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In  the p resen t paper the au tho rs first present the usual convergent process 
o f successive approx im ations associated  to  the  B anach contraction  principle 
fo r a  class o f linear hyperbolic partial differential equations. Then the  au thors 
obtain as a  coro llary  the R iem ann transition  function  for th e  telegraph 
equation , which had been ob tained  by T itchm arch an d  C opson by different 
argum ents. Exam ples on the use o f  the transition  function  are given. As 
ano ther app lication  the au tho rs derive a WendrofT-type inequality.

1. I n t r o d u c t io n

M ost dynamical systems are often m athem atically modelled in the form of differen­
tial equations2’6. The existence of closed-form solutions, or a t least the qualitative 
properties o f solutions of these equations, is an im portant consideration in the under­
standing o f the behaviour o f the systems. A great variety o f methods is available today 
fo r handling the theory o f existence of solutions. Considering the integral equation 
equivalent to the linear differential equation

k (/) — A (t) x  — 0 ...(1.1)

(A (t) is an n x  n matrix). C onti2 proves an existence theorem  for (1.1) using the 
Banach fixed-point principle6, which leads to  com puting the solution by iteration p ro ­
cess. This generates an evolution matrix which exhibits interesting properties. Em ploy­
ing the same technique, C onti2 com putes closed-form solutions for the linear affine 
differential equation

x ( t )  -  A  (t ) x  ------ f ( t ) ,

which reduces to  (1.1) when /  =  0.

In  this paper, the authors establish two-dimensional analogues of the existing 
results cited above. A part from  these generalizations, it has been possible to  illustrate 
by an example the construction of the Riem ann function3 for a class o f LH PD E. A 
generalized integral inequality o f W endrofftype1 has also been established.

2. N o t a t io n s  a n d  P r e l im in a r ie s

Let R  denote the real line and let

J  =  [a, b],
K =  [c, d],



where a, b, c and d are finite.
F o r .« > « c u » | l e y  '  * ia R > .  <M»e the following classes of real-valued

functions :
(i) C {J x K) =  the space of continuous functions

w : J  x A —* R, 

with norm

||u|| =  sup {[« ( x , y )  | : (x, j>) G  J  x 

(ii) 0 >  (7 < A) =  the space of functions 

u:  J  x  A -► R, 

having continuous ffth order partial derivatives.

(Co) ( j  x a :) =  c  (7 a:)).

For any fixed (x0, y 0) £ / x  K, we shall assume

0  [x, >’] =  l*o. x] x [y0( y], (x, y) €. J x  K, x  ^  x 0, y  >  y„.

Consider the characteristic initial value problem for the LH PD E

^ y = / i x , y ) u ( X, y )  - ( 2 1 )

defined on J  x K, where

u (x, Jo) =  o (x), x  £  J

v (x0, y) =  t  (y), y  (=. K

« (xu. Vo) =  a (x0) =  t  (y0) are prescribed.

Equation (2.1) can be reformulated in terms of the linear Volterra integral equation

« (X, r )  =-■ g (*> y) +  J /(■*, 0  K (s, t) ds dt ...(2.2)

x i  x0, y  >  v0, x0, x  €. J, J’o, y €  K,

where the function g (x, y), uniquely determined by the prescribed initial values, is 
given by g (x, y) =  a (x) +  t  (y) — a (x0). I t is to  be noted here, that a solution 
u (x, j') o f (2.1) will satisfy (2.2), then u (x, y)  £  O 2) (J x K ) (provided g (x, y) G C<2> 
( i  x A)) and by differentiation we have (2.1)

3 M a in  R e s u l t s

At the outset, we prove the existence of solutions of (2.2) in terms o f / a n d  g  in 
a closed form. The technique involves the use of the Banach fixed-point principle, 
which leads to constructing the solution by iteration.
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Theorem 3.1—(Existence and  Uniqueness)—If / (x, y) E  C (J X K)  and g  (x , .y) 
E  C  (J x K ), then u (x , y ) defined by

u (x,  >0 =  lim  [g (x , y)  +  J f  (su >i) g ( s„ t ,) ds idh  +  ... 
k D [ x , y ]

=  J .. j  / (s„ O  ... / ( s * .  tk) g (Sk,tk) dsk dtk
D[x,y~\ f *_i ]

... dsx dti] ...(3.1)

k  =  1,2,  .... (x, v) E  J  x  A", for any fixed (x 0, v0) E  J  X K, is the only u (x, y ) G 
C (J x  K)  which satisfies (2.2).

P ro o f  : The space C (J x  K)  o f continuous functions u : J  x  K  -*R,  with
norm

INI =  sup { | u (x, y)  I : (x,y) G J  x K},

is complete.

Let us also consider the space Ca ( J x  K),  m >0, o f continuous functions u : J x K  
-*■ R,  with norm

||M||fl =  sup { | u (x, y) | exp ( -  n J | f ( s ,  t) | ds dt)},
D [ x , y ]

(x, y)  G J  x K

so th a t C0 (J x K) — C (J x K).  It is easily verified th a t the norm s |]w|in are all
equivalent for fi 5= 0, so th a t (J  x  K) is also complete.

Let us now consider the m apping T  of (J  x  K) in to  itself defined by

(Tu) (x , >-) =  g (x, y)  +  f J f ( s ,  t ) u (s, t) ds dt.
D [ x , y ]

We therefore have, for ui, u., E  CV (J  x  K)

| 7uj — Tu2 | <  J \ f ( s ,  t)\\Ui (j , t ) — u2 (s , 0  | ds dt
D [ x , y l

I I  f ( s ,  O i k  (*> 0  -  U2 (•*> t) I
Dt*,?]

exp ( -  /x J | f ( p ,  q) I dp dq)  exp (n J | f ( p , q )  I dp dq) ds dt
D[s,t] D[s,/]

<  ||u, -  Mallfx J | / ( s ,  0  I exp ((X J \ f ( p , q ) \
D [ x , y 1 D[ s , t l

dp dq) ds dt.  ...(3.2)

I f  for the integral (3.2), we let

J \ f ( P . q ) \ d p d q  =  0> (s, t)
D[s,t]
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then \ f ( s ,  t) | =  <I>S, (s, /), and a simple computation yields

I fi | /' (s, t)— exp (fi i I ./ (P> <?) I dp dq) ds dt
D[.r,.v] ' Ots./]

^  exp (n J I / CM)  I dsdt) — 1.

0[s./]

...(3.3)

| Tu, -  Tu,!!,. <  !|"i -  t/J! n; x 0 <  5 <  x, j 0 <  t <  y,

for ij. >  0, so that J  is a contraction mapping for ft >  1. By virtue o f Banach theorem, 
T  has a unique u (x, y)  which satisfies (2.2) and this is represented as the limit in C p 
(J x K) o f  the sequence («*) defined by

This will give (3.1) for (x, j )  E  J  x  K.

In particular, if on J x K, g (x, j )  =  c, a constant, we have

Theorem 3.2—I f / ( x ,  y) €. C (J k K), the solutions of (2.2) are repersented by

Tf  (x, >■; x„ jo) =  lim [1 +  J /  (su f,) dsi d t x +  ...
0[-v,v]

+  .i J f ( s u ?j) f ( s k, tk) dsk dtk .. dsidtj] ...(3.5)
D[x,v]

(*> y)> (x0, jV'o) €E J  x K.

Tf  describes the transition of 11 from (x0, y 0) to (x, y)  and hence, we define 7 /  (x, _y; 
•'fo, yo) as the ‘transition function’ generated by / .  The importance of Theorems 3.1 
and 3.2 is illustrative in the following examples.

Example 3.1—Consider the “Telegraph equation”

uXf  +  Am =  0, A — constant,

u(1> (*, y) =  g (x, y)

(x, y) =  g (x, y) +  J /  (s, t ) (s , t) ds dt
D[x,y]

* -  (2, 3, ...).

W (■*> y)  =  Tf  (x, J  ; x„, v0) c ...(3.4)
where



satisfying the characteristic initial values

i< (x, y0) =  u (x0, y )  =  u (x0, y0) =  1.

It is clear that the Riemann function (say v) for the above LH PD E satisfies the self-ad- 
jo in t equation

Vxj, -f- Av =  0,

with boundary conditions,

v(x,y0) =  v (*o,y) =  v (x0,y) =  1.

U nder these conditions, it follows from (2.2) tha t the Riem ann function satisfies 
the integral equation

v (* , y) =  1 +  J ( —a) v (s,f) ds dt.
D[x,y]

By Theorem 3.2, the solutions are represented by 

v (x, y)  =  T_x (x, y; x0, y0),

where

T - X (x, y  : x0, y 0) =  lim [! +  I ( - A )  ds ld t1 +  ...
* 0[.v.v]

+  J ... J ( —A)* ds/, d tk ... dsi dti)
D[.v,v] 1,<*_i]

=  lim [1 -  A (x — x„) (y -  J'o) +  ■
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( -  1)‘ (A)fc (x — x0)‘ (y -  y0)‘ ,

lim | j  -  (2 VA (x -  x 0) (y -  y„/2)2 +  ...

+
( —l)fc(2 VA( x  -  x„) (y -  y 0)!2)** ~]

(A!)2 J

‘( -  l)k (2 VA (x - x 0) (y -  y0)/2)2*
m 1

=  70 (2 VA (x -  x 0) (y -  y„)).

The above example illustrates a method of obtaining the Riem ann function for 
the class o f  LH PD E under consideration, however, it is to  be noted here, tha t the itera­
tion process for the Riem ann function in general, drew attention away from the evalua­
tion o f this function3.



Example 3.2—As an application o f Theorem 3.1, consider the above example 
under the general characteristic initial values

u (x , y 0) =  x  +  y 0

u (x0, v) =  x0 +  y

« (x0, >’0) =  x0 4- y0> with A =  1/4.

It can be shown that a solution to the above LH PD E also satisfies the integral equation

u (x , y)  =  x +  y  +  J' ( - 1 /4 )  u (s, t) ds dt.
D[x,y]

By Theorem 3.1, solutions are represented by formal iterated sum

u (x, v) =  lim [x +  y  +  J’ ( — 1/4) (jj +  h ) dsi dtx
” D[x,y]

+  J ... J' ( - I l 4 ) k (sk +  tk) dsk dtk... dSi dh]
D[x,y\

=  I'm [ * + v -  (1/4) (x -  x0) {y -  Jo) +  y Y T T ~ )

+  ... ^  (*  -  *•)* O ' -

, y  +  kyo Y]
~h (k +T)T* JJ

o o _______________.
=  (X +  v t V ( -  l ) k ( V ( x -  x 0) ( y  -  j '„ ) /2 )2k

( y) ( k +  \ ) \ k \
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+  (x„ +  v ) V  ( - 0 * ( n / ( *  ~  *a) (J  ~  y t W . k  :
( -2 / (k +  1)! k l

*-1

=  (x  +  ^  (* ~  *<>) (y ~  y«) , ,  771----- rrTT;-------- vi
2 i (V  (x Xo) ( v .Vo))

+(*o +  y0) {Jo ( V ( x  - x0) (y — .vo)) — 1}

( x -  x 0) (y~— y a)~~  W (x  — X0)  (y  -  Jo)) -  1}.

This series represents a unique solution of the LHPDE.

Corollary 3.1 I f / ( x ,  y)  =  A, a constant, we have 

Tf  (x, y; x0, Jo) =  J0 (2i s / \ ( x -  x0) (y  -  j 0))

(*o> v>o), (x, y) e  J  x  K.



where

Corollary 3.2— ft is clear that by integration we have

(a) Tf  (x, y; x0, y„) = 1 +  J /  (s, 0  Ts (.9, t; x0, v0) dsdt.
D[x,y]

(b) Tf  (x , v; x 0, v) =  1 4  j' f ( s ,  t ) Tf  (x, y; s , t) ds dt
D [x,y\

(X0, I’o), (x, y)  e  J  X K.

Remark  3.1 : Consider the characteristic initial value problem

uXy =  h (x, y)  -I- f  (x, v) u (x,  y) ...(3.6)

h (x,  v), /  (x, y) €  C<») (J  x K)

u (x, v0) =  a (x)

« (xo, y) = t  (y)

u (xB, y n) =  o (x0) =  -  (y0) are prescribed.

As in the case of (2.1), equation (3.6) can be reform ulated in terms o f the Volterra in­
tegral equation

u (x , v) =  k (x, y )  4  j h (s, t) ds dt 4  J f  {s, t) u (s, t) ds dt.
Ofx.r]

...(3.7)
. x  i  x B, y  >  Vo.

where the function k  (x, y),  uniquely determined by the prescribed initial values, is 
given by k  (x, y) =  a (x) +  7 (y) — a (x0).

By virtue o f Theorem (3.1), we know that for every (x0, y 0) £  J  x K, there is a 
unique u (x, y) satisfying (3.7) and it is represented by (3.1) with

g (x, v) =  k (x, y) +  f h (5, t) ds dt,
D[x,y]

where g (x,  y'l £  C (2) (7 x K).

Taking into account the function generated by /  and g, it can easily be shown by 
a simple com putation that

« (*. y)  =  lim [* (x,  v) 4  j' f  (Si, >i) k(s tti) dsi dt i 4-
* Z>0 ,.v]

!'... J /  ( j„  /i) ... / ( sk, tk) k  (sk, tk) dskdtk ... ds, dt,]
D[.v,v]

+  J Tf (x, y; s,t) h {s, t) ds dt. ...(3.8)
D[x,y]

The following theorem s are now immediate :
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T h eo rem  3.3—If f  (x, y) E  C (J  x K), h (x , y)  E  C (J  x K)  

and k (x, y) E  C(2J (J  x  AT), the solutions of (3.7) are represented by (3.8).

Theorem 3.4—Under the hypotheses of Theorem 3 .3, if k  (x, y) =  c, a constant, 
the solutions of (3.7) are represented by the formula

u  (x, v) =  Tf  (x, y; x0, y0) c  4- j' Tf  (y , y; s , t ) h (.5, t )  ds d t .
D[x,y]

x  ' x a, y  . y u.

4. Integral I nequalities

Wendroff’s inequality has been enriched in various directions m ainly due to  its 
potential in the study o f the qualitative properties o f solutions o f  various PD E and 
multiple LV1E. In the sequel we obtain some generalised integral inequalities o f Wen- 
droff-type.

For u £  C (J x K)  let u (x0, y0) =  c (a constant) where x0 and y 0 are the left 
end points of J  and K  respectively, define the partial order a in C (J  x K ) as follows: 
for Mj, u., E  C (J  x K), call u L °c u if w, (x, y)  <  u, (x, y)  for all (x, y) E  /  x K. In 
the sequel, we shall require the following lemma :

Lemma  4 .16 (p 18)—Let X  be a complete norm ed linear space partially ordered by
the relation «  in such a m anner tha t if an increasing sequence {x„} has the limit x 0, then 
x„°cx0 for all n. Let T be an order-preserving contraction on X  with unique fixed point 
/ 0. Then

/  oc r /  => /  OC /„ .

Theorem 4.1—Suppose that u and /  are scalar, non-negative functions such tha t 
the product f u  is dx dy — integrable on J  X K,  and u E  C (J X K).  Then for any 
positive constant C, the inequality

“ (x, y) <  c +  f /  (j, t) u (s, t) ds ds dt ...(4.1)
»[.v,.r]

x >  x 0, y >  y„.
implies

« (x, .v) ^  c Tf  (x, y\ x„, v0) ...(4.2)

x >  xo, y  >  y0.

P ro o f : Let{u„} be a sequence in the partially ordered space C (J  x  K)  such tha t 
Mj oc u2 oc ... and un -> u. Then u E  C (J x K )  and u (x0, jo) =  c, since for each n, u„
(xB, y0) =  c. Furthermore, u„ (x, y)  ^  u (x, y) for each V ,  n =  1,2,  ..., (x, y) E  J
x  K. Define an operator

T  : C (J  x  tf) C (J x  K)  by,

(T u ) (x, j )  =  c +  J f ( s ,  t) u  (s, t) ds dt.
D[x,v]
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As in Theorem 3.1, it can be shown tha t T  is a contraction. T  is also order-preserv­
ing i. e. for uu u„ E  C (J  x  K)  and u t oc u2 => Tu, oc 7w2. The desired result now 
follows from  Lemma 4.1, completing the proof.

Corollary 4.1—If, under the hypotheses of Theorem 4.1, c is replaced by a fun­
ction g  (x , y) where g  (x, y) ^  0 is a continuous, m onotone, nondecreasing function in 
x  €. J  and y  G K, the inequality

w (•*, y) <  g (*. >0 +  J' f { s , t ) u ( s , t ) d s d t  ...(4.3)
D[x,y]

x  :■ xo , y  ]> y u,

implies

« (*. y)  =£ g (x, y) Tj  (x, y; x 0, y 0), 

x  x 0, .v >  y0 

*o, x  E  J, y0. y  £  K.

Remark  4. 1 : Using the notion o f resolvent kernel from  the theory o f Volterra 
integral equations, a stronger version of the W endroff’s inequality1 (p. 154) was obtained 
by C orduneanu4.
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