IR @ Goa University

Optically-assisted thermophoretic reversible assembly of colloidal particles and E. coli using graphene oxide microstructures

Show simple item record

dc.contributor.author Joby, J.P.
dc.contributor.author Das, S.
dc.contributor.author Pinapati, P.
dc.contributor.author Rogez, B.
dc.contributor.author Baffou, G.
dc.contributor.author Tiwari, D.K.
dc.contributor.author Sudhir, C.
dc.date.accessioned 2022-03-08T12:04:52Z
dc.date.available 2022-03-08T12:04:52Z
dc.date.issued 2022
dc.identifier.citation Scientific Reports. 12; 2022; ArticleID_3657. en_US
dc.identifier.uri https://doi.org/10.1038/s41598-022-07588-4
dc.identifier.uri http://irgu.unigoa.ac.in/drs/handle/unigoa/6720
dc.description.abstract Optically-assisted large-scale assembly of nanoparticles have been of recent interest owing to their potential in applications to assemble and manipulate colloidal particles and biological entities. In the recent years, plasmonic heating has been the most popular mechanism to achieve temperature hotspots needed for extended assembly and aggregation. In this work, we present an alternative route to achieving strong thermal gradients that can lead to non-equilibrium transport and assembly of matter. We utilize the excellent photothermal properties of graphene oxide to form a large-scale assembly of silica beads. The formation of the assembly using this scheme is rapid and reversible. Our experiments show that it is possible to aggregate silica beads (average size 385 nm) by illuminating thin graphene oxide microplatelet by a 785 nm laser at low intensities of the order of 50-100 Mu W/Mu m sup(2). We further extend the study to trapping and photoablation of E. coli bacteria using graphene oxide. We attribute this aggregation process to optically driven thermophoretic forces. This scheme of large-scale assembly is promising for the study of assembly of matter under non-equilibrium processes, rapid concentration tool for spectroscopic studies such as surface-enhanced Raman scattering and for biological applications. en_US
dc.publisher Nature Publishing Group en_US
dc.subject Physics en_US
dc.subject Biotechnology en_US
dc.title Optically-assisted thermophoretic reversible assembly of colloidal particles and E. coli using graphene oxide microstructures en_US
dc.type Journal article en_US
dc.identifier.impf y


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IR


Advanced Search

Browse

My Account