Abstract:
The escalating environmental concerns and depletion of crude oil resources have catalyzed interest in biologically derived polymers, particularly biodegradable ones such as polyhydroxyalkanoates. However, the high production costs associated with polyhydroxyalkanoates, driven by raw material expenses, stringent production conditions and low yields, hinder their widespread adoption. A potential strategy to mitigate these costs involves the production of PHAs and other high-value bioproducts, such as carotenoids simultaneously in microbial systems, utilizing shared metabolic pathways. Carotenoids, known for their antioxidant properties and applications in the food, cosmetics and pharmaceutical industries, offer substantial market potential. This review presents a comprehensive overview of the current progress in polyhydroxyalkanoate and carotenoid co-production, explores the co-synthesis pathways, addresses the challenges involved and explores the future prospects of this integrated bioprocess. By diversifying the product portfolio and optimizing microbial production systems, the co-production strategy could pave the way for more sustainable and economically viable bioplastics.