Mechanism of Uptake of α **-Santonin by** *Pseudomonas cichorii* **Strain S**

I. Furtado, U. M. X. Sangodkar, and S. Mavinkurve*

Department of Microbiology, Goa University, Bambolim, Goa-403005, India

Accepted for publication December 8, 1986

Uptake of various solid hydrophobic substances is reported to occur by their solubilization, mediated by the cells through secretion of extracellular factors, $1-3$ or via direct contact of cells with the substrate.^{4,5} Pseudomonas *cichorii* strain S utilizes α -santonin, a sesquiterpene, as a sole source of carbon forming various intermediary products. $6,7$ The substrate, in liquid as well as on solid media, forms conspicuous crystals, which disappear during the course of growth of the organism.⁶ The present communication reports the observations on the mechanism of α -santonin uptake by Pseudomonas cichorii strain S.

MATERIALS AND METHODS

Organism and Growth Conditions

Pseudomonas cichorii strain *S* capable of utilizing α -santonin as sole source of carbon⁶ was maintained on mineral medium^{6,8,9} agar containing 0.4% (W/V) α -santonin.^{6,8} The culture was grown in α -santonin medium incubated on a rotary shaker at 180 rpm at 28-30°C. Growth was checked at intervals turbidimetrically using Klett Summerson colorimeter and viable count.

Estimation of a-Santonin

For estimation of dissolved α -santonin, the culture broth was filtered through 0.45 - μ m Millipore membrane in order to remove α -santonin crystals, if present. The filtrate was extracted with chloroform $(1:1)$. For estimation of total amount of α -santonin, consisting of crystalline and dissolved α -santonin, the aqueous medium or culture broth was extracted directly with chloroform $(1:1)$.

The amount of α -santonin present in the chloroform extracts was estimated by the colorimetric method.¹⁰ To the chloroform extracts, evaporated to dryness, were added 3 mL of *50%* **H2S04** and *0.5* mL of 0.8% femc chloride and heated for 10 min at 100°C. The reaction mixture was then

cooled, diluted with 3 **mL** absolute alcohol, and the absorbance read at 485 nm.

Uptake of a-Santonin by Cells

Cells grown on α -santonin, glucose, benzoate, or nutrient medium were washed thrice with *0.05M* phosphate buffer, pH 7, by centrifugation at *5000* rpm at 10°C, for 10 min, and resuspended to give an absorbance of **4.5** at 450 nm. Response of the washed cells was monitored in terms of depletion of α -santonin, using two reaction systems, involving the cells either on support or in a liquid system.

Cells on Support

Fifteen grams of silica gel of 180-200-nm mesh, washed to neutral pH with distilled water, was mixed with 1 **g** of α -santonin. A slurry, prepared in 50 mL mineral medium, was packed into a glass percolator column,¹¹ through which mineral medium was circulated with the help of an aerator. Culture of strain S grown in α -santonin medium for 24 h (2.5 mL) was pipetted on to the top of the column. Fivemilliliters aliquotes were eluted at intervals for assay of α -santonin.

Liquid System

Reaction mixtures consisting of washed S cells and a-santonin, made to a volume of 3 mL, using *0.05M* phosphate buffer, pH 7, were incubated on a reciprocating shaker at a speed of 115 strokes/min. Individual flasks were withdrawn at intervals and the contents were analysed for total and dissolved α -santonin.

RESULTS AND DISCUSSION

Growth of *Pseudomonas cichorii* **S**

a-Santonin Agar

Pseudomonas cichorii S grows on α -santonin agar plates and forms clear, crystal-free zones around the colonies

^{*} **To whom all correspondence should be addressed.**

Biotechnology and Bioengineering, Vol. 30, Pp. 991-994 (1987) *0* 1987 John Wiley *8t* Sons, Inc. **CCC 0006-3592/87/080991-04\$04.00**

(Fig. **1),6** caused by solubilization and utilization of α -santonin. The cells when streaked on presterilized barriers such as cellophane strips (Sigma) and Millipore membrane (0.45 μ m) and placed on α -santonin agar, grow within 48 h forming colonies on the barriers. The corresponding place below the barrier was marked with halo indicating dissolution of the substrate and noninvolvement of any high-molecular-weight extracellular factor in the dissolution. The batch culture supernatent placed on α -santonin agar did not show any solubilization of α -santonin crystals.

a-Santonin Liquid Medium

The growth of strain S in α -santonin medium is accompanied by visible disappearance of crystals from the medium. The quantitative analysis is depicted in Figure **2.** The

Figure 1. Halo formed around the colonies of *Pseudomoms cichorii* strain S during growth on α -santonin agar medium (ref. 6).

INCUBATION, *h*

Figure 2. Depletion of α -santonin, (O) total and (X) dissolved, during growth of *Pseudomoms cichorii* strain *S,* monitored by **(m)** turbidimetry and **(A)** viable counts.

concentration of dissolved α -santonin was 166 μ g/mL at 0 h and remained unchanged up to 12 h of incubation. The concentration of total α -santonin decreased continuously until it reached 166 μ g/mL; upon further decrease, it then corresponded to that of dissolved α -santonin.

Depletion of a-Santonin by Resting Cells

The eluants from the column, packed with silica gel containing crystalline α -santonin, showed a constant amount of dissolved α -santonin of 166 μ g/mL. When the column was inoculated with cell suspension, the eluted sample showed the initial concentration of 166 μ g/mL, which was decreased to 30 μ g/mL within 9 h.

When α -santonin grown cells washed in 0.05M phosphate buffer, **pH7,** and adjusted to absorbance of 4.5 at 450 nm were incubated with saturated- α -santonin solution, an immediate depletion in concentration of α -santonin was observed (Table I). When resting cells were incubated with excess of the substrate, 1 or 2 mg/mL of the reaction mixture, the concentration of dissolved α -santonin showed a constant value of 166 μ g/mL for 30 and 90 min, respectively (Table I), there being no supersaturation (more than 166 μ g/mL) at any stage. These observations confirmed that *P. cichorii* **S** utilizes mainly the substrate made available by dissolution. Similar findings have been reported for steroids, solid paraffins, and alkanes.^{13-15.}

Kinetics of Uptake of a-Santonin

The above observations that cells utilized α -santonin, available in dissolved form prompted us to study the correlation between the rate of dissolution of α -santonin in the medium and its depletion by strain *S.* **As** seen in Figure $3(A)$, α -santonin went into the solution, in aqueous medium, at the rate of 30 μ g/min/mL at ambient conditions (28–32°C), until a saturation level of 166 μ g/mL was reached in 7 min.

Effect of Cell Concentration on Depletion Rate

In order to determine the rate of depletion of α -santonin from the medium, varying amounts of washed cells were

Table I. Depletion of α -santonin by resting cells of *Pseudomonas cichorii* **S.**

Time (min)	Cells incubated with α -santonin		
	166 μ g/mL	$1000 \mu g/mL$	$2000 \mu g/mL$
		Amount of dissolved α -santonin	
	$(\mu$ g/mL)		
0	166	166	166
5	67	166	166
25	65	166	166
30	$<$ 6	166	166
60	$<$ 6	45	166
90	$<$ 6	25	166
110	<6		65
120	$<$ 6	10	45

Figure 3. (A) Dissolution of α -santonin in mineral medium, α -santonin *(5* **mg)** in 10 mL water, incubated at 115 strokes/min at room temperature. Aliquotes were filtered (0.45 μ m Millipore filter) and (\circ) estimated for dissolved α -santonin. The depletion of dissolved α -santonin (\bullet) by *Pseudomonas cichorii* S, is also shown. **(B)** Rate of depletion of α -santonin by **(A)** varying amounts of cells **is** also shown.

incubated with the saturated solution of α -santonin. Figure **3(B)** shows that the rate of depletion increases initially with the increasing amount of cells and levels off at a maximum rate of 29.93 μ g of α -santonin min/mL with 11.62 mg dry wt cells. The profile shown in Figure **3(A)** illustrates that the rate of depletion of α -santonin by cells corresponding to 11.62 mg dry wt from the medium is nearly equal to the rate of dissolution of crystalline α -santonin in the medium. It should be noted here that the quantity of cells $(11.62 \text{ mg dry wt})$ is five times more than the number of cells at stationary phase in batch culture, 8 therefore the rate of dissolution of α -santonin is not a limiting factor in a growing culture at ambient conditions, wherein the substrate is replenished by a physical phenomenon of dissolution of the crystals as has been reported in the utilization of n -docosane and n -tetracosane.¹⁰ Since the substrate-cell interaction in *P. cichorii* takes place only with dissolved α -santonin, the excessively high concentration of the substrate in crystalline form would not exhibit any toxic effect on cells. Thus, α -santonin at concentration as high as 5% is reported to be tolerated by the cells.^{6,8}

Santonin

Sodium azide ($10^{-3}M$) and $\alpha-\alpha'$ dipyridyl ($10^{-3}M$) did not affect the viability of the cells, but inhibited the cell-santonin interaction (Fig. 4), implying the involvement of oxidative metabolism in the process. The inhibitory effect of EDTA (Fig. 4), attributed to the chelation of divalent metal ions,¹⁶ corroborated the oxygen uptake data, wherein the cells were treated with 1 mM EDTA in 0.ImM Tris HCI buffer for 20 min prior to manometric studies (Fig. 5).

Figure 4. Effect of inhibitors on uptake of α -santonin by *Pseudomonas cichorii S.* Santonin-grown resting cells, suspended in buffer, were incubated with α -santonin and inhibitor: (\square) Control, (\bigcirc) EDTA of 10⁻³*M*, (\triangle) α - α' dipyridyl of 10⁻³M, and (\bullet) sodium azide of 10⁻³M.

Gram negative cells often possess specific factors for substrate transport in their envelopes. The presence of such factors is inferred from loss of activity on osmotic shocking¹⁷ or cation and pH manipulation¹⁸ and its simultaneous appearance in supernatant fluid. Resting cells of strain S, treated with 0.2mM MgCl₂¹⁸ for 20 min gave an oxygen uptake similar to that given by untreated cells (Fig. 5). The shock fluids incubated with α -santonin crystals also failed to show dissolution. Thus, the factors interacting with dis-

Figure **5.** Effect of pretreatment of *Pseudomoms cichorii S* **on** oxygen uptake: (A) untreated control, α -santonin grown cells, suspended in 0.05M phosphate buffer, pH 7.0, treated with (B) $1 \text{m}M$ EDTA (C) $0.2 \text{m}M$ Mg²⁺, for 30 min washed in phosphate buffer and used for oxygen uptake with $(①)$ α -santonin, (A) acetate, (\blacksquare) benzoate, and (O) endogenous.

solved α -santonin are probably, bound firmly to the cell envelope.

CONCLUSIONS

Foregoing observations indicate that *Pseudomonas cichorii* S cells utilize α -santonin, available in solution, dissolved at a rate of 30 μ g/mL/min at ambient temperature (28-32°C). The rate of uptake of α -santonin by the cells is influenced by concentration of cells and the substrate. Uptake of α -santonin appears to involve oxidative metabolic process, requiring divalent metal ions.

A fellowship from UGC to Irene Furtado is acknowledged. The authors are thankful to A. Gawde for technical assistance.

References

- 1. **K.** Hisatsuka, T. Nakahara, Y. Minoda, and **K.** Yamada, *Agric. Bid. Chem.,* 41,445 (1977).
- 2. D. G. Cooper, **J.** Akit, and N. **Kasario,** J. *Ferment. Technol., 60,* ¹⁹ (1982).
- 3. E. A. Rosenberg, C. R. Zuckerberg, and D. L. Gutnick, Appl. *Env. Microbiol.,* 37, 402 (1979).
- 4. I. **K.** Zilber, E. Rosenberg, and D. Gumick, *Appl.* Env. *Microbiol.,* **40,** 1086 (1980).
- 5. **P.** C. Goswami, H. D. Singh, S. D. Bhagat, and J. N. Buaruah, *Biofechnol. Bioeng.,* 25, **40** (1983).
- 6. U. M. **X.** Sangodkar and S. Mavinkurve, J. *BioSci.,* 4, 79 (1982).
- 7. U.P. Naik, **S.K.** Paknikar, and S. Mavinkurve, *Id.* J. Chem., 21, 501 (1982).
- 8. U. M. **X.** Sangodkar and S. Mavinkurve, *Id. J. Microbiof.,* 24, 202 (1984).
- 9. S. Mahtani and S. Mavinkurve, J. *Ferment. Technol.,* 57,529 (1979).
- 10. I. Furtado and S. Mavinkurve, *Pafai.,* **3,** 16 (1981).
- 11. R. **Kurane,** T. Suzuki, and Y. **Takahara,** Agric. *Biol.* Chem., 44, 523 (1980).
- 12. W. W. Umbreit, **R.** H. Bums, and J. F. Stauffer, in *Manometric und Biochern* Techniques (Burgess, Minneapolis, MN, 1972).
- 13. J.B. Jones and M. Baskevitch, *Steroids,* 22, 525 (1973).
- 14. M. Chakravarty, **P.** M. Amin, H. D. Singh, J. N. Baruah, and M. S. Iyengar, *Biotechnol. Bioeng.,* 14,61 (1972).
- 15. S. S. Cameotra, H. D. Singh, A. K. Hazarika, and J. M. Baruah, *Biofechnol. Bioeng., 25,* 2945 (1983).
- 16. C. W. Grey and S. G. Wilkinson, *J. Gen. Microbiol.*, **39,** 385 (1965).
- 17. C. H. Neu and A. L. Heppei, J. *Biol. Chern.,* 240,3685 (1965).
- 18. A. **F.** Day and J. M. Ingram, *Can. J. Microbiol.,* 17, 1025 (1971).