dc.contributor.author |
George, S. |
|
dc.contributor.author |
Nair, M.T. |
|
dc.date.accessioned |
2015-06-03T06:44:07Z |
|
dc.date.available |
2015-06-03T06:44:07Z |
|
dc.date.issued |
1994 |
|
dc.identifier.citation |
Journal of Optimization Theory and Applications. 83(1); 1994; 217-222. |
en_US |
dc.identifier.uri |
http://dx.doi.org/10.1007/BF02191771 |
|
dc.identifier.uri |
http://irgu.unigoa.ac.in/drs/handle/unigoa/715 |
|
dc.description.abstract |
Schock (Ref. 1) considered a general a posteriori parameter choice strategy for the Tikhonov regularization of the ill-posed operator equation Tx=y which provides nearly the optimal rate of convergence if the minimal-norm least-squares solution x-cap belongs to the range of the operator (T*T)sup(v), 0 less-than-or-equal-to 1. Recently, Nair (Ref. 2) improved the result of Schock and also provided the optimal rate if v=1. In this note, we further improve the result and show in particular that the optimal rate can be achieved for 1/2 less-than-or-equal-to v less-than-or-equal-to 1. |
en_US |
dc.publisher |
Springer Verlag (Germany) |
en_US |
dc.subject |
Mathematics |
en_US |
dc.title |
Parameter choice by discrepancy principles for ill-posed problems leading to optimal convergence-rates |
en_US |
dc.type |
Journal article |
en_US |
dc.identifier.impf |
y |
|