ON SPECTRAL PROPERTIES OF PERTURBED OPERATORS

M. THAMBAN NAIR

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. Farid (1991) has given an estimate for the norm of a perturbation V required to obtain an eigenvector for the perturbed operator T + V within a given ball centered at a given eigenvector of the unperturbed (closed linear) operator T. A similar result is derived from a more general result of the author (1989) which also guarantees that the corresponding eigenvalue is simple and also that the eigenpair is the limit of a sequence obtained in an iterative manner.

1. INTRODUCTION

In a recent paper [3] Farid has considered a method based on contraction mapping theorem instead of the fixed-point theorem approach of Rosenbloom [7] to address the following problem in perturbation theory:

If (λ_0, ϕ_0) is an eigenpair of a densely defined closed linear operator in a Banach space X, and r and ρ are given positive reals, then obtain an estimate for the radius of the disc $\{V \in BL(X): \|V\| \leq \delta\}$ such that the perturbed operator T + V has an eigenpair (λ, ϕ) with

$$\|\phi - \phi_0\| \le r$$
 and $|\lambda - \lambda_0| \le \rho$

for every V in $\{V \in BL(X) : ||V|| \le \delta\}$, where BL(X) denotes the space of all bounded linear operators on X.

In this note a result similar to that of Farid [3] is derived from a more general result in Nair [5]. While the results of Farid [3] and Rosenbloom [7] are essentially existential results, ours is an iterative procedure where sequences (λ_k) and (ϕ_k) are obtained in an iterative manner with the property that $\lambda_k \to \lambda$ and $\phi_k \to \phi$ as $k \to \infty$. Moreover, the eigenvalue λ is shown to be a *simple* eigenvalue of T + V, and a disc centered at λ_0 is obtained where λ is the only spectral value of T + V lies. The uniqueness of the pair (λ, ϕ) established by Farid [3] is a consequence of the simplicity of λ .

2. The main result

Let T be a closed linear operator in a Banach space X with a dense domain D. Let λ_0 be an eigenvalue of T with a corresponding eigenvector ϕ_0 with

Received by the editors August 16, 1993 and, in revised form, October 15, 1993.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47A55, 47A10.

 $\|\phi_0\| = 1$. The basic assumption in Farid [3] is the following:

- (i) λ_0^* , the complex conjugate of λ_0 , is an eigenvalue of the adjoint operator T^* , and $\phi_0^* \in X^*$ is a corresponding eigenvector such that $\langle \phi_0, \phi_0^* \rangle = 1$.
- (ii) λ_0 does not belong to the spectrum of the operator $\widetilde{T} := T|_Y$, where $Y = \{x \in D: \langle x, \phi_0^* \rangle = 0\}$.

Here and in what follows X^* denotes the adjoint space of X, that is, the space of all conjugate linear functionals on X, and $\langle x, f \rangle$ denotes the complex conjugate of f(x) for $x \in X$ and $x^* \in X^*$. The adjoint operator T^* is defined by $\langle x, T^*f \rangle = \langle Tx, f \rangle$ for all $x \in D$ and $f \in D(T^*) := \{f \in X^*:$ there exists $g \in X^*$ with $\langle Tx, f \rangle = \langle x, g \rangle$ for all $x \in D$ }. First we observe that assumption (i) implies the subspaces

$$X_1 := \{ x \in X \colon \langle x, \phi_0^* \rangle \phi_0 = x \}$$

and

$$X_2 := \{ x \in X \colon \langle x, \phi_0^* \rangle = 0 \}$$

are invariant under T, i.e., $Tx \in X_i \cap D$ for every $x \in X_i \cap D$, i = 1, 2, with

$$X=X_1\oplus X_2,$$

and assumption (ii) implies, as a consequence of Theorem 4.2 in Nair [5], that λ is in fact a *simple* eigenvalue of T. Also, we note that the operator $P_0: X \to X$ defined by

$$P_0 x = \langle x, \phi_0^* \rangle \phi_0, \qquad x \in X,$$

is the projection operator onto X_1 along X_2 , and $||P_0|| = ||\phi_0^*||$. Let

$$S_0 := (\widetilde{T} - \lambda_0)^{-1} \colon X_2 \to X_2$$

With the above notation the main result of Farid [3] is the following.

Theorem (Farid [3, Theorem 2.1]). For every real number r satisfying

$$0 < r < \left(\frac{\|S_0(I - P_0)\|}{\|P_0\| \|S_0\|}\right)^{1/2}$$

and every bounded linear operator V on X satisfying

$$\|V\| \le \delta(r) := r/(\|P_0\| \|S_0\|r^2 + (\|P_0\| \|S_0\| + \|S_0(I - P_0)\|)r + \|S_0(I - P_0)\|),$$

the operator T + V has a unique eigenpair (λ, ϕ) such that

$$\langle \phi, \phi_0^* \rangle = 1, \qquad \| \phi - \phi_0 \| \leq r,$$

and

$$|\lambda - \lambda_0| \le \|V\|(1 + \|\phi - \phi_0\|)\|P_0\|$$

The main result of this note is the following.

Theorem *. For every real number r > 0 and for every bounded linear operator V on X satisfying

$$\beta_V := \max\{\|P_0V\|, \|(I-P_0)V\|\} \le \frac{r}{\|S_0\|(1+r)^2},$$

the operator T + V has a simple eigenvalue λ and a corresponding (unique)

1846

eigenvector ϕ such that

$$\langle \phi, \phi_0^* \rangle = 1, \qquad \| \phi - \phi_0 \| \le r,$$

 $|\lambda - \lambda_0| \le \| V \| (\| \phi - \phi_0 \| + 1) \| P_0 \|,$

and λ is the only spectral value of T + V lying in the disc

$$\Delta_0 := \{ z : |z - q_0| < \frac{d_0}{2} (1 + \sqrt{1 - 4\mu}) \},\$$

where

$$d_0 = \frac{(1 - 2\beta_V ||S_0||)}{||S_0||}, \quad q_0 = \lambda_0 + \langle V\phi_0, \phi_0^* \rangle, \quad \mu = \left(\frac{r}{1 + r^2}\right)^2.$$

Moreover,

$$\lambda = \lim_{k \to \infty} \lambda_k$$
, $\phi = \lim_{k \to \infty} \phi_k$,

where λ_k and ϕ_k are defined iteratively as

$$\begin{split} (\widetilde{T} + \widetilde{V} - \lambda_0 - \langle V\phi_0, \phi_0^* \rangle)\psi_1 &= -(I - P_0)V\phi_0, \\ \phi_1 &= \phi_0 + \psi_1, \\ \lambda_1 &= \lambda_0 + \langle V\psi_1, \phi_0^* \rangle \end{split}$$

and, for k = 1, 2, ...,

$$(\widetilde{T} + \widetilde{V} - \lambda_0 - \langle V\phi_0, \phi_0^* \rangle) x_k = \langle V\psi_k, \phi_0^* \rangle \psi_k,$$

$$\psi_{k+1} = \psi_1 + x_k,$$

$$\phi_{k+1} = \phi_0 + \psi_{k+1},$$

$$\lambda_{k+1} = \lambda_0 + \langle V\psi_{k+1}, \phi_0^* \rangle.$$

Here $\tilde{T} = T|_Y$ and $\tilde{V} = (I - P_0)V_{(I-P_0)X}$. Remark. We note that

$$\beta_{V} := \max\{\|P_{0}V\|, \|(I-P_{0})V\|\} \le c_{0}\|V\|,$$

where $c_0 = \max\{||P_0||, ||I - P_0||\}$. Therefore, a sufficient condition for Theorem * to hold is

$$||V|| \le \omega(r) := \frac{r}{c_0 ||S_0|| (1+r)^2}.$$

Also,

$$||P_0|| ||S_0||r^2 + (||P_0|| ||S_0|| + ||S_0(I - P_0||)r + ||S_0(I - P_0)|| \le c_0||S_0||(1 + r)^2,$$

so that in general,

$$\omega(r) \leq \delta(r)\,,$$

and thereby the assumption ' $||V|| \le \delta(r)$ ' of Farid [3] is weaker than ' $||V|| \le \omega(r)$ '. However, if $||P_0|| = 1 = ||I - P_0||$, then

$$\beta_V \leq \|V\|, \qquad \omega(r) = \delta(r) = \frac{r}{\|S_0\|(1+r)^2},$$

so in this case the condition in Theorem * is weaker than that of Farid [3], and therefore Theorem * improves the result of Rosenbloom [7] also. Examples with $\beta_V < ||V||$ can be easily constructed. It is to be noted that if X is a

Hilbert space and T is a normal operator on X, then we have $\phi_0^* = \phi_0$, so that the projection P_0 is orthogonal and therefore $||P_0|| = 1 = ||I - P_0||$.

We recall the following from [5] or [4]. If $X = Y_1 \oplus Y_2$ is a decomposition of X into closed subspaces Y_1 and Y_2 , B is a bounded linear operator on Y_1 , and C is a closed linear operator in Y_2 with domain D_C , then the operator $F: BL(Y_1, Y_2 \cap D_C) \rightarrow BL(Y_1, Y_2)$ defined by

$$F(K) = CK - KB$$
, $K \in BL(Y_1, Y_2 \cap D_C)$

has a bounded inverse on $BL(Y_1, Y_2)$ if and only if $\sigma(B) \cap \sigma(C) = \emptyset$. The *separation* between B and C is defined by

$$sep(B, C) := \begin{cases} 1/||F^{-1}|| & \text{if } F \text{ has bounded inverse,} \\ 0 & \text{otherwise.} \end{cases}$$

If $E_1 \in BL(Y_1)$ and $E_2 \in BL(Y_2)$, then

$$sep(B + E_1, C + E_2) \ge sep(B, C) - (||E_1|| + ||E_2||).$$

Proof (Theorem *). Let (T_{ij}) , (V_{ij}) , and (A_{ij}) , i, j = 1, 2, be the 2 × 2 matrix representations of T, V, and A = T + V respectively with respect to the decomposition $X = X_1 \oplus X_2$ (cf. [8, p. 286]). Then it is seen that

$$||V_{ij}|| \le ||P_iV|| \le \beta_V := \max\{||P_0V||, ||(I-P_0)V||\}, \quad i, j = 1, 2,$$

with $P_1 = P_0$ and $P_2 = I - P_0$. Therefore, we have

$$sep(A_{11}, A_{22}) \ge sep(T_{11}, T_{22}) - (||V_{11}|| + ||V_{22}||) \ge \frac{(1 - 2\beta_V ||S_0||)}{||S_0||}$$

Now the condition $\beta_V \leq r/(1+r)^2 ||S_0||$ implies that $2\beta_V ||S_0|| \leq 2r/(1+r)^2 \leq \frac{1}{2}$, so that $sep(A_{11}, A_{22}) > 0$ and consequently the assumption $\sigma(A_{11}) \cap \sigma(A_{22}) = \emptyset$ in Nair [5] is satisfied. Now the quantity ε in [5] is seen to satisfy

$$\varepsilon := \frac{\|F^{-1}(A_{12})\| \|A_{12}\|}{sep(A_{11}, A_{22})} \le \frac{\|A_{12}\|A_{21}\|}{sep(A_{11}, A_{22})^2} \le \left(\frac{\beta_V \|S_0\|}{1 - 2\beta_V \|S_0\|}\right)^2 \le \left(\frac{r}{1 + r^2}\right)^2 \le \frac{1}{4}.$$

Writing $\mu = (r/(1+r^2))^2$ and $g(\mu) = (1 - \sqrt{1-4\mu})/2\mu$, it follows from ([5, Theorem 4.3 and relation (4.4)]) that A := T + V has a simple eigenvalue λ and a corresponding eigenvector ϕ such that

$$\begin{aligned} \langle \phi, \phi_0^* \rangle &= 1, \\ \| \phi - \phi_0 \| &\leq \alpha g(\mu), \\ |\lambda - \lambda_0| &\leq \frac{\delta_0}{2} (1 - \sqrt{1 - 4\mu}). \end{aligned}$$

and λ is the only spectral value of A lying in the disc

$$\{z: z-\lambda_0| < \frac{\delta_0}{2}(1+\sqrt{1-4\mu})\} \supseteq \Delta_0.$$

Here

$$\delta_0 := sep(A_{11}, A_{22}) \ge \frac{(1 - 2\beta_V ||S_0||)}{||S_0||} = d_0,$$

$$\alpha \le \frac{\|(I - P_0)V\|}{sep(A_{11}, A_{22})} \le \frac{\beta_V ||S_0||}{1 - 2\beta_V ||S_0||} \le \frac{r}{1 + r^2} = \sqrt{\mu},$$

and g(t), $0 < t \le \frac{1}{4}$, satisfies

$$1 \le g(t) \le 2, g(t_1) \le g(t_2) \text{ for } t_1 \le t_2, \lim_{t \to 0} g(t) = 1, \text{ and } \lim_{t \to 1/4} g(t) = 2$$

It is easily seen that

 $\alpha g(\mu) \leq \sqrt{\mu} g(\mu) \leq r,$

so that $\|\phi - \phi_0\| \le r$. Since $\langle \phi, \phi_0^* \rangle = 1$ and $T^* \phi_0^* = \lambda_0^* \phi_0^*$, we have

$$\lambda = \lambda_0 + \langle V(\phi - \phi_0), \phi_0^* \rangle + \langle V\phi_0, \phi_0^* \rangle.$$

Therefore,

$$|\lambda - \lambda_0| \le \beta_V (\|\phi - \phi_0\| + 1) \|P_0\|.$$

If ϕ is another eigenvector of T + V corresponding to the simple eigenvalue λ such that $\langle \tilde{\phi}, \phi_0^* \rangle = 1$, then $\tilde{\phi} = c\phi$ for some constant $c \neq 0$, and therefore $1 = \langle \tilde{\phi}, \phi_0^* \rangle = c \langle \phi, \phi_0^* \rangle = c$. Thus $\tilde{\phi} = \phi$, proving the uniqueness of ϕ .

Lastly, the iterative procedure to obtain (λ_k) and (ϕ_k) , and their convergence to λ and ϕ respectively, are the consequences of [5, relations (3.5), (3.6)] and [5, Theorem 4.3], respectively.

Remark. We note that the generalized Rayleigh quotient $q = \langle (T+V)\phi_0, \phi_0^* \rangle$ of T+V at (ϕ_0, ϕ_0^*) satisfies

$$|\lambda - q| \leq \beta_V \|\phi - \phi_0\|.$$

A similar reformulation of the results in Nair [5, 6] and Stewart [9] involving spectral sets and spectral subspaces will show their applicability to more general situations of diagonally dominant infinite matrices than the ones described in [1-3].

ACKNOWLEDGMENT

This work was done during the author's visit to the Centre for Mathematics and Its Applications, The Australian National University, Canberra, during June-December 1993. The support received and the useful discussions he had with Dr. R. S. Anderssen are gratefully acknowledged.

References

- 1. F. O. Farid and P. Lancaster, Spectral properties of diagonally dominant infinite matrices, Part I, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), 301-314.
- 2. F. O. Farid, Spectral properties of diagonally dominant infinite matrices, Part II, Linear Algebra Appl. 143 (1991), 7-17.
- 3. ____, Spectral properties of perturbed linear opeerators and their application to infinite matrices, Proc. Amer. Math. Soc. 112 (1991), 1013-1022.
- 4. M. T. Nair, Approximation and localization of eigenelements, Ph.D. Thesis, I. I. T. Bombay, 1984.
- 5. ____, Approximation of spectral sets and spectral subspaces in Banach spaces, J. Indian Math. Soc. (N.S.) 54 (1989), 187-200.
- 6. ____, On iterative refinements for spectral sets and spectral subspaces, Numer. Funct. Anal. Optim. 10 (1989), 1019–1037.

M. T. NAIR

- 7. P. Rosenbloom, Perturbation of linear operators in Banach spaces, Arch. Math. 6 (1955), 89-101.
- 8. A. E. Taylor and D. C. Lay, Introduction to functional analysis, Wiley, New York, 1980.
- 9. G. W. Stewart, Error bounds for approximate invariant subspaces of closedlinear operators, SIAM J. Numer. Anal. 8 (1971), 796-808.

Department of Mathematics, Goa University, Goa - 403 203, India