Abstract:
Mn sub(3)GaC undergoes a ferromagnetic to antiferromagnetic, volume discontinuous cubic-cubic phase transition as a function of temperature, pressure, and magnetic field. Through a series of temperature dependent x-ray absorption fine structure spectroscopy experiments at the Mn K and Ga K edge, it is shown that the first order magnetic transformation in Mn sub(3)GaC is entirely due to distortions in the Mn sub-lattice and with a very little role for Mn-C interactions. The distortion in the Mn sub-lattice results in long and short Mn-Mn bonds with the longer Mn-Mn bonds favoring ferromagnetic interactions and the shorter Mn-Mn bonds favoring antiferromagnetic interactions. At the first order transition, the shorter Mn-Mn bonds exhibit an abrupt decrease in their length resulting in an antiferromagnetic ground state and a strained lattice.