121, and 
DenseNet201, were chosen because of their remarkable achievements in various applica-
tions. The Resnet152V2 model has 152 layers, InceptionResNetV2 has 572, DenseNet121 
has 121, and DenseNet201 has 201 layers. Each of the four models has a unique structure 
as well as differences in layers and sizes. These models are described briefly below:

Fig. 4   CNN architecture with layer numbers

Table 3   The CNN model details

Layer numbers Layers (type) Output Shape Param #

1 conv2d_32 (Conv2D) (None, 224, 224, 64) 1792
2 batch_normalization_40 (BN) (None, 224, 224, 64) 256
3 average_pooling2d_24 (APL) (None, 112, 112, 64) 0
4 batch_normalization_41 (BN) (None, 112, 112, 64) 256
5 conv2d_33 (Conv2D) (None, 112, 112, 32) 18464
6 batch_normalization_42 (BN) (None, 112, 112, 32) 128
7 average_pooling2d_25 (APL) (None, 56, 56, 32) 0
8 batch_normalization_43 (BN) (None, 56, 56, 32) 128
9 conv2d_34 (Conv2D) (None, 56, 56, 16) 4624
10 batch_normalization_44 (BN) (None, 56, 56, 16) 64
11 average_pooling2d_26 (APL) (None, 28, 28, 16) 0
12 flatten_8 (Flatten) (None, 12544) 0
13 dropout_8 (Dropout) (None, 12544) 0
14 dense_20 (Dense) (None, 32) 401440
15 dense_21 (Dense) (None, 5) 165

Total params: 427,317
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Resnet152V2: In 2015, Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun pro-
posed the Residual Network (ResNet) DCNN model [52]. ResNet was a family of sev-
eral deep neural networking frameworks with different depths [29]. ResNet introduces 
ReLU, which reduces deep neural network degradation [7]. Among members of the 
ResNet family, the Resnet152 DCNN model has the best accuracy [29]. This network 
can take the input image height and width in multiples of 32x3 because of the width of 
the channel, and 224x224x3 is the default image size.

Inception-ResNet-V2: Inception-ResNet-V2 combines an Inception framework and a 
residual connection [52]. Multi-size convolutional filters are combined with residual 
connections on the Inception-Resnet block [52]. Using residual links prevents the issue 
of deterioration caused by profound structures and reduces the training time [7].

DenseNet121and DenseNet201: Because redundant maps are not learned, Dense Con-
volutional Network (DenseNet) requires fewer parameters than regular CNN [9, 52]. 
This work employs DenseNet121 and DenseNet201 models. In DenseNet, each layer 
takes and sends new inputs from all previous levels. The loss function allows each layer 
to access the original input image and gradients. As a result, the computation efficiency 
improves significantly, giving DenseNet a better option for image classification.

3.5 � Cloud computing

Cloud computing is a breakthrough in information technology (IT). The cloud computing 
system can also provide Infrastructure for the Internet of Things (IoT), mobile technology, 
big data, and artificial intelligence. Cloud computing speeds up industry dynamics, disrupts 
old models, and encourages digital change [50]. Cloud computing is classified according to 
its deployment and service types. Model deployment services are classified into four types: 
Function-as-a-Service (FaaS), Infrastructure as a Service (IaaS), PaaS, and Software as a Ser-
vice (SaaS). PaaS has grown in popularity among cloud computing service models due to its 
ability to improve overall business performance agility [53]. PaaS provides cloud clients with 
middleware resources [53]. It also provides customers with development and testing environ-
ments. Depending on deployment, clouds are categorized as private, public, or hybrid. The 
authors utilized Heroku Cloud, a simple cloud service platform for the application.

The Hypertext Markup Language (HTML) was employed for page layout, while Flask 
was used for the front-end look. Flask is a Python-based web platform that offers valuable 
features and resources to build web applications. The model may be deployed to clouds in 
many methods [50, 53], including GitHub, Docker-based deployments, etc. The flowchart 
of the model deployment process is shown in Fig. 5.

4 � Results

The citrus leaves dataset contained 609 images, split into training (506) and validation 
(103) datasets. The citrus plant leaf image was resized to 224x224, and the training dataset 
employed the augmentation process. These augmented images were used to train the models. 
All models used the same training and validation dataset. All experiments were done online 
on the Google Colab platform. Python was used to implement all four state-of art transfer 
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learning (TL) pre-trained DCNN and CNN models. The RMSprop and Adam optimizers were 
employed to attain global minima, and the batch size was 32. The Adam optimizer hyper-
parameters were initialized with lr of ’0.0003’, beta-1 of ’0.9’, beta-2 of ’0.999’, epsilon of 
’None’, decay of ’1e-8’, and amsgrad of ’False’. The loss was initialized with ’categorical_
crossentropy’. Similarly, The RMSprop optimizer hyperparameters were initialized with a 
learning_rate of ’0.0003’, rho of ’0.99’, epsilon of 1e-08, and decay of ’0.0’. The loss was 
initialized with ’categorical_crossentropy’.

4.1 � Performance measures

The confusion matrix method was employed in this work to check the model’s performance. 
It is used to track the classification model’s helpfulness and types of errors. The confusion 
matrix metrics can be measured using the following equations [22, 54, 55].

(1)Accuracy
(

Accc
)

=
TPc + TNc

TPc + FPc + TNc + FNc

(2)Precision
(

Pr ec
)

=
TPc

TPc + FPc

Fig. 5   Model deployment pro-
cess on to the Heroku cloud
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Where TNc (True Negative): correctly recognizes negative cases; TPc (True Positive): 
correctly recognize positive cases; FPc (False Positive): actual negative cases categorised 
as positive; and FN (False Negative): actual positive instances categorised as negative.

(3)Sensitivity or Recall or TPR
(

Re cc
)

∶=
TPc

TPc + FNc

(4)F1 − score
(

F1c
)

=
2

(

1

Recall

)

+

(

1

Precision

)

1. print("Citrus Leaf disease detection system...")
2. input Dataset Labels
3. Image resize to 224x224
4. Feature scaling= Image/255.0
5. Apply Augmentation method
6. Split Dataset
7. input batch_size=32 epochs=200 Max_acc
8. model=Sequential CNN model Adam RMSprop
9. For i= 1 to epochs Do
            Start Training process
            print(“ Training accuracy Val accuracy with losses”)
            Callback If Val_acc=Max_acc
                    break

Endif
endSubroutine

           i=i+1
Endfor

10.   Accuracy=(TPc+TNc)/(TPc+FPc+TNc+FNc) 
11.   precision =(TPc)/(TPc+FPc) 
12.   Recall=(TPc)/(TPc+FNc)
13.   F1score= (2/ ((1/Recall)+ (1/Precision))
14.   End

4.2 � Psedocodes For CNN

4.3 � Feature map of CNN layers

The first CL extracts low-level characteristics such as borders, curves, and lines, as shown 
in Fig.  6. The following CLs acquire the global features. The CNN model learns these 
features through a back-propagation training technique. The four separate sections of the 
back-propagation algorithm are the forward pass, the loss function, the backward pass, and 
the weight update.
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4.4 � CNN performance

In CNN, the kernel size plays an important role, as it aids in acquiring the provided fea-
tures and processes the data at the convolution layer. The kernel’s size is less than the input 
size [56]. The authors tried kernel sizes from 2x2 to 5x5 and found that 3x3 was better than 
others. Furthermore, the authors vary the learning rate (LR) to fine-tune the models. The 
LR is a predefined hyper-parameter for neural network development that considers how 
quickly a machine understands its surroundings, and LR values are between 0.0 and 1.0 
[56]. The authors varied the values of LR from 0.0001 to 0.0005 and found that 0.0003 was 
the best LR.

Fig. 6   Output of a) first CL, b) second CL, c) third CL, d) flatten layer, e) first dense layer, f) second dense 
layer
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Initially, the authors assigned 200 epochs with a learning rate of 0.0003 and then 
checked the accuracies, and we found that above 150 epochs, the accuracies were saturated. 
After that, the authors again run code with a callback function to stop that desired valida-
tion accuracy. The 152 epoch was required for the desired accuracy. Figure 7a and b depict 
the CNN-Adam-Aug training and validation process and achieved 97% training accuracy 
with a loss of 0.0994 and 97% validation accuracy with a val_loss of 0.1255.

This work used two optimizers with augmentation methods: CNN with Adam opti-
mizer with augmentation (CNN-Adam-Aug) and CNN with RMSprop optimizer and 
augmentation (CNN-RMS-Aug). Figure 8 shows the confusion matrix of CNN-Adam-
Aug (Figure 8a) and CNN-RMS-Aug (Figure 8b). Figure 8a shows that 101 images out 
of 103 were predicted correctly by CNN-Adam-Aug, while 96 images correctly pre-
dicted CNN-RMS-Aug. There are five classes in the dataset, and only two images were 
mispredicted by CNN-Adam-Aug. This indicates that the CNN-Adam-Aug perform bet-
ter than the CNN-RMS-Aug model.

Figure  9a shows the Accuracy (Acc_c), Precision (Pre_c), Recall (Rec_c), and 
F1-score (F1_c) of individual class performance of the CNN-Adam-Aug, while Fig. 9b 
for CNN-RMS-Aug. The citrus leaf dataset is unbalanced, so the F1_c is the best met-
ric for the overall performance of the models. Figure 9a shows that the Acc_c for all 
classes was 98%. The Pre_c, Rec_c, and F1_c of Melanose, cancer, and healthy were 
100%. The CNN-Adam-Aug model predicts Black spot images with 100% Pre_c, 93% 
Rec_c, and 96% F1_c, while greening images predict 96%, 100%, and 98%, respec-
tively. The average Acc_c, Pre_c, Rec_c, and F1_c performance of all classes was 98%, 

Fig. 7   CNN with Adam optimizer training and validation performance

Fig. 8   Confusion matrix of a) CNN-Adam-Aug and b) CNN-RMS-Aug. (1 indicates Black spot, 2-Mela-
nose, 3-canker, 4-greening, and 5-healthy)



	 Multimedia Tools and Applications

1 3

99%, 99%, and 99%, respectively. Figure 9b shows that the Acc_c for all classes was 
94%. The Pre_c, Rec_c, and F1_c of Melanose, cancer, and healthy were 100% similar 
to the CNN-Adam-Aug. The CNN-RMS-Aug model predicts Black spot images with 
100% Pre_c, 80% Rec_c, and 89% F1_c, while greening images predict 85%, 100%, 
and 92%, respectively. The average Acc_c, Pre_c, Rec_c, and F1_c performance of all 
classes was 94%, 97%, 96%, and 96%, respectively. This performance indicates that the 
CNN-Adam-Aug performs better than the CNN-RMS-Aug model.

(a)

(b)

Black spot Melanose canker greening healthy Average

Acc_c 98% 98% 98% 98% 98% 98%

Pre-c 100% 100% 100% 96% 100% 99%

Rec_c 93% 100% 100% 100% 100% 99%

F1-c 96% 100% 100% 98% 100% 99%

88%

90%

92%

94%

96%

98%

100%

102%

Acc_c Pre-c Rec_c F1-c

Black spot Melanose canker greening healthy Average

Acc_c 94% 94% 94% 94% 94% 94%

Pre-c 100% 100% 100% 85% 100% 97%

Rec_c 80% 100% 100% 100% 100% 96%

F1-c 89% 100% 100% 92% 100% 96%

0%

20%

40%

60%

80%

100%

120%

Acc_c Pre-c Rec_c F1-c

Fig. 9   Accuracy (Acc_c) , Precision (Pre_c), Recall (Rec_c), and F1-score (F1_c) for a) CNN-Adam-Aug 
and b) CNN-RMS-Aug model
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4.4.1 � AUROC (Area Under the Receiver Operating Characteristics)/ROC‑AUC performance

Figure 10a and b shows the AUROC performance of the CNN-Adam-Aug and CNN-RMS-
Aug models, respectively. The AUROC curve is utilized to assess or display the effective-
ness of the multi-class classification task. This is among the most effective assessment 
methods for evaluating the efficacy of any classification algorithm. AUC indicates the level 
or measurement of separability, while ROC is a probability graph showing how well the 
model can differentiate among categories [54]. The greater the AUC, the more accurately 
the model predicts 0 classes as 0, 1 class as 1, etc. Similarly, the greater the AUC, the more 
accurately the model distinguishes between diseased and healthy citrus images. The ROC 
curve is displayed with True Positive Rate (y-axis) versus False Positive Rate (x-axis).

Figure 10a shows AUROC of 0.96, 1.0, 1.0, 0.99, and 1.0 for Black spot, Melanose, 
cancer, greening, and healthy class, respectively, which indicates the CNN-Adam-Aug per-
forms better for predicting all categories of images. Only the Black spot class has 0.96; 
otherwise, all other classes have above 0.99 AUC. The average AUROC score was 0.99, 
which shows remarkable performance.

On the other hand, Figure 10b shows AUROC of 0.90, 1.0, 1.0, 0.96, and 1.0 for Black 
spot, Melanose, cancer, greening, and healthy class, respectively, which indicates the CNN-
RMS-Aug performance is less compared to CNN-Adam-Aug. The Blackspot and greening 
types have 0.90 and 0.96 AUC; otherwise, all other categories have 1.0 AUC. The average 
AUROC score was 0.97, which shows acceptable performance.

4.5 � Comparison of CNN with DCNN models

Figure 11 shows the performance of all models in terms of Acc_c, Pre_c, Rec_c, and F1_c. 
All DCNN models were trained with similar sets with the Adam optimizer, and all other 
parameters were the same for CNN and DCNN models, including augmentation param-
eters. The ResNet152V2 with Adam and augmentation (ResNet152V2-Aug) achieved 
Acc_c, Pre_c, Rec_c, and F1_c of 88%, 92%, 83%, and 87%, respectively, while Incep-
tionresNetV2-Aug achieved 85%, 92%, 80%, and 84%, respectively. On the other hand, 
DenseNet121-Aug and DenseNet201-Aug achieved Acc_c, Pre_c, Rec_c, and F1_c of 88% 
and 92%, 93% and 96%, 89% and 93%, and 90% and 94%, respectively. The Acc_c, Pre_c, 
Rec_c, and F1_c performance of CNN-Adam-Aug was 98%,99%, 99%, and 99% respec-
tively. The performance of CNN-Adam-Aug is better compared to other models. CNN with 

Fig. 10   AUROC performance of the a) CNN-Adam-Aug and b) CNN-RMS-Aug
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Adam optimizer outperformed all other models and was recommended for citrus leaf dis-
ease prediction.

4.6 � Cloud computing

The empirical analysis of the CNN-Adam-Aug model was excellent. The CNN-Adam-
Aug result was studied and compared with DCNN models in layers, memory size, param-
eters, and F1-score. This type of comparison is essential in the real world because, in the 
end, we have to deploy these models to the single board computer, embedded devices 
or cloud. In this work, the authors deployed models to the PaaS type cloud to access the 
prediction system on mobile. In such cases, the accuracy or F1-score performance is not 
the sole criterion, but we have to check the number of parameters used in models, the 
size of the model, and the depth of the models. Deploying models to the cloud includes 
cost and prediction time or latency. Table 4 tabulates the comparisons of the CNN and 
DCNN models.

The CNN-Adam-Aug has only 15 layers less compared ResNet152V2-Aug (152), Incep-
tionResNetV2-Aug (572), DenseNet121-Aug (121), and DenseNet201-Aug (201), while 
the number of trainable parameters was used in CNN-Adam-Aug was 427,317, which 
are less than other models. The CNN-Adam-Aug size is 1.68MB, the smallest compared 

ResNet152V2-

Aug

InceptionResNetV

2-Aug
DenseNet121-Aug DenseNet201-Aug CNN-Adam-Aug

Acc_c 88% 85% 88% 92% 98%

Pre_c 92% 92% 93% 96% 99%

Rec_c 83% 80% 89% 93% 99%

F1-score (%) 87% 84% 90% 94% 99%

0%

20%

40%

60%

80%

100%

120%

Acc_c Pre_c Rec_c F1-score (%)

Fig. 11   comparisons of CNN-Adm-Aug with DCNN models

Table 4   Comparison of CNN with DCNN models

Models Layers Number of Parameters Size (MB) F1-score

ResNet152V2-Aug 152 60,380,648 229.74 87%
InceptionResNetV2-Aug 572 55,873,736 221.48 84%
DenseNet121-Aug 121 8,062,504 30.85 90%
DenseNet201-Aug 201 20,242,984 77.14 94%
CNN-Adam-Aug 15 427,317 1.68 99%
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ResNet152V2-Aug (229.74MB), InceptionResNetV2-Aug (221.48), DenseNet121-Aug 
(30.85MB), and DenseNet201-Aug (77.14MB) whereas F1-score of the CNN-Adam-Aug 
was 99%, which is highest among the models.

The suggested CNN-Adam-Aug model is appropriate for the citrus leaves illness fore-
cast because of its compact size, fewer parameters, and higher F1 score. The CNN-Adam-
Aug efficacy assessments have proven entirely accurate in forecasting citrus leaf disease. 
This paper deploys the CNN model with Adam optimizer to the Heroku cloud. Based on 
the successful deployment of the model, the Heroku cloud link was generated. The website 
opens with a single tap on the link for mobile phones to submit a citrus leaf image. After 
uploading the image to the cloud, the algorithm appropriately forecasts citrus leaf illness.

5 � Discussions

Accurate identification of the disease in the early stage plays a critical role in the agricul-
tural domain. The conventional method, like the continuous eye tracking experience, can 
help distinguish conditions, but it is time-consuming and costly. Several computer-based 
techniques have been established for recognizing horticultural and agricultural illnesses to 
solve human errors in conventional methods. The proposed CNN-Adam-Aug (CNN) per-
formed well compared to the literature reported work in Table 5.

From Table 5, it can be seen that most researchers created ML-based methods and used 
SVM, RF, CNN, VGG16, and others, to diagnose illnesses and get satisfactory outcomes. 
Revathi et al. [33], Szczypiski et al. [35], Pydipati et al. [36], and Qadri et al. [38] used 
HPCCDD, ANN, CCM, and MLP methods and achieved accuracies between 90.6% to 
98.6%, but we achieved a 99% F1 score and also reported model size. The Parraga-Alava 
et al. [39], Yang et al. [40], and Guo et al. [41] used VGG16 and achieved lower accuracies 
compared to our work and models size was not reported.

Sladojevic et  al. [57] suggested a CNN framework to classify healthy and diseased 
leaves of various plant species and achieved 96.3%, but CNN size was not reported. Wu 
et al. [58] developed a Probabilistic Neural Network (PNN) recognition algorithm for plant 
recognition and achieved an accuracy of 90%. Both methods achieved less accuracy than 
our proposed work. AlexNet and ResNet models with and without data augmentation were 
proposed by Luaibi et al. [59]. Data augmentation was applied to increase the number of 
training images. A collection of 200 photos of diseased and healthy citrus leaves was made. 
This method achieved 95.83% and 97.20% accuracy using ResNet and AlexNet, respec-
tively. They predicted healthy and diseased leaf means two-class problems still needed to 
achieve more accuracy than our work. Furthermore, ResNet and AlexNet are more exten-
sive than our proposed CNN model.

Khattak et al. [60] suggested a CNN to identify healthy citrus fruits and leaves such as 
black spots, cankers, scabs, greening, and Melanose. By combining different layers, the 
suggested CNN obtains complementing discriminative characteristics. The CNN model 
outperformed numerous DCNNs, with a precision of 94.55%. They achieved less accuracy 
than our work. Elaraby et al. [61] presented the AlexNet and VGG19 techniques for detect-
ing citrus illness pictures from gallery databases, infected scale citrus image data sources, 
and plant villages. Citrus illnesses, including anthracnose, black spot, canker, scab, green-
ing, and melanose, were identified and classified and achieved up to 94% accuracy. This 
work also has less accuracy than ours, and AlexNet and VGG19 sizes are enormous com-
pared to our CNN model. Dananjayan et al. [62] access the ability of cutting-edge DCNN 
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(YOLOv4, Foveabox, CenterNet, DetectoRS, Faster-RCNN, Cascade-RCNN, and Deform-
able Detr) to identify citrus illness utilizing labelled leaf images optically on the CCL’20 
dataset. According to the results, the Scaled YOLOv4 P7 accomplishes rapid and early ill-
ness detection and CenterNet2 with Res2Net 101 DCN-BiFPN detects the beginning stages 
of citrus leaf illnesses with the highest average precision and an average recall of 78.5% 
and 98%, but the model size was enormous. Janarthan et al. [63] developed a tool incor-
porating embedding modules, deep neural network and patch subsystem to classify four 
unique citrus plant illnesses using 609 pictures. The background removal and data aug-
mentation techniques were employed to remove the noise and enhance dataset images arti-
ficially. The deep Siamese network was used for training and obtained accuracy of 94.04%. 
The training of the network requires modifying approximately 2.3 million parameters. This 
work has lesser accuracy than our work and also uses more number trainable parameters. 
Pan et al. [64] proposed a DCNN-based method for identifying illnesses such as Anthrac-
nose, Black spot, canker, scab, sand rust, and greening from 2,097 pictures. Data augmen-
tation techniques were employed to increase the number of images. The DenseNet model 
was used to extract and classify features, and it attained an accuracy of 88%. This work has 
lesser accuracy than ours and the vast DenseNet model size. Zhang et al. [65] developed 
GANs (Generative adversarial networks) and an AlexNet-based approach for diagnosing 
canker illness, achieving 90.9% accuracy and 86.5% recall. This work has lesser accuracy 
than ours and the vast AlexNet model size.

From the above discussion, it is observed that most researchers used ML classifi-
ers, CNN and DCNN methods to detect the healthy and diseased citrus leaf images and 
achieved the highest 98% accuracy. Most researchers used DCNN models with more layers, 
more trainable parameters and huge model sizes. Some of the researchers reported results 
in precision and recall metrics. This work used the imbalanced citrus leaf dataset with five 
classes, and the F1-score is the best metric to evaluate the model performance in addition 
to the accuracy, precision, recall, and AUROC. The F1-score of the proposed CNN was 
99%. The model size should be small to deploy to the cloud because of the cost involved. 
In this work, the authors developed the CNN model so that the trainable parameters, size of 
the models and depth are kept less without affecting the performance.

6 � Conclusions

Designing a highly accurate disease prediction system is challenging work. Therefore, 
ML/DL approaches are applied in agriculture to help detect plant diseases. Research on 
developing the precise technique has been attempted and has found promising results. This 
research provided a complete description of citrus disorders of commercial consequences, 
paving the path for future investigation in modern agriculture and contributing to the 
knowledge base in the study.

The authors developed five methods: CNN, ResNet152V2, InceptionResNetV2, 
DenseNet121, and DenseNet201. The augmentation method was applied to enhance the 
dataset images because the dataset has only 609 images. Two optimizers (Adam and 
RMSprop) were used, and it was  found that CNN with Adam optimizer and augmenta-
tion achieved precision, recall, and an F1 score of 99%, which is the highest in the litera-
ture-reported work. On the other hand, ResNet152V2, InceptionResNetV2, DenseNet121, 
and DenseNet201 achieved F1-score of 87%, 84%, 90%, and 94%, respectively. The 
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DenseNet201 with Adam optimizer and augmentation achieved acceptable performance, 
but fine-tuned CNN outperformed other models.

In this work, the CNN model was deployed to the PaaS cloud. Due to this, the authors 
have also checked the model’s size, the number of layers, and the number of trainable 
parameters. CNN has a 1.68MB size, 427317 trainable parameters, and 15 layers, which is 
also lower in the literature-reported work. The AUC-ROC performance also checked and 
found that 0.96, 1, 1, 0.99, and 1 for Black spot, Melanose, cancer, greening, and healthy 
class, which indicates the CNN-Adam-Aug performs better for predicting all categories 
images. The average AUROC score was 0.99, which was quite good. Moreover, the authors 
have successfully deployed the CNN model to the PaaS cloud and tested the same on all 
types of mobiles. No authors tried such a novel approach that directly helps the farmers.

However, the suggested CNN model was successfully adopted for citrus illness iden-
tification. The present study has limitations, like a small dataset (609 photos). Generally 
trained models on small datasets are subject to overfitting, resulting in erroneous assess-
ment. As a result, the data augmentation method was used to enhance the photos artifi-
cially. However, augmentation introduces a new issue: if the source data consists of biases, 
augmented images will have the same issue. As a result, choosing the appropriate augmen-
tation technique is a difficult task.

In the future, the possibility to create larger datasets or examine new picture augmenta-
tion methods to increase the number of photos in the dataset allows for constructing a more 
suitable model under challenging circumstances. The authors will also look into different 
forms of disorders and different combinations of the TL models. The authors will expand 
this research to identify more citrus types with fruit diseases in the future.
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