dc.contributor.author | Jadhav, R.W. | |
dc.contributor.author | Hangarge, R.V. | |
dc.contributor.author | Aljabri, M.D. | |
dc.contributor.author | More, K.S. | |
dc.contributor.author | Chen, J-Y. | |
dc.contributor.author | Jones, L.A. | |
dc.contributor.author | Evans, R.A. | |
dc.contributor.author | Li, J-L. | |
dc.contributor.author | Bhosale, S.V. | |
dc.contributor.author | Gupta, A. | |
dc.date.accessioned | 2020-06-15T09:45:41Z | |
dc.date.available | 2020-06-15T09:45:41Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Materials Chemistry Frontiers. 4(7); 2020; 2176-2183. | en_US |
dc.identifier.uri | https://doi.org/10.1039/D0QM00041H | |
dc.identifier.uri | http://irgu.unigoa.ac.in/drs/handle/unigoa/6079 | |
dc.description.abstract | We report for the first time the use of a carbonyl-bridged triarylamine core with diketopyrrolopyrrole terminal units to generate a three-dimensional, non-planar non-fullerene electron acceptor with favourable properties for use in organic photovoltaic devices. The carbonyl-bridged triarylamine-functionalized, small molecule non-fullerene electron acceptor, 2,6,10-tris(5-(2,5-bis(2-ethylhexyl)-3,6-dioxo-4-(thiophen-2-yl)-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrol-1-yl)thiophen-2-yl)-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-4,8,12-trione (coded as R1), was synthesized via the industrially viable, Suzuki cross-coupling reaction using commercially and cheaply available substrates. Using PTB7 as a donor, a power conversion efficiency of 9.33 percent was achieved in simple, solution-processable bulk-heterojunction devices, a result that is amongst the best in the literature for three-dimensional non-fullerene acceptors. | en_US |
dc.publisher | Royal Society of Chemistry | en_US |
dc.subject | Chemistry | en_US |
dc.title | The first connection of carbonyl-bridged triarylamine and diketopyrrolopyrrole functionalities to generate a three-dimensional, non-fullerene electron acceptor | en_US |
dc.type | Journal article | en_US |
dc.identifier.impf | y |