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In the present paper the authors first present the usual convergent process
of successive approximations associated to the Banach contraction principle
for a class of linear hyperbolic partial differential equations. Then the authors
obtain as a corollary the Riemann transition function for the telegraph
equation, which had been obtained by Titchmarch and Copson by different
arguments. Examples on the use of the transition function are given. As
another application the authors derive a Wendroff-type inequality.

1. INTRODUCTION

Most dynamical systems are often mathematically modelled in the form of differen-
tial equations®®. The existence of closed-form solutions, or at least the qualitative
properties of solutions of these equations, is an important consideration in the under-
standing of the behaviour of the systems. A great variety of methods is available today
for handling the theory of existence of solutions. Considering the integral equation
equivalent to the linear differential equation

#() —A()x =0 (1D

(4 (t)is an n X n matrix). Conti® proves an existence theorem for (1.1) using the
Banach fixed-point principle®, which leads to computing the solution by iteration pro-
cess. This generates an evolution matrix which exhibits interesting properties. Employ-
ing the same technique, Conti? computes closed-form solutions for the linear affine

differential equation
E()— A@W)x = f(1),
which reduces to (1.1} when /= 0.
In this paper, the authors establish two-dimensional analogues of the existing
results cited above. Apart from these generalizations, it has been possible to illustrate

by an example the construction of the Riemann function® for a class of LHPDE. A
generalized integral inequality of Wendrofftype® has also been established.

2. NOTATIONS AND PRELIMINARIES
Let R denote the real line and let
J = [a, b},
K = {e, d],
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where a, b, ¢ and d are finite.
For any rectangle / ~ Kin R?, we define the following classes of real-valued

functions :
i CUXK = the space of continuous functions

u:J s« K—=R,
with norm
lull = sup {fu (x, M) | : (x,») € J x K}
(i) C' (J « K) = the space of functions
u:J x K =R,
having continuous gth order partial derivatives.
(CO(J x K) = C({ =~ K)).
For any fixed (x,, ¥o) € J X K, we shall assume
Dlx,y] = lxes X] ¥ Yo, ¥} (x5, V) € J X K, x = X0, YV 2 Vo
Consider the characteristic initial value problem for the LHPDE

0%u

ax By S u(x,y) 2D

defined on J X K, where
u(x,ye) =o(x)yx €J
u(x,y) =1(»), yEK
u {xy, ¥o) = o (xy) = 7 (y,) are prescribed.
Equation (2.1) can be reformulated in terms of the linear Volterra integral equation

4,y =g N+ § fls,nNuls dsd (2.2
»

Dix,y]
X 22 XY 2 Vg Xoo X € J, ¥, ¥ € K,

where the function g (x, »), uniquely determined by the prescribed initial values, is
given by g (x,¥) = o (x) + ©(¥) — o (x,). Itisto be noted here, that a solution
u (x, y) of (2.1) will satisfy (2.2), then u (x, y) € C® (Jx K) (provided g (x, y) € C®
(/ x K)) and by differentiation we have (2.1).

3 MaIN ResuLTts

At the outset, we prove the existence of solutions of (2.2) interms of fand g in

a cl.osed form. The technique involves the use of the Banach fixed-point principle,
which leads to constructing the solution by iteration.
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Theorem 3.1—(Existence and Uniqueness)—If f(x, y) € C(J X K) and g (x, )
€ C (JxK), then u (x, ») defined by

u(x,y) = li/in [, »)+ | f(si, 0)g (s, t)dsidts + ...

fx,7]
= I .. J- f(sls tl) .f (Sk, ’k) 8 (skytk) dSk d’k
D[X,)'] D[S/;..],’k_,]}
e dsl dtl] -..(3.])

k=12 ..,(x,v) € J X K, for any fixed (x,, vy,) € J X K, is the only v (x, ) €
C (J x K) which satisfies (2.2).

Proor : The space C (J x K) of continuous functions v : J x K =R, with
norm

full = sup { | u (x,)|:(xy) € Jx K},
is complete.

Let us also consider the space Cu (J x K), »>0, of continuous functions v : JxK
— R, with norm

fulle =sup { |u(x,») {exp (=p [ |f(s, 1) |dsar)},
Dix,y]

x,y»€EJxK

sothat Co(J X K) = C (J x K). Itiseasily verified that the norms [ull. are all
equivalent for » = 0, so that Cu (J x K)is also complete.

Let us now consider the mapping T of Cu (J X K) into itself defined by

Tuwy(x,») =g+ [ [ f(@s1)ulst) dsdr.

Dix,y]
We therefore have, for ui, u, € Cu (J X K)
| Tu; — Tu, < [ £ (s, lees (5, 1) — uy (s, 8) | ds dt

Dix,y

S .[ I f(S, t)”ul (.S', f) - u? (S, ’) l
D[x,y]
exp(—p | |f(poq)) dpdg)exp (v [ | f(p,g) | dpdq)dsadt
Dis,t] Dis,1]

Slu —wlls | |fD]exp e [ 1f(pa)|
Dis,t]

Dlx,y]
dp dq) ds d1. ..(3.2)

If for the integral (3.2), we let
I Vf(p,q) | dpdg = ® (s, 1)

st
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then | f(s, 1) | = @y (s, 1), and a simple computation yields

i wlfG,0—exp(se § 1 f(p,9))dpdg)dsds
Dlx.yl Dis.t]

< exp (p J] | f(s,0) | dsdt) — 1. ...(3.3)
D[x,»

|
From (3.2) and (3.3) it is clear that foru, u, € Cu(J % K)

| Tu, — Tus | <y — wlip p~lexp(p [ | f(s, 1) | dsat).
Dix,y]

Hence

| Ty — Tu, | exp (—p | : [f(s, ) 1 dsdt) < plluy — wally

Dix,)

[ Tuy — Tl KoMy —uf g xo € s < X, yo €1,

for u > 0, so that T is a contraction mapping for p > 1. By virtue of Banach theorem,
T has a unique u (x, y) which satisfies (2.2) and this is represented as the limit in C p
(J X K) of the sequence (ux) defined by

u® (x,y) = g(x, )

R (x,¥) =g (x,») + | [(s, 1) u* (s, t)ds dt
Dfx,»

ko=(2,3,..).
This will give (3.1) for (x, y) € J x K.
In particular, ifon J x K, g (x,)) = ¢, a constant, we have
Theorem 3.2—If f(x, y) € C (J x K), the solutions of (2.2) are repersented by

u(x,)) =Ts(x,p; xq ¥o) C ..(3.4)
where

Tr(x,y;xeyo) =lim [l + | fus,t)dsidt + ...
i ]

xL,)

0§ S0 t) flse 1) dscdte. dsdt]  (3.5)
DIx, vl Dlsknv,tp_y]

(X, y)7 (XO! yO) E J x K

T; describes the transition of « from (x,, yo) to (x, ») and hence, we define T (x, y;

Xo, Yo) as the ‘transition function’ generated by f. The importance of Theorems 3.1
and 3.2 is illustrative in the following examples.

Example 3.1—Consider the “Telegraph equation”
uxy + Au = 0, A — constant,
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satisfying the characteristic initial values
u (%, ¥0) = u (X, ¥) = u(xo, ) = 1.
It is clear that the Riemann function (say v) for the above LHPDE satisfies the self-ad-
joint equation
vy + Av = 0,
with boundary conditions,
Y(X,¥0) =V (X0,)) = v (X0,)) = 1.

Under these conditions, it follows from (2.2) that the Riemann function satisfies
the integral equation

vix,y) =14+ [ (=) v(st)dsdt.
Dlx,y]

By Theorem 3.2, the solutions are represented by
v(x,¥) = T_, (x, ¥; Xo, Yo),
where

T (X, py:ixe ) =Hlm [l + | (=A)dsdt, + ..
k Dlx.v]

+ { (=AY dsx dty ... ds, dt)]
D{x,)] Dls_1,tk-1]

= mkn [ —A(x—x)(y — »o) +

(= DE*(x — x)* (v — yo)*
T - G ]

= “’I‘ [1 —QRVA(x = x) (V — pf2)2 + ...

(=D Q2 VA = X)) (¥ — po)l2)*
+ K2 ]

(= DR VAT %) O = 0
= )

k=0

=Jo 2VA(x — X} (¥ — »))

The above example illustrates a method of obtaining the Riemann function for
the class of LHPDE under consideration, however, it is to be noted here, that the itera-
tion process for the Riemann function in general, drew attention away from the evalua-
tion of this function?®.
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Example 3.2—As an application of Theorem 3.1, consider the above example
under the general characteristic initial values

u(x,¥) = x+
u (Xgy V) = Xo + ¥
u (Xo, ¥o) = Xo + Yo, With A = 1/4.
It can be shown that a solution to the above LHPDE also satisfies the integral equation

u(x, V=x+y+ | (=14 u(s1)dsdt
Dix,y]

By Theorem 3.1, solutions are represented by formal iterated sum

u(x,y) = likm [x +y+ | (=14 (s, + 1) ds: dr,

Dlx,y]
+ I .. J (= 1/4) (s + 1) dsk dty... dsy dti]
D(x,y¥1 DISk-1,tkc1]
+ }
hm I:x+v — () (x— x0) (y — yo)(x lx(: + }2—,:'}%}2—)
(- 1) W X x + kxq
4+ ... (x xn) (V yo) (m

Ly tky
W)

. (=D (VG —x) (7 = yu)/2)*
P‘*”Z (k+IJ)c'k' 22

k=0

= (D' = %) O = Jo)j2% k :
+(xo+J’o)z (kil;!)k!y‘,)/

ko=l

Yo) Jiv (x — x0) (¥ — yo))

+(xo + ¥o) {Jo (W —- Xo) (¥ — o)) — 1}

= 2(xe+ n\ TG =5 G =N

G+ NE—x) @ —
2

This series represents a unique solution of the LHPDE.
Corollary 31—If f(x,y) = A, a constant, we have
Tr (%, 33 X0, Yo) = Jy (2i /A (x — X0) (7 — 7))
(X0, Yo, (x, ) € J x K.
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Corollary 3.2—1t is clear that by integration we have

@ Tr(xy xep0) =1+ U f (s, 1) Ty (s, 15 Xo, ¥y) dsdt.
fx.y
(b) Tr(x,vixe,V)=1+ | f(s5,0) Tr(x p;s,1)dsdt
DIx,y]

(X0, ¥o), (x,3) € J x K.

Remark 3.1 : Consider the characteristic initial value problem

Uxy = h (%, p) A S (x, V) u(x, ») ...(3.6)
hix,»), f(x,y) € COJ x K)
where

u (x, o) = o (x)
u (xo, ) = = ()
u (xo, ¥o) = 6 (x4) = 7 (¥,) are prescribed.

As in the case of (2.1), equation (3.6) can be reformulated in terms of the Volterra in-
tegral equation

ulx, V=k(x,»)+ | h(s,t)dsdt+ | [f(s,1)u(s,t)dsadr
nixyl Dlx,3]

...(3.7)
LX 2 X,V 2 Vo

where the function k (x, ¥), uniquely determined by the prescribed initial values, is
given by k (x, ¥) = o {x) + 1 (¥) — o (x;).

By virtue of Theorem (3.1), we know that for every (x,, o) € J X K, thereisa
unique ¥ (x, ») satisfying (3.7) and it is represented by (3.1) with

gx,)=k(x, )+ [ k(s t)dsds,

[x,]
where g (x, ) € C® (J x K).
Taking into account the function generated by f and g, it can easily be shown by

a simple computation that

u(x, y) = lixkn k() + S (55, 1) k(s,t)) dsy dty +

Dfx,»

o TS (15 1) woe S (St k) K (5, 14) dsedtic ... ds, dt))
D[x,¥] Disik_1tk_>}

+ | Trx, v;s,t)h(s,t)dsdt. ...(3.8)
Dix,y]

The following theorems are now immediate :
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Theorem 3.3—1f7(x,)) € C(J x K), h(x,y) € C(J x K)
and k (x, ) € C® (J x K), the solutions of (3.7) are represented by (3.5).

Theorem 3.4—Under the hypotheses of Theorem 3.3, if & (x, ) = ¢, a constant,
the solutions of (3.7) are represented by the formula
u(x,y) =Tr(x, 3 xpYd ¢ + [ Tr(x,y s,t)h(s, 1)dsdt

D[x,3] .
X 2 Xoy V= Yo

4. INTEGRAL INEQUALITIES
Wendroff’s inequality has been enriched in various directions mainly due to its
potential in the study of the qualitative properties of solutions of various PDE and
multiple LVIE. In the sequel we obtain some generalised integral inequalities of Wen-
droff-type.

Foru € C(J x K) let u (xo, ¥o) = c (a constant) where x, and 3, are the left
end points of J and K respectively, define the partial order « in C (J x K) as follows:
foru,u, € C(J x K), call u, oc u, if u, (x,y) < u, (x,y)forall(x, v) € J x K. In
the sequel, we shall require the following lemma :

Lemma 4.1° (p 18)--Let X be a complete normed linear space partially ordered by
the relation o in such a manner that if an increasing sequence {x,} has the limit x,, then
x,o<X, for all n. Let T be an order-preserving contraction on X with unique fixed point
fo. Then

Theorem 4.1—Suppose that u and / are scalar, non-negative functions such that
the product f'u is dx dy — integrable on J x K, andu € C(J X K). Then for any
positive constant C, the inequality

ux,vy<c+ | f(s,Du(s t)dsdsde ..(4.1)
X,V
X 2 Xo, ¥ 2 Py
implies
u(x,¥) < cTy(x,y; X ¥o) ...(4.2)
X = Xo, ¥ 2 Yy

PRrooF : Let{u,} be a sequence in the partially ordered space C (J x K) such that
Uy o<y o< ... and u, > u. Thenu € C (J XK) and u (x,, yo) = c, since for each n, u,
(Xo» ¥o) = c. Furthermore, u, (x, ¥) < u (x,y)foreach ‘', n = 1,2, ..., (x,y) € J

X K. Define an operator
T:C({ x K)—=>C(J X K)by,

(Tw)(x,y)=c+ [ f(s,)u(s t)ds dr.

Dlx,y]
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As in Theorem 3.1, it can be shown that T is a contraction. T is also order-preserv-
ingi.e. for u,u, € C(J x K)and u, o< u, = Tu, o< Tu,. The desired result now
follows from Lemma 4.1, completing the proof.

Coroliary 4.1—1f, under the hypotheses of Theorem 4.1, ¢ is replaced by a fun-

ction g (x, y) where g (x, ¥) = 0is a continuous, monotone, nondecreasing function in
x € Jand y € K, the inequality

u(x, ) €gx,y»+ | _ f(s, tu(s, t)dsdt ...(4.3)

X,
X = X0, Y =2 Yo
implies
u (x,y) < g (x,9) Ty (x, y; X0, ¥o),
X 2 X0V 2 Vo
X0, X € J, ¥,y € K.
Remark 4. 1 : Using the notion of resolvent kernel from the theory of Volterra

integral equations, a stronger version of the Wendroff’s inequality® (p. 154) was obtained
by Corduneanu®.
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