IR @ Goa University

Examination of long memory in Indian Stock Market: A sectoral juxtaposition

Show simple item record

dc.contributor.author Naik, R.
dc.contributor.author Reddy, Y.V.
dc.date.accessioned 2022-01-14T09:14:23Z
dc.date.available 2022-01-14T09:14:23Z
dc.date.issued 2021
dc.identifier.citation FIIB Business Review. NYP; 2021; NYP. en_US
dc.identifier.uri https://doi.org/10.1177/23197145211040274
dc.identifier.uri http://irgu.unigoa.ac.in/drs/handle/unigoa/6669
dc.description.abstract One of the situations encountered in time series analysis is long-range dependence, also known as Long memory. We investigated the presence of long memory in the Indian sectoral indices returns and investigated whether the long memory behaviour is affected by the data frequency. We applied the autoregressive fractionally integrated moving average (ARFIMA) models to 13 sectoral indices of the National Stock Exchange of India and examined the long memory in daily, monthly and quarterly return series. The results indicate the persistence in daily return series and anti-persistence in monthly and quarterly return series. Thus, we conclude that the frequency of data does have a significant effect on the behaviour of long memory patterns. The results will be helpful for present and potential investors, institutional investors, portfolio managers and policymakers to understand the dynamic nature of long memory in the Indian stock market. en_US
dc.publisher Sage en_US
dc.subject Commerce en_US
dc.title Examination of long memory in Indian Stock Market: A sectoral juxtaposition en_US
dc.type Journal article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IR


Advanced Search

Browse

My Account