Abstract:
The structural, electronic, magnetic, optical and thermoelectric properties of PrYO3(Y=Cr, V) have been studied by using density functional based FP-LAPW+ lo method as implemented into wien2k code. The analysis of band structures and density of states confirm the half metallic ferromagnetism in studied compounds. The nature and origin of ferromagnetism has been depicted in terms of crystal field energies, exchange energies involved and exchange constants. Moreover, the reduction of magnetic moment from V/Cr, Pr sites and generation of small magnetic moments on oxygen and interstitials sites leads to negative value of indirect exchange energy Δx(pd) and strong hybridization. Finally, the thermoelectric behavior has been explained by discussing the electrical conductivity, thermal conductivity, Seebeck coefficient, power factor and thermal efficiency. Moreover, evaluation of PrYO3 on the basis of its magnetic and thermoelectric properties conform that the compounds are much suitable for spintronic and thermoelectric applications.