dc.description.abstract |
Efforts were made to recycle sugar industry waste 'press mud' (PM) with an objective to ascertain the water-holding capacities with monoculture vermireactor systems using Eisenia fetida (MVR1); Eudrilus eugeniae (MVR2); Megascolex megascolex (MVR3); and polyculture vermireactor systems using Eisenia fetida plus Eudrilus eugeniae (PVR1); Eisenia fetida plus Megascolex megascolex (PVR2); Eudrilus eugeniae plus Megascolex megascolex (PVR3). The vermicompost harvested after 40 days was subjected to a standard Proctor compaction test by using 3 kg industry soil and 200 g of vermicompost for each cycle of compaction up to seven cycles. The least dry density and highest water content 0.6, 170 percent; 0.66, 170 percent; 0.71, 170 percent and 0.52, 210 percent; 0.51, 180 percent; 0.71, 150 percent for vermicomposts of MVR3, MVR2, MVR1 and PVR3, PVR2, PVR1, respectively. The monoculture reactor using Megascolex megascolex can hold 110-170 percent and polyculture vermireactor using indigenous Megascolex megascolex plus Eudrilus eugeniae (PVR3) can hold 140-210 percent of water under experimental conditions. The species Megascolex megascolex used individually and in combinations with Eudrilus eugeniae are best suited for biodegradation of press mud, and composts derived are having increase water-holding capacities. The addition of VC to the soil increases water-holding capacity and by maintaining evaporation losses to minimum as good adsorbent of atmospheric moisture eventually helps in maintaining the ecology of hydrologic cycle. Increasing water-holding capacity is one of the soil erosion control measures that influences soil productivity in both managed and natural ecosystems. |
|