
CMFT+DMRG method to characterize gapless
phases of ultracold bosons in optical lattices

A Thesis submitted in partial fulfillment for the Degree of

DOCTOR OF PHILOSOPHY
in

School of Physical and Applied Sciences
Goa University

by

PALLAVI P. GAUDE

School of Physical and Applied Sciences
Goa University

Goa, India

December 2023





DECLARATION

I, Pallavi P. Gaude hereby declare that this thesis represents work which has
been carried out by me and that it has not been submitted, either in part or full,
to any other University or Institution for the award of any research degree.

Place: Taleigoa Plateau
Date: 23-12-2023 Signature of the Candidate

CERTIFICATE

I hereby certify that the work was carried out under my supervision and may be
placed for evaluation.

Prof. Ramesh V. Pai
School of Physical and Applied Sciences
Goa University





. . . . . .
Dedicated,

to my
Parents and

late Grandfather.
. . . . . .





Acknowledgements

First and foremost, I express my sincere gratitude to my research guide, Prof.
Ramesh V. Pai, for all his teaching, unwavering support, and upliftment during
my Ph.D. work. His valuable intellect and passion for the subject have inspired me
time and time again to stay calm and dedicated to the topic. Despite his academic
responsibilities, he gave me enough time for the discussion and encouragement I
needed throughout these years.

I sincerely thank the members of DRC and VC’s nominees, Prof K. R. Priolkar
and Dr. Bholanath Pahari, for monitoring my research progress throughout these
years.

For the Computing facilities, I express my gratitude to Goa University for pro-
viding access to the HPC PARAM SHAVAK and Parvatibai Chowgule College of
Arts and Science for computational resources.

I would also like to thank the faculty members of the School of Physical and
Applied Sciences, Goa University, for their support and the non-teaching staff for
their constant cooperation during this work.

I sincerely acknowledge Dr. Ananya Das for the warm support and encourage-
ment she has showered on me throughout this year.

I am also thankful to my fellow research scholars and friends for fruitful dis-
cussions, suggestions, and motivation.

Finally, I would like to thank my parents for their unconditional love and sup-
port.

Pallavi P. Gaude
PhD Fellow, Goa University





Abstract
In recent years, ultra-cold atoms trapped in optical lattices have gained massive
interest. The complex interactions, impurities, and disorders make understand-
ing the solid-state system difficult. However, the ability to control these vari-
ous aspects in optical lattices makes them ideal testing grounds for simulating
the solid-state system and exploring the plethora of exotic phases arising due
to rich inter-particle interactions. In this thesis, we have developed a theoreti-
cal method, the cluster mean-field theory plus the density matrix renormalization
group (CMFT+DMRG) approach, to study the phases in the Bose-Hubbard mod-
els. In Chapter 1, we have briefly introduced the Bose-Einstein condensation, op-
tical lattice systems, and the Bose-Hubbard model. The cluster mean-field theory
and density matrix renormalization group theory (CMFT+DMRG), as well as its
successes and limitations, are discussed in Chapter 2, followed by the methodol-
ogy of the CMFT+DMRG method. Chapter 3 demonstrates the CMFT+DMRG
method using the Bose-Hubbard model and compares the results with the DMRG
result. The CMFT+DMRG method captures the superfluid and Mott Insulator
phases expected in the Bose-Hubbard model, and the phase diagram agrees with
the earlier studies. Chapter 4 is devoted to exploring the phases in the extended
Bose-Hubbard model.

The finite long-range interaction in the extended Bose-Hubbard model predicts
a variety of phases such as superfluid, density wave, Mott insulator, supersolid,
solitonic, and phase-separated phases. The CMFT+DMRG method captures the
Berezinskii–Kosterlitz–Thouless phase transition between superfluid and density
wave in the hard-core limit of the extended Bose-Hubbard model at half-integer
density.

We have investigated the phases in the EBH model and obtained the phase
diagram. We finally explore the effect of the attractive three-body on-site inter-
action in the phases of the extended Bose-Hubbard model. Lastly, Chapter 5
summarizes the CMFT+DMRG method’s results and limitations and indicates
the future scope.
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2.2 Site configuration of the one-dimensional system for cluster size
with (a) one site and (b) two sites. The solid line represents the
exact hopping within the cluster, and the dotted lines represent
the hopping term approximated using the mean-field decoupling
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CHAPTER 1

Introduction

1.1 Introduction

Ultra-cold atoms trapped in optical lattices are ideal laboratories for simulat-

ing many-body interacting systems in condensed matter physics. Although all the

constituents of the solid-state systems, such as atoms and electrons, are known,

complexities like electron-electron and electron-atom interaction, impurities, and

disorders pose a problem in anticipating the behavior of the solid-state system. We

need to obtain a reliable theoretical solution. The optical lattice provides us with

simplified models to study these systems. The ability to control and manipulate

various parameters in optical lattices, such as the hopping amplitude, dimensions,

interaction energy, and disorder strength, allows us to engineer a variety of effective

Hamiltonians to explore. Different numerical and analytical methods are available

to solve these systems. In this thesis, we aim to develop one such approach: a

cluster mean-field plus density matrix renormalization (CMFT+DMRG) method

for solving such Hamilonians known as Bose-Hubbard models. In this chapter, we

will first introduce the Bose-Einstein condensation and its experimental realiza-

tion, followed by the optical lattices and the model mapping ultra-cold bosons in

the optical lattices.

In 1924, Satyendra Nath Bose introduced statistics for indistinguishable pho-

tons [1], later generalized by Albert Einstein for all integer spin particles with
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Chapter 1: Introduction

symmetric total wavefunction called bosons and termed Bose-Einstein statistics.

According to it, the number of indistinguishable bosons in the energy level ϵi for

ϵ > µ is given by

n(ϵi) =
gi

e
(ϵi−µ)

kBT − 1
(1.1)

where kB is Boltzmann constant, T is temperature, µ is the chemical potential-

energy required to add a particle, and gi is the degeneracy of ϵi. The upper bound

of µ is the ground state energy ϵ0, and the condensation occurs in the ground state.

For kBT >> (ϵi−µ), more than half of the particles occupy the ground state, and

this number increases as kBT approaches ϵi − µ. Based on these statistics, the

quantum phenomena of Bose-Einstein condensation (BEC) was predicted in 1925

for ideal non-interacting Bose gas [2]. The fundamental concept behind the BEC

being below the critical temperature Tc, given by

Tc =

(
n

ζ(3/2)

)2/3
h2

2πmkB
(1.2)

the macroscopic number of bosons occupy the lowest energy state. Here, n is the

boson density, h is the Plank’s constant, m is the boson’s mass, and ζ(3/2) is the

Riemann zeta function. The de Broglie wavelength λ of particles given by

λ =
h√

2πmkBT
(1.3)

As the Bose gas temperature decreases, λ increases as T−1/2. When T ≈ Tc, λ

is comparable to the mean inter-particle separation n− 1
3 of bosons forming con-

densate. At this point, particles are so close that there is an overlap between the

wavefunctions of the bosons, and the entire Bose gas is represented by a giant

macroscopic wavefunction- a coherent wave.

The possibility of observing quantum phenomena at the macroscopic level fu-

eled the experimental efforts to realize BEC. However, the low-temperature re-

quirement became a significant hurdle in realizing the BEC. The Tc, being directly

proportional to the density of the bosons n and inversely to its mass m, favored

2



Chapter 1: Introduction

using lighter bosons with high densities to increase the Tc in the experiments.

However, with very high n, the transition from gas to liquid to solid was detected

with decreasing temperature even before the condensation occurred. This lead to

the desired densities of the order 1013 − 1014cm−3 resulting in the Tc in the nano

Kelvin region. The initial experimentation concentrated on the light bosons such

as Hydrogen, Helium, etc. The BEC in spin-polarized hydrogen failed because of

insufficient experimental devices to produce it at sufficient densities. In 4He, the

BEC was predicted at Tc = 3.14K, but the strong interaction drives the transi-

tion to the superfluid phase at a temperature equal to 2.47K [3]. In this phase,

the fluid flows with zero viscosity below the transition temperature. Although

the BEC was predicted for non-interacting bosons, London suggested BEC as the

underlying mechanism behind the superfluidity in the strongly interacting 4He.

Neutron scattering experiments later proved this prediction.

It was not until the advances in experimental techniques such as laser cool-

ing [4] and evaporative cooling [5] that the BEC was first realized in dilute alkali

gases at JILA using 87Rb atoms [6] and at MIT using 27Na atoms [7] in 1995

which garnered the Nobel prize in Physics in 2001. In these experiments, atoms

are typically gathered in a magneto-optical trap and cooled to micro-Kelvin tem-

peratures using laser cooling techniques. They are then transferred to a magnetic

trap where evaporative cooling allows the system to be cooled to nano-Kelvin

temperature, forming the condensate as seen in the velocity distribution of 87Rb

atoms in figure 1.1. In the T > Tc regime, the bosons occupy all possible states,

and a significant number of bosons occupy the ground state seen from the broad

peak in Fig. 1.1 (left). As temperature decreases, more bosons start settling in

the lowest energy state Fig. 1.1 (center), and at Tc ≈ 170 nK, atoms mostly oc-

cupy the lowest energy state, forming the BEC. The narrow peak in the velocity

distribution in Fig. 1.1 (right) is the signature of BEC. After this initial success,

BEC was experimentally realized in dilute bosonic gases such as 7Li [8], 40Ca [9],

41K [10], 39K [11], 170Yb [12], 23Na [13] and many more weakly interacting bosons.

3



Chapter 1: Introduction

BEC is also achieved by mixing two different bosons and purely optical traps,

where the spin degrees of freedom play important role [14], [15].

Figure 1.1: Velocity distribution of 87Rb atoms near at temperature T > Tc
(leftmost), T ≈ Tc (middle) and T < Tc (rightmost). The colors represent red for
the fastest moving atoms to white for the slowest moving atoms. Figure courtesy:
Cornell E. (1996) [16].

The experimental realization of BEC in weakly interacting alkali gases opened

unique opportunities for exploring the quantum phenomena on a macroscopic scale

and studying the coherent matter wave properties, pioneering many experiments

such as coherent lasers. This topic gained more impetus with a proposal of D.

Jaksch and his team to use trapped ultra-cold bosonic atoms in an array of optical

potential to create avenues for research into the strongly correlated system [17].

Over the last few decades, the strongly correlated systems have become one of

the active research fields in the condensed matter physics. Theoretical predictions

and experimental observations in recent years have revealed a variety of compli-

cated phases, including superconductivity, magnetic semiconductors, and gigantic

magneto-resistance. They arise due to the subtle interplay between Coulomb in-

teraction, spin fluctuations, charge fluctuations, lattice, and band structure. In

theory, all these interactions must be included in the Hamiltonian to study these

systems. However, the scale and various interactions make the theoretical stud-

4



Chapter 1: Introduction

ies a difficult task to undertake. The uncontrollable complexities like disorders

and impurities further add to these difficulties. The possibility of converting the

weakly interacting BEC in alkali atoms into strongly interacting systems opened

new avenues to comprehend and predict the solid state systems’ phases using

pristine and controllable systems.

The array of potentials created by the interference of laser beams forms the

optical lattices. The standing wave resulting from the interference of the counter-

propagating laser beam is the simplest 1D lattice with the trapping potential

V0(x) = V0 sin
2(kx) (1.4)

where k = 2π/λ and λ are the laser beam’s wave vector and wavelength, and V0

is the lattice potential depth. The dimensionality and the lattice geometry are

controlled in optical lattices using laser beams. Higher dimensions and complex

optical lattices, such as a kagome or triangular lattice, can be created by superim-

posing more laser beams. The simplest 3D optical lattice is created by overlapping

three standing waves with no cross-interference between the laser beams of dif-

ferent standing waves. Such 3D optical lattice is approximated by which can be

approximated by a simple cubic array of harmonic potentials

V0(x) = V0(sin
2(kx) + sin2(ky) + sin2(kz)) (1.5)

AC Stark effect is used to trap the atoms in the optical lattices. The laser beam

interacts with the atoms through its electric field inducing the dipole moment (d)

in the atoms. The induced dipole moment interacts with the electric field, creating

the potential

V0(x) = −d.E(x) ∝ α(ω)|E(x)|2, (1.6)

where E(x) is the electric field of the laser is proportional to the intensity of the

laser beam, and α(ω) is the polarizability of the atom. The laser’s electric field

oscillates spatially, creating a periodic array of potentials simulating the solid-
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state crystals. The frequency of the laser beam ω used to form the optical lattices

is tuned away from the atom’s resonance frequency ω0 to avoid the spontaneous

emission. When ω < ω0, the laser is red detuned, the dipole force is attractive,

and atoms are attracted to the region of maximum intensity, i.e., a region with

maximum intensity is potential minima for red detuned laser. Whereas for blue

detuned laser- ω > ω0, the dipole force is repulsive, and atoms occupy region with

minimum intensity. The distance between two potential minima is λ/2, which

is of the order micro-meter and can be manipulated by changing the wavelength

of the laser beam [18]–[20]. Further, the Feshbach resonances can control the

scattering length as beyond the inter-particle distances along with its polarity

in two-particle scattering. The Feshbach resonances occur in the two-particle

scattering when the bound state in the closed channel couples resonantly with the

continuum in the scattering channel [21]. The Feshbach resonances in the optical

lattices can be controlled using the laser beam. The control on scattering length

as gives control over the interaction between the particles, which can be made

attractive or repulsive. In optical lattices, atoms can tunnel through the potential

barrier to the adjacent lattice site depending on the laser beam intensity. A laser

beam can control and manipulate various parameters such as lattice geometry and

dimension, lattice constant, and interactions. Impurities and disorders can also

be included in the system. The control and ability to tweak various parameters,

otherwise impossible in real crystal, makes optical lattices an ideal testing ground

for simulating the solid state crystals. The basic second quantized Hamiltonian

of the interacting many-body system in external trapping potential in the grand

canonical ensemble is written as

H =

∫
d3rψ†(r)

(
−ℏ2

2m
∇2 + V0(r) + VT (r)− µ

)
ψ(r)

+
1

2

∫
d3rψ†(r)ψ†(r′)Vat(r− r′)ψ(r)ψ(r′) (1.7)

where ψ(r)(ψ†(r)) is a boson field operator which annihilates (creates) boson at
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Figure 1.2: Optical lattices are formed by superimposing two and three pairs of
lasers in a) 2D and b)3D. In a 2D optical lattice, the atoms are confined in array
potentials represented by grey tubes and spheres in a 3D case. Figure courtesy:
I.Bloch (2008) [21].

position r, V0(r) is the periodic lattice potential, VT (r) denotes an additional

slowly varying external trapping potential due to the magnetic trap, µ is the

chemical potential which fixes the number of particles in the system and Vat(r− r′)

is the interaction between the bosons at position r and r′. In most of the cases,

Vat(r− r′) decays as |r− r′| value increases. For the dilute cold Bose gas, the only

relevant scattering process is s wave scattering, to a good approximation Vat(r) is

approximated isotropic short-ranged contact potential given by

Vat(r− r′) =
4πasℏ2

m
δ(r− r′) (1.8)

where as is s wave scattering length, and m is the mass of atoms.

H =

∫
d3rψ†(r)

(
−ℏ2

2m
∇2 + V0(r) + VT (r)− µ

)
ψ(r)

+
4πasℏ2

2m

∫
d3rψ†(r)ψ†(r)ψ(r)ψ(r) (1.9)

7
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Assuming the energies involved in the system dynamics are small in compari-

son to the excitation energies of the second band, the field operator, in terms of

Wannier basis, keeping only the lowest vibrational states, can be written as

ψ(r) =
∑
i

âiw(r− ri) (1.10)

where âi is the annihilation operator of the ith site and w(r − ri) is the Wannier

function of the lowest vibrational band. Using this, we can approximate the Eq. 1.9

to a single band Bose-Hubbard model. For simplicity, approximating that particles

only interact when they occupy the same site, the particle can only hop between the

nearest neighbours, and hopping amplitude is negligible for higher-order hopping,

Ĥ = −t
∑
⟨ij⟩

(âiâ
†
j + h.c) +

U

2

∑
i

n̂i(n̂i − 1)− µ
∑
i

n̂i. (1.11)

Here, we assumed a homogeneous lattice such that t = tij, U = Ui, and µ = µi for

all i and nearest pair of sites i, j, and

tij =

∫
d3rw∗(r− ri)

(
−ℏ2

2m
∇2 + V0(r)

)
w(r− rj) (1.12)

Ui =
4πasℏ2

m

∫
d3r|w(r− ri)|4 (1.13)

µi =

∫
d3rw∗(r− ri)VT (r)w(r− ri) (1.14)

In equation 1.11, the âi(â†i ) is the annihilation (creation) operator, which annihi-

lates (creates) particle at site i and number operator n̂i = â†i âi gives the number of

particles at site i. The particle hop from the site i to j with the hopping amplitude

and interacts on-site using on-site interaction strength U (only comes into play

when more than one particle occupies a site). The strength of t and U is less than

the energy gap between the lowest vibrational bands. The chemical potential µ

controls the number of particles in the system. Both U and t can be tuned using

8
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the frequency and intensity of the laser beam used.

U

t
=

√
8πas
4a

exp

(
2V0
Er

)
(1.15)

where a = λ/2 is the lattice constant. The sign of the U can be controlled using

Feshbach resonances: for positive U , the model is repulsive and attractive for

negative U .

The Bose-Hubbard model for U > 0 has two prominent phases at zero tem-

perature, the superfluid phase for U/t << 1 and the Mott insulator for U/t >> 1,

and the competition between U and t drives the transition from the superfluid to

the Mott Insulator phase.

In the region, t >> U , the hopping term in the Eq. 1.11 dominates the on-site

interaction. In the presence of weak U , bosons occupy the lowest energy state

k = 0, forming a superfluid phase, described by a wavefunction

|ΨSF⟩ ∝ (a†k=0)
N |0⟩ (1.16)

where |0⟩ is the vacuum state. In the SF phase, all the bosons are delocalized

on the entire lattice and are characterized by non-zero off-diagonal long-range

ordering and phase coherence. Due to large fluctuations in the number of bosons

per site, the SF phase has finite compressibility

κ =
∂ρ

∂µ
. (1.17)

In the strongly interacting regime, U >> t, the on-site interaction dominates the

hopping amplitude. Bosons, for integer densities, are localized on the site forming

the Mott insulator phase. The wavefunction in this phase is given by

|ΨMI⟩ ∝ (Πia
†
i )

n|0⟩ (1.18)

The MI phase is incompressible; the density remains the same with changes in

9
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the chemical potential and is characterized by the absence of long-range ordering

and loss of phase coherence. The excitation spectra of bosons in the MI phase

are gapped. However, and the particle and hole excitations are gapless in the SF

phase [22].

This quantum phase transition was predicted in the Bose-Hubbard Hamilto-

nian by Fisher et.al. [23] and later by Jaksch et. al. [17], and was later experimen-

tally realized by M. Greiner et. al. [24] using BEC of 87Rb atoms and loading

it in 3D optical lattices using the time of flight measurements. In these experi-

ments, trapping potential is turned off, and the system’s image is captured as the

wavefunction of the bosons expands, as shown in Fig. 1.3. In the BEC phase, the

bosons occupy the lowest momentum state k = 0, resulting in a sharp peak at

k = 0. The central maxima here represent bosons having the lowest velocities and

phase coherence. As the potential increases, in the weakly interacting regime, the

bosons distribute themselves in the potential minima, and the Bragg peaks can be

seen in the Fig. 1.3. The central peak vanishes in the strongly interacting regime,

and the phase coherence is lost, representing the SF-MI transition. Subsequently,

the SF-MI transition is also observed in 1D and 2D optical lattices [15], [25]–[27].

Figure 1.3: Time of flight images of matter-wave interference patterns for different
optical lattice potentials a) 0, b)3 Er, c)7Er, d)10Er, e)13Er, f) 14Er, g) 16Er,
and h)20Er depicts phase transition from superfluid to Mott insulator phase. The
potentials are measured using the recoil energy Er =

ℏ2k2

2m
. In the superfluid phase,

the central peak is observed, and in the Mott insulator phase, the central peak is
destroyed, and phase coherence is lost. Figure courtesy: M. Greiner(2002) [24].

The optical lattices thus provide us with ways to understand the complex
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solid system with a simplified model. The control over system parameters like

periodicity, dimensionality, and interactions make them ideal simulators of solids

-this created the onset of various theoretical and experimental studies in this area.

The BH model is the simplest one describing the motion of ultra-cold bosons in

optical lattices [17]. The exciting feature of this model is the SF to MI transition,

which is similar to the metal to insulator transition in solid systems. BH models

are not solvable even in one dimension, and various approximate and numerical

methods are employed to solve these models. The mean-field theories [22], [23],

[28] study large systems by converting them into single site/cluster problems by

approximating the average field. In the random phase approximation [22], [29]–

[32], the excitation spectra and the density of the state are calculated by approxi-

mating the phases. The quantum Monte Carlo [33], [34] and the Density Matrix

Renormalization Group theory (DMRG) [35]–[37] are computational techniques

applied to study the phases and phase transitions in the BH models for large

system sizes under consideration. These methods have their advantages and lim-

itations. The simplest method of all, the MFT correctly predicts the SF and MI

phase, but it overestimates the SF phase boundaries [38]. The cluster mean-field

theory (CMFT) improves the SF phase boundaries, but the Hilbert basis grows

exponentially as the cluster size increases, increasing the computational resources

required. The DMRG method, on the contrary, handles large system sizes and

obtains the BH model’s ground state properties with moderate computational re-

sources. This method works well for the phases with a gap in the energy spectrum,

such as the MI phase, but there is no direct way to observe the gapless superfluid

phases using it.

1.2 Motivation

The optical lattice system predicts many exotic gapless phases by adding differ-

ent interactions to the BH model. In experiments, the BEC is loaded in magneto-

optical trapped, freezing the spin degrees of freedom. The spin degrees of freedom
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are maintained by trapping the BEC in optical traps. The gapless phases, such

as polar superfluid, are observed in this system defined by spin-1 Bose-Hubbard

model [39]. The gapless phases, like supersolid and solitonic phases, are predicted

in optical lattices with long-range interactions mapped by the extended Bose-

Hubbard (EBH) model. Experimentally, this interaction is realized by trapping

the magnetic and dipolar atoms in optical lattices [40]. The pair superfluid ob-

served in the higher order on-site interactions resulting from the virtual transition

to higher vibrational energy band [41] mapped by the BH model with three and

higher body interactions.

Unlike MFT, the DMRG method cannot identify different gapless phases in

these models, but MFT overestimates the phase boundaries. The CMFT improves

the MFT results but at the cost of increased computational resources. This thesis

aims to combine the simplicity of the CMFT method with the extensive system

handling capabilities of the DMRG method to get the CMFT+DMRG method.

Moreover, using the technique unravels phases and phase transitions in various

extensions of BH models.

1.3 Objectives

Objectives proposed for this thesis are:

• Develop the CMFT+DMRG method in grand canonical ensemble

• Apply the CMFT+DMRG method to the Bose-Hubbard model to establish

the method’s working.

• Apply the method to the extended Bose-Hubbard model to predict the

model’s various phases and phase transitions.

• To understand the effect of three-body hardcore on-site interaction on the

EBH model using the CMFT+DMRG method.

12
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1.4 Overview

In Chapter 2, we first discuss the approximate methods used to study the

Bose-Hubbard models, mainly focusing on the mean-field (MFT), cluster mean-

field theory (CMFT), and DMRG methods. We discuss the Bose-Hubbard model

in the MFT and CMFT framework, followed by a brief overview of the renormal-

ization technique, and discuss the working of the DMRG method using the BH

model. Next, combining these two methods, we put forward the framework of the

CMFT+DMRG method for two cases-(i) translationally symmetric lattice and (ii)

bipartite lattice. The CMFT-DMRG works in the grand-canonical ensemble. We

first set up a cluster Hamiltonian of the desired size. We find the ground state of

the cluster Hamiltonian using the DMRG iterative procedure self-consistently. In

translationally invariant systems, we work with an even number of sites; however,

for the bipartite system, an odd number of sites are preferred. The ground state

properties used to characterize phases are calculated at the end of each iteration.

We demonstrate that the CMFT+DMRG method predicts all the gapless phases

with moderate computational resources. Furthermore, when the superfluid order

parameter vanishes in the gapped phases, the CMFT Hamiltonian reproduces the

earlier DMRG results.

In Chapter 3, we apply the CMFT+DMRG to the BH model and compare

the results with the DMRG results. The superfluid order parameter ψi and the

boson density ρi are calculated to predict the phases in the BH model. Both ψi

and ρi converge with the length for all lattice sites. The effect of the fluctuations

dampens as we move towards the center, causing the ψi at the edges to converge

to a higher value than at the center. The ψi and ρi at the center characterize

the phases and phase transitions. In the SF (MI) phase, ψ ̸= 0(ψ = 0) and the

correlation function decays as a power law (exponentially). The structure factor

and boson condensate fraction calculated using the correlations confirm the phase

transitions. The CMFT+DMRG and DMRG results are found to agree with each
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other. However, the convergence rate decreases towards the critical point due to

the higher correlation length. A larger system size and density matrix basis are

required to resolve the gap close to a critical point, which is difficult to determine

with the CMFT+DMRG. The CMFT+DMRG and DMRG methods complement

each other in studying the BH models; the former works well in the gapless phases,

while the latter works in the gaped phase.

In Chapter 4, we apply CMFT+DMRG to the extended Bose-Hubbard model.

In the EBH model, the nearest-neighbour interaction allows different boson den-

sities at the neighbouring site. Due to this, we divide the entire lattice into A−B

sub-lattices and employ the CMFT+DMRG formalism. The superfluid order pa-

rameter and boson density for A and B sub-lattice at the center of the lattice

are calculated along with the averages and correlations to predict the phases. We

have calculated the EBH results in hard-core and soft-core regimes where new

phases such as supersolid, density wave, solitons, and phase-separated phases are

predicted. The EBH model maps into the spin 1/2 XXZ model in the hard-core

limit, and we reproduce the BKT transition from superfluid to density wave phase.

We obtain the phase-separated phase and compare the co-existence of superfluid

and density ave/supersolid phases using the DMRG technique. We determine the

phase diagram for different regions of the parameter space. Finally, we study the

effect of attractive three-body hard-core on-site potential in the EBH model using

the CMFT+DMRG method.

All the results are summarized and concluded in Chapter 5. The prospects of

the future work are also discussed there.
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CHAPTER 2

Methods

2.1 Introduction

The Bose-Hubbard systems are excellent arenas to simulate the motion of ultra-

cold bosons in optical lattices. However, it takes work to solve the Bose-Hubbard-

like models. For example, the simplest Bose-Hubbard model, which contains only

the hopping of bosons between nearest neighbour sites and on-site interaction, is

not solvable even in one dimension. Our understanding of the possible phases and

the underlying phase transitions in the Bose-Hubbard model is based on several

approximate and numerical techniques. These studies include simple mean-field

theories [22], [23], [28], strong-coupling-expansion (SCE) techniques [42], [43] and

numerically accurate methods such as quantum Monte Carlo simulation [33], [34],

density matrix renormalization group (DMRG) [35], [44], [45] and time-evolving

block decimation (TEBD) method [46], [47].

We focus our study on one-dimensional systems. The approximate and numer-

ical techniques mentioned above have advantages and limitations when applied to

one-dimensional models. For example, though the mean-field theory predicts over-

all phases correctly, it is known to overestimate the phase boundaries, especially in

one dimension. For instance, mean-field theory predicts critical on-site interaction

UC/t = 11.6 for Mott insulator to superfluid transition in one-dimensional Bose-

Hubbard model with density ρ = 1 [22]. On the other hand, the numerical methods
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are more accurate (UC/t ≈ 3.3 [35], [44], [45]). Numerical methods, however, come

with high computational costs in predicting phases and their boundaries. This fact

is especially true when studying and characterizing the gapless superfluid phases.

In this chapter, we discuss our formalism. For the sake of completeness, we

discuss the single-site mean-field theory (MFT), its extension to cluster mean-field

theory (CMFT), and the density matrix renormalization method (DMRG). These

discussions lay the foundation for developing the cluster mean-field theory plus

density matrix renormalization (CMFT+DMRG) method. In this approach, we

combine the simplicity of the CMFT and the numerical accuracy of DMRG.

2.1.1 Single Site Mean-Field Theory

The mean-field theory described for the Bose-Hubbard model

Ĥ = −t
∑
⟨ij⟩

(âiâ
†
j + h.c) +

U

2

∑
i

n̂i(n̂i − 1)− µ
∑
i

n̂i. (2.1)

follows the work of Sheshadri et al. [22]. In Eq. (2.1), â†i (âi) are boson creation

(annihilation) operators, and number operator n̂i = â†i âi. The first term represents

the hopping of bosons between nearest neighbouring sites with amplitude t > 0.

The second term is the on-site interaction between the bosons, which increases

the system’s energy by U whenever there is more than one boson per site. The

last term controls the boson number for a given chemical potential µ.

The conventional mean-field approach applied to Fermionic or spin systems

decouples the two-particle interaction term, i.e., the on-site interaction term in

the Hamiltonian in Eq. (2.1), to map the problem into an effective one-particle

Hamiltonian. This decoupling approach, however, fails to explain the Mott insu-

lator phase. The ground state of the effective one-particle Hamiltonian is always

in the superfluid phase. The unique feature of the mean-field theory described by

Sheshadri et al. [22] is that it decouples the hopping term (first term in Eq. (2.1)),

which connects two nearest neighbouring sites, thus mapping the Hamiltonian
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into the one-site problem. We first discuss the single-site mean-field theory. The

hopping term in Eq. (2.1) â†i âj is decoupled using the mean-field decoupling ap-

proximation âj = ⟨âj⟩+ δâj as shown in Fig. 2.1. Here δâj is the fluctuation over

the mean value ⟨âj⟩. Applying this approximation to the Bose-Hubbard Hamilto-

nian in Eq. ( 2.1), the hopping term is decoupled into

Figure 2.1: Site configuration of (a) one-dimensional and (b) two-dimensional
system. The dotted line represents the hopping term approximated using the
mean-field decoupling ⟨âj⟩+ δâj.

â†i âj = ⟨â†i⟩⟨âj⟩+ ⟨â†i⟩δâj + ⟨âj⟩δâ†i + δâ†iδâj (2.2)

Assuming δâj to be very small, we neglect the quadratic term δâ†iδâj in the fluc-

tuation, which leads to the approximation

â†i âj ≈ ⟨â†i⟩⟨âj⟩+ ⟨â†i⟩δâj + ⟨âj⟩δâ†i

= ⟨â†i⟩âj + ⟨âj⟩â†i − ⟨â†i⟩⟨âj⟩ = ψiâj + ψj â
†
i − ψiψj (2.3)

where ⟨âi⟩ = ψi is the superfluid order parameter, and it is taken to be real

ψi = ψ∗
i [22]. Bose-Hubbard model ( 2.1) is translationally invariant, i.e., ψi = ψ

for all i. We rewrite the hopping term in the Eq. (2.1) as

−t
∑
⟨i,j⟩

(
â†i âj + â†j âi

)
= −t

∑
⟨i,j⟩

(
(ψâi + ψâ†i − ψ2) + (ψâj + ψâ†j − ψ2)

)
(2.4)

Changing the index form j to i in the second term in the bracket and dividing by
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two to avoid double counting, we get

−t
∑
⟨i,j⟩

(
â†i âj + â†j âi

)
= −zt

∑
i

(
(âi + â†i )ψ − ψ2

)
(2.5)

where z = 2d is the coordination number and d is the dimension. As a result of

this approximation, the Hamiltonian (2.1) is approximated to

Ĥ =
∑
i

ĤMF
i (2.6)

where the mean-field Hamiltonian

ĤMF
i = −zt

(
âi + â†i

)
ψ + ztψ2 +

U

2
n̂i(n̂i − 1)− µn̂i. (2.7)

The single site Hamiltonian (2.7) is easily solved by an iteration procedure de-

scribed below

• For initial value of ψ, we construct ĤMF
i in the Fock state basis {|n⟩} where

n = 0, 1, 2, ...., nmax. Here nmax is the maximum number of bosons that

occupy per site. It may be noted that for bosons, nmax = ∞. However,

for the numerical calculation, we keep a finite value for nmax and examine

the convergence of the ground state energy by varying the nmax. We find

nmax depends on the density of the bosons ρ and the ratio of U/t. The

larger the density, the larger should be the value of nmax. However, for a

larger value of U/t, we can keep smaller nmax. For example, in the hard-core

limit (U → ∞), nmax = 1 and analytical solution exist for the mean-field

Hamiltonian (2.7) [22].

• The Hamiltonian matrix is diagonalized to obtain the ground state energy

EGS and the wavefunction |ΨGS⟩ =
∑nmax

n=0 Cn|n⟩.

• Using the ground state |ΨGS⟩, we re-calculate the superfluid order parameter

ψ′ = ⟨â⟩ = ⟨ΨGS|â|ΨGS⟩.
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• If ψ ̸= ψ′, ψ is replaced by ψ′ in ĤMF
i to re-calculate EGS and |ΨGS⟩ =∑nmax

n=0 Cn|n⟩.

• The iteration process is repeated for self consistently till the ψ is converged

to the desired accuracy.

• The superfluid density ρSF = |ψ|2 and boson density ρ = ⟨ΨGS|n̂|ΨGS⟩

are then calculated from the converged ground state |ΨGS⟩ to characterize

different phases of the model.

The BH model has global U(1) symmetry, i.e., it is invariant under the trans-

formation

âi → âie
iϕ (2.8)

In the superfluid (SF) phase, the finite value of ψ spontaneously breaks the global

U(1) symmetry and does not conserve the total number of bosons. However, in

the Mott insulator phase, ψ = 0 and its phase preserves the U(1) symmetry. The

ground state of the Mott insulator is a product of the Fock states. Hence, the value

of ψ characterizes the SF to MI phases transition in the BH model. The simple

MFT, thus, correctly predicts the phase transition from SF to MI phase [22], [23].

The primary inadequacy of the MFT is that it neglects the fluctuations in the

critical region of the phase transition. The fluctuations destroy the condensate,

and ignoring the fluctuations leads to overestimating the phase boundary [48].

One way to improve the estimation of the phase boundary is to construct a larger

cluster of sites while constructing the mean-field theory instead of a single site.

We discuss the cluster mean-field view in the following sub-section.

2.1.2 Cluster Mean-Field Theory

The cluster mean-field theory (CMFT) is an extension of the single-site MFT,

where we consider a cluster of sites in the build-up of mean-field Hamiltonian [48],

[49]. The cluster is decoupled from the rest of the lattice using the mean-field

approximation discussed in the sub-section 2.1.1. We first divide the whole lattice
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Figure 2.2: Site configuration of the one-dimensional system for cluster size with
(a) one site and (b) two sites. The solid line represents the exact hopping within
the cluster, and the dotted lines represent the hopping term approximated using
the mean-field decoupling ⟨âj⟩+ δâj.

into NC clusters of equal length L. For example, Fig. 2.2(a) and (b) show a cluster

consisting of one site and two sites. The BH Hamiltonian (2.1) is then written as

Ĥ =
∑
p

Ĥ loc
p +

∑
p

Ĥhop
p (2.9)

where p represents the cluster index, and Ĥ loc
p is the local Hamiltonian of the pth

cluster, which is given by

Ĥ loc
p = −t

∑
j

(
â†p,j+1âp,j + â†p,j âp,j+1

)
+
U

2

∑
j

n̂p,j(n̂p,j − 1)−
∑
j

µn̂p,j. (2.10)

Here â†p,j (âp,j) is the boson creation (annihilation) operator and n̂p,j = â†p,j âp,j

is the number operator for the site j in the cluster p. The second term in the

Hamiltonian Eq. (2.9) represents the hopping of bosons between the clusters and

is given by

Ĥhop
p = −t

(
â†p,1âp−1,L + â†p−1,Lâp,1

)
− t

(
â†p,Lâp+1,1 + â†p+1,1âp,L

)
, (2.11)

where first term represents hopping between site L of cluster p − 1 and site 1 of

cluster p and the second term represents hopping between site L of cluster p and

site 1 of the cluster p+ 1 as shown in Fig. 2.3.

We now decouple cluster p from its neighbour clusters by using standard mean-

field decoupling, i.e., âp,j = ⟨âp,j⟩ + δâp,j where ⟨âp,j⟩ = ψp,j. Decoupling p from
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Figure 2.3: Site configuration of the one-dimensional system for cluster size L.
Here, the cluster p is decoupled from the neighbouring clusters, p − 1 and p + 1,
using the mean-field decoupling. The dotted line represents the approximated
hopping between the clusters.

p− 1 cluster

â†p,1âp−1,L + â†p−1,Lâp,1 = â†p,1ψp−1,L + âp,1ψ
∗
p−1,L + â†p−1,Lψp,1 + âp−1,Lψ

∗
p,1

−
(
ψ∗
p−1,Lψp,1 + ψp−1,Lψ

∗
p,1

)
+ δâ†p,1δâp−1,L + δâ†p−1,Lδâp,1

(2.12)

Considering the fluctuation δap,j to be small and thus neglecting second-order

fluctuations, we approximate the above term for cluster p to

â†p,1âp−1,L + â†p−1,Lâp,1 ≈ â†p,1ψp−1,L + âp,1ψ
∗
p−1,L − 1

2

(
ψ∗
p−1,Lψp,1 + ψp−1,Lψ

∗
p,1

)
,

(2.13)

we multiply the third term by 1/2 to account for the double counting. Similarly,

decoupling p from cluster p+ 1,

â†p,Lâp+1,1 + â†p+1,1âp,L ≈ â†p,Lψp+1,1 + âp,Lψ
∗
p+1,1 −

1

2

(
ψ∗
p+1,1ψp,L + ψp+1,1ψ

∗
p,L

)
.

(2.14)

Assuming, without loss of generality, the superfluid order parameter ψp,j to be

real and homogeneous, Eq. (2.11) is written as

Ĥhop
p = −t

(
(â†p,1 + âp,1)ψ − ψ2

)
− t

(
(â†p,L + âp,L)ψ − ψ2

)
. (2.15)
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Using Eqs. (2.10) and (2.15) in Eq. (2.9), we get

Ĥ =
∑
p

ĤC
p (2.16)

where ĤC
p is the Hamiltonian for a cluster of L sites. Dropping the cluster index

p

ĤC =− t

L−1∑
j=1

(
â†j+1âj + â†j âj+1

)
+
U

2

L∑
j=1

n̂j(n̂j − 1)−
L∑

j=1

µn̂j

− t
(
(â†1 + â1)ψ − |ψ|2

)
− t

(
(â†L + âL)ψ − |ψ|2

)
. (2.17)

The analytical solution of the cluster Hamiltonian is not possible even in the hard-

core limit. The numerical solution of Eq. (2.17) follows the iterative procedure

described below.

• For the initial guess of ψ, Hamiltonian matrix is constructed on the Fock

state basis {|n1, n2, ..., nL⟩}, where ni = 0, 1, 2, ...., nmax and i = 1, 2, ..., L.

The dimension of the Hilbert space of cluster Hamiltonian is (nmax + 1)L in

the Fock basis.

• The Hamiltonian ĤC is diagonalized to obtain the ground state energy EGS

and wavefunction |ΨGS⟩ =
∑nmax

n1,n2,...,nL=0Cn1,n2,....,nL
|n1, n2, ....., nL⟩.

• Using the ground state wavefunction, we re-estimate the superfluid order
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parameter ψ′;

ψ′
i = ⟨âi⟩ = ⟨ΨGS|âi|ΨGS⟩

=
nmax∑

n1,n2,··· ,ni,··· ,nL=0

nmax∑
n′
1,n

′
2,··· ,n′

i,··· ,n′
L=0

C∗
n′
1,n

′
2,··· ,n′

i,··· ,n′
L
Cn1,n2,··· ,ni,··· ,nL

⟨n′
1, n

′
2, · · · , n′

i, · · · , n′
L|âi|n1, n2, · · · , ni, · · · , nL⟩

=
nmax∑

n1,n2,··· ,ni,··· ,nL=0

nmax∑
n′
i=0

C∗
n1,n2,··· ,n′

i,··· ,nL
Cn1,n2,··· ,ni,··· ,nL

⟨n1, n2, · · · , n′
i, · · · , nL|âi|n1, n2, · · · , ni, · · · , nL⟩ (2.18)

• Replacing ψ with ψ′, we re-calculate Hamiltonian 2.17 and diagonalized to

obtain EGS and |ΨGS⟩.

• The iterative process is repeated till ψ is calculated self-consistently.

After calculating the superfluid order parameter ψ self-consistently, boson den-

sity ρ is obtained from the ground state wavefunction ΨGS. Different phases are

characterized based on the behavior of ψ and ρ. In the limit L = 1, Eq. (2.17)

reproduces the single site mean-field theory Hamiltonian [22], [28]. McIntosh et

al. have considered this Hamiltonian with cluster size up to L = 8 [48]. The

CMFT results of BH models show the improvement in the phase boundaries with

the increasing cluster size.

There are certain advantages with the CMFT compared to the single-site MFT.

The CMFT method incorporates fluctuations neglected by the single-site MFT to

some extent since the hopping within the cluster is treated precisely. Calculating

the superfluid order parameter improves with the cluster size L, thus better es-

timating the phase boundaries. However, the CMFT method comes with certain

limitations. The Hilbert space grows exponentially with the cluster size, requir-

ing substantial computational resources to study larger cluster systems. In this

context, the density matrix renormalization group (DMRG) technique is more

accurate in handling larger system sizes. We review the DMRG method in the
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following sub-section below before combining CMFT and DMRG methods in sub-

section 2.1.4.

2.1.3 Density-Matrix Remormalization Group Theory

The density-matrix renormalization (DMRG) method [50], [51] is a powerful

numerical technique for solving 1D systems. With moderate computational re-

sources, the DMRG method provides highly accurate results for the ground and

low-lying excited states, allowing us to analyze and understand the physical prop-

erties of condensed matter systems.

The DMRG method is based on the numerical renormalization (RG) method, a

breakthrough technique in solving the Kondo problem [52]. The real-space version

of the RG method (RSRG) assumes that only the lowest eigenstates dominate in

forming the states of larger blocks and iteratively growing the system size. We

briefly describe the iterative procedure of RSRG applied to 1-D systems below.

• The one-dimensional infinite chain is divided into identical blocks A of length

L. Let the basis of M states {|µA⟩} represent the block A.

• Two neighbouring blocks are grouped into a superblock, denoted by A′ ≡ AA

having length 2L as shown in Fig. 2.4. The Hilbert’s space of superblock A′

is M2. The Hamiltonian ĤA′ is constructed and diagonalized

ĤA′|α⟩ = Eα|α⟩ (2.19)

to obtain eigenstates

|α⟩ =
∑
µA,µ′

A

Cα
µA,µ′

A
|µAµ

′
A⟩ (2.20)

and energy Eα.

• We truncate the basis states of superblock A′ from M2 to M using M lowest
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eigenstates of HA′ . Thus, superblock A′ is represented by M lowest eigen-

states of HA′ .

• The above process is repeated with new block A′ → A.

• The length of the superblock doubles at each iteration, and the process is

repeated till the system reaches the desired length.

Figure 2.4: Schematic representation of RSRG for 1D system.

Restricting the number of states in the superblock to M lowest energy states

controls the Hilbert space dimension from growing exponentially, reducing the

computational cost required to study the large system sizes. However, the RSRG

method has yet to be successful in the calculation of the ground state energy.

The basis states {|µA⟩} representing the block A is the eigen states of ĤA. Since

ĤA is diagonalized with open boundary conditions, state {|µA⟩} has nodes at the

edges. Therefore, |α⟩ =
∑

µA,µ′
A
Cα

µA,µ′
A
|µAµ

′
A⟩ also has nodes at the center of the

system where the two A Blocks meet. The presence of these nodes means states

|α⟩, which represents the superblock A′, do not represent true low energy states,

leading to errors in determining the ground state energy.

Eliminating the edge effect by changing the boundary conditions on a block

and retaining the states with different boundary conditions improves the ground

state energy[50], [51]. The DMRG technique, discussed below, is the consequence

of these studies.

The principle idea behind the DMRG technique lies in the approach chosen to

truncate the block’s exponentially growing Hilbert space dimension. In DMRG,

the most weighted eigenstates of the block density matrix are selected as states

representing the block, unlike the lowest eigenstates as in RSRG. To demonstrate
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this, we consider a superblock SE with an open boundary condition comprising

two identical blocks S and E. Here, S stands for the system and E for the

environment. Let {|µS⟩} and {|µE⟩} represent M basis states of the blocks S and

E respectively. We can write the states of the superblock system SE in terms of

|µS⟩ and |µE⟩ as

|Ψ⟩ =
M∑

µS=1

M∑
µE=1

CµS ,µE
|µS⟩|µE⟩. (2.21)

Integrating the environment block E, we get the reduced density matrix of system

block S i.e.,

ρSµSµ
′
S
=

∑
µE

C∗
µS ,µE

Cµ′
S ,µE

. (2.22)

Diagonalising ρSµSµ
′
S

we get the eigenvalue ωα and eigenvector

|uα⟩ =
∑
µS

Oα
µS
|µS⟩ (2.23)

of the density matrix. The eigenvalue ωα is nothing but the probability that the

superblock state |Ψ⟩ contains block state µS and satisfies
∑

α ωα = 1. Keeping

the highest weighted states, say m states such that
∑m

α=1 ωα ≈ 1, the dimension

of the Hamiltonian of the block is effectively reduced from M to m states. The

m eigenstates of the reduced density matrix |uα⟩ represent the system block S.

Similarly, the environment block E is then represented by the m eigenstates of

the reduced density matrix |vα⟩, where

|vα⟩ =
∑
µE

Oα
µE
|µE⟩. (2.24)

The state of the superblock system

|Ψ⟩ ≈
m∑

α,α′=1

aαα′ |uα⟩|vα′⟩. (2.25)

We discuss the iterative process to calculate the ground state of the system using

the DMRG method below. It is a stable procedure, as the truncation error from
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the previous iteration does not propagate to the next iteration. Figure 2.5 gives

the Schematic of the DMRG method.

Figure 2.5: Schematic representation of DMRG iteration for the 1D system. (a)
A superblock consists of the system block S and the environment block E, and
the two sites (s, e), (b) Single site s is added to the system block S to form new
system block S ′ and (c) the new superblock is formed replacing S with S ′ and E
with E ′, and two new sites s and e.

Step I Consider a superblock configuration consisting of system block S with l

sites, environment block E with l sites and two single sites s and e as shown

in the Fig. 2.5(a). l = 1 in the first iteration and it increases from l to

l + 1 in every iteration. The Hilbert space dimension of the system block S

(environment block E) and the two sites are, say, MS and Ns, respectively.

MS = Ns in the first iteration since l = 1. The superblock has L = 2l + 2

sites. Let |µS(E)⟩ represent the basis states for the system (environment)

block. Similarly |σs(e)⟩ represents the basis states for the single site s(e).

Step II The Hamiltonian of the superblock

Ĥ2l+2 = ĤS + Ĥs + Ĥe + ĤE + ĤSs + Ĥse + ĤeE (2.26)

where ĤS (ĤE) is the system (environment) block Hamiltonian, Ĥs(e) is the

single site Hamiltonian, ĤSs is the Hamiltonian connecting the system block

S with the single site s, Ĥse is the Hamiltonian connecting the single site

s with the single site e, and finally ĤeE is the Hamiltonian connecting the

27



Chapter 2: Methods

single site e with the environment block E.

Step III Construct the Hamiltonian Ĥ2l+2 and diagonalize it to obtain ground

state energy EGS, the wave function

|ΨGS⟩ =
∑

µS ,σs,σe,µE

CµSσsσeµE
|µSσsσeµE⟩. (2.27)

Calculate the expectation values of various operators and the correlation

functions at this stage using the ground state wavefunction |ΨGS⟩.

Step IV Construct the new system block S ′ combining the system block S and

the single site s, i.e., S ′ = S + s as shown in Fig. 2.5(b). Construct the

reduced density matrix of S ′.

ρ̂µSσs,µ′
Sσ

′
s
=

∑
µEσe

C∗
µSσsσeµE

Cµ′
Sσ

′
sσeµE

(2.28)

Step V Digonalize ρ̂µSσs,µ′
Sσ

′
s

to obtain the eigenvalues ωα and eigenstates

|uα⟩ =
∑
µS ,σs

Oα
µSσs

|µSσs⟩. (2.29)

ωα measures the weight of the state |uα⟩ in the ground state |ΨGS⟩ and

satisfy
∑

α ωα = 1.

Step VI New system blocks S ′ has MS × Ns states. We transform the basis

states for S ′ from |µSσs⟩ to |uα⟩ keeping MS eigenstates with the largest

ωα. This way, we have truncated the Hilbert basis of the system block S ′

from MS × Ns to MS. This step is the most critical step of the DMRG

method. Hamiltonian ĤS′ for the new system block S ′ and other operators

are transformed from the old basis {|µSσs⟩} to new basis {|uα⟩}

Ĥnew
S′ = O†Ĥold

S′ O (2.30)
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where O is the transformation matrix in Eq. (2.29) and

Ĥold
S′ = ĤS + Ĥs + ĤSs. (2.31)

Step VII Replace the system block S with S ′ and similarly environment block

E with E ′ as shown in Fig. 2.5(c) and repeat from [Step I].

The DMRG method works well when the ground state has a gap in the energy

spectrum [50], [51], [53]. When applied to the Bose-Hubbard model, the superfluid

and Mott insulator phases are determined by analyzing the behavior of the gap in

the energy spectrum and the correlation functions such as single-particle density

matrix ⟨â†j âj+r⟩ and density-density correlation ⟨n̂jn̂j+r⟩ [35], [44], [54]. These

studies have elucidated the phase diagram of the model accurately [35], [44], [54].

However, the DMRG method, applied to Bose-Hubbard-like systems, can’t

be used to determine the superfluid order parameter ψ, which is the order pa-

rameter distinguishing superfluid to Mott insulator phases. Since it generally

works in the canonical ensemble, ψ = ⟨â⟩ = 0 in all the phases. Several exten-

sions of the Bose-Hubbard model, like the extended Bose-Hubbard model and the

spin-1 Bose-Hubbard model, show novel exotic gapless phases like supersolid, po-

lar/Ferro superfluid, phase separation, and pair superfluids. The superfluid order

parameters are convenient to characterize these exotic gapless phases. Unlike the

mean-field theories, the DMRG method can’t resolve these phases directly due to

its limitation in determining superfluid order parameters. In the following section,

we provide a new approach that utilizes the DMRG capability to handle larger

system sizes and the simplicity of the CMFT method to determine the superfluid

order parameter.
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2.1.4 Cluster mean-field Plus Density matrix Renormaliza-

tion Group Method

The CMFT improves the phase boundary compared to simple single-site mean-

field theory [48], [49]. However, there are limitations forming bigger cluster sizes for

the CMFT calculations as the Hilbert space of the cluster increases exponentially

with the number of sites. There have been recent reports of overcoming this

limitation to build larger cluster sizes using the CMF + S analysis with 2D DMRG

solver [55]–[57]. In this section, we provide a different approach that utilizes the

Figure 2.6: Schematic representation of CMFT+DMRG iteration for the 1D sys-
tem. (a) A superblock consists of the system block S and the environment E and
the two sites (s, e), (b) The single site s is added to the system block S to form
new system block S ′ and (c) new superblock is formed replacing S with S ′ and E
with E ′ and two new sites s and e.

DMRG capability to handle larger system sizes and the simplicity of the CMFT

method. We solve large cluster Hamiltonian using the DMRG procedure to provide

a direct probe into the gapless phases using the superfluid order parameters. In

this way, this new approach captures the success of both the DMRG and the

CMFT methods.

We discuss the CMFT+DMRG method for two cases: lattice with translational

symmetry and bipartite lattice. In the former, the superblock configuration of the

DMRG is kept unchanged, while in the latter case, the configuration is modified

to accommodate the bipartite symmetry of the wave function.
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2.1.4.1 Translational Symmetry Case

Here, we explain the CMFT+DMRG formalism using the Bose-Hubbard model.

Following the CMFT formalism discussed in the sub-section 2.1.2, the Bose-

Hubbard model for a cluster of length L is given by (see Eq. (2.17))

ĤC =− t

L−1∑
j=1

(
â†j+1âj + â†j âj+1

)
+
U

2

L∑
j=1

n̂j(n̂j − 1)−
L∑

j=1

µn̂j

− t
(
(â†1 + â1)ψ − |ψ|2

)
− t

(
(â†L + âL)ψ − |ψ|2

)
. (2.32)

The DMRG method for the Bose-Hubbard model (2.1 with µ = 0) works in the

canonical ensemble; the number of particles in the system is fixed, [Ĥ, N̂ ] = 0,

hence the superfluid order parameter ψ = ⟨a⟩ = 0 in all the phases. However,

the cluster Hamiltonian (2.32) works in the grand-canonical ensemble and com-

mutation [ĤC , N̂ ] ̸= 0. Consequently, the superfluid parameter ψ = ⟨a⟩ is fi-

nite to characterize the superfluid phase. In the Mott insulator phase, however,

ψ = 0. Consequently, the Hamiltonian ĤC commute with the N̂ , which im-

plies that the CMFT+DMRG study reproduces earlier DMRG results. Thus, the

CMFT+DMRG method interplays between single-site mean-field theory and the

DMRG in the one-dimensional Bose-Hubbard model.

The task now is to obtain the ground state energy and the wave function of

the Hamiltonian (2.32) for any given length L. We use the iteration procedure of

DMRG to solve the CMFT Hamiltonian (2.32). We briefly describe these steps

below.

Step I Consider a superblock configuration consisting of system block S with l

sites, environment block E with l sites and two single sites s and e as shown

in the Fig. 2.6(a). l = 1 in the first iteration and it increases from l to l + 1

in every iteration. The Hilbert space dimension of the S (E) block and the

two sites s, e are, say, MS and Ns, respectively. For the first iteration, l = 1

and MS = Ns. The superblock has L = 2l+2 sites. Let |µS(E)⟩ represent the
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basis states for the system (environment) block. Similarly |σs(e)⟩ represents

the basis states for the single site s(e).

Step II The Hamiltonian (2.32) of the superblock

Ĥ2l+2 = ĤS + Ĥs + Ĥe + ĤE + ĤSs + Ĥse + ĤeE + Ĥ1 + ĤL (2.33)

where ĤS (ĤE) is the system (environment) block Hamiltonian, Ĥs(e) is the

single site Hamiltonian, ĤSs is the Hamiltonian connecting the system block

S with single site s, Ĥse is the Hamiltonian connecting the system single site

s with single site e, and ĤeE is the Hamiltonian connecting the single site

e with environment block E. Ĥ1 and ĤL are the mean-field term in (2.32)

i.e., Ĥ1 = −t
(
(â†1 + â1)ψ − |ψ|2

)
and ĤL = −t

(
(â†L + âL)ψ − |ψ|2

)
.

Step III Construct the Hamiltonian Ĥ2l+2 for a given initial guess for ψ and

diagonalize it to obtain ground state energy EGS(ψ), the wave function

|ΨGS(ψ)⟩ =
∑

µS ,σs,σe,µE

CµSσsσeµE
(ψ)|µSσsσeµE⟩. (2.34)

Minimize the ground state energy EGS(ψ) with respect to ψ to obtain global

ground state energy EGS, the wave function |ΨGS⟩. At this stage, calculate

the expectation values of various operators and the correlation functions on

the ground state.

Step IV Construct the new system block S ′ combining the system block S and

single site s, i.e., S ′ = S + s as shown in Fig. 2.6(b). Construct the reduced

density matrix of S ′

ρ̂µSσs,µ′
Sσ

′
s
=

∑
µEσe

C∗
µSσsσeµE

Cµ′
Sσ

′
sσeµE

(2.35)
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Step V Digonalize ρ̂µSσs,µ′
Sσ

′
s

to obtain the eigenvalues ωα and eigenstates

|uα⟩ =
∑
µS ,σs

Oα
µSσs

|µSσs⟩. (2.36)

ωα measures the weight of the state |uα⟩ in the ground state |ΨGS⟩ and

satisfy
∑

α ωα = 1.

Step VI New system blocks S ′ has MS × Ns states. We transform the basis

states for S ′ from |µSσs⟩ to |uα⟩ keeping MS eigenstates with the largest ωα.

This way, we have truncated the Hilbert basis of the system block S ′ from

MS×Ns toMS. This step is also the most critical step of the CMFT+DMRG

method. Hamiltonian ĤS′ for the new system block S ′ and other operators

are transformed from the old basis {|µSσs⟩} to new basis {|uα⟩}

Ĥnew
S′ = O†Ĥold

S′ O (2.37)

where O is the transformation matrix in Eq. (2.36) and

Ĥold
S′ = ĤS + Ĥs + ĤSs. (2.38)

We don’t add Ĥ1 in the system block Hamiltonian Ĥold
S′ . It is included only at

the level of constructing the superblock Hamiltonian described in the Step

II.

Step VII Replace system block S with S ′ and similarly environment block E

with E ′ as shown in Fig. 2.6 and repeat the iteration from [Step I].

2.1.4.2 Bipartite lattice

We now discuss the CMFT+DMRG method applied to a bipartite lattice.

The extended Bose-Hubbard model contains nearest-neighbour interaction, which

supports density wave and supersolid phases. The lattice can be divided into two

sub-lattices, say A and B, and one sub-lattice interacts with the other. Applying
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the CMFT+DMRG method to the extended Bose-Hubbard model, we find that

working with an odd number of sites is preferred over systems with an even number

of lattice sites. Since the lattice has left-right symmetry, the density of bosons at

the left edge site (ρ1) and the right edge site (ρL) are equal. This symmetry forces

ρL
2
= ρL

2
+1 if L is even in all the possible phases, including the density wave phase.

Since the density of bosons alternates between the nearest neighbouring sites in

the density wave phase, this symmetry forces density variation to have a node at

the center, which is not the actual ground state. However, if L is an odd integer,

the left-right symmetry is preserved with no such nodes at the center. For this

reason, we take Figure 2.7 as the superblock configuration in the CMFT+DMRG

formalism and discuss the same using the extended Bose-Hubbard model below.

Figure 2.7: Schematic representation of the CMFT+DMRG method for a bipartite
lattice. The dotted lines represent the mean-field decoupling, and the solid lines
represent the exact hopping in the superblock. (a) represents the superblock
constructed from symmetric blocks S and E with the site s in between, (b) the
formation of new block S ′, and (c) a new superblock formed using S ′ and E ′.

We first obtain the cluster Hamiltonian for the EBH model

Ĥ = −t
∑
j

(
â†j+1âj + â†j âj+1

)
+
U

2

∑
j

n̂j(n̂j − 1) + V
∑
j

n̂jn̂j+1 − µ
∑
j

n̂j

(2.39)

the third term is the nearest neighbour interaction with strength V > 0. The

other terms have the same meaning as in the Eq.(2.1). In the hard-core limit
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(U = ∞) and for µ = V , the model (2.39) maps into spin-1/2 XXZ model, which

has a BKT transition from the superfluid phase (equivalent to XY order) to the

density wave phase (Ising order) at V = 2 [58]. The density of bosons alternates

between ρA and ρB ̸= ρA in the density wave phase. Here, ρA(B) represents the

density of bosons at A(B) sub-lattices.

We divide the whole lattice into A and B sub-lattices, assuming cluster size L

to be an odd integer, and the edge sites are of the same sub-lattice, the resulting

Hamiltonians (4.2) is then written as

Ĥ =
∑
p

Ĥ loc
p +

∑
p

Ĥhop+V
p (2.40)

where p represents the cluster index and

Ĥ loc
p = −t

L−1∑
j=1

(
â†p,j+1âp,j + â†p,j âp,j+1

)
+
U

2

L∑
j=1

n̂p,j(n̂p,j − 1)− µ
L∑

j=1

n̂p,j

+ V
L−1∑
j=1

n̂p,jn̂p,j+1. (2.41)

Here
∑

j runs over all the sites in cluster p, â†p,j (âp,j) is the boson creation (anni-

hilation) operator for the site j in the cluster p and n̂p,j = â†p,j âp,j is the number

operator.

The second term in the Hamiltonian Eq. (2.40) represents the hopping of

bosons and interactions between the clusters and is given by

Ĥhop+V
p = −t

(
â†p,1âp−1,L + â†p−1,Lâp,1

)
− t

(
â†p,Lâp+1,1 + â†p+1,1âp,L

)
+ V (n̂p,1n̂p−1,L) + V (n̂p,Ln̂p+1,L) (2.42)

where the first and third term represent the hopping and interaction between

bosons on-site L of cluster p−1 and site 1 of cluster p, respectively. Similarly, the

second and fourth term represent the hopping and interaction between the bosons

on-site L of cluster p and site 1 of cluster p+ 1.
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Decouple each cluster from its neighbor clusters by using standard mean-field

decoupling,

âp,j = ⟨âp,j⟩+ δâp,j

and

n̂p,j = ⟨n̂p,j⟩+ δn̂p,j

where ⟨âp,j⟩ = ψp,j is the superfluid order parameter and ⟨n̂p,j⟩ = ρp,j is the boson

density.

Considering the fluctuation δâp,j and δn̂p,j to be small and thus neglecting

second-order in fluctuations, we decouple p and p− 1 clusters

−t(â†p,1âp−1,L + â†p−1,Lâp,1) + V (n̂p,1n̂p−1,L) ≈ −t
(
â†p,1ψp−1,L + âp,1ψ

∗
p−1,L

)
+
t

2

(
ψ∗
p−1,Lψp,1 + ψp−1,Lψ

∗
p,1

)
+ V (n̂p,1ρp−1,L − 1

2
ρp,1ρp−1,L). (2.43)

The edge sites of cluster p, say belong to the A sub-lattice. Since L is odd, the

edge sites of clusters p− 1 and p+ 1 then belong to B sub-lattice. So we replace

ψp−1,L = ψB, ψp,1 = ψA, ρp−1,L = ρB and ρp,1 = ρA, we re-write Eq. (2.43) as

−t(â†p,1âp−1,L + â†p−1,Lâp,1) + V (n̂p,1n̂p−1,L) ≈ −t
(
â†p,1ψB + âp,1ψ

∗
B

)
+
t

2
(ψ∗

BψA + ψBψ
∗
A)

+ V (n̂p,1ρB − 1

2
ρAρB). (2.44)

Similarly, decoupling p and p+ 1 clusters

−t(â†p,Lâp+1,1 + â†p+1,1âp,L) + V (n̂p,Ln̂p+1,1) ≈ −t(â†p,LψB + âp,Lψ
∗
B)

+
t

2
(ψ∗

AψB + ψAψ
∗
B)

+ V (n̂p,LρB − 1

2
ρAρB) (2.45)
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Assuming, without loss of generality, the superfluid order parameter ψp,j in a

given sub-lattice to be real and homogeneous, Eq. (2.40) can be written as

Ĥ =
∑
p

ĤC
p (2.46)

where ĤC
p is the Hamiltonian for a cluster of L sites. Dropping the cluster index

p

ĤC =− t

L−1∑
j=1

(
â†j+1âj + â†j âj+1

)
+
U

2

L∑
j=1

n̂j(n̂j − 1) + V

L−1∑
j=1

n̂jn̂j+1 −
L∑

j=1

µn̂j

− t
(
(â†1 + â1)ψB − ψAψB

)
− t

(
(â†L + âL)ψB − ψAψB

)
+ V (n̂1 + n̂L)ρB − V ρAρB. (2.47)

Here, ψA (ψB) and ρA (ρB) are the superfluid order parameter and the density of

bosons of A(B) sub-lattices, respectively. The minimization of the ground state

energy is done with respect to ψA(B) and ρA(B). The phases are characterized

based on the values of ψA(B) and ρA(B). For example, the superfluid phase has

non-zero ψA and ψB, the density wave phase has ψA = ψB = 0 and ρA ̸= ρB with

ρA + ρB is an integer, and supersolid has non-zero ψA and ψB and ρA ̸= ρB.

Next, we describe the steps involved in calculating the ground state energy

and the wave function of the Hamiltonian Eq. (2.47) using the CMFT+DMRG

method. For odd L, the CMFT+DMRG formalism is discussed as follows:

Step I Consider a superblock configuration consisting of system block S with l

sites, environment block E with l sites and a single site s as shown in the

Fig. 2.7(a). l = 1 in the first iteration and it increases from l to l + 1 in

every iteration. The Hilbert space dimension of the S (E) block and the

site s are, say, MS and Ns, respectively. For the first iteration, l = 1 and

MS = Ns. The superblock has L = 2l + 1 sites. Let |µS(E)⟩ represent the

basis states for the system (environment) block. Similarly, |σs⟩ represents
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the basis states for the single site s.

Step II The Hamiltonian (2.47) of the superblock

Ĥ2l+1 = ĤS + Ĥs + ĤE + ĤSs + ĤsE + Ĥ1 + ĤL (2.48)

where ĤS (ĤE) is the system (environment) block Hamiltonian, Ĥs is the

single site Hamiltonian, ĤSs is the Hamiltonian connecting the system block

S with single site s, ĤsE is the Hamiltonian connecting the system single

site s with environment block E. Ĥ1 and ĤL are the mean-field term in

(2.47) i.e., Ĥ1 = −t
(
(â†1 + â1)ψB − ψAψB

)
+ V n̂1ρB − V

2
ρAρB and ĤL =

−t
(
(â†L + âL)ψB − ψAψB

)
+ V n̂LρB − V

2
ρAρB.

Step III Construct the Hamiltonian Ĥ2l+1 for a given initial guess for ψA(B) and

ρA(B). Diagonalize it to obtain ground state energy EGS(ψA(B), ρA(B)), the

wave function

|ΨGS(ψA(B), ρA(B))⟩ =
∑

µS ,σs,µE

CµSσsµE
(ψA(B), ρA(B))|µSσsµE⟩. (2.49)

Minimize the ground state energy EGS(ψA(B), ρA(B)) with respect to ψA, ψB,

ρA and ρB to obtain global ground state energy EGS, the wave function

|ΨGS⟩. At this stage, calculate the expectation values of various operators

and the correlation functions on the ground state.

Step IV Construct the new system block S ′ combining the system block S and

single site s, i.e., S ′ = S + s as shown in Fig. 2.7(b). Similarly, construct

the new environment block E ′ combining the block E and single site s, i.e.,

E ′ = E + s as shown in Fig. 2.7(b). Construct the reduced density matrices

of S ′ and E ′

ρ̂µSσs,µ′
Sσ

′
s
=

∑
µE

C∗
µSσsµE

Cµ′
Sσ

′
sµE

(2.50)

ρ̂µEσs,µ′
Eσ′

s
=

∑
µS

C∗
µSσsµE

CµSσ′
sµ

′
E
. (2.51)
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Step V Digonalize ρ̂µSσs,µ′
Sσ

′
s

to obtain the eigenvalues ωα and eigenstates

|uα⟩ =
∑
µS ,σs

Oα
µSσs

|µSσs⟩. (2.52)

ωα measures the weight of the state |uα⟩ in the ground state |ΨGS⟩ and

satisfy
∑

α ωα = 1. Similarly, diagonalize ρ̂µEσs,µ′
Eσ′

s
.

Step VI New system blocks S ′ has MS × Ns states. We transform the basis

states for S ′ from |µSσs⟩ to |uα⟩ keeping MS eigenstates with the largest ωα.

This way, we have truncated the Hilbert basis of the system block S ′ from

MS×Ns toMS. This step is also the most critical step of the CMFT+DMRG

method. Hamiltonian ĤS′ for the new system block S ′ and other operators

are transformed from the old basis {|µSσs⟩} to new basis {|uα⟩}

Ĥnew
S′ = O†Ĥold

S′ O (2.53)

where O is the transformation matrix in Eq. (2.52) and

Ĥold
S′ = ĤS + Ĥs + ĤSs. (2.54)

We don’t add Ĥ1 in the system block Hamiltonian Ĥold
S′ . It is included only at

the level of constructing the superblock Hamiltonian described in the Step

II.

Step VII Replace system block S with S ′ and similarly environment block E

with E ′ as shown in Fig. 2.7 and repeat from [Step I].

2.1.5 Conclusions

In this chapter, we have discussed the formalism of single-site MFT, CMFT,

infinite-size DMRG, and CMFT+DMRG. The mean-field theory gives an oversim-

plified description of the SF and MI phases in the BH model with the overestima-
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tion of the critical parameters. The CMFT method improves the single-site MFT

results with increasing cluster sites at the cost of increased computational power

due to an exponential increase in the dimension of the cluster Hamiltonian. The

DMRG method, thus, proves more valuable in the study of ground state prop-

erties of large systems using density matrix states as the dominant state in the

ground state of large systems. It captures the phase more accurately than MFT

and CMFT in the BH model. Still, it fails to directly probe into BH models with

exotic gapless phases like supersolid and polar superfluid. The CMFT+DMRG is

thus proposed to utilize the advantages of CMFT and DMRG to effectively identify

the exotic gapless phases. In subsequent chapters, we apply the CMFT+DMRG

method to the Bose-Hubbard model and the extended Bose-Hubbard model to

demonstrate the usefulness of this approach.
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Bose Hubbard Model

3.1 Introduction

Cold bosonic atoms in an optical lattice in the tight-binding regime are de-

scribed by the Bose Hubbard model [17] defined by

Ĥ = −t
∑
j

(
â†j âj+1 + â†j+1âj

)
+
U

2

∑
j

n̂j(n̂j − 1)− µ
∑
j

n̂j. (3.1)

Here, â†i (âi) are boson creation (annihilation) operators, and the first term rep-

resents the hopping of bosons between nearest neighbouring sites with amplitude

t > 0. The second term is the on-site interaction between the bosons, which

increases the system’s energy by U whenever there is more than one boson per

site. The last term controls the boson number for a given chemical potential µ.

The ratio between U/ρt, where ρ is the density of bosons (the number of bosons

per site), controls the ground state of the BH model. When the t dominates U ,

U/ρt ≲ 1, the system goes into the superfluid phase characterized by coherent

wave properties and off-diagonal long-range ordering. In this phase, the bosons

are delocalized on the lattice and have a gapless excitation spectrum. On the other

hand, when U dominates, and at integer filling, quantum fluctuations drive the

system in a gapped, localized Mott insulator phase characterized by the absence

of off-diagonal long-range ordering.

The one-dimensional Bose-Hubbard model is well-studied; the phases and the
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phase boundaries between the superfluid to Mott insulator phases are known to a

good approximation using various approximate and numerical techniques, critical

value best approximated to Uc/t ≈ 3.28 [35], [36] for the density ρ = 1 MI to

SF phase, making it a suitable candidate to test the CMFT+DMRG method

proposed in the previous chapter. The main aim of this chapter is to demonstrate

the CMFT+DMRG method applied to the Bose Hubbard Model and compare

it with the DMRG method to address its advantages and limitations. We also

address the Bose-Hubbard model with t < 0 to demonstrate the existence of a

staggered superfluid, which can be captured easily within the CMFT+DMRG

method.

This chapter is organized as follows. In Section 3.2, we analyze the convergence

of superfluid order parameters against the system size L. The comparison of the

CMFT+DMRG results with the DMRG results is given in Section 2.1.3. We also

demonstrate the application of the CMFT+DMRG method to the Bose-Hubbard

model with t < 0 in Section 3.4 and conclude this chapter in Section 3.5.

3.2 Convergence of superfluid order parameter

We perform the CMFT+DMRG calculations following the iteration procedure

described in the section 2.1.4.1. We retain up to MS = 75 eigenstates in the

left/right block-reduced density matrix. This results a truncation error ϵ = 1 −∑MS

α=1 ωα of the order of 10−8. We keep up to Ns = 5 states per site, resulting in

the maximum number of bosons per site nmax = 4. We found nmax = 4 is sufficient

since we restrict the density of bosons ρ < 2. We set the energy scale by t = 1. The

length of the system increases from L to L+ 2 in each CMFT+DMRG iteration.

Since the ground state energy EGS(L, ψ) is a function of the superfluid parameter

ψ, we calculate it self-consistently for every length L. We use the self-consistent

value of the ψ to calculate the ground state energy and eigenfunction. We calculate

the expectation values of various operators and the correlation functions using this

ground-state eigenfunction.
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The CMFT+DMRG is an iterative procedure. We analyze, first, the conver-

gence of the superfluid order parameters ψj and density of the bosons ρj as a

function of lattice position j for a given system size L. We follow it with an

analysis of the convergence as a function of system size L.

0 1 0 2 0 3 0 4 0 5 0
0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

 

 
 

j

 ψ j
 ρj

U = 5
µ=0.6

Figure 3.1: Superfluid order parameter ψj and boson density ρj are plotted as a
function of position j. Here we have considered a lattice with length L = 50 and
model parameters U = 5 and µ = 0.6.

For U = 5, and µ = 0.6, we plot ψj and ρj as a function of lattice position j for

a system length with L = 50 in Fig. 3.1. This figure depicts a typical behavior of

ψj and ρj. The edge sites have higher superfluid order parameter values compared

to the center. ψj decreases as the lattice position j moves away from the edges

and has the least value when j = L/2. Similarly, density ρj increases from the

edges to the center. The variation of ψj with j is easy to understand. The

mean-field approximation affects the edge sites, and as the lattice position moves

away from the edges, the effect of the approximation tampers off. The mean-

field approximation is known to overestimate the superfluid phase. Hence, the

superfluid order parameter values are larger at the edges than at the center. For a

given system with length L, the ψL/2 is the least. To understand the converges of

the superfluid order parameters with system length L, we plot ψj (where j = 1 to
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L/2) for different lengths; L = 100, 300, 700, and, 1000 in Fig. 3.2. The superfluid

order parameters converge from the edges as the system length L increases. For

L = 100, ψj have been converged for all j except near the center of the lattice

j ∼ 50. As length increases, ψj converges for more range of values of j, and

eventually, for larger L, ψj converges for the entire system. Similar behavior is

seen for the boson density ρj in Fig. 3.3 plotted as function of j for different

lengths; L = 100, 300, 700, and, 1000. The ρ converges faster with L compared

to ψ.

To demonstrate the convergence the superfluid order parameters further, we

plot ψ1, ψL/2, ρ1 and ρL/2 for system sizes up to L = 1000. Here again, we keep

U = 5.0 and µ = 0.6. In Fig. 3.4, the densities, ρ1 and ρL/2, and the superfluid

parameter for the edge site ψ1 converge faster with L compare to ψL/2. ψL/2

converges eventually as length increases. Both ψ1 and ψL/2 converge to a finite

superfluid order parameter, and we find ψ1 > ψL/2 due to the edge effect: the

mean-field approximation overestimates superfluid order parameter. For µ = 1.4,

however, in Fig. 3.5, ψ1, ψL/2, ρ1 and ρL/2 converges at approximately same rate

and ψL/2 converges to zero yielding a Mott insulator phase. It may be noted

that, as a consequence of mean-field decoupling of the edge sites, the superfluid

order parameter at the edge site, ψ1, is finite for both cases, i.e., µ = 0.6 and 1.4.

However, ψL/2 is finite in the former case and zero in the later. From the above

behavior of convergence of superfluid order parameters and densities, we conclude

that ψL/2 and ρL/2 represent the converged values for the superfluid fluid order

parameter and density of the system with length L. We denote these by ψ and ρ,

respectively.

3.3 Comparison of CMFT+DMRG with DMRG

This Section compares the CMFT+DMRG result with the standard DMRG,

keeping the on-site interaction U = 5. The ground state energy EL(N) of the

system of length L having N bosons is obtained using finite-size DMRG pro-
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Figure 3.2: The superfluid order parameter ψj are plotted as a function of position
j for different lengths L. Here U = 5 and µ = 0.6.

cedure [59]. The density of the system ρL = N/L and the chemical potential

corresponding to this density is determined using the relation.

µ = (µ+ + µ−)/2, (3.2)

where µ+ = EL(N + 1) − EL(N) and µ− = EL(N) − EL(N − 1). The DMRG

method characterizes different phases from the single-particle energy gap ∆ =

µ+ − µ−, the boson density ρ and compressibility κ = ∂ρ
∂µ

. In the superfluid

phase, κ is finite, ∆ = 0; in the Mott insulator phase, ρ is commensurate, and

κ is equal to zero, and the gap ∆ is finite. To compare the CMFT+DMRG and

DMRG, we use the density ρ variation with the chemical potential µ. We plot,

in Fig. 3.6, the calculated density using the DMRG method (for L = 300) and

the CMFT+DMRG method (for L = 200) for different chemical potentials. We

observe that the density obtained from both methods agrees, though the length

chosen for CMFT+DMRG is smaller than that for DMRG. Density increases with

chemical potential and remains pinned at ρ = 1 for a range of µ values. This

region corresponding to the Mott insulator phase has finite gap ∆ = µ+ − µ−

and vanishing compressibility κ =
(

dρ
dµ

)
. The region outside ρ = 1 has finite

compressibility and is considered a superfluid phase. The DMRG method correctly
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Figure 3.3: The boson density ρj are plotted as a function of position j for different
lengths L. Here parameters U = 5 and µ = 0.6 are same as that in Fig 3.2.
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Figure 3.4: The superfluid order parameters ψ(1), ψ(L/2) and the boson densities
ρ(1) and ρ(L/2) are plotted as a function length L for U = 5 and µ = 0.6.

demonstrates the phases in the BH model. However, the DMRG calculations

cannot directly access superfluid order parameters to identify SF and MI phases.

In the same figure, we plot the superfluid order parameter obtained from the

CMFT+DMRG method (for L = 200 and 500). We observe that ψ vanishes in

the Mott insulator phase as it should and is finite in the superfluid phase. Thus, it

demonstrates direct access to the different phases in the CMFT+DMRG method.
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Figure 3.5: The superfluid order parameters ψ(1), ψ(L/2) and the boson densities
ρ(1) and ρ(L/2) are plotted as a function length L for U = 5 and µ = 1.4.
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Figure 3.6: Density ρ from DMRG (blue line) and CMFT+DMRG (black line
with bullet) methods and ψ from the CMFT+DMRG method for two different
lengths.

We now address the convergence of the superfluid order parameter ψ and

density ρ to the system length L. The convergence of ψ and ρ depends on (i) the

value of the on-site interaction U compared to UC and (ii) the value of chemical

potential µ compared to µ−/+. Here UC is the critical on-site interaction for SF-

MI transition for ρ = 1 and µ−(U) and µ+(U) are the lower and upper edge of

the Mott lobe for a given U . If U >> UC and |µ − µ−/+(U)| >> 0, that is,

deep in the SF or MI phase, the SF order parameter and density convergence
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rapidly with L. However, in the opposite limit, as we approach the critical UC

or phase boundary, i.e., U ∼ UC and |µ − µ−/+(U)| ∼ 0, the convergence is very

slow. In these limits, the correlation length ξ is large, and the convergence of the

superfluid order parameter is guaranteed if and only if L >> ξ. To demonstrate

this behavior, we plot ψL and ρL obtained from CMFT+DMRG for U = 5 and

U = 4 in Figs. 3.7 and Fig 3.8, respectively. It may be noted that the best estimate

of UC ∼ 3.28 [35], [36]. From Fig. 3.7, we observe that, for U = 5, length L = 500

is sufficient for converging the SF order parameter. However, as we decrease the

on-site interaction, say U = 4, as in Fig. 3.8, the convergence is slow and requires

a larger length.
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 ψ

µ

Figure 3.7: (a) ρ and (b) ψ for different lengths for on-site interaction U = 5.

The CMFT+DMRG method, like the DMRG method, also allows us to calcu-
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Figure 3.8: (a) ρ and (b) ψ for different lengths L = 100, 200, · · · , 3700 for
on-site interaction U = 4.

late the phase coherence correlation function

Γ(|(j − j′)|) = 1

2
(⟨â†j âj′ +H.c.⟩). (3.3)

Here, the brackets ⟨· · · ⟩ denote the mean value of an observable in the system

|ψGS⟩. We plot Γ(r =| (j − j′) |) for the SF and the MI phases in Fig 3.9. We

consider on-site interaction U = 5, length L = 1000 and restrict 350 ≤ j, j′ ≤ 650

so that the j, j′ are far from the system edges to avoid the mean-field fluctuations

and convergence of the SF order parameter in this region. In Fig 3.9(a), for

µ = 0.5, Γ(r) → ψ2 as r → ∞, a powerlaw decay, analogous to the Berenzinski-

Kosterlitz-Thouless transition is observed in the superfluid phase. And for µ =

1.25, Γ(r) decay exponentially with r as in the Mott insulator phase.
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The Fourier transform of the phase coherence correlation function

n(k) =
1

L2

∑
j,j′

Γ(|j − j′|)e−ık|j−j′| (3.4)

gives the number of system particles with a wave vector k. n(0) is the condensate

fraction, giving the fraction of bosons occupying the superfluid ground state. We

plot n(0) and the superfluid density ρS = ψ2 as a function of µ across SF-MI phase

transition for U = 5 in Fig 3.9(b). In the Mott insulator phase, ρS is equal to

zero, and the n(0) is small but finite as a small number of bosons occupy k = 0

state even in the MI phase. As ρS becomes finite, more bosons occupy the k = 0

state, and the condensate fraction increases sharply in the superfluid phase.

Finally, we compare the phase diagram obtained using the CMFT+DMRG

and the DMRG [59] in Fig. 3.10. The phase diagram in the region U >> UC

agrees with each DMRG result. As U approaches UC , the Mott gap is tiny and

scales with logarithmic correction [36]. Hence, the CMFT+DMRG method could

not resolve the Mott phase from the superfluid order parameter for U < 3.8.

The SF-MI transition at fixed integer density belongs to Berezinskii–Kosterlitz–

Thouless transition (BKT transition) [58]. The order parameter shows a discon-

tinuity at the BKT transition. Applying the CMFT+DMRG method to observe

the discontinuity at the SF-MI transition is interesting. However, we were not

successful in observing this discontinuity due to (i) the lack of known accurate

relation between µ and U to fix density ρ = 1 and (ii) the need to keep a more

significant number of states in the DMRG procedure when U is closed to UC . We

could, however, observe such discontinuity across the superfluid to density wave

transition in the extended Bose-Hubbard model discussed in the next chapter.
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Figure 3.9: (a) Decay of phase coherence correlation function Γ(r) with respect
to r. Γ(r) → ψ2 as r → ∞. (b) Variation of the condensate fraction n(0) and the
superfluid density ρS across SF-MI transition.
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Figure 3.10: µ− U phase diagram of Bose Hubbard model close to density ρ = 1
using the DMRG (black line)) and CMFT+DMRG (red dot) method.

3.4 Staggered Superfluid Phase in Bose-Hubbard

model

Manipulating the bosons in the optical lattice with either additional interac-

tions or changing the sign of hopping amplitude may result in novel quantum

phases [60], [61]. It is natural to investigate whether such models can be treated
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in the CMFT+DMRG method to unravel new phases. The extended Bose Hub-

bard model, the Bose Hubbard model with nearest neighbour interaction, exhibits

phases like a density-wave insulator, supersolid, Haldane insulators, and phase-

separated superfluid beside superfluid and Mott insulators. We will be discussing

the results of the extended Bose Hubbard model in the next chapter. In this Sec-

tion, we focus our investigation on the Bose-Hubbard model with negative hopping

amplitude. The sign of the hopping amplitude in an optical lattice can be changed

by time-dependent shaking of the lattice [62], [63], or populating higher bands [64].

The Bose-Hubbard model with hopping amplitude t is given by

Ĥ = −t
∑
j

(
â†j âj+1 + â†j+1âj

)
+
U

2

∑
j

n̂j(n̂j − 1)− µ
∑
j

n̂j. (3.5)

Setting U = 0 and Fourier transforming Eq. (3.5),

Ĥ =
∑
k

(ϵk − µ)â†kâk (3.6)

where the single-particle dispersion energy with the wave number k is ϵk = −2t cos(k).

For t > 0, we get the standard Bose-Hubbard model. The dispersion energy ϵk

has a minima at k = 0 and corresponds to bosons condensate with k = 0 state.

We discussed the Bose-Hubbard model with positive hopping amplitude in Sec-

tion 2.1.3.

However, for t < 0, the minima of the ϵk is at k = ±π. The bosons condensate

at k = ±π state and is known as π superfluid (π-SF) phase. In the conventional

BH model (t > 0), as we have seen in section 2.1.3, ψ has translational symmetry,

and the effect of the phase is nullified. However, for the t < 0 case, as shown

below, π-SF is characterized by the staggering in the superfluid order parameter.

Setting t = −|t| in Eq. (3.5) we get

Ĥ = |t|
∑
j

(
â†j âj+1 + â†j+1âj

)
+
U

2

∑
j

n̂j(n̂j − 1)− µ
∑
j

n̂j. (3.7)
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Transforming â†j = (−1)j b̂†j, Eq. (3.7) maps into

Ĥ = −|t|
∑
j

(
b̂†j b̂j+1 + b̂†j+1b̂j

)
+
U

2

∑
j

n̂j(n̂j − 1)− µ
∑
j

n̂j. (3.8)

Here n̂j = â†j âj = b̂†j b̂j, Eq. (3.6) is same as Eq. (3.1) studied in the previous Section

and the superfluid phase is uniform ⟨b̂j⟩ across the lattice position. Therefore

the superfluid order parameter in Eq. (3.7) ⟨âj⟩ = (−1)j⟨b̂j⟩, alternate between

positive and negative values.

We deploy the CMFT+DMRG method to understand the π−SF phase in the

BH model (3.5) with t < 0. We set t = −1, U = 5 and calculate superfluid order

parameters ψj and density ρj for various chemical potential values. We plot, in

Fig. 3.11, the position dependent superfluid order parameter ψj for µ = 0.5 and

keeping L = 1001. Since the superfluid order parameters are staggered, working

with odd lengths is preferred, as discussed in Sec. 2.1.4.2. The superfluid order

parameter is converged to a value |ψ| = 0.3179 and finds ψj = (−1)j|ψ| demon-

strating the staggered nature of the superfluid order parameter; characteristics of

the π-SF phase. The density ρj, however, remains uniform across the lattice.

4 7 0 4 8 0 4 9 0 5 0 0 5 1 0 5 2 0 5 3 0
- 0 . 4
- 0 . 2
0 . 0
0 . 2
0 . 4

4 7 0 4 8 0 4 9 0 5 0 0 5 1 0 5 2 0 5 3 0
0 . 8 2

0 . 8 4

0 . 8 6

 

 

ψ
j

 j

 ρ j

 

Figure 3.11: The superfluid order parameter ψj (top panel) and density ρj (bottom
panel) are plotted as a function of position 470 < j < 530 for length L = 1001.
Here t = −1, U = 5, and µ = 0.5.
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We plot ψA = ψL−1
2

and ψB = ψL+1
2

, two central adjacent sites for a system

with L = 1001, for different values of chemical potential µ in Fig.3.12. We find,

as expected, ψA = −ψB for all the µ values and vanishes in the Mott insulator

phase.

We compare the Bose Hubbard model with hopping amplitude t > 0 and

t < 0. In the former case, we have a normal superfluid, while the latter is π-SF.

We define an order parameter ∆π−SF = 1
2
(ψL/2 − ψL/2±1) to distinguish the π-SF

from the normal SF. Since ψj = |ψ| is uniform for normal SF phase, ∆π−SF = 0

and ψj = (−1)j|ψ| in the π-SF, ∆π−SF = |ψ| remain finite. Comparing π-SF with

normal SF phase for the same on-site interaction U , we find superfluid density

and density remain the same in both cases. The only difference is the staggered

superfluid order parameter in the case of π-SF. These observations are plotted

in the Figs. 3.13 and 3.14. The phase diagram of the Bose-Hubbard model with

t = ±1 remains the same except for the nature of the superfluid phase. The former

has a homogeneous superfluid, while the latter superfluid is staggered.

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5
- 0 . 4

- 0 . 2

0 . 0

0 . 2

0 . 4

0 . 6

 

 

 

µ

 ψ A
 ψ B

t = - 1 . 0
U = 5 . 0

Figure 3.12: Superfluid order parameters ψA = ψL−1
2

and ψB = ψL+1
2

versus µ for
t = −1 and U = 5.0.
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Figure 3.13: The boson densities for t = 1 and t = −1 are plotted as function of
µ for U = 5.0.
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Figure 3.14: The superfluid density ρS for t = ±1 and ∆π−SF is plotted as function
of µ for U = 5.0. The finite ∆π−SF marks the π-SF phase.

3.5 Conclusions

We have developed the CMFT+DMRG method, integrating the key features

of the mean-field theory and the DMRG methods to understand quantum phases

in the one-dimensional Bose Hubbard models. The CMFT+DMRG method over-

comes many limitations of the mean-field theory and the DMRG technique. The
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small system size in the former and the direct calculation of superfluid order pa-

rameters in the latter are notable. We apply the CMFT+DMRG method to the

Bose-Hubbard model. The Bose-Hubbard model (t > 0) has two phases: su-

perfluid and Mott insulator. We identify these phases with the superfluid order

parameters and the condensate fraction. Our results agree with the earlier studies

done using the DMRG method.

We further extend our studies to t < 0 case where we observe the π-SF phase

and the staggering in the superfluid order parameter. This method can be ex-

tended to other models, such as the soft-core extended Bose-Hubbard model,

spin-1 Bose-Hubbard model, etc., to understand the exotic superfluid phases such

as supersolids, polar/Ferro superfluids, and pair superfluids. The DMRG and

the CMFT+DMRG methods work in complementary ways to understand the en-

tire phase diagram of the Bose-Hubbard models. The former method works in

the canonical ensemble and is most suitable for characterizing the gaped phases.

The CMFT+DMRG, however, works in the grand-canonical ensemble and is very

useful in understanding the gapless quantum phases.
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Extended Bose-Hubbard
Model

4.1 Introduction

For several decades, experiments with trapped ultra-cold quantum gases have

contributed to our understanding of the behavior of quantum matter. They have

proven to be excellent environments for studying strongly coupled quantum sys-

tems due to the remarkable flexibility in tuning the Hamiltonian. An example is

the realization of the Bose-Hubbard (BH) model in the weakly interacting Bose gas

where only s-wave scattering is relevant, and approximating the the inter-atomic

potential is to good accuracy with the isotropic contact potential. The strength

of the potential and the polarity depends on the s-wave scattering length, which

can be manipulated using the Feshbach resonances [18]–[20]. As discussed in the

previous chapter, the Bose-Hubbard model comprises the nearest neighbour hop-

ping with the hopping amplitude t and the on-site interaction with the strength

U , crucial in driving the quantum phase transitions in the ground state from a

coherent superfluid to a Mott insulator phase at integer densities. These phase

transitions can be controlled using laser frequencies and intensities and are widely

studied using theoretical techniques and verified experimentally. The remarkable

flexibility in manipulating systems has led to the quest to realize quantum systems

with richer interactions in strongly correlated quantum systems and to understand
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the plethora of exotic phases predicted in these systems.

The supersolid (SS) phase is an example of an exotic phase exhibiting crys-

talline order of solid and finite superfluidity. In this phase, two continuous symme-

tries, U(1) and translational symmetry, are broken simultaneously. After Penrose

and Onsager proposed the SS phase [65], the quest for realizing it theoretically

and experimentally began to attract lots of interest [66]. The SS phase was pre-

dicted in solid 4He [67], yet there is yet to be a consensus on its presence [68],

[69] due to heavy reliance on factors such as impurities and disorders. Kim and

Chan reported its presence in solid 4He [70], but several studies disagree with this

claim [71]. While the SS phase in 4He remains elusive and controversial, the recent

achievements in ultra-cold atoms in optical lattices have renewed the interest in

studying the SS phase in these systems.

The short-range Van der Waals interactions are essential in the standard BH

model. This model does not realize the SS phase due to the short-range interaction.

However, recent achievements in dipolar bosons with permanent or induced mag-

netic or electric dipoles have paved the way for realizing quantum gases with long-

range interaction and understanding the phenomena of supersolidity. Rydberg

atoms are also promising in engineering long-range interactions. A breakthrough

in the area is the experimental realization of Bose-Einstein condensation (BEC )

in 52Cr atoms [72]–[75]. More realizations follow this in lanthanides: dysprosium

Bose and Fermi gases [76], erbium[77], [78], and polar molecules with significant

electric dipole moments [79]. The anisotropy and finite dipole interactions do not

allow the replacement of inter-particle interaction by the isotropic contact poten-

tial. The dipole moment gives rise to the long-range interactions decaying as r−3

(r is the inter-particle distance) in addition to short-range interactions [40], [73],

[79]–[82].

V (r − r′) =
4πℏas
m

δ(r − r′) +
d2

4πϵ0

1− 3 cos2(θ)

|r − r′|3
(4.1)

Here, |r−r′| is the relative position of dipoles, and d and θ dipole moment and po-
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larization angle, respectively. The first term contributes to the on-site interactions

followed by the off-site interactions in Eq. (4.1).

4.2 Extended Bose-Hubbard Model

The long-range nature of the interaction is essential when the optical lattice is

loaded with dipolar ions or Rydberg atoms. The ultra-cold dipolar atom trapped

in optical lattices, as depicted by the extended Bose-Hubbard (EBH) model, is

Ĥ = −t
∑
j

(
â†j+1âj + â†j âj+1

)
+
U

2

∑
j

n̂j(n̂j − 1) + V
∑
j

n̂jn̂j+1 − µ
∑
j

n̂j

(4.2)

where â†j, âj and n̂j are, respectively, creation, annihilation, and number opera-

tor for site j and satisfy [âi, âj
†] = δij. t, µ, and U are the hopping amplitude,

chemical potential, and on-site interaction, respectively, as in the Bose-Hubbard

model (2.1). V is the strength of nearest-neighbour interactions and is taken to

be repulsive in this study. Due to long-range interaction, interesting phenomena

appear in this model: superfluidity, phase separation, supersolidity, and density

wave. The phase diagram of the extended Bose-Hubbard model described by the

earlier studies using the density matrix renormalization group (DMRG) [45], [54],

[83]–[85] and Quantum Monte-Carlo [86], [87] focuses primarily on the commensu-

rate densities. We use the density matrix renormalization group with mean-field

(CMFT+DMRG) and the DMRG method to extend these studies to incommen-

surate densities. We primarily focus on superfluid, phase-separated, supersolid,

and density wave phases.

We have discussed the CMFT+DMRG scheme for the EBH model in chap-

ter 2. In this method, the mean-field theory is used to decouple the clusters

and the DMRG to obtain the ground state energy and the wave function of the

cluster Hamiltonian. Since the CMFT+DMRG works in the grand canonical en-

semble, studying the model (4.2) for a wide range of parameter space is possible.
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The on-site interaction supports uniform densities on all sites; however, the near-

est neighbour interactions create imbalances in the density at neighbouring sites.

Nearest-neighbour interaction allows us to consider the lattice as a bipartite-lattice

consisting of sub-lattice A and B. The CMFT+DMRG procedure for the bipartite

lattice is described in Sec. 2.1.4.2.

The CMFT+DMRG method allows us to calculate the superfluid order pa-

rameters and densities. In addition, it also allows us to calculate the correlators

used to calculate condensate fraction n(k = 0) and structure factor S(k) defined

by

n(k) =
1

L2

∑
j,j′

⟨âj†âj′⟩eik(j−j′). (4.3)

and

S(k) =
1

L2

∑
j,j′

⟨n̂jn̂j′⟩eik(j−j′). (4.4)

The condensate fraction gives the fraction of bosons in condensate, and its value

increases in the superfluid phases. The structure factor S(k = π) is used to identify

the supersolid and density wave phases. In the SF and MI phases, the S(π) = 0

as the densities are uniform across the lattice. In the density wave (DW) and

supersolid (SS) phases, the densities at A and B sub-lattices are different, and

S(π) is finite.

The phases are characterized using the average density ρ = (ρA + ρB)/2, the

density wave order parameter ∆ = |ρA − ρB|, the average superfluid order param-

eter ψ = (ψA + ψB)/2, and δψ = |ψA − ψB|. Here ψA = ψ(L+1
2
), ψB = ψ(L−1

2
).

Similarly, ρA = ρ(L+1
2
), ρB = ρ(L−1

2
). Two centrally located sites which belong

to A(B) sub-lattices are L+1
2

(L−1
2

). In the SF and MI phases, the densities and

superfluid order parameters are uniform for A and B sites. Subsequently, we get

∆ = δψ = 0 and finite ψ in the SF phase. In the MI phase, ψ = 0 and an

integer ρ. The density wave has alternating densities with ψ = δψ = 0, finite ∆
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Phase ψ ρ δψ ∆

SF Finite Finite 0 0

MI 0 Integer 0 0

DW 0 Integer or half-integer 0 Finite
SS Finite Finite Finite Finite

Table 4.1: Order parameter values and density for SF, MI, DW, and SS phase

and commensurate ρ. The SS phase has crystalline order with SF nature; hence,

in the case of the SS phase, we get finite ρ, ∆, ψ, and δψ. We summarize the

behaviour of the order parameters and densities in different phases in Table 4.1.

In addition, two more phases are predicted in the extended Bose-Hubbard

model: solitonic phase [88], [89] and phase-separated phase [90]–[92]. The long

range crystalline order at the commensurate densities in the DW phase is destroyed

by the addition or removal of bosons in the ground state, resulting in modulation

in the ⟨ni⟩ to minimise the ground state energy [88], [89], [93]. The solitonic

phase has ρ, ∆, ψ, and δψ are finite but show oscillating behaviour. Also, the

structure factor peak deviated from k = π by a modulation vector km. The phase-

separated (PS) phase has the density wave, and the superfluid phases are separated

in the system. The compressibility κ = dρ
dµ

is infinite in this phase, reflected as a

discontinuous jump in the ρ-µ plot [90]–[92], [94].

We perform the CMFT+DMRG calculations on the extended Bose-Hubbard

model ( 4.2) by retaining up to MS = 75 eigenstates in the left/right block-reduced

density matrix. The weights of discarded states of the reduced density matrix are

10−8. We keep the maximum number of bosons per site nmax = 1 in the hard-core

limit (U → ∞) and nmax = 5 in the soft-core (finite U) case. The five bosons per

site give accurate results up to ρ < 4 in all the phases. We set t = 1. The length of

the lattice varies from 3 to 1001. Near the phase boundaries, however, to resolve

the phases, the size is increased to 5001. We study the extended Bose-Hubbard

model in two limits: hard-core and soft-core. We begin with the hard-core case

below.
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4.2.1 Hard-core case

In the hard-core limit (U = ∞), the maximum number of particles per site is

restricted to nmax = 1, reducing the basis for the site {|ni⟩} to |0⟩ and |1⟩. In this

limit, the EBH model maps into the quantum spin-1/2 model. Using the standard

Jordon Wigner transformation

âi = S−
i

â†i = S+
i

n̂i = Sz
i −

1

2
, (4.5)

where Sx
i , S

y
i , S

z
i are the spin operators at site i and S+

i (S−
i ) = Sx

i +iS
y
i (Sx

i −iS
y
i )

is the spin raising (lowering) operator. The states |0⟩ and |1⟩ map to spin states

| ↓⟩ and | ↑⟩ respectively, and the S+
i , S

−
i and Sz

i operators acts on these states as

follows.

S+
i | ↓⟩ = | ↑⟩ → â†i |0⟩ = |1⟩

S+
i | ↑⟩ = 0 → â†i |1⟩ = 0 (4.6)

S−
i | ↑⟩ = | ↓⟩ → âi|1⟩ = |0⟩

S−
i | ↓⟩ = 0 → âi|0⟩ = 0 (4.7)

Sz
i | ↓⟩ = −1

2
| ↓⟩ → (n̂i −

1

2
)|0⟩ = −1

2
|0⟩

Sz
i | ↑⟩ =

1

2
| ↓⟩ → (n̂i −

1

2
|1⟩ = 1

2
|1⟩. (4.8)
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The mapped spin Hamiltonian is given by

Ĥ =− t
∑
⟨i,j⟩

(S+
i S

−
j + S−

i S
+
j ) + V

∑
⟨i,j⟩

(Sz
i +

1

2
)(Sz

j +
1

2
)− µ

∑
i

(Sz
i +

1

2
)

=− t
∑
⟨i,j⟩

(S+
i S

−
j + S−

i S
+
j ) + V

∑
⟨i,j⟩

(Sz
i S

z
j + Sz

i +
1

4
)− µ

∑
i

(Sz
i +

1

2
)

=− t
∑
⟨i,j⟩

(S+
i S

−
j + S−

i S
+
j ) + V

∑
⟨i,j⟩

Sz
i S

z
j − (µ− V z

2
)
∑
i

Sz
i +

NV z − 2µ

4
.

(4.9)

The last term in the Hamiltonian is constant and will only shift the energy by
NV z−2µ

4
. Without any loss of generality, we write Ĥ as

Ĥ =− t
∑
⟨i,j⟩

(S+
i S

−
j + S−

i S
+
j ) + V

∑
⟨i,j⟩

Sz
i S

z
j − (µ− V z

2
)
∑
i

Sz
i (4.10)

Substituting S±
i = Sx

i ± iSy
i , we get

Ĥ =− 2t
∑
⟨i,j⟩

(Sx
i S

x
j + Sy

i S
y
j ) + V

∑
⟨i,j⟩

Sz
i S

z
j −Hz

∑
i

Sz
i (4.11)

where Hz = µ − V z
2

. For µ = zV
2

, spin Hamiltonian maps into a studied XXZ

model, which shows XY ordering to Ising order at V = 2t. In the language of

bosons, XY ordering is the superfluid order, and Ising order stands for the density

wave. We now reproduce these known results using the CMFT+DMRG to validate

the method before discussing the soft-core cases.

First, we focus on ρ = 1
2

to study the DW to SF transition. This is achieved

by taking µ = V in the model(4.2), i.e., Hz = 0 in model(4.11). Here, we ex-

pect Berezinskii–Kosterlitz–Thouless (BKT) transition from the superfluid phase

(equivalent to XY order) to the density wave phase (Ising order) at V = 2 [58].

Employing the CMFT+DMRG method, we calculate, self-consistently, the order

parameters ρ,∆, ψ, and δψ to characterize different phases. In Fig. 4.1, we plot

ψ, ∆, condensate fraction n(0), and S(π) as a function of V . The superfluid order

parameter ψA = ψB = ψ is finite in the SF phase and vanishes in the density
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wave phase with a universal discontinuity at the transition V = 2. Similarly, the

density wave order parameter is finite in the density wave phase and vanishes in

the SF phase with a discontinuity at V = 2. The condensate fraction n(0) and

S(π) also show similar discontinuity at V = 2. These results are consistent with

the BKT transition between the SF and DW phases.
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Figure 4.1: (a) superfluid order parameter, (b) density wave order parameter, (c)
condensate fraction, and (d) S(π) across SF to DW phases.

For incommensurate densities, i.e., ρ ̸= 1
2

and for commensurate density ρ = 1
2

with V < 2t, the system is in the solitonic (SL) or in the SF phases. In Fig. 4.2,

we plot ρ, ∆, ψ, and δψ as a function of chemical potential µ for two values of

V . The system is in the SF phase for V = 1 for all densities, Figs. 4.2(a) and (d),

where we find finite ψ, but δψ = 0 and ∆ = 0. For V = 3, however, we find two

phases: the solitonic phase when ρ ̸= 1
2

and density wave for ρ = 1
2
. Fluctuation

in the ψ, described below, is a consequence of the solitonic phase.

To characterize the solitonic phase, we now plot, for a system size L = 1001,

ψj and ρj versus j for 450 < j < 550 for V = 1 in 4.3(upper panel) and V = 3

in 4.3(lower panel). We choose the range of lattice position j far away from the

edges to avoid the fluctuation effect due to mean-field decoupling. We consider

three values of the chemical potential µ = 1, 2, and 3 such that ρ is close to 1
2
.
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Figure 4.2: ψ, δψ, ρ and ∆ plotted as a function of µ for V = 1.0 (left panel) and
V = 3.0 (right panel)
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Figure 4.3: Plots of ψi = ⟨ai⟩ and ρj = ⟨ni⟩ as a function of lattice position i for
µ = 1.0, 2.0, 3.0, U = ∞ and V = 1.0(top panel) and V = 3.0(bottom panel).
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Figure 4.4: ρA = ρL+1
2

and ρB = ρL−1
2

plotted as function of lattice position µ for
V = 3.0.

For V = 1, we find, for all three values of µ, uniform ψj and ρj, signatures of

superfluid phase. However, for V = 3, we see different behavior of ρj for µ = 1, 2

and 3. For µ = 1, ψj shows small oscillation, and ρj is more or less uniform with

a value ρ ≈ 0.4. However, for µ = 2, ψj is small and again shows small oscillation,

but density ρj shows a clear oscillation, a feature of the solitonic phase [88], [89].

For µ = 3, the system is in the density wave phase with ψj = 0 and ρj staggered

between 0.75 and 0.25 with average ρ = 1
2
. The solitonic phase has oscillating ρj

and finite ψj.

In Fig. 4.3 we plot ρA = ρL+1
2

and ρB = ρL−1
2

, two adjacent sites belong to A

and B sub-lattices, to demonstrate that the solitonic phase sandwich the ρ = 1
2

density wave phase. The plateau in the ρ − µ plot, vanishing ψ and δψ, finite

density wave order parameter ∆, confirm the density wave phase. The variation

of ρA and ρB on either side of the density wave is due to the solitonic phase where

the density is expected to oscillate as shown in the Fig. 4.3(c). We thus confirm

that the phase diagram of the extended Bose-Hubbard model in the hard-core

limit consists of superfluid, solitonic, and density wave phases, which agrees with

the earlier results [88], [89].
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4.2.2 Soft-core case

Now, we move our attention to the soft-core limit. Earlier studies primar-

ily focused on the phase diagram around density ρ = 1 and for interactions

U ≤ V . These studies found three insulator phases for density ρ = 1 when

interactions dominate the hopping matrix, i.e., (U, V ) > t. Haldane insulator

phase sandwiched between the Mott insulator V < U/2 and the density wave

phases (V > U/2) [45], [54], [83]–[85]. The superfluid and supersolid phases dom-

inate the weak interaction region of the phase diagram. Away from the integer

density, the phase diagram of the model (4.2) consists of superfluid, supersolid,

and solitonic phases [95], [96]. In addition to these phases, a recent study predicts

a phase-separated phase when the nearest neighbour interaction dominates the

on-site interaction [90], [92]. The superfluid and density wave phases are sepa-

rated in this phase. In this thesis, we focus on the region of the phase diagram

where the nearest neighbour interaction V dominates over the on-site interaction

U and study the phase-separated phase in detail. We consider two values of near-

est neighbour interactions V = 2 and 4 and check the phase diagram varying

on-site interaction U and ρ.
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Figure 4.5: (a) ψ, (b) δψ, (c) ∆, and (d) ρ plotted as a function of µ for a fixed
V = 4.0 and U = 0.5.
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First, we discussed the case V = 4. In Figs. 4.5, we plot order parameters

ψ = (ψA + ψB)/2, ρ = (ρA + ρB)/2, δψ = |ψA − ψB| and ∆ = |ρA − ρB| as a

function of µ for U = 0.5. Three distinct regions can be seen in the Fig. 4.5

namely; (i) the SF phase; ψ > 0, ∆ = 0 for µ ≤ 1.1162, (ii) the supersolid

phase; ψ > 0, ∆ > 0 for µ ≥ 1.1163, and (iii) the phase-separated phase; κ =

dρ
dµ

= ∞ for 0.800 < ρ < 1.277. The SF-PS phase transition happens at critical

density ρ
(SF−PS)
C = 0.800, and the PS-SS transition at ρ(PS−SS)

c = 1.277. These

critical densities are in agreement with earlier reported values [90], [92]. The

CMFT-DMRG method works in the grand-canonical ensemble; hence, the density

is not fixed. The density jumps from 0.800 to 1.277 when the chemical potential

increases from µ = 0.1163 to 0.1164. This sharp increase in the density reflects

that the compressibility diverges at µC = 0.11635. Divergence of compressibility

reflects the phase-separation of two phases: the SF and the SS. The transition

from superfluid to supersolid is through a phase-separated phase. In Fig. 4.6 we

plot ψj and ρj for two values of µ on either side of µC . For µ = 1.10, ψj and

ρj are uniform signaling superfluid phases. However, for µ = 1.12, both ψj and

ρj stagger with finite average ψ and ∆. The supersolid phase is characterized

by finite superfluid and density wave order parameters. So, as we increase the

chemical potential, the system goes from superfluid to supersolid discontinuously.

The transition from superfluid to supersolid is through a phase-separated phase.

Phase-separated phase can be observed only at fixed density because dρ
dµ

= ∞.

In the case of V = 4.0, U = 0.5, from the Fig 4.5, the phase-separated phase is

possible for ρSF−PS
C < ρ < ρPS−SS

C . To understand the phase-separated phase,

we perform a DMRG calculation keeping fixed density ρSF−PS
C < ρ < ρPS−SS

C . In

Fig 4.7, we plot the variation of ρj with lattice position j for V = 4.0, U = 0.5 and

the average density ρ = 1. The DMRG calculation is performed for a system size

L = 301. Since the density is fixed, ψj = 0 in the DMRG calculation, we plot only

ρj. The PS phase is characterized by two distinct regions: the supersolid phase at

the edge regions and the superfluid phase at the center region, as shown in Fig 4.7.
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Figure 4.6: Variation of ψj and ρj with lattice position j for (a) µ = 1.10 and (b)
µ = 1.12 for V = 4.0 and U = 0.5.

The superfluid and supersolid region changes with density. We plot ρj versus j

for five different densities in Fig. 4.8. These plots are obtained from the DMRG

calculation keeping L = 301 and taking several bosons N = 185, 270, 301, 330,

and 399. For ρ = 0.615 < ρ
(SF−PS)
C , the whole lattice is in the SF phase as shown

in the Fig. 4.8 the lower panel. As we increase the density, the SS phase appears

at the edges and is phase-separated from the SF phase. With a further increase

in density, the SS phase grows at the expense of the SF phase, and eventually,

the whole lattice is in the SS phase for ρ > ρ
(PS−SS)
C . In Fig. 4.9(a), we plot the

length of the superfluid region as a function of ρ for U = 0.5 and V = 4.0. The

superfluid region decreases monotonically as the density increases from ρSF−PS
C to

ρPS−SS
C . Similar behaviour is also seen in the case of other U values. For example,

in Fig. 4.9(b), we plot the length of the superfluid region as a function of ρ for

U = 1.2 and V = 4.0.

Increasing the on-site interaction reduces the phase-separated region. In ad-

dition, we also get the transition from SF to DW through the PS phase. For

example, in Fig. 4.10 we plot order parameters ψ, ρ, δψ and ∆ as a function of

µ for U = 1.3. Four distinct regions can be seen in the Fig. 4.10 namely; (i) the

SF phase; ψ > 0, ∆ = 0 for µ ≤ 2.1, (ii) the density wave phase; ψ = 0, ρ = 1,
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Figure 4.7: Variation of ρj with lattice position j from the DMRG calculation
fixing density ρ = 1 for V = 4.0, U = 0.5. The lower panel is the expanded
supersolid region.
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Figure 4.8: Variation of ρj versus j for five different densities from DMRG cal-
culation with L = 301. Number of bosons N = 185, 270, 301, 330, and 399,
corresponding to the densities ρ = N/L = 0.615, 0.897, 1.0, 1.096, and 1.326.

and ∆ > 0 for 2.1 < µ < 2.27 (iii) the phase-separated phase; κ = dρ
dµ

= ∞

for 0.84 < ρ < 1.0, and (iv) the supersolid phase; ψ > 0, ∆ > 0 for µ ≥ 2.27.
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Figure 4.9: Length of the superfluid region as a function of ρ for (a) U = 0.5 and
(b) U = 1.2 keeping V = 4.0.
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Figure 4.10: (a) ψ, (b) δψ, (c) ∆, and (d) ρ plotted as a function of µ for a fixed
V = 4.0 and U = 1.3.

The SF-PS phase transition happens at critical density ρ(SF−PS)
C = 0.84, and the

PS-DW transition at ρ(PS−SS)
c = 1.0.

The PS phase vanishes on further increase in the on-site interaction U . For

higher values of U , the transition is from SF to SS, DW, and SS. We plot in

Fig 4.11, order parameters ψ, ρ, δψ and ∆ as a function of µ for U = 3.0. Three

distinct regions can be seen in the Fig. 4.11 namely; (i) the SF phase; ψ > 0,

∆ = 0 for µ ≤ 3.94, (ii) supersolid phase; ψ > 0 and ∆ > 0 for 3.94 ≤ µ ≤ 3.95,

and (iii) the density wave phase; ψ = 0 and ∆ > 0 and ρ = 1 for µ > 0.95.
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Figure 4.11: (a) ψ, (b) δψ, (c) ∆, and (d) ρ plotted as a function of µ for a fixed
V = 4.0 and U = 3.0.
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Figure 4.12: Phase diagram in ρ− U for V = 4.0

Finally, we plot the phase diagram in the ρ − U plane in Fig. 4.12. The

phase diagram consists of superfluid, phase-separated, supersolid, and density

wave phases. For lower values of U , the transition is between SF and PS and then

to SS. For higher values of U , density wave occur, and the transitions are from

SF to SS, DW, and SS. However, the supersolid and phase-separated phases with

density ρ < 1 are very narrow. We don’t get any transition from density wave to

phase-separated phase for density ρ > 1 and in the region, the supersolid phase is
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very stable.
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Figure 4.13: (a) ψ, (b) δψ, (c) ∆, and (d) ρ plotted as a function of µ for a fixed
V = 2.0 and U = 0.1.
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Figure 4.14: (a) ψ, (b) δψ, (c) ∆, and (d) ρ plotted as a function of µ for a fixed
V = 2.0 and U = 0.5.

Now consider the case V = 2.0. In Figs. 4.13, 4.14 and 4.15 we plot order

parameters ψ, ρ, δψ and ∆ as a function of µ, respectively for U = 0.1, 0.5,

and 1.0. For U = 0.1 and 0.5, we get superfluid, phase-separated, and supersolid

phases. However, the region of the phase-separated phase is reduced in the U = 0.5

case compared to U = 0.1. For U = 1.0, we do not see the phase-separated phase,

and the transition is directly from superfluid to supersolid. The phase diagram in
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Figure 4.15: (a) ψ, (b) δψ, (c) ∆, and (d) ρ plotted as a function of µ for a fixed
V = 2.0 and U = 1.0.

Figure 4.16: Phase diagram in ρ− U for V = 2.0
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the ρ = U plane for V = 2.0 is plotted in Fig 4.16. Unlike the V = 4.0 case, we

don’t have a density wave for V = 2.0, and the phase diagram consists of SF, PS,

and SS.

For V = 2 and 4, we do not observe the solitonic (SL) phase. However, as

we shift to a higher value of V , we get the SL SF, PS, DW, and SS phases. We

study the phase diagram for V = 6 for a broader range of densities and on-site

interaction. We obtain the phase diagram after a detailed analysis of the order

parameters ψ, ρ, δψ, and ∆ as a function of µ for on-site interaction ranging from

0 to 15 and plot in Fig. 4.17. The phase diagram is very rich and consists of

SL, SF, SS, PS, DW, and MI. We see several phase transitions depending on the

density and on-site interaction. For small values of U , we see a phase transition

from SL to SF as we increase the density. Upon further increase in density, the

SF phase is separated from supersolid by the phase-separated phase. For slightly

larger U , the transition from PS to SS via DW with density ρ = 1. We do not

get the PS phase for U > 3. For U = 6 − 10 with the increase in density, we get

phase transition from SL to DW (with ρ = 1/2), DW to SS, SS to SF, SF to SS,

SS to DW (ρ = 1), and finally DW to SS. We do not observe the SS phase with

commensurate densities ρ = 1/2, 1. We neither observe a transition from the MI

to SS varying µ or ρ. The transition from MI is always to SF. However, we observe

DW to MI phase transition for ρ = 1 as predicted earlier [83].

We investigate the solitonic phase in depth using the structure factor. The

solitonic phase has density modulation as shown in Fig. 4.18 where we plot ρj

versus j for a set of µ values. The wavelength of the density modulation increases

as we move away from the density wave. We study this behaviour using structure-

function S(k) defined by Eq. (4.4). The structure-function peaks at k = π in the

density wave phase. However, due to the modulation in the SL phase, the peak

position of the structure-function shifts to lower values of k. We calculate the

structure-function for different values of µ in the SL phase for U = 8, V = 6 and

plot in Fig. 4.19. As we decrease the density (by changing µ) from ρ = 1/2, the
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modulations increase, and the peak position in the S(k) shifts towards lower k.

Defining the peak position in the S(k) as the modulation vector km, we plot it as

a function of µ. We also plot 2πρ as a function of µ and observe that km ≈ 2πρ.
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Figure 4.17: Phase diagram in ρ− U for V = 6.
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Figure 4.18: Plot of ρj versus j for a set of µ values for V = 6.0 and U = 8.0.
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Figure 4.20: The Modulation vector km and 2πρ plotted as function of µ.

4.3 Extended Bose-Hubbard Model with three body

interactions

So far, we have considered the on-site and nearest neighbour interactions to

understand the quantum phases in bosonic systems. These interactions are effec-

tively two-body interactions. We neglect most higher-order interactions, assuming

their strength is negligible compared to the effective two-body interactions. How-

ever, many exotic phases, such as topological and spin liquid, are associated with

a Hamiltonian with three or higher-order interaction terms [97]. When the inter-

actions are strong, the on-site interaction term deviates from the two-body. It

depends on the occupational densities at the site, indicating the effect of higher

Wannier bands. Recently, the dependence on density in the on-site interaction

term is shown experimentally in Cs, Rb, and K, and the possibility to engineer

Hamiltonians with multi-body interaction in optical systems [98]–[101].

Recent experiments have demonstrated the possibility of introducing an effec-

tive multi-body interaction in addition to the two-body interaction between the

atoms in the optical lattices with sudden quench of the lattice depth [41], [102]. In
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the absence of three-body interaction, even minute attractive on-site interaction

leads to the collapse of the bosons on the single site. The effect of the three-body

interaction in the BH model is that repulsive three-body interaction stabilizes the

system against the collapse by enhancing the kinetic energy term. For repulsive

U > 0, the BH model is in the phase coherent SF or in the MI phase when the

on-site interactions are strong. The attractive three-body interaction in this case

is shown to affect the MI phase with ρ > 1 [103], [104]. The ρ = 1 MI lobe is

insensitive to the three-body interaction, as the hopping amplitude has to com-

pete with only the repulsive two-body on-site interaction. On the contrary, the

MI ρ = 2 lobe shrinks as attractive three-body interaction weakens the effective

on-site interaction.

A hard-core three-body interaction model is realized when an optical lattice

system has strong three-body losses [105]. Recent studies in such a model have

also predicted a strange pairing of bosons, characterized by the long-range off-

diagonal ordering in pair of bosons sandwiched between the MI ρ = 1 and ρ = 3

lobe. The pairing of bosons leads to a pair superfluid phase (PSF) [103], [106],

[107] which leads to the shrinking of the Mott insulator lobe with density ρ = 2.

The three-body interaction leads to atomic superfluid (ASF), PSF phase and MI

phases in the BH model. The off-site interaction in BH model is seen to promote

different densities at the neighbouring sites forming the DW phase, SS phase,

phase separation, and the solitonic phases. We are interested in the new emergent

phases due to the interplay of the multi-body on-site and off-site interactions and

how they affect the stability of the existing phases.

In this section, we investigate the effect of tunable hard-core three-body inter-

action on the EBH model, mainly addressing its impact on the phase-separated

and supersolid phases. The Hamiltonian we consider for this study is given by
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H =− t
∑
⟨ij⟩

(âiâ
†
j + h.c) +

U

2

∑
i

n̂i(n̂i − 1) + V
∑
ij

n̂in̂j

+W
∑
i

δn̂i,3 − µ
∑
i

n̂i. (4.12)

Here, W < 0 is the strength of the three-body interaction. The other terms have

the same meaning as in the model (4.2). The three-body interaction is engineered

to be effective only when three particles are per site.

We study the Hamiltonian (4.12) using the CMFT+DMRG method discussed

in the Chapter 2. The cluster Hamiltonian of size L is constructed using the mean-

field approximation by decoupling the neighbouring clusters using âi = ⟨ai⟩+ δâi

and n̂i = ⟨ni⟩+ δn̂i and is given by

ĤC =− t
L−1∑
j=1

(
â†j+1âj + â†j âj+1

)
+
U

2

L∑
j=1

n̂j(n̂j − 1) + V
L−1∑
j=1

n̂jn̂j+1

−
L∑

j=1

µn̂j +
L∑

j=1

Wδn̂j ,3

− t
(
(â†1 + â1)ψB − ψAψB

)
− t

(
(â†L + âL)ψB − ψAψB

)
+ V (n̂1 + n̂L)ρB − V

2
ρAρB. (4.13)

We carry out the CMFT+DMRG method calculations with the following pa-

rameters. The energies are scaled with t = 1 and are dimensionless. The nmax = 5,

sufficient for average ρ < 3 and keeping MS = 75 states in the reduced density

matrix. The weights of the discarded states are of the order 10−8.

For small V and in the absence of hard-core three-body interaction, the phase

transition, as we studied in the previous section in Fig. 4.16, is from the SF to

SS through the PS phase for U << V and gradually changing to a continuous

transition from SF to SS with increasing U . To understand the effect of hard-

core three-body interaction W on the phase-separated and supersolid phases, we

consider two cases: V = 2, U = 0.8, and V = 4, U = 0.5. We plot ψ, ρ, and ∆ for

80



Chapter 4: Extended Bose Hubbard Model

the former case in Fig. 4.21. For W = −0.1, we continue to have the transition

from the SF to SS through the PS phase with no change in the critical values of

the phase transition. And also see no density wave with ρ = 3
2
. However, as we

increase the strength of |W |, we observe (i) the appearance of the density wave

with ρ = 3
2

and (ii) the enhancement of the PS phase. The density wave with

ρ = 3
2

has a staggering of the density ρj between 3 and 0. U being small, three

body attractive interaction W enhances the effective nearest neighbour interaction

V yielding the density wave phases. Further increase in the W leads to a wider

density wave region. However, the transition continues from the SF to SS through

the PS phase.

In the latter case, i.e., V = 4, U = 0.5, from the Fig. 4.22, the density wave

phase appears even for small W with the supersolid phase existing on either side

of the density wave. However, as we increase |W |, the PS phase enhances, as

we saw in the earlier case, at the expense of the supersolid phase for ρ < 3
2
,

and there exists direct transition from the PS to DW. The hard-core three-body

interaction enhances the effective nearest-neighbour interaction in the system, and

as a consequence, it enhances the phase-separated and density wave phases.

4.4 Conclusion

We have employed the CMFT+DMRG scheme to understand the effect of long-

range and many-body interaction in optical lattice systems. We have focused our

studies on the regions where the long-range and many-body interactions dominate

the short-range on-site interaction. We obtain the order parameters ψ, δψ, ρ, ∆

to characterize the phases. These order parameters characterize the superfluid,

phase-separated, supersolid, density wave, and Mott insulator phases. The PS

phase is characterized by infinite compressibility κ = dρ
dµ

, and the SL phase is

characterized by the modulation in ni averages and shifted peak in the structure

factor. The phase diagram of the EBH model in the hard-core limit consists of SF,

DW, and SL phases. At commensurate density, ρ = 1/2, the BKT type transition
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from SF to DW phase is observed at V = 2. In the soft-core case of the EBH

model, for low V , we see the gapless SF, SS, and PS phases. As V increases, the

DW and MI phases start appearing. The phase-separated phase is seen for all

values of V that we have considered provided U << V . The density range of the

PS phase shrinks with an increase in the on-site interaction U . The SF and SS

phases coexist in the PS phase but are phase-separated. The SF region in the

phase-separated region shrinks monotonically with density. As a consequence, the

SS phase expands with ρ. For ρ < 0.5, the SL phase is observed crossing over

to SF for lower U and DW for higher on-site interaction. In the SL phase, the

modulation in the density ρj causes the S(k) peak to shift by a modulation wave

vector km which depends linearly on ρ, i.e., km ≈ 2πρ. The phase diagram of the

EBH model in the ρ − U plane is obtained, and the critical values of the SF-PS,

PS-SS, SF-SS, SL-DW, SF-MI, SL-DW, and DW-MI are estimated for V = 2, 4, 6

in the soft-core case.

The effect of three-body interaction is observed using the hard-core three-body

interaction. The W in the EBH model encourages the formation of the density

wave phase and enhances the PS phase. The transition for weak |W | is from

superfluid to supersolid and for strong |W | from a superfluid to density wave

through the phase-separation phase. The phase separation is shifted to a lower

chemical potential µ with increasing strength of |W |. The density range of phase

separation grows at the expense of SF and SS phases with the increasing |W |, and

for strong |W |, the system collapses into the density wave phase.
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5.1 Summary

Recent breakthroughs in cooling and trapping the quantum gases in optical

lattice systems have provided ideal testing grounds for studying the phases and

phase transitions in quantum many-body systems. These systems are free from

complexities such as disorders and impurities, and many-body interactions are

highly controllable and more accessible to manipulate. These model Hamiltonians

are not precisely solvable, and several analytical and numerical approximations are

employed to study them. In this thesis, we have developed approximate techniques

named cluster mean-field theory plus density matrix renormalization group theory

(CMFT+DMRG) to study the Bose-Hubbard systems.

In chapter 2 of this thesis, we discuss the mean-field theory (MFT) and the

density matrix renormalization group theory (DMRG) method. The MFT method

gives a simple and elegant approach to understanding the phases and phase tran-

sitions in the BH models. It accurately predicts the phases in the BH model as

the inter-particle interactions are short-ranged. However, it does not provide an

accurate qualitative measurement of the phase boundaries. Increasing the cluster

size improves the mean-field results at the increased computational cost. Also, in

the case of long-range interactions, the mean-field method may not provide com-

pelling results, and we need to reinvent new techniques to study these systems.
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The DMRG method is another successful procedure for studying the ground state

phases in the BH models at large. However, it cannot resolve the phase boundaries

directly in the gapless phases.

This thesis combines these two successful methods to overcome their limita-

tions. In the CMFT+DMRG method, mean-field decoupling eliminates the edge

effect in the DMRG method by including the quantum fluctuations at the edges.,

while giving us direct access to the gapless phases and the ability to study ground

state properties of large systems using moderate computational power. Using the

CMFT+DMRG method, we divide the system into clusters of length L and apply

mean-field approximations, decoupling the cluster from the neighbouring clusters.

The Hamiltonian of the cluster is then used in the DMRG scheme to consistently

calculate the system’s ground state properties in a grand canonical ensemble. The

system size increases with each iteration, and the ground state is minimized for

every iteration using superfluid order parameters and density self consistently.

Next, we demonstrate the CMFT+DMRG method using the BH model. The

CMFT+DMRG method characterizes the phases using the SF order parameter ψi

and density ρi calculated on the self-consistent ground state. These parameters

converge with increasing system size and show higher ψi and ρi towards the edges.

The convergence rate of ρ is faster than ψ. As the quantum fluctuations intro-

duced by MF decoupling dampen off towards the center, the ψi and ρi are uniform

around the center. Due to this reason, the parameters at the center ψ(L/2) and

ρ(L/2) are used for the minimization. We obtain the signature of the superfluid

(SF), ψ ̸= 0, and Mott insulator, ψ = 0 phase predicted in the BH model. In

the deep SF and MI phase, ψi and ρi converge with fewer iterations than close

to the phase transition and infinite iterations at the SF to MI transition critical

point. This effect is due to the increase in the correlation length as we approach

the quantum critical point, limiting us in its resolution. In the end, we compare

the CMFT+DMRG results with the DMRG. The DMRG works in the canonical

ensemble, the chemical potential µ fixed in the CMFT+DMRG calculation; how-
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ever, in the DMRG, µ is obtained from the particle and hole excitation energies.

The phases in DMRG are characterized using the gap in the energy spectrum, the

ρ, and compressibility κ. The MI phase is incompressible κ = 0, and in the SF

phase, κ ̸= 0 and densities are incommensurate. The CMFT+DMRG and DMRG

phase diagrams are in good agreement. In addition, we calculate the correlation

functions and condensate fraction in the SF and MI phases, and these quantities

agree with the known results.

After establishing the CMFT+DMRG method for the BH model, we apply it

to the extended Bose-Hubbard (EBH) model. The systems with long-range and

many-body interactions in the Hamiltonian predict many exotic phases. The EBH

model is the simplest model, with finite nearest-neighbour interactions. However,

it has a rich phase diagram with superfluid phase, Mott insulator, supersolid,

Haldane insulator, density wave, and solitonic wave phase. The nearest-neighbour

interaction in the EBH model allows different boson densities at the neighbouring

sites. Due to this effect, the entire lattice is divided into A − B sub-lattices.

The cluster Hamiltonian for the EBH model is obtained by performing the mean-

field decoupling on hopping and nearest neighbour interaction terms. The self-

consistent calculations are performed during each CMFT+DMRG iteration to

compute superfluid density and density of bosons corresponding to A − B sub-

lattices and identify different phases using these quantities. The model maps into

the quantum spin 1/2 model in the hard-core limit. For density ρ = 1/2, the EBH

model shows a BKT transition at V = 2t from the superfluid (X-Y order) to the

Density wave (Ising) order with discontinuity in the superfluid density, density

wave order parameter, and condensate fraction, which is in good agreement with

the known results. The solitonic (SL) phase is also observed, surrounding the

DW ρ = 1/2 phase for fixed V , the phase characterized by modulations in ni

average. In the soft-core case, the effect of V becomes prominent. In the soft-

core limit, we focus on the region where the nearest neighbour interaction is more

significant than the on-site interaction and obtain the phase diagram. The phase
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diagram in this region is dominated by gapless superfluid, solitonic superfluid,

supersolid, and phase separate (PS) phases. We observe the coexistence of SF

and SS phases in the gapless phases from the ni averages. The density range

in the PS phase is obtained for different V , and we observe that the PS phase

diminishes gradually with increasing U . We observe the gapless SL phase for

the densities below ρ = 1/2 transitioning into SF for low U and DW for higher

U values. The modulation wave vector km is obtained using the correlations

from the structure factor, identified from the shifted peak position from π, and

it obeys the relation km = 2πρ. As densities increase, the SS and SF phases

dominate the phase diagram for the incommensurate densities. The DW phase

is energetically preferred when V dominates for commensurate densities, which

shifts the Mott insulator for higher U and integer densities. Finally, we apply

CMFT+DMRG to attractive three-body hard-core on-site potential in the EBH

model to understand the effect of many-body interactions on the phases in the EBH

model. The attractive three-body interaction in the EBH model with repulsive U

and V enhances the PS phase at the cost of the SS phase. Direct transition from

the PS phase to the DW phase is favoured for higher values of W .

The CMFT+DMRG method accurately captures all the gapless phases in

the model we studied, like superfluid, supersolid, solitonic, and phase-separated

phases. It also captures the density wave and the Mott insulator phases. However,

the CMFT+DMRG model has few limitations. It fails to calculate accurately the

critical values of the SF to MI transition at integer density. The correlation length

diverges as we approach the critical point in the phase diagram. Convergence

of the order parameter fails due to diverging correlation length. The critical pa-

rameters are accurately obtained within the DMRG method employing finite-size

scaling. Such an approach is not feasible in the CMFT+DMRG method. The

CMFT+DMRG method also failed to capture the Haldane phase in the EBH

model at density ρ = 1 [84], [85]. The Haldane insulator phase is characterized

by string order parameters that can’t be calculated within the CMFT+DMRG
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method. The eigenstate of the density matrix is not diagonal in the number op-

erator sector in the CMFT+DMRG method, limiting the calculation of the string

order parameter.

5.2 Outlook

Interestingly, by shaking, rotating the optical lattices, or inducing an asymme-

try in the tunneling between the sites, one can introduce more complex terms in

the model, like the effective artificial magnetic field, extended interaction between

the atoms, spin degrees of freedom, and multi-body interactions. Additional in-

teractions in the BH model lead to many exotic gapless phases. For example, the

extended Bose-Hubbard model predicts gapless phases, like supersolid, solitonic

phases and phase-separated, demonstrated using the CMFT+DMRG method.

The spin-1 Bose-Hubbard model predicts polar and ferro superfluids and pair

superfluids in the Bose-Hubbard model [108] with three-body interaction [41]. In

addition, chiral superfluids π-superfluid phases are indicated in models with arti-

ficial gauge fields [60], [61], [63], [109]–[111]. The CMFT+DMRG method can be

extended to these different model Hamiltonians to study the ground state phases

and phase transitions.
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Publications and Conferences

6.1 List of Publications

• P. P. Gaude, A. Das and R. V. Pai, "Cluster mean field plus density matrix
renormalization theory for the Bose Hubbard models",J. Phys. A: Math.
Theor., vol. 55, p. 265004, 2022

• P. P. Gaude, A. Das and R. V. Pai, "Superfluid, Phase-separation, Supersolid
and Density Wave Phases in Extended Bose-Hubbard Model",AIP confer-
ence Proceedings, 2023 (accepted)

• B. K. Alavani, P. P. Gaude and R. V. Pai, "Random phase approximation
and cluster mean field theory studies of hardcore Bose-Hubbard model",AIP
conference Proceedings, vol. 1942, p. 1, 2018

6.2 List of Conferences attended

• Presented poster on ”Cluster mean field plus density matrix renormalization
theory for the Bose Hubbard model” in StatPhys Kolkata IX (online) jointly
organized by Indian Institute of Science and Education and Research and S.
N. Bose National Centre for Basic Sciences, Kolkata during MArch 21-25,
2022.

• Presented poster on Superfluid, Phase-separation, Supersolid and Density
Wave Phases in Extended Bose-Hubbard Model in 66 th DAE Solid state
physics symposium, organized by BARC and held at BIT Mesra, Ranchi,
Jharkhand, India during December 18-22, 2022
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