ON SPECTRAL PROPERTIES OF PERTURBED OPERATORS

M. THAMBAN NAIR
(Communicated by Palle E. T. Jorgensen)

Abstract

Farid (1991) has given an estimate for the norm of a perturbation V required to obtain an eigenvector for the perturbed operator $T+V$ within a given ball centered at a given eigenvector of the unperturbed (closed linear) operator T. A similar result is derived from a more general result of the author (1989) which also guarantees that the corresponding eigenvalue is simple and also that the eigenpair is the limit of a sequence obtained in an iterative manner.

1. Introduction

In a recent paper [3] Farid has considered a method based on contraction mapping theorem instead of the fixed-point theorem approach of Rosenbloom [7] to address the following problem in perturbation theory:
If (λ_{0}, ϕ_{0}) is an eigenpair of a densely defined closed linear operator in a Banach space \mathbf{X}, and r and ρ are given positive reals, then obtain an estimate for the radius of the disc $\{V \in B L(X):\|V\| \leq \delta\}$ such that the perturbed operator $T+V$ has an eigenpair (λ, ϕ) with

$$
\left\|\phi-\phi_{0}\right\| \leq r \text { and }\left|\lambda-\lambda_{0}\right| \leq \rho
$$

for every V in $\{V \in B L(X):\|V\| \leq \delta\}$, where $B L(X)$ denotes the space of all bounded linear operators on X.

In this note a result similar to that of Farid [3] is derived from a more general result in Nair [5]. While the results of Farid [3] and Rosenbloom [7] are essentially existential results, ours is an iterative procedure where sequences $\left(\lambda_{k}\right)$ and $\left(\phi_{k}\right)$ are obtained in an iterative manner with the property that $\lambda_{k} \rightarrow \lambda$ and $\phi_{k} \rightarrow \phi$ as $k \rightarrow \infty$. Moreover, the eigenvalue λ is shown to be a simple eigenvalue of $T+V$, and a disc centered at λ_{0} is obtained where λ is the only spectral value of $T+V$ lies. The uniqueness of the pair (λ, ϕ) established by Farid [3] is a consequence of the simplicity of λ.

2. The main result

Let T be a closed linear operator in a Banach space X with a dense domain D. Let λ_{0} be an eigenvalue of T with a corresponding eigenvector ϕ_{0} with

Received by the editors August 16, 1993 and, in revised form, October 15, 1993.
1991 Mathematics Subject Classification. Primary 47A55, 47A10.
$\left\|\phi_{0}\right\|=1$. The basic assumption in Farid [3] is the following:
(i) λ_{0}^{*}, the complex conjugate of λ_{0}, is an eigenvalue of the adjoint operator T^{*}, and $\phi_{0}^{*} \in X^{*}$ is a corresponding eigenvector such that $\left\langle\phi_{0}, \phi_{0}^{*}\right\rangle=1$.
(ii) λ_{0} does not belong to the spectrum of the operator $\widetilde{T}:=\left.T\right|_{Y}$, where $Y=\left\{x \in D:\left\langle x, \phi_{0}^{*}\right\rangle=0\right\}$.
Here and in what follows X^{*} denotes the adjoint space of X, that is, the space of all conjugate linear functionals on X, and $\langle x, f\rangle$ denotes the complex conjugate of $f(x)$ for $x \in X$ and $x^{*} \in X^{*}$. The adjoint operator T^{*} is defined by $\left\langle x, T^{*} f\right\rangle=\langle T x, f\rangle$ for all $x \in D$ and $f \in D\left(T^{*}\right):=\left\{f \in X^{*}\right.$: there exists $g \in X^{*}$ with $\langle T x, f\rangle=\langle x, g\rangle$ for all $\left.x \in D\right\}$. First we observe that assumption (i) implies the subspaces

$$
X_{1}:=\left\{x \in X:\left\langle x, \phi_{0}^{*}\right\rangle \phi_{0}=x\right\}
$$

and

$$
X_{2}:=\left\{x \in X:\left\langle x, \phi_{0}^{*}\right\rangle=0\right\}
$$

are invariant under T, i.e., $T x \in X_{i} \cap D$ for every $x \in X_{i} \cap D, i=1,2$, with

$$
X=X_{1} \oplus X_{2}
$$

and assumption (ii) implies, as a consequence of Theorem 4.2 in Nair [5], that λ is in fact a simple eigenvalue of T. Also, we note that the operator $P_{0}: X \rightarrow X$ defined by

$$
P_{0} x=\left\langle x, \phi_{0}^{*}\right\rangle \phi_{0}, \quad x \in X,
$$

is the projection operator onto X_{1} along X_{2}, and $\left\|P_{0}\right\|=\left\|\phi_{0}^{*}\right\|$. Let

$$
S_{0}:=\left(\widetilde{T}-\lambda_{0}\right)^{-1}: X_{2} \rightarrow X_{2} .
$$

With the above notation the main result of Farid [3] is the following.
Theorem (Farid [3, Theorem 2.1]). For every real number r satisfying

$$
0<r<\left(\frac{\left\|S_{0}\left(I-P_{0}\right)\right\|}{\left\|P_{0}\right\|\left\|S_{0}\right\|}\right)^{1 / 2}
$$

and every bounded linear operator V on X satisfying

$$
\|V\| \leq \delta(r):=r /\left(\left\|P_{0}\right\|\left\|S_{0}\right\| r^{2}+\left(\left\|P_{0}\right\|\left\|S_{0}\right\|+\left\|S_{0}\left(I-P_{0}\right)\right\|\right) r+\left\|S_{0}\left(I-P_{0}\right)\right\|\right)
$$

the operator $T+V$ has a unique eigenpair (λ, ϕ) such that

$$
\left\langle\phi, \phi_{0}^{*}\right\rangle=1, \quad\left\|\phi-\phi_{0}\right\| \leq r,
$$

and

$$
\left|\lambda-\lambda_{0}\right| \leq\|V\|\left(1+\left\|\phi-\phi_{0}\right\|\right)\left\|P_{0}\right\| .
$$

The main result of this note is the following.
Theorem *. For every real number $r>0$ and for every bounded linear operator V on X satisfying

$$
\beta_{V}:=\max \left\{\left\|P_{0} V\right\|,\left\|\left(I-P_{0}\right) V\right\|\right\} \leq \frac{r}{\left\|S_{0}\right\|(1+r)^{2}},
$$

the operator $T+V$ has a simple eigenvalue λ and a corresponding (unique)
eigenvector ϕ such that

$$
\begin{gathered}
\left\langle\phi, \phi_{0}^{*}\right\rangle=1, \quad\left\|\phi-\phi_{0}\right\| \leq r \\
\left|\lambda-\lambda_{0}\right| \leq\|V\|\left(\left\|\phi-\phi_{0}\right\|+1\right)\left\|P_{0}\right\|
\end{gathered}
$$

and λ is the only spectral value of $T+V$ lying in the disc

$$
\Delta_{0}:=\left\{z:\left|z-q_{0}\right|<\frac{d_{0}}{2}(1+\sqrt{1-4 \mu})\right\}
$$

where

$$
d_{0}=\frac{\left(1-2 \beta_{V}\left\|S_{0}\right\|\right)}{\left\|S_{0}\right\|}, \quad q_{0}=\lambda_{0}+\left\langle V \phi_{0}, \phi_{0}^{*}\right\rangle, \quad \mu=\left(\frac{r}{1+r^{2}}\right)^{2}
$$

Moreover,

$$
\lambda=\lim _{k \rightarrow \infty} \lambda_{k}, \quad \phi=\lim _{k \rightarrow \infty} \phi_{k},
$$

where λ_{k} and ϕ_{k} are defined iteratively as

$$
\begin{aligned}
\left(\tilde{T}+\tilde{V}-\lambda_{0}-\left\langle V \phi_{0}, \phi_{0}^{*}\right\rangle\right) \psi_{1} & =-\left(I-P_{0}\right) V \phi_{0} \\
\phi_{1} & =\phi_{0}+\psi_{1} \\
\lambda_{1} & =\lambda_{0}+\left\langle V \psi_{1}, \phi_{0}^{*}\right\rangle
\end{aligned}
$$

and, for $k=1,2, \ldots$,

$$
\begin{aligned}
\left(\tilde{T}+\widetilde{V}-\lambda_{0}-\left\langle V \phi_{0}, \phi_{0}^{*}\right\rangle\right) x_{k} & =\left\langle V \psi_{k}, \phi_{0}^{*}\right\rangle \psi_{k} \\
\psi_{k+1} & =\psi_{1}+x_{k} \\
\phi_{k+1} & =\phi_{0}+\psi_{k+1} \\
\lambda_{k+1} & =\lambda_{0}+\left\langle V \psi_{k+1}, \phi_{0}^{*}\right\rangle .
\end{aligned}
$$

Here $\widetilde{T}=\left.T\right|_{Y}$ and $\widetilde{V}=\left(I-P_{0}\right) V_{\left(I-P_{0}\right) X}$.
Remark. We note that

$$
\beta_{V}:=\max \left\{\left\|P_{0} V\right\|,\left\|\left(I-P_{0}\right) V\right\|\right\} \leq c_{0}\|V\|,
$$

where $c_{0}=\max \left\{\left\|P_{0}\right\|,\left\|I-P_{0}\right\|\right\}$. Therefore, a sufficient condition for Theorem * to hold is

$$
\|V\| \leq \omega(r):=\frac{r}{c_{0}\left\|S_{0}\right\|(1+r)^{2}}
$$

Also,

$$
\left\|P_{0}\right\|\left\|S_{0}\right\| r^{2}+\left(\left\|P_{0}\right\|\left\|S_{0}\right\|+\left\|S_{0}\left(I-P_{0} \|\right) r+\right\| S_{0}\left(I-P_{0}\right)\left\|\leq c_{0}\right\| S_{0} \|(1+r)^{2}\right.
$$

so that in general,

$$
\omega(r) \leq \delta(r)
$$

and thereby the assumption ' $\|V\| \leq \delta(r)$ ' of Farid [3] is weaker than ' $\|V\| \leq$ $\omega(r)^{\prime}$. However, if $\left\|P_{0}\right\|=1=\left\|I-P_{0}\right\|$, then

$$
\beta_{V} \leq\|V\|, \quad \omega(r)=\delta(r)=\frac{r}{\left\|S_{0}\right\|(1+r)^{2}}
$$

so in this case the condition in Theorem * is weaker than that of Farid [3], and therefore Theorem * improves the result of Rosenbloom [7] also. Examples with $\beta_{V}<\|V\|$ can be easily constructed. It is to be noted that if X is a

Hilbert space and T is a normal operator on X, then we have $\phi_{0}^{*}=\phi_{0}$, so that the projection P_{0} is orthogonal and therefore $\left\|P_{0}\right\|=1=\left\|I-P_{0}\right\|$.

We recall the following from [5] or [4]. If $X=Y_{1} \oplus Y_{2}$ is a decomposition of X into closed subspaces Y_{1} and Y_{2}, B is a bounded linear operator on Y_{1}, and C is a closed linear operator in Y_{2} with domain D_{C}, then the operator $F: B L\left(Y_{1}, Y_{2} \cap D_{C}\right) \rightarrow B L\left(Y_{1}, Y_{2}\right)$ defined by

$$
F(K)=C K-K B, \quad K \in B L\left(Y_{1}, Y_{2} \cap D_{C}\right)
$$

has a bounded inverse on $B L\left(Y_{1}, Y_{2}\right)$ if and only if $\sigma(B) \cap \sigma(C)=\varnothing$. The separation between B and C is defined by

$$
\operatorname{sep}(B, C):= \begin{cases}1 /\left\|F^{-1}\right\| & \text { if } F \text { has bounded inverse } \\ 0 & \text { otherwise } .\end{cases}
$$

If $E_{1} \in B L\left(Y_{1}\right)$ and $E_{2} \in B L\left(Y_{2}\right)$, then

$$
\operatorname{sep}\left(B+E_{1}, C+E_{2}\right) \geq \operatorname{sep}(B, C)-\left(\left\|E_{1}\right\|+\left\|E_{2}\right\|\right) .
$$

Proof (Theorem ${ }^{*}$). Let $\left(T_{i j}\right),\left(V_{i j}\right)$, and $\left(A_{i j}\right), i, j=1,2$, be the 2×2 matrix representations of T, V, and $A=T+V$ respectively with respect to the decomposition $X=X_{1} \oplus X_{2}$ (cf. [8, p. 286]). Then it is seen that

$$
\left\|V_{i j}\right\| \leq\left\|P_{i} V\right\| \leq \beta_{V}:=\max \left\{\left\|P_{0} V\right\|,\left\|\left(I-P_{0}\right) V\right\|\right\}, \quad i, j=1,2
$$

with $P_{1}=P_{0}$ and $P_{2}=I-P_{0}$. Therefore, we have

$$
\operatorname{sep}\left(A_{11}, A_{22}\right) \geq \operatorname{sep}\left(T_{11}, T_{22}\right)-\left(\left\|V_{11}\right\|+\left\|V_{22}\right\|\right) \geq \frac{\left(1-2 \beta_{V}\left\|S_{0}\right\|\right)}{\left\|S_{0}\right\|}
$$

Now the condition $\beta_{V} \leq r /(1+r)^{2}\left\|S_{0}\right\|$ implies that $2 \beta_{V}\left\|S_{0}\right\| \leq 2 r /(1+r)^{2} \leq \frac{1}{2}$, so that $\operatorname{sep}\left(A_{11}, A_{22}\right)>0$ and consequently the assumption $\sigma\left(A_{11}\right) \cap \sigma\left(A_{22}\right)=$ \varnothing in Nair [5] is satisfied. Now the quantity ε in [5] is seen to satisfy

$$
\begin{aligned}
\varepsilon & :=\frac{\left\|F^{-1}\left(A_{12}\right)\right\|\left\|A_{12}\right\|}{\operatorname{sep}\left(A_{11}, A_{22}\right)} \leq \frac{\left\|A_{12}\right\| A_{21} \|}{\operatorname{sep}\left(A_{11}, A_{22}\right)^{2}} \\
& \leq\left(\frac{\beta_{V}\left\|S_{0}\right\|}{1-2 \beta_{V}\left\|S_{0}\right\|}\right)^{2} \leq\left(\frac{r}{1+r^{2}}\right)^{2} \leq \frac{1}{4} .
\end{aligned}
$$

Writing $\mu=\left(r /\left(1+r^{2}\right)\right)^{2}$ and $g(\mu)=(1-\sqrt{1-4 \mu}) / 2 \mu$, it follows from ([5, Theorem 4.3 and relation (4.4)]) that $A:=T+V$ has a simple eigenvalue λ and a corresponding eigenvector ϕ such that

$$
\begin{aligned}
\left\langle\phi, \phi_{0}^{*}\right\rangle & =1 \\
\left\|\phi-\phi_{0}\right\| & \leq \alpha g(\mu) \\
\left|\lambda-\lambda_{0}\right| & \leq \frac{\delta_{0}}{2}(1-\sqrt{1-4 \mu})
\end{aligned}
$$

and λ is the only spectral value of A lying in the disc

$$
\left\{z: z-\lambda_{0} \left\lvert\,<\frac{\delta_{0}}{2}(1+\sqrt{1-4 \mu})\right.\right\} \supseteq \Delta_{0} .
$$

Here

$$
\begin{gathered}
\delta_{0}:=\operatorname{sep}\left(A_{11}, A_{22}\right) \geq \frac{\left(1-2 \beta_{V}\left\|S_{0}\right\|\right)}{\left\|S_{0}\right\|}=d_{0}, \\
x \leq \frac{\left\|\left(I-P_{0}\right) V\right\|}{\operatorname{sep}\left(A_{11}, A_{22}\right)} \leq \frac{\beta_{V}\left\|S_{0}\right\|}{1-2 \beta_{V}\left\|S_{0}\right\|} \leq \frac{r}{1+r^{2}}=\sqrt{\mu},
\end{gathered}
$$

and $g(t), 0<t \leq \frac{1}{4}$, satisfies

$$
\begin{gathered}
1 \leq g(t) \leq 2 \\
g\left(t_{1}\right) \leq g\left(t_{2}\right) \quad \text { for } t_{1} \leq t_{2} \\
\lim _{t \rightarrow 0} g(t)=1, \quad \text { and } \quad \lim _{t \rightarrow 1 / 4} g(t)=2
\end{gathered}
$$

It is easily seen that

$$
\alpha g(\mu) \leq \sqrt{\mu} g(\mu) \leq r
$$

so that $\left\|\phi-\phi_{0}\right\| \leq r$. Since $\left\langle\phi, \phi_{0}^{*}\right\rangle=1$ and $T^{*} \phi_{0}^{*}=\lambda_{0}^{*} \phi_{0}^{*}$, we have

$$
\lambda=\lambda_{0}+\left\langle V\left(\phi-\phi_{0}\right), \phi_{0}^{*}\right\rangle+\left\langle V \phi_{0}, \phi_{0}^{*}\right\rangle .
$$

Therefore,

$$
\left|\lambda-\lambda_{0}\right| \leq \beta_{V}\left(\left\|\phi-\phi_{0}\right\|+1\right)\left\|P_{0}\right\| .
$$

If $\tilde{\phi}$ is another eigenvector of $T+V$ corresponding to the simple eigenvalue λ such that $\left\langle\tilde{\phi}, \phi_{0}^{*}\right\rangle=1$, then $\tilde{\phi}=c \phi$ for some constant $c \neq 0$, and therefore $1=\left\langle\tilde{\phi}, \phi_{0}^{*}\right\rangle=c\left\langle\phi, \phi_{0}^{*}\right\rangle=c$. Thus $\tilde{\phi}=\phi$, proving the uniqueness of ϕ.

Lastly, the iterative procedure to obtain $\left(\lambda_{k}\right)$ and $\left(\phi_{k}\right)$, and their convergence to λ and ϕ respectively, are the consequences of [5, relations (3.5), (3.6)] and [5, Theorem 4.3], respectively.

Remark. We note that the generalized Rayleigh quotient $q=\left\langle(T+V) \phi_{0}, \phi_{0}^{*}\right\rangle$ of $T+V$ at $\left(\phi_{0}, \phi_{0}^{*}\right)$ satisfies

$$
|\lambda-q| \leq \beta_{V}\left\|\phi-\phi_{0}\right\| .
$$

A similar reformulation of the results in Nair [5, 6] and Stewart [9] involving spectral sets and spectral subspaces will show their applicability to more general situations of diagonally dominant infinite matrices than the ones described in [1-3].

Acknowledgment

This work was done during the author's visit to the Centre for Mathematics and Its Applications, The Australian National University, Canberra, during June-December 1993. The support received and the useful discussions he had with Dr. R. S. Anderssen are gratefully acknowledged.

References

1. F. O. Farid and P. Lancaster, Spectral properties of diagonally dominant infinite matrices, Part I, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), 301-314.
2. F. O. Farid, Spectral propereties of diagonally dominant infinite matrices, Part II, Linear Algebra Appl. 143 (1991), 7-17.
3. ___, Spectral properties of perturbed linear opeerators and their application to infinite matrices, Proc. Amer. Math. Soc. 112 (1991), 1013-1022.
4. M. T. Nair, Approximation and localization of eigenelements, Ph.D. Thesis, I. I. T. Bombay, 1984.
5. , Approximation of spectral sets and spectral subspaces in Banach spaces, J. Indian Math. Soc. (N.S.) 54 (1989), 187-200.
6. On iterative refinements for spectral sets and spectral subspaces, Numer. Funct. Anal. Optim. 10 (1989), 1019-1037.
7. P. Rosenbloom, Perturbation of linear operators in Banach spaces, Arch. Math. 6 (1955), 89-101.
8. A. E. Taylor and D. C. Lay, Introduction to functional analysis, Wiley, New York, 1980.
9. G. W. Stewart, Error bounds for approximate invariant subspaces of closedlinear operators, SIAM J. Numer. Anal. 8 (1971), 796-808.

Department of Mathematics, Goa University, Goa - 403 203, India

