| dc.contributor.author | George, S. | |
| dc.contributor.author | Nair, M.T. | |
| dc.date.accessioned | 2015-06-03T06:44:07Z | |
| dc.date.available | 2015-06-03T06:44:07Z | |
| dc.date.issued | 1994 | |
| dc.identifier.citation | Journal of Optimization Theory and Applications. 83(1); 1994; 217-222. | en_US |
| dc.identifier.uri | http://dx.doi.org/10.1007/BF02191771 | |
| dc.identifier.uri | http://irgu.unigoa.ac.in/drs/handle/unigoa/715 | |
| dc.description.abstract | Schock (Ref. 1) considered a general a posteriori parameter choice strategy for the Tikhonov regularization of the ill-posed operator equation Tx=y which provides nearly the optimal rate of convergence if the minimal-norm least-squares solution x-cap belongs to the range of the operator (T*T)sup(v), 0 less-than-or-equal-to 1. Recently, Nair (Ref. 2) improved the result of Schock and also provided the optimal rate if v=1. In this note, we further improve the result and show in particular that the optimal rate can be achieved for 1/2 less-than-or-equal-to v less-than-or-equal-to 1. | en_US |
| dc.publisher | Springer Verlag (Germany) | en_US |
| dc.subject | Mathematics | en_US |
| dc.title | Parameter choice by discrepancy principles for ill-posed problems leading to optimal convergence-rates | en_US |
| dc.type | Journal article | en_US |
| dc.identifier.impf | y |