dc.description.abstract |
The phenomena of reactive percolation of enriched asthenospheric melts and pervasive melt-rock interactions at mid oceanic ridge-rift systems are the principal proponents for mantle refertilization and compositional heterogeneity. This study presents new mineralogical and geochemical data for the abyssal peridotites exposed along the Vema and Vityaz fracture zones of the Central Indian Ridge (CIR) to address factors contributing to the chemical heterogeneity of CIR mantle. Cr-spinel (Cr hash: 0.37-0.59) chemistry classifies these rocks as alpine-type peridotites and corroborates a transitional depleted MORB type to enriched, SSZ-related arc-type magma composition. HFSE and REE geochemistry further attests to an enriched intraoceanic forearc mantle affinity. The distinct boninitic signature of these rocks reflected by LREE greater than MREE less than HREE and PGE compositions substantiates refertilization of the CIR mantle harzburgites by boninitic melt percolation concomitant to initiation of oceanic subduction. The mineral chemistry, trace, and PGE signatures of the CIR peridotites envisage (i) replenishment of depleted sub-ridge upper mantle by impregnation of subduction-derived boninitic melts, (ii) tectonic transition from mid oceanic ridge-rift to an embryonic suprasubduction zone, and (iii) initiation of spontaneous intraoceanic subduction along submarine transform faults and fracture zones of slow-spreading CIR owing to the weakness and mechanical instability of older, denser, and negatively buoyant Indian Ocean lithosphere. |
en_US |